Integration of the General Network Theorem in ADE and ADE XL

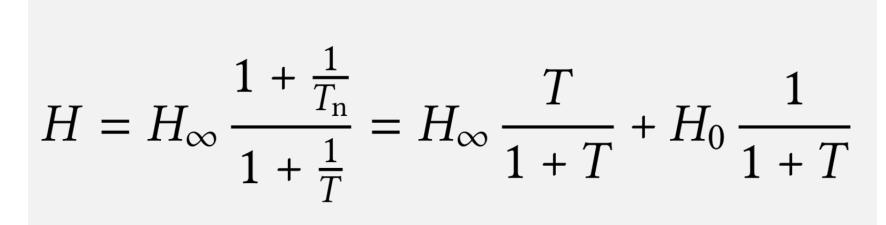
Toward a Deeper Insight Into Circuit Behavior

Jochen Verbrugghe Bart Moeneclaey

jochen.verbrugghe@intec.ugent.be

bart.moeneclaey@intec.ugent.be

Cadence User Conference 2014 EMEA – Munich, Germany—May 19-21

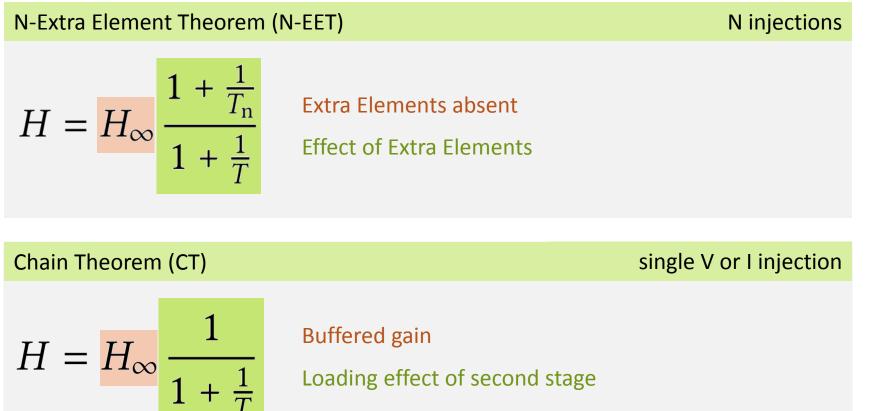

Integration of the General Network Theorem in ADE and ADE XL

> General Network Theorem Integration in ADE (XL) Application example

General Network Theorem

Decomposition of transfer function in simpler parts: lower-level transfer functions, *useful for design*

Using test signal injection and nulling techniques

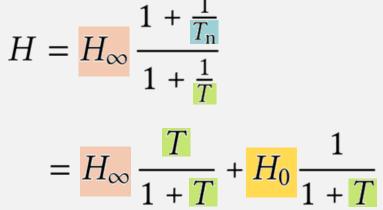

Using multiple injections T, Tn and H0 can be further factored

Ref: R. D. Middlebrook 2006, IEEE Microwave Magazine

General Network Theorem: N-EET and CT

Injection points determine decomposition and interpretation

GNT morphs into three interpretations


Loading effect of second stage

General Network Theorem: GFT

Injection points determine decomposition and interpretation

GNT morphs into three interpretations

General Feedback Theorem (GFT) $1 + \frac{1}{\tau}$

- 'Ideal' transfer function, infinite loop gain
- Loop gain
- Null loop gain
- Direct feedthrough, zero loop gain

V and I injection

Lower-level TF factorization example: loop gain T

$$T = \frac{T_{\text{fwd}}}{1 + T_{\text{rev}}}$$
$$T_{\text{fwd}} = T_{\text{v,fwd}} || T_{\text{i,fwd}}$$
$$T_{\text{rev}} = T_{\text{v,rev}} || T_{\text{i,rev}}$$

Compare to *stb* loop gain T_t

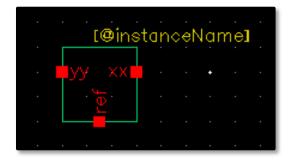
 $T_t = T_{\rm fwd} + T_{\rm rev}$

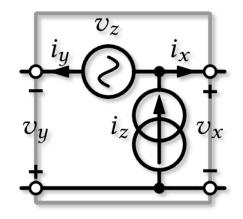
Integration of the General Network Theorem in ADE and ADE XL

> General Network Theorem Integration in ADE (XL) Application example

Integration in ADE (XL): motivation

GNT advantages


General framework


Same techniques for different applications, hand calculations Well-known results derive cleanly from GNT Results are useful for design Divide-and-conquer approach

Integration in Virtuoso

Application of GNT to real-world designs
Deeper insight into complex circuit behavior
Find out dominant lower-level TFs (a priori)
Validate hand-analysis results (a posteriori)

Integration in ADE (XL): circuit setup

Insert GNT Probes in schematic at appropriate points

Inject small-signal test signals: voltage and/or current

Uninvasive

Does not interfere with other analyses Layout XL and Calibre LVS tools supported

GNT in ADE (XL)

