
Graph Processing on GPUs: Where are the
Bottlenecks?

Qiumin Xu, Hyeran Jeon, Murali Annavaram
Ming Hsieh Department of Electrical Engineering, University of Southern California

Los Angeles, CA
{qiumin, hyeranje, annavara} @usc.edu

Abstract—Large graph processing is now a critical component
of many data analytics. Graph processing is used from social
networking web sites that provide context-aware services from
user connectivity data to medical informatics that diagnose a
disease from a given set of symptoms. Graph processing has
several inherently parallel computation steps interspersed with
synchronization needs. Graphics processing units (GPUs) are
being proposed as a power-efficient choice for exploiting the
inherent parallelism. There have been several efforts to efficiently
map graph applications to GPUs. However, there have not
been many characterization studies that provide an in-depth
understanding of the interaction between the GPGPU hardware
components and graph applications that are mapped to execute
on GPUs. In this study, we compiled 12 graph applications and
collected the performance and utilization statistics of the core
components of GPU while running the applications on both
a cycle accurate simulator and a real GPU card. We present
detailed application execution characteristics on GPUs. Then,
we discuss and suggest several approaches to optimize GPU
hardware for enhancing the graph application performance.

I. INTRODUCTION

Large graph processing is now a critical component of
many data analytics. Graphs have traditionally been used
to represent the relationship between different entities and
have been the representation of choice in diverse domains,
such as web page ranking, social networks, tracking drug
interactions with cells, genetic interactions, and communicable
disease spreading. As computing is widely available at very
low cost, processing large scale graphs to study the vertex
interactions is becoming an extremely critical task in com-
puting [22, 29, 32, 33]. Many graph processing approaches
[2, 33] use the Bulk Synchronous Parallel model [37]. In
this execution model, graphs are processed in synchronous
iterations, called supersteps. At every superstep, each vertex
will execute a user function that can send/receive messages,
modify its value or modify values of its edges. There is
no defined order in which the vertices are handled within
each superstep, but at the end of each superstep all vertex
computations are guaranteed to be completed.

Graph processing has been parallelized to run on large
compute clusters using well-known cluster compute paradigms
such as Hadoop [3] and MapReduce [19] that have been
re-targeted to run graph applications. More recently, graph
processing-specific computing frameworks, such as Pregel [33]
and Giraph [2] have also been proposed. Pregel, for instance,
relies on vertex-centric computing. An application developer
defines a vertex.compute() function which specifies the com-
putation that will be performed at each vertex. The computa-

tion can be as simple as finding the minimum value of all the
adjacent vertex values, or could be a more complex function
that simulates how a protein may fold when interacting with
amino acids [11].

Within each superstep, or within each MapReduce iteration,
there is significant amount of parallelism as the same com-
putation is performed across all vertices in the graph. Today
this parallelism is exploited primarily through cluster-based
computing where multiple compute nodes concurrently process
different subgraphs. Given the loose synchronization demand
and repeated computations on vertices, the Single Instruction
Multiple Threads (SIMT) parallel execution model supported
by graphics processing units (GPUs) provides new venues to
significantly increase the power efficiency of graph processing.
By mapping a vertex processing to a SIMT lane or a set of
SIMT lanes called warp or wavefront, large graphs can be
efficiently processed. Several studies showed how to efficiently
map graph applications to GPUs [7, 23, 24, 26, 35, 38].
However, there have not been many characterization studies
conducted to understand how graph applications interact with
GPU-specific microarchitectural components, such as SIMT
lanes and warp schedulers. To optimize GPUs for graph
processing, understanding the the graph application’s charac-
teristics and the corresponding hardware behavior is important.

Che et al. [16] recently characterized graph applications
while running on AMD Radeon HD 7950 GPGPU. They
implemented eight graph applications in OpenCL and analyzed
the hardware behaviors such as cache hit ratio, execution time
breakdown, speedup over executing on CPU. In this paper,
we collected 12 graph applications written in CUDA from
various sources and execute them on NVIDIA GPU as well
as a similarly configured cycle-accurate simulator. We then
provide in-depth application characterization and analyze the
interaction of the application with the underlying microarchi-
tectural blocks through a combination of hardware monitoring
with performance counters and software simulators. In order
to highlight graph applications’ unique execution behavior, we
also ran a set of non-graph applications on GPUs and compared
the behavior of the two sets of applications.

The followings are the contributions of this work:

• We compiled 12 graph applications written in CUDA.
Not to be biased by a certain programming style,
we acquired the applications from a broad range
of sources. We measured various GPU architectural
behaviors while running graph applications on real
hardware. As the real machine profiler provides only

a limited set of hardware monitoring capabilities, we
also used cycle accurate GPU simulator to understand
the impact of warp schedulers, performance bottle-
necks and load imbalance across SMs, CTAs and
warps.

• To differentiate graph application’s unique characteris-
tics, we also executed a set of non-graph applications
on the same platforms. We then compare and contrast
the various performance and resource utilization mea-
sures.

• We discuss several design aspects that need to be
considered in the GPU hardware design for more
efficient graph processing.

The remainder of this paper is organized as follows.
Section II explains the baseline GPU architecture. Section III
describes our evaluation methodology and the graph and non-
graph applications used in the experiment. Then, we charac-
terize and analyze the GPU hardware behaviors by using the
evaluation results in Section IV. We discuss possible hardware
optimizations in Section V. Section VI describes the related
work and we conclude in Section VII.

II. BACKGROUND

GPU: CPU-GPU heterogeneous computing has recently
attracted attention. GPUs provide massive parallel processing
power cooperating with CPU. As the host for the GPU device,
CPU organizes and invokes application kernel functions that
execute on a GPU. Communication between the CPU and
the GPU is performed via PCI-Express bus. GPUs consist of
a number of streaming multiprocessors, each comprising of
simple processing engines, called CUDA cores in the NVIDIA
terminology. For instance, NVIDIA Tesla M2050 consists
of 14 streaming multiprocessors (SMs), each comprising 32
stream processor (SP) cores and 64 KB shared memory shared
among the SPs in a SM. In M2050, up to 1536 hardware
threads are supported by each SM and 21,504 threads are
supported on the entire GPGPU.

The kernel function called by host CPU is divided into
several independent thread blocks or cooperative thread array
(CTA). Inside of a thread block, a set of threads (32 in
M2050), referred to as a warp, is scheduled on the SM to
run concurrently. A warp is a collection of threads that all
run the same sequence of instructions but using different
data operands. This execution model is referred to as single
instruction multiple thread (SIMT) model and each thread
within a warp has a dedicated set of execution resources which
are referred to as SIMT lanes. GPUs provide a large, but slow
off-chip global memory that can be accessed by all thread
blocks and the CPU, while providing small but fast on-chip
shared memories that are individually shared among threads
in the same CTA.

