Erdös' Minimum Overlap Problem

Steven Finch

July 2, 2004
Let A, B be disjoint, complementary subsets of the set $\{1,2,3, \ldots, 2 n\}$ with cardinality $|A|=|B|=n$. Let M_{k} denote the number of solutions of the equation $a_{i}-b_{j}=k$, where k is an integer between $-2 n$ and $2 n$. Define

$$
M(n)=\min _{A, B} \max _{k} M_{k}
$$

We wish to estimate $M(n)$ as n grows large [1, 2, 3]. The work of Erdös, Scherk and others $[4,5,6]$ implies that

$$
\mu_{L}=\liminf _{n \rightarrow \infty} \frac{M(n)}{n} \geq \sqrt{4-\sqrt{15}}>0.35639
$$

and specific examples provide that [7]

$$
\mu_{R}=\underset{n \rightarrow \infty}{\limsup } \frac{M(n)}{n} \leq \frac{2}{5}=0.4 .
$$

Haugland [6] recently demonstrated that $\mu_{L}=\mu_{R}$ (meaning that the limit exists) and, using a theorem of Swinnerton-Dyer, obtained the improvement

$$
0.35639<\mu=\lim _{n \rightarrow \infty} \frac{M(n)}{n}<0.38201
$$

No one has conjectured an exact value for this limiting ratio.
Observe that M_{-k} is the cardinality of the set $A_{k} \cap B$, where A_{k} is the translated set $\{a+k: a \in A\}$. Mycielski and Świerczkowski [4] considered a continuous analog of Erdös' problem. Let X, Y be disjoint, complementary measurable subsets of the interval $[0,1]$ with Lebesgue measure $|X|=|Y|=1 / 2$. It is not surprising that

$$
\inf _{X, Y} \sup _{t}\left|X_{t} \cap Y\right|=\frac{\mu}{2}
$$

where X_{t} is the translated set $\{x+t: x \in X\}$. Hence the bounds $0.17819<\mu / 2<$ 0.19101 carry over from before.

[^0]Moser and Murdeshwar [8, 9, 10] studied the following generalization. Let f, g be Lebesgue integrable functions on \mathbb{R} satisfying

$$
\begin{array}{lll}
0 \leq f(x) \leq 1 & \text { for } 0 \leq x \leq 1, & f(x)=0 \\
0 \leq g(x) \leq 1 & \text { for } 0 \leq x \leq 1, \quad g(x)=0 & \text { otherwise; } \\
& \int_{0}^{1} f(x) d x=\frac{1}{2}=\int_{0}^{1} g(x) d x
\end{array}
$$

(This scenario reduces to the preceding case by taking f to be the characteristic function of X and g to be the characteristic function of Y; clearly $f(x)+g(x)=1$ for all $0 \leq x \leq 1$.) Define

$$
\lambda=\inf _{f, g} \sup _{t} \int_{0}^{1} f(x+t) g(x) d x
$$

It is known [10] that $0.136 \leq \lambda \leq 0.166$, but it is not presently known whether Swinnerton-Dyer's theorem [6] can be applied here (in some extended form) to improve these bounds.

Here is a related problem due to Czipszer [3, 11]. Let $\tilde{a}_{1}<\tilde{a}_{2}<\tilde{a}_{3}<\cdots<\tilde{a}_{n}$ be arbitrary integers and define $\tilde{A}_{k}=\left\{\tilde{a}_{j}+k: 1 \leq j \leq n\right\}$ for each integer k. Let \tilde{M}_{k} denote the cardinality $\left|\tilde{A}_{k}-\tilde{A}_{0}\right|$, that is, the number of elements of \tilde{A}_{k} not in \tilde{A}_{0}. Define

$$
\tilde{M}(n)=\min _{\tilde{A}} \max _{-n \leq k \leq n} \tilde{M}_{k}
$$

and $\tilde{\mu}_{L}, \tilde{\mu}_{R}$ as earlier. It is known that $1 / 2 \leq \tilde{M}(n) / n \leq 2 / 3$ and, further, that $\tilde{M}(n) / n \geq 3 / 5$ for all $n \geq 26$ [12]. It is conjectured that $\overline{\tilde{\mu}}_{L}=\tilde{\mu}_{R}=2 / 3$. We give the corresponding functional version. Let \tilde{f} be a Lebesgue integrable function on \mathbb{R} satisfying

$$
0 \leq \tilde{f}(x) \leq 1, \quad \int_{-\infty}^{\infty} \tilde{f}(x) d x=1
$$

Define

$$
\tilde{\lambda}=\inf _{\tilde{f}}\left\{1-\inf _{-1 \leq t \leq 1} \int_{-\infty}^{\infty} \tilde{f}(x+t) \tilde{f}(x) d x\right\}
$$

It is known that $0.5892 \leq \tilde{\lambda} \leq 2 / 3$ [11]. As a corollary, if \tilde{X} is a measurable subset of \mathbb{R} with Lebesgue measure $|\tilde{X}|=1$, then

$$
0.5892 \leq \inf _{\tilde{X}} \sup _{-1 \leq t \leq 1}\left|\tilde{X}_{t}-\tilde{X}\right| \leq \frac{2}{3}
$$

The discrete and continuous analogs do not appear to be as closely linked as before. Again, we wonder whether recent techniques [6] can be invoked to sharpen these bounds.

References

[1] P. Erdös, Some remarks on number theory (in Hebrew), Riveon Lematematika 9 (1955) 45-48; MR0073619 (17,460d).
[2] P. Erdös, Problems and results in additive number theory, Colloque sur la Théorie des Nombres, Proc. 1955 Bruxelles conf., Liège, G. Thone, 1956, pp. 127-137; MR0079027 (18,18a).
[3] R. K. Guy, Unsolved Problems in Number Theory, $2^{\text {nd }}$ ed., Springer-Verlag, 1994, sect. C17; MR 96e:11002.
[4] S. Świerczkowski, On the intersection of a linear set with the translation of its complement, Colloq. Math. 5 (1958) 185-197; MR0103172 (21 \#1955).
[5] L. Moser, On the minimal overlap problem of Erdös, Acta Arith. 5 (1959) 117119; MR0106864 (21 \#5594).
[6] J. K. Haugland, Advances in the minimum overlap problem, J. Number Theory 58 (1996) 71-78; MR1387725 (97c:11031).
[7] T. S. Motzkin, K. E. Ralston and J. L. Selfridge, Minimal overlapping under translation, Bull. Amer. Math. Soc. 62 (1956) 558.
[8] W. O. J. Moser, A generalization of some results in additive number theory, Math. Z. 83 (1964) 304-313; MR0167475 (29 \#4748).
[9] L. Moser and M. G. Murdeshwar, On the overlap of a function with the translation of its complement, Colloq. Math. 15 (1966) 93-97; MR0196023 (33 \#4218).
[10] M. G. Murdeshwar, On the maximum correlation between functions, Prace Mat. 11 (1968) 193-197; MR0225955 (37 \#1545).
[11] L. Moser and M. G. Murdeshwar, On the overlap of a function with its translates, Nieuw Arch. Wisk. 14 (1966) 15-18; MR0193201 (33 \#1422).
[12] M. Katz and F. Schnitzer, On a problem of J. Czipszer, Rend. Sem. Mat. Univ. Padova 44 (1970) 85-90; MR0299492 (45 \#8540).

[^0]: ${ }^{0}$ Copyright (c) 2004 by Steven R. Finch. All rights reserved.