Integration in ADE (XL): analysis setup

	Cho	osing Analys	es ADE L (1)	
Analysis	🔾 tran	🔾 dc	🔾 ac	🔾 noise
	🔾 xf	🔾 sens	🔾 dcmatch	🔾 stb
	🔾 pz	🔾 sp	🔾 envlp	🔾 pss
	🔾 pac	🔾 pstb	🔾 pnoise	⊖ p×f
	🔾 psp	🔾 qpss	🔾 qpac	🔾 qpnoise
	🔾 qpxf	🔾 qpsp	🔾 hb	🔾 hbac
	🔾 hbnoise	e 🔾 hbsp	🥑 gnt	
	General	Network T	heorem Analy	rsis
Save intern	ial analyses	results		
	EET results			
Save permi	utation result	6		
Sweep Va	ariable			
🖲 Freque	ency			
🔾 Desigr	n Variable			
🔾 Tempe	erature			
🔾 Compo	onent Parame	eter		
🔾 Model	Parameter			
Sweep Ra	inge			
🖲 Start-S	Stop	Start 1		top 100x
● Start-S ○ Center		Start 1	s	itop 100M
Center	r-Span	Start 1	s	itop 100M
Center Sweep Ty	r-Span pe	Start 1	s	top 100M
Center	r-Span pe	Start 1	s	top 100M
 Center Sweep Ty Automatic 	r-Span pe		s	top 100M
 Center Sweep Ty Automatic 	r-Span pe		S	top 100M
Center Sweep Ty Automatic Add Specif	r-Span pe To Points]	5	
Center Sweep Ty Automatic Add Specif	r-Span pe To Points tance	/14		top 100M
Center Sweep Ty Automatic Add Specif	r-Span pe To Points tance]		
Center Sweep Ty Automatic Add Specif	r-Span pe To Points tance	/14		
Center Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net	r-Span pe To Points tance e	/I4 voltage /o		Select
Center Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net	r-Span pe To Points tance	/I4 voltage /o		Select
Center Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net Remov	r-Span	/I4 voltage /o		Select
Center Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net Removi Analysis Ty	r-Span pe To Points tance e bottom ana ype	/I4 voltage /o		Select Select nested analysis
Center Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net Remov	r-Span pe To Points tance e bottom ana ype	/I4 voltage /o		Select
Centerl Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net Removi Analysis Ty GNT Probe	r-Span pe To Points tance e bottom ana ype Instance	/I4 voltage /o lysis 2GFT /I2		Select Select nested analysis
Center Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net Removi Analysis Ty	r-Span pe To Points tance e bottom ana ype Instance	/I4 voltage /o		Select Select nested analysis
Centerl Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net Removi Analysis Ty GNT Probe	r-Span pe ic Points e e bottom ana vpe /pe	/14 voltage /o lysis 2GFT /12 1EET 2GFT		Select Select nested analysis
Centerl Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net Remov Analysis Ty GNT Probe Analysis Ty GNT Probe	r-Span	/I4 voltage /o lysis 2GFT /I2 IEET CTV CTV		Select Select Select Select Select
Center Sweep Ty Automatic Add Specif Source Inst Output Typ Output Net Remov Analysis Ty GNT Probe Analysis Ty	r-Span	/14 voltage /o lysis 2GFT /12 1EET 2GFT 1EET CTv		Select Select nested analysis Select

New analysis 'gnt' in Choosing Analysis...

Same use model as stb, ac, ...

