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Preface: 
The fundamental goal of Statistical Mechanics is to link the detailed 

determinism of many-body microscopic dynamics to the phenomenological averaged 
description of macroscopic behavior. During my own 30-year study of statistical 
mechanics computers have completely transformed the field, substantially widening 
the scope of this goal by making it possible to follow the motion of millions, soon to 
be billions, of particles. The corresponding coupled nonlinear differential equations 
of motion can be solved, numerically, for time intervals including millions of 
discrete time steps. 

By now computers are readily available instructional tools for learning by doing. 
Computers are now firmly established in our high schools and low-cost transputers 
have made the speed of a CRAY available at the cost of an automobile. One can hope 
that this continuing growth of computational power will play a role in promoting a 
healthy diffusion of knowledge throughout the world. 

But with our relatively newfound ability to compute comes a challenging 
responsibility. The challenge today is not so much generating results, as it is 
discovering imaginative ways to display results in comprehensible forms designed to 
promote understanding. Because the subject of this book, computational statistical 
mechanics, is now feasible, the goal of statistical mechanics has had to grow from the 
days when experiment and theory were the complementary alternative approaches to 
understanding. Our goal now is to achieve correspondence among three alternative 
descriptions of natural phenomena: theory, experiment, and computer simulation. 

understanding than was accessible to Boltzmann 100 years ago when he linked 
reversible mechanics to irreversible thermodynamics with his H Theorem. This new 
understanding is fundamentally related to another classical subject reinvigorated by 
computation, chaos, the exponentially sensitive dependence of the future on the past. 
This sensitive dependence has made a qualitative change in what it means to "solve" a 
problem. Chaos forces us to take a "statistical" approach. In a real sense chaos now 
provides not only an understanding of the fundamental origin of macroscopic 
irreversibility, but also a conceptually useful microscopic framework showing that our 
approach must be both computational and statistical. Long-time solutions for 
individual chaotic systems are out of the question, inaccessible to any approach, 
analytic or numerical. Chaos requires ensemble averages. 

Most real macroscopic systems are nonequilibrium systems. In them, flows of 
mass, momentum, or energy respond to differences in composition, velocity, and 
temperature. Fast computers make it practical to generate for study "simulations," the 
computational analogs of these nonequilibrium flows. To predict accurate future states 

This wider goal has led to new methods providing a more intimate degree of 
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from the present state of a system by computer simulation requires new combinations 
of microscopic dynamics with macroscopic thermodynamics, in which equilibrium 
equations of motion are augmented to deal with nonequilibriurn constitutive 
relations, while still retaining their deterministic, time-reversible character. With 
these new dynamic equations, and with initial and boundary conditions specified, the 
simulated time development generally follows from approximate solutions of ordinary 
differential equations. This approach has proved to be useful and educational, for both 
small and large systems. 

Our view of such nonequilibrium systems has been profoundly changed by 
computer simulation. Computers make it possible now to study nonequilibrium 
systems in their own right, not just as linear perturbations or equilibrium fluctuations. 
Accordingly, the nonequilibrium systems which are all around us make up more of 
today’s computational statistical mechanics than was possible in the older statistical 
mechanics of Tolman, the Mayers, and Hill. 

We can still formulate and understand the bases of both equilibrium and 
nonequilibrium many-body behavior by computing the solutions of systems of classical 
ordinary differential equations, using the old techniques of Gauss, Euler, and Newton 
on modern computing machines. But the cumbersome analytic approaches of a 
generation ago have either changed or been discarded. New ways, particularly the 
direct simulation methods, are much broader in scope, richer in the detail they 
provide, and more definite in their predictions. The new have replaced the old. 

requires the continuous development of new methods and viewpoints. The 
interaction of computation, experiment, and theory has led to rapid qualitative gains in 
our ability to predict the future reliably and to resolve the classical paradox that 
reversible motion equations lead to patently irreversible solutions. 

concepts from nonlinear dynamics to link the basis of statistical mechanics established 
by Maxwell, Boltzmann, and Gibbs to the concepts and computational tools available, 
and still being developed, a century later. Despite the antiquity of the foundations and 
the numerical techniques new discoveries are commonplace, so that computational 
statistical mechanics promises to be a fertile research area as it is applied to increasingly 
complicated problems. The present work describes the fundamentals underlying 
numerical simulation of nonequilibrium systems as well as the numerical techniques 
needed to apply these principles. I believe that physics can only be learned by first-hand 
exploration. Most physicists learn inductively, by example, rather than deductively. 
This book is for them. It consciously avoids vague formalism and whenever possible 
substitutes restricted particular examples for general propositions and theorems. It is 
necessary to measure, calculate, or compute in order to understand. With this in mind 

To keep pace with the continuing improvements in computer capacity and speed 

This book aims to use the tools of computation and simulation and the useful 
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I have included a selection of problems intended to encourage learning and 
understanding. 

This book began in 1972, shortly after I began teaching in the University of 
California’s Graduate Department of Applied Science at Davis and Livennore. This 
Department was conceived by Edward Teller in order to make available to students the 
Livermore Laboratory’s unparalleled experimental, computational, and theoretical 
facilities. In the Department of Applied Science we teach the skills required to describe 
equilibrium and nonequilibrium systems, microscopic and macroscopic, from a 
fundamental viewpoint. The year-long graduate course described in the present book 
evolved over a 20-year period. I was first exposed to statistical mechanics in graduate 
courses at the University of Michigan, taught by De Rocco and Uhlenbeck, and built 
from this base through texts I have used in teaching, the Physical Chemistry of Moore 
and Adamson and the Statistical Mechanics of Reif and McQuarrie. Recently my 
teaching has more closely followed my current research interest in nonequilibrium 
statistical mechanics. This book reflects my own interests in achieving an 
understanding of macroscopic processes, particularly nonequilibrium processes, from a 
computational basis. I have included an account of equilibrium simulations and 
simulation techniques too, despite my feeling that this area is by now farther from the 
frontier and therefore of less interest in research. 

This rewarding work has been generously supported by Universities in Canberra, 
Davis, Vienna, and Yokohama, as well as by the Livermore National Laboratory. It has 
been stimulated and encouraged by a host of friends around the world. Though such 
research is never finished it appears to me that now is a good time to pass on some of 
our accumulated present-day knowledge in order to speed future advances by those 
people privileged to enjoy the pleasures of solving puzzles in physics. 

Livermore and Yokohama 
October 1987 - Tune 1990. 
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1.1 Introduction 
Because the basis of macroscopic behavior lies in the reproducible microscopic 

motion of particles governed by the simple reversible deterministic laws of mechanics, 
we begin our study by exploring classical mechanics. Our fundamental motivating 
desire is to find a microscopic mechanical basis for macroscopic phenomena. So we 
must start with mechanics. We will illustrate all the basic concepts with simple 
examples free of the obscuring shroud of mathematics. 

Although Schroedinger‘s quantum mechanics is apparently more fundamental 
than Newton’s classical mechanics, quantum mechanics has not yet been developed 
into a useful tool for dealing with nonequilibrium systems. We deal with quantum 
systems only in those few cases where classical mechanics is useless (phonons at low 
temperature, photons, electrons). 

Classical mechanics has come far since Newton’s 300-year-old formulation of the 
basic laws. Newton’s work was based on gravitational forces because Kepler‘s analysis 
of planetary data had led to precise conclusions. But gravity is negligibly weak on the 
microscopic scale. It affects atomic trajectories only at the double-precision level. 

On the atomic level, a variety of short-ranged few-body force laws containing a 
few adjustable parameters have been introduced to replicate the behavior of simple 
gases, liquids, and solids. And statistical mechanics has been developed to link these 
microscopic forces to macroscopic thermodynamic quantities, temperature, energy, and 
entropy. Numerical techniques can explore and characterize the link with high 
accuracy, and the stability and predictability of the solutions can be described in the 
relatively new language of nonlinear dynamics and chaos. 

We begin by reviewing Newton’s laws of motion first and commenting on the 
reversibility and stability of Newtonian trajectories. Numerical integration of the 
motion equations is emphasized because it is fundamental to our subject. We then 
describe Lagrange‘s and Gauss’ formulations of the mechanics of constrained systems, 
and discuss also Hamilton’s mechanics, which is a necessary prerequisite to the 
treatment of quantum systems and is as well useful in understanding Nos6‘s recent 
(1984) work. This last development makes it possible to incorporate temperature and 
pressure into microscopic reversible equations of motion. 

Nosk‘s dynamical link between the microscopic and macroscopic points of view 
recurs repeatedly, in discussing both equilibrium and nonequilibrium systems. This 
work has made it possible to advance beyond Boltzmann in understanding the 
connection between microscopic reversibility and macroscopic irreversibility. 

A 



1.2 Mechanical States 
Mechanics treats the time development of mechanical systems and furnishes the 

rules from which the future motion can be computed for any mechanical state. By the 
term “mechanical state” of a microscopic system we mean the list of present 
coordinates {r} and velocities {i = v} of the degrees of freedom. The number of such 
pairs required depends on the complexity of the system described, and is called the 
number of degrees of freedom. 

three-dimensional space is six, so that the tetrahedron has six degrees of freedom. 
Notice that a “tetrahedron” made up by joining together four point masses with six stiff 
springs would require 12 coordinates to locate it in three-dimensional space and 12 
more velocities to completely specify its mechanical state. The constraint of making 
the tetrahedron rigid removes six degrees of freedom. 

of predicting the future. We must know the accelerations, that is, the change of the 
velocities with time. Typically the accelerations and the underlying forces present in 
the equations of motion depend upon the types of the particles being described. Thus 
the composition of the system, the corresponding equations of motion, as well as any 
necessary boundary conditions must be given too before any calculations can be 
performed. The analog of such a microscopic ”mechanical state” for a macroscopic 
system is the macroscopic “hydrodynamic state,” in which the thermodynamic state 
and velocities are specified, and from which the future behavior can be determined. 

knowing the current mechanical state makes it possible to simulate future behavior. 
Mathematicians call this an ”initial value problem.” The initial value is the current 
mechanical state. Consider a simple example. The mechanical state of a one- 
dimensional harmonic oscillator is specified by giving its coordinate x, and velocity v = 
i. The type of oscillator must further be specified by giving the mass m and the 
force constant K. Finally either Newtonian or Lagrangian mechanics leads to the same 
second-order differential equation of motion for the acceleration, 

For instance, the number of coordinates required to locate a rigid tetrahedron in 

For this state information to be useful we must have equations of motion capable 

Given equations of motion, accelerations or forces, and boundary conditions, 

.. 
x = - (K/m)x, 

for which the solution satisfying the initial values of x and k is unique. 
At a particular time t the state of a quantum mechanical system can likewise be 

characterized by the real and imaginary parts of its wave function. The Schroedinger 
equation then provides two first-order partial differential equations for the time- 
development of the real and imaginary parts of the wave function. 
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Likewise the state of a macroscopic hydrodynamic system, given by local values of 

density, velocity, and energy, can be propagated by solving the corresponding five 
partial differential equations (one each for density, the three components of velocity, 
and energy). In principle the partial differential equations of quantum mechanics and 
continuum mechanics are superficially more complicated than the ordinary differential 
equations of classical mechanics. But by averaging these partial differential equations 
over spatial zones or by representing the solutions as sums of orthogonal functions, 
both quantum systems and hydrodynamic systems can likewise be converted into sets 
of ordinary differential equations. 

The mechanical state of a system can be followed in time either by following a 
trajectory x(t) in coordinate space or in phase space, where both the coordinates (q} and 
the momenta (p} are simultaneously specified. Individual coordinatemomenta points 
in phase space give the complete dynamical state. In coordinate space the dynamical 
state requires also velocity, the rate at which the trajectory is traced out. 

strictly limited, so that all of our computer-generated solutions are necessarily 
approximate. We will see that the typical Lyapunov instability of the equations of 
motion rapidly and relentlessly destroys computational accuracy, so that the expense of 
high accuracy is not feasible for long calculations. Generally eight-digit or twelve-digit 
single-precision accuracy is sufficient. So long as we are interested in reproducing 
averaged macroscopic behavior there is no evidence that this limited accuracy has 
practical consequences. If such evidence were to be found it would indicate a new and 
interesting underlying law of physics. 

It is worthwhile to emphasize that the accuracy of any numerical solution is 

1.3 Newtonian Mechanics 

differential-equation description of the time 
development of particle coordinates through the 
coordinate-dependent Forces (F(r)}. The forces depend 
upon the locations {r} of the masses {m} and the 
boundary conditions, with the boundary contribution to 
the forces usually specified as a time-varying function of 
the coordinates: 

Newton’s mechanics furnishes a second-order 

The velocity-dependent Lorentz Forces which prescribe 
the motion of charged particles in magnetic fields depend 



upon as well as r. For us a more common origin for velocity-dependent forces will lie 
in the thermostats we will come to use to connect the microscopic and macroscopic 
descriptions of matter associated with Nosii's and Gauss' mechanics. 

In most applications we consider locally neutral matter in which the interactions 
of the particles are relatively short-ranged, on a nanometer scale. Coulomb forces are 
longer-ranged, with an interaction energy equal to the room-temperature thermal 
energy, kT, at a separation of 50 nanometers. 

To treat an N-Body problem in Newtonian mechanics requires three things: 
(i) initial conditions (the mechanical state, usually 3N coordinates {r] and 3N velocities 
{v} for an otherwise unconstrained three-dimensional system), (ii) a recipe for the 
forces, including boundary forces, and (iii) an dgorithrn for solving the equations. We 
explicitly emphasize the computational and approximate nature of mechanics by using 
the word algorithm. Numerical techniques are generally required because a typical 
system of three or more nonlinear equations can only be solved numerically. There 
are many exceptions, and these exceptions make up the so-called integrable systems 
which are exhaustively treated in most mechanics textbooks. Even for such exceptional 
integrable cases it is often much faster, and more informative, to follow the dynamics 
numerically than first to evaluate the corresponding analytic expression and then to 
enter that more complex description into a computer in order to visualize the 
trajectory. 

But it was some of these exceptional integrable cases, with accurately tabulated 
trajectories, that provided the evidence leading Newton to invent mechanics. The 
motions of the individual planets can be understood very well on the basis of strong 
interactions between each planet and the much-more-massive sun and weak 
perturbations due to the mutual interactions of the planets. This separation is due to 
the thousandfold difference in mass between the sun and the planets. Keplefs laws 
describe the idealized motion of individual planets about a motionless sun. The three 
laws are all illustrated by the orbits appearing in Figure 1.1: 

(i) the bound periodic orbits are ellipses with the sun at a focus, rather than the 
center, of each such ellipse. 

(ii) these orbits sweep out area at a uniform rate. 
(iii) the mean radius of such an orbit varies as the 3/2 power of the period. 

Kepler's First Law is a direct consequence of the inverse-square central (that is, no 
angular dependence) gravitational force. Kepler's Second Law is more general, and 
applies to any central force law. Today it would be called conservation of angular 
momentum (mr%) and so should apply for any radial potential. Kepler's Third Law is 
like the first in that it is specific for inverse-square forces. It is interesting to 
demonstrate the Third Law using dimensional analysis, a simple but powerful 
technique. Thus, if we assume that the mean potential energy is proportional to the 

r\ 
\, 

-_ 

r \  
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Figure 1.1 Unit mass, unit field Kepler 
orbits with initial x coordinates 1/16 and 
1/4. The corresponding initial y velocity 
components are 2 and 1. The maximum 
speeds of 14 and 7 correspond to the 
minimum separations, 1/112 and 1/28. 
Stoermer integration with dt = 0.001. 

Y 

x 

mean kinetic energy, with units M(L/T)2, dimensional analysis and Kepler’s Third Law 
establish that the potential energy varies as l/L. 

To see this same result in a more detailed way, consider a radial power-law 
potential, Q, = I-n. The resulting central force, -V@ , varies as rn-1.  Then the dot 
product of the radius vector and the force, when averaged over time, gives a relation, 
often called the ”Virial Theorem,” between the potential and kinetic energies: 

For sufficiently long times the averaged time derivative of any bounded differentiable 
quantity vanishes. Thus, 

This isolated-system version of the virial theorem establishes that the ratio of the 
kinetic energy to the potential energy is -n/2. The kinetic energy depends on the orbit 
size and time as (r/t)2 while the potential energy varies as r-n. The two energies can 
only be proportional to one another if the time of the orbit varies as the (n+2)/2 power 
of the size. Thus, Kepler‘s Third Law implies n = 1 for the gravitational potential. 

could include tidal forces and deformation as well as the corrections to the orbit which 
depend on the ratio of planet mass to solar mass. It is a famous problem of Laplace to 
understand whether or not the latter simplification is qualitatively important. That is, 
does the inclusion of three-body interactions lead to a qualitative change in the 
motion? 

The Kepler problem just discussed can be made much more complicated. We 

Problem: 

bodies with a gravitational attraction Q, = mM/r. 
Discuss the dependence of the ”escape velocity” on the mass ratio m/M for two 
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1.4 Traiectorv Stabilitv 
It seems likely that the motion of the planets in our 

solar system is stable, although this is only certain on the 
time scale relevant to men. Our own goal is to 
understand many-body systems, both at and away from 
equilibrium. Such systems are generally unstable, so that 
trajectory stability deserves discussion. We say that a 
solution is stable if nearby solutions separate from one 
another less rapidly than exponentially in time. A 
solution is unstable if a nearby trajectory can separate 
from it exponentially fast in time. Because configuration 
space is a subspace of phase space the separation can be 
measured in either one. 

analysis of the effect of a trajectory perturbation 8 has to predict a linear relation, of the 
form 6 = 8, leading to instability or stability, depending on the sign of the 
proportionality constant. The exponential instability of a perturbation, varying as 
exp(ht), is important for two reasons. First, it is the typical situation, and limits the 
time for which an accurate numerical solution can be found. Second, it is the type of 
motion which requires as much information in the initial conditions as is available in 
the trajectories. That is, to follow the trajectories with given accuracy for a time t 
requires ht/lnlO decimal digits in the initial conditions. A solution is said to be 
Lyapunov unstable, exhibiting “Lyapunov Instability,” if two neighboring trajectories 
do separate exponentially fast. Generic behavior in the alternative “stable” situation 
typically involves trajectory separations varying only linearly with time. Joseph Ford 
of Georgia Tech has aptly expressed exponential Lyapunov instability as the point at 
which our computers resemble ”elaborate Xerox machines.” He means by this that the 
computers simply reproduce, as output, the same amount of information as was 
contained in the input, as initial conditions. 

classical particle bouncing on a surface in a constant gravitational field. If the surface is 
flat the orbit is stable. A perturbed solution, with a slightly different velocity parallel to 
the plane deviates only linearly in time (because the displacement difference is the 
integral of the velocity difference). If, on the other hand, the surface is curved, 
differences can be amplified, and the bouncing of a ball can be Lyapunov unstable, with 
an exponential increase of trajectory separation with time. Let us carry out an 
approximate calculation of this instability. To avoid complexity we will restrict our 
attention to a single mass moving in an external field. 

elastic ball of unit radius. The time between bounces is z, which varies as the 

The criterion of exponential separation should not come as a surprise. A linear 

Figures 1.2 and 1.3 show examples of stable and unstable orbits, both involving a 

Consider a mass point dropped vertically in a unit gravitational field onto a fixed 
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Figure 1.2 Stable trajectories with initial 
y velocity component = 1 and Ak = 0.1. 
Mass and gravitational field strength = 1. 

1 .o 

0.5 

0.0 
I 1 I I 

-8.0 -6.0 -4.0 -2.0 0.0 In(x) 

Figure 1.3 Unstable trajectory with an initial offset of Ax = 0.00075. 

square-root of the bounce height if the height is small. To begin, the mass point is 
offset slightly from the straight up position directly over the fixed ball. Provided that 
the offset is small, the problem can be solved analytically by relating the velocity after 
the nth bounce, Vn, to the offset at the nth bounce, xn. 

where we use R to denote the ratio xn/xn-l = vn/vn-l = R. If we divide these equations 
by Vn-1 we find the following relations for R 

leading to two solutions: 



The plus sign, which corresponds to offsets increasing with time, and instability, gives 
the results R+ = 9.90 and 3.73 for 22 equal to 8 and 2. The minus sign, corresponding 
to the reversed trajectory with decreasing offsets, gives the reciprocals of these values 
for R. The logarithm of the ratio of successive offsets, R, divided by the time between 
bounces, gives the rate of exponential divergence and is called the ”Lyapunov 
exponent.” In the two cases just considered the Lyapunov exponents have the values 
an9.90/81/2 = 20.810 and &3.73/21/2 = k0.931. In the small bounce, small z limit, the 
Lyapunov exponent approaches 1.000. 

1.5 Traiectorv Reversibilitv 

formulated microscopic motion equations in both classical and quantum mechanics. 
When we call a motion reversible we mean that a reversed movie of that motion, a 
solution of the complete set of equations, run backward through a movie projector, 
would still satisfy the same motion equations. This definition often, but not always, 
coincides with the formal mathematical operation of reversing the solution of a set of 
first-order differential equations by changing the signs of all the time derivatives. 

has no effect on the accelerations, {?). More general forms of mechanics, with 
constraints and frictional forces, make the reversibility question interesting. We will 
come back to these in discussing Gauss’, Lagrange’s, and Nos6‘s contributions to 
constrained mechanics later in this Chapter. 

known analytic solution, the one-dimensional harmonic oscillator, with unit force 
constant and unit mass. We use this example to introduce the simple Stoermer 
version of the second-order time-reversible Newtonian equation of motion: 

Time-reversibility, or just ”reversibility” for short, is characteristic of properly 

Newtonian mechanics is patently reversible because changing the sign of the time 

Let us now look at a simple integrable Newtonian mechanics problem with a 

x(t + dt) - 2x(t) + x(t - dt) = dt2F = - dt2x(t) . 

In this centered second-difference form the time-symmetry is apparent. Changing dt to 
-dt leaves the motion equation, and its solution, unchanged. (Of cowse the sign of the 
initial value of k would be reversed in the reversed trajectory, but the equations of 
motion are unchanged). 

In contrast to the reversible motions of systems governed by Newtonian 
mechanics, motions involving macroscopic hydrodynamic dissipation, diffusion, 
viscosity, or heat conduction are intrinsically irreversible. When diffusion, viscosity, 
or heat conduction play a role, the reversed motions are unnatural. Imagine reversing 



a movie of breaking surf or a waterfall. These motions make no sense when run 
backward in time. On the other hand the equally-irreversible motions of clouds might 
appear quite reasonable when reversed, simply because the motion is slow, on a 
human time scale. 

macroscopic hydrodynamic equations are generally irreversible. The simplest example 
is the ”Diffusion Equation,” Fick’s Second Law: 

The ”phenomenological” (meaning based on experience) laws governing 

which has also a centered finite-difference representation: 

P(t + dt) - p(t) = +D(dt/2)[V’p(t + dt) + V2p(t)] , 

where the plus sign preceding the diffusion coefficient D serves to emphasize the 
difference from the time-reversed version to follow. The time-reversed version of this 
equation, 

p(t) - P(t - dt) = -D(dt/Z)[V’p(t) + V’p(t - dt)] , 

is not only different, it is also very poorly behaved from the mathematical standpoint, 
having solutions growing in time as exp[Dt(2~/h)2], for arbitrarily small wavelengths h. 

For positive dt the diffusion equation can be solved by a variety of methods: 
Fourier series, Green’s functions, or the straightforward finite-difference approximation 
suggested above. For any of these approaches the left-hand side changes sign, with time 
reversal, while the right-hand side does not. Thus the diffusion equation is 
irreversible. 

the Figures. The reversible harmonic oscillator follows the trajectory x = sint, shown in 
Figure 1.4, equally well for positive and negative times. The diffusing density p(x,t) 
follows the irreversible diffusion equation. See Figure 1.5. In the laboratory a Gaussian 
distribution of the density spreading in time would continue to spread if time could be 
reversed. Of course, on a microscopic scale, if we could reverse all particle velocities 
(not easy!), the spreading could be reversed. This property of the diffusion equation, 
irreversibility, an ”Arrow of Time,” is not an obvious property of Newton’s equations 
of motion. At the same time there is no doubt at all that Newtonian systems do 
diffuse. An understanding of this apparent paradox is one of the main goals of the 
statistical mechanics of nonequilibrium processes. Recent developments rooted in the 

To understand the irreversibility in more detail consider the examples shown in 
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Figure 1.4 Reversible harmonic oscillator 
trajectory, x = sint. Stoermer integration 
with time step dt = d 5 .  

Ip 
Figure 1.5 Irreversible solution of Fick’s 
Second Law: p = exp(-x2/4t). From top to 
bottom the density curves correspond to 
times +1, +2, and +5. 

constrained mechanics of Lagrange, Gauss, and Nos4 have made it possible to attain 
this understanding. 

Problems: 
1. 

2. 

3. 

Show that the prototypical Fourier-Series Solution p = pkexp(-t/z)sinkx is a 
solution of the diffusion equation provided that the decay time z is related to 
the wavelength 27dk by z = l/(kZD). 
Show that the Gaussian function p = Gp(4nDt)-1/%xp(-x2/4Dt) is a solution of 
the one-dimensional diffusion equation and that the halfwidth of the solution 
<x2>1/2 varies as the square root of the time. 
Consider a periodic ring of 5 sites in which the state of the jth site at time n is 
the weighted average of the previous state and the second difference of the 
coordinates, xi-1 - 2xj + xj+l. “Periodic” implies that ~6 = x1 and that ~0 = x5- 
Comment on the relation of this problem to the Newtonian equations of 
motion and to the diffusion equation. 

1.6 Stoermer and Runge-Kutta Intenation 

more detail the stable and reversible harmonic oscillator, with unit mass and force 
constant, so that the equation of motion is 

To illustrate algorithms for solving Newton’s equations of motion we consider in 

I 

r- 
I 



.. 
x =-x. 

We choose the particular initial condition, x = 1 at t = 0, and 2 = 0, for which the 
solution is 

x = cos(t) . 

First consider the Stoermer algorithm with time step 6 : 

This algorithm gives the future coordinate, x+, in terms of the present and past 
coordinates, xo and x-, and the current acceleration, -xW At a time n6 the equation has 
a solution: 

x = x,einawith cos(a) = 1 - (1/2)62 = 1 - (1/2)a2 + (1/24)d - ... . 

If we solve this relation for the series expansion of a, 

we find that for t62 << 1 the approximate coordinate x(n6=t) is in error by (1/24)62tsin(t). 
This "global error" characterizes the deviation of the approximate difference-equation 
solution from the exact differential-equation solution at a fixed time t as the time step 6 
approaches zero. An alternative characterization of error is the local error. If we 
choose two adjacent coordinate values from an exact trajectory: x, at time t - 6, and 9, 
at time t: 

x- = cos(t - 6) ; xo = cos(t) , 

for instance, then the difference Ax between the exact solution, cos0 + 6), and the 
Stoermer approximation, [2 - 62]cos(t) - cos(t - S), gives the "local" single-time step 
error: 

AX = COS(t + 8) - [2 - 62]~0~(t) + cos(t - 6)  = C - 8s - (62/2)C + ( 8 3 / 6 ) S  + (a4/24)C - ... 

- [2 - 621C + C + 6s - (62/2)C - ( 6 3 / 6 ) S  + (6*/24)C + ... = (a4/12)C = (64/12)~~~( t )  , 

where we have abbreviated cos(t) and sin(t) by C and S. Because the single-time step 
error is fourth-order in 6, we refer to the Stoermer method as "third order," reflecting - 



the accuracy of a single integration step. The many-time step "global" error, giving the 
deviation from the true trajectory, is of order 62, much larger than the single-time step 
'local" error, which is proportional to 2i4. The difference, 64 versus @, has two sources: 
first, the difference equation is second order in time, requiring two integration steps to 
find x(t+dt); second, the number of time steps which contribute to the global error at 
time t varies as t/6. These two effects each contribute equally to the error. A simple 
computer program implementing the Stoermer algorithm for the one-dimensional 
oscillator appears at the end of this Section. 

convenient to use one of the "fourth-order" Runge-Kutta methods. The local error in 
the fourth-order Runge-Kutta method is fifth order in 6. Because the method applies to 
firsf-order equations only a single power of 6 is lost in the integration step. The global 
error is thus of order 54 (t/s steps with errors of order 65) rather than @. As a concrete 
demonstration of the Runge-Kutta method we include a computer program at the end 
of this Section. The program integrates the coupled set of three first-order differential 
equations describing the Nos&Hoover oscillator shown in the Figure 1.6. 

quadrature, and then becomes equivalent to Simpson's Rule. It is only necessary to 
include the integrand's time-dependence in the RHS function called by Runge-Kutta. 
Simpson's Rule describes the integration of a cubic function exactly over a range dt and 
so is also a fourth-order method. As an example we integrate the exponential function 
et from 0 to 1 in a single integration step. If we define the indefinite integral I(t): 

To improve upon the third-order accuracy of the Stoermer method it is 

Exactly the same fourth-order Runge-Kutta method can also be applied to ordinary 

I(t) = jesds , 
P 

Figure 1.6 Nos&Hoover oscillator 
described by the three first-order 
differential equations: 

i = p ; p = - x - ~ p ; ~ = l O o ( p 2 - 1 ) .  

The initial conditions are: 

X, = 0.0 ; po = 1.0085 ; 50 = 0.0 . 

-, 



then the first derivatives of I at the set of Runge-Kutta time values 

are 

leading to an average value of equal to 1.71886, close to the exact value, e - 1 = 1.71828. 

STOERMER METHOD 

CALCULATION OF A REGULAR HARMONIC OSCILLATOR TRAJECTORY. 
CALCULATION USES THE CLASSIC 3RD-ORDER STOERMER METHOD. 

DIMENSION YNEW (1) , YNOW (1) , YOLD (1) ,FORCE (1) 
T = 0.0 

YNEW(1) = 1.0 
DT = 3.14159265358979/30.0 
DO 30 LOOP = 1,60 
DO 20 I = 1,l 
YOLD(1) = YNOW(1) 
YNOW(1) = YNEW(1) 
CALL STORM(DT, YNEW, YNOW, YOLD, FORCE) 
T = T + D T  
WRITE(3,lO) T,YNEW(l) ,YNOW(l) ,YOLD(l) 
FORMAT ( “ T ,  X, OLDX: ”, 3F12.7) 
CONTINUE 
CALL EXIT 
END 

YNOW(1) = 1.0 

20 

10 
30 

{0,0.5,0.5,1.0} 

1 

1 

SUBROUTINE STORM(DT, YNEW, YNOW, YOLD, FORCE) 
DIMENSION YNEW (1) , YNOW( 1) , YOLD (1) ,FORCE (1) 
CALL RHS ( YNOW, FORCE f 

DO 1 I = 1,l 
YNEW (I) = 2 .O*YNOW(I) - YOLD (I) + FORCE (I) *DT*DT 

RETURN 
END 

SUBROUTINE RHS ( YNOW, FORCE ) 
DIMENSION YNOW(1) ,FORCE(l) , X ( 1 )  

DO 10 I = 1,1 
X ( 1 )  = YNOW(1) 
FORCE (I) = - X ( 1 )  
RETURN 
END 



RUNGE-KUTTA METHOD 

CALCULATION OF A REGULAR NOSE-HOOVER OSCILLATOR TRAJECTORY. 
CALCULATION USES THE CLASSIC 4TH-ORDER RUNGE-KUTTA METHOD. 

10 
30 

1 

2 

3 

4 

5 

6 

7 

8 

DIMENSION YNOW (3) ,YDOT(3) 
T = 0.0 
YNOW(1) = 0.0 
YNOW(2) = 1.0085 
YNOW(3) = 0.0 
DT = 0.01 
DO 30 LOOP = 1,1702 
CALL RK (DT, YNOW, YDOT) 
T = T + D T  
WRITE(3,lO) T, YNOW(l),YNOW(2) ,YNOW(3) 
FORMAT ( 'IT, Q, P , Z : ' I ,  4F 12 . 7  1 
CONTINUE 
CALL EXIT 
END 

SUBROUTINE RK (DT, YNOW, YDOT) 
DIMENSION YNOW (3) , YDOT (3) , YNEW (3) 
DIMENSION DOT1 (3) ,DOT2 (3) ,DOT3 (3) ,DOT4 ( 3 )  

CALL RHS (YNOW, YDOT) 

DO 1 I = 1,3 
DOTl(1) = YDOT(1) 

DO 2 I = 1,3 
YNEW(1) = YNOW(1) + DT*DOTl(I)/2.0 
CALL RHS (YNEW, YDOT) 

DO 3-1 = 1,3 
DOT2 (I) = YDOT (I) 

DO 4 I = 1,3 
YNEW(1) = YNOW(1) + DT*DOT2(1)/2.0 
CALL RHS (YNEW, YDOT) 

DO 5 I = 1,3 
DOT3 (I) = YDOT (I) 

DO 6 I = 1,3 
YNEW(1) = YNOW(1) + DT*DOT3(1) 
CALL RHS (YNEW, YDOT) 

DO 7 I = 1,3 
DOT4 (I) = YDOT(1) 

DO 8 I = 1,3 
YNOW(1) = YNOW(1) 

& + DT* (DOT1 (I) +2 .O* (DOT2 (I) +DOT3 (I) ) +DOT4 (I) ) / 6 .0  

, 

I 

., 

RETURN 
END 



- "  

SUBROUTINE RHS (YNEW, YDOT) 
DIMENSION YNEW ( 3 )  , YDOT (3) 
Q = YNEW(1) 

2 = YNEW(3) 
YDOT(1) = P 
YDOT(2) = -Q - Z*P 
YDOT(3) lOO.O*(P*P - 1.0) 
RETURN 
END 

P = YNEW(2) 

Problems 
1. Modify the Nos6-Hoover oscillator fourth-order Runge-Kutta computer 

program just displayed so as to solve the one-dimensional harmonic oscillator 
problem for time steps 6 = (2~/15), (2n/30), and (2~/60), carrying the solution 
from the initial values, {x = 1.0 ,k = 0.0 1, through one oscillator period of 2 ~ .  
Estimate the local and global errors from your numerical results. The fourth- 
order Runge-Kutta approximation for this oscillator problem has the analytic 
solution: 

where h can be obtained from the equation, 

Compare computer evaluations of this analytic solution with your Runge- 
Kutta results to determine the accuracy of your computer. 

2. Show numerically that exactly this same solution holds if the Runge-Kutta 
s taternents 

2 YNEW(1) = YNOW(1) + DT*DOTl (I) /2.0 
4 YNEW (I) = YNOW (I) + DT*DOT2 (I) /2 .0  
6 YNEW(1) = YNOW(1J + DT*DOT3(I) 
8 YNOW(1) = YNOW(1) 

& + DT* (DOT1 (I) +2. o*  (DOT2 ( I) +DOT3 ( I) ) +DOT4 ( I) ) / 6.0 

are changed to 

2 YNEW(1) = YNOW(1) + DT*DOTl (I) /3.0 
4 YNEW(1) = YNOW(1) - DT*DOT1(1)/3.0 + DT*DOT2(I) 
6 YNEW (I) = YNOW (I) + DT* (DOT1 ( I) -DOT2 (I) +DOT3 (I) ) 
8 YNOW(1) = YNOW(1) 

& + DT* (DOT1 (I) +3.0* (DOT2 (I) +DOT3 (I) ) +DOT4 (I) ) / 8.0 



3. 

4. 

5. 

6. 

4 
Show that it is possible to reduce the storage used in implementing the fourth- 
order Runge-Kutta method to four locations per differential equation. 
Show that it is possible to reduce the storage used in implementing the second- 
order Stoermer method to three locations per second-order differential 
equation, a nearly-threefold savings over the Runge-Kutta approach. 
What are the largest time steps dt for which the Stoermer and the Fourth- 
Order Runge-Kutta equations for the one-dimensional harmonic oscillator 
have convergent solutions? 
Introduce fime dependence into subroutine R H S  in order to integrate the 
function exp(r), where r is (x2 + y2)1/2, over the unit square using dx = dy = 1/3. 