III. METHODOLOGY

A. Graph applications

In this section, we briefly describe the benchmark suite
of graph algorithms we evaluated in this study. Many of the
benchmarks are collected from recent research papers which

implemented state of art algorithms for a variety of graph
processing demands.

• Approximate Graph Matching (AGM) is used to
find maximal independent edge set in a graph. It
has applications in minimizing power consumption in
wireless networks, solving traveling sales person prob-
lem, organ donation matching programs, and graph
coarsening in computer vision. The version of AGM
used in this study is a fine-grained shared-memory
parallel algorithm for greedy graph matching [20].

• All Pairs Shortest Path (APSP) is used to find
the shortest path between each pair of vertices in
a weighted graph. The standard algorithm for solv-
ing the APSP problem is the Floyd-Warshall algo-
rithm [21]. Buluç et al., showed that APSP prob-
lem is computationally equivalent to computing the
product of two matrices on a semiring [13]. The
APSP algorithm we selected uses this more efficient
implementation.

• Breadth First Search (BFS) is a well known graph
traversal algorithm. The parallel implementation of
BFS is widely available. We use the version in Rodinia
benchmark [17].

• Graph Clustering (GCL) is concerned with partition-
ing the vertices of a given graph into sets consisting
of vertices related to each other. It is a ubiquitous
subtask in many applications, such as social networks,
image processing and gene engineering. GCL used in
this paper refers to the implementation in [7] using a
greedy agglomerative clustering heuristic algorithm.

• Connected Component Labeling (CCL) involves
identifying which nodes in a graph belong to the
same connected cluster or component [24, 27, 34]. It
is widely used in simulation problems and computer
vision. CCL here refers to implementation of prior
work using label equivalence method [24].

• Graph Coloring (GCO) partitions the vertices of
a graph such that no two adjacent matrices share
the same color. There are several known applications
of graph coloring such as assigning frequencies to
wireless access points, register allocation at compile
time, and aircraft scheduling. Graph coloring is NP-
hard, therefore, a number of heuristics have been
developed to assign colors to vertices, such as first
fit, largest degree order and saturation degree order.
GCO selected in this study uses a parallelized version
of first fit algorithm presented in [23].

• Graph Cuts (GCU) partitions the vertices of a graph
into two disjoint subsets that are joined by at least one
edge. It can be employed to efficiently solve a wide
variety of low level computer vision problems, such as
image segmentation, stereo vision, image restoration.
The maxflow / mincut algorithm to compute graph
cuts is computationally expensive. The authors in [38,
39] proposed a parallel implementation of the push-
relabel algorithm for graph cuts which achieves higher
performance, which is used in this study.

• Maximal Independent Set (MIS) finds a maximal
collection of vertices in a graph such that no pair
of vertices is adjacent. It is another basic building
block for many graph algorithms. MIS here refers
to the standard cusp implementation [4] using Luby’s
algorithm [31].

• Minimum Spanning Tree (MST) finds a tree that
connects all the vertices together with minimum
weight. It has applications in computer networks,
telecommunication networks, transportation networks,
water supply networks and smart electrical grid man-
agement. This benchmark computes a minimum span-
ning tree in a weighted undirected graph using Boru-
vka’s algorithm [14].

• Page Rank (PR) is an algorithm used by Google to
rank websites. PageRank is a probability distribution
used to represent the likelihood that a person randomly
clicking on links will arrive at any particular page. The
implementation uses Mars MapReduce framework on
GPU [25, 35].

• Survey Propagation (SP) The satisfiability (SAT)
problem is the problem of determining if there exists
an interpretation that satisfies a given Boolean for-
mula. Survey propagation [12] is heuristic SAT-solver
based on Belief Propagation(BP), which is a generic
algorithm in probability graph. It is implemented in
LonestarGPU [14].

• Single Source Shortest Path (SSSP) computes the
shortest path from a source node to all nodes in
a directed graph with non-negative edge weights by
using a modified Bellman-Ford algorithm [10, 14].

B. Non-graph applications

In addition to the above described graph applications, we
evaluated 9 benchmarks from non-graph application domains
from the Rodinia benchmark [17] and NVIDIA SDK [5]
suites. The benchmarks are selected to cover a wide range
of application domains: LU decomposition (LUD), matrix
multiplication (MUL) are dense liner algebra applications,
which manipulate dense matrices. Discrete Cosine transform
(DCT) and Heartwall (HW) are image processing applications.
Hotspot (HS) is a physical simulation application which is
used to do thermal simulation to plot the temperature map of
processors. We also included statistics and financial applica-
tions such as Histogram (HIST) and Binomial options (BIN).
Finally, we included widely used parallel computing primitives
scan (SCAN) and reduction (RDC) to represent a large range
of applications from parallel application developers.

C. Experiment environment

Each of the selected applications were written in CUDA.
We only modified the makefiles to change the compilation flags
for collecting specific data from GPU hardware that we will
describe shortly. We ran these applications both on the native
hardware as well as on a cycle accurate GPU simulator. Hard-
ware measurements are performed on Tesla M2050 GPGPU,
which has 14 CUDA SMs running at 1.15GHz. Meanwhile,
simulation studies are performed on GPGPU-Sim [9] to collect

GPU
Model Tesla M2050 [30]
Core 14 CUDA SMs@1.15GHz
Memory 2.6GB, GDDR5@1.5GHz
Comm. PCI-E GEN 2.0

Simulator
Version GPGPU-Sim v3.2.2 [9]
Configs Tesla C2050
Core 14 CUDA SMs@1.15GHz
Memory GDDR5@1.5GHz
L1D 16KB RF 128KB
Const 8KB Shared 48KB
L2D 786KB

TABLE I: Experiment environments

detailed runtime statistics that were not possible in hardware
measurements. As shown in Table I, GPGPU-Sim is configured
with Tesla C2050 parameters, which has the same architecture
as M2050. The only difference between the two different
GPGPUs is that they have different heat sinks. We run multiple
experiments with different input sets for each application as
shown in Table II. The input sets differ in size and categories;
some of the input sets are obtained from Dimacs [8], some are
obtained from Florida Matrix Collection [18] and others come
with original application.

IV. RESULTS AND ANALYSIS

A. Kernel execution pattern

First of all, we measured the number of kernel function
calls that were invoked by the CPU on the GPU when
executing on native hardware. In Figure 1(a) and (b), the bar
charts named KERNEL indicate the total number of kernel
functions invoked during the execution of each graph and non-
graph application. The average number of kernel invocations
is nearly an order magnitude higher in graph applications
(about 300 invocations) compared to non-graph applications
(about 25 invocations). Graph applications require frequent
synchronizations: for instance, after each superstep in BSP
model all vertex computations must return to CPU for syn-
chronization before starting the next superstep. Thus graph
applications require frequent CPU interventions to provide
synchronization capability for both BSP and MapReduce-style
graph computations.