Familiar options

Sweep variable, sweep range, sweep type

• Source instance, output net or probe

Indicates the transfer function H to decompose

(Nested) GNT analyses

GNT Probe instance(s) Analysis type: GFT, N-EET, CT

Integration in ADE (XL): internals

	Cho	bsing Analys	es ADE L (1	\odot \odot \odot	\otimes
Analysis	🔾 tran	🔾 dc	🔾 ac	🔾 noise	
	🔾 xf	🔾 sens	🔾 dcmatch	🔾 stb	
	🔾 pz	🔾 sp	🔾 envlp	🔾 pss	
	🔾 pac	🔾 pstb	🔾 pnoise	🔾 pxf	
	🔾 psp	🔾 qpss	🔾 qpac	🔾 qpnoise	
	🔾 qpxf	🔾 qpsp	🔾 hb	🔾 hbac	
	🔾 hbnoise	i 🔾 hbsp	🥑 gnt		_
	General	Network T	heorem Anal	ysis	
Save intern	al analyses i	results			
Save flat N					
Save permu	utation results	3			4
Sweep Va	riable				
🖲 Freque	ency				
🔾 Design	n Variable				
🔾 Tempe	rature				
🔾 Compo	onent Parame	ter			
🔾 Model	Parameter				
					31
Sweep Ra	nae				- 11
Shoop na					
 Start-S 	ton	Start 1		Stop 100k	
	top	Start 1		Stop 100M	
● Start-S ○ Center	top -Span	Start 1		Stop 100M	
● Start-S ○ Center Sweep Ty	itop -Span pe	Start 1		Stop 100M	:
● Start-S ○ Center	itop -Span pe	Start 1		Stop 100M	:
 Start-S Center Sweep Type Automatic 	top -Span pe			Stop 100M	:
 Start-S Center Sweep Type Automatic 	itop -Span pe			Stop 100m	
 Start-S Center Sweep Ty; Automatic Add Specifit 	itop -Span pe C Points			Stop 100M	
 Start-S Center Sweep Tyj Automatic Add Specifi Source Inst 	itop -Span pe ic Points ance	/14		·	
Start-S Center Sweep Ty, Automatic Add Specifi Source Inst Output Type	itop -Span pe ic Points ance	/I4 voltage		Select	
 Start-S Center Sweep Tyj Automatic Add Specifi Source Inst 	itop -Span pe ic Points ance	/14		·	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Type Output Net	itop -Span pe ic Points ance	/I4 voltage		Select	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Type Output Net	-Span pe c Points ic Points ance e	/I4 voltage		Select	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Type Output Net	e bottom ana	/I4 voltage		Select	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Type Output Net Remove Analysis Ty	e bottom ana	/I4 voltage /o lysis		Select Select nested analysis	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Type Output Net Remove	e bottom ana	/I4 voltage /o		Select	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Type Output Net Remove Analysis Ty GNT Probe	e bottom ana	/I4 voltage /o lysis 2GFT /I2		Select Select nested analysis	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Type Output Net Remove Analysis Ty	e bottom ana	/I4 voltage /o lysis 2GFT /I2 1EET 2GFT		Select Select nested analysis Select	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Type Output Net Remove Analysis Ty GNT Probe	top -Span pe C Points ance e bottom ana rpe Instance rpe	/I4 voltage /o lysis 2GFT /I2 1EET 2GFT 1EET		Select Select nested analysis	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Type Output Net Remove Analysis Ty GNT Probe Analysis Ty GNT Probe	e bottom ana rpe e bottom ana rpe Instance	/I4 voltage /o lysis 2GFT /I2 1EET CTV CTV		Select Select nested analysis Select Select	
Start-S Center Sweep Ty Automatic Add Specifi Source Inst Output Typ Output Net Remove Analysis Ty GNT Probe Analysis Ty	e bottom ana rpe e bottom ana rpe Instance	/I4 voltage /o lysis 2GFT /I2 IEET 2GFT IEET CTV		Select Select nested analysis Select	

Internally always flat N-EET calculated


Using AC analysis per injection

Data to be saved optionally

Flat N-EET results

Any possible permutations of nested analyses

Integration in ADE (XL): results

Results included in psf data

Nested results as folders

Accessible in the usual ways

ViVa's Results Browser getData() SKILL API

GFT Tt identical to *stb* loop gain Given identical reference nodes

Integration in ADE (XL): ADE support

44 (i)	ADE L (1) - Test1 GNTTest1 config	\odot \otimes
Launch S <u>e</u> ssion Set <u>u</u> p <u>A</u>	nalyses <u>V</u> ariables <u>O</u> utputs <u>S</u> imulation <u>R</u> esults »Cād	епсе
Daaine Vaniahlaa	👌 🎾 🖆 🗹 🏷 Analyses 📀 🖗	x =
Design Variables Name Value 1 1K	Type Enable Arguments 1 dc	C Trans
	Outputs ? € Name/Signal/Expr Value Plot Save Save Option 1 H_dc_mag wave ✓ ■	
> Results in /dev/shm/GNTT	Plot after simulation: Auto Plotting mode: Replace us: Ready T=27.0 C Simulator: spectre State: spectre_C	

No Parasitics/LDE 📃 🔦	th »	Monte	e Carlo S	Sampling 🔽 » Reference	se:		- ,
Data View ? ₽ ×	Outp	outs Setup	F Co III	Results Diagnostics			
🛱 🗞 Analyses	Test	Name-	Туре	Expression/Signal/File	EvalType	Plot	Sa
- 🗹 dc t	gnt	Tn	expr	db20(getData("/Tn" ?result "gnt"))	point		
- 🗹 gnt 2GFT 1 1G Aut	gnt	Т	expr	db20(getData("/T" ?result "gnt"))	point	V	
- Click to add analysis	gnt	Hinf	expr	db20(getData("/Hinf" ?result "gnt"))	point		
🗄 🎰 Design Variables	gnt	Н	expr	db20(getData("/H" ?result "gnt"))	point	V	
- Click to add test	gnt	Dn	expr	db20(getData("/Dn" ?result "gnt"))	point	V	
🗄 🗔 🦀 Global Variables	gnt	D	expr	db20(getData("/D" ?result "gnt"))	point		

ADE L

Incl. parametric sweep

ADE (G)XL

Corners

Parameters

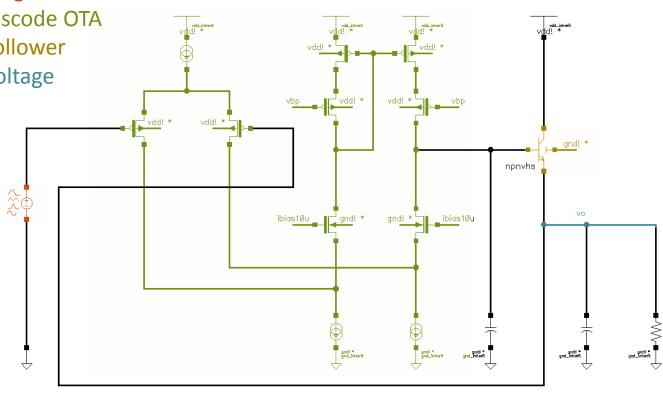
Monte Carlo sampling

Sensitivity analysis

Optimization

Worst-case corners

...