1.7 Lamansrian Mechanics 

mechanical system characterized by a set of ”generalized coordinates” {q}. The time 
variation of the coordinates defines the generalized velocities {v = i}. The evolution 
follows from the Lagrangian, L = K - a. It is assumed that the kinetic energy K and 
potential energy can be expressed in terms of the variables q and v. For each of the 
generalized coordinates q the Lagrange equation of motion is 

In general, the Lagrangian motion equations describe the time evolution of a 

or, alternatively, 

where p is said to be the generalized momentum conjugate to q: 

In the simple case that K depends just on the Cartesian velocities and 
Cartesian coordinates then Lagrange’s equations of motion are identical to Newton’s 
and offer no obvious advantages. But the Lagrangian formalism is applicable in any 
coordinate system. A good choice of coordinates can furnish new information. 

For example, an unconstrained two-dimensional harmonic oscillator, with unit 
mass and force constant, could be described with either Cartesian coordinates or polar 
coordinates, with either of the corresponding Lagrangians, 

just on the 

L,y = (v,2 + v; - x2 - y2) / 2  ; 



,--. 

/4 

From the Cartesian coordinate form we would just obtain the familiar Newtonian 
equations of motion. But the polar-coordinate case provides more information. The 
polar-coordinate equations of motion express directly the conservation of angular 
momentum: 

Cr = r 4  - r ; d(r2ve)/dt = 0 .  

Lagrangian mechanics is particularly useful in treating constrained systems. TWO 
types of treatment are possible: we can either choose coordinates in which the 
constraint is implicit or we can impose the constraint explicitly by using a Lagrange 
multiplier. In this Section we will illustrate the first approach, solving a double- 
pendulum problem with two degrees of freedom. In Section 1.8 we will illustrate the 
second approach, eliminating a degree of freedom from the motion by imposing an 
explicit constraint. - 

for treating constrained systems for which Cartesian coordinates are inconvenient. 
Models of this kind arise in computational statistical mechanical simulations of 
molecules with a rigid structure. A sulfur hexafluoride molecule, for instance, could be 
treated by fixing six fluorine centers at octahedral sites equidistant from a central sulfur 
atom. To simplify the illustration we consider here a simpler constrained system with 
just two degrees of freedom. The same ideas can easily be extended to more complex 
situations. 

constraints this system would have four degrees of freedom, the x and y coordinates of 
both masses. But we eliminate two degrees of freedom by using generalized 
coordinates, here angles which implicitly satisfy constraints on the pendulum lengths. 
For simplicity we constrain both pendula to have fixed lengths of unity supporting 
masses of unity. It is most natural to describe the constrained motion of the pendula in 
terms of the angles, defined relative to the field direction, a and p. In Lagrangian 
Mechanics the motion calculation then follows from the Lagrangian function 
L(a,P,v,vp), which in this case has the usual form L = K - a, where K and 
kinetic and potential energies. For the pendulum problem the potential energy is just 
the sum of the vertical coordinates, -cos(a> for the upper mass, and -cos(a) - cos(@ for 
the lower one, multiplied by the gravitational field strength, which we will also choose 
equal to unity. Thus 

Using these two approaches, Lagrangian mechanics provides two useful methods 

Consider now the double pendulum illustrated in the Figure 1.7. In the absence of 

are the 

a = -2cos(a) - COS(P) . 
The kinetic energy, 

"-\ 



Figure 1.7 Double pendulum with 
Lagrangian L = S + (I /@ + 
&fkos(a-p) + 2cosa + cosp. The 
lengths, masses, and gravitational 
field strength are all set equal to 
unity. 

follows directly from the squares of the time derivatives of the two vectors 
(sin(a),cos(a)> and (sin(a)+sin(p),cos(a>+cos(P>), which locate the masses relative to the 
support point at the origin. The four equations of motion from the Lagrangian: 

pp = p + drcos(a - p> ; 

can then be solved by expressing & and 
resulting four coupled equations of motion using the Runge-Kutta method illustrated 
in the previous Section. 

in terms of pa and pp and solving the 

Problems 
1. Show that the double-pendulum problem just described is Lyapunov unstable 

for the initial conditions a = p = n/2 with & and = 0. The correct Lyapunov 
exponent is 0.30. To reproduce this result it is necessary to follow the motion 
of two nearby trajectories, a “reference” trajectory and a “satellite” trajectory, 
periodically rescaling the phase-space offset (6a2 + lip2 + lip: + i3p$)*/2 
separating the satellite from the reference. 



2. Discuss the dependence of the global error on the time t and the time step dt for 
a Lyapunov-unstable set of differential equations. For a Lyapunov exponent of 
1.00 estimate the maximum time for which an accurate numerical solution can 
be obtained using &digit, 14-digit, and 33-digit arithmetic and a time step of 
0.001. In the 33-digit case what must the order of the local integration error be 
to achieve this accuracy? 

1.8 Least Action Principle 
Here we continue our investigation of the Lagrangian equations of motion by first 

deriving them from Hamilton's variational Principle of Least Action and then 
proceeding to apply the equations to deal explicitly with a constraint. As a source of the 
equations of motion, the Principle is more basic than the equations themselves. We 
therefore begin with the Principle of Least Action, which states that the variation in the 
"action integral" JL(q,v)dt, between two fixed points at two fxed times, must be an 
extremum, usually a minimum. 

least-action parabolic path for a particle in a gravitational field. See Figure 1.8. We 
choose the mass and the field strength equal to unity. If we speclfy both an initial point, 
(x,y)~ = (O,O), and a final point, at t = 1, (x,y)l = (LO), the motion depends on a single 
variational parameter, a: 

I- 

Let us illustrate the meaning of the Principle with a simple example, finding the 

-h 

x =  t ; y = a t ( l  - t ) .  

The corresponding "action integral," the integral of the Lagrangian, 

JLdt = Jdt(1/2)[1 + &1- 2t)2 - 2at(l- t)] = (3 - cx + a2) /6 ,  

has its minimum value, 11/24, for the Least-Action trajectory with a = 1/2. 
The general variational statement of the Principle: 

1/41 I I 

y /  
a = 314 * . . .  

Figure 1.8 Parabolic trajectories in a 
unit gravitational field with a values 
1 /4,1/2, and 3/4. 

a = 112 

a = 114 

. . . . .  
. . . - -  * . . .  

* -  . -  



can be made more explicit by considering the variations of both arguments of the 
Lagrangian, 6q and 6v: 

If the second term is integrated by parts, integrating 6v = 64 with respect to time, then, 
because 6q vanishes at the end points, a simpler form results: 

Aside from the two endpoint restrictions, the variation 6q is an arbitrary function of 
time. It could, for instance, be chosen to vanish everywhere expect in the 
neighborhood of a particular time. Thus, because the integral must vanish, the 
coefficient multiplying the arbitrary 6q must vanish also. This requirement gives the 
Lagrangian equations of motion: 

In this form Lagrangian mechanics is specially easy to use in implementing implicit 
constraints by choosing appropriate generalized coordinates. An alternative form, 
which implements constraints using Lagrange multipliers is useful too in more 
complicated cases. This idea can be applied to constraints, or restrictions, involving 
both the coordinates and the momenta. To illustrate the application of Lagrangian 
mechanics to the simpler of these cases, an explicit holonomic constraint involving 
just coordinates, consider the motion of a mass constrained to lie on the unit circle by 
the constraint 

C(x,y) = (x* + y* - 1)/2 = 0.  

The rotation of a rigid diatomic molecule could be treated in this way. Begin by 
considering the modified Lagrangian 

, 

in which h is to be selected in such a way that the product hC always vanishes while 
satisfying the constraint C(x,y) = 0. No matter how complicated the dependence of h on 
{x,y,vxIvy} the resulting dynamics will necessarily obey Lagrange’s equations of motion. 
To find h we combine the equations of motion from the Lagrangian: P 

\ *  
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m irx = hx ; mGy = hy  , 

with the second time derivative of the constraint, 

"x'.v; +xGx+yby=o, 

giving 

h 

for the Lagrange multiplier and -mv2/r for the corresponding centripetal force. 
In linking mechanics to macroscopic thermodynamics and hydrodynamics 

through many-body simulations, more complex many-body constraints involving 
particle velocities are often involved. Pressure, temperature, and heat flux all involve 
particle velocities. For these nonholonomic constraints, particularly in situations 
involving nonequilibrium systems, other forms of mechanics, building on old ideas of 
Gauss and newer ideas of No& are sometimes more useful than Lagrange's. In the 
next Section we describe Gauss' contribution. 

Problem: 
A path travelling through, rather than around, a potential barrier, evidently 
has a lower action integral because the potential contribution to the integral is 
large and negative. Does this observation invalidate the Principle of Least 
Action? 

1.9 Gauss' Princiule and Nonholonomic Constraints 
Gauss developed the mathematical least squares 

technique to minimize the statistical error in fitting 
approximate data. In 1829, Gauss applied his least squares 
technique to mechanics. Gauss suggested that nature and 
mathematics both follow analogous rules so that 
mechanical constraints should likewise best be satisfied by 
using the smallest possible constraint force. This is, 
whenever constrained equations of motion, 

{ m 6. = F + F,} , 



are used the constraint forces {F,} should be made as small as possible. Gauss' least- 
squares-based "Principle of Least Constraint" is 

XF$/(Zm) is a minimum . 

To analyze or apply the Principle it is convenient to imagine modifying the constraint 
forces {F,} slightly, adding variations {6Fc} which still satisfy the constraint: 

Evideni y the linear variation mu: 

Tks restriction on the constra 

vanish: 

CFc*6F,/m = 0 . 

nt force applies to any problem. 1 Te immediaAy 
illustrate this idea by applying it, choosing again the simplest interesting application, a 
rigid symmetric diatomic molecule, with zero center-of-mass velocity. We consider the 
problem from the standpoint of a single mass constrained to lie at a point (x,y) unit 
distance from the origin. In this case there are no forces other than the constraint force, 
so that the equation of motion, including a variation in the constraint force, is 

mG = Fc + 6F,. 

Just as before, we differentiate the constraint, 

C(x,y) = (x2 + y2 - 1)/2 = 0, 

twice with respect to time to get a restriction on the acceleration, or equivalently, the 
constraint force: 

r-ir + v2 = (r/m).(F, + 6Fc) + ~2 = 0 .  

In the absence of the variation 6Fc the constraint force must itself satisfy this equation, 
(r/m)*F, + v* = 0, so that any acceptable variation 6Fc can have no radial component: 

(r/m)*GF, = 0 ; (x/m)G% + (y/rn)Sq = 0. 

This equation and the variational form of Gauss' Principle, Fc*6Fc/m = 0, can then be 
combined using an arbitrary Lagrange multiplier h: 



If we then choose the Lagrange multiplier in such a way that the coefficient of Sq 
vanishes, we have 

(F,X + hx)SF,X = 0 . 
--. 

Because the variation 6F: is now arbitrary, the coefficient must vanish, giving explicit 
expressions for the constraint forces: 

Substituting these into the conservation equation, (r/m)*F, + v2 = 0, leads to the usual 
expression for the centripetal force, 

-hr = -(mv2/r2)r, 

I -  

in agreement with our calculation based on Lagrangian mechanics. 

nonholonomic (involving velocities) constraint on the dynamics of a many-body 
system: 

Next we use Gauss' Principle to enforce an isokinetic (constant kinetic energy) 

C(vwvy,vz) = (I/Z)[Cmv* - 2K] = O . 

The sum is carried out over all degrees of freedom. Gauss' Principle, 

combined with the time derivative of the kinetic-energy constraint, 

C[mv*;] = X[rnv.(F + F, + SF,)] = 0 , 
h 

gives the Lagrange multiplier result F, = -cmv, with the Lagrange multiplier 4 = 
Zr.F/2K = -&/(X), where Q, is the total potential energy, Thus, according to Gauss' 
Principle of Least Constraint, the isokinetic equation of motion is 

m; =F-cmv ; i= -&/2K.  



After introducing the ideal-gas thermometer of macroscopic thermodynamics, in 
Section 12, we will return to these same Gaussian equations of motion and use them to 
simulate macroscopic thermodynamic heat reservoirs. 

1.10 Hamiltonian Mechanics 

mechanics and in quantum mechanics. The generalized 
coordinates q and conjugate momenta p = (i3L/Wq are 
treated as independent variables in the Hamiltonian. 

Hamiltonian mechanics is specially useful in statistical 

The corresponding equations of motion are 

Yoshida has shown that the approximate Stoermer integration method described 
in Section 1.6 has a very interesting connection with exact Hamiltonian mechanics. 
The approximate method for integrating Hamilton’s equations of motion can be 
written in the form: 

where dt is the integration time step. For a Hamiltonian with the form H(p,q) = 
C(pz/Zrn) + @(q) the momenta {p) can be eliminated from these difference equations by 
calculating the second differences, { q+ - 2q0 + q- 1. The result is the set of Stoermer 
equations: 

Apart from computer roundoff, the coordinate values generated by these difference 
equations correspond exactly to configurations observed at equally-spaced times (0, dt, 
Zdt, 3dt, ...I along an exact continuous trajectory, for a Hamiltonian which differs from 
the specified Hamiltonian H by terms of order the time step dt. To illustrate this 
correspondence for the simplest interesting case, consider a one-dimensional harmonic 
oscillator with the ratio ( d m )  chosen so that Stoermer solution is: ,-\ , 

q(t) = cos(ot) ; p(t) = -osin(ot) + (dt/2)cos(ot) ; (K/m)(dt2) = 2 - 2cos(odt); c$ = 1 - (dt/2)* 
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This approximate solution approaches the exact one for the Hamiltonian mscdiator = 

(1/2)(q2 + p2), q = cos(t), as the time step dt approaches zero. The finite-time-step 
difference-equation solution just given is also an exact solution of the differential 
equations of motion: 

which follow from the "Stoermer Hamiltonian": 

Yoshida has shown that such a correspondence always occurs and has outlined a 
systematic procedure for finding higher-order approximate Hamiltonians with 
correspondingly more-accurate time-reversible difference equations. The finite- 
difference Stoermer solution for a specified Hamiltonian always corresponds to the 
exact differential solution of a related problem in Hamiltonian mechanics. 

Problem: 
1. Show that the harmonic-oscillator solution [ q = cos(ot); a 2  E 1 - (dt/2)2 I given 

above follows from the Stoermer Hamiltonian. 
2. A straightforward attempt to improve the Stoermer integration method can be 

based on a higher-order centered-difference expression for the acceleration: 

Find the order of this "method" and show that it is unstable for the one- 
dimensional harmonic oscillator. Then show that the alternative method, 

is stable for an oscillator. Compare the "computational efficiency" [accuracy at a 
fixed time with a fixed number of force evaluations] of this latter method to 
that of the fourth-order Runge-Kutta method. 

In the simplest cases the kinetic energy depends only on the momenta and the 
potential depends only on the coordinates. For the polar-coordinate version of the 
rigid rotator the Hamiltonian, 
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where pe is mr%, becomes 

from which the expected equations of motion follow: 

6 =pe; I je=~.  

A recent application of Hamilton’s mechanics to the treatment of macroscopic 
systems was first announced in 1984 by Shuichi Nos& This development, which forges 
a strong link between microscopic mechanics and macroscopic computational statistical 
mechanics will be treated in Section 1.13. 

space using Hamilton’s equations of motion, and show that these lead directly to 
Liouville’s Theorem, which is of fundamental importance for statistical mechanics. 

In the next Section we will describe the flow of probability density through phase 

Problem: 
Work out the Lagrangian and the Hamiltonian in spherical polar coordinates 
for a rigid rotor in three-dimensional space. 

1.11 Liouville’s Theorem 

an interesting and useful continuity equation for the comoving flow of phase-space 
probability, 

Hamilton’s first-order equations make it possible to prove ”Liouville’s Theorem,” 

df(q,p,t)/dt = = 0 . 

The probability density f(q,p,t) gives the density of points in a region of phase space, 
with fdqdp = fdql ... dmdp1 ... d p N  giving the number of points in a region dqdp about the 
phase-space point (q,p). The rate of change, with time, of f can be expressed in terms of 
either the ”Eulerian” derivative df/& which measures the variation at a fixed point in 
space, or with the ’Zagrangian” derivative i, which gives the comoving variation of f 
following the motion. It is simplest to calculate the Eulerian derivative first and then 
to express the Lagrangian derivative in terms of it. To do this we consider the net flow 
of probability in the q direction, 

and add to this the corresponding flow in the p direction, 
pc 



Using the time derivative of Hamilton’s equations of motion, 

gives Liouville’s Theorem: 

In this derivation we have explicitly considered the flow in only two phasespace 
directions, the direction associated with q and the direction corresponding to the 
conjugate momentum p. But summing such a calculation over all the phase-space 
coordinates and momenta (3N of each for a three-dimensional unconstrained N-body 
system) establishes the same result in general. Thus the probabifify density flows 
through phase space like an incompressible fruid, with a constant density f, if 
Hamilton’s equations are followed. 

To make the concept of phase-space flow clearer let us consider the similar 
continuity equation of fluid mechanics where the space in question is three- 
dimensional physical space rather than a many-dimensional phase space. In this case 
we consider a fluid with continuously varying, and differentiable, mass density p(r) and 
velocity u(r). Velocity is measured relative to a three-dimensional inertial frame. If we 
consider the density within a fixed Eulerian cube dxdydz = A3 centered on the point r = 
(x,y,z), then for a sufficiently short time interval dt << A/ I u I, the flow of mass into the 
cube is a sum, over the six cube faces, of the flows normal to those faces. In the x 
direction these are: 

Adding the analogous contributions from the y and z faces and dividing the sum by 
dxdydzdt gives the continuity equation: 

i, = -pv*u . 

For a fluid the meaning of this equation is transparent. The fluid changes density, 
expanding or contracting according to the divergence of the velocity field. In phase 
space the Hamiltonian equations of motion guarantee that any spreading or contracting 
associated with a generalized coordinate, (a;l/aq), is exactly offset by a corresponding 
contraction or spreading in the conjugate momentum, (aI;/ap). The two derivatives 
s u m  to zero as a consequence of the Hamiltonian equations of motion. 
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The constant-density phase-space flow established by Liouville’s Theorem is not 
affected by external forces. We will demonstrate that here for an interesting example. 
Consider a critically-damped one-dimensional harmonic oscillator with the equations 
of motion 

x = v ; a r v  = - x - ~ v ,  

and initial values of (x,v) = (1’1). The resulting trajectory, and its first two time 
derivatives are: 

For this damped oscillator the probability density diverges as e+2t and Liouville’s 
Theorem is not satisfied. Consider however an undamped oscillator subject to an 
external force F(t) = a + x chosen so that the externally-forced trajectory will be identical 
to the damped trajectory above: 

= a = (2t - 3)e-t = -x + F(t) ; F(t) = (4t - 2)e-t . 

In this latter case, where the “damping” is the result of a velocity-independent but 
time-dependent external force, F(t) = (4t - Z)e-t, Liouville’s Theorem does apply, with 

1.2 

P 
0.4 

Figure 1.9 Forced harmonic 
oscillator obeying Liouville’s 
Theorem. Only the central 
trajectory of this ensemble of 
oscillators is critically damped by 
the specified external force F(t). 
The oscillator mass and force 
constant are both equal to unity. 
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so that phase-space area is conserved by the motion. In particular, a small element of 
area centered on the damped trajectory must likewise move through the phase space 
with fixed area. Figure 1.9 shows how this happens. The slightly different initial 
conditions at the corners of the initial phase-space square are not perfectly damped by 
the external force appropriate to the square’s center. The area is indeed constant, and 
ends up rotating about the origin at the natural oscillator frequency. 

mechanics, both at equilibrium and away from it. We will see that the essential 
difference between equilibrium and nonequilibrium systems is the possibility for 
expansion and contraction in nonequilibrium phase-space flows. 

Liouville’s Theorem and its nonequilibrium analog are fundamental to statistical 

Problems: 

,-R 

1. 

2. 

Plot the trajectories of unit mass particles in a vertical gravitational field of unit 
strength with the initial values of z and pz as follows: (O.O,l.O), (O.O,l.l), (O.l,l.O), 
and (0.1,l.l) at times 0.2’ 0.4, 0.6, and 0.8; comment on the validity of Liouville’s 
Theorem in this case. 
Consider a system with two springs and a dashpot. The lefthand mass obeys 
the equations k = px ; fix = y - 2x; the righthand mass obeys the equations 9 = py ; 

= x - y - (5/3)9. Note that an analytic solution of this problem is x = (y/3) = 
exp(-t). Consider a grid of four points with initial values of x and px as follows 
(0.9, -0.9), (0.9,-Ll), (l.lt-0.9)r (1.1,-1.1) and with y = 3.0 and py = -3.0. Plot the 
locations reached by these points at times 0.5,1.0,2.0, and 3.0. Is Liouville’s 
Theorem valid for this system? Suppose that the initial states had been a small 
four-dimensional hypercube in (x,p,,y,py) space, initially centered on the point 
(1,-1,3,-3). How would the volume of this hypercube vary with time? 

iY 

1.12 Mechanics of Ideal-Gas Temperature 
Macroscopic thermodynamics differs from macroscopic mechanics in that 

temperature is included as a state variable. Temperature has both an experimental and 
a conceptual basis. It forms a vital link between the reversible world of microscopic 
mechanics and macroscopic irreversible thermodynamics. 

volume product, PV/N, for two real gases, helium and air, as well as the hypothetical 
ideal gas. The limiting zero-density behavior of any real gas is ideal, independent of 
composition. This is “Boyle’s Law.” Because the limiting value varies with 
temperature, increasing as the gases are heated, the material-independent behavior of 
an ideal gas can be used to define the ”ideal-gas temperature scale.” 

The ideal gas is a useful concept in mechanics, and sufficiently simple that we can 
relate the macroscopic temperature scale thus defined to a simple microscopic kinetic- 

Figure 1.10 illustrates the room-temperature low-density behavior of the pressure- 

,,\ 
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Figure 1.10 Density dependence of the 
PV product for Helium and Air. The 
ideal gas law is also indicated. 
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theory calculation of pressure. We will show how the definition of temperature is 
directly related to kinetic energy. 

the interactions between its constituents can be ignored apart from their role in 
establishing equilibrium. This lack of internal interactions makes it possible to 
estimate the interaction between such an ideal gas and its surroundings from the 
collision rate at the walls of the container. We simplify the treatment by assuming the 
gas is composed of structureless mass points, all with the same mass, m. 

system is a second-rank tensor, with components {Pij}, with the two indices indicating 
two space directions. These are first, the direction perpendicular to the interface at 
which the force is measured and second, the direction of the force exerted by the 
macroscopic system on its surroundings. Thus the force exerted by the system on a unit 
area of a confining wall perpendicular to the x axis has components I?=, Pxy, and Pa- 
By symmetry, the pressure tensor of a field-free fluid, such as the ideal gas of interest 
here, is "isotropic," independent of direction: 

We here treat the limiting low-density case of an "ideal gas," a gas so dilute that 

From a macroscopic mechanical point of view the pressure of a homogeneous 

r o o  
P = O P O  

O O P .  

The nonzero elements represent the force per unit area perpendicular to the x, y, and z 
axes, Pxx, PP, and P,. 

Let us work out the xx ideal-gas pressure-tensor component Pxx by relating the 
force on a small element of area da = A2 on a wall perpendicular to the x axis to the 
momentum transferred at the container wall by the molecules colliding with the wall. 
During a time interval dt sufficiently short that motion in the y and z directions is 
much less than A, the number of particles hitting da = A2 with a positive x velocity 
component vx is v,f(v,)dtda, where f(vx)dvx is the number of molecules per unit 

volume with a velocity component in the range of width dv, about v,. From the 
definition the integral of f, over all velocities, If(v,)dv,, is the "number density" 
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(N/V) = p/m, assumed constant throughout the gas. The total x momentum 
transferred to unit area of the wall in unit time is the number of such collisions, 
divided by dtda, and multiplied by the momentum transferred by a single collision 
2mv,, summed up over all positive values of v, : 

The integration is carried out over all positive values of vx, and, again by symmetry, 
the total energy E is divided equally among the three directions in space: E = p<v2>/2 = 
(Nm/2)cv? + v; + vi> . Thus the ideal-gas pressure-volume product is a measure of 
the gas energy and can be used directly to define the ideal-gas temperature scale. In the 
following Section we use this definition together with both the Gaussian mechanics of 
Section 1.9 and the Nos&Hoover version of Hamiltonian mechanics to construct 
microscopic mechanical analogs for macroscopic thermostats. 

1.13 Thermostats and Nos&Hoover Mechanics 
The idea of temperature just introduced through the ideal-gas thermometer can 

be implemented by using any of several extensions of Newtonian mechanics. We have 
already seen, in Section 1.9, that using Gauss’ Principle of Least Constraint to impose 
the constraint of fixed kinetic energy leads to additional frictional forces: 

m; = F - c m v ; c = 4 / 2 K .  

It should be emphasized that, unlike a hydrodynamic drag force, with a frictional force 
-6mv proportional to the particle size, speed, and the viscosity of the surrounding 
medium, the Gauss’-Principle friction coefficient 
By contrast, negative friction coefficients cannot occur in hydrodynamics. In 
hydrodynamic flows dominated by viscosity the viscous “drag force” <mv 
continuously converts the kinetic energy of the flow into heat. The hydrodynamic 
“friction coefficient” 5 in that situation is intrinsically positive. Gauss’ ”friction” is 
different. If the potential energy 0 is increasing, then the corresponding tendency of 
the kinetic energy to decrease is offset by a negative friction. When the potential energy 
decreases, so that an unconstrained kinetic energy would increase, then 
more positive. 

maintaining the temperature of a system on which work is being performed by external 
forces. In such a case the frictional forces play the role of thermostats. Because such 
thermostats are fundamental to both equilibrium and nonequilibrium statistical 
mechanics, we consider two other approaches to temperature control, Lagrangian and 

can be either positive or negative. 

becomes 

Gauss’ equations of motion can be applied away from equilibrium too, 

7 Nos&Hoover mechanics. 
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To impose constant temperature using Lagrangian mechanics we augment the 
many-body Lagrangian function, 

where @(r) represents the potential of interaction of the bodies, by a Lagrange 
multiplier imposing constant kinetic energy: 

The momenta p = (aL/av) = mv(l+h) obey the Lagrangian equations of motion: 

and must simultaneously satisfy the constraint: 

where K, is the specified constant value of the kinetic energy. Thus the equations of 
motion become: 

Unfortunately in this nonholonomic application of Lagrange’s equations of motion the 
motion depends upon the initial choice of h. If we make the simplest choice, zero, then 
initially Lagrange’s and Gauss’ equations of motion are exactly alike and the constraint 
force is minimized. The ambiguity in Lagrangian mechanics can be resolved by 
arbitrarily applying Gauss’ Principle, setting 31. equal to the minimum-force value, 0, at 
all times. 

Gauss‘ thermostat is an example of ”differential control,” in which time-reversible 
forces {<mv) react to differenfial changes in potential energy, 6, to control the kinetic 
energy. A more-useful alternative is integral control. Integral control can be applied to 
the kinetic energy and its fluctuations, and provides a more-flexible form of thermostat 
than Gauss’. The corresponding Nos6-Hoover equations of motion are exactly the 
same as Gauss‘ or Lagrange’s: 

mv =F-cmv;  
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but the friction coefficient < depends on the time-averaged temperature, increasing if 
the average is too high relative to &, and decreasing if the average is too low: 

7 

The arbitrary time scale z which appears in this "integral-control" thermostat is the 
timescale of the fluctuations in K(t) about the stationary average &. 

We will come back to Nos6-Hoover mechanics in discussing Gibbs' canonical 
ensemble, in Chapter 3. Before leaving the general subject of mechanics let us take up 
one application of this idea in order to illustrate the difference between mathematical 
reversibility and time reversibility. 

To illustrate the idea of mathematical reversibility consider the simplest 
application of N O S ~ S  mechanics, a onedimensional harmonic oscillator with mass, 
force constant, and thermostat relaxation time all chosen equal to unity. The three 
first-order equations describing the motion of such a "Nos4Hoover oscillator" are: 

2 = +p ; r; = -x - [p ; 4 = +p2 - 1 . 

where the frictional force, -cp, differs from the usual macroscopic friction in that 
varies with time. To 'reverse the solution of these equations mathematically simply 
means to back up along the same {x,p,[) trajectory, solving the reversed system of 
equations : 

' 

From the mathematical standpoint nothing has changed but the sign of dt. But these 
equations are different from the physical point of view because both p and 5 have 
changed sign. 

If we, as physicists, happen to know that both p and [ have a basis in Hamiltonian 
mechanics, where they represent momenta, then we recognize that both variables must 
change sign in a time-reversed motion. We can recognize that the forward and 
backward versions of the motion equations both describe the same physical system. 
We can alternatively see that < must change sign from either Gauss' or No& and 
Hoover's feedback equations. In fact, if the motion is expressed entirely in terms of the 
time-variation of the physical coordinate x both the backward and the forward 
trajectories are equivalent to the same second-order integro-differential equation, 

.. 
x = - x - ;<jdt'[22 - 11 . 



This equation resembles that for a damped oscillator, 

.. 
x=-x -cx ,  

with the friction coefficient c, but differs from it in a qualitative way because the Nos& 
Hoover oscillator friction coefficient varies with time and the dynamics is time- 
reversible. 

establishing connections between microscopic reversible dynamics and macroscopic 
thermodynamics and hydrodynamics. It is to macroscopic thermodynamics that we 
devote the following Chapter. 

We will come back to Gauss and Nos6-Hoover mechanics repeatedly in 

1.14 Summarv and References 

Newtonian, Lagrangian, or Hamiltonian mechanics. Of these, Lagrangian mechanics is 
best-suited to the imposition of holonomic (coordinate-dependent) constraints. Gauss' 
Principle of Least Constraint is more general and can be used to formulate some 
nonholonomic constraint problems for which Lagrangian mechanics is ineffective. 
Despite the underlying exponen fially unstable "Lyapunov Instability" of the equations 
of motion any of these problems can readily be solved numerically until the accuracy is 
degraded by the instability. The third-order Stoermer and fourth-order Runge-Kutta 
methods are particularly useful. 

result holds for Hamiltonian phase-space flows. More general equations of motion 
incorporate temperature and lead to comoving probability densities that can vary with 
time through thermal interactions. Temperature is defined by the kinetic-theory 
pressure exerted by an ideal gas. An ideal-gas temperature can be imposed on a 
reversible deterministic mechanical system by applying Gauss' Principle or by adopting 
a more-flexible form of mechanics developed by Nos6 and Hoover. 

The time development of isolated mechanical systems can be described by 

Liouville's Theorem states that the cornoving probability density is constant. This 

The mechanics texts I have found to be most useful are Landau and Lifshitz' Mechanics, 
Pars' Treatise on Analytical Dynamics (Oxbow Press, Woodbridge, Connecticut, 1979), and 
Sommerfeld's Mechanics. For a more detailed introduction to Nos&Hoover mechanics see 
Sections 3.11 and 3.12, as well as two of Shuichi Nosk's 1984 papers, "A Unified Formulation of 
the Constant-Temperature Molecular Dynamics Methods," Journal of Chemical Physics 81,511, 
and "A Molecular Dynamics Method for Simulations in the Canonical Ensemble," Molecular 
Physics 52,255, and my 1985 paper, "Canonical Dynamics: Equilibrium Phase-Space 
Distributions," Physical Review A 31,1695. 
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2. Thermodynamics 
1 Introduction; 2 Thermodynamic States of Matter and The Zeroth Law; 3 Heat Resemoirs; 4 Firsi Law of 
Thennodynamics; 5 Second Law of Thennodynamics; 6 Third Law of Thermodynamics; 7 Thermodynamics 
of Ideal-Gas Compression; 8 van der Waals’ Equaiion of Siate; 9 Thermodynamic Poieniial Functions; 
10 Summary and References 

2.1 Introduction 

undergoing changes in state. But they emphasize different aspects .of macroscopic 
matter. Traditional macroscopic thermodynamics describes processes involving 
thermal energy transfers, through the flow of “heat,” and mechanical energy transfers, 
through performing ”work.” Mechanics focuses on the details of flow and deformation 
processes such as bending, stretching, and rolling. 

The macroscopic thermodynamic description of matter is the subject of this 
Chapter. Thermodynamics includes temperature in the list of variables required to 
describe the state of a material. Heat reservoirs are also introduced as abstract sources 
and sinks for the heat flows making changes in temperature possible. These new 
thermal variables make it possible to establish a link between macroscopic 
thermodynamics and microscopic statistical mechanics. Here we study macroscopic 
thermodynamics. We will explore the more-detailed microscopic view of this link 
when we introduce Statistical Mechanics in Chapter 3. Thermodynamics reflects 
reality and is the result of experience. An important part of that experience is the 
irreversibility associated with real processes and described by the Second Law of 
Thermodynamics. From the conceptual standpoint of mechanics thermodynamics 
can appear to be paradoxical because the matter it describes is governed by time- 
reversible microscopic equations of motion. We will return to this question in detail 
in Chapter 10, and show there that a proper introduction of temperature into 
mechanics, as outlined in Section 1.13, provides a direct mechanical prediction of the 

Thermodynamics and macroscopic mechanics both deal with continua capable of 

irreversible macroscopic behavior described by thermodynamics. 
Two concepts are fundamental to a thermodynamic description of matter, the 

ideas of ”system” and “thermodynamic state.” First, we must separate conceptually the 
system being observed and described from its surroundings, on which it may perform 
work and from which it may extract heat. The system of interest can be as small as a 
single molecule or as large as the universe. Thermodynamics is sufficiently general to 
describe either. Second, we must specify the state of the observed and described system. 
This can be done in comprehensive detail for a molecule, giving its complete 
mechanical (quantum) state, but becomes impractical as the number of degrees of 
freedom is increased. The alternative description of “state” is classical, and includes the 
complete list of mechanical system variables, including all particle coordinates and 
velocities. Such a detailed cumbersome description can be avoided by introducing, at 
least conceptually, an averaging process. Averaging is appropriate for dealing with 
equilibrium states, which do not change at all on a macroscopic level, because the 
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macroscopic consequences of microscopic fluctuations in macroscopic properties are 
generally negligibly small. Even if fluctuations are noticeable time averaging can be 
justified as a reasonable description of a system with fluctuating properties. 

From the physical standpoint we expect that localized properties sufficiently 
widely separated in time or space are statistically uncorrelated in their fluctuations. 
Averages computed by summing over N such quantities {xl,x2 ,... x ~ }  (properties of N 
weakly-coupled molecules or N successive values of a dynamical variable) have 
expected rms fluctuations A of order N-112 according to the fundamental result from 
statistics called the Central Limit Theorem: 

where 6 is a localized fluctuation: 6 i x - 00 and Si is assumed not to be correlated with 
6j unless i and j are equal. 

such as the total system energy or the volume occupied by the system, obey this Central 
Limit Theorem and are negligibly small, varying as the square root of the number of 
degrees of freedom. Even for small systems, systems with only a few degrees of 
freedom, a cumbersome complete description can often be usefully replaced by a 
statistical time average. In that case the Central Limit Theorem guarantees that the 
long-time fluctuations in time averages of stationary processes vary as the inverse 
square root of the sampling time. 

deformation. Energy changes involving heat transfer are ignored, except in special 
problems. Thermodynamics includes both. In thermodynamics mechanical 
deformation and heat flow enter on an equal basis. Emphasis is placed on the ways in 
which energy is stored in and transferred among systems and their surroundings 
through work and heat. The concept of state is widened in thermodynamics to include 
not only mechanical state variables, but also temperature. In thermodynamic 
investigations systems are generally imagined to interact with their surroundings in an 
idealized way. The surroundings can generally resist mechanical motion by exerting 
forces or stresses (components of the force per unit area) at the system-surroundings 
interface. Such forces can be modeled by applying microscopic external forces on 
selected boundary particles. The surroundings can also promote heat transfer or heat 
fluxes (energy per unit area and time) between the system and external sources or sinks 
of energy. Such flows of heat can likewise be modeled by using the Gauss or Nos& 
Hoover thermostats discussed in Sections 1.9 and 1.13. 

basic principles, called "Laws." The Laws of thermodynamics sum up the results of 

measuring temperature, the property which distinguishes thermodynamics from 

In a typical situation the fluctuations of globally-summed "extensive quantities," 

In mechanics it is usual to consider energy changes caused by displacement and 

,Like mechanics, thermodynamics is a logical structure built on a foundation of 

phenomenological experience. The Zeroth Law defines thermometry, the process of e, 
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mechanics. The First Law is a statement of energy conservation and the Second Law is 
a statement of entropy increase. The Third Law affirms the validity of a statistical 
approach to the entropy, with particular emphasis on the limiting behavior of entropy 
near zero temperature. The Second Law is that thermodynamic law which uniquely 
separates classical reversible Newtonian behavior from macroscopic experience and 
which makes necessary the introduction of temperature into mechanics. 

start. Why just a single new variable, temperature? Why just work and heat? That 
the state of a @xed quantity of fluid requires only two state variables, one mechanical 
and one thermal, rather than three, or four, or more, is empirical, and not something 
that can be proved. 