The amount of computation done per each kernel invoca-
tion is significantly smaller in graph applications than non-
graph applications. The first two bars in Figure 1(c) show
the total execution time spent while executing all the kernel
invocations (labeled TOTAL KERNEL) and the average amount
of time spent per kernel invocation (labeled EACH KERNEL).
In graph applications the per kernel execution time is only
24% of the per kernel time spent in non-graph applications.
Thus non-graph applications, at least the applications that we
evaluated, execute relatively large functions on each kernel
invocation from CPU and require fewer CPU interventions.

One of the negative side effect of communicating fre-
quently with CPU is that in current systems CPU and GPU
communicate via PCI interface. Thus even short messages
require long latencies to communicate over PCI. In Figure 1(a)
and (b), the bar charts named PCI show the number of
cudaMemcpy function calls that uses PCI to transfer between
CPU and GPU. Graph applications interact with CPU nearly

Name Input Set Size Name Input Set Description Name Input Set Size

AGM coAuthor 300K*300K APSP 1K 1K-V 6K-E BFS 4096 4K
In2004 13M*13M 4K 4K-V 24K-E 65536 64K

GCL email 1K*5K CCL logo 2.7MB 1MW 1M
coAuthor 300K*300K Trojan 5.5MB GCU flower 4.7MB
belgium 1.4M*1.4M MST rmat12 [8] 4K-V 165K-E person 4.7MB

GCO hood [18] 215K-V 5.2M-E fla [8] 1M-V 2.6M-E PR wiki 7K-V 104K-E
pwtk [18] 212K-V 5.7M-E SP 17K 4K-V 17K-E Edge14 16K-V 256K-E

MIS 128 128*128 42K 10K-V 42K-E SSSP fla [8] 1M-V 2.6M-E
512 512*512 rmat20 [8] 1.1M-V 45M-E

TABLE II: 12 Graph applications collected from various sources(V: Vertices, E: Edges)

2
5

4
.3

8

1
0

3
.4

9

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

A
G

M

A
P

SP B
FS

C
C

L

G
C

L

G
C

O

G
C

U

M
IS

M
ST P
R

SS
SP SP

A
V

G

Fu

n
ct

io
n

 C
al

ls

Function Invocations - Graph

KERNEL

PCI

(a)

3
2

.2
7

5

.1
7

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

H
IS

T

B
IN

R
ED

SC
A

N

M
M

D
C

T8
x8 H

S

H
W

LU
D

A
V

G

KERNEL PCI

(b)

8
.4

7
E+

0
4

2
.9

9
E+

0
4

2
.8

3
E+

0
2

1
.1

7
E+

0
3

4
.6

9
E+

0
3

2
.2

7
E+

0
3

4
.5

4
E+

0
1

4
.2

5
E+

0
2

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

Graph Non-Graph

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
 (

u
s)

TOTAL KERNEL

EACH KERNEL

TOTAL PCI

EACH PCI

(c)

Fig. 1: Kernel function invocation count for (a) graph and (b) non-graph applications. (c) Average function execution times.

20X more frequently than non-graph applications. Graph ap-
plications tend to transfer data almost once per two kernel
invocations while the non-graph applications execute average
of ten kernels without extra data transfer when multiple kernels
are executed. The primary reason for large communication
overhead is that graph applications use kernel invocation
as a global synchronization. Whenever an SM finishes its
processing on the assigned vertices, the next set of vertices
to process is determined only when all the other SMs fin-
ish their work assigned in the kernel because there can be
dependencies among the vertices processed in multiple SMs.
However, as GPUs do not support any global synchronization
mechanism across the SMs, the graph applications are typically
implemented to call a kernel function multiple times to use the
kernel invocation as a global synchronization.

In addition to synchronization overheads, once a kernel
function is complete the output data needs to be properly re-
deployed in the GPU memory so that the vertices that are pro-
cessed in the next kernel can read their data appropriately. At
the end of each kernel execution some vertices may simply stop
further computations since they reach a termination condition.
However, these termination condition checks are done at the
end of each superstep by making sure no other vertex has sent
a message to the given vertex. Thus the vertex computation can
only be terminated by CPU after it has processed the results
from the current superstep from all SMs. The net result of
all these frequent CPU-GPU interactions is that the total time
spent on PCI transfers is higher in graph applications, as can
be seen in Figure 1(c) bar labeled TOTAL PCI. Since graph
applications invoke many more PCI transfers but each call only
transfers smaller amount of data, the time per each PCI transfer
is 10X smaller than non-graph applications as can be seen in
Figure 1(c) (bar labelled Each PCI).

B. Performance bottlenecks
In this section we focus on where the performance bottle-

necks are while executing the selected applications on GPUs.

0%	

20%	

40%	

60%	

80%	

100%	

AGM	 APSP	 BFS	 CCL	 GCL	 GCO	 GCU	 MIS	 MST	 PR	 SP	 SSSP	 Avg	 NG	

Pipeline	 Idle	 EXE	 Structure	 Hazard	
Short	 RAW	 Harzard	 Long	 Memory	 Latency	
Control	 Hazard	 or	 I-‐buffer	 Empty	 Atomic	 OperaQon	
Barrir	 SynchronizaQon	 FuncQonal	 Done	

Fig. 2: Breakdown of reasons of pipeline stalls

For this purpose we monitored pipeline stalls in our GPGPU-
Sim simulator and analyzed for each pipeline stall what was
the primary reason for the stall. Figure 2 shows the breakdown
of various pipeline stall reasons. Note that the warp scheduling
policies on GPUs allow multiple warps to be concurrently
alive in various stages of the pipeline. Hence, in a given cycle,
each warp could stall in a pipeline stage for different reasons:
several of the warps could wait on long memory latency
operations, while others could wait on barrier synchronization.
We weight individual contribution of each pipeline stall reason
by the number of warps stalled due to that reason. Due to space
constraint, in this figure we plot all the graph applications
individually but for non-graph application we simply plot the
average of all the 9 non-graph applications in the last bar in the
figure (labeled as NG on X-axis). On average, long memory
latency is the biggest bottleneck that causes over 70% of all
pipeline stalls in graph applications. The execution structure
hazard and short RAW data dependency are the second and
third most prominent bottlenecks. On the other hand, the non-
graph applications exhibit different distribution of pipeline
stall bottlenecks. The execution structure hazard is the biggest
performance bottleneck. Graph applications by nature work
with large datasets, and hence they are likely to experience

higher memory related stalls. Apart from the larger dataset
size, CPU has to transfer data to GPU frequently and re-
deploy vertex data, potentially at different locations, between
two successive supersteps (or kernel calls). Hence, the data
cached from one superstep is unlikely to be useful in the
second superstep. As we will show later with cache miss
statistics, in fact, graph applications suffer from higher miss
rates. Due to the ineffective cache usage, the impact of long
memory latency is higher in the graph applications than in the
non-graph applications.