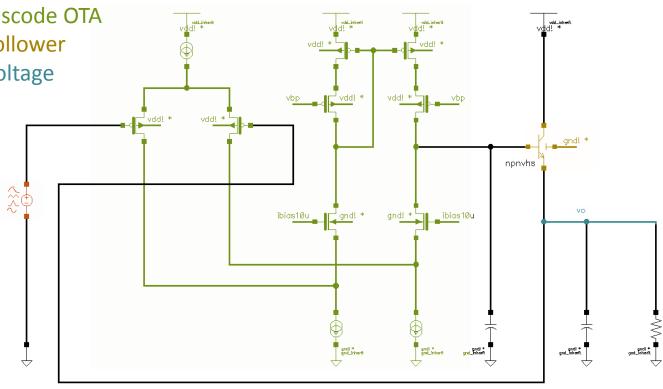

Tested in IC 6.1.5 and IC 6.1.6

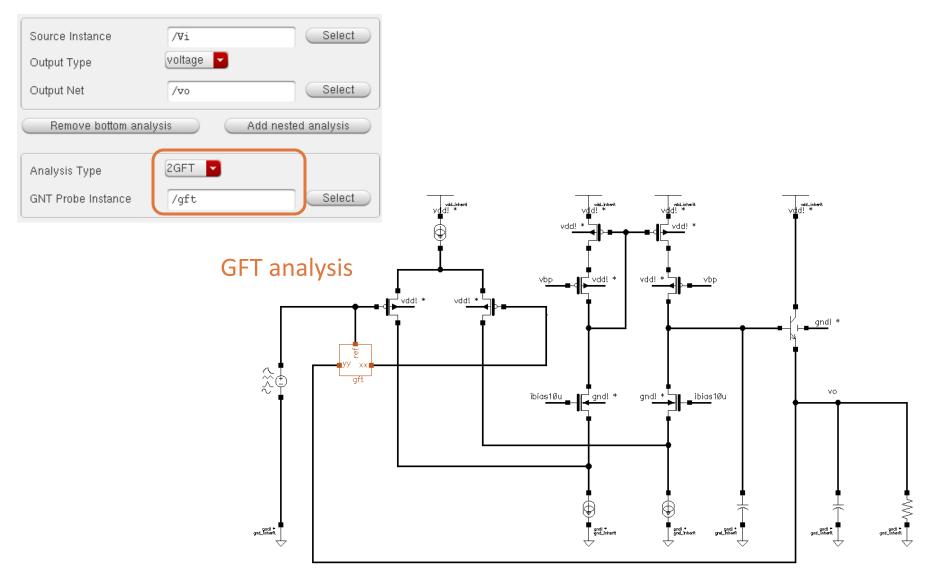
Integration of the General Network Theorem in ADE and ADE XL