That the number of state variables is only two can be made plausible on the 
microscopic basis of statistical mechanics, but cannot generally be proved except in very 
special circumstances. In this Chapter we will discuss and illustrate the laws of 
thermodynamics and their application to some idealized macroscopic fluid systems. In 
the following Chapter we will develop the microscopic statistical-mechanical view of 
matter in order better to understand the basis of the macroscopic description. 

The arbitrarily empirical foundation of thermodynamics is apparent right at the 

2.2 Thermodvnamic States of Matter and The Zeroth Law 
In thermodynamics, as distinguished from mechanics, thermal properties play a 

vital role. “State” in macroscopic continuum mechanics is usually given by specifying 
the positions and velocities of a system’s component parts. The stress state which 
results, and which influences or drives further motion, is related to deformation and 
flow by a ”constitutive relation.” Fluids flow in response to stress. For fluids, flow 
velocity is emphasized. Solids have mechanical strength and strain, rather than flow, 
deforming in response to sbess. For solids, displacement and deformation make up 
the basic description. Thus the mechanical state of an elastic bar could indude the 
mechanical displacement u(r), away from the stress-free position, for all locations in 
the bar. 

In mechanics the constitutive relation or ”equation of state” for such a deformed 
bar would be the linear Hooke’s-Law relation linking the stress tensor (the negative of 
the pressure tensor) in the bar to the deformation gradient Vu, or equivalently, to the 
(dimensionless) elastic strain tensor, E = [Vu + Vut], where the superscript t indicates 
transpose. For a fluid the viscous stresses are instead related to the strain-rate tensor 
(units of inverse time), which has exactly the same form, 6 = [Vu + Vut], but with the 
variable u interpreted as flow velocity rather than as an elastic displacement. The use 
of symmetrized strain and strain-rate tensors is dictated by the symmetry of the 
pressure tensor, as is discussed in Section 7.5. In thermodynamics velocity is generally 
not relevant to state so that the thermodynamic description is simpler. The space 
variation of u(r) is replaced by global equilibrium values of a few state variables. 
Temperature and heat flow are emphasized and the materials described are most often 

F-, 
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fluids, reducing the description of the mechanical state to a temperature-dependent 
scalar relation linking the hydrostatic pressure to the density. 

The “mechanical equation of state” in thermodynamics is a specification of the 
pressure-volume relation while the “thermal equation of state” specifies the 
dependence of energy upon temperature. Thus the complete thermodynamic 
”equation of state” or constitutive equation consists of two parts, not just one. 

To embark on a thermodynamic description we need an operational definition of 
temperature. In Section 1.12 we introduced the ideal-gas temperature scale. We adopt 
exactly this same scale in our thermodynamic description. Thus in thermodynamics 
“temperature” means the PV product for a standard sample of ideal gas. If the resulting 
temperature is to be measured in kelvins and the pressurevolume product in joules, 
the MKS unit of energy, then the “standard sample” of ideal gas would need to contain 
8 x 1022 molecules. But because the conventional counting unit for molecules is the cgs 
mole, 6.023 x 1023 molecules, the conventional way of defining ideal-gas temperature is 
through the ideal-gas mechanical equation of state: 

~ 

T = PV/Nk , 

where N is the number of molecules and k is Boltzmann’s constant, 1.38054 x l F 2 3  

joules/(molecule kelvin). At sufficiently low density all materials vaporize and obey 
this relationship because the occasional brief interactions of pairs of particles are a 
negligible perturbation. Thus, any gas can serve as an ideal gas provided that it is 
sufficiently dilute. But a gas like tungsten vapor, with a completely-negligible room- 
temperature vapor pressure, would not be a useful choice. 

An ideal gas is described by its pressurevolume equation of state, 

-\ 

\, 

PV = NkT , 

where T is the temperature. In any real gas the number of particles, N, can vary with 
temperature. When heated well above room temperature a hydrogen molecule 
dissociates into two atoms, each of which can, with further heating, in turn ionize to 
yield an electron and a proton, producing a high-temperature pressure four times as 
large as the ideal molecular value. Likewise, at low temperatures where clustering is 
appreciable the number of moving bodies N contributing to the ideal-gas pressure is 
reduced well below the number of molecules. 

The ideal gas is an excellent fundamental basis for thermodynamics because it 
combines operational significance with properties which are simple and easy to 
calculate. The ideal-gas concept forms a sturdy bridge between the macroscopic 
discipline of thermodynamics and the more detailed models of statistical mechanics 

depends upon volume as well as temperature, and in a nonlinear way. The most 

~ 

A and kinetic theory. Real gases require a more-complicated description. The energy 
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obvious qualitative shortcoming of the ideal gas as a general thermodynamic gas-phase 
model is its failure to form liquid and solid condensed phases at low temperatures and 
high pressures. Such condensed phases require both attractive and repulsive forces 
between atoms. Such interatomic forces can be taken qualitatively into account 
through van der Waals' approximate equation of state, as is discussed in Section 2.8. 

A fairly realistic phase diagram is shown in Figure 21 and is based on a molecular 
model, the "Lennard- Jones potential," with simple repulsive and attractive forces. 
This simple central-force model is enough to generate the gas, liquid, and solid phases. 
With more complex microscopic interactions the qualitative macroscopic behavior can 
become correspondingly more complex. See Figure 2.2, which shows a part of the 
phase diagram for water. Water molecules lie near, but slightly beyond, the current 
state-of-the-art in molecular description. Each molecule has nine degrees of freedom, is 
polarizable, and has long-range dipolar and quadrupolar forces. The structure of its 
phase diagram is a challenge to any microscopic model. 

equation of state, which links energy and temperature. It is possible to estimate the 
A complete thermodynamic description of the ideal gas requires also the therrnd 
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thermal equation of state using statistical mechanics, as we shall see, but the estimate is 
relatively simple only in the case of electrically-neutral monatomic materials, the rare 
gases. In other cases the thermal equation of state is more complicated. The thermal 
equation of state for gases with any structure, even diatomic molecules, requires a 
phenomenological quantum-mechanical treatment of the vibrational and rotational 
states. For a gas of structureless molecules in three-dimensional space the kinetic- 
theory calculation establishes that the pressure-volume product NkT is two-thirds the 
kinetic energy of the molecules, 

PV = NkT = (2E/3). 

Despite its purely phenomenological historical basis thermodynamics is 
sufficiently general that it can equally-well describe the purely-theoretical properties of 
simple idealizations of matter amenable to theoretical calculations and computer 
simulation. In computational statistical mechanics we often introduce one- 
dimensional or two-dimensional model systems to simplify calculations. Two- 
dimensional problems are particularly useful in understanding simple flow and 
deformation problems. Thermodynamics applies also to the description and 
interpretation of the properties of such idealized systems. 

Problem: 
Show that the thermal equation of state for a gas of N structureless molecules 
is PV = NkT = E in two dimensions and PV = NkT = 2E in one dimension. 
Why doesn't the pressure depend upon the molecular mass? 

2.3 Heat Reservoirs 
In discussing heat transfer in thermodynamics it is usual to introduce the 

idealization of a "heat reservoir," sometimes imagined to be a system with so many 
degrees of freedom that its temperature remains constant, even if heat is added or 
subtracted. The heat reservoir idea originated in the masses of air or water 
surrounding components of engines. Today the kinetic details of thermodynamic 
reservoirs are not usually spelled out. This is because thermodynamics is generally 
applied to idealized quasistatic processes in which rates are not important. Reservoirs 
need not have many degrees of freedom. A finite rather than an infinite reservoir 
mass can be used so long as there is an explicit provision for controlling the reservoir 
temperature. In any serious calculations of nonequilibrium processes, the details of the 
reservoirs need to be made explicit. In atomistic computer simulations thermostats 
with only a few degrees of freedom can play the role of heat reservoirs for microscopic 
systems. In such detailed microscopic thermostats a nonequilibrium definition of 
temperature is essential. We continue to define it in terms of the mean squared 
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thermal velocity. The temperature is then either maintained constant, by using 
Gaussian thermostats, or allowed to undergo well-behaved fluctuations around a 
specified mean value, with the mean controlled by using Nos&Hoover thermostats. 

To specify such an atomistic thermostat it is only necessary to identify one or 
more degrees of freedom which obey the thennostatted equations of motion 
introduced in Sections 9 and 13 of Chapter I: 

,̂., 
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With the statistical mechanics introduced in Chapter 3 we will establish that the 
relation between mean-squared velocity and temperature is general for all equilibrium 
systems obeying classical mechanics, not just a special result for ideal gases. We adopt 
herewith exactly this same definition of temperature for nonequilibrium systems. 

With the definition of temperature and the construction of thermometers it is 
possible to develop thermodynamics. The beginning is summarized in the empirical 
Zeroth Law of Thermodynamics: "If two bodies are in thermal equilibrium with a third 
body, then the two are in thermal equilibrium with each other." If the Zeroth Law did 
not hold then thermometry would be impossible. The Zeroth Law is based on the 
observation that temperature can be deked  and measured for all materials in a 
consistent way. 

the next three Sections we introduce the First, Second, and Third Laws of 
Thermodynamics applies to any system with a reproducible equation of state. In 

Thermodynamics. In each of these the ideal-gas model plays a fundamental role. In 
Section 2.8 we describe an extension of the ideal-gas model, introduced by van der 
Waals, which provides an approximate but highly-useful account of the properties of 
liquids, including vaporization, condensation, and the properties of mixtures. 

I\ 

2.4 First Law of Thennodvnamics 

negatively, as statements forbidding perpetual motion machines. But both Laws have 
positive predictive value. In this Section we will discuss the First Law of 
Thermodynamics and demonstrate its usefulness in predicting the outcome of 
irreversible processes. 

equilibrium states. The simplest systems to which it can be applied are fluids. For a 
given mass of equilibrium fluid two independent variables, volume and temperature, 
or pressure and volume, for instance, implicitly specify all other equilibrium fluid 
properties. Regardless of its past history, a pound of equilibrated room-temperature 
room-pressure water always has the same mechanical, thermal, electric, and chemical 
properties. AZf of the "state functions" of equilibrium water can depend only on the 
water's two-parameter thermodynamic state. 

Both the First and the Second Laws of Thermodynamics can be expressed 

The First Law presumes the empirical notion of stable thermodynamic 

* 



It is presumed that during mechanical or thermal processing operations any of 
these state functions can deviate from the equilibrium equation-of-state properties for 
short times. The time required for the decay of processing transients can generally be 
estimated from appropriate transport coefficients. Measured in seconds, this decay time 
typically varies as the square of the system size measured in centimeters. Thus the 
mechanical and thermal equilibration of a swimming pool requires days. 

interest be relatively stable, persisting long enough to display steady properties. For 
most systems stability is not a problem on the timescale of laboratory measurements. 
Only relative stability is a requirement. On a long enough time scale nuclei other than 
iron are all unstable relative to nuclear transformations. Diamond is unstable relative 
to graphite under room conditions, but its properties are reproducible and accurately 
known. But composition changes can be very much faster, and times very much 
shorter, than the times required for spontaneous nuclear or chemical reactions. On a 
relatively short time scale, it is useful to think of liquid water, supercooled tens of 
degrees below its freezing point, as being in a reproducible thermodynamic state. 
Sufficiently small samples of supercooled water can exhibit well-defined 
thermodynamic properties (including negative pressure) on a time scale long enough 
for transients to decay and for measurements to be made. 

The First Law of Thermodynamics applies to the transformations of materials of 
any composition among their thermodynamic states over times long enough for 
transients to decay but short enough to allow reproducible macroscopic measurements. 
The First Law of Thermodynamics asserts that energy, loosely defined as the power to 
do work, is a state function. If this were not the case then a cyclic process returning 
over and over to the same initial state, could act as a source or sink of energy. Such a 
source would be a perpetual motion machine "of the fist kind." The First Law of 
thermodynamics implies that no such machines can be built. 

The First Law can be expressed in more analytic terms by introducing the 
mutually-exclusive concepts of work and heat to describe energy changes. Work is any 
energy change caused by manipulation of an external system coordinate, typically the 
volume. For such a coordinate change the induced energy change dE is by definition 
equal to the work done on the system -dW. There are many kinds of energy change 
corresponding to thermodynamic work the deformation of a fluid or solid, described by 
the product of the pressure tensor and the strain tensor: 

In order for equilibrium thermodynamics to apply, it is necessary that the states of 

the motion of mass or charge in a gravitational or electric field; the increase of surface 
area against surface tension; the rotation of an electric or magnetic dipole in an 
electromagnetic field. All of these examples of energy changes controlled by coordinate 
values are work. On the other hand only a single type of energy change is called heat, 



one which increases the energy by dQ while leaving coordinates unchanged. On a 
microscopic basis heat corresponds to rnornenfum changes, with the center-of-mass 
momentum fixed, while work corresponds to coordinafe changes. The analytic form of 
the First Law of Thermodynamics incorporates this division of energy changes into two 
types, stating that any system energy change dE is the result of heat taken into the 
system of interest less any work done by the system: 

dE = dQ - dW . 

”? 

Often a special symbol is used for the differential changes dQ and dW as a reminder 
that heat and work, unlike energy, are not thermodynamic state functions. Rumford’s 
experimental demonstration that a virtually limitless quantity of heat could be 
obtained from a cannon blank (by boring the blank with a dull bit) is the usual evidence 
cited to show that of the three energies, only E, not Q and W, is a state function. 

Some interesting initial-value problems can be solved by using the energy- 
conservation form of the First Law of Thermodynamics. Figure 2.3 illustrates such a 
problem. 

piston of mass m, with the gravitational force mg on the area of the piston, A, exactly 
compensating for the upward pressure force PoA: 

Consider a three-dimensional monatomic ideal gas confined to a volume V, by a 

mg = PoA . 

Figure 2.3. Three-dimensional 
monatomic ideal gas confined by a 
piston of mass m. The First Law of 
Thermodynamics predicts the final 
equilibrium state after a second 
such piston is dropped from above, 
doubling the equilibrium pressure. 

Before After 
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A second piston, just like the first, is suspended a distance Az = AV/A above. Suppose 
that this second piston is dropped. What is the final state of the gas? It is assumed that 
the pistons have no thermal energy, only gravitational energy. The thermodynamic 
equation of state for the pistons is simply E = mgh. The thermodynamic equation of 
state for the three-dimensional ideal gas follows from the definition of an ideal-gas 
thermometer: 

foV0 = NkT, = (2/3)E&, 

where the subscripts indicate initial-state conditions. The nonequilibrium process 
proceeds by converting the mechanical energy of the falling piston to thermal energy of 
the gas. The process is complicated. Analyzing its details would require knowing the 
viscosity and heat conductivity of the gas. 

We can avoid this analysis and find the final state of the gas without such 
transport information by applying mechanical force balance and the thermal energy 
balance dictated by the First Law of Thermodynamics. For logical consistency it would 
be reasonable to start with a Zeroth Law of Mechanics stating that forces balance at 
equilibrium in the same way that the Zeroth Law of Thermodynamics describes 
temperature equilibration. This basic principle of mechanics is equivalent to Newton’s 
Third Law of Motion. To apply it here notice that the mass supported by the gas 
doubles. Thus force balance requires 

where the original piston pressure times its area PoA just balances the gravitational 
force mg. If we choose the coordinate origin at the base of the container the piston 
gravitational energy mgz is proportional to the gas’ volume, and the energy balance 
becomes: 

(3/2)P0V0 + (mg/A)(Vo + [Vo + AVl) = (3/2)PiV1 + 2(mg/A)Vi = 

Thus the ratio of the final to the initial volume is 

and the final volume can have any value greater than 7/10 the initial volume. Thus 
the First Law allows us to find the final equilibrium state without exploring the 

be a violation of the First Law corresponding to the creation or annihilation of energy. 
complex mechanism through which the state is achieved. Any other final state would h 
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2.5 Second Law of Thermodvnarnics 

the second kind" cannot be built. Such a machine would be capable of converting heat 
into work through a cyclic process consenring energy, and satisfying the First Law. 
Such a conversion is prohibited. Figure 2.4 shows a violation. An ocean-going liner 
taking sea water in and excreting sea-ice blocks, powered by the energy extracted from 
the water in the process of making ice blocks, wouid exemplify perpetual motion of the 
second kind. 

notion of efficiency of conversion of heat into work. The analysis is possible to carry 
out only because all reversible mechanical processes obeying the First Law while 
operating between two reservoir temperatures TH and TL must have exactly the same 
thermodynamic efficiency. 

This equivalence is most easily established and understood by introducing a 
standard device to measure thermodynamic efficiency, the ideal-gas Carnot cycle. The 
Carnot-cycle analysis provides practice in First-Law calculations distinguishing work 
and heat. The Carnot cycle carries a k e d  quantity of ideal gas isothermally from states 
1 to 2 and 3 to 4, and adiabatically from states 2 to 3 and 4 to 1. A two-dimensional 
version, with PV = NkT = E, is shown in Figure 2.5. It is imagined that the gas can be 
placed in contact with reservoirs at TH and TL and can also do work by interacting with 
a spring or displacing a weight in a gravitational field. The Table shows the division of 
energy changes AE in the cycle into heat and work for a D-dimensional ideal gas, with 
PV = NkT = (2/D)E: 

The Second Law of Thermodynamics implies that perpetual motion machines "of 

An analytic approach to the Second Law of Thermodynamics can be based on the 

"Cold" Ice 
N 
N 

Figure 2.4. Violation of the Second 
Law of Thermodynamics by the cyclic 
conversion of heat into work. 

"Warm" Water 



Figure 2.5. Two-dimensional ideal- 
gas Carnot cycle which converts 
heat into work with an efficiency 
(TH - TL)/TH. For this gas PV = 
NkT = E. The cycle is bounded by 
two isotherms and two (steeper) 
adiabats. 

V 

The isothermal sections of the cycle l+Z and 3+4 correspond to constant-energy 
processes because ideal-gas energy depends only on temperature. Thus, for the 
isothermal sections: 

so that the heat taken in and the work done must exactly balance. For the adiabatic 
sections 2+3 and 4+1 AQ vanishes so that the energy change comes only from the 
work done: 

AE = (D/Z)NkAT = AQ - AW = -AW . 

From the corresponding difJerential relation along an adiabat: 

dE = (D/2)NkdT = (D/2)PdV + (D/Z)VdP = -PdV , 

it is easy to show that the products PDVD+2, TDV2, and T*+2P-2 are all constant. The 
second of these relationships then establishes a further relation linking the four 
volumes in the Carnot cycle: ViV3 = VzV,. This equality has been used in constructing 
the Table. It can also be used to simplify the expression for the efficiency of the cycle: 

-. 
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If we imagine coupling the ideal gas to any other material capable of complementary 
reversible transformations then the Second Law of Thermodynamics states that the 
efficiency must be exactly the same for that material. Otherwise the cycle, or its time- 
reversed version, could convert heat into work. 

A second conclusion follows from our tabulated Carnot-cycle data: the cyclic 
integral of dQ/T vanishes for an ideal gas. The integral must therefore vanish for any 
other material with which the gas exchanges heat dQ at temperature T during a 
reversible cycle. Thus the integral of dQ/T is a new state function, called entropy and 
denoted by S, with dS given by dQ/T. Using this new state function as a measure of 
past heat transfers, the First and Second Laws of Thermodynamics can be combined, 
written entirely in terms of path-independent state functions for all reversible near- 
equilibrium processes: 

dE = TdS - PdV . 

-=. 

Our conclusions would be of little interest if they applied only to ideal-gas Carnot 
cycles. But they actually apply to general cycles for any ”‘thermodynamic material,” that 
is, any material that has reproducible reversible state functions and is capable of 
exchanging heat and performing work. The summed heat transfers, each divided by 
the temperature corresponding to the transfer, for any such material are equal to the 
same sum for an ideal gas. This is because a general thermodynamic cycle can always 
be divided up into infinitesimal Carnot cycles. To see this, consider a geometric analog, 
dividing an arbitrary area in the xy plane into differential elements of area dxdy. In 
thermodynamics the adiabats and isotherms furnish a curvilinear coordinate system 
suitable for the subdivision of any pressure-volume-temperature equation-of-state 
surface. 

Carnot Cycles n 
Figure 2.6. Subdivision of a Carnot 
cycle into subcycles. This same 
subdivision can be applied to any 
general thermodynamic cycle. 

V 
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Figure 2.6 indicates such a reduction of a general cycle to small Carnot cycles, all of 

which are imagined to be traced out in a clockwise sense, converting heat into work. 
Because the internal heat and work transfers along the joint boundaries of adjacent 
infinitesimal cycles all cancel, the only remaining contribution for a general cycle is the 
perimeter integral of dQ/T. This holds true for any thermodynamic material capable of 
exchanging heat with ideal-gas reservoirs. Thus, for a general cycle and for a general 
material the cyclic reversible entropy change is equal to the sum of the corresponding 
differential ideal gas sum, and vanishes: 

It might be thought that the Carnot-cycle derivation is unnecessarily complex, and 
that a simpler cycle, with isothermal and isochoric sections could be used instead. But 
in that case it is not so easy to show that the heat taken in is proportional to the 
temperature. 

Problem: 
Discuss the applicability of the Carnot-cycle construction to water below its 
maximum-density temperature (roughly 4' centigrade) so that (aV/aT)p is 
negative. 

The Second Law of Thermodynamics can be phrased in terms of the entropy. For 
any reversible thermodynamic process the heat transfers balance so that the total 
entropy change is zero. For any irrmersible cyclic process the First Law still guarantees 
that the heat taken in and the work done balance, but these must both be less than the 
corresponding entropy change: 

dE + dW = d Q  ITdS . 

This inequality gives another form for the Second Law of Thermodynamics: "The 
enfropy of the Universe can only increase." 

To demonstrate the usefulness of this form of The Second Law of 
Thermodynamics consider a "thought-experiment" involving the conversion of work 
into heat. For variety as well as analytic simplicity we choose two-dimensional 
monatomic ideal gases in this example. The corresponding mechanical and thermal 
equations of state are 

P V = N k T = E .  
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Figure 2.7. Ideal-gas chambers 
separated by an adiabatic frictionless 
piston. Initially the pressure in the 
left chamber is 9 times that in the 
right. The piston is then released. 
At equilibrium the Second Law of 
Thermodynamics requires 

Before 

1.732 < {VL&,vRight} < 2.268. 

After 

n 

Consider a vessel partitioned into two chambers by an adiabatic frictionless piston 
as shown in Figure 2.7. The chambers contain equal amounts of a two-dimensional 
ideal gas. In the lefthand chamber, with volume 1 and energy 3, the pressure is 9 times 
that of the righthand chamber, which has volume 3 and energy 1. Releasing the piston 
sets off a complex chaotic nonequilibrium flow, with shockwaves and rarefaction 
waves eventually being converted to thermal energy by the viscous and thermal 
dissipation of the gases. At the end of this process the two chambers must be in a state 
of mechanical equilibrium. Mechanical equilibrium implies that the final pressure 
must be equal to the energy density, I, because the energy density, 

P = E/V = (EL + ER)/(VL + VR) = (3 + l)/(l + 3) = 1 , 

r-. 

must be uniform at mechanical equilibrium. But this mechanical-equilibrium 
condition places no consfraints whatever on the position of the piston. For any 
division of the volume a corresponding division of the energy gives mechanical 
equilibrium. The piston can lie anywhere within the vessel. The First Law provides 
no information on the final location of the piston. 

To predict the equilibrium position of the piston it is necessary to apply the 
Second Law of Thermodynamics. For this we need to express the entropy in terms of 
volume and energy. In two dimensions the heat transfer in a reversible process is 
given by the First Law of Thermodynamics: 

dQ/T = (dE + dW)/T = NkdlnT + NkdlnV = dQ/T = dS . 
, 

Thus the ideal-gas entropy has the form: 



Figure 2.8. Local and Global entropies, 
relative to the initial state, for the two- 
chamber ideal-gas system shown in 
Figure 2.7. 

S/Nk = 1nE + lnV + constant. 

In this example we will let the arbitrary integration constant vanish. Then, applying 
the uniform-pressure mechanical-equilibrium condition, E = V, the total entropy is 

S/Nk = h[W(4 - V)(4 - V)] . 

As Figure 2.8 shows, this value exceeds the initial entropy, 

SJNk = ln[l x 3  x 3  x 11, 

for any volume between 1 and 3. So the Second Law of Thermodynamics definitely 
restricts the piston to occupy the middle half of the container. But a much stronger 
result can be obtained by applying a locd version of the Second Law. Because both 
chambers are adiabatically insulated the entropy in each of them must inaease: 

SL/Nk E ln[VV] > ln[l x 31 ; s ~ / N k  3 h[(4 - V)(4 - V)] > h [3  X 11 . 

Thus both the volume V = VL and its complement 4 - V = VR must exceed 31 1’2 = 1.732. 
The fraction of the volume available to the piston, 2 x 0.268/4 = 0.134 is reduced nearly 
fourfold from the weaker bounds provided by the global version of the Second Law. 

2.6 Third Law of Thermodvnamics 

Cemetery. It relates the thermodynamic entropy to the number of available microstates 
W. The microstates are quantum states, solutions of the Schroedinger equation, 
although that equation was unknown until about 20 years after Boltzmann’s death. 
The Third Law of Thermodynamics states that Boltzmann’s entropy klnW is the same 
as the thermodynamic entropy, kdQRev/T. 

The equation S = klnW appears on Boltzmann’s gravestone in Vienna’s Central 

P 
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Consider an example. The energy states for a quantum ideal gas in a one- 
dimensional box of length L are 

1 

--. 

-\ 

where h is Planck’s constant, 6.626 x 10-3 jouleseconds, and the allowed values of n 
include either the complete set of integers or else just the positive ones, depending 
upon the choice of boundary conditions, periodic or rigid. For a system with many 
degrees of freedom, N, each characterized by a quantum number n, the number of 
states consistent with the total energy E = XEn increases as ex@), as we will show in 
detail in the next Chapter. 

On the other hand, for a perfect quantum crysta l  the number of states is of order 
unity. The few degrees of freedom remaining at low temperatures, which specify the 
orientation of a crystal, for instance, provide a completely negligible contribution to the 
entropy. Thus the change in the thermodynamic entropy between a cold crystal and a 
warm gas can be calculated in advance, using Boltzmann’s formula. Long before 
quantum mechanics had been discovered it was well known that the results of such 
calculations agree with experiment. This particular example can be worked out in 
detail using the integrated heat capacity data {Ci} together with the heats of the melting 
and vaporization transitions {AHM,AHv) to calculate entropy changes in the solid, 
liquid, and gas phases: 

For nitrogen, for instance, the heat capacity contributions to the gas-phase entropy are 
approximately 13.6 for the solid and 2.7 for the liquid. Adding on the melting and 
vaporization contributions of 2.7 and 17.2 reproduces the experimental entropy for the 
gas at 77 kelvins and atmospheric pressure within 0.1. All of these numerical values 
are expressed in calories/mole. 

function; second, that it increases in spontaneous processes; and third, that it follows 
Boltzmann’s statistical connection to the number of microstates. We will come back to 
Boltzmann’s mi&oscopic interpretation of the macroscopic entropy in Chapter 3. 

The fundamental properties of thermodynamic entropy are, first, that it is a state 

,- 

2.7 Thermodvnamics of Ideal-Gas Comuression 
We illustrate macroscopic thermodynamic entropy calculations by considering in 

turn four different thermodynamic processes, each of which involves compressing an 
ideal gas. In each of these compression examples (isothermal, isentropic, isenthalpic, 
and shock) we consider a two-dimensional ideal gas with the equation of state: 

1 
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PV = E = NkT, S/Nk = I n 0  . 

The entropy and the energy could both contain arbitrary additive constants. For 
simplicity we set these equal to zero. This simple choice for the equation of state is 
made only to simplify these illustrative calculations. With numerical rather than 
analytic integration analogous calculations could be made with any thermodynamic 
equation of state. 

We first review the isothermal and adiabatic compressions already included in 
our Carnot Cycle calculations which introduced the idea of efficiency and the Second 
Law of Thermodynamics. We then consider two other nonequilibrium adiabatic flow 
processes, the Joule-Thomson flow, which is both adiabatic and isenthalpic, and 
shockwave compression. 

because ideal-gas energy depends only on temperature. Thus, if the compression is 
carried out reversibly, the work done, 

In an isothermal compression the energy change AE = ldE = kdQ - IdW vanishes 

must also be equal to the heat taken in. The corresponding entropy change, AS = AQ/T, 
is 

In a reversible adiabatic compression, well approximated by the relatively sudden 
small-amplitude compression induced by a sound wave, the entropy change vanishes 
(because SQ vanishes) so that the work done is equal to the decrease in system energy: 

AS = 0 ; AE = -AW = Nk(TF -TI). 

In the irreversible Joule-Thomson adiabatic flow experiment a gas is steadily 
"throttled" adiabatically, by pushing it through a porous plug. See Figure 2.9. The 
energy change AE is given by the work done on the gas at the inlet, (PV), for a volume 
V, less the work done by the gas at the outlet (PV),,, so that the energy change is equal 
to the work done on the system AE = Eout - Ein = (PV), - (l?V)ouk Such a process takes 
place at constant enthalpy, where the enthalpy is generally H P E + PV. In our two- 
dimensional problem H is E + PV = 2PV = 2NkT. The entropy change for our ideal gas 
is positive and nonzero, indicating the irreversible nature of the "throttling" process: 
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Figure 2.9. Adiabatic Joule-Thomson 
flow through a porous plug. The 
energy change of the flowing gas reflects 
the work done on the gas. For this 
process the enthalpy is unchanged 
while the entropy increases. 
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In an ideal gas enthalpy is a direct measure of temperature so that the gas neither heats 
nor cools in this process. In a real gas the "Joule-Thomson coefficient," @T/aV>,, can 
be either negative or positive, vanishing at the "inversion" temperature. Below the 
inversion temperature this throttling process can be used to construct a refrigerator. 

was made in the energy balance. We completely ignored the kinetic energy of the flow. 
This is of course reasonable in the usual case with the flow velocity of the order of 
an/sec, because the neglected energy correction is of order (v/c)*, where c is the sound 
speed, of the order of kilometers/sec. The correction becomes important at high speeds. 
In a shockwave experiment even an ideal gas will heat up. The neglected kinetic 
energy has to be taken into account. 

general fluid. In a shockwave, a "cold" fluid at a relatively low temperature, energy, 
and density, is suddenly compressed to a "kot" high-temperature, high-energy 
compressed state. The process generating such a shockwave can be considered from 
many points of view. The simplest of these, from the standpoint of thermodynamics 
and the First Law, is illustrated in Figure 2.10. In this prototypical thought experiment 
we begin with an equilibrium fluid initially moving to the left at speed vpiston = up/2. 
The fluid moves at the velocity of the righthand piston so that no disturbance occurs at 
the righthand boundary. There is an initial velocity discontinuity at the left boundary 
of the fluid where the fluid and the piston move in opposite directions. The left 
boundary of the fluid must move to the right, also at speed up/2. Immediately a 
shockwave is launched into the cold fluid, converting it to a hot shocked high-density 
state and changing the fluid velocity from -up/2 to +up/Z. At the moment the 
resulting shockwave has passed completely through the fluid, the work done by the 
two pistons is exactly equal to the internal energy change of the fluid, because we 
constructed our thought experiment to make the net change in kinetic energy zero. 
Just as in the Joule-Thomson experiment, the energy change is EF - El, and this is equal 
to the work done (PF + PI>(VI - V F ) / ~  This energy-conservation relation is a finite- 
difference form of the First Law for an adiabatic process; dE = -PdV. The shock process 
is adiabatic, with no heat flow, but also irreversible. The entropy produced is 

In this conventional description of the Joule-Thomson experiment a small error 

Before specializing to the ideal gas, let us first consider the shock compression of a 

h 



Figure 2.10. Adiabatic shockwave 
compression of a fluid. In the top 
view the fluid moves to the left, at 
a laboratory-frame speed up/2. The 
shockwave formed at the left 
boundary propagates amoss the 
system at a laboratory-frame speed 
of us - (I /2)up. Because both 
boundaries move symmetrically at 
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velocities +up/2, thk center-of-mass 
kinetic energy is unchanged in the 
frame shown here. 

equivalent to an irreversible conversion of work into heat, leading to an entropy 
change which is third order in the compression dV. 

illustrate these results: 
Let us use the twofold compression of a two-dimensional ideal gas, VI = ~ V F ,  to 

These energy-conservation equations are satisfied by a fivefold increase in pressure. 
The energy has likewise increased, EF/EI = 5/2, with an entropy change: 

Problem: 
Calculate the two-dimensional ideal-gas entropy change as a function 
of the shock compression, 6 = AV/VI, and show that AS/Nk varies as 
ln[(2 - 36 + @)/(2 - 3611 = @/(2 - 36) = (l/2)83, so that the entropy change 
is third-order in the compression. Show also that the maximum compression 
for this gas is threefold. 

h 
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Figure 2.11. Adiabatic shockwave 
compression of a fluid. In this frame, 
fixed on the wave, cold fluid enters from 
the right, at speed us, while hot fluid 
exits to the left, at speed us - up. 

Starting with samples of heavy metals instead of gases shockwave experiments 
can be used to reach highly-compressed thermodynamic states at pressures approaching 
100 megabars, perhaps 50 times greater than those available in static presses. By using 
the conservation relations for steady flow, accurate equilibrium equation-of-state 
information can be obtained from these rapid explosively-driven experiments. These 
conservation relations lead once again to the result which we derived above for 
shockwave compression, AE = -<P>AV = (Pc + PH)(VC - vH)/2 E (PI + PF)(VI - V F ) / ~ .  

The complete set of conservation relations is most easily derived by considering a 
coordinate system moving with the shockwave. In this coordinate frame, fued on the 
wave and shown in Figure 2.11, cold fluid enters from the right, at velocity -us, and hot 
fluid exits at the left, with velocity -us + up. The mass flwc (flow of mass per urrit area 
and time) flowing in must balance the mass flux flowing out: 

Likewise, the momentum increase, pup, per unit time and area within the Lagrangian 
volume element shown in the Figure must result from and be equal to the difference 
in pressure forces exerted at the left and right boundaries: 

.-,.. 

For slow compressions, with the density change 6p = PF - PI small, these two 
conservation relations simplify to the usual result for the propagation of sound waves: 
SP/Sp = (aP/ap)s = c2 with up/us = 6p/p. Notice that the derivative (6P/6p) is the 
adiabatic (isentropic) derivative. 

corresponding energy-conservation relation we derived on page 54 are called the 
"Hugoniot relations." By using these general conservation principles we can 
determine equilibrium thermodynamic properties directly from measured shockwave 
data. By measuring the piston and shock velocities the pressure along the "Hugoniot" 

The two conservation relations for mass and momentum, along with the 
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pressure-volume curve can be determined as a function of volume. The energy 
measurements can be compared to independent estimates based on measuring the 
energy radiated from the shocked material. 