C. SRAM resource sensitivity

69%	

8%	
8%	

0%	
20%	
40%	
60%	
80%	

100%	

AG
M
	

AP
SP
	

BF
S	

CC
L	

G
CL
	

G
CO

	

G
CU

	

M
IS
	

M
ST
	

PR
	

SP
	

SS
SP
	

Av
g	

Register	 File	 U@l	 Shared	 Mem	 U@l	 Const	 Mem	 U@l	

(a) Graph application

67%	
35%	
29%	

0%	
20%	
40%	
60%	
80%	

100%	

BI
N
	

DC
T	

HW
	

HI
ST
	

HS
	

LU
D	

M
U
L	

RD
C	

SC
AN

	

Av
g	

Register	 File	 UDl	 Shared	 Mem	 UDl	 Const	 Mem	 UDl	

(b) Non-graph application

Fig. 3: Utilization of SRAM structures (register file, shared
memory, and constant memory)

We collected the demand on SRAM resources by graph
and non-graph applications from our simulation infrastructure.
The three largest SRAM resources on GPUs are register file,
shared memory and constant memory. As listed in Table I, in
the simulated GPU configuration, the size of the register file,
shared memory, and constant memory are 128KB, 48KB, and
8KB, respectively. Figure 3 shows the utilization of register
file, shared memory, and constant memory per SM as a
percentage of the total size. We used a compiler option -
Xptxas=”-v” to collect the usage of the three SRAM structures
per each thread in an application. Then, the total usage per SM
is calculated by using the number of concurrent CTAs per SM
and the total number of threads within a CTA.

Across all the graph applications, the register file is the
most effectively leveraged SRAM structure among the three.
Graph applications use only 8% of the shared memory and
constant memory. When we compare with non-graph applica-
tions that are plotted in Figure 3(b), it is clear that the graph
applications tend to use the shared memory and the constant
memory ineffectively.

It is important to provide a brief overview of how CUDA
applications use global and shared memory. Shared memory
is smaller and faster memory that can be shared by all the
threads that are running within a CTA, while global memory
is the large but slow memory that can be accessed by all SMs.

Unlike traditional CPUs, GPU put the burden on applications
to explicitly manage the usage of shared and global memory.
If an application wants to use the shared memory then it must
first execute a special move instruction to move the data from
global memory to shared memory. Once the data is in the
shared memory then the application can issue a second load
instruction to bring the data into the execution unit. If there
is not enough reuse of data then moving data from global
memory to shared memory and then to the execution lanes
actually consumes more time than simply loading data directly
from global memory. Thus in the absence of sufficient data
reuse, shared memory access only increases the memory access
time as well as the instruction count as the data in the global
memory needs to be loaded to the shared memory first by
a load instruction and then another load instruction should
be executed to get the data from the shared memory to the
register. Therefore, in the relatively short kernel functions that
are used in graph applications, it is hard to effectively leverage
the shared memory. Thus graph applications do not try to
exploit the shorter latency shared memory and instead simply
load data from global memory. This memory usage statistic
also explains why the main performance bottleneck of graph
applications is the long memory latency as discussed in the
previous section.

Constant memory is a region of global memory that is
cached to the read-only constant cache. Given that GPU’s L1
cache size is relatively small, maintaining some repeatedly
accessed read-only data in constant cache helps to conserve
memory bandwidth. However, constant cache is typically the
smallest among the SRAM structures embedded in the GPU
die as specified in Table I. Therefore, to gain performance ben-
efits from using constant cache, programmers should carefully
decide which data to store in the constant memory. If the data
structure is too big, it may not benefit from using constant
memory due to frequent constant cache replacements. Such
data maybe better accessed directly from global memory. In
the large graph processing applications where giga bytes or tera
bytes of data are processed, it is hard to fit the data structures
in the small constant cache. Thus, graph application developers
is less inclined to use constant memory.

We also measured the performance impact of L1 and L2
caches. The default per SM L1 and per device L2 cache sizes
are 16KB and 768KB, respectively. We also evaluated the
impact of using different cache sizes, no L1 + 768KB L2,
32KB L1 + 1.5MB L2, 64KB L1 + 3MB L2, and finally
an extreme data point of 4MB L1+196MB L2. Obviously the
last design option was explored as a near limit study of the
importance of very large cache. As the performance impact
of caches can depend on the input size, we measured the
performance impacts by varying the inputs for each applica-
tion. For example, AGM coAuthor and AGM in2004 are the
executions of AGM but using different inputs; the input size
is listed in Table II. Figure 4 shows the normalized IPC under
various cache configurations that were listed above. The Y-axis
is normalized IPC over the IPC of default cache configuration.
Figure 5 shows the cache miss rate during the kernel execution
under the default cache configuration but with varying input
size.

As can be seen in Figure 5, almost all the graph ap-
plications have fairly high L1 cache miss rates (average of

0.98	
1.85	

0	

2	

4	

6	

8	

10	

AG
M
_c
oA

ut
ho

r	

AG
M
_i
n2

00
4	

AP
SP
_1
k	

AP
SP
_4
k	

BF
S_
1M

W
	

BF
S_
40
96
	

BF
S_
65
53
6	

CC
L_
lo
go
	

CC
L_
tr
oj
an

	

G
CL
_b

el
gi
um

	