> General Network Theorem Integration in ADE (XL) Application example

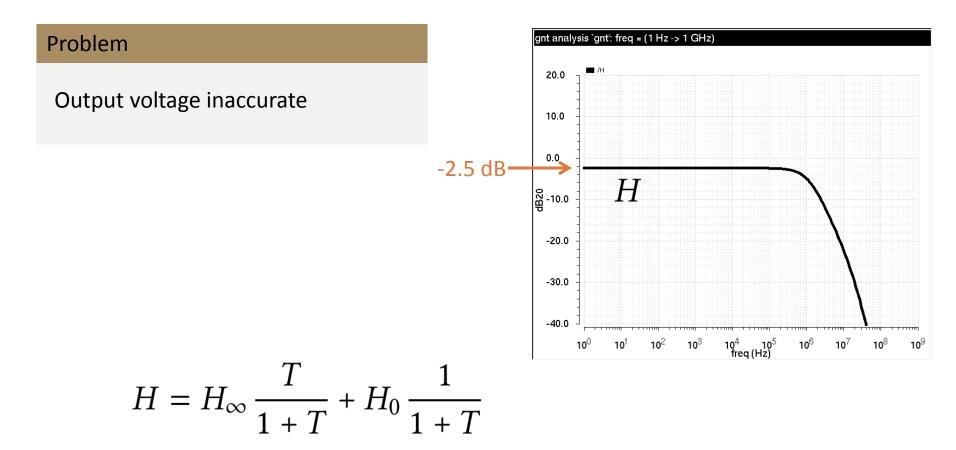
Application example: voltage regulator

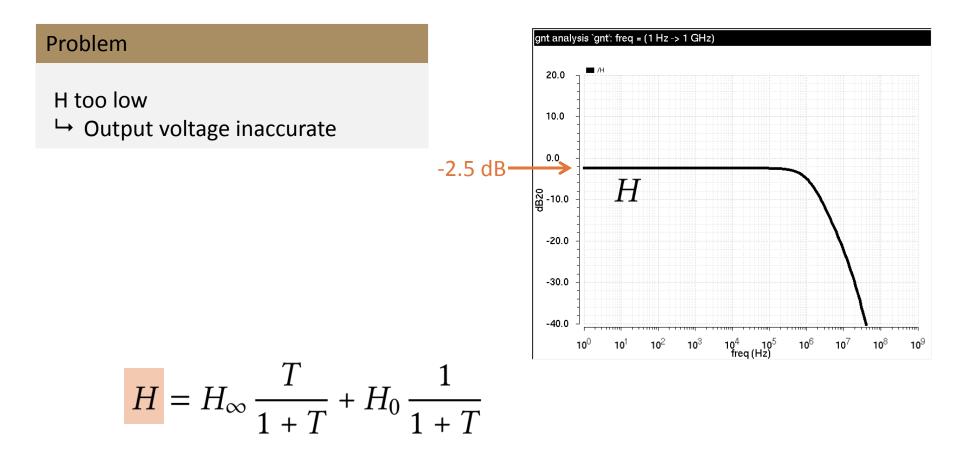
- Input voltage source
- Folded cascode OTA
- Emitter follower
- Output voltage

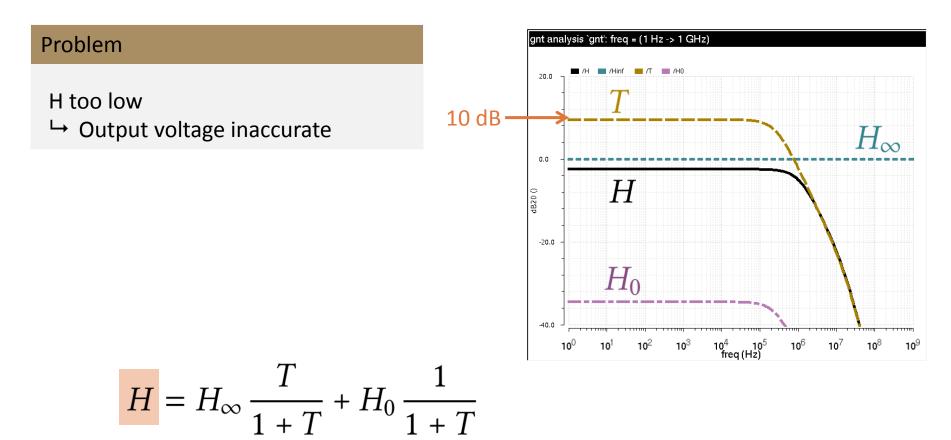

GNT in ADE (XL)