If the two conservation relations for mass and momentum are applied within the 
shockwave, where the longitudinal force per unit area P,, has a nonequilibrium value, 
a stress-volume relation called the “Rayleigh line” results, describing the surprising 
result that the nonequ ilibrium pressure-tensor component I?,, increases linearly with 
volume as the shockwave is traversed: 

Similarly the total comoving flux of energy, e(x)(pIus) + Q,, where e(x) is the energy per 
unit mass, varies quadratically in the volume through the shockwave. 

Problem: 
Calculate the entropy change for the twofold shockwave compression of a 
fhree-dimensional ideal gas with equation of state PV = NkT = (2/3)E. 

2.8 van der Waals’ Eauation of State 

gases. They play a key role in defining temperature and thermodynamic efficiency. To 
avoid the impression that thermodynamics treats only such gases and to indicate how 
phase equilibria arise from the Second Law, we consider here van der Waals’ equation 
of state, a simple analytic relation linking pressure, volume, and temperature together 
in a way that nicely correlates experimental data for real fluids, including mixtures. 

simple ideal-gas equation of state by including the effects of attraction and repulsion 
between pairs of interacting molecules. The two effects were taken into account, 
approximately, through two adjustable parameters, van der Waals’ constants a (units 
ML5/T2) and b (units L3). The effect of attractive forces, corresponding to a, is to reduce 
the pressure by an amount proportional to the cohesive energy divided by the volume 
V. For a dilute gas the cohesive energy should vary Iinearly with density, with the 
reduction in pressure varying as the square of the gas number density N/V. 

volume by an amount proportional to the number of molecules present N. Van der 
Waals incorporated both effects in his approximate equation of state: 

In introducing the Laws of Thermodynamics we have so far emphasized ideal 

In his thesis on the coexistence of gases and liquids, van der Waals extended the 

The effect of rephive forces, corresponding to b, is to reduce the available 

[P + (N2a/V2)l[V - Nb] = NkT , 

-, 

,-- 
I /  

At low density both non-ideal pressure effects become negligibly small, as (N/Vl2 
and (N/V), respectively. In this limit van der Waals’ mechanical equation of state 
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reproduces the ideal gas law, PV = NkT. At high density van der Waals' pressure 
always exceeds the ideal value, and diverges at the volume Nb rather than at zero 
volume. Choosing water as an example, with a molar volume of 18 an3 for 6 x 1023 
molecules, b is about 3 x 10-23 cm3. The parameter a can likewise be estimated from the 
heat of vaporization or from the critical temperature. 

parameters, a and b, the equation of state has a useful corresponding-states form. By 
introducing dimensionless ratios, a "reduced volume" V/(Nb) and a "reduced 
temperature" kTb/a, the dimensionless "compressibility factor" PV/NkT can be 
expressed as a universal function of these two dimensionless reduced variables: 

Because van der Waals' equation of state describes materials in terms of only two 

Figure 2.12 shows three "isotherms" (mechanical pressure-volume relations with 
temperature held fixed): passing above, through, and below the "critical point." The 
critical point is a unique pressure-volume-temperature state. At higher temperatures it 
is impossible to distinguish the low-density gas phase from the higher-density liquid 
phase. Above the critical temperature there is a only a single fluid phase. At and above 
that temperature no gas-liquid interface can be observed. The critical pressure and 
volume are those at which such an interface can form at temperatures just below the 
critical value. 

Any subcritical isotherm, such as the lowest isotherm shown in the Figure, 
contains a "van der Waals' loop" section which makes no sense thermodynamically, 
and on two separate grounds. First, all of the loop is thermodynamically unstable. 
Second, the central part is mechanically unstable too. 

Figure 2.12. Isotherms, with labels 
giving kTb/a, according to van der 
Waals' Equation of State. The 
lowest isotherm exhibits both 
mechanical and thermodynamic 
instability. The critical point is 
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The mechanical instability is easy to see. In the central region, inside the 
”spinodal” curve along which the isotherms have zero slope, the derivative of 
pressure with respect to volume is positive. In such a system any fluctuation in density 
would continue to grow (because the lower-density part would have the higher 
pressure) so that a homogeneous system is impossible. Thus, for mechanical stability, 
it is necessary that the pressure not increase with volume. 

Thermodynamics. We can imagine joining high-density ‘liquid” states to lower- 
density “gas” states by any of several horizontal tie lines. From the standpoint of 
mechanics any such combination is stable. But only one of them satisfies the Second 
Law of Thermodynamics and matches the efficiency of a corresponding ideal-gas Carnot 
cycle. This is the tieline obeying Maxwell’s ”equal area” rule: 

Recognizing thermodynamic instability requires using the Second Law of 

A higher tie line would produce less work, and a lower one more work. In either case 
the entropy computed from such a cycle would not be a state function. Thus the 
Second Law of Thermodynamics is more useful than the First Law in distinguishing 
possible from impossible thermodynamic processes. The Second Law shows that the 
straight-line states are more stable thermodynamically than those following other 
paths such as the van der Waals loops. 

The disappearance of the gas-liquid interface above the ”critical” temperature 
defines that temperature and is common to all liquids. By relating the critical 
temperature to van der Waals’ a and the critical volume to van der Waals’ b, the 
critical properties of real materials can be used to predict the remainder of the fluid 
equation of state, including both the the gas and the liquid phases. 

We identify this critical temperature by requiring that the relative-maximum 
pressure and the relative-minimum pressure along an isotherm, the spinodal 
boundaries of mechanical stability for which (aP/aV), is zero, coincide, so that 
(a2P/aV2)~ vanishes as well: 

(aP/aV), = +2Na/(V3) - NkT/(V - Nb)2 = 0 ; 

(a2P/aV2), = -6Na/(V*) + 2NkT/(V - Nb)3 = 0 . 

Dividing the fist of these equations by the second leads to the critical temperature and 
volume, from which the critical pressure follows: 

Vc/Nb = 3 ; kT,b/a = 8/27 ; PcW/a = 1 /27. 
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These predictions are only semiquantitative, for real materials, but are very useful for 
rough calculations. Detailed predictions from the van der Waals equation are least 
accurate near the critical point. The constant-volume heat capacity for the van der 
Waals fluid exhibits a maximum, with a discontinuity, at the critical point. 
Experiments on the rare gases suggest much more than a maximum, a logarithmic 
divergence instead. Consider water, with a critical volume of 57cm3/mole, a critical 
temperature of 647 kelvins, and a critical pressure of 221 atmospheres. Using these 
critical parameters to identify van der Waals’ a and b leads to a predicted condensed- 
phase volume that is 6% high and a vaporization energy which is 40% low. 

For all materials van der Waals’ equation makes the prediction that the critical 
compressibility factor is constant, (PV/NkT), = 3/8. In most cases this value is too high. 
The data for water give (PV/NkT), = 0.24. The rare-gas values are closer, but still about 
20% lower than van der Waals’ prediction. A qualitative success of van der Waals’ 
equation of state is the prediction that supercooled liquids can support negative 
pressures of order kilobars. The predicted temperature dependence of these tensile 
pressures is in rough accord with experiment. 

Problems: 
1. 

2. 

3. 

Plot the temperature-density region within which van der Waals’ equation 
predicts negative pressures. 
Experimental data suggest that the absolute value of the pressure change, 
P - P,, varies as the 4.2 power of the volume change, V - V,, on the critical 
isotherm near the critical point. How well does this agree with the predictions 
of the van der Waals’ equation? 
Develop a numerical method to evaluate the analytic variation of the pressure, 
density, and temperature in the vicinity of the van der Waals critical point. 
That is, find (dlnAP/hAp)T at T = T,, @lnAp/dlnAT)p at P = I?,, and 
(alnAT/iIlnAP),, at p = pc in the immediate vicinity of the critical point. 

2.9 Thennodvnamic Potential Functions 
It is usual in thermodynamics to consider a system which can do work on, or 

extract heat from, its surroundings. If we choose to include a part of these 
surroundings in our “system,” we can still apply the same reasoning, based on the laws 
of thermodynamics, and find potential functions describing the resulting composite 
system. 

E, which can vary in response to heat flowing in and work being done, and can, for 
reversible processes, be expressed in terms of state functions: 

For the usual thermodynamic system the potential function is the internal energy 

59 

’? dE = dQ - dW =TdS- PdV . 
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Figure 2.13. Systems described by 
the internal energy E (upper left), 
enthalpy H = E + PV (upper right), 
Helmholtz free energy A = E - TS 
(lower left), and Gibbs’ free energy 
G = E + PV - TS (lower right). 

Consider now the system shown at the upper right corner of Figure 2.13, composed of a 
subsystem with internal energy E in mechanical equilibrium with a confining piston, 
with energy PV = mgV/A, where A is the piston area. The total energy of this 
composite system, for which pressure replaces volume as a natural variable, is called 
the enfhdpy, and is denoted by the symbol H E ~ ~ t ~ l =  H = E + PV, the function we 
found useful in analyzing the Joule-Thomson flow. For a differential process, 

d H  = dE + PdV + VdP = TdS + VdP, 

it is evident that the variational statement of the Second Law, 

dE I TdS + PdV , 

becomes, for the composite {system + piston): 

Thus the enthalpy acts as a thermodynamic potential for systems which are thermally 
isolated but exposed to a constant pressure P. 

thermal heat bath, as is shown in the lower lefthand portion of Figure 2.13. So long as 
this heat bath can give up energy dQ to the system without changing the bath 
temperature T, the total energy of the system can be written 

A different potential function is appropriate for systems in equilibrium with a 
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where the energy of the heat bath is set equal to zero, at zero temperature, so that TS is 
a measure of the bath's energy loss in providing the system energy E. A is called 
Helmholtz' free energy or the Helmholtz free energy. 

The corresponding differential relation for the Helmholtz free energy is 

dETod = dA = dE -TdS- SdT I -PdV - SdT , 

r-, 

showing that it reaches a minimum value for fixed volume and temperature. For the 
statistical mechanics which we develop in Chapter 3 Helmholtz' Free Energy, in which 
volume and temperature are the natural variables, will be the thermodynamic 
potential function we most often use. 

energy of a three-part composite system including subsystem, confining piston, and 
heat reservoir: ETotal = G 

Finally Gibbs' Free Energy, or the Gibbs Free Energy, G, can be defined as the total 

E + PV - TS. The differentid form: 

dETotal= dG = dE + PdV + VdP - TdS - SdT I VdP - SdT , 

shows that Gibbs' Free Energy reaches a minimum under conditions of constant 
pressure and temperature. Because these conditions are those of mechanical and 
thermal equilibrium Gibbs' Free Energy is the most fundamental of the four potentials. 

Each of the thermodynamic potentials, E, H, A, and G, is a state function satisfying 
a Second-Law variational principle at equilibrium. Because the potentials are state 
functions the mixed second partial derivatives of the potential functions are 
independent of the order of differentiation. This is readily apparent if the finite- 
difference form of the second derivatives is considered. For example, (a*E/aSaV) can be 
calculated from the finite-difference representation: 

E[S - (6S/Z),V + (6V/2)] + E[S + (6S/2),V + (6V/2)] + 

in the limit that 6s and 6V approach zero. From the differential dE = TdS - PdV the 
derivative can be evaluated in either of two different ways: 

The final relation (aT/aV)s = -(aP/aS>v is a "Maxwell Relation." Three more 
such Maxwell relations can be derived, one each for the enthalpy, Helmholtz, and 

~~ ~~~ 
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Figure 2.14. Pressure-volume and 

thermodynamic cycle described by the 
Maxwell relation (aT/aV), = -(aP/aS)v. 

3 temperature-entropy views of a 
+AS+ 

S 

Gibbs free energies. It is interesting to note that each has the form dPdV = dSdT and 
represents the First-Law statement that, for an infinitesimal cycle, the work done is 
equal to the heat taken in for any reversible thermodynamic cycle. Figure 2.14 
illustrates the cycle appropriate to the variables S and V. 

microscopic statistical mechanics it is worthwhile to point out one more family of 
identities which follows from the two-variable state-function form of thermodynamics. 
The general relationship for any three variables linked together functionally is 

Before leaving macroscopic thermodynamics to explore the foundations of 

If we consider, for example, pressure as a function of volume and temperature, we find 
the relation 

=-I. 

For an ideal gas the derivatives can all be evaluated, and confirm the general result: 

(Nk/V)(P/Nk)(-NkT/P') = -NkT/PV = -1 . 

Problems: 
1. Demonstrate that (ax/ay),(ay/az)~(a~/ax)~ = -1 by fvst considering a differential 

variation in x(y,z) and then requiring that the independent variations dy and 
dz be chosen such that dx vanishes. This corresponds to examining the 
variation, perpendicular to the x axis, of the surface z = z(x,y). 

volume heat capacity is the same as that of the constant-entropy "adiabatic 
bulk modulus" BS to the constant-temperature "isothermal bulk modulus" 
BT: Cp/Cv = (aQ/aT)p/(aQ/aT>~ = (aH/aT)p/(aE/dT)v = Bs/% = 

2. Show that the ratio of the constant-pressure heat capacity to the constant 

[-v(ap/av>sl/[-v(ap/av>T]. 

--. 
. ,  
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2.10 Summarv and References 
Thermodynamics is distinguished from classical mechanics by the inclusion of 

the ideal-gas temperature in the list of state variables. The ideal gas is an integral part 
of all the Laws of Thermodynamics. The Zeroth Law of Thermodynamics states that 
two bodies in thermal equilibrium with a third body are in thermal equilibrium with 
each other. The First Law of Thermodynamics identifies energy as a state function, 
declaring that cyclic processes can neither create nor destroy energy. By considering 
reversible Carnot cycles, entropy can also be identified as a state function associated 
with the reversible flow of heat, dS = dQrev/T. The Second Law of Thewnudynamics 
declares that cyclic processes cannot convert heat into work, implying that entropy 
cannot decrease in a thermally-isolated system. The Third Law of Thermodynamics 
affirms that statistical calcuhtions of entropy, based on counting microscopic states and 
applying Boltzmann’s S = klnW, agree with macroscopic thermodynamic 
measurements of entropy, based on integrating reversible heat transfers. 

repulsive forces on fluid behavior. The model provides a useful semiquantitative 
corresponding-states desaiption of the gas phase, the liquid phase, the two-phase 
region, and the fluid region which exists above the critical temperature. 

G = €3 - TS = A + PV = E + PV - TS are convenient thermodynamic potentials. These 
potentials represent the total energy of composite thermodynamic systems linked to 
mechanical pistons with energy PV or to heat reservoirs with energy -TS, or both. 

van der Waals’ equation of state approximates the effects of attractive and 

The enthalpy H = E + PV, Helmholtz free energy A = E - TS, and Gibbs free energy 

Zemansky’s Heaf and Thermodynamics and (0. K.) Rice’s Statistical Thermodynamics 
contain stimulating ideas. For more exhaustive treatments see Partington’s FiveVolume 
classic Treatise on Physical Chernisf ry and Physical Chemistry by Moelwyn-Hughes. For 
detailed numerical solutions of the piston problems see B. Moran and W. G. Hoover, 
”Pressure-Volume Work Exercises Illustrating the First and Second Laws,” American Journal 
of Physics 47,851 (1979). High-pressure shockwave experiments are described by C. E. Ragan, 
“Ultrahigh-Pressure Shockwave Experiments,” Physical Review A 21,458 (1980). 
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3.1 Introduction 

properties, such as the mechanical and thermal equations of state, to underlying 
Hamiltonian trajectories and mechanisms. We wish to replace the detailed dynamical 
evolution of many degrees of freedom with equivalent phase-space averages 
depending upon only a few independent variables, two in the case of an equilibrium 
fluid with fixed composition. The idea is an appealing one. Specifying temperature 
and pressure, for instance, seems much simpler than following the time development 
of the coordinates and momenta. Statistical mechanics sets out to find the macroscopic 
equilibrium and nonequilibrium properties by appropriate averaging over microscopic 
statistical mechanical states. The weights of these states are all that is required, and 
these follow from the Liouville Theorem. Gibbs created the formal structure of 
statistical mechanics, building on the foundation laid by Maxwell and Boltzmann. 

When statistical mechanics was developed by Maxwell, Boltzmann, and Gibbs 
there was no real alternative to statistical averaging. Because the basis of 19th and early 
20th-century theories was necessarily analytic rather than computational, mechanical 
time averages could only be calculated for systems with independent or weakly coupled 
degrees of freedom. Today’s computers are not only more nearly accurate, but also ten 
orders of magnitude faster than humans. With these machines we can follow 
nonlinearly coupled trajectories for millions, or even billions of time steps. No longer 
is time averaging difficult. Equilibrium and nonequilibrium mechanical time averages 
can now be as easily calculated as are the alternative statistical averages of Maxwell, 
Boltzmann, and Gibbs. 

Away from equilibrium, linear transport theory is a well-established useful 
computational tool. Fick’s diffusivity, Newton’s viscosities, and Fourier‘s heat 
conductivity all originated as phenomenological descriptions of real materials. These 
nonequilibrium macroscopic models were successfully linked to Gibbs’ equilibrium 
statistical mechanics by Green and Kubo’s linear response theory, as described in 
Section 9.14. Nonlinear transport theory is still being developed and is not yet a 
reliable predictive tool. Our knowledge of nonlinear nonequilibrium problems will 
continue to rely on direct simulation until a workable theory is developed. For this 
reason the principles and applications of nonequilibrium statistical mechanics cannot 

The goal of Statistical Mechanics is to relate averaged macroscopic processes and 

be separated from the principles and applications of direct dynamic simulation. These 
subjects are treated in Chapters 10 and 11. In this Chapter we concentrate on Gibbs’ 

PI 
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equilibrium statistical mechanics and an introduction to its computational 
implementation. 

We begin with traditional derivations for the two most useful links between 
microscopic states and the macroscopic thermodynamic equation of state. These links 
are Gibbs‘ microcanonical and canonical ensembles. The “microcanonical ensemble’’ 
expresses the thermodynamic entropy for an isolated Hamiltonian system in terms of 
the number of its microstates. The formulation is summarized in Boltzmann’s legacy, 
S = klnW. The fixed independent variables are composition, volume, and energy so 
that the end product is an expression for S(N,V,E). This relation furnishes a complete 
description of the equation of state. Pressure, temperature, heat capacity, and 
compressibility all follow from the entropy by differentiation. Gibbs’ ”canonical 
ensemble” is an alternative approach and expresses the macroscopic Helmholtz Free 
Energy for any Hamiltonian system in terms of the energies of its microstates. Here the 
independent variables are composition, volume, and temperature. From the 
Helmholtz Free Energy, A(N,V,T) the remaining properties follow by differentiation. 

using Gibbs’ ideas involves two steps: first, the microstates to be used in averaging and 
their relative weights need to be determined; second, the appropriate macroscopic 
thermodynamic potential, either S(N,V,E) or A(N,V,T), needs to be expressed in 
terms of a weighted sum over these microscopic states. This two-step process gives a 
complete formal solution to the problem of expressing thermodynamic properties in 
terms of microscopic quantities. Because Gibbs’ statistical mechanics treats only 
equilibrium states this picture does not resolve the paradoxical dependence of the 
Second Law of Thermodynamics on microscopically reversible mechanics. But 
statistical mechanics does provide a key connection linking temperature to the 
microscopic kinetic energy. This link, together with the Nos&Hoover mechanics 
developed in Section 12, makes possible a direct derivation of the Second Law from 
reversible microscopic equations of motion. 

It became possible to compute microscopic averages for specified Hamiltonian 
functions shortly after the Second World War, using the computer techniques of 
Monte Carlo and Molecular Dynamics simulation developed at Los Alamos and at 
Livermore. Except for some pathological one-dimensional problems, these first 
computer results were generally in quantitative agreement with Gibbs’ theory. 

The fundamental structure of equilibrium statistical mechanics has not changed. 
Gibbs‘ theory appears to be complete. The theory has been uniformly successful in 
correlating the results of experiment and computation. The basic equations have been 
known and used successfully for nearly a century. But it is equally true that before fast 
computers were available applications had to be limited to relatively simple models 
with uncoupled or weakly coupled degrees of freedom. Computers have made it 
possible to extend Gibbs’ statistical treatment to large numbers of strongly-coupled 

The link between microscopic Hamiltonian mechanics and thermodynamics 

1 

degrees of freedom. 



Equilibrium statistical mechanics is an unusual scientific discipline in that the 
basic equations are known. The main problem today, at equilibrium, lies in finding 
more realistic models for interatomic and intermolecular forces. This is, and will 
remain, an active research field, combining new computational techniques with novel 
experiments. Progress in models for forces draws on quantum chemistry, which deals 
with isolated atoms or molecules, as well as condensed matter physics, which 
emphasizes the collective effects inherent in bulk matter. With recipes for the forces in 
hand the machinery of statistical mechanics can be used to calculate equilibrium 
properties. But because the calculations based on Gibbs’ and Boltzmann’s equations are 
difficult, much remains to be done, both in understanding the properties of idealized 
Hamiltonian systems and in reproducing experimental data for real materials. 

3.2 Statistical Mechanical States 

systems,” constant-energy systems with fixed composition and definite boundaries. 
Perfect isolation can best be idealized in theory or computation by eliminating 
altogether boundary interactions with physical container walls by considering the 
periodic boundaries shown in Figure 3.1. In such a periodic system, linear momentum, 
as well as mass and energy, is conserved. Angular momentum is not. Given the 
boundary conditions and the energy the first two tasks of equilibrium statistical 
mechanics are (1) to identify the available microstates, and (2) to specify state 
probabilities which provide phase-space averages corresponding to time averages. We 
begin by assuming that the system of interest is described by a Hamiltonian H(q,p). 

We saw in Section 1.11 that Hamilton’s equations of motion produce an 
incompressible phase-space flow of probability density f(q,p,t): 

From the conceptual standpoint the simplest equilibrium systems are ”isolated 

For such a Hamiltonian system, Liouville’s Theorem provides the state weights. 

r\ 

Figure 3.1. Two-dimensional 
spatially ”periodic” system. 
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The probability density flows through phase space without changing, just like the 
density of an incompressible fluid. Because a classical isolated system provides a 
probability flow in phase space which conserves phase volume, equal volumes in 
phase space musf be assigned equal weights in stationary equilibrium statistical 
averages. Thus all accessible states in the space must have equal weights. 

The state weights are likewise very simple for isolated systems in quantum 
mechanics. In quantum systems it is generally true that equal classical phase-space 
volumes correspond to equal numbers of quantum states, where a quantum state is a 
solution of Schroedinger's Equation. Thus the analogous choice for quantum systems 
is to include, with equal weights, all the solutions of Schroedinger's time-independent 
Equation: 

Hvi(q) = Eivi(q) 

where H is the Hamiltonian operator, and the (Ei} are the energy eigenvalues, 
corresponding to the eigenfunctions (vi( 4)). Bohr's Correspondence Principle states 
that in the "Classical Limit" (that is, when the energy levels are very closely spaced 
relative to the product of Boltzmann's constant and the temperature, kT) quantum and 
classical calculations must agree. In this limit it is possible to show generally that a 
single quantum state "corresponds" to a phase volume h#, where # is the number of 
degrees of freedom. Thus the quanhun and classical recipes are consistent 

Let us consider this correspondence in more detail for a harmonic oscillator with 
Hamiltonian H = (p2 + q2)/2. In quantum mechanics the coordinate representation of 
the energy eigenfunctions gives a state dependent probability density for the coordinate 
q. Let us choose (h/27c), as well as the force constant and mass, equal to unity. The 
oscillator energy eigenvalues are [n + (1/2)](h/2x)o = n + (1/2). For the energy El0 = 

10.5 Figure 3.2 shows the quantum probability density Rob(q) = vv. In the 
corresponding classical case the time spent between q - (dq/2) and q + (dq/2) is pro- 
portional to dt = dq/q. With proper normalization the classical probability density is: 

which diverges integrably at the turning points while otherwise closely resembling a 
coarse-grained average of the quantum probability density. 



density 
Figure 3.2. The quantum probability 
density and the classical probability 
density are shown for a harmonic 
oscillator with energy 10.5hv. 
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With the classical and quantum states identified, the basic premise of statistical 
mechanics is that all states are to be included with equal weights. In classical 
equilibrium statistical mechanics the states correspond to that region of phase space 
which is consistent with our knowledge of the system. In quantum equilibrium 
statistical mechanics the states to be included are the solutions of the Schroedinger 
equation consistent with our knowledge of composition, volume, and energy. 

could actually visit all such states. In equilibrium statistical mechanics we will make 
no effort to study this problem. It lacks physical relevance. Because the number of 
states generally increases exponentially with the number of degrees of freedom the 
time required for exhaustive sampling reaches the age of the universe for very small 
systems of from ten to a hundred particles. The possibility that a statistical mechanics 
based on including all states can make acceptable predictions relies on the smallness of 
fluctuations in the available states rather than on the certain knowledge that all such 
states are actually visited. Of course both laboratory and computer experiments are 
subject to similar limitations of finite observation time and finite accuracy. 

statistical mechanics, on Hamiltonian mechanics. The usual beginning of a statistical- 
mechanical problem is a statement of the governing Hamiltonian. To simplify the 
present Chapter we consider explicitly only atomistic systems with the simplest possible 
interesting Hamiltonian, a kinetic energy K(p), coupled with a pairwise-additive 
potential energy Wq) that depends only upon the pair separations {ri$ : 

It is by no means possible to prove, or even to imagine, that an isolated system 

The conservation of phase-space volume is responsible for the emphasis, in 



Such a model can provide a very accurate description of rare-gas behavior and a 
qualitative description of metals. Three-body potentials and the collective embedded- 
atom energies used to make semi-quantitative calculations for metals can be added. 
Simple pairwise-additive models for which complete thermodynamic information is 
available include the inverse power potentials 9 = e(o/r)* (ranging from the Coulomb 
case, n = I, to the hard-sphere case, n = -) and the Lennard-Jones potential 

R 
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as well as more specialized potentials with roughly similar shapes but with many 
additional parameters selected to reproduce al l  relevant experimental data for 
particular rare-gas atoms. It should be pointed out that the infinite range of the inverse 
power potentials is inconvenient for computer calculations, particularly for 
nonequilibrium simulations involving thousands or even millions of particles. The 
range is generally drastically reduced by using finite-range cutoff functions bringing the 
potential and force to zero at a distance only somewhat greater than the particle 
diameter 6. It is desirable that the force vary continuously with distance. Unless the 
cutoff is very smooth, so that the force varies continuously as a function of distance, 
the accuracy of the numerical integration can be badly degraded. 

-: 
Investigate the sensitivity of trajectory accuracy to force truncation and 
smoothness by comparing energy conservation for four potentials: $(XI = I x I, 
@(x) = sin(lxl), $(x) = (1/2)x2, and +(x) = (1/8)(3x - 1x1)2. In each case begin the 
simulation at a turning point with $ = 0.50 and compare fourth-order Runge- 
Kutta solutions with 800 time steps of 0.1,400 time steps of 0.2, and 200 time 
steps of 0.4 to solutions generated with the Stoermer method using 3200 time 
steps of 0.025,1600 time steps of 0.050, and 800 time steps of 0.100. 

To describe molecules, semiconductors, and metals more complicated interactions 
are required. For these the basic formalism of statistical mechanics is unchanged, but 
the details are complex. There are a variety of statistical ensembles, each corresponding 
to a particular choice of macroscopic independent variables. We will discuss the two 
most fundamental and useful of these ensembles, Gibbs’ microcanonical and canonical 
ensembles, in Sections 3.4 and 3.5. But first we wish to derive a formula for the 
volume of a many-dimensional hypersphere. This formula, which shows that the 
number of microstates depends exponentially on the number of degrees of freedom, is 
an integral component of Gibbsian ensemble studies. 

,* 
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3.3 Volume of an N-Dimensional Unit Suhere 

exp (4): 
Consider the N-dimensional integral, over all space, of the Gaussian function 

j...!exp(-r2)drN = [/exp(-x2)dxlN = nNl2 . 

This same integral can be evaluated in polar, rather than Cartesian coordinates. Denote 
the hypervolume of an N-dimensional hypersphere of radius R by CNRN. Then the 
surface area of an N-1-dimensional hypersphere of radius r is NCNrN-1. Thus an 
alternative representation of the same integral is 

where T is the gamma function, T(n+l) = n!. We can use this result for CN: 

to work out the hypervolume of an N-dimensional hypersphere: 

3.4 Gibbs’ Microcanonical Ensemble 
The succinct equation on Boltzmann’s gravestone, 

S=klnW; 

where both the entropy and the number of quantum states depend on composition, 
volume, and energy: 

R is amazing. Fundamentally it relates thermodynamics to quantum mechanics, and 
quantum mechanics was not developed until about 20 years after Boltzmann’s death. 
But the classical meaning of “state” as a many-dimensional phase-space volume was 
already well-established experimentally and had been embodied in the statistical Third 

equation S = klnW provides a unique microscopic foundation for macroscopic 
thermodynamics. Boltzmann’s entropy clearly satisfies the properties of Second-Law 
entropy too. The logarithm of the number of microstates lnW(N,V,E) is certainly an 

Law of Thermodynamics. In the remainder of this Section we verify that Boltzmann’s 1 

extensive state function which can only increase as constraints are relaxed. 
P 
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Just as in our approach to macroscopic thermodynamics the ideal gas plays a 

special role in microscopic statistical mechanics. We begin by calculating the number of 
states W(N,V,E) available for such a gas. In a three-dimensional gas of N identical 
mass-point particles with coordinates confined to a box of volume V and with 
momenta restricted to a kinetic energy K = E = Zd/(2m), the number of states is given 
by the corresponding phase-space integral: 

’1 

I- 

ra, 

The coordinate integration over the box of volume V is easy. The N! accounts for the 
permutations of N particles among N separate locations {q} in configuration space. If 
the particles are all of the same type, “indistinguishable particles,” then every set of 
distinct coordinate values occurs N! times in the integration. The factor h3 converting 
phase-space volume to quantum states was established through Bohr’s Correspondence 
Principle. 

included. If N is small enough for the difference to be important the result can be 
differentiated with respect to energy to fmd the number of states in an energy range AE. 
The integral up to the energy E is the volume of a 3N-dimensional hypersphere of 
radius (2mE)1/2. This is 

The momentum calculation is simplest if all states {p) with energies below E are 

/%, 

as we established in Section 3.3. 

be derived by coupling such an ideal gas to other, more general systems. By imagining 
various reservoirs coupled mechanically to the system of interest solids under 
anisotropic loads can be treated just as easily as fluids. To establish the general 
connection between this ideal-gas phase-space volume and thermodynamics requires 
coupling a general system to the gas. The coupling should be weak, so as not to change 
the microstates available from those of a truly isolated system. Weak coupling can be 
imagined as a spring or thin wire infrequently linking system and gas together. For 
simplicity, we will here consider a fluid coupled to the gas. If the fluid-gas coupling is 
weak in this sense, then the total number of states WT for the composite system, ideal 
gas plus fluid, can be made to approximate the product WT = W1Wp If we ask for the 
most probable distribution of energy between the gas and the fluid it is only necessary to 
maximize WT with respect to a variation in the fluid energy ~ E F .  The argument is 
simplest using the logarithm of WT: 

With the ideal-gas phase-space integration worked out, all of thermodynamics can 



For the most likely distribution of energy between fluid and ideal gas we find 

where the definition of ideal-gas temperature introduced in Chapter 1 has been used. 
Thus the equilibrium condition with respect to energy flow is that the fluid 
temperature and ideal gas temperature be equal. By including the second-derivative 
terms in the expansion about equilibrium it is possible to show that the fluctuations 
about the mean are small, of order N1/2, as the Central Limit Theorem would suggest. 

Suppose that we next consider the more-general possibility of an additional 
mechanical coupling between a general fluid and an ideal gas with a fixed total volume. 
We regard InW as a function of both V and E. Just as before the temperatures must be 
equal. The additional volume variation leads to an analogous result for the pressures: 

Thus both temperature and pressure are equal under the conditions of thermal and 
mechanical equilibrium. We have determined the equilibrium properties, 
temperature and pressure, from the ideal-gas states, not those of the fluid with which it 
is in equilibrium. Thus, for a general fluid, the differential expansion of lnW(V,E) has 
the same form as does the expansion of S(N,V,E)/k from thermodynamics: 

dhwF = d(S/k) = (l/kT)[dE + PdV] . 

The additional observation that Boltzmann’s entropy S = klnW vanishes for a 
nondegenerate ground state establishes that Boltzmann’s entropy and the 
thermodynamic entropy are one and the same. 

can be obtained by differentiation, has Boltzmann’s form, 
In summary, the thermodynamic entropy, S(N,V,E), from which other properties 

In the quantum case W is the number of quantum states with energy less than or equal 
to E. In the classical case, W corresponds to an integral: 

The classical phase-space integral, 
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is traditionally referred to as Gibbs' microcanonical Dartition function. Often it is given 
the special symbol a rather than the W from Boltzmann's grave monument. No 
matter what the notation the result achieved is most remarkable. For any Hamiltonian 
system d l  of thermodynamics can be developed by working out the number of 
quantum microstates, or the corresponding classical phase-space volume, W, 
corresponding to the number of particles N, in the volume V, with the energy E. 

3.5 Gibbs' Canonical Ensemble. 

indeed simplest using the canonical ensemble. Gibbs' "canonical ensemble" 
corresponds to a conceptual picture. It represents a thermodynamic system in 
equilibrium with a heat reservoir. The word "ensemble" is used in the sense of 
collection. Gibbs' ensemble is made up of many similar copies of the system in 
question, all with the same composition, volume, and reservoir temperature, but 
otherwise allowed to fluctuate over their accessible microstates by exchanging energy 
with other ensemble members. In Gibbs' picture the ensemble has so many members 
that fluctuations in the ensemble-averaged properties can be ignored. 

In writing his two-volume text, Gibbs justified his canonical distribution, with 
state probabilities proportional to exp(-E/kT), with the observation that this 
distribution is uniquely appropriate to composite systems made up of independent 
parts with additive energies and with the same form of distribution. For independent 
subsystems only the exponential form, additive in the energy, will do: 

The word "canonical" means simplest or prototypical. Statistical calculations are 

A 

Of course, Gibbs was right. But it is educational to see in more detail how the 
exponential canonical form arises. We will therefore consider two alternative ways of 
"deriving" Gibbs' distribution of ensemble members over their states by considering a 
composite constant-energy system. Satisfied that the distribution is correct we then will 
discuss two very different types of numerical methods for simulating the properties of 
the ensemble. Chapter 4 is devoted to applications of Gibbs' microcanonical and 
canonical ensembles. 

A 

3.6 Lagrantre-Multiplier Derivation of the Canonical Ensemble 
Let us first take the conceptual picture underlying Gibbs' Ensemble literally and 

link together many replicas of the system of interest, all with the same composition 
and volume, but with individual energies free to fluctuate in such a way that the total 
energy E ~ o b i  is fixed. See Figure 3.3. If the number of ensemble members N ~ o b l  is 
large enough, it is plausible that a steady state will be reached. In such a steady state 

I -. 



Figure 3.3. Gibbs "Canonical Ensemble" 
of weakly-coupled systems. This artificial 
coupling can be avoided by using Nos& 
Hoover mechanics. 

we denote the number of ensemble members in a particular energy state i, with 
energy Ei, by Ni. We imagine that the ensemble contains so many members NTotal 
that the fluctuations in the {Ni}, which are of order Nil/*, can be neglected. Such a 
steady state must correspond to an equilibrium condition because the ensemble is an 
isolated system. By symmetry the timeaveraged properties of all members of such an 
ensemble are identical to the equilibrium properties. We will next find the {Ni}. 