G
CL
_c
oA

ut
ho

r	

G
CL
_e
m
ai
l	

G
CO

_h
oo

d	

G
CO

_p
w
tk
	

G
CU

_fl
ow

er
	

G
CU

_p
er
so
n	

M
IS
_1
28
	

M
IS
_5
12
	

M
ST
_fl

a	

M
ST
_r
m
at
12
	

PR
_w

ik
i	

PR
_e
dg
e1
4	

SP
_1
7k
	

SP
_4
2k
	

SS
SP
_fl

a	

SS
SP
_r
m
at
20
	

Av
g	

N
or
m
al
iz
ed

	 IP
C	
	

None/768KB	 32KB/1.5MB	 64KB/3MB	 4MB/192MB	

Fig. 4: Normalized IPC w.r.t. cache size

0%	
20%	
40%	
60%	
80%	

100%	

AG
M
_c
oA

ut
ho

r	
AG

M
_i
n2

00
4	

AP
SP
_1
k	

AP
SP
_4
k	

BF
S_
1M

W
	

BF
S_
40
96
	

BF
S_
65
53
6	

CC
L_
lo
go
	

CC
L_
tr
oj
an

	
G
CL
_b

el
gi
um

	
G
CL
_c
oA

ut
ho

r	
G
CL
_e
m
ai
l	

G
CO

_h
oo

d	
G
CO

_p
w
tk
	

G
CU

_fl
ow

er
	

G
CU

_p
er
so
n	

M
IS
_1
28
	

M
IS
_5
12
	

M
ST
_fl

a	
M
ST
_r
m
at
12
	

PR
_w

ik
i	

PR
_e
dg
e1
4	

SP
_1
7k
	

SP
_4
2k
	

SS
SP
_fl

a	
SS
SP
_r
m
at
20
	

Av
g	

N
G
	

L2	 Cache	 Miss	 Rate	 L1D	 Cache	 Miss	 Rate	

Fig. 5: Cache miss rate

0.61

0%

20%

40%

60%

80%

100%

A
G

M
A

P
SP B
FS

C
C

L
G

C
L

G
C

O
G

C
U

M
IS

M
ST P
R SP

SS
SP

A
vg

(a) Graph application

0.10

0%

20%

40%

60%

80%

100%

B
IN

D
C

T

H
W

H
IS

T

H
S

LU
D

M
U

L

R
D

C

SC
A

N

A
vg

(b) Non-graph application

Fig. 6: L1 cache misses as a fraction of total accesses to L1
cache and shared memory

70% L1 accesses encounter misses). Given such an extremely
high cache miss rate, we conducted a study without any L1
cache while keeping the L2 cache size at 768KB per device;
we measured the performance without using L1 cache as
plotted in the first bar charts named None/768KB in Figure 4.
Interestingly, the IPC difference between the default and zero
L1 cache configurations is only 2%. This means that L1 cache
is entirely ineffective for graph processing.

We then measured the performance by doubling the size
of both caches with L1 cache size reaching up to 4MB. The
IPC improvement of larger cache size is quite small on most
applications, except for applications such as SP and GCO
that do take advantage of larger L1 cache, as can be seen in
Figure 4. Even with a 4MB L1, that is plotted in the last bar
named 4MB/192MB, most of the applications derive small IPC
increase. The reason for this ineffectiveness of caches can be
inferred from the fact that between two kernel invocations, the
CPU has to do memory transfer on GPU memory. Hence, each
kernel invocation essentially looses any cache locality that was
present at the end of prior kernel invocation.

Interestingly, graph applications derive lower cache miss
rate than non-graph applications as plotted in the last two bar
charts in Figure 5, which is inconsistent with the findings of
this paper. However, we found that non-graph applications’
active use of shared memory decreases the total accesses to
L1 cache, thereby the cache miss rate becomes relatively high.
Recall that once a data is loaded from global memory to
shared memory, the application reads the data from shared
memory and never accesses global memory for the data. As
a result, L1 cache encounters a cold miss while loading the
data from global memory to shared memory at the first read
on the data and never experience hit on the corresponding
cache line. Note that loading a data from global memory to
shared memory is not treated specially by the GPU hardware
but is implemented by using a load instruction that reads
global memory and writes the loaded data back to a register
and a store instruction that stores the register value to the
shared memory address. Therefore, L1 cache is accessed while
executing the load instruction. However, once a data is stored
to the shared memory, L1 cache is no more accessed for the
data. This fact becomes obvious once we plot the cache miss
rate as a fraction of the total accesses to shared memory and
L1 cache combined. Figure 6 plots this data for both graph
and non-graph applications. It is clear that this metric shows
a vastly lower cache miss rate for non-graph applications due
to their overwhelming number of shared memory accesses.

D. SIMT lane utilization

We also compare the SIMT lane utilization of graph and
non-graph applications. Figure 7 shows the breakdown of
SIMT lane utilization while running the applications. The
bar labeled M0 8 plots the fraction of instructions that are
executed on at most 8 SIMT lanes. Similarly, M9 16 shows
the fraction of instructions that are executed on 9 to 16 SIMT
lanes and so on. M32 denote the portion of instructions that
fully utilize the available 32 SIMT lanes. In all the graph
applications except APSP, as shown in Figure 7(a), the SIMT
lane utilization varies considerably. For example, in SSSP, over
87% of instructions are executed by only 0 to 8 SIMT lanes,
which means the remaining 24 SIMT lanes are idle during
the 87% of the execution time. On the other hand, non-graph
applications plotted in Figure 7(b) tend to use SIMT lanes more
effectively. Five among nine non-graph applications used in the
experiment used all the 32 available SIMT lanes 100% of the
warp execution time.

0%	

50%	

100%	

AGM	 APSP	 BFS	 CCL	 GCL	 GCO	 GCU	 MIS	 MST	 PR	 SP	 SSSP	 Avg	

M0_8	 M9_16	 M17_24	 M25_31	 M32	

(a) Graph application

0%	

20%	

40%	

60%	

80%	

100%	

BIN	 DCT	 HW	 HIST	 HS	 LUD	 MUL	 RDC	 SCAN	 Avg	

M0_8	 M9_16	 M17_24	 M25_31	 M32	

(b) Non-graph application

Fig. 7: SIMT lane utilization

The nature of graph applications leads them to have
variable amounts of parallelism during their execution. The
vertices in a graph have different degrees (i.e. the number of
edges). One typical way of graph application implementation is
to run a loop for each vertex to process one edge per iteration.
If each vertex is processed by one SIMT lane so that multiple
vertices are processed by a warp in parallel, then the number of
iterations executed by each SIMT lane varies as the degree of
each vertex varies. This leads to a significant diverged control
flow. Thus the SIMT lane utilization varies significantly in
graph applications.

E. Execution frequency of instruction types

0%	
20%	
40%	
60%	
80%	

100%	

AG
M
	

AP
SP
	

BF
S	

CC
L	

G
CL
	

G
CO

	

G
CU

	

M
IS
	

M
ST
	

PR
	

SP
	

SS
SP
	

Av
g	

N
G
	

%Int	 Inst	 %FP	 Inst	 %LDST	 inst	 %SFU	 Inst	

Fig. 8: Execution frequency of instruction types

Figure 8 shows the instruction type breakdown among the
executed instructions. In almost all the graph applications, the
dominant instruction type is integer instruction. The memory
instruction is the second most frequently executed instruction
type. Similar pattern is also found from non-graph applications
that is shown in the last bar chart named NG. Thus, the
execution time differences between graph and non-graph ap-
plications are not influenced by the instruction mix, rather the
memory subsystem plays a significant role in these differences.