Application example: voltage regulator

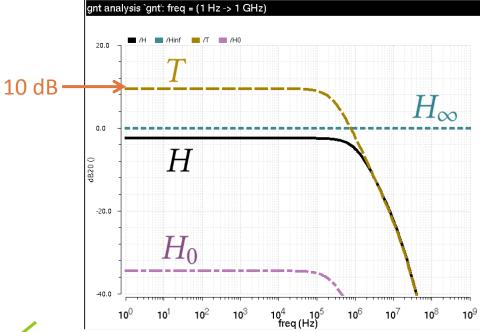
Problem


Output voltage inaccurate

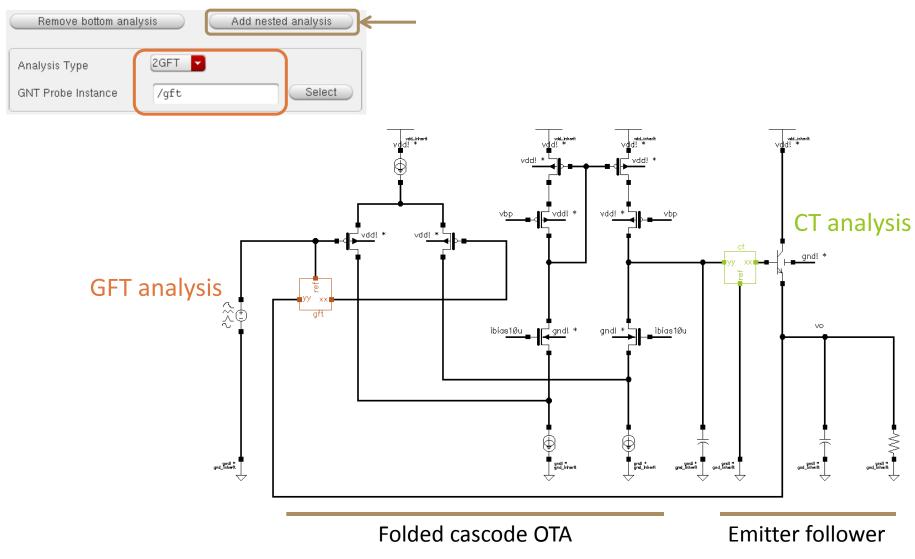

- Input voltage source
- Folded cascode OTA
- Emitter follower
- Output voltage



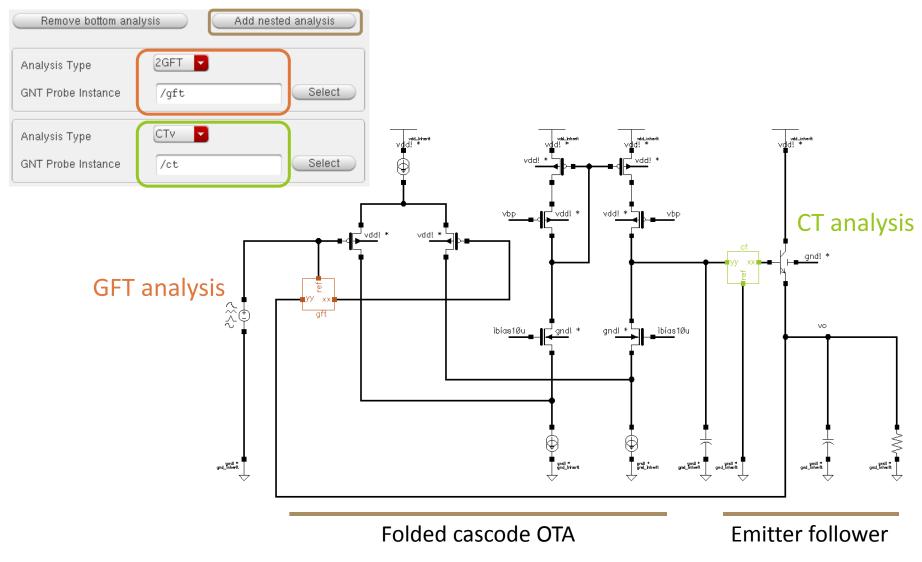
GNT in ADE (XL)



Problem


Forward voltage loop gain insufficient

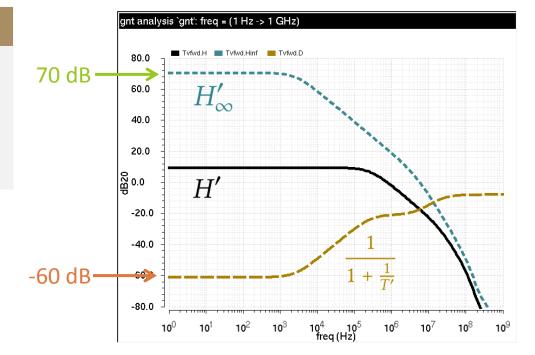
- \mapsto H too low
 - → Output voltage inaccurate



$$H = H_{\infty} \frac{T}{1+T} + H_0 \frac{1}{1+T}$$
$$T \approx T_{\rm v, fwd}$$

Application example: CT analysis nested in GFT analysis - setup

Application example: CT analysis nested in GFT analysis - setup

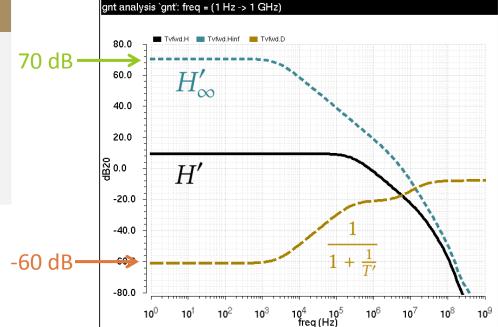


Application example: CT analysis nested in GFT analysis - results

Problem

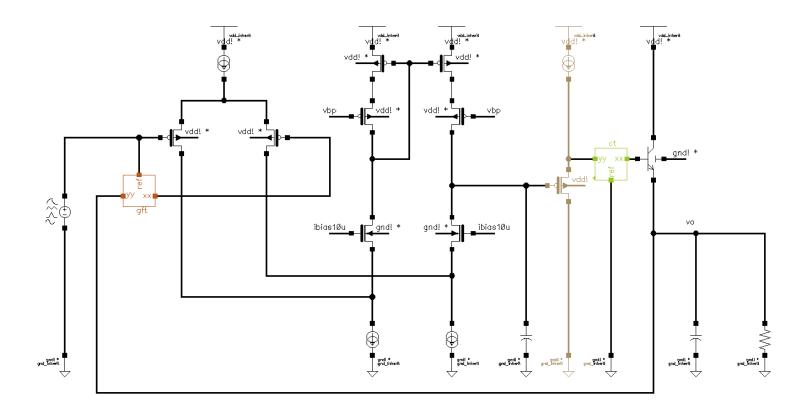
Forward voltage loop gain insufficient

- \mapsto H too low
 - → Output voltage inaccurate


$$T_{\rm v,fwd} = H'$$
$$H' = H'_{\infty} \frac{1}{1 + \frac{1}{T'}}$$

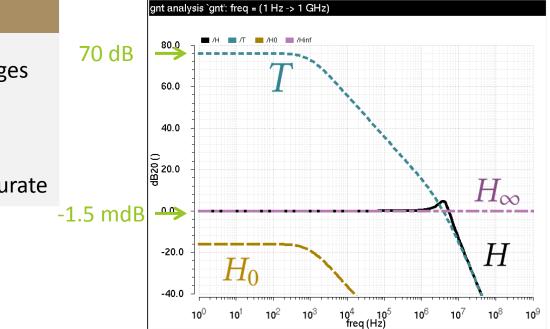
Application example: CT analysis nested in GFT analysis - results