A mathematical treatment of this problem can be based on Lagrange multipliers, 
where the multipliers are used to impose the two constraints of fixed ensemble 
membership and fixed total energy: 

For convenience in notation we use the energy-state sums. These would be exactly 
correct for quantum systems. The corresponding classical integrals can be viewed as 
the limit of a sequence of approximate phasespace sums in which the phase-space 
hypervolume corresponding to a microstate with # degrees of freedom, (dqdp)# = h# 
approaches zero. 

energy states {Ei). The NTotd members can be distributed over these states in 
Consider a particular distribution {Ni} of the ensemble members among the 

ways, provided that the {Ni} satisfy the total membership and energy constraints. The 
maximum and the most probable states coincide as NTotal is increased. At the 
optimum equilibrium composition any variation of W, and hence 1nW must vanish: 

where we have used the approximation hNi! + jlnxdx + Niln(Ni/e), ignoring 
corrections with variations that vanish for large N. Again the variation is subject to 
the two constraints, 

r , 
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To solve this variational problem the constraints on the {GNi} are first multiplied by 
arbitrary Lagrange “multipliers” a and p and then combined with the variational 
equation. The result is 

The reason for this operation is to remove the two inconvenient restrictions that the 
{6Ni} must satisfy. We can select values of the two multipliers a and p which force 
the first huo terms in the sums to vanish (the terms involving 6N1 and 6N2) at the 
equilibrium composition: 

The variational problem then becomes simpler because the variations of the 
remaining (6Ni)” = @N3, 6N4, 6N5, ...), where the double prime indicates that the first 
two terms are missing, are no longer restricted: 

-- 

Thus the remaining variations {6Ni23} are completely arbitrary. We could choose, for 
instance, to have all of the SNi but one equal to zero. Because the one nonzero SNi 
could be any of them, the sum over the complete set can vanish only if every one of 
the variational coefficients multiplying the (6NJ vanishes: 

so that the most likely distribution satisfies this equality for all i, not just i = 1 and 2. 
Choosing a to fk the total number of members at N ~ ~ k l  we compute the probability 
of finding a particular member in state i. The solution of this variational problem is 

agreeing with Gibbs’ statement that the distribution among the energy microstates is 
exponential. 

3.7 Heat-Reservoir Derivation of the Canonical Ensemble 

members among microstates can be based on a thought experiment equilibrating a 

I-. An alternative derivation of this same exponential result for the distribution of 



single system with a reservoir. The reservoir could be composed of many replicas of 
the system of interest and would then be equivalent to the ensemble just treated. To 
emphasize the generality of the result we instead consider an ideal-gas heat reservoir. 
We indicate the total energy, reservoir energy plus system energy, by ET = ER + Es. We 
imagine the reservoir has many degrees of freedom N so that N! can again be replaced 
by (N/e)N with negligible error. Then the number of reservoir microstates approaches 

, 

For large N the reservoir can have arbitrarily many states with such a large energy ER = 
3NkT/2 that the Taylor‘s series expansion, 

= lnWR(ET) - (3N/2E$Es + (3N/4E&4 + ... , 

can be truncated after the term linear in Es. The quadratic terms shown above vanish 
as 1/N. Thus the number of states available to the composite system when the single 
system is in a definite state i, with energy Es = Ei, is 

and the normalized probability of observing the ith state is again 

This result can be generalized to include ”degenerate states,” states with the same 
energy, which taken together compose an energy ”level.” An example would be the 
(2L + 1) equal-energy states of a rigid rotor with angular momentum quantum number 
L. If gj such “degenerate” states all have the same energy Ej then the ’level probability” 
probj has the form: 

probj = g~~~[-Ej/kTI/~giexp[-Ei/kTI . - 

, In the next Section we use this exponential canonical distribution over energy states to 
derive all of macroscopic thermodynamics. 
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3.8 Thermodvnamics from the Canonical Ensemble 
Just as the microcanonical distribution relates the number of microstates to the 

entropy, Gibbs' canonical distribution relates an exponential energy sum over these 
states, cexp(-Ei/kT), to the Helmholtz free energy of thermodynamics. This sum is the 
canonical "Partition Function" or "Zustandsumme" Z(N,V,T): 

Z(N,V,T) = Xexp(-Ei/kT) . 

The sum over states describes the way in which systems are partitioned among their 
states. It is the normalization for the state probabilities, 

probi = exp(-Ei/kT)/&xp(-Ej/kT). 

This sum is useful because its logarithmic derivatives with respect to temperature and 
volume have the form of ensemble averages with probabilities {probi}. The 
temperature derivative of 1nZ gives directly the mean value of the internal energy: 

I.. 

Differentiating once more, we can find the derivative of the average energy with 
respect to temperature, the constant-volume heat capacity, CV: 

= Cv/k = C(E/kT)b - <(E/kT)>2 = <[(E/kT) - <E/kT>]2> . 

We see that the heat capacity is an intrinsically positive measure of energy fluctuations. 
A negative heat capacity would signal thermal instability. If colder materials would 
grow cooler still in the presence of hotter ones a homogeneous temperature field 
would be impossible and thermal equilibrium could not be established. 

I 

problems: 
1. Calculate the canonical-ensemble temperature dependence of the heat capacity 

for a single pendulum using the fourth-order Runge-Kutta method. Set the 
pendulum length and mass, Boltzmann's constant, and the gravitational field 
strength all equal to unity and study the temperature range from 0 to 4. The 
heat capacity can be calculated in either of two ways: by working out values of 
the energy for two temperatures separated by dT or by evaluating both <E> and 
c E b  and applying the conventional fluctuation formula, Cv/k = <(AE/kTI2>. 

-i 



Compare the first of these to the microcanonical heat capacity obtained by time- 
averaging mv2/2 for two complete orbits corresponding to closely-spaced 
values of the energy. 

2. Moledar dynamics simulations show that the constant-volume heat capacity 
of a dense cool periodic system with attractive Gaussian interactions [O = X$ = 

-Eexp(-r2)] is negative. That is, increasing the energy E = K + 0, results in a 
decreased kinetic energy K. Does this result contradict the energy-fluctuation 
formulation of the constant-volume heat capacity, Cv/k = <(AE/kT)%? 

3. Consider the isoenergetic classical one-dimensional motion of a single particle 
in the potential @(XI with @( I x I c L/4) = - I  E I ;  @(L/4 c I x I C  L/2) = 0;  @(L/2 c 
I x 1) = . Discuss the behavior of the ideal gas temperature cmv2/k> in the 
energy range near E = @ + K = 0. 

The derivative of the canonical partition function with respect to volume also has 
a simple physical significance. Because the energy states depend on volume through 
the boundary conditions, the volume derivative gives directly the ensemble average of 
the energy response to an infinitesimal volume change: 

(alnZ/lllnV)N,T = c-(V/kT)(dEi/dV)> = 

This volume derivative gives the pressure: 

The ”Virial Theorem” provides a detailed mechanical force-based description of this 
link between the microscopic energy and the macroscopic pressure. This link is 
discussed in detail in Section 5.5. The volume deformation process can be elaborated to 
the case of an elastic solid and the second derivatives of the partition function with 
respect to the elastic strains can then be calculated, giving the elastic constants in terms 
of fluctuations in the pressure tensor. We describe a simpler and more direct approach 
to the elastic constants in Chapter 5. 

These temperature and volume derivatives make it possible to relate the 
canonical partition function to the Helmholtz free energy, A = E - TS, for which the 
corresponding derivatives of A/T are 



Thus the canonical partition function is the exponential of -A/kT. This relation is 
arguably the most useful link between the microscopic and macroscopic descriptions of 
equilibrium properties. 

Z(N,V,T) if we write it as a sum over finite energy intervals, with E - (AE/Z) < Ei e E + 
(AE/Z): 

This same result becomes obvious from the definition of the partition function 

Z = ZW(N,V,E,AE)e-E/kT, 

with the energy in the exponent an appropriate average for the range AE about E. If we 
use Boltzmann's relation for the number of states W = exp(S/k) and keep only the 
maximum term in the sum, the resulting approximate partition function becomes 

Z(N,V,T) = exp(S/k)exp(-E/kT) = exp(-A/kT) . 

The classical form corresponding to the quantum sum is 

Z(N,V,T) = (l/N!h#)j ... ldq#dp#exp[-H(q,p)/ kT] = exp(-A/kT) . 

I 

We conclude that the Helmholtz free energy A = E - TS can be calculated from a 
knowledge of the Hamiltonian by working out either the sum over quantum states or 
the corresponding classical phase integral. This "working out" is not so easy. In fact 
accurate quantum states are not available for systems containing more than a few 
electrons and it is impractical to work out classical phase integrals involving more than 
perhaps 1010 sampling points. In order to use the canonical-ensemble expression for 
thermodynamic properties special numerical methods need to be developed. 

We will outline three useful numerical schemes, one static and two dynamic in 
this Chapter. All three of these schemes rely on the separability of the Hamiltonian 
into kinetic and potential parts. The separation implies that the velocity distribution 
always has the universal Maxwell-Boltzmann distribution. This useful distribution is 
the subject of the next Section. 

3.9 Maxwell-Boltzmann Veloatv Distribution 

solely on the momenta and a potential energy @(q) depending solely on coordinates, 
the momentum probability distribution is independent of configuration and its 
contribution to the Helmholtz free energy has the ideal-gas form. This simplifies 
numerical work. To determine the configurational part of the Helmholtz free energy 
sampling can be carried out in configuration space with a probability proportional to 
the configuration dependent part of the Boltzmann probability, exp[-<p({q))/kT]. In the 

For a separable Hamiltonian H = K + Q, with a kinetic energy K(p) depending 

. 

-, 

h. 



microcanonical case the weighting function is different, and is proportional to the 
momentum-space hypersphere volume, (E - @)3N/2. 

The canonical distribution for the momenta, 

can be used to work out all the moments of the distribution. Let us consider two 
different ways to work out the average value of p4 for a single two-dimensional ideal- 
gas molecule. In ordinary Cartesian coordinates the product becomes 

< p4> = <pi + 2p?& + p$ > = (mkT)2[3 + 2 + 31 . 

In polar coordinates the same average can be written as the ratio of two integrals: 

Problem; 
Use the hypersphere volume formula from Section 3.3 to find the 
microcanonical probability density for a single momentum to lie in the range 
dp about p in a system with N degrees of freedom and kinetic energy E. Show 
that the large-N form of this microcanonical probability density is proportional 
to the corresponding canonical one, with <K>Canonical= KMic-ocanonical, and 
hence must coincide with it. 

3.10 Equilibrium - Monte Carlo Method 
The goal of equilibrium statistical mechanics is to express any observable quantity 

as the average of a corresponding microstate function. In quantum mechanics 
observables correspond to operators and the expectation value of such an observable is 
computed by averaging the corresponding operator over the quantum probability 
density. In classical statistical mechanics the phase-space function corresponding to the 
observable Obs(q,p) has to be averaged over properly-weighted microstates. In the 
canonical ensemble, with the state weights known, {exp(-Ei/kT)}, it is a relatively easy 
matter to generate microstates with frequencies proportional to these weights. If such 
states were generated by making random "Monte-Carlo" trials and weighted averages 
were computed the averages would eventually converge to the canonical-ensemble 
average: 

- 

<Obs(q,p)> = Z0bsiexp(-Ei/kT)/&xp(-Ej/kT) . 

-, This straightforward form of averaging is impractical for most interesting systems 
with more than a few degrees of freedom because most parts of phase space have 
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negligible probability. An example illustrates this point we will see that the ratio of the 
occupied to the unoccupied parts of configuration space {rN} is about (I /400)N for a 
dense three-dimensional fluid, so that a billion Montecarlo trial configurations are 
unlikely to result in even a single acceptable configuration for as few as half a dozen 
such particles. Random sampling is hopelessly inefficient. A modified Monte Carlo 
sampling method was invented at Los Alamos and applied to the hard-disk equation of 
state by Metropolis, the Rosenbluths, and the Tellers. It is a simple workable scheme 
based on sampling relatively small energy changes (A@ = kT) in configuration space 
with relative probabilities proportional to exp(-@i/k'I') so that explicit weights are not 
needed: 

CObS>mT = EObsi/Zl. 

Provided that the chain of samples generated is not sensitive to the initial 
conditions, the statistical uncertainties should obey the Central Limit Theorem of 
Section 2.1, varying as the inverse square root of the number of configurations 
sampled. The uncertainty is most conveniently estimated by breaking up the 
calculation into a small number of batches, 5 or 10, and using these as independent 
estimates of the mean value. The mean squared fluctuations, divided by the number of 
batches minus one, can then be used to estimate the square of the statistical errors. The 
chain of Monte Carlo configurations is generated through a sequence of biased moves. 
Any move decreasing the potential energy is accepted. Those moves which would 
increase the potential energy are accepted with a probability exp(-A@/kT). This scheme 
guarantees long time convergence to a probability density proportional to exp(-@/kT). 

Let us demonstrate the Monte Carlo scheme with a thought experiment in which 
we follow the progress of an ensemble of systems able to occupy two states with 
corresponding weights (2/3) and (1/3). If we begin with all systems in the ground state 
all systems attempt the transition to the upper level, and half are successful, leaving 
state populations after the first trial of (0.5,0.5) ; after two trials the populations are 
(0.75,0.25) ; and after three (0.62!5,0.375) . These are enough data for us to guess, 
correctly, that the lower state population after n trials is (2/3) + (1 /3)(-1/2)*, so that the 
state populations converge exponentially to their equilibrium values. 

The Monte Carlo method requires "random" numbers. 
generating these on the interval from 0 to 1 is the following: 

A simple function 

r.. 

FUNCTION RANDOM ( IX, IY) 
I = 1029*IX + 1731 
J = I + 1029*IY- + 507*IX - 1731 
IX = MOD(I,2048) 
J = J + (I-IX)/2048 
IY = MOD (J, 2048) 
RANDOM = (IX+2048*IY)/4194304.0 
RETURN 
END \ 
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The first time, and onZy the first time, this function is called the two arguments IX and 
IY should be set equal to zero. A Monte Carlo program to implement the Metropolis- 
Rosenbluths-Tellers procedure proceeds according to the following plan: - 

CHOOSE INITIAL N-PARTICLE CONFIGURATION, MAXIMUM MOVE SIZE, AND 
SET IX AND IY EQUAL TO 0. 
GENERATE A RANDOM NUMBER R = RANDOM(IX,IY) AND CHOOSE PARTICLE 
(N*R+l) FOR A TRIAL MOVE. 
TENTATIVELY MOVE THIS PARTICLE FROM ITS "OLD" LOCATION TO A NEW 
ONE AND COMPUTE THE RESULTING CHANGE IN CONFIGURATIONAL 
PROBABILITY EXP (-A@/KT) . 
GENERATE ANOTHER RANDOM NUMBER R = RANDOM(IX, IY) AND ACCEPT THE 
TENTATIVE MOVE IF R IS LESS THAN EXP (-A@/KT) ; OTHERWISE REJECT 
THE MOVE. 
UPDATE AVERAGES, USING THE "OLD" LOCATION AGAIN IF THE TENTATIVE 
MOVE WAS REJECTED, AND THE "NEW" LOCATION OTHERWISE. 
GO TO 2 UNTIL RESULTS FROM SUFFICIENTLY MANY MOVES ARE 
ACCUMULATED. 

Problems: 
1. 

2. 

3. 

Test the random-number generator RANDOM ( IX, IY) by computing the 
moments <Ri>, <Rf>, and <e>. Also check the "serial correlation" by 
computing the averages <RiRi+l> and <RiRi+2>. Generate sufficiently many 
"random" numbers {Ri) that these averages have an expected error of no more 
than 1%. Show, numerically, that the generator repeats after 222 = 4,194,304 
calls. 
Construct two Metropolis-Rosenbluth2-Teller2 canonical-ensemble Monte- 
Carlo programs for the harmonic oscillator Hamiltonian H = (q2 + p2)/2, one in 
the full phase space and the second only in coordinate space. Use jump lengths 
of {0.5,1.0,2.0,4.0,8.0)(R - 0.51, where R is randomly distributed between 0 and 
1 for the trial moves. Verify that c p b  = 1 in both cases and discuss the 
possibility of using <p4> to decide which jump length is "best." 
Check the single-pendulum canonical-ensemble heat-capacity at temperatures 
of 0.25,1,2,3, and 4 by working out <E> and c E b  by Monte Carlo sampling. 
Choose the pendulum length and mass as well as the gravitational field 
strength and Boltzmann's constant all equal to unity. The values should be 
close to the values calculated in Problem 1 of Section 3.8 using the Runge-Kutta 
method {Cv/k} = {0.615,0.354,0.114,0.053,0.031). 

- 

- 

"\ 

i /  Soon after fast computers were developed both Monte Carlo and molecular 
dynamics were applied to the same relatively difficult thermodynamic problem, the 
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equation of state of hard disks. The Monte Carlo method is an effective computational 
statistical-mechanical technique for simulating equizibrium thermodynamic properties. 
In the absence of constraints the equilibrium velocity distribution is the Maxwell- 
Boltzmann distribution. As a consequence, the equilibrium Monte Carlo approach is 
marginally simpler to program because velocities are unnecessary. Until 1974, when 
useful thermodynamic perturbation theories began to be developed, as described in 
Section 4.14, computational statistical mechanics focussed on equilibrium simulations 
for which the Monte Carlo method is particularly useful. 

As computers became more powerful and as the ability to predict equilibrium 
properties improved, researchers' interest turned toward nonequilibrium problems 
and transport theory. Away from equilibrium the velocity distribution and the phase- 
space weights are not known. There is no perturbation theory away from equilibrium. 
For nonequilibrium applications a dynamical approach is essential. Such an approach 
can be based on Nosct-Hoover mechanics, as is discussed in the next two Sections. The 
more limited but straightforward method of Newtonian simulation is described in 
Chapters 5 and 6. 

3.11 Nos4 Mechanics 

either Gauss', Lagrange's, or Nos& and Hoover's ideas need to be followed. Of these 
three approaches only Gauss' and No& and Hoover's appear to be useful for 
nonequilibrium systems. Because Gauss' mechanics can be viewed as a special case of 
Nos&Hoover mechanics, we will emphasize that mechanics in exploring the link 
between Gibbs' ensemble theory and dynamical simulation. 

In 1984 Nos6 introduced a special Hamiltonian, 

Newtonian mechanics is tied to the initial energy. To introduce temperature 

in which the usual phase-space variables {q,p) are augmented by a new [dimensionless1 
variable s and its conjugate momentum [with units of action, MLZ/T] ps. Here we 
again use ## to indicate the number of degrees of freedom. Q is a parameter [with units 
ML21 determining the coupling strength between the phase-space variables and s. Nos6 
showed that microcanonical ensemble averages for his new Hamiltonian are 
equivalent to canonical ensemble averages over the coordinates q and the "scaled" 
momenta p/s. In this Section we reproduce Nos6's derivation, writing the integral of 
the microcanonical phase-space probability over the new pair of conjugate variables s 
and P Y  
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first in terms of new momenta, p’ = p/s. This introduces a factor s# into the integral. 
Then the delta function restricting the Nos6 Hamiltonian to the value E is written in 
terms of the variable s: 

6(H(q,p’,s,p& - E) = (as/aH)6(s - exp[E - K’- Q, - (p~/2Q>I/[#+lJkT) . 

When the s integration is carried out and followed by integration over ps, the resulting 
probability density for the coordinates {q) and scaled momenta {p’) is exactly the 
canonical distribution. The idea of introducing a new variable so that the 
microcanonical distribution becomes canonical is a clever one. Unfortunately the 
“time scaling,” or equivalently ”mass scaling,” required to carry out the momentum 
integration complicates the interpretation of the corresponding Hamiltonian dynamics. 
But Nosgs time scaling is computationally cumbersome, unsuited to nonequilibrium 
simulations, and can be avoided entirely by using the modification described in the 
next Section. 

3.12 Nos&Hoover Mechanics 
Working in Canada, with Mike Klein, Nos6 invented, or discovered, a new form 

of mechanics which can generate Gibbs’ canonical phase-space distribution. A simpler, 
more direct approach is to start out with new equations of motion rather than a new 
Hamiltonian: 

and to ask the question What  must the time development of the friction coefficient 5 
be in order to generate the canonical distribution when these equations of motion are 
solved?” It is straightforward to answer that question by studying the flow of 
probability density in an extended phase space in which the new variable < defines one 
of the axes. The continuity equation in this extended (Z#+l)-dimensional phase space 
is the analog of Liouville’s flow equation: 

(af/at) + a(fq)/aq + a<*>/* + a(f&a< = 0 , 
-\ 

. ,  

where f(q,p,<) is the product of the usual canonical probability density and an unknown 
function g(Q depending on 
must vanish. The three remaining terms must therefore sum to zero: 

alone. For the canonical distribution to be steady (af/at) - 
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The terms involving the interparticle forces cancel. In order for the resulting equation 
to have a steady solution g must be a Gaussian, 

so that the complete steady-state distribution function is Gibbs’ canonical distribution 
augmented by a Gaussian distribution in the friction coefficient: 

The relaxation time z can be chosen arbitrarily, and must itself be determined by the 
feedback equation: 

’” 

This last equation is an example of “integral feedback,” with a “control variable,” the 
friction coefficient <, given by the time integral of the discrepancy between the actual 
and the average kinetic energy. The system of differential equations is time reversible, 
due to its Hamiltonian basis, and preserves the canonical distribution in the phase 
space. Notice that in the time-reversed trajectory 5, which originated as the 
momentum conjugate to s, changes sign in the same way as do the other momenta {p}. 

Problems 
1. Show that the augmented canonical Gibbs distribution f(q,p,c) is a steady 

solution if the Nos&Hoover friction coefficient < applies to only a subset of the 
equations of motion, {p = F(q) - CP}~, while the rest obey the Hamiltonian 
motion equations, (p = F(q)}r. Assume that only the kinetic energy of the 
subset is used in computing 5: 4 = (l/z2)Zs[(p2/mkT) - 11 . 

2. Show that the augmented canonical Gibbs distribution f(q,p,Q is a steady 
solution of the equations of motion if the weighted Nos&-Hoover friction 
coefficient <w(q) applies to all degrees of freedom, {p = F(q) - C,w(q)p), even if 
the weight function is nonzero in only a small region. Assume that the 
weighfed kinetic energy is used in computing C,: 4 = (l/z2)Cw(q)[(p2/mkT) - I]. 

Notice that in both these problems it is possible to prove that the canonical 
distribution is a steady solution, but not necessarily the steady solution of the Nos& 
Hoover equations of motion. If a system is not sufficiently mixing in phase space (one- 
dimensional problems often lack mixing; the harmonic oscillator is an example) 
regular periodic orbits can exist, even in a thermostatted system. For mixing systems 
no such orbits are stable. 



Figure 3.4. Gibbs' "Grand Canonical 
Ensemble" can be viewed as a set of 
weakly-coupled systems which exchange 
mass, momentum, and energy. The 
illustration shows 15 such systems with 
an average of two particles each. 

3.13 Grand Canonical Ensemble 

useful for problems in which the composition of the system is variable. Typical 
applications include the dissociation and recombination of polyatomic molecules 
linked by chemical equilibria involving two or more reacting species. The grand 
canonical ensemble then resembles a canonical ensemble except that the coupled 
systems can exchange particles. See Figure 3.4. If we consider the most likely state of a 
composite system composed of two parts which can exchange particles, so that N varies, 
the usual Lagrange-multiplier derivation leads to the result: 

The Grand Canonical ensemble is an extension of the canonical ensemble and is 

exp(PV/ kT) = ZZ(N,V,T)zN , 

which allows us to compute the pressure as a function of V, T, and the thermodynamic 
activity, z, by summing over the number of particles, N. The "activity" Zi describes the 
work of changing the composition of a system by adding a particle of type i. The 
"chemical potential," pi, can be formally defined as the partial derivative of the 
Helmholtz free energy with respect to Ni, p = (aA/aN)v,~, and Zi = exp(pi/kT). We 
consider examples using the Grand Canonical Ensemble in Sections 4.104.12. 

3.14 Summarv and References 
Liouville's Theorem states that the comoving phase-space probability density is 

unchanged in Hamiltonian flows. For an isolated system this result implies that all 
accessible phase space volumes are equally likely. Thus equal phase-space volumes 
represent equally-likely mechanical states. In Bohr's Correspondence Limit a quantum 
state corresponds to a classical phase-space hypervolume h#, where # is the number of 
degrees of freedom. Boltzmann's exact link between mechanics and thermodynamics, 
S(N,E,V) = klnW, is formalized in Gibbs' microcanonical ensemble. By considering a 

ensemble, with energy states (E3 and state weights (l/Z)exp(-Ei/kT). Nos5 discovered a 
small weakly-coupled part of a larger isolated system, Gibbs constructed the canonical 

-\ 

c, 



deterministic time-reversible version of Hamiltonian mechanics, incorporating 
internal feedback, which reproduces these canonical-ensemble state weights. The 
simpler and more-efficient Nos&Hoover approach avoids cumbersome "time-scaling" 
and likewise reproduces the canonical distribution. The normalization 2 of the 
canonical-ensemble state probabilities is the canonical partition function 
("Zustandsumme") Z(N,V,T) = Cexp(-Ei/kT) = exp(S/k)exp(-E/kT) = exp(-A/kT). 

The most useful statistical mechanics texts are the Mayers' Statistical Mechanics, 
McQuarrie's Statistical Thermodynamics, and Reif's Statisfical and Thermal Physics. The 
many-body molecular-dynamics simulations resulting in a negative heat capacity are discussed 
in H. A. Posch, H. Namhofer, and W. Thirring, "Computer Simulation of Collapsing Systems" 
in Simulation of Complex Flows, Proceedings of the 1989 Brussels NATO Advanced Study 
Institute (M. Mareschal, Editor, Plenum Press, New York). 
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Metals; 13 Mayers’ Virial Erpansion of Thermodynamic Propetfies; 14 Thermodynamic Perturbaiion 
Theory; 15 Summaly and R@erences 

4.1 Introduction 
From the standpoint of mechanics, equilibrium properties are simply time 

averages, with microscopic dynamics providing the mechanism underlying 
macroscopic averaged observable quantities. Gibbs’ statistical mechanics provides an 
alternative to time averages: exact ensemble formulae linking microstates and their 
energies to macroscopic observable properties including the thermodynamic equation 
of state. In this Chapter we consider a range of idealized problems suited to analytic 
work based on Gibbs’ ideas. These problems can successfully correlate a wide range of 
experimental and computational data and suggest useful computational approaches for 
less tractable situations. Our examples include gases and solids together with an 
approximate treatment of liquids. 

We also discuss quantum ideal gases. These systems are simple enough for 
analytic study and shed light on the difference between classical and quantum behavior 
for light particles, not only photons, but also phonons and electrons. In all but one of 
the problems treated in this Chapter Gibbs’ partition function, either microcanonical or 
canonical, can be reduced to a product of one-dimensional partition functions. 

As the density is increased and the effect of interparticle interactions begins to play 
an important role, corrections to the product approach become necessary. Strongly- 
coupled systems usually require computer simulation. But if the interactions are 
sufficiently weak, a systematic diagrammatic approach considering two-body, three- 
body, four-body, ... correlations can be effective. In this Chapter we consider an example 
of this approach, developing the Mayers’ expansion of the fluid free energy as a density 
series, the “virial expansion.” This approach provided the first quantitative test of 
many-body computer simulations and a basis for a very successful approach to liquid 

r 

thermodynamic properties: the perturbation theory based on a combination of Gibbs’ 
ideas with results from computer simulation. Very strongly coupled systems still 
require computer simulation, as is discussed in Chapters 5,6,10, and 11. 

4.2 Tonks’ One-Dimensional Hard-Rod Gas 

studying what appears to be a many-body system with simple properties, the one- 
dimensional hard-rod system. We first issue a warning that one-dimensional 
dynamical systems are not at all typical in their dynamical behavior. We will see, for 
instance, that in one-dimensional systems, either fluid or solid, particle positions 
fluctuate with increasing amplitude as the system size is increased. Position 

We begin our exploration of the applications of Gibbs’ statistical mechanics by 
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fluctuations of order N1/2 are required to satisfy the Central Limit Theorem described 
in Section 2.1. The Theorem implies that sufficiently large regions containing an 
average number of particles N must have fluctuations of order N1/2. To generate these 
fluctuations in one dimension, individual particles must move cooperatively over a 
range of length proportional to N1/2. In three-dimensional solids the situation is 
simpler. The Central Limit Theorem can be satisfied with finite displacements and the 
large-N rms displacement in three-dimensional solids approaches a constant 
independent of N. In two dimensions the same problem gives rise to a more subtle 
logarithmic dependence of position fluctuations on system size. 

But mechanical and thermodynamic properties, such as energy and pressure, 
which depend primarily on local interactions of neighboring particles, can be accurately 
represented by one- and two-dimensional models. Despite the pathological dynamics 
underlying fluctuations in one and two dimensions, one-dimensional equilibrium 
phase-space averages are well-defined and can be useful models of real behavior. 
Phase-space averages for one-dimensional systems can be used to develop and test new 
theoretical and computational techniques. At the same time irreversibility and the 
approach to equilibrium are poorly represented by onedimensional systems. These 
systems usually, but not always, la& a feature fundamentally-important for 
irreversibility, Lyapunov instability. That exponential separation of trajectories is an 
essential part of the phase-space mixing typical of interesting tw& and three 
dimensional systems. The one-dimensional hard-rod system and all of the harmonic 
crystals studied in this Chapter are examples of systems with smooth non-mixing 
phase-space flows. In the equal-mass hard-rod system, for instance, the velocity 
distribution never changes. Colliding particles simply exchange velocities. 

Hard impenetrable particles cannot exchange positions in one dimension. 
Consider N hard rods on a one-dimensional line segment. The one-dimensional 
nature of the hard-rod problem imposes a left-to-right ordering on the particles and 
this ordering leads to a simple method of solution. The N individual particles in this 
system all have the same mass, m, and a single degree of freedom. They all have the 
same 'length" CT which prevents any two neighboring rods from a closer approach. The 
"volume" V > No to which the particles are confined by a boundary potential <PgOx is a 
one-dimensional line segment. We will work out Gibbs' canonical partition function 
for this system, starting with the Hamiltonian, 

and the corresponding canonical partition function, 

exp(-A/kT) = (l/hNN!)ldxNjdpNexp[-H(x,p)/ kT1 . 
*, 



The N! accounts for the indistinguishability of the N particles. The multiplicative 
factor h-N, where h has units of action [ML2/T], is required to make the partition 
function dimensionless. We saw in Chapter 3 that applying the Third Law of 
Thermodynamics and Bohr’s Correspondence Principle to ideal gases, requiring that 
the classical and quantum partition functions agree in the classical limit, requires that h 
be chosen equal to Planck’s constant, 6.626 x 10-3 jouleseconds. The basis for this 
choice in the symmetry of ideal-gas wave functions is discussed in Section 4.3. 

The hard-rod momentum integrals here have the same form as they do in all the 
unconstrained classical canonical partition functions treated in this Chapter. The 
N-variable momentum integral can be evaluated by first writing it as the Nth power of 
a one-dimensional integral: 

To evaluate the configurational contribution to the partition function, 

the integral over all the coordinates, we must identify the boundary potential @ B ~ ~ ,  or, 
equivalently, specify boundary conditions limiting the coordinate integrations. There 
are two simple cases shown in Figure 4.1, periodic boundaries, in which case the wall 
potential @ B ~ ~  vanishes, and rigid boundaries. For this one-dimensional hard-rod 
problem the two are simply related. Consider periodic boundary conditions, with the 
particles arranged on a ring of circumference V > No. If we hold any one of the N 
particles fixed, say Particle I, then the integral over the others is just a rigid-boundary 

Figure 4.1. Periodic-Boundary and 
Rigid-Boundary one-dimensional 
systems. 



integral inside a box of length V - o. Because the rigid-boundary case has a particularly 
simple form we consider that one here. 

x = V > No. The set of N particle coordinates {x} describes the locations of the centers of 
the particles and these coordinates are restricted by to lie between x = (o/2) and x = 
V - (o/2). Notice that once the N particles have been successfully placed in the box, 
without overlapping, they remain permanently ordered, from left to right, in one of N! 
equivalent ways. We can work out the configuration integral for the natural ordering, 
XI < x2 c x3 e ... . Choosing just this one ordering out of the N! equivalent possibilities 
exactly compensates for the (l/N!) appearing in the canonical partition function. The 
complete partition function then becomes 

For the rigid case we consider a line segment bounded by rigid walls at x = 0 and 

A 

where we have introduced the conventional abbreviation h = h/(2xrnkT)1/2 for the de 
Broglie wavelength, a length equal to the rigid box length at which the quantum 
ground-state energy becomes nkT/4, n/2 times the classical kinetic energy. 

The coordinate integration can then be carried out in a variety of ways. The 
simplest is to switch to new coordinates {x} = (y}: 

The {y} coordinates measure the particle displacements from their leftmost possible 
location. For these new variables the integration limits run from 0 to V - No with the 
set of N - 1 restrictions {yl c y2 c ... y ~ ) .  See Figure 4.2. 

The configurational integral over these new coordinates is simply one of N! equal 
parts of an N-dimensional hypercube of sidelength V - No, and so corresponds to the 
hypervolume (V - No)N/N!. Thus the complete exact partition function is: 

exp(-A/kT) = Z(N,V,T) = (V - Na)N/(N!hN) . 

X 

Figure 4.2. Transformation to relative 
coordinates {yn = xn - In - (1/2)10}. 



We can then apply Gibbs' canonical-ensemble formulae from Section 3.8 to get the 
thermal and mechanical equations of state: 

The internal energy E = NkT/2 illustrates the general rule, sometimes called the 
"equipartition" theorem, that any separable Cartesian degree of freedom with a kinetic 
energy p2/2m has a canonical-ensemble average kinetic energy of kT/2. The 
corresponding kinetic contribution to the partition function is a multiplicative factor, 
[jdpexp(-p2/2mkT)] = (2xmkT)1/2, which contributes 1 /2 to the derivative (alnZ/alnT)v 
= E/kT. The same rule likewise applies to separable quadratic potential energies. Each 
degree of freedom in the potential energies of the harmonic crystals treated in Sections 
4.6 and 4.7 likewise contributes kT/2 to the canonical-ensemble average energy. 

The mechanical equation of state of the hard-rod gas is more interesting. The 
hard-rod pressure is the same as that exerted by an ideal gas confined to a volume of 
reduced size. The size is reduced by exactly the volume No occupied by the particles. 
The resulting equation of state, P/kT = N/(V - No), is identical to the repulsive part of 
van der Waals' equation, discussed in Section 2.8. 

If the hard-rod partition function were multiplied by exp(N2a/VkT), as if each 
particle interacted weakly and attractively with a large number of others, with that 
number proportional to the "number density" N/V, then the compkte van der Waals 
equation would result, including the unphysical van der Waals loops we studied in 
Section 2.8. These loops correspond to mechanical instability, with negative 
compressibility as well as to thermodynamic instability, with both free energies, 
A(N,V,T) and G(N,P,T), exceeding the equilibrium two-phase values. These 
instabilities reflect the qualitative complexity of the order imposed by attractive forces at 
low temperatures. This cooperative effect cannot be treated as a perturbation. 
Nevertheless the hard-rod sys tem does illustrate the fundamental excluded-volume 
effect underlying the usefulness of van der Waals' equation of state and as well as the 
perturbation theory of liquids we review in Section 4.14. 

pathological properties of one-dimensional systems, the linear divergence, with N, of 
the mean-squared displacement <6b .  We will just work out the simplest case here, 
using rigid boundaries and determining the probability for finding the central particle 
at a displacement 6 away from its most likely position at ex>= V/2. The calculation 
proceeds in three steps: first, express the probability density for 6 as the normalized 
product of two (N - 1)/2 particle partition functions, one with a volume [(V - 0)/21 + 6, 
the other with a volume [(V - 01/21 - 6; next, use the large-n form of Stirling's 
approximation, Inn! = nlnn - n + (1/2)ln(2xn), to show that the large-N probability 
density is proportional to exp[-2NS2/(V -  NO)^]; finally, compute the second moment 
from the resulting normalized Gaussian distribution, finding <6% = (V - N o ) ~ / ~ N ,  

The hard-rod partition function can also be used to illustrate one of the 
- 
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showing that the mean-squared displacement diverges linearly with N at any fixed 
density No/V. 