F. Coarse and fine-grain load balancing

We measured load balancing in two ways: coarse and fine-
grain. We measured coarse-grain load balancing as the number

of CTAs assigned to each SM. For the fine-grain load balanc-
ing, we collected two metrics. The first metric is the execution
time difference across CTAs. Since each CTA has different
amounts of computation based on the number of vertices and
edges processed, the execution time of CTAs can vary. The
second fine-grain metric measures the execution time variance
across warps within a CTA. The execution time variations
of warps and CTAs can have significant negative impact on
performance due to GPGPU execution model constraints. A
kernel can be terminated only when all the assigned CTAs
finish their execution. Likely, a CTA’s execution can only be
finished when all the warps within the CTA finish their work.
Therefore, the performance is highly dependent on few warps
or CTAs that have long execution time. Hence, coarse and fine-
grain load balancing is critical for performance in GPGPUs.

Figure 9 shows the degree of balancing in the CTA distri-
bution across the SMs. From the center of each circle, a line
stretches to one of 14 directions to indicate there is at least one
CTA in one of the 14 SMs in the GPGPU. The length of the
line indicates the number of CTAs assigned to the SM. If all 14
SMs are assigned the same number of CTAs (well balanced),
the chart forms a perfect circle. Otherwise (unbalanced load
distribution), the circle has a distorted shape. Due to space
limitation, we only present the load balancing graphs of the
last kernel executed.

The SM level imbalance shown in Figure 9 depends on
input size and program characteristics. Let’s assume there are
m SMs, maximum n CTAs can be assigned to one SM. The
default CTA scheduling policy is round robin. If a kernel to be
scheduled fits in exactly m ∗ n CTAs, there would be exactly
n CTAs assigned per SM at the start of kernel execution. Such
a perfect balance is seen in GCO, MST and SP benchmarks
which have perfect circles. On the other hand, if a kernel to be
scheduled has less than m∗n CTAs, CTAs would be assigned
unevenly across SMs. For example, RDC has 64 CTAs in total
and can schedule maximum 6 CTAs per SM: it assigns 5 CTAs
on 8 SMs and 4 CTAs on the remaining 6 SMs.

The last case is when the number of CTAs in a kernel far
exceeds the m ∗ n CTAs that can be scheduled at the start
of a kernel execution. For such large kernel, CTAs would
be initiated continuously onto the SMs after a previously
scheduled CTA finishes execution. In such a scenario, there
are two reasons that play opposing roles in balancing CTA
assignments. On one hand, as the number of CTAs increase,
there is a higher likelihood to assign similar number of CTAs
per SM. Typically the number of CTAs created per kernel is
a function of the input size. Large inputs lead to more CTAs
and hence the likelihood of balancing CTA assignments per
SM also increase. For example, BFS shows more balanced
circles as the input size increases from 4K (BFS 4096) to 64K
(BF 65536) and to 1M (BFS 1MW). Similarly, GCL also has
more balanced circles when the input size is bigger (email is
the smallest input set and belgium is the largest).

There is an opposing force to achieving balance as the
number of CTAs increase. If different SMs complete their
assigned CTAs after different amounts of time, the scheduler
will assign more CTAs to an SM that executes faster. Thus the
imbalance in CTA assignment increases as the execution time
imbalances increase between CTAs. Figure 10(a) shows the
execution time variance across CTAs in box plot. The lowest

AGM_coAuthor AGM_in2004 APSP_1k APSP_4k BFS_1MW BFS_4096 BFS_65536 CCL_logo CCL_trojan

GCL_belgium GCL_coAuthor GCL_email GCO_hood GCO_pwtk GCO_flower GCU_person MIS_128 MIS_512

MST_fla MST_rmat12 PR_wiki PR_edge14 SP_17k SP_42k SSSP_fla SSSP_rmat20

(a) Graph application

BIN DCT HW

HIST HS LUD

MUL RDC SCAN

(b) Non-graph application

Fig. 9: Coarse grained load distribution: # assigned CTAs across SMs

0.0001	

0.001	

0.01	

0.1	

1	

10	

100	

AG
M
_c
oA

ut
ho

r	

AG
M
_i
n2

00
4	

AP
SP
_1
k	

AP
SP
_4
k	

BF
S_
1M

W
	

BF
S_
65
53
6	

CC
L_
lo
go
	

CC
L_
tr
oj
an

	

G
CL
_b

el
gi
um

	

G
CL
_c
oA

ut
ho

r	

G
CU

_fl
ow

er
	

G
CU

_p
er
so
n	

PR
_w

ik
i	

PR
_e
dg
e1
4	

SS
SP
_fl

a	

SS
SP
_r
m
at
20
	

AV
G
	

N
G
	

(a)

25%	
7%	

0%	

20%	

40%	

60%	

80%	

100%	

AG
M
_c
oA

ut
ho

r	
AG

M
_i
n2

00
4	

AP
SP
_1
k	

AP
SP
_4
k	

BF
S_
1M

W
	

BF
S_
40
96
	

BF
S_
65
53
6	

CC
L_
lo
go
	

CC
L_
tr
oj
an

	
G
CL
_b

el
gi
um

	
G
CL
_c
oA

ut
ho

r	
G
CL
_e
m
ai
l	

G
CO

_h
oo

d	
G
CO

_p
w
tk
	

G
CU

_fl
ow

er
	

G
CU

_p
er
so
n	

M
IS
_1
28
	

M
IS
_5
12
	

M
ST
_fl

a	
M
ST
_r
m
at
12
	

PR
_w

ik
i	

PR
_e
dg
e1
4	

SP
_1
7k
	

SP
_4
2k
	

SS
SP
_fl

a	
SS
SP
_r
m
at
20
	

AV
G
	

N
G
	

VariaTon	 of	 ExecuTon	 Time	 Across	 Warps	 	

(b)

Fig. 10: Fine grained load distribution: (a) execution time
variance across CTAs and (b)coefficient of execution time
variation across warps within a CTA

point in the error bar indicates the minimum CTA execution
time while the highest error bar indicates the maximum CTA
execution time. The box part goes from the first quartiles to
the median and then to the third quartiles. All the execution
times are normalized to the respective median execution time.
We only included benchmarks which executed more than 4
CTAs in one kernel invocation, to calculate the variance across
CTAs. In general larger input size increases the execution
time variation. For instance, in SSSP more nodes need to
be searched in the longest path as we increase the input
size. Therefore, SSSP rmat20 has more distorted shape than
SSSP fla in Figure 9. Furthermore, applications that exhibit
more warp divergence also have higher execution time variance
at the CTA level. For instance, SSSP, AGM, and PR have the
highest CTA execution time variation, while APSP has the
smallest variation. We found this corresponds to the fact that
in Figure 7(a) that SSSP, AGM and PR are more divergent,

while APSP is well parallelized with full warp utilization.