Problem


Excessive interaction between stages

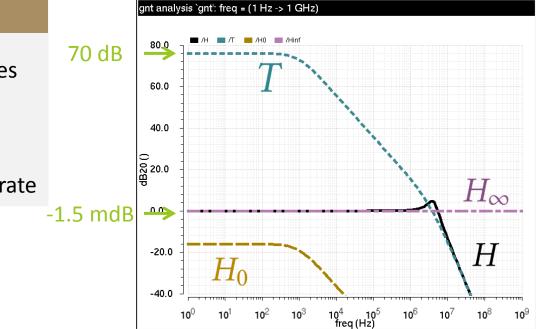
- → Forward voltage loop gain insufficient
 - \mapsto H too low
 - → Output voltage inaccurate

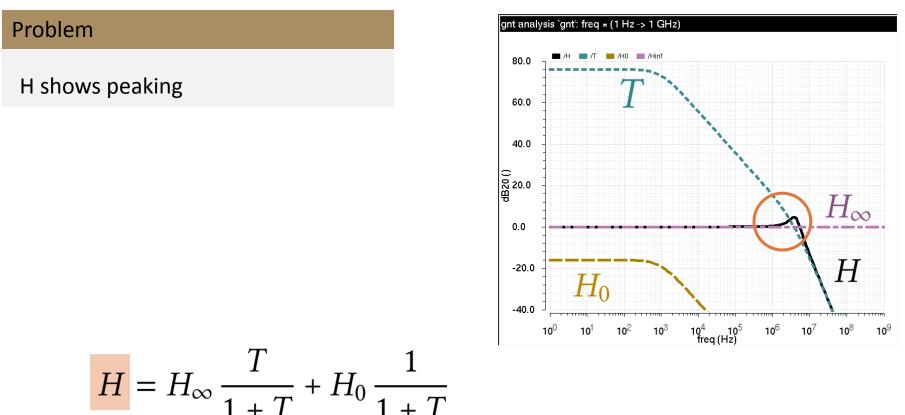
$$T_{\rm v,fwd} = H'$$
$$H' = H'_{\infty} \frac{1}{1 + \frac{1}{T'}}$$


Insert a PMOS source follower

Problem

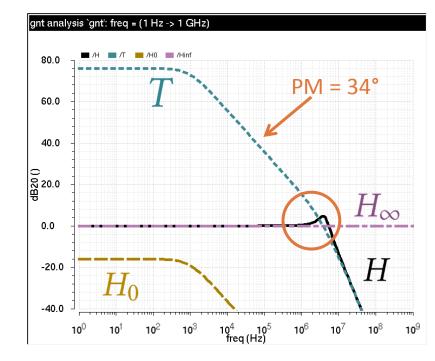
Excessive interaction between stages

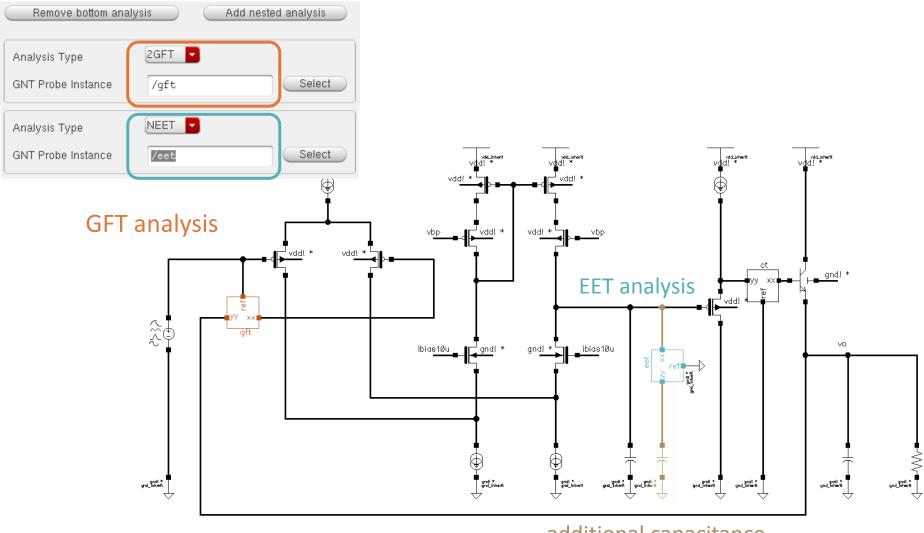

- → Forward voltage loop gain insufficient
 - \mapsto H too low
 - → Output voltage inaccurate