The one-dimensional hard-rod gas furnishes an interesting illustration of the 
reduction of an apparently complicated problem to a product of simple ones. The hard- 
rod partition function also provides us with a useful exact mechanical equation of state 
which we will later use to illustrate and test the Mayers' theory of dense fluids treated 
in Section 4.13. 

Problem: 
Work out the periodic-boundary canonical partition functions for one, two, 
and three hard-rod particles and show that they are related to the 
corresponding rigid-boundary canonical partition functions by the rule Zp = 
N[V/(V - No)]ZR 

4.3 One-, Two-, and Three-dimensional Ideal Gases 

classical and quantum statistical mechanics to macroscopic thermodynamics. These 
problems yield a wide range of results useful in both equilibrium and nonequilibrium 
problems. We begin with the simplest case, the canonical-ensemble treatment of the 
classical ideal gas. In the classical case there is no analog of the quantum uncertainty 
principle to couple the momentum and coordinate probabilities. In the classical case 
the momentum distribution, 

The prototypical ideal-gas problems are fundamentally important in connecting 

prob(p)dp = exp(-p2 l2mkT) dp /!exp(-p2 / 2mkT)dp = (2nmkT)-1/2exp(-p2/ 2mkT)dp I 

depends only on temperature, not on coordinates. This normalized probability density 
prob(p) is defined to be the limiting probability of finding a momentum in the interval 
dp centered at p as dp becomes small. "Normalized" means that the integral of prob(p) 
over its range is 1. 

The probability density can be used to calculate all of the moments c I p I n> in 
terms of the gamma functions, T((n+1)/2) : 

From the special results, T(1/2) = d / 2  and r(l) = 1, and the general recursion relation, 
T(n + 1) = nT(n), all of the moments follow easily. These results will prove to be useful 
in studying the properties of nonequilibrium low-density gases. 

of freedom, giving a factor of (27cmkT)1/2 for each one. If the interaction potential is 

h The classical momentum integration is always the same for independent degrees 



zero then the only role played by the potential function Q, = Q , B ~ ~  is to keep the particles 
in the volume V. In this case the coordinate integration likewise includes an 
independent factor of V for each particle. The product of the momentum integration 
and the coordinate integration, divided by N! to account for the indistinguishability of 
the particles, and by hDN to convert phase-space volume to the equivalent number of 
quantum states, is the classical canonical partition function for a monatomic ideal gas 
in any number D of dimensions: 

The thermal equation of state is E = DNkT/2 and the mechanical equation of state is 
PV = NkT. 

Problem: 
Consider a classical one-dimensional particle of mass m confined to the 
positive part of the x axis by a hard wall at x = 0 and interacting with a 
gravitational field, Ffield = -mg. Work out the canonical partition function, the 
internal energy, and the heat capacity. Is the heat capacity C, or Cp? 

The entropy from the three-dimensional ideal-gas canonical partition function is 
given by the “Sackuer-Tetrode formula,” 

Apart from negligible corrections of order l / N  exactly the same entropy follows from 
Gibbs’ microcanonical ensemble, 

,- 

if we use the formula from Section 3.3 for the volume of a 3N-dimensional 
hypersphere of radius (2mE)1/2: 

to work out S/Nk from (l/N)lnW(N,V,E). Because the number of quantum states can 
never be less than one it is evident that quantum effects, ignored in our classical 
ideal-gas calculation, prevent V/N from falling below h3e-512, where h is the de Broglie 
wavelength. 

The quantum ideal-gas partition function is fundamentally a sum rather than an 
integral. To work it out we need to sum over all sets of occupation numbers {Ni} for ,/ 

the single-particle energy states: 



with no restriction on the {Ni} for ”Bose statistics” and with all the {Ni} equal to 0 or 1 
for “Fermi statistics.” It is cumbersome to deal with these restrictions in the canonical 
ensemble. A simpler approach is the grand canonical ensemble used in Sections 4.11 
and 4.12 to discuss photons, phonons, and electrons. Here we only observe that if the 
minimum spacing between the single-particle states, h2/2mL2, is sufficiently small, the 
sets of (Ni} will have negligible degeneracy, as if all N values were distinct. In the 
absence of degeneracy there is exactly one symmetric many-particle wave function and 
one antisymmetric many-particle wave function. Consider for instance the description 
of a three-body system of identical particles occupying three one-particle states with 
wave functions a(x), p(x), and ~ ( x ) .  If the particles are bosons the corresponding three- 
particle wave function is the symmetric combination combination of 3! terms: 
(1 /3!)1/2[aiP2x3 + a2P3xi + aspix2 + aiPsx2 + a2Pix.3 + a3p2xiI. E the partides are 
fermions the corresponding three-particle wave function is the antisymmetric 
combination of these same terms: (1/3!)1/2[aiP2~3 + a$3x1+ a3p1x2 - a l P 3 ~ 2  - 
a2p1x3 - asP2~11. The N! different permutations of distinct particles among states 
obtained by expanding the product overcount, by a factor N!, the number of symmetric 
(Bose) or anti-symmetric (Fermi) many-particle states. Thus quantum mechanics gives 
exactly the same multiplicative factor of N! as does Gibbs’ classical statistical mechanics. 
In this limit, the “classical limit,” the many-particle partition function becomes l/N! 
times the Nth power of the one-particle partition function: 

In the classical limit the s u m  over states approaches a Gaussian integral over 
independent quantum numbers n, with the result: 

The classical (l/N!) corrects for the indistinguishability of the particles in this limit. It 
is important to recognize that the quantum and classical partition functions would be 
different, by exactly a factor of h-DN, unless the classical “phase integral,” 

1 included this same multiplicative factor. The comparison shows that for dilute gases 
individual quantum states must correspond to a classical phasespace volume (dqdp)#. 



In principle any material could be vaporized and converted into an ideal gas. Thus this 
result linking the number of quantum states and the classical phasespace volume is 
generally valid in the classical limit. We will see it again in comparing the quantum 
and classical partition functions for constrained rotors and vibrators. 

Problem: 
Planck's constant h is 6.626 x 10-34 jouleseconds. Show that the room- 
temperature de Broglie wavelength h(2mnkT)-l/2 of an electron is 
4 nanometers and that the room-temperature de Broglie wavelength for an 
argon atom is less than 10% of the atom's diameter (estimated from the 
interatomic spacing in the triplepoint solid, 0.40 nanometers). 

4.4 Two- and Three-Dimensional Rigid - Rotors 
The spacing of the quantum-mechanical molecular rotational and vibrational 

energy levels depends on the atomic masses and is largely unaffected by density 
changes. We follow tradition here and express the level spacings in terms of 
characteristic temperatures, B,t i h2/4$mr2k and edb P hv/k. For diatomic hydrogen, 
nitrogen, and iodine gases the rotational temperatures are respectively 88,3, and 0.05 
kelvins, orders of magnitude less than the corresponding vibrational temperatures, 
6300,3400, and 310 kelvins. In most cases the vibrational temperatures are so high that 
it is reasonable to treat diatomic molecules as rigid rotors over a restricted range of 
temperature. In this approximation the molecular center-of-mass degrees of freedom 
have the exactly the same translational states as do those of a point particle with the 
same mass. The rotational partition functions, on the other hand, have some 
interesting properties. We explore the simplest cases here. 

masses, m, are separated by a distance r, as is shown in Figure 4.3. In two dimensions 
the motion is restricted to the plane and the rotational Lagrangian is: 

To begin, consider a homonuclear diatomic molecule in which two identical 

The corresponding two-dimensional Hamiltonian, 
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Figure 4.3. Two-dimensional rigid-rotor 
diatomic molecule with Lagrangian 
m(r6)2/4. 

is identical to the Hamiltonian for a particle with ”mass” or ”moment of inertia” 
(mr2/2) in a periodic box of ‘length” Zn, and so the two-dimensional rotor has the 
same eigenvalues, n2h2/2mL2 = n2h2/4$mr2, and likewise must obey Bohr’s 
Correspondence Principle at high temperature. 

Problem: 
Compute and compare the canonical-ensemble heat capacities for the odd and 
even quantum numbers for the two-dimensional rotor. 

The phase-space description of the rigid-rotor Hamiltonian becomes more 
interesting in three dimensions. In spherical polar coordinates the corresponding 
three-dimensional Lagrangian and Hamiltonian functions are: 

L ~ D  = (mr2/4)[(8sin~)2 + $21 ; 

H ~ D  = [(pe/sin4)2 + p$/m2. 

The quantum eigenvalues are n(n+l)h2/4~2mr2, with degeneracies of (2. tl), 
corresponding to the discrete set of allowed values of the angular-momentum 
projection. Replacing the s u m  over states by an integral gives the high-temperature 
limit of the quantum canonical partition function: 

ZQ3D = C(2n+l)exp[-n(n+l)h2/41~2mr2kT] 

* (I /Z)~dx(2x+l)exp[-x(x+l)h~/4.n2mr2kT] = 2$mr2kT/h2 I 

-- where the prefactor of 1/2 corresponds to selecting either odd or even quantum 
numbers n so as to satisfy the Pauli exclusion principle. 

0 and @, as well as their conjugate momenta. It is important to notice that the phase- 
space integration contains no Jacobian corresponding to a transformation from 
Cartesian to polar coordinates. This illustrates the general rule that the phase-space 

The classical partition function for this same Hamiltonian is an integral over both 

?--. 



volume element is simply dqdp for the generalized coordinate q corresponding fo any 
degree of freedom: 

The h-2 is justified by applying the Bohr’s Correspondence Principle and the prefactor 
of 1 /2 preceding the integral corrects for overcounting indistinguishable configurations 
in the same way as does the (l/N!) introduced in the translational configurational 
integral. Any orientation of a homonuclear diatomic molecule described by the angles 
6 and @ is indistinguishable from the rotated (inverted) orientation with angles 8 k R 
and R - @. The (1 /2) is the reciprocal of the ”symmetry number” and accounts for the 
indistinguishability of the two ends of the rigid rotor. Because all six permutations of 
the three carbon atoms can result from rotations, the symmetry number for the 
triangular molecule “cyclopropane” is 6 rather than 3, as is discussed in more detail in 
Section 4.9. The symmetry number for the aptly-named cubic organic molecule 
”cubane,” C8H8, is 24 because each of the eight carbon atoms can be chosen to define a 
positive threefold axis of symmetry through the molecule. See Figure 4.4. 

function for a rigid rotor is 
The integration over pe and p$ gives xmr2kTsinq. Thus the classical partition 

Again the apparently arbitrary division by h2 in the classical partition function is 
justified by the resulting exact agreement with the quantum partition function 
calculated above. 

The dynamics of general three-dimensional rigid bodies requires three angular 
degrees of freedom, not just one. One angle describes the rotation of the body about an 
axis defined by the other two angles; these last can be chosen to be the usual spherical 
polar coordinates. See Figure 4.5. In an inertial Cartesian frame the instantaneous 
kinetic energy has the usual form: 

Figure 4.4. Cyclopropane and 
Cubane. The symmetry numbers, \ 

6 and 24, correspond to the 
number of equivalent 
configurations of the molecules 
which can be obtained by 
rotation. r” 
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where the sum is to be carried out over all masses in the body and the axes are chosen 
so that the moment of inertia tensor has only the diagonal elements Ixx, Iyy, and Izz. 
The Hamiltonian corresponding to this Lagrangian is: 

This formulation suggests the correct form for the canonical partition function, 
including an angle integration of 8x2 and a momentum contribution of (2~IkT)1/~ from 
each of the three principal moments of inertia: 

To generate the rigid-body dynamics it is simplest to consider Cartesian, rather 
than spherical polar, angular velocities {wx,wy,wz} measured in a comoving frame fixed 
in the body. To illustrate we choose the right-handed Cartesian frame for the brick 
shown in Figure 4.5, with the three moments of inertia (I, = b ( y 2  + 22) , Iyy = 

Cm(z2 + x2) , I, = Cm(x2 + y2)} chosen equal to 4,3, and 2, respectively. At any instant 
of time Euler's equations of motion (for derivations see Pars' or Landau and Lifshitz' 
texts) for the angular velocities R, oy, and o, are: 

Figure 4.5. Rigid right rectangular 
parallelepiped with principal 
moments of inertia 4,3, and 2. Two 
orientations of the rigid body are 
shown here. Three "Euler angles," 
including the usual two spherical 
polar coordinates, can be used to 
describe the orientation of the body 
but it is somewhat simpler to use 
Cartesian coordinates . 



If we begin by choosing orthonormal basis vectors (x,y,z) initially coinciding with the 
laboratory frame, we can keep track of the subsequent motion of the vectors in terms of 
the body-fixed instantaneous rotation rates: 

Problem: 
Follow the motion of a brick with (Ixx,In,I~} = {4,3,2}, as shown in Figure 4.5, 
with initial angular velocity o = {wx,~,o,) = (0,1,0} for 1000 time steps of length 
0.10 using the fourth-order Runge-Kutta method and determine whether or 
not the resulting motion is exponentially unstable to small changes in a. The 
brick cannof exhibit Lyapunov instability (long-time exponential instability) 
because conservation of energy and angular momentum restrict its state of 
motion to an intrinsically-nonchaotic two-dimensional state space. 

4.5 One-Dimensional Vibrator 
The one-dimensional harmonic oscillator is the epitome of stability. It is also the 

basic building block from which models of polyatomic molecules and crystalline solids 
are constructed. This same model also provides us with another chance to see that the 
quantum canonical partition function and the classical phase integrals agree within a 
factor of exactly h# where # is the number of degrees of freedom. 

The oscillator Hamiltonian is 

where m is the mass and K is the force constant. The classical partition function, 
including the multiplicative factor 1 /h required to convert from phase-space volume 
to quantum states, is the product of two Gaussian functions: 

where v is the oscillator frequency in hertz, 2m = o = (K/m)1/* and o is the "angular 
frequency" in radians/second. 

To compute the quantum mechanical canonical partition function, we begin with 
the energy eigenvalues {E, = (n + (1/2))hv) for a one-dimensional harmonic oscillator. 
The sum over these energy states is a geometric series, with successive terms differing 
by a factor of e-hV/kT = e-X: 

h 
/ 
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Figure 4.6. Variation of Quantum and 
Classical oscillator energies with 
temperature. The difference at low 
temperature is the "zero-point energy" of 
hv/2. 

kThu 2 

where x is the reduced energy hv/kT. From the quantum Helmholtz free energy AQ 
the internal energy E can be calculated as a function of temperature. See Figure 4.6. At 
low temperatures, where the reduced energy x is large, the energy-state series 

converges rapidly. Differentiation confirms that the low-temperature limiting zero- 
point energy E(0) = kT(alnZ/alnT),, coming from the first term of the series, is equal to 
the ground state energy, hv/2, and that the low-temperature large-x heat capacity 
vanishes as x2e-X. 

Correspondence Principle. The quantum partition function can be expanded for small 
x = hv/kT by working out the ratio of the series for e-X/2  and 1 - e-X: 

The opposite high-temperature limit offers yet another confirmation of Bohr's 

[I - (x/Z) + (x2/8) - (x3/48) + (>P/384) - ... ]/[x- (x2/2) + (x3/6) - (+/24) + (xS/l2O) - ...I = 

(l/x)e~p[-(~~/24) + (>P/2880) - .-. I , 

where (l/x) = kT/hv reproduces the high-temperature classical result and the sum of 
the series in x in the exponent is proportional to the 'Wigner-Kirkwood series," which 
expresses quantum corrections to the classical Helmholtz free energy as a power series 
in Planck's constant h. 

ensemble expression for the constant-volume heat capacity, 
The harmonic oscillator provides an interesting application for the canonical- 
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Figure 4.7. Heat capacity for quantum 
and classical oscillators. The area of the 
shaded region is 1 /2, corresponding to 
the zero-point energy, hv/2. 

CV - 
k 

0 
0 kT/hu 2 

In the classical case 
(kT)2, leading to the constant singleoscillator heat capacity k. For a harmonic oscillator 
the quantum energy always exceeds the classical value and the quantum heat capacity is 
always less, lying below the classical value by k at low temperature and approaching the 
classical value from below at high temperature. The excess energy in the quantum case 
can be calculated by integrating the heat capacity: 

= <@ + 2lW + @> = (3 + 2 + 3)(kT)2/4 is 2(kT)2 and <E>* is 

Then, from Bohr's observation that the two energies must agree at high temperature, 
we see that the zero-point energy, EQ(O) - Ec(O), must be equal to the integrated area 
between the classical and quantum heat capacity curves. See Figure 4.7. This example 
is a good illustration of the way in which Gibbs' statistical mechanics makes it possible 
to obtain information about microscopic Hamiltonians directly from macroscopic data. 

Problem: 
Show that the probability density for finding a classical one-dimensional 
oscillator with Hamiltonian H = (1/2)(q2 + p2) in the coordinate range dq about 
q diverges at the turning points, with prob(q) = (l/x)[2H - q21-1/2 , in agreement 
with the calculation in Section 3.2. Show that for a two-dimensional oscillator 
the probability for finding an oscillator in the range dxdy is a consfanf for all 
accessible values of x and y: 

Show that a three-dimensional oscillator has maximum configurational 
probability density at the origin. Hint: For a function f(x) which vanishes at x, 
the relation 6(f(x)) = 6(xJ/(df/dx) holds. 

Jjdp,dpyG(W = pz + p$ + x2 + y2) = I . 

- 
i 
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4.6 One-Dimensional Harmonic Chain 
By using Hooke’s-Law oscillator springs to couple arrays of masses together, with 

the resulting frequencies chosen to match experimental frequency spectra, we can 
construct simple microscopic models for solids, glasses, and polyatomic molecules. In 
this Section we determine the properties of a one-dimensional chain of identical 
masses coupled by Hooke’s-Law springs. I repeat the warning that most one- 
dimensional systems, including these oscillator systems, are atypical because their 
phase-space trajectories are stable. The one-dimensional chain also displays the same 
diverging particle displacements, with increasing system size, as does the hard-rod 
system. Nevertheless both the hard-rod and the harmonic-chain models are extremely 
useful idealizations of real behavior. 

In most cases the oscillator frequencies are relatively high. Typical crystal 
vibration frequencies of v = 1013 hertz correspond to characteristic temperatures T = 
hv/k of nearly a thousand kelvins, so that quantitative room-temperature calculations 
require a quantum treatment. Nevertheless, the corrections to the classical partition 
functions are often small. Note the small coefficients in the Wigner-Kirkwood series 
given in Section 4.5 for a single oscillator. The classical canonical partition function for 
a many-body chain can be evaluated either by working out the classical phase integral 
or by separating the Hamiltonian into independent contributions from the normal- 
mode vibrations. We consider both methods for the one-dimensional harmonic chain 
and show explicitly that they lead to identical results. 

Figure 4.8, in which N identical masses interact with each other and with two confining 
walls with Hooke’s-Law springs, all with the same force constant K. The corresponding 
Hamiltonian is a simple quadratic form leading to a canonical partition function which 
can be integrated by completing the square. To show the power of inductive reasoning 
we first work out examples for N = I, 2, and 3 masses coupled to one another and to the 
two boundaries, by N + 1 springs: 

Consider a nearest-neighbor Hooke’s-law chain, such as the one shown in 

Figure 4.8. Five-Particle One-Dimensional Hooke’s-Law Chain. 
A 



<p3 = ( K / 2 ) [ 4  + (XI - X2)2 + (X2 - X d 2  + X$ . 

The corresponding integrals can be converted into products of iterated Gaussian 
integrals by repeatedly "completing the square.'' For example, 

= K[(X* - (1 / ~ ) X Z ) ~  + (3/4)(~2 - (2/3)~3)2 + (2/3)~3 . 

The one, two-, and three-body partition functions obtained in this way have the 
following forms: 

from which it is easy to guess the form of the general case. 

one-dimensional chain can be written in terms of the set of reduced coordinates {y = 
x(K/mkT)I/2), leaving a dimensionless integral over the {y} to work out. The integral 
can then be calculated directly by using a general result for Gaussian integrals: 

To derive the general case directly, notice that the configurational integral for any 

where Det is the Determinant of the symmetric force-constant array K. For an N- 
particle chain, the corresponding determinant has a diagonal filled with ones and 
adjacent off-diagonal elements of -1/2. The final result for the set of canonical 
partition functions is 

in agreement with the special cases worked out above. 

Problem; 
Derive a recursion relation linking the determinant of the N-particle 
symmetrized N x N force-constant matrix to the analogous determinants for 
N - 1 and N - 2 particles. Show that this result is consistent with the partition 
function just given. 
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There is yet another elegant alternative to computing the partition function by 
completing the square or by using Gaussian integration. This alternative uses the 
normal-mode solutions of the equations of motion. The equations of motion for a 
one-dimensional chain can be written in terms of the particle coordinates {xj}: 

A 

or in terms of the displacements {5$ of these coordinates relative to the rest positions 
<xi> = j d  

a 

where the subscripts indicate contiguous positions along the chain. Any solution of 
these equations of motion can be expanded in a Fourier time series. The unusual 
feature for a chain is that the Fourier coefficients are constant. The initial conditions 
determine the solution for all time. From the standpoint of equilibrium statistical 
mechanics all we need do is to select those solutions which satisfy our desired 
boundary conditions. If we assume that the motion of the ith coordinate is a 
superposition of waves with wavelengths {&) = {2X/kn}, which oscillate with 
frequencies (On}, we must find the N independent ”normal-mode” solutions: 

where 6j is the displacement of the jth atom from its equilibrium position jd. We find 
that the solutions satisfying the equations of motion all yield the same “dispersion 
relation” for the dependence of frequency on wavelength 

By separating the N-particle chain Hamiltonian into separate Hamiltonians, one for 
each “mode” of vibration, n = I, 2’ ... N, the partition function can again be written as a 
product. For our rigid-wall boundary conditions the solutions are sine waves that 
vanish for artificial motionless boundary particles corresponding to j = 0 and j = N + I. 

the 5-particle chain. In this case the particle amplitudes are proportional to sines of 
angles which are multiples of ( ~ / 6 ) .  The corresponding frequencies, 

To illustrate let us use the general solution to find the five vibrational modes for 

follow easily from the dispersion relation with k, = (2m/6d). h 



The corresponding canonical partition function for the fiveparticle crystal is the 
product of normal mode partition functions: 

where the 6 comes from the product of normal mode frequencies. Notice that the 
partition function agrees with our calculations based on completing the square or 
evaluating the force-constant determinant. Periodic one-dimensional chains can be 
treated in the same way. The same dispersion relation describes also the vibrational 
modes of a six-atom periodic crystal, with n = 0, +I, S , 3 .  

rotation of the phase-space coordinate system, the determinant of the force constant 
matrix is unchanged, giving a simple derivation of the Gaussian-integral approach to 
the partition function. Likewise the trace of the matrix, proportional to the second 
moment of the frequency distribution, is unchanged. For either boundary condition 
the mean squared frequency is always 2(~/m) .  

The inverse second moment has intrinsic physical interest. It is proportional to 
the mean squared displacement of the particles about their equilibrium locations. The 
corresponding "thermal cross section" is responsible for the scattering of xrays, 
neutrons, and sound waves. Again, the phase-space rotation to normal-mode 
coordinates makes it possible to show that the modes make additive contributions to 
the total mean-squared displacement: 

Because the linear transformation to normal-mode coordinates can be viewed as a 

where En is the energy in the nth normal mode. From the analytic form of the 
dispersion relation it is easy to show that the pathological linear divergence of < l j b  in 
one dimension has the form 4% = (N+l)(kT/~)/l2 for periodic boundaries. The 
wavelengths with rigid boundaries are effectively twice as large. The mean value, over 
the chain, of e@> diverges as (N+2)(kT/~)/6 for rigid boundaries. 

Problem: 
Integrate the probability density for the particle displacements in a one- 
dimensional rigid-boundary chain, exp(4N/ kT) /I ... lexp(dN/kT)dxN over all 
but one of the displacement coordinates. In this way show that the mean- 
squared displacement for the jth particle in a chain with rigid boundaries is 
given by <62>j = (kT/K)j(N+l-j)/(N+l). 

-.\ 

4.7 Two- and Three-Dimensional Ouasiharmonic Crvstals 
The one-dimensional crystal is a special case yielding a simple sinewave 

dispersion relation o = 2(~/rn)l/~sin(kd/Z) = 2(1c/m)l/~sin(xd/h) linking the crystal 
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vibration frequencies to the allowed wavelengths (h}. For the one-dimensional chain 
and the two-dimensional closepacked triangular lattices the corresponding dispersion 
relations lead to known analytic forms for the partition functions. The three- 
dimensional close-packed lattices, face-centered cubic and hexagonal closepacked, are 
both sufficiently complicated that their free energies have only been determined 
numerically. 

these simple models because numerical evaluation is absolutely required, the 
underlying mathematics is unchanged. In fact a numerical calculation of the free 
energy is relatively straightforward and easy to check. The calculation is simplest for 
periodic crystals with only a single atom in the spatially-periodic repeating structural 
unit, the "unit cell." In such a case the three-dimensional problem reduces to the 
solution of three simultaneous equations and the two-dimensional problem to two 
simultaneous equations. See Figure 4.9. 

illustrate the geometric difficulties but simple enough that some analytic results can 
still be obtained. The two-dimensional square lattice is not mechanically stable to shear 
with nearest-neighbor forces. Parallel displacements of neighboring rows of particles 
induce no linear restoring forces. Accordingly we consider the close-packed triangular 
lattice, in which each particle has six neighbors. We choose the rest position of one 
particle at the origin (0,O) and indicate its six neighbors by subscripts illustrated in 
Figure 4.10 and corresponding to displacements paralleling the oblique coordinate 
directions shown in Figure 4.9. If we choose a nearest-neighbor potential energy 
function (K/Z)(r - dI2, where d is the rest length of the Hooke's-Law springs, we can 
calculate the forces on the origin particle as a function of small displacements from 
equilibrium. The linearized equations of motion for the particle located at the origin 
(so = yoo = 0) become: 

Although the situation in real crystals may seem even more complicated than 

We will work out the simplest nontrivial example here, complicated enough to 

Figure 4.9. Sixteen-particle two- 
dimensional harmonic crystal. Stable 
triangular-lattice structure. 



O +  P 
Figure 4.10. Nomenclature for 
the six nearest neighbors in the 
triangular-lattice structure 
illustrated in Figure 4.9. 
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Just as in one dimension, the solutions of these coupled linear equations are sine 
waves, of the form (X,Y)exp[ik*r - iwt], where the {r} are the fixed lattice coordinates 
about which the particles vibrate. The spatial part of the phase, expjik~], vanishes at 
the origin particle. If we substitute this complex solution into the equations of motion 
we obtain a purely-real dispersion relation linking the angular frequency of vibration, 
w, to the interatomic force constants and the atomic masses. By evaluating the solution 
for each value of k consistent with the periodic boundary conditions, the 
thermodynamic properties can be calculated. 

have three solutions for every k. In the two-dimensional crystal considered here there 
are only two. We illustrate them in the simplest case. If the wave propagation 
direction coincides with the x axis, so that k = (k,,O), the coupling between the x and y 
displacements vanishes, producing a longitudinal mode, with motion parallel to the x 
axis, and a transverse mode, with motion perpendicular to that axis. In this special 
case, after dividing out a common factor of e-iat from both sides, the equations of 
motion simplify to 

A three-dimensional crystal, with X, Y, and Z displacement amplitudes, would 

i 

-m&X = ~[2cos(k,d) + cos(kxd/2) - 31X ; 

-mdY = ~[3cos(k,d/2) - 3]Y . 
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In the long wavelength limit, corresponding to small k, these two equations give the 
longitudinal and transverse sound velocities: 

As a consequence of the linear-elastic isotropy of the triangular lattice, these same 
longitudinal and transverse sound velocities result, in the long wavelength limit, for 
any propagation direction. 

In order to calculate the free energy for a crystal following this approach it is 
necessary to average over all of the crystal‘s normal modes of vibration. There are 
exactly 2N such modes corresponding to N periodically repeating k-space (often called 
”reciprocal-space”) points. The modes depend on the shape of the repeating unit 
chosen, but with fixed shape and increasing size, the resulting frequency distribution 
and free energy per particle approach limits independent of crystal shape. For the 
simplest situation, with one particle per unit cell, the natural cell shape is a 
parallelogram. Then the corresponding fundamental sampling region in k space is also 
a parallelogram, but it is more conventional to use an equivalent region, the “First 
Brillouin Zone,” as shown in Figure 4.11 for the triangular lattice. This choice 
corresponds to choosing the longest wavelengths possible for each lattice vibration, by 
sampling a region as close as possible to the k space origin. The sampling of points 
representing lattice vibrations in this hexagonal region only achieves hexagonal 
symmetry in the limit that the crystal becomes infinite in size. 

This triangular-lattice nearest-neighbor crystal is particularly well-suited to 
analytic study. Huckaby obtained an exact expression for the infinite-crystal free energy 
per partide. The periodic bulk-crystal calculations described here can be generalized to 
describe surface modes of vibration, ”Fkyleigh Waves.” See Figure 4.12. By using 
cornpZex k-space vectors to damp the motion within the crystal, surface Rayleigh-wave 
vibrations appear as linear combinations of longitudinal and transverse waves chosen 
to satisfy a boundary condition of vanishing normal stress at the crystal boundary. 

Figure 4.11. “Reciprocal space” first 
Brillouin zone, containing those k 
vectors describing periodic lattice waves 
which lie closest to the origin. The 
shortest wavelengths which can be 
propagated parallel and perpendicular to 
the close-packed planes are indicated. 
The hexagonal portion of a triangular 
lattice indicates the relative orientation 
of the lattice planes and the Brillouin 
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1 zone. 
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Figure 4.12 Bulk and surface wave 
frequencies in the Triangular 
Lattice. Bulk modes, longitudinal 
and transverse, propagating parallel 
to the close-packed directions are 
described by the curves extending 
from kd = 0 to kd = 4x. The two 
shaded regions indicate all bulk- 
mode frequencies, independent of 
direction. Surface YRayleigh” 
waves, parallel to the close-packed 
directions, are described by the two 
dispersion relations R. 

The lower branch of surface vibrations turns out to have exactly the same sinusoidal 
dispersion relation as does the one-dimensional chain, but with a long wave limiting 
veloaty, called the Rayleigh veloaty, somewhat less than the transverse sound speed. 

Problem: 
1. Show that the same sound speeds, CL and q, are obtained in the long 

wavelength limit for a wave propagating perpendicular to the x axis, with 
k = (O,ky). 

2. Work out the classical canonical partition function for three two-dimensional 
particles with equal masses m linked together in the shape of an equilateral 
triangle by three identical Hooke’s-Law springs, each with force constant K. 
Include all of the translational, rotational, and vibrational degrees of freedom. 
Choose the zero of energy to correspond to the least-energy state of the 
“molecule.” 

4.8 Einstein and Debve models 
Because it is tedious to compute the exact frequency distribution it is natural to try 

simple approximate models. Figure 4.13 compares the simplest two such models with 
the exact distribution for the triangular lattice. The simpler of the two approximate 
models for the vibrations of a crystal lattice is called the Einstein model or the ”cell 
model” and corresponds to letting each particle vibrate in the “cell” imposed by the 
potential field of its fued neighbors. With a nearest-neighbor Hooke’s-Law potential 
the restoring force for a small displacement 6, is - 2 ~ 8  in one dimension, because there 
are two interacting neighbors. In two or three dimensions the restoring force exerted by 
a neighboring particle is - K ~ C O S ~ ~  where a is the angle between the displacement 
direction and the interacting Hooke’s-Law neighbor. Summing these contributions 

I? I 
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over all nearest neighbors, six in two dimensions and twelve in three, gives Einstein- 
model restoring forces of - 3 ~ 6  in two dimensions, for the triangular lattice, and 4 ~ 6  in 

Figure 4.13. Exact frequency 
distribution for the Triangular 
Lattice. The distribution has two 
integrable singularities. The linear 
Debye distribution and the Einstein 
frequency are indicated. 

three dimensions, for either close-packed arrangement, face-centered cubic or 
hexagonal. Although neither of these last two crystals is elastically isotropic a Taylor's 
series expansion of the linear restoring force for a single-particle motion is isotropic for 
the first nonvanishing term linear in the displacements. Thus the Einstein frequencies 
for the one-, two-, and three-dimensional closepacked crystals are (2K/m)1/2, ( 3 ~ / m > l / ~ ,  
and (4~/m)1/2, respectively. 

The second moment from this one-frequency Einstein model is exactly correct for 
harmonic systems. This is because the trace of the force-constant matrix is invariant to 
a phase-space rotation such as the rotation diagonalizing the Hamiltonian. But the 
inverse second moment is qualitatively wrong in one dimension, where the Central 
Limit Theorem establishes that the mean squared displacement, and hence this 
moment, must diverge. The inverse second moment according to the Einstein model, 

is qualitatively wrong in both one and in two dimensions. The Einstein-model 
prediction is always, finite while both one- and two-dimensional crystals have mean- 
square displacements which diverge as the number of particles increases. Because these 
results follow from the Central Limit Theorem they apply in both the classical and the 
quantum cases. The divergence is linear in one dimension and logarithmic in two. 
The quantum Einstein model also predicts too low a heat capacity, at low temperature, 
as we saw in Section 4.5. 

with lengths varying in scale from the interatomic spacing up to the size of the crystal. 
The Debye model gives a qualitatively correct description of the long wavelength 

To go beyond the Einstein model it is necessary to consider a distribution of waves 

P. 



crystal vibrations and qualitatively improved predictions for the mean-squared 
displacement and heat capacity. 

an isotropic continuum. In three dimensions the possible "planewave" excitations of 
a continuum {exp(2rcin.r/L)} can be labelled by triples of integers {nx,ny,nz}. For 
isotropy, waves with the same value of n = (nz + n$ + 
vibrational frequency, o = 2m = (2rccn/L), where c is the sound speed and h = L/n is the 
wavelength. n u s  in D dimensions the number of planewave modes with 
frequencies less than o [corresponding to sets of integers less than (vL/c)] varies as OD. 
The number of modes in a real system with # degrees of freedom is exactly ## while the 
number of modes available in a continuum is infinite. To correct this deficiency of the 
continuum description, the frequency distribution is arbitrarily cut off at a maximum 
frequency ODebye, such that the total number of modes is DN. For all of the included 
vibrations the wavelength h and frequency o are assumed to be related by the exact 
long-wavelength dispersion relation: 

The Debye model begins by ignoring atomistic details and picturing the crystal as 

must have also the same 

0 = 2m = ck = 2xc/h. 

The averaged sound velocity c can be chosen by fitting the second moment of the 
frequency distribution or by fitting the long wavelength sound velocity. Because these 
two slightly different ideas are qualitatively similar we will adopt the simpler first 
approach, avoiding the necessity for averaging the longitudinal and transverse sound 
velocities, and setting the ratio of the Debye and Einstein frequencies to force 
agreement of the second moments: 

in D dimensions. 

and the mean squared displacement can be calculated and compared to the 
corresponding exact results from the equations of motion. In one dimension for 
instance the exact Helmholtz free energy per particle, obtaining by averaging 
kTln(hv /kT) over the distribution of frequencies, lies below the Einstein-model 
prediction, kTln(hVEinstein/ kT), by kTln(Z1/2). Analytic work in two dimensions, using 
Huckaby's result, and numerical work in three dimensions completes the series of 
results for one, two-, and three-dimensional close-packed crystals: 

From either of the Debye or the Einstein model approximations the free energy 



Because the Einstein cell model predicts the correct value for the classical internal 
energy, E = NDkT in D dimensions, these same results can equally well be expressed in 
terms of the excess entropy: 

(S - SEinstein)/Nk = +0.347 ; +0.273 ; +0*247(FCC) ; +0.245(HCP) . 

The Debye model is qualitatively correct in predicting linear and logarithmic 
divergence of the mean-squared displacement in one and two dimensions. The 
predicted three-dimensional result, 

is high by about 7% for face-centered cubic close-packed crystals with nearest-neighbor 
Hooke's-Law forces. The free energy and entropy errors due to the Debye model: 

(S - s~,b,)/Nk = -0.203 ; -0.073 ; -O.OOS(FCC) ; -O.OlO(HCP) I 

are modest improvements over the Einstein model. 