Figure 10(b) shows the variation of execution time across
warps within a CTA. We present its coefficient of variation σ

µ ,
where σ is the standard deviation and µ is the average exe-
cution time (averaged over all warps). The standard deviation
is normalized over the averaged execution time to compare
the variation across different benchmarks. AGM and PR show
more than 50% of variation, which indicates that their standard
deviation is more than half of the averaged execution time.
On the other hand, some other benchmarks, like APSP, GCO,
MIS and MST do not show large variations. GCO, MIS and
MST only have 1, 2 and 4 warps in a CTA respectively.
Therefore, the variation should not be high. On the other
hand, as we mentioned previously, APSP is implemented using
an optimized matrix multiply operation. Therefore, execution
time variation for warps within CTAs is not high. Compared
with non-graph applications, graph applications show higher
variation across the warps, 25% versus 7%.

G. Scheduler Sensitivity

76	

322	

0	
100	
200	
300	
400	
500	

AG
M
	

AP
SP
	

BF
S	

CC
L	

G
CL
	

G
CO

	

G
CU

	

M
IS
	

M
ST
	

PR
	

SP
	

SS
SP
	

Av
g	

N
G
	 IP
C	
w
rt
	 	 S
ch
ed

ul
er
s	 GTO	 2LV	 LRR	

Fig. 11: Performance w.r.t. scheduler

Finally, we explored the scheduler impact on the graph
application performance. Figure 11 shows the instructions per
cycle (IPC) when three different warp scheduling algorithms
are used. As we cannot change the warp scheduler in the
real machine, we used GPGPU-Sim for this experiment. GTO
is a greedy algorithm that issues instructions from one warp
until the warp runs out of ready instructions. 2LV uses two
level scheduler in which the warps in the ready queue issue
instructions until they encounter the long latency memory
instructions. Once a warp encounters a long latency memory
instruction, then the warp is scheduled out to the pending
queue. LRR is a simple round robin algorithm. Among the
three algorithms, GTO derived slightly better performance but
the performance difference is not significant. Due to poor

memory performance and divergence issues, as explained in
earlier sections, graph applications have significantly lower
IPC than non-graph applications.

V. DISCUSSION

In this section, we discuss some potential hardware opti-
mizations for efficient graph processing.

A. Performance bottleneck

Based on the quantitative data shown, graph applications
tend to execute kernel and data transfer functions more
frequently than non-graph applications. The frequent kernel
invocations lead to ineffective use of caches as well. Therefore,
the performance overhead due to PCI calls as well as long
latency memory operations is higher in the graph applications
than in the non-graph applications.

There are two possible solutions to resolve this issue. First
of all, the unified system memory that can be accessed by both
CPU and GPU will be very helpful to reduce the performance
overhead due to frequent data transfers between CPU and
GPU. Recently, AMD announced support for unified memory
access [1, 6]. AMD’s proposed heterogeneous uniform mem-
ory access (hUMA) allows heterogeneous processor cores such
as CPU and GPU to use the same physical memory. If the
unified main memory is used, CPU and GPU can communicate
with each other by using a simple memory copy operation
rather than using PCI-E bus transmission. The memory copy
can be conducted within the system memory and hence, the
performance can be significantly improved.

The second solution is to actively leverage the underutilized
SRAM structures such as cache and shared memory for
reducing the overhead of long latency memory operation. As
our evaluation showed, cache and shared memory are not
effectively leveraged in graph processing. Over 60% of the
L1 cache accesses encounter misses. The miss rate is not
significantly reduced even when larger cache is used. Also,
only 8% of shared memory is used in graph applications.
These results imply that the data reuse in graph applications is
rare. Therefore, we believe the cache and shared memory need
to be used efficiently to handle data with limited reuse. One
possible way is to use the two SRAM structures as large buffers
for data prefetching. Recent studies [28] showed a memory
prefetching approach for graph applications in GPGPU. They
reused spare registers to store the prefetched data. However,
for graph applications it would be easier to store the prefetched
data in the cache or shared memory than in register files. By
applying similar prediction algorithm used in the study [28],
but using the cache and the shared memory, the overhead due
to long latency memory operation can be reduced.

B. Load imbalance

According to our evaluation, coarse-grain load distribution
in many graph application is well balanced once the input data
is large enough. However, the fine grained load distribution that
is measured across the CTAs, warps, and SIMT lanes exhibits
higher levels of imbalance. As briefly explained earlier, ver-
tices in a graph have different degrees. Therefore, the amount
of tasks that needs to be processed by each vertex is different
and hence the load is imbalanced in graph applications. Given

that the CTA execution time is determined by the longest warp
execution time and kernel execution time is only determined
by the longest CTA execution time, such load imbalance can
significantly degrade the overall performance.

This problem can be statically resolved by the program-
mer’s effort. For example, if the programmer collects the
vertices that have similar degrees and assigns them to the same
CTA, the warp level load imbalance can be resolved. Due to
the dynamic nature of graph processing it may be hard to find
vertices that have similar degrees at every kernel invocation.
Therefore, some sort of hardware support is necessary. The
dynamic load monitoring and migration methods that are used
in operating system domain [36] might be a solution. For
example, if there is a CTA that processes high degree vertices
and the kernel’s termination is delayed because of the CTA’s
long execution, then migrating some of the warps assigned to
the CTA to the other idle SMs might be helpful. Once the
migration penalty is low enough, as the migrated warps can
use the resources of the idle SM, the execution time can be
balanced.

VI. RELATED WORK

Che et al. [16] recently showed a preliminary characteri-
zation of graph applications on a real GPGPU machine. They
implemented eight graph applications in OpenCL and analyzed
the hardware behaviors such as cache hit ratio, execution time
breakdown, speedup over CPU version execution, and SIMT
lane utilization while running those applications on AMD
Radeon HD 7950. In this paper we not only run applications
on hardware but we also use cycle accurate simulation infras-
tructure to provide deeper insight into the hardware behavior.
For example, we can measure the impact of having no L1
cache to show that L1 cache is entirely ineffective in graph
applications. Using detailed simulations we can also measure
load imbalance metric at the warp, CTA and SM level. The
load balancing statistics provide useful insights to optimize the
CTA distribution across SMs.

Burtscher et al. [15] investigated performance impact of
irregular GPU programs on NVIDIA Quadro 6000. They
compiled eight irregular programs and compared the perfor-
mance in several aspects with a set of regular programs.
They basically measured two runtime-independent metrics, the
control-flow irregularity and the memory-access irregularity at
the warp level. The metrics are measured while varying the
input size and optimizing the code itself. Most of the analysis
provided by Burtscher is useful to optimize the application
code and hence the purpose of the work is orthogonal to the
focus of our research.