Excessive interaction between stages

- → Forward voltage loop gain insufficient
 - \mapsto H too low
 - → Output voltage inaccurate

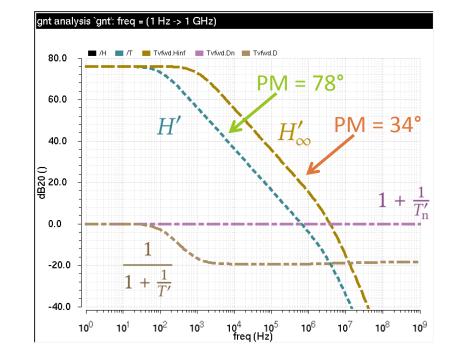



Problem

Forward voltage loop gain insufficient phase margin → H shows peaking

$$H = H_{\infty} \frac{T}{1+T} + H_0 \frac{1}{1+T}$$
$$T \approx T_{v,fwd}$$

Application example: reducing peaking, EET analysis nested in GFT analysis - setup

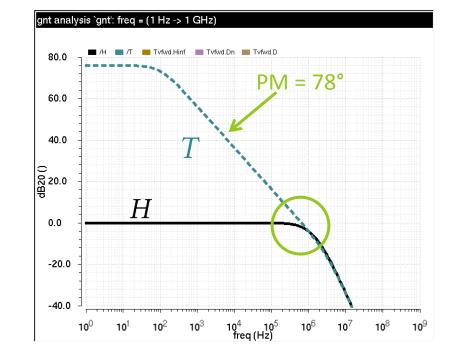

additional capacitance

GNT in ADE (XL)

Application example: reducing peaking, EET analysis nested in GFT analysis - results

Problem

Forward voltage loop gain insufficient PM → H shows peaking

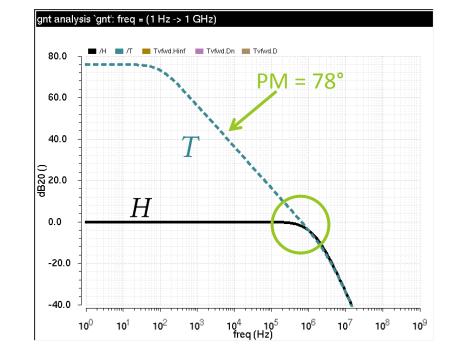

$$T_{v,fwd} = H'$$

$$H' = H'_{\infty} \frac{1 + \frac{1}{T'_n}}{1 + \frac{1}{T'}}$$

Application example: reducing peaking, EET analysis nested in GFT analysis - results

Problem

Forward voltage loop gain insufficient PM → H shows peaking


$$T_{\text{v,fwd}} = H'$$
$$H' = H'_{\infty} \frac{1 + \frac{1}{T'_n}}{1 + \frac{1}{T'}}$$

Application example: reducing peaking, EET analysis nested in GFT analysis - results

Problem

Forward voltage loop gain insufficient PM → H shows peaking

$$T_{\rm v,fwd} = H'$$
$$H' = H'_{\infty} \frac{1 + \frac{1}{T'_{\rm n}}}{1 + \frac{1}{T'_{\rm n}}}$$

GNT analysis integrated in ADE and ADE XL

Allows direct application of theorem

Valuable to increase insight, provides design guidance

Helpful instrument for design and analysis of electronic circuits and education of future designers

analogdesign.be

jochen.verbrugghe@intec.ugent.be bart.moeneclaey@intec.ugent.be

Cadence User Conference 2014 EMEA – Munich, Germany—May 19-21

GNT in ADE (XL)

References and acknowledgement

- R. D. Middlebrook, "The general feedback theorem: A final solution for feedback systems," IEEE Microwave Magazine, vol. 7, no. 2, pp. 50+, April 2006
- V. Vorpérian, Fast analytical techniques for electrical and electronic circuits. 2002
- R. D. Middlebrook, "The DT and the CT: The Dissection Theorem and the Chain Theorem." [Online]. Available: http://www. rdmiddlebrook.com/D-OA-Rules&Tools/index.asp
- R. D. Middlebrook, "Null double injection and the extra element theorem," IEEE Transactions on education, vol. 32, no. 3, pp. 167-180, August 1989
- R. D. Middlebrook, V. Vorperian, and J. Lindal, "The N Extra Element Theorem," IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 45, no. 9, pp. 919–935, 1998
- J. Verbrugghe, B. Moeneclaey, "Implementation of the Dissection Theorem in Cadence Virtuoso", International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design, pp. 145-148, September, 2012
- M. Tian, V. Visvanathan, J. Hantgan, and K. Kundert, "Striving for small-signal stability," IEEE Circuits & Devices, vol. 17, no. 1, pp. 31-41, january 2001
- F. Wiedmann. Loop gain simulation. [Online]. Available: http://sites.google.com/site/frankwiedmann/loopgain

Research funded by a Ph.D. grant of the Agency for Innovation by Science and Technology of Flanders (IWT).