Problem; 
Calculate the Einstein frequency numerically for a nearest-neighbor Lennard- 
Jones potential $(r) = 4(r-*2 - r-6) in a two-dimensional triangular lattice with 
nearest-neighbor spacing equal to 21/6. Do this by moving one particle a small 
distance 6 and computing the change in energy, 8$ = (1/2)1~instein6*. Show that 
the energy change becomes independent of direction for small 6. 

4.9 Three-Dimensional Polvatomic Molecules 

springs (including noncentral angular forces proportional to small conformational 
changes), then the resulting Hamiltonian can be written, 

If the atoms in a polyatomic molecule are all linked together by stiff Hooke's-Law 

where the translational, rotational, and vibrational Hamiltonians have the quadratic 
forms we have already studied in this Chapter. The canonical partition function, from 
which the Helmholtz free energy and thermodynamic properties can be derived, 
follows directly from the assumed Hamiltonian. 

Let us illustrate the general approach with a single simple example, the triangular 
organic molecule cyclopropane, CsHe The geometry of the molecule appears in Figure 
4.14. A description of the locations of all 9 atoms requires 27 Cartesian coordinates SO 
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Figure 4.14. Geometry of C&, 
cyclopropane. The z axis, about 
which the molecule has threefold 
rotational symmetry, is indicated. 
The basic structure is an equilateral 
triangle of carbon atoms. The 
carbon-carbon bond length is 0.1515 
nm; the carbon-hydrogen bond 
length 0.108 nm, and the hydrogen- 
carbon-hydrogen angle 115.5 degrees. 

that the cyclopropane molecule has ## = 27 degrees of freedom. Of these, three locate the 
center of mass and make a multiplicative contribution to the partition function: 

where m is the molecular mass, (3 x 12 + 6 x 1)/(6.023 x 1023) grams for cyclopropane. 
To evaluate the rotational partition function for cyclopropane we begin by 

constructing the moment-of-inertia tensor, adding up the components of the dyadic 
array Xmiriri, with the {ri} measured from the center of mass. Evidently the 
Lagrangian for rotational motion is a quadratic form including these sums and 
corresponding angular velocities. For cyclopropane we choose a coordinate system 
with the z axis perpendicular to the plane of the carbon atoms so that the tensor is 
diagonal, with I, = Iyy =: (1 /2)IZz See Figure 4.14. 

Problem: 
Use the data quoted in Figure 4.14 to compute the moments of inertia for 
cyclopropane. 

The rotational partition function is: 
,, 

where the symmetry number of six corresponds to the six equivalent orientations of - 
the cyclopropane molecule. The remaining 21 degrees of freedom are vibrational and 



these can be determined by fitting microscopic force-constant model to experimental 
data. For each of these vibrations the contribution to the partition function has the 
same form: 

The single-molecule partition function, Z = ZTZRZV, or equivalently the 
Helmholtz free energy, -kT(lnZT + 1 n Z ~  + InZv), can be calculated in this way for any 
polyatomic molecule for which the required stmctural and vibrational information is 
available. In the next Section we indicate how such properties of individual molecules 

, can be used to predict the result of chemical equilibria. 

4.10 Chemical Reactions 

simplified chemical-equilibrium calculation. Real calculations involve the 
determination of moments of inertia and vibrational frequencies from experimental 
data. The symmetry of nuclear spin states imposes requirements on the rotational 
quantum numbers. To avoid intricate details we illustrate the idea by considering a 
purely-classical three-dimensional equilibrium system in which homonuclear A2 
molecules can dissociate to form pairs of A atoms of atomic mass m. First, for 
simplicity, we consider the calculation as if all the particles were distinguishable. Then 
the distinguishableparticle partition function ZD for N1 atoms and N2 molecules, with 
the total number of atoms N = N1+ 2N2 fixed, can be written as a simple product: 

We can illustrate the usefulness of molecular partition functions by considering a 

-"- 

The numerical factors in the first expression for the N-atom partition function arise as 
follows. The first factor, in brackets, is the binomial coefficient describing the number 
of ways to divide N distinguishable particles into two groups, an "atomic" group with 
N, members, and a "molecular" group, with 2N2 members. The next two terms, 
[2N2!/N2!](l/Z)N2, give the number of ways in which the 2N2 members of the 
"molecular" group can be linked in pairs to form N2 diatomic molecules. The factor of 
1/2 arises for each molecule because the order in which the two atoms forming the 
molecule are chosen is immaterial. The rotational partition function is twice as large 
as it would be were the particles indistinguishable. Finally, the energy E is the static 
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zero-temperature binding energy of the diatomic molecule relative to two isolated 
atoms and the vibrational frequency of the molecule is v. 

indistinguishable. The partition function for indistinguishable atoms is less, by exactly 
a factor of N!, than that for distinguishable particles. This can be seen in detail by 
writing the partition function as a product of partition functions for indistinguishable 
atoms and molecules: 

Now consider the more-physical situation in which the atoms are 

Because the atoms are indistinguishable the molecular partition function 2 2  is only 
half that calculated above: 

The two partition functions differ by exactly a factor of ZD/ZI = N!, in accord with the 
notion that distinguishability cannot affect the composition of the equilibrium state. 

To find the equilibrium composition for either system, distinguishable or 
indistinguishable, with the volume and temperature fixed, we find the composition 
which maximizes the partition function Z, equivalent to minimizing the Helmholtz 
Free Energy. The partition-function maximum must occur when the reaction induced 
by a further dissociation N1 + N1+ 2 and N2 + N2 - 1 makes no change in the 
partition function: 

Thus, for large N1, the equilibrium constant K,, giving the ratio of diatomic-molecule 
concentration to the square of the atom concentration becomes, 

The calculation of chemical equilibria from spectroscopic information is one of the 
most useful applications of equilibrium statistical mechanics. 

If the constraint of fixed total mass were imposed by using a Lagrange multiplier 
then a variational calculation minimizing the Helmholtz free energy would show that 
the Lagrange multiplier is the thermodynamic "chemical potential" pi divided by k T  

?, 

In thermodynamics, the equilibrium condition, corresponding to maximizing the 
partition function, is that the total chemical potential change ZpiANi vanishes. 

/ 

~ ~ ~ _ _ _ _ _  



h 

4.11 Phonons and Photons 
Analysis of quantum systems is complicated by the requirements of the Pauli 

Principle. The Pauli Principle makes quantum calculations in the microcanonical and 
canonical ensembles unduly cumbersome. Instead it is much more convenient to sum 
over N and treat quantum ideal gases using Gibbs' grand partition function: 

The grand partition function can be related to thermodynamic properties just as we did 
the microcanonical and canonical ensembles. The connections with thermodynamics 
are as follows: 

In the ideal-gas case energy states are products of independent singleparticle states so 
that the canonical partition functions occurring in the sum over N are products of 
Boltzmann factors for each occupied state: 

Particles obeying Fermi statistics are restricted to Ni values of either 0 or 1. AZZ such 
combinations result if the product over aZ2 single-particle states n[l+ zexp(-Es/kT)lfl, is 
expanded. Particles obeying Bose statistics are not so restricted. Any level of occupancy 
is acceptable, so that the corresponding Bose product, over all single-particle states, is 
n&+kxp(-nEs/kT) = n[l - zexp(-Es/kT)I-l. Both the Fermi and the Bose results can be 
summarized in a single expression for the Grand Partition Function, 

with the plus sign corresponding to Fermi statistics and the minus sign to Bose 
statistics. 

sufficiently large systems the resulting boundary-dependent partition function becomes 
independent of the boundary conditions to order N-l/D so that either rigid or periodic 
boundaries can be used. For a periodic ideal gas composed of particles with mass m and 
energies E, = (n2h2/2mL*) these oneparticle states are plane-wave states. The single- 
particle stationary states satisfylng rigid boundary conditions E,,0 = (n2h2/SmL2) lead to 
equivalent results in the large-system limit. 

In this Section we consider the behavior of two kinds of boson systems which 
require quantum mechanics for their accurate treatment, radiation, "photons," and 
lattice vibrations, "phonons." Both types of excitations have no mass and are usually 

For small systems the type of boundary influences the allowed energies {Es}. For 



pictured as waves. Both types of waves are bosons and can therefore occupy the same 
quantum state repeatedly. Such a situation cannot arise in classical statistical 
mechanics because the classical energy is continuously variable so that there is no 
probability that particles share the same energy. The phonons resemble photons only 
at sufficiently low temperatures. When the density of states falls below the ideal value 
due to dispersion the phonon energy falls below that which we calculate below and 
saturates at kT per lattice mode. 

the energy, frequency, and inverse wavelength proportional to the speed of light for 
photons and the speed of sound for phonons, respectively: 

The mathematics of photons and phonons at low temperature is similar, but with 

The grand partition function for either type of boson is 

E(z,V,T) = n[ 1 - zexp(-Es/kT)l-l , 

where the product includes all single-boson states. It is convenient to classify these 
single-particle energy states according to the set of quantum numbers n = (nx,ny,nz), 
where the magnitude of the quantum number n is related to the wavelength h, and 
energy E, = En : 

., 

E = hv = hc/h = nch/V*/3. 

Because the total number of photons and phonons is unrestricted, as is also the 
number occupying each energy state, the partition function can be automatically 
maximized by setting (alnZ/aN)v T equal to zero, or, equivalently, z = exp(p/kT) to 1. 
Thus the low-temperature chemical potential vanishes for photons and phonons. 

The degeneracies of these two kinds of excitations are different. For every 
quantum-number choice n there are two separate photon states, corresponding to the 
two transverse polarization directions of light, and three separate phonon states, 
corresponding to the longitudinal and two transverse branches of the dispersion 
relation. Accordingly the grand partition function at equilibrium, explicitly taking 
degeneracy into account, has the form: 

E(V,T) = nil- exp(-E,/kT)]-@ , 

where the degeneracy Coefficient, @, is equal to two for photons, corresponding to the 
two possible polarizations for transverse waves. For phonons with a given wave 
vector the longitudinal and transverse vibrational frequencies generally differ. In that 
case the degeneracy coefficient of three represents a product over the three separate 
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phonon modes. With this simpued notation the logarithm of E(z=l,V,T) can then be 
written as an integral over the quantum number n, 

lnZ(V,T) = -d4m2dnln[l- exp(-En/kT)] = PV/kT . 

The derivative of the integral with respect to temperature then completes the 
thermodynamic information by providing the internal energy: 

In the case of radiation, with degeneracy 8 = 2, it is usual to express the energy in terms 
of the Stefan-Boltzmann constant 0: 

This expression defines that constant and results from an evaluation of the definite 
integral Ix3dx/[ e+x - 11 = &/15 = 6.4939. 

h Problem: 
Either rewrite the integral as a sum and evaluate the sum, or use Runge-Kutta 
integration to verify the numerical result just given. 

From the dependence of the photon and phonon energies on temperature and 
volume it is easy to show that Gibbs’ free energies for these systems vanish. In either 
case differentiation of the energy to find the constant-volume heat capacity gives Cv = 
4E/T. Then, integrating (Cv/T) with respect to temperature gives for the entropy S/k = 
(4/3)E. Finally, the Helmholtz Free energy is -E/3 and E - TS + PV = G = 0. Gibbs’ free 
energy vanishes whenever the Helmholtz free energy is linear in the volume, G = 

A + PV = A - (aA/alnV)T, and in this case reflects the physical fact that photons can be 
created automatically in such a way as to minimize the Gibbs free energy. 

The different values of the sound and light speeds entering into the photon and 
phonon energies make these systems interesting in very different regimes. For 
photons a temperature exceeding 50,000 kelvins is required before the photon pressure 
reaches atmospheric pressure. Thus radiation pressure is mainly of interest to 
astrophysicists and bomb designers. On the other hand the phonon heat capacity obeys 
the simple T3 behavior only so long as the thermal energy is much less than the 
maximum energy, kT << hvEinstein. 

--. 
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4.12 Electrons in Metals 

electrons separated by one atomic diameter have an interaction energy of a few electron 
volts, equivalent to a temperature exceeding 50,000 kelvins. At the same time the 
localization energy of the electrons, h2/(2mL2) is nearly ten times larger. 

But qualitatively convincing experimental evidence for this electron-gas view is 
indicated in the Figure 4.15. The heat capacity for lithium definitely becomes linear in 

It seems peculiar that electrons could be treated as ideal in any sense, because two 
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Figure 4.15. Low-temperature heat 
capacity of lithium. The grey area 
indicates the range of data, plotted so as 

t o z  to separate the linear T1 electronic 
contribution from the cubic T3 lattice 
heat capacity. The intercept, which gives 
the coefficient of the .linear contribution 

temperature in the regime below about 2 kelvins where the phonon heat capacity of 
the lattice, proportional to T3, can be ignored. Electrons in metals show quantum 
effects because their mass is relatively small. Let us calculate the heat capacity for an 
ideal Fermi gas for comparison with the experimental electronic heat capacity. 

expressed as a sum over single-particle states, 
Electrons have a twofold spin degeneracy so that the grand partition function, 

S(z,V,T) = n[l + zexp(-E,/ kT)]+2 , 

where the plus signs identify the electrons as fermions, gives for the electron energy 
and the number of electrons: 

cE/kT> = (alnS/alnT)v ; <N> = (alnS/alnz)v ; 

<N> = @j4n2dn[zexp(-En/ kT)] / [ 1 + zexp(-E,/ kT)1= 

"\ 
where 0 is the spin degeneracy of 2. The chemical potential needs to be selected to 
reproduce the correct number of electrons. For lithium at 13 cm3/mole p is 5 electron / 
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volts. A numerical evaluation of the integral leads to a predicted heat capacity half that 
shown in the Figure, reflecting the inhomogeneity in the ”electron gas” induced by the 
lattice of positive ions. 

Problem: 
Use numerical integration to determine the chemical potential for the 
conduction electrons in lithium metal, one per nucleus, in order to reproduce 
the molar volume of the metal, 13 cm3. 

4.13 Mavers’ Virial Expansion of Thermodynamic Prowrties 
All of the applications we have so far discussed have been simplified by separating 

the energy into one-dimensional problems, either by considering effectively 
noninteracting particles, such as the one-dimensional hard-rod gas, or by considering 
noninteracting elastic wave modes, as in the one-dimensional chain and the quantum 
ideal gases. To go beyond such problems generally involves numerical work, but there 
is one important exception to this rule, the systematic ”virial” expansion of the 
thermodynamic properties in powers of the number density developed by the Mayers. 
This approach makes it possible to deduce the general aspects of condensation and was 
particularly important for the progress of statistical mechanics before computer 
simulation superseded cumbersome analytic approaches. 

simplicity we use the canonical ensemble. Likewise, quantum polyatomic mixtures can 
be treated but we choose instead to consider a classical system of particles which interact 
with a central pairwise-additive potential function $(r). If this function could be treated 
as a small perturbation then the partition function would approach that of an ideal gas. 
The Mayers’ idea was to expand the Boltzmann factor in the partition function, 

The Mayers’ treatment can be carried out in other ensembles, but for clarity and 

Z = (1 /N!)(h3)-N~ ... ldrNexp[-~$/kT] , 

as a power series in the deviation from ideality. The sum in the exponent is to be taken 
over all N(N-1)/2 pairs of particles. The Mayers’ expansion introduces the ”f-function” 
f(r), and results in a product of N(N-1)/2 terms, one for each pair: 

f(r) = exp[-@(r)/kTl- 1 . 

The effect of introducing the f-function expansion is to generate a power series 
number-density expansion of the free energy around the low-density limit. We 
illustrate how the density series arises by writing out the full expansion for three 
particles: 

1 
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The first term in brackets integrates to V3. Provided that the container is larger than 
the range of the potential @, the next three integrals are proportional to V2, and become 
negligible relative to the first term at large V. The four remaining terms all vanish 
unless all three particles can interact as a "cluster." All such contributions are 
proportional to the volume V. Thus in the general case the Mayers' idea generates a 
polynomial in the volume V which can formally be expressed as a power series in the 
number density, N/V. In the process of extracting the Nth root of the partition 
function, to calculate the free energy per particle, the apparently divergent series 
becomes convergent, and, for low enough number density, useful. 

In the general case it is only necessary to collect together terms with the same 
topological structure and to evaluate the corresponding integrals. For instance the 
integrals of f12, f23, and f i3  over configuration space are clearly equal, by symmetry. In 
the three-particle partition function there are three topologically different types of 
clusters, so that the integral could equally well be written: 

, 

/- 

In a many-body system there is one more type of integral which contributes to the 
nonideal free energy to the same order as those shown, j...kdr4f12f34. If we now write in 
the correct many-body combinatorial factors, and calculate the ratio of the partition 
function to the corresponding ideal-gas form, we get: 

Each integral is a product of volume integrations: 



with only a few of the coordinates constrained by the Mayer f functions and aIl of the 
rest, including one of the members of each cluster, here taken to be Particle 1, 
contributing a factor of V. 

The h a 1  step in converting this series in the inverse volume to a useful 
expression for the Helmholtz free energy is to express the Nth root of the partition 
function as an exponential function, thereby generating a density series expansion of 
the nonideal Helmholtz free energy. In this step a remarkable cancellation occurs. All 
disconnected clusters off functions as well as all clusters which could be made 
disconnected by removing a single point, disappear in the large-N limit. See Figure 
4.16. Apart from a correction of order l / N  the final expression for the free energy is 

'1 

Differentiation with respect to temperature and volume gives the virial-expansion 
expressions for the energy and the pressure: 

... , 

The Mayers' result for the general virial coefficient, B,(T), can be written as a sum, over 
all n-point "star graphs," with the points labelled and distinguishable, of products of 
the corresponding f functions linking these points: 

_._I 

Figure 4.16. The ten topologically 
distinct four-particle products of 
Mayer f functions. The diagrams 
reflect the Mayers' notation, with the 
f functions indicated by lines 
connecting the corresponding points. 

0 0 Cut points, sometimes called 
"articulation points," are shown here 
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Star graphs are connected graphs linking together n points in such a way that removal 
of any point fairs to separate the resulting n-1 point graph into disconnected graphs. 
All star graphs are included in this sum for BJT). The number of topologically-distinct 
types of star graphs increases rapidly with the number of points n. About 30 years ago 
Ford and Uhlenbeck compiled a list of all star graph types of up to seven points. There 
are 10 types of %point stars, 56 types of six-point stars and 468 types of seven-point stars. 
Extending Ford and Uhlenbeck's tabulation to the eight-point stars by hand was not an 
appealing task. In 1990 Foidl and Kasperkovitz programmed a work station so as to list 
the 7123 types of eight-point stars. 

In most cases the integrals corresponding to the graphs need to be worked out 
numerically. The hard-rod gas studied in Section 4.2 is an exception and furnishes a 
u s d  check of the Mayers' expansion. It is easy to see, because the f-function is -1 for 
-o e x e +Q, that the integral Jfdr is -20. The evaluation of the integral contributing to 
the third virial coefficient, Jjdr12dr13f12f13f23 = -302, is shown in Figure 4.17. These 
integrals give second and third virial coefficients of 0 and 02, respectively, in agreement 
with Tonk's analytic equation of state derived in Section 4.2. 

In the one-dimensional hard-rod case the integrals contributing to B4 have values 
3(+16/3) + 6(-14/3) + 1(+12/3) = (60 - 84)/3. As this simple example suggests, near 
cancellation of the positive and negative terms complicates numerical evaluation of 
the higher virial coefficients. The integrals need to be worked out with high accuracy. 
Only for fairly simple force laws is it possible to generate more than a few accurate 
terms in the series. For hard spheres the first seven terms are accurately known. 
Nevertheless the error in the seven-term expansion of the hard-sphere pressure 
reaches 10% at the freezing density. 

Figure 4.17. Integrand for the hard- 
rod third virial coefficient. The 
hexagonal region, in which each 
rod overlaps the other two has an 
area 302. Because the product 
f12f13f23 is -1 in that region the 
corresponding integral is -302. 
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Problems 
1. Explain why the number of types of n-pint star graphs is about 2n(n-*)/*/n! 
2. Express the second virial coefficient B2(T) for three-dimensional soft spheres, 

with the potential function $(r) = &(o/r)n, in terms of the gamma function and 
determine the logarithmic derivative dlnB(n)/dlnT. 

3. For the "Gaussian Model," with the Mayer f-function f(r) =- -exp(-r2/2), the star 
integrals in D dimensions are simple powers of the corresponding one- 
dimensional integrals. Compute B2, B3, and B4 for this soft repulsive potential 
in one, two, and three dimensions. 

sphere equation of state: 
PV/NkT = 1 + 4x + 10x2 + 18x3 + 28x4 + ... , 

where x is (7&/6)(N/V). Use this closed-form expression to evaluate the ratio 
of the corresponding N-sphere canonical partition function to the ideal-gas 
partition function at the freezing density. The hard-sphere freezing density is 
about two-thirds the maximum close-packed value. 

4. Find the closed form for the Tarnahan-Starling" approximation to the hard- 

Except at very low densities, where a few terms give an accurate representation of 
the energy and the pressure, it is considerably simpler to obtain the thermodynamic 
properties by direct simulation rather than evaluating the Mayers' virial coefficients. 
Nevertheless a numerical evaluation of the fiveterm approximation to the virial 
series is feasible for simple force laws and leads to semiquantitative agreement for gas- 
phase isotherms quite close to the critical point. See Figure 4.18 for a comparison of the 
truncated virial series with the results of direct computer simulation using the 
Lennard-Jones pair potential. 
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Figure 4.18. . The five-term virial 
approximation to the Lennard- 
Jones mechanical equation of state 
is compared with computer 
simulation data. The virial series is 
low by approximately a factor of 
two at the highest density shown. 
The isotherms correspond to the 
temperatures kT/& = 1.35 and 2.74. 
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4.14 Thermodynamic Perturbation Theorv 

system to approximate the properties of a system with a somewhat different 
Hamiltonian. This idea can be applied to statistical calculations by taking the phase- 
space probability density for one Hamiltonian as a basis, calculating the effects of the 
difference 6H = H - H, as a perturbation. Typically the kinetic energy is unaffected by 
the perturbation so that the change in the Hamiltonian is only a change in the 
potential energy, 6H = 6@. If we indicate the reference system with a subscript ,, then 
the partition function ratio gives directly the difference in free energy as the averaged 
exponential of the perturbation energy over the reference probability distribution: 

Perturbation theory offers a method of using known properties of a reference 

where the angular brackets with the subscripted angular brackets < ... >o indicating an 
average over the reference distribution function. To first order in 6@, the averaged 
perturbation free energy is given by: 

A-A, I -kTln[<exp(-Gd,/kT)>,j = 

Using an inequality of which Gibbs was very fond, eX > 1 + x, where x is -6@ / kT, 
establishes that this first-order approximation to the free energy is also a rigorous upper 
bound: 

Thus the actual partition function always exceeds the approximate one constructed 
using first-order perturbation theory. 

expressed in terms of the pair distribution go(r) for the reference system: 
If the potential energy is a s u m  of pair terms the perturbation energy can be 

?. 
,' 

In the reference system g,(r> is defined as the probability of finding a second particle at a 
distance in the range r to r+dr divided by the corresponding probability in an ideal gas 
with the same number density, (N4xr2dr/V). One commonly-used reference system is 

known accurately. For details see Mansoori and Canfield's 1969 papers in the Journal of 
the hard-sphere fluid because the two-body distribution function for this system is 0 



M 
Chemical Physics. A simple and useful approximatan to the hard-spere Helmholtz 
Free Energy function is: 

(A - A1deal)/NkT = 4x + 5x2 + 6x3 + 7x4 + ... = C(n + 3)xn, 

where x represents a reduced density, ao3N/6V, for hard spheres of diameter Q. The 
pair distribution function go(r) can be used to calculate approximate thermodynamic 
properties for any pair potential. The agreement obtained for the Lennard-Jones 
potential is quite satisfactory, as is indicated in Figure 4.19. 
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Figure 4.19. Comparison of the 
Lennard- Jones mechanical 
equation of state with the 
prediction of Mansoori and 
Canfield's Perturbation Theory. 
Each of the four approximate 
isotherms, for the set: 

{kT/&} = {0.72,1.00,1.35,2.74), 

shown as solid lines, lies slightly 
above the corresponding data 
obtained from computer 
simulations. 

Only a few systems are simple enough to treat analytically. To illustrate the 
perturbation-theory process consider one of these simple cases, a one-dimensional 
harmonic chain. The Hamiltonian contains Hooke's-Law nearest-neighbor springs and 
the usual kinetic energy: 

In Section 6 we found that the large-N exact Helmholtz free energy for this system is 
A/NkT = ln(hv/kT) where (21~12  = 02 = K/m. For an even simpler reference system let 
us consider the simple independent-oscillator Einstein-model Hamiltonian: 
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The first-order perturbation evaluation of the exact potential energy function is, 

corresponding to an upper bound on the free energy: 

A/NkT c ln[h(~/m)l/2/(2nkT)] + <G@/NkT>, = (1/2)lnq, + (K/Q + constant. 

The value of K~ which minimizes the approximate free energy is exactly equal to the 
Einstein value, 

This result, that the perturbation-theory estimate of K~ agrees with the Einstein 
frequency is generally valid, not just in one dimension, but also in two and three. The 
general result that the perturbation-theory free energy is too high establishes that the 
Einstein-model partition function is always an underestimate of the true partition 
function. 

4.15. Summarv and References 
The one-dimensional hard-rod and harmonic-chain models give useful 

caricatures of many-body systems. The corresponding N-body partition functions 
reduce to Nth powers of 1-body partition functions. In both cases the individual- 
particle rms displacements are proportional to the square root of the number of 
particles. 

and three-dimensional rigid rotors, all illustrate the general rule, required by Bohr’s 
Correspondence Principle, that a single quantum state corresponds to a cZassical phase- 
space hypervolume h#. 

The vibrational frequencies for any periodic harmonic crystal follow from the 
motion within a single periodic unit cell. The low-frequency probability density’ 
proportional to the Debye-model distribution @-1’ governs both the low-temperature 
quantum heat capacity and the size-dependence of the atomic rms displacement. 

By combining the translational, rotational, and vibrational contributions to 
molecular partition functions, low-density chemical equilibria between reacting 
polyatomic molecules can be predicted. 

metals, the photons in the radiation field, and lattice vibrations, phonons, can all be 
usefully approximated as quantum ideal gases, by using Gibbs’ Grand Canonical 
Partition Function. r 

These one-dimensional translational and vibrational problems, along with two- 

In appropriate ranges of temperature and density the conduction electrons in 
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The Mayers' systematic density expansion of the dense-fluid partition function- 
the virial series-provides a semiquantitative description of condensation. Another 
systematic approach, perturbation theory, uses reference system distribution functions 
to estimate the contribution of Hamiltonian perturbations to the free energy. 
Perturbation theory provides a relatively simple and more-nearly accurate 
approximation to the properties of real fluids. 

T O M  1936 paper in Physical Review is a classic. The h4ayers' readable text Statistical 
Mechanics contains a wealth of analysis devoted to the virial series as well as a comprehensive 
treatment of the partition functions of polyatomic molecules. Additional discussion of 
number dependence can be found in my 1985 Springer-Verlag book, MoZecular Dynnmics. A 
method for enumerating star graphs appears in C. Foidl and P. Kasperkovitz, "Systematic 
Generation of Linear Graphs-Check and Extension of the List of Uhlenbeck and Ford," Journal 
of Computational Physics 89,246(1990). For details of two-dimensional triangular lattice 
calculations see D. A. Huckaby, "Exact Classical Harmonic Free Energy of the Triangular 
Lattice," Journal of Chemical Physics 54,2910 (1971) and W. G. Hoover, A. J. C. Ladd, D. Friesen, 
and B. Moran, "Analytic and Numerical Surface Dynamics of the Triangular Lattice," Journal 
of Chemical Physics 76,3744 (1982). The liquid perturbation theory pioneered by G. A. 
Mansoori and F. B. Canfield, "Variational Approach to Melting and the Equilibrium Properties 
of Simple Liquids," Journal of Chemical Physics 51,4958 and 4967 (1969) has reached a high 
degree of sophistication. See for instance D. Boercker and D. A. Young, "Variational Limits on 
the Helmholtz Free Energy of Simple Fluids," Physical Review A 40, 6379 (1989). Data for 
testing such phenomenological approaches can be found in F. H. Ree's "Analytic 
Representation of Thermodynamic Data for the Lennard- Jones Fluid," Journal of Chemical 
Physics 73,5401 (1980) and "Thermodynamic Properties of the Fluid and Solid Phases for 
Inverse Power Potentials," by W. G. Hoover, S. G. Gray, and K. W. Johnson, Journal of 
Chemical Physics 55,1128 (1970). 
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5.1 Introduction 
Scientists were first exposed to the possibility of large-scale computing during the 

Second World War when numerical simulations began to play a leading role in 
weapons design. After the War Molecular Dynamics was among the first challenging 
scientific applications for the fast computers. Fermi, at Los Alamos, and then Alder and 
Wainwright, at Livermore, took on the classical N-body problem of molecular 
dynamics, realizing that the only barrier to success was speed, because the principles, 
laid down by Newton, were straightforward. In conventional isoenergetic molecular 
dynamics Newton’s equations of motion are solved numerically, beginning with 
assumed initial conditions and subject to fixed boundary conditions. At Los Alamos 
and Livermore the early exploratory calculations dealt with isolated periodic systems 
and systems confined by rigid boundaries. At Brookhaven Vineyard’s simulations of 
solid-phase radiation-damage cascades used viscoelastic boundaries to absorb elastic 
wave energy. 

Computer speed was then, and still is now, the limiting factor in computer 
simulation. In the 1950’s Newton’s equations were straightforward to solve so long as 
the total number of operations involved was no more than lo9 or so. A typical 40-hour 
computation could follow the motion of a few hundred particles for a few thousand 
time steps. 

The early molecular-dynamics calculations were vital to the growth and 
development of statistical mechanics. In the 1950’s computers were still too slow to 
permit quantitative simulations of data gathered for real materials. At that time the 
goals were more modest: first, to attain semi-quantitative agreement with laboratory 
experiments; second, to test the predictions of approximate statistical-mechanical 
theories against results from computer simulation. Molecular dynamics was 
particularly useful in evaluating the accuracy of approximate many-body theories for 
model systems with simple pairwise-additive interatomic interactions. Theoretical 
approximations were usually based on judicious combinations of intuition and 
truncated series expansions. Such approximations were plentiful in the days before 
straightforward simulation supplanted them. 

During the past half-century computers have become steadily faster, with larger 
capacities, and computation has become much cheaper. Today the main bottleneck is 
dealing with vast quantities of computed “information.” Today it would be possible to 
calculate the progress of a billion particle coordinates for a million time steps. Such a 
calculation would take a month and generate 1015 coordinate values. But at present it 
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is not at all practical to display, process, or store such a large quantity of “information.” 
Current rates of data transmission are typically less than a billion per day and this 
places a firm limit on the useful size of presentday simulations. 

traditional ensemble theory of statistical mechanics, as developed by Gibbs. We then 
describe the boundary conditions and the interparticle forces necessary to any 
simulation. We next discuss four different types of molecular dynamics, each 
equivalent to a particular Gibbs ensemble. After outlining these four approaches we 
then illustrate and discuss some of the computational details required to implement 
these ideas on today’s computers. 

We will begin this Chapter by relating molecular dynamics simulations to the 

5.2 Relation to Statistical Mechanics 

formalisms of Newtonian, Lagrangian, and Hamiltonian mechanics are well-suited to 
posing the N-Body problem, but none of these theories offers an operational plan for 
solving the equations of motion, except in very simple circumstances. Gibbs replaced 
the mechanically well-posed but physically inconceivably-difficult task of integrating 
the classical many-body equations of motion by the somewhat more manageable task of 
averaging over static phase-space states. For systems simple enough to make 
calculations feasible, Gibbs’ replacement was a real step forward. There is no doubt that 
the partition function for a rotating rigid body or a double pendulum can more easily 
be calculated than can an exact long-time orbit. 

describes the flow of phase-space probability density f(q,p,t). Liouville’s Theorem 
guarantees that a homogeneous statistical ensemble, obeying Hamilton’s equations of 
motion and uniformly filling a classical phase-space energy shell, with E - (dE/2) e 
H(q,p) e E + (dE/2), is ”stationary.” That is, the density function f(q,p,t) does not 
change with time, (af/at),, = 0. Only such a time-independent stationary ensemble, 
with f(q,p,t) = f(q,p), can serve as a model for stationary equilibrium properties. 

Figure 5.1 illustrates Liouville’s flow theorem for an ensemble of harmonic 
oscillators with a uniform distribution in energy between the limits E - (dE/2) and 
E + (dE/2). The representative points simply rotate about the origin at the fixed 

Classical mechanics is the basis of Gibbs’ statistical ensemble theory. The 

The logical foundation for Gibbs’ simplification is Liouville’s Theorem, which 

oscillator frequency a. For the circular orbits shown in the Figure there is no tendency 
for the distribution to change with time. In the general case of a transient 
nonequilibrium Hamiltonian phase-space flow shape changes can occur, but only with 
constant comoving volume and density. 

Most interesting phase-space flows are chaotic and incredibly complicated, 
exhibiting a mixing in the phase space more thorough than the mixing of paint. This 
mixing is promoted by Lypaunov instability, which carries initially neighboring points 
away from one another exponentiaIly fast. Because interesting flows occur in bounded 
regions of space, exponential divergence typically leads to bending and folding, leading 

* \  
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Figure 5.1. Constant-Volume 
phase-space flow of harmonic- 
oscillator probability density. An 

X ensemble of oscillators, shown 
shaded, circles the origin at 
constant energy and angular 
velocity. 

to phase-space mixing. We considered a simple example of this Lyapunov instability in 
Chapter 1, where we followed the motion of a ball bouncing on a curved surface. We 
will extend our study of Lyapunov instability to many-body systems in Chapter 11. 

Despite the underlying mixing and instability of Lyapunov-unstable phase-space 
flows, Liouville's Theorem shows that, whatever the motion, simple and regular like 
the oscillators, or wildly mixing and chaotic, like a fluid of hard spheres, so long as the 
dynamics is described by Hamilton's equations, the comoving phase-space density 
cannot change: 

,- 

Thus, for a uniform energy-shell ensemble, a model of Gibbs' microcanonical 
ensemble, it is clear that the time and phase averages are identical. Of course such a 
microcanonical ensemble of noninteracting systems bears scant resemblance to single- 
system laboratory or computer experiments. 

natural to view their equivalence with suspicion. The first extensive two- and three- 
dimensional computer simulations were carried out in parallel. Wood and Parker, at 
Los Alamos, compared their "Monte Carlo" microcanonical-ensemble simulations to 
corresponding molecular dynamics simulations of Alder and Wainwright, at 
Livermore. At first the agreement seemed to be less than perfect, but as the runs 
became longer and the relatively subtle effects of constraining the center-of-mass 
motion were included in the analysis, the agreement became perfectly satisfactory, even 
for the smallest systems, consistent with exact agreement between Gibbs' statistical 
mechanics and Newtonian dynamics. 

Because statistical ensemble theory and molecular dynamics seem so different, it is 

+\ 
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Today explicit ensemble calculations can be performed dynamically. Simple 
computer experiments can be carried out for ensembles with one million members. 
But it remains much simpler, and is therefore more usual, to follow the phase-space 
trajectory for a single system, just as in a laboratory experiment. Computational and 
laboratory experiments usually study single systems, not ensembles. 

that of an ensemble? This is still a hard question. It is only in very simple 
circumstances that a definite answer can be given. In a few simple cases the answer is 
”yes.” An example is a periodic system of two hard disks with zero center-of-mass 
velocity. The phase-space flow for such a system eventually comes arbitrarily near all 
phase-space points consistent with the initial total momentum and (kinetic) energy. 
Such a flow is said to be ”’quasiergodic.” 