Che et al. [17] also conducted CUDA application charac-
terization on NVIDIA GeForce GTX 280. The evaluation is
similar to [16] but the domain of the evaluated applications
is more general than [16]. The target application domain of
Che’s work [17] and our study is different and the focus
of their characterization is software improvement, while this
study focuses on understanding existing hardware bottlenecks
in GPGPUs.

VII. CONCLUSION

Graph processing is a key component of many data an-
alytics. There have been several studies to optimize graph

applications on GPU platform. However, there has not been
a study that focuses on how graph applications interact with
GPU microarchitectural features. To provide insights to the
GPU hardware designers for more efficient graph process-
ing, we measured several (micro)architectural behaviors while
running a set of graph applications. To understand the graph
application’s unique characteristics, we also ran a set of non-
graph applications and then compared the evaluation results.
Based on the measurements, we also discuss the hardware level
optimization points that can help enhance the performance of
graph processing on future GPGPUs.

VIII. ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable com-
ments on this work. This work was supported by DARPA-
PERFECT-HR0011-12-2-0020 and NSF-CAREER-0954211.

REFERENCES

[1] “AMD Unveils its Heterogeneous Uniform Memory Access (hUMA)
Technology,” http://www.tomshardware.com/news/AMD-HSA-hUMA-
APU,22324.html.

[2] “Apache giraph,” https://giraph.apache.org/.
[3] “Apache hadoop,” http://hadoop.apache.org/.
[4] “Cusp : A c++ templated sparse matrix library,”

http://cusplibrary.github.com.
[5] “Nvidia gpu computing sdk,” https://developer.nvidia.com/gpu-

computing-sdk.
[6] “The programmer’s guide to the apu galaxy,”

http://developer.amd.com/wordpress/media/2013/06/Phil-Rogers-
Keynote-FINAL.pdf.

[7] B. F. Auer, “Gpu acceleration of graph matching, clustering, and
partitioning,” in Contemporary Mathematics, vol. 588, 2013, pp. 223–
240.

[8] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “10th dimacs
implementation challenge on graph partitioning and graph clustering,”
vol. 588, 2013.

[9] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
cuda workloads using a detailed gpu simulator,” in IEEE International
Symposium on Performance Analysis of Systems and Software, April
2009.

[10] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, pp. 87–90, 1958.

[11] B. Berger, R. Singht, and J. Xu, “Graph algorithms for biological
systems analysis,” in Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2008, pp. 142–151.

[12] A. Braunstein, M. Mzard, and R. Zecchina, “Survey propagation: An
algorithm for satisfiability,” vol. 27, no. 2, 2005, pp. 201–226.

[13] A. Buluç, J. R. Gilbert, and C. Budak, “Solving path problems on the
gpu,” vol. 36, no. 5-6, June 2010, pp. 241–253.

[14] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on gpus,” in Proceedings of the 2012 IEEE International
Symposium on Workload Characterization, 2012, pp. 141–151.

[15] Burtscher, Martin and Nasre, Rupesh and Pingali, Keshav, “A quantita-
tive study of irregular programs on gpus,” in Proceedings of the 2012
IEEE International Symposium on Workload Characterization, 2012,
pp. 141–151.

[16] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” in Proceedings of
the 2013 IEEE International Symposium on Workload Characterization.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the 2009 IEEE International Symposium
on Workload Characterization.

[18] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[19] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, June 2008.

[20] B. Fagginger Auer and R. Bisseling, “A gpu algorithm for greedy graph
matching,” in Facing the Multicore - Challenge II, vol. 7174, 2012, pp.
108–119.

[21] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5,
no. 6, pp. 345–, Jun. 1962.

[22] B. Gao, T. Wang, and T.-Y. Liu, “Ranking on large-scale graphs with
rich metadata,” in Proceedings of the 20th International Conference
Companion on World Wide Web, ser. WWW ’11, 2011.

[23] A. V. P. Grosset, P. Zhu, S. Liu, S. Venkatasubramanian, and M. Hall,
“Evaluating graph coloring on gpus,” in Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, 2011,
pp. 297–298.

[24] K. Hawick, A. Leist, and D. Playne, “Parallel graph component labelling
with gpus and cuda,” vol. 36, no. 12, 2010, pp. 655 – 678.

[25] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A
mapreduce framework on graphics processors,” in Proceedings of the
17th International Conference on Parallel Architectures and Compila-
tion Techniques, 2008, pp. 260–269.

[26] H. Jeon, Y. Xia, and V. K. Prasanna, “Parallel exact inference on
a cpu-gpgpu heterogenous system,” in Proceedings of the 2010 39th
International Conference on Parallel Processing, 2010, pp. 61–70.

[27] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Connected com-
ponent labeling on a 2d grid using cuda,” vol. 71, no. 4, 2011, pp. 615
– 620.

[28] N. B. Lakshminarayana and H. Kim, “Spare register aware prefetching
for graph algorithms on gpus,” in Proceedings of the 2014 IEEE
International Symposium on High Performance Computer Architecture,
2014.

[29] K. Lee and L. Liu, “Efficient data partitioning model for heterogeneous
graphs in the cloud,” in Proceedings of SC13: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2013, pp. 46:1–46:12.

[30] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” Micro, IEEE, vol. 28,
no. 2, pp. 39–55, 2008.

[31] M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” in Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing, 1985, pp. 1–10.

[32] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry, “Challenges
in parallel graph processing,” Parallel Processing Letters, vol. 17, no. 1,
pp. 5–20, 2007.

[33] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010.

[34] V. M. A. Oliveira and R. A. Lotufo, “A study on connected components
labeling algorithms using gpus,” in SIBGRAPI, 2010.

[35] K. Shirahata, H. Sato, T. Suzumura, and S. Matsuoka, “A scalable
implementation of a mapreduce-based graph processing algorithm for
large-scale heterogeneous supercomputers,” in 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing,, May 2013,
pp. 277–284.

[36] B. A. Shirazi, K. M. Kavi, and A. R. Hurson, Eds., Scheduling and
Load Balancing in Parallel and Distributed Systems. IEEE Computer
Society Press, 1995.

[37] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, pp. 103–111, Aug. 1990.

[38] Vineet , V. and Narayanan, P. J., “Cuda cuts: Fast graph cuts on the
gpu,” in Computer Vision and Pattern Recognition Workshops, IEEE
Computer Society Conference on, June 2008, pp. 1–8.

[39] Vineet, V. and Narayanan, P. J., “Cuda cuts: Fast graph cuts on the gpu,”
in Technical Report, International Institute of Information Technology,
Hyderabd.