The simpler term “ergodic” was originally used to describe trajectories passing 
through, rather than just near, all accessible states. Because the number of points on a 
phase-space surface perpendicular to the flow direction is “uncountable,” only strictly 
periodic flows can be ergodic in this sense. On the other hand the number of points in 
any computational surface is certainly countable but likewise completely inaccessible. 
Some systems never leave the immediate neighborhood of stable phase-space ”fixed 
points.” An idealized linear system, with independent oscillatory modes, for instance, 
evolves without any mixing among its modes. It is therefore clear to a physicist that a 
similar nonmixing motion should prevail if any nonlinear terms perturbing such a 
linear system are sufficiently small. The corresponding mathematical result is called 
the Kolmogorov-Arnold-Moser theorem. Fermi’s work at Los Alamos showed that the 
perturbations can be rather large without destroying the nearly-periodic nature of one- 
dimensional harmonic chains. 

A homogeneous phase-space ensemble, filling an energy shell at constant density, 
is representative of the time-averaged behavior of some dyrtamical systems, such as a 
Lyapunov-unstable single pair of two hard disks, but such a homogeneous phase-space- 
filling ensemble has no relevance to quasiperiodic nearly-linear motions, such as those 
of a ball rolling in the vicinity of a potential-energy surface minimum. 

What about the general case? In most cases the question is irrelevant because the 
physical time or computer simulation time required to pass even reasonably close to all 
states is impossibly long. Thus the utility and validity of statistical mechanics cannot 
reasonably be based on ergodic theory. Statistical mechanics must instead be justified 
on the slightly paradoxical basis that the results are insensitive to the initial conditions 
because the underlying chaotic dynamics is sensitive to the initial conditions. In this 
Chapter we shall therefore consider equations of motion which are consistent with 
Gibbs’ ensemble theory. We rely on Lyapunov instability to induce phasespace 
mixing, to destroy any dependence on initial conditions, and to provide time averages 
in statistical agreement with phase-space averages. 

Is the apparent agreement exact? Is the motion of a single system really related to 
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In fact the two approaches are very nearly alike. Neither the static phase-space 
average nor the dynamical time average can be carried out exhaustively. There is not 
enough time. But there is also no reason at all to expect that increasing the sampling 
time would ever reveal any discrepancy between the two approaches. Jaynes has 
forcefully pointed out that any such discrepancy would signal a new and interesting 
underlying law of physics. 

Problem; 
Show that the accessible phase space for the periodic two-disk problem outlined 
above can be reduced to a three-dimensional space (x,y,B}. Estimate the order of 
magnitude of the computer time required to come within a (generalized) 
distance d = (dx2 + dy2 + de2)1/2 of a given accessible phase-space point 
assuming that the disks occupy a rectangular periodic box with $/& = 3112 at 
four-fifths the close-packed density. How small would d have to be to make the 
time required exceed 1017 seconds? How does this d compare to the limit of 
numerical precision imposed by 32-bit arithmetic? 

5.3 Initial and Boundarv Conditions 
Prerequisite to any numerical solution of differential equations are the initial and 

boundary conditions. The initial coordinates are typically lattice sites of a regular 
lattice. Otherwise it is difficult to fit the required density of particles into the container. 
The initial velocities are typically chosen from a Maxwell-Boltzmann distribution. For 
an example see the illustration in Section 10. 

The boundary conditions for equilibrium calculations are usually taken to be 
periodic (with zero center-of-mass velocity) because this choice minimizes the 
dependence of the results on system size. To simulate the properties of matter with 
gradients of mass, momentum, or energy requires the more complicated boundaries 
treated later. 

systems, usually only a few atomic diameters wide and with up to a few hundred 
degrees of freedom. If such a simulation were carried out with real boundaries most 
particles would be surface particles. Consider cubes of 32,108,256,500, ... 4x13 particles 
selected from a face-centered cubic crystal. The number of surface particles for this 
same series is 28,76, 148,244, ... 1212 - 12n + 4. To eliminate the surface effects which 
would otherwise dominate the properties of such small systems, periodic boundaries 
are most commonly used. See Figure 5.2. In an isolated system with periodic boundary 
conditions, mass, momentum, and energy are all conserved. When- any particle 
’leaves” the system by passing through a ”boundary” an identical ”image particle” 
enters through the opposite boundary. 

The earliest molecular dynamics calculations were carried out on relatively small 
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Figure 5.2. A nine-atom two- 
dimensional periodic system. Four 
periodic cells are shown. 

Problems: 
1. Find the Cartesian coordinates for four particles arranged in a regular 

tetrahedron within a basic cubic cell of the face-centered cubic structure. The 
sidelength of such a cubic cell is 2112 times the interparticle spacing. 

2. Find the number and distance of the first-, second-, third-, ... seventh-nearest 
neighbors of a particle at the origin in a face-centered-cubic crystal. Use an 
interparticle nearest-neighbor spacing of unity. 

Early molecular dynamics simulations at Livermore, using 870 hard disks, showed 
that the melting transition was lowered by about 10% in density and in pressure if the 
periodic boundaries were replaced by rigid ones. On the other hand, except near phase 
transitions, small-system boundary effects in fluid N-particle periodic systems were 
generally of order 1 /N. Accordingly, most equilibrium simulations have used periodic 
boundaries. 

With the gains in computer speed, size, and economy it is now possible to study 
million-particle driven nonequilibrium systems with relatively complex boundary 
conditions. One of the earliest successful boundary types was Ashurst's "fluid wall," a 

set of particles separated from the bulk by a reflecting barrier. See Figure 5.3. The mean 
velocity and temperature of this set of boundary particles can be controlled so as to 
induce a shear flow or a heat flux at a system boundary. 

Figure 5.3. Viscous flow driven by 
the motion of Ashurst's globally- 
constrained "fluid walls." Upward- 
moving particles have been shaded. 
Both the total momentum and the 
kinetic energy of the four-particle 
wall regions are-fixed by Gaussian 
thermostats described in Section 7. 
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Figure 5.4. Viscous flow driven by 
the motion of rigidly-moving 
corrugated walls. Upward-moving 
particles have been shaded. The 
walls move as units with their 
thermal motion controlled by Nos& 
Hoover thermostats as is described 
in Section 8. f 

Shockwaves were generated by balancing entering and leaving streams of 
particles. For a steadily moving wave the balance of the mass, momentum, and energy 
current in such streams must satisfy the Hugoniot conditions discussed in Section 2.7. 
Moving and oscillating boundaries were likewise used to induce viscous flows. See 
Figure 5.4. Vineyard pioneered the use of boundary springs and dashpots to mock up 
the properties of a larger surrounding medium. These varied boundary types gradually 
led to new forms of equilibrium and nonequilibrium mechanics, specially suited to 
highspeed computer simulation. In this Chapter we consider the connection of these 
methods to Gibbs’ statistical mechanics. We will return to nonequilibrium mechanics 
in Chapter 10. 

5.4 Interparticle - Forces 
Before undertaking any molecular dynamics simulation the forces must be 

specified. The earliest calculations used the simplest possible forces, hard-sphere and 
square-well interactions. Because these forces generate piecewise-linear trajectories 
with isolated impulsive momentum transfers the calculations can be faster than those 
using continuously variable forces. The simplest differentiable extension of the 
singular hard-sphere potential is the family of inverse-power ”soft-sphere” or ”soft- 
disk” potentials: 

-.  

all of which satisfy a scaling relation discussed in detail in Chapter 6, with an excess 
Helmholtz Free Energy depending on the ratio of the characteristic potential energy to 
the thermal kinetic energy. This nice scaling property still holds with a finite 
interaction range and periodic boundary conditions if the interactions are restricted to 
nearest-image pairs. See Figure 5.5. In practice the energy and pressure calculations are 
slow to converge from n = 4 (’Naxwell molecules”) up to n = 6. In approaching the 
hard-sphere Iimit, n = OQ, trajectory convergence would probably be difficult. But 
intermediate values of n are well-behaved and exhibit both fluid and solid phases with 
very reasonable equilibrium and nonequilibrium properties. 
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Figure 5.5. A particle located at the 
center of the Figure is shown, along 
with eight of its periodic images. Any 
other particle within the shaded 
“nearest-image” region interacts with 
that central particle rather than with 
one of the images. 
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The Lennard- Jones 12-6 potential, 0 

0 0 

0 

0 0 

originally with variables n and m rather than 12 and 6 provides a semi-quantitative 
description of rare-gas thermodynamic and transport properties. The attractive forces 
lead to the separate existence of two fluid phases, a gas and a liquid, with a phase 
diagram resembling that of argon. See Figure 5.6. 

more than 6~ per particle, and can be used to fit the well-depth of the interaction to 
experimental sublimation energies. The static-lattice equilibrium interparticle spacing 
can likewise be fitted to experimental density data to obtain the collision diameter o. 
For gas-phase simulations the second virial coefficient B(T) is an alternative source of 
potential parameters. Start with the Mayers’ formulation of the second virial 
coefficient: 

The binding energy of a face-centered-cubic crystal, using this potential, is a little 

B(T) = (-1/2)14xr2dr[exp(-@/kT) - 11 . 

r ~ .  I .  1 .  1 .  1 
00- 1.0 

0.5 - Gas and soli 
1 . I . I . I  

0 0.4 0.8 1.2 1.6 
No3N 

Figure 5.6. Comparison of Lennard- 
Jones phase diagram with that of 
argon. The heavy phase lines were 
determined by computer simulation. 
The dashes correspond to 
experimental phase lines for argon. 
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Figure 5.7. Determination of 
Lennard- Jones potential parameters 
from second virial Coefficient data. 
The horizontal scale difference is the 
logarithm of e/k. The vertical scale 
difference is the logarithm of 03. The 
numerical values shown correspond 
to E/k = (kelvins) and CT = l / e  (nm). 
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If we then introduce a dimensionless integration variable, x = r/o, we find directly that 
the "reduced" (dimensionless) second virial coefficient for the Lennard- Jones potential, 
BLJ/o~, is given by a definite integral depending only on the reduced temperature kT/e. 
A logarithmic plot of the experimental data lnB(lnT) can then be compared to the 
universal theoretical plot giving ln(B/o3) as a function of ln(kT/e), as is shown in 
Figure 5.7. The differences in the abscissa and ordinate values give the potential 
parameters 0 and E directly: 

1nT = ln(kT/E) + ln(e/k) ; 1nB = ln(B/o3) + in(& . 

Problems: 
1. Show that the static-lattice zero-pressure condition for the Lennard-Jones 

potential implies that the lattice sums Z(G/r)12 and Z(o/r)6 differ by exactly a 
factor of two. Use this criterion to find the three-dimensional static-lattice zero- 
pressure binding energy per particle. 

coefficient for the Lennard-Jones potential. Show that the coefficient vanishes 
at a temperature, the "Boyle temperature" near kT/E = 3.42. 

2. Use Runge-Kutta (Simpson's Rule) quadrature to evaluate the second virial 

Because the Lennard- Jones potential has an inconvenient and unphysical infinite 
range, it is usual to "truncate" the potential so that the interaction energy and force 
vanish beyond a specified cutoff distance. It is clear that the truncation should be made 
smoothly, so as to avoid unnecessary numerical integration errors in the trajectories. 
For that reason the Lennard-Jones-spline potential described in Section 10 should be 
used in numerical work. More sophisticated potentials for the rare gases have been 
fitted to a wide range of physical properties. The most extensive calculations are 
Barker's. His results for argon are shown in Figure 5.8. Diatomic and polyatomic 
molecules can be approximated by rigid arrays of Lennard-Jones force centers. 
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Figure 5.8. Comparison of Barkefs 
accurate potential for argon with the 
Lennard-Jones potential. The bowl 
of the accurate potential is about 15% 
deeper. The accurate high-energy 
repulsive potential is considerably 
less steep than the Lennard-Jones 
inverse twelfth power potential. 
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Ionic materials require special treatment because Coulomb interactions have 
notoriously poor convergence properties unless the periodic boundary condition is 
implemented with care. Remember that the interaction energy of two charges, +e2/r, is 
equal to kT at a separation of 50 nanometers, close to the limiting size of feasible three- 
dimensional simulations. Thus a strong repulsive force between positive and negative 
ions is required to stabilize any simulation involving Coulomb attractions. Even a 
qualitative simulation of a relatively simple material like table salt, crystalline sodium 
chloride, requires, in addition, forces depending upon the polarizability of the ions. 
Water is even more complicated and the literature contains several models which 
describe a selection of water's properties. Fitting the phase diagram of water with such 
a potential lies well beyond the current state of the art. 

Typical metals have complex properties too. Iron has a relatively strong body- 
centered-cubic structure while that structure is typically mechanically unstable to shear 
deformation, or nearly so, when pair potentials are used to estimate the shear moduli. 
For a static lattice a pair potential leads to the prediction that the energy required to 
insert a vacancy in the crystal is the same as the "binding energy" required to remove 
an atom. For pair potentials, even taking thermal motion into account, these two 
energies are nearly equal. A simple face-centered-cubic metal, gold, has a vacancy 
energy roughly four times smaller than its atomic binding energy. The ratio is close to 
three for the other two coinage metals, copper and silver. In studying the mechanics of 
cubic crystals it is usual to define three independent elastic constants C11, C12, and C44 

which give the dependence of the stress tensor on the strain tensor in an adiabatic 
deformation. Pairs of the subscripts {I, 2,3,4,5,6} are conventional abbreviations for 
the pairs of tensor components, {xx, yy, zz, xy, xz, yz) linked by the elastic constants. For 
example, the response of 0, to a strain in the y direction ~ y y  is C12+ and defines that 
elastic constant. Likewise, the response of the-shear stress oV to a shear strain t+ is 
CgqeXy. For a pair potential in any cubic static lattice the two elastic constants C12 and 
Cgq are equal. But metals do not generally obey this symmetry requirement. Gold has 
elastic constants C12 and C u  which differ by more than a factor of three. Thus the 
evidence is clear that even semiquantitative simulations of metals, like those of ionic 
and covalent materials, require a many-body potential. -. 



For metals, the "embedded-atom" model suggested by Daw and Baskes is a useful 
phenomenological approach, hardly more expensive to implement than a simple pair 
potential. The additional part of the energy, the embedded-atom energy <pea, is based 
on a density function p(r), centered on each atom. The embedded-atom contribution to 
the energy of any atom $ea, say atom i, is then expressed as an additional nonlinear 
"embedding" function of the effective density at that atom pi = Xp(rij). A simple choice 
of these density and embedding functions, suitable for describing simple metals like 
copper and nickel, has the form: 

The quartic density functions vanish beyond the maximum distance Rm, and provide 
a binding energy E at the rest separation d, for a coordination number z. If the 
embedded-atom interaction involves only the z nearest neighbors of each atom then 
pilnpi has its minimum value, -l/e, for each atom. Such an approach makes it 
possible to fit the vacancy and surface energies for metals and to account for the 
difference between two elastic moduli, Cu and C12, which are identical for any cubic- 
symmetry arrangement of particles with pairwiseadditive forces. The calculations are 
only slightly more time-consuming than those using purely pairwiseadditive forces. 
This form of the embedded-atom approach does not satisfactorily account for the high 
strength of body-centered metals like iron or for the disordered structures of glasses. 

With this introduction to the simple models for treating the interatomic forces in 
spherical rare-gas atoms, simple diatomic and polyatomic molecules, ionic systems, and 
metals, we next turn to the formulation of the pressure tensor and the heat flux vector 
in forms suitable for numerical evaluations. 

5.5 Virial Theorem and Heat Theorem 
In comparing results from many-body molecular dynamics simulations to 

theoretical predictions or to experimental data microscopic expressions for the 
mechanical variables, energy, temperature, pressure, and heat flux are required. We 
wish to emphasize here that the mechanical forms of the pressure and heat flux follow 
directly from the equations of motion. Microscopic expressions for the flows of mass, 
momentum, and energy can all be derived directly from mechanics, without using 
Gibbs' statistical ensemble averages. The "virial theorem'' and "heat theorem" express 
the pressure tensor and heat flux vector in terms of the microscopic coordinates {r) and 
momenta {p). To derive the virial theorem start with the time-averaged sum, over all 
particles, of the tensor product of the particle coordinates and forces (rF$ 
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where the "total" forces Ft include not only interatomic forces but also interactions 
with the container walls. Observe next'that, because Zcrp> is bounded, the average 
value of its time derivative must vanish (d/dt)I;<rp> = 0. For a stationary system to 
which boundary forces with timeaveraged values Pxxl Pm, Pzz, Pv, Pxz, and Pyz per 
unit area are applied at the walls, the forces {Ft) can be separated into internal 
interatomic contributions and external boundary contributions. Thus the xx and xy 
elements of the tensor ZcrFp are -P,,V + Z<xF&= -Ccp,p,/m> and -PYV + 
XcxFiKp = -Zcpxpy/m>, respectively. To simplify the derivation consider the case in 
.which the internal forces are pairwise-additive, with the force on Particle i due to 
Particle j, Fij, equal to minus the force on Particle j due to Particle i; then the internal 
force contributions can be combined and written as sums over pairs: 

These expressions for the pressure tensor components are identical to those following 
from explicit volume averages derived in the next Section. Their equilibrium analogs 
can alternatively be derived directly from Gibbs' canonical partition function. The 
present derivation is more general. It applies equally well to nonequilibrium and 
equilibrium states of both solids and fluids. 

vector to a time-averaged sum of atomistic quantities we do so here. To simplify the 
notation we again consider explicitly the case of pairwise-additive forces. Begin with 
the time rates of change of the individual-particle energies {Ei}, where the individual 
particle energies include haZf the interaction of each particle with its neighbors, Ei = Ki 

Because it is straightforward to derive an analogous theorem relating the heat flux 

+ Bi = $/b + ~(@j /2) :  

Multiply by ri, s u m  over all particles, symmetrize, and time average: 

where we have again used the fact that the averaged time derivative of a bounded 
quantity, (d/dt)EcrE>, vanishes. Now imagine that the system is enclosed by boundary 
walls which can exchange energy with the individual particles. The stationary wall 
contributions of these boundary forces are the products of the heat flux vector and the '9 



corresponding wall areas. For the x contribution of this flux we find the final 
expression: 

We will consider an alternative derivation of this same heat-flux expression in Chapter 
7 and apply it to nonequilibrium flows in Chapter 11. 

5.6 Isoenergetic Molecular Dvnamics 
Newtonian mechanics was developed to explain the orbital regularities of the 

planets. The most fundamental form of molecular dynamics is the straightforward 
application of this idea on an atomic scale, following the constant-energy development 
of an isolated system. Isuenergefic molecular dynamics is the solution of Newton’s 
classic equations of motion: 

for all the degrees of freedom making up the system of interest. 
Stoermer‘s centered second-difference form of Newton’s equations of motion, 

m<x+ - 2x0 + &/dt2 = F,(x,) , 

is particularly well suited to computer simulation because it is easy to program, has 
minimum storage requirements, and is remarkably stable. This same simple Stoermer 
form can readily be generalized to describe isothermal and isobaric forms of dynamics. 
These more general approaches are discussed in the next three Sections. The 
extraordinary stability of these Stoermer equations is apparently related to their time 
reversibility. So long as the underlying difference scheme contains no extraneous 
exponentially-unstable errors, the symmetry of such time-reversible equations rules 
out any tendency for the energy to increase or decrease with time. 

To implement the Stoermer solution of Newton’s isoenergetic equations of 
motion begin by choosing both current and previous values, one time step earlier, for 
all the particle coordinates. The difference between these initial values gives an 
approximate kinetic energy, 

K-112 = E(m/2)(x0 - xJdt-2, 

which can be chosen so as to match the desired initial energy. To continue, simply 
solve for the new coordinates {x,} in terms of the current and previous values {x,} and 
{x-). The subscripts {-,o,+) indicate three successive times, separated by a time step dt. A 
conservative choice for the time step separating successive force evaluations is one 
twentieth of a typical vibrational period. Because this time is much less than a 
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picosecond, total simulation times for real materials seldom exceed a microsecond of 
real time. 

times (t-dt,t,t+dt) replacing the set {-,o,+), produces a discrete approximation to the 
hypothetical continuous solution of Newton's equations of motion. Like the original 
idealized Newtonian equations the Stoermer finite-difference solutions are 
deterministic and time-reversible. 

If geometric constraints are present in the equations of motion these can be 
included in the numerical solution by using Lagrange multipliers. In addition to the 
interatomic forces discussed in Section 4, the forces F(x) can include electromagnetic or 
gravitational external fields. Angledependent forces, such as those stabilizing the 
covalent bond angles in water or the ionic crystal structure in sodium chloride, require 
potential functions depending on the coordinates of at least three masses. The simplest 
such many-body potential is quadratic in the angular distortion, $(a) = (1/2)6a2. 

With the forces specified, the resulting motions are followed until the initial 
conditions have been forgotten and the time averages have stabilized. What are these 
averages and what is a reasonable sampling time? In the absence of external time- 
dependent forces the volume and the energy do not change with time. These are the 
independent state variables of Newtonian mechanics. On the other hand the pressure 
and temperature fluctuate on the timescale of collisions. These fluctuations establish a 
minimum timescale for trajectory time averages. A more conservative and realistic 
estimate can be based on the time required for diffusion across the system. Constancy 
of the energy furnishes a crude check on the accuracy of the trajectory calculations. 

The dependence of pressure on the state variables gives a form of the mechanical 
equation of state P(V,E). Pressure could be determined by averaging momentum 
transfer at the container wall, but such a pressure is undefined for periodic boundaries 
and has unreasonably large fluctuations for rigid boundaries. A simpler picture 
emerges if we view pressure as a spatially-averaged momentum flux. Thus a sampling 
plane with a particular orientatioi and area da will intersect particle momenta or 
particle-pair line-of-force interactions with a probability proportional to the pressure- 
tensor component Pij, the sampling time dt, and the area da. See Figure 5.9. The 

The same Stoermer algorithm, iterated repeatedly, with the set of three successive 

/- 

Figure 5.9. Sampling plane for 
measuring flux of mass, momentum, 
or energy. Here the kinetic flow of 
the density "f" in the y direction, 
during a time dt and through an area 
dxdz, is indicated. 



volume-averaged value of the pressure tensor at any time is obtained by computing the 
flux through such an oriented sampling plane and averaging the location of that plane 
over the entire volume. If we take this mechanical view of the pressure tensor as the 
spatially-averaged flux of momentum, there are two contributions, one kinetic and one 
potentid, for systems described by pair potentials: 

In a fluid, with an "isotropic" pressure tensor, Pxx = Pyy = Pzz = P in three dimensions, it 
is usual to average the diagonal elements of the pressure tensor to calculate the scalm 
hydrostatic pressure: 

The time-averaged value of this instantaneous pressure provides the mechanical 
equation of-state P(V,E). This is exactly the same result derived from the virial 
theorem in Section 5. 

of temperature. We have already seen that temperature corresponds to the second 
moment of the ideal-gas velocity distribution. We can adopt this same definition for 
any classical system because Gibbs' statistical mechanics shows that the Maxwell- 
Boltzmann form of the velocity distribution is the most-probable form for any smooth 
potential function. Though the energy is fixed, the temperature defined in this way 
fluctuates, and the fluctuations help determine a reasonable sampling time. In a three- 
dimensional system the sum of potential and kinetic energies is fixed, with the kinetic 
part related to the temperature: 

To evaluate the thermal equation of state T(V,E) we need a microscopic definition 

(3/2)NkT = <K> . 

The kinetic energy contains no contribution from the center-of-mass velocity. Because 
no forces oppose this motion and because thermodynamic properties are independent 
of such motion it is most reasonable to exclude it in periodic isoenergetic calculations. 

Problem: 
Show that the classical .canonical partition function for the center-of-mass 
coordinate in a periodic D-dimensional system of N identical particles, each 
with mass m, is (V/NhD)(2nNmkT)D/2. 

The thermal energy can thus be determined as a function of temperature. Then, 
assuming that the Sackuer-Tetrode ideal-gas entropy applies at low density, the 
Helmholtz free energy can be found by integrating: 

, 



d(A/T) = -(E/T2)dT - (P/T)dV . 

z 
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Thus Newtonian isoenergetic dynamics provides a straightforward route to the 
complete equation of state. Microscopic analogs of the macroscopic pressure and 
temperature are first measured as functions of volume and energy. These 
thermodynamic data, P(V,T) and E(V,T), can then be integrated to obtain the 
fundamental statistical quantity, the canonical partition function corresponding to the 
underlying Hamiltonian. It is also feasible to evaluate second derivatives of the free 
energy, such as the compressibility and the heat capacity, by measuring pressure and 
temperature fluctuations, but better accuracy results if the higher derivatives are 
evaluated instead by differentiating analytic fits to measured values of pressure and 
energy. 

In extending Newtonian mechanics to microscopic simulations volume and 
energy are the most natural independent variables. These constants of the motion are 
fixed by the initial conditions. In real laboratory experiments pressure and temperature 
are more natural choices. For this reason molecular dynamics methods based on these 
independent variables have been developed too. We discuss them in the next three 
Sections. 

5.7 Gaussian Isokinetic Molecular Dvnamics 

temperature into molecular dynamics. Both ways are based on the ideal-gas 
temperature scale. We discuss the simpler isokinetic or "Gaussian" molecular 
dynamics in this Section and the more elegant canonical isothermal "Nos&Hoover" 
molecular dynamics in Section 5.8. In the simpler Gaussian approach to the motion 
the kinetic energy is kept constant, "isokinetic," by using constraint forces to offset the 
natural temperature fluctuations. If a globally-averaged ideal-gas thermometer were 
applied to such an isokinetic system it would always record the same kinetic 
temperature. We have already seen how to impose such an isokinetic constant- 
temperature constraint on a many-body dynamical system. Gauss' Principle of Least 
Constraint suggests using time-reversible constraint forces F, = <p: 

There are two different, but plausible ways to introduce thermodynamic 

.. 
m = F(r) - <mi ; < = 4 / 2 K  = Z(F-p/m)/(ZK). 

This Gaussian "isokinetic" dynamics cannot be applied to a system with only a single 
degree of freedom, such as a harmonic oscillator, because the velocity would then be a 
constant of the motion. Two degrees of freedom can be enough. The system of two 
hard disks with periodic boundaries, discussed in Section 2, for instance, is equivalent 
to a two-dimensional one-body problem. This problem provides a simple and well- 
defined example of isokinetic dynamics. Notice that Gaussian dynamics is time 
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reversible, with the friction coefficient 5 changing sign in the reversed trajectory so that 
the "frictional" force <p = -(<)(-p) is in fact exactly the same whether a trajectory is 
traced out forward or backward in time. The fact that the time-reversed trajectory 
satisfies exactly the same equations of motion establishes the time-reversibility of 
Gaussian dynamics. 

The link between Gaussian isokinetic dynamics and thermodynamics is no 
different from the Newtonian link. In the isokinetic case both the total energy and the 
pressure fluctuate in response to Gauss' frictional forces. The time-averaged energy 
<E> and pressure, <P> = (1/3)<P, + P, + Pzz> in three dimensions, with the tensor 
components defined as in Section 5, are measured as functions of the kinetic 
temperature and volume. 

For sufficiently long simulation times t the Central Limit Theorem suggests expected 
sampling errors of order t-112. Just as in the Newtonian case, the Helmholtz Free 
Energy, from which the other thermodynamic functions all follow, can be determined 
by integration: 

d(A/T) = -(E/T*)dT - (P/T)dV - 

This possibility of controlling the temperature with time-reversible feedback, rather 
than allowing it to fluctuate, is a relatively-new idea which was stimulated by the 
availability of fast computers. The details of such schemes vary, but Gauss' 
formulation is without doubt the simplest of them. The same equations apply if the 
kinetic energy has a specified time variation, K = K(t). 

Liouville's phase-space flow equation can be used to show that Gauss' equations of 
motion apply to a special isokinetic ensemble for which af/at vanishes. In that 
ensemble the stationary configurational probability density is canonical, proportional to 
e x p ( 4  / kT) while the momentum probability is microcanonical, proportional to the 
product of two delta functions, 6[K-(#kT/2)]6[I=p], where ## is the number of degrees of 
freedom. Because the mathematics is less cumbersome we will derive the 
corresponding result only for the isothermal-isobaric ensemble discussed in Section 5.9. 
Both the Gaussian isokinetic and the Nose-Hoover isothermal ensembles are special 
cases of that more general approach. 

5.8 NoseHoover Isothermal' Dynamics 

constant, but instead fluctuates about its average value, with the mean-squared 
fluctuations proportional to the kinetic part of the heat capacity: 

In Gibbs' canonical ensemble the thermal-equilibrium kinetic energy is not 



<AKb/<kT2> = DNk . 

h 
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It required a really new idea, due to Keio University's Nos6 Shuichi, to invent a 
deterministic time-reversible dynamics reproducing these fluctuations and generating 
the complete canonical phase-space distribution. We described the simplest derivation 
of No&s equations in Chapter 2. That derivation was based on two assumptions: (1) a 
constraint force, - cp, with the form of the force suggested by Gauss' Principle; (2) the 
requirement that the canonical distribution be a steady solution of the equations of 
motion. With these two assumptions, the Nos&Hoover equations of motion result: 

It is interesting that the response time z associated with the heat exchange does not 
affect the equilibrium coordinate and momentum distributions at all. Of course, time 
correlations me affected for times of order z or larger. If z is chosen on the order of the 
sound traversal time of the system then the "artificial" nature of the thermostat is 
unimportant. These same correlations would also be affected by boundary interactions. 
The Nose-Hoover equations can easily be integrated using the Runge-Kutta method. 
As an alternative, a simple modification of Stoermer's numerical method is also 
effective for solving the Nos&Hoover equations of motion: 

The friction Coefficient can itself be integrated in time by using either of two time- 
reversible schemes: 

Either of these approaches reduces the required storage by roughly a factor of three 
relative to that required for the fourth-order Runge-Kutta method. The constancy of 
Nos6's generalized Hamiltonian, as described in Sections 10 and 11, provides a 
welcome check of the numerical work. 

In the time-reversed trajectory the friction coefficient changes sign so that the 
"frictional" thermostat force is independent of the direction of increasing time. 

Just as in the Gaussian isokinetic case, NoseHoover dynamics is time-reversible. 

5.9 Isothermal-Isobaric Molecular Dvnamics 

and pressure are the fundamental variables describing thermal and mechanical 
Gibbs' isothermal-isobaric ensemble has appeal and utility because temperature 
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equilibria. The connection of the isothermal-isobaric ensemble to thermodynamics is a 
natural extension of the canonical ensemble. To produce an ensemble with a specified 
pressure Po the phase-space weighting function exp[-(E+P,V)/kT] should be used, 
where the external pressure Po and temperature T are specified independent variables 
while volume and energy vary. We saw in Section 2.9 that a combined system, 
including a confining piston with gravitational energy PoV, is isenthalpic and isobaric. 
The corresponding Gibbs ensemble can be described by adding a piston coordinate to the 
list of dynamical state variables in an otherwise canonical ensemble. Adding a 
thermostat as well as a piston produces an isothermal-isobaric ensemble. For such a 
stationary ensemble the specified pressure Po, determined by the piston mass and area 
as well as the gravitational field strength, exactly offsets the appropriately-averaged 
value of -(dE/dV). If we retain the notation of a sum over quantum states the 
isothermal-isobaric partition function becomes 

exp(-G/kT) = %xp(-E/kT)exp(-P,V/kT) . 

The connection with Gibbs’ free energy can be established in the usual way, 
differentiating with respect to Po and T, and recognizing the thermodynamic relation 
d(G/T) = (V/T)dP - (H/T2)dT, where H is the enthalpy, H = E + PV. 

without difficulty. P,V is then replaced by the volume integral of VoPo:&, where Po is 
the pressure tensor and E is the strain tensor. The components of the strain tensor 
become functions of time, obeying feedback equations based on corresponding elements 
of the pressure tensor. 

The isothermal-isobaric ensemble is primarily useful for determining the 
properties of pure phases. It might be thought that phase equilibria could be treated 
too, with the volume automatically adjusting to match that of the phase with least 
Gibbs free energy. This idea has been applied to both solid-fluid and solid-solid phase 
transformations. In both cases it was found that near equilibrium the rate of 
transformation becomes too slow to observe. In an early attempt to locate the hard- 
sphere phase transformation Wood, at Los Alamos, followed two separate constant- 
pressure calculations, one solid and one fluid, for 40 hours of machine time, hoping to 
see the less-stable phase disappear. Instead neither phase changed. Probably the 
simplest method for determining the coexistence pressure and temperature for two or 
more coexisting phases is to equilibrate a system in which all phases initially coexist. 
More accurate results can be obtained, but with more labor, by determining the free 
energies separately for each coexisting phase. 

Let us work out the details of the phase-space flow for the isotropic case 
appropriate to a fluid, with the pressure a scalar function of volume. We wish to 
generate the phase-space probability density corresponding to Gibbs’ isothermal-isobaric 
ensemble: 

The same ideas can be generalized to the case that the pressure is a tensor function 
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where both pressure and temperature are specified constants, while the volume and 
energy can vary. Throughout this Section we have added a subscript to emphasize 
that the pressure Po, on which the distribution function depends, is constant and 
generally differs from the timevarying virial pressure described in Section 5.5, which 
has a long-time-average value of Po. In order to vary the volume it is convenient to 
introduce special reduced particle coordinates, which we will indicate by {x}. In the 
simplest possible case, in which the volume V is a D-dimensional cube, the scaled 
Cartesian coordinates {x) represent the usual laboratory-hame coordinates (q} divided 
by the boxlength, V*/D. By introducing not only a Nos&Hoover thermostatting friction 
coefficient 5, but also a variable strain rate k, a set of differential equations of motion 
producing the isothermal-isobaric probabiIity density can be worked out. We denote 
the relaxation times for the temperature and volume by ZT and zv, respectively. For # 

degrees of freedom, the generalized probability density is: 

E(x,p,V) = @(XV~/D) + K(p) . 

-- 

The multiplicative factor of VN-I serves as a Jacobian from the dimensionless variables 
dlnVndx to the laboratory-frame variables. The equations of motion which preserve 
this distribution are the set: 

To see that this is true we need to consider the analog of Liouville's flow equation for 
the probability density, f(x,p,V,<,k), in a generalized phase space with coordinate axes {x}, 
{PI, V, 5, and k: 

Only two of the first five terms on the righthand side are nonzero. Their sum is: 



where # is the number of degrees of freedom. The remaining five terms are as follows: 

- k(af/ax) = -(f/kT)E(p/m)*F; 

- $(af/ap) = +(f/kT)%p/m)-[F - (C + klpl; 

- v(af/aV) = +(f/kT)~[DP,V-~(p/m)=F - D(N - UkTI ; 

- (dk/dt)(%/&)] = +(f/kT)D(VAP)k ; AI? = P - Po . 

Diligent attention to detail reveals that all these terms sum up to zero, verifying that 
the distribution is stationary, (af/at) = 0. Thus the equations of motion preserve the 
isothermal-isobaric phase-space distribution. 

by differentiating the reduced velocities with respect to time. This shows that the 
coupled first-order equations of motion: 

In numerical applications it is convenient to eliminate the momentum variables, 

can be replaced by the equivalent second-order equations: 

Special cases of all of these equations apply to the isokinetic ensemble of Section 5.7 and 
the canonical ensemble of Section 5.8. In both cases the strain rate variable k is zero. 
The isokinetic equations correspond to the additional limit ZT 
equations of motion just described include the necessary features for equilibrium 
molecular dynamics simulations we describe next a simple numerical method for 
solving these isothermal-isobaric equations in the following Section on Numerical 
Techniques . 

0. Because the 

5.10 Numerical Techniaues 
The first molecular dynamics calculations were carried out by Fermi and his 

coworkers at Los Alamos. Initially their goal was to characterize the approach to 
equilibrium of many-body one-dimensional anharmonic chains, using either cubic or 
quartic anharmonicities. Most of the calculations were carried out with 16 and 32 
particles. The results of that work surprised Fermi. The chains failed to equilibrate. 
Instead the initial condition recurred, relatively accurately, long before the expected 
Poincare recurrence time. This failure of the one-dimensional chain to forget its initial 

I , 
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conditions is an example of a system for which Gibbs’ statistical mechanics is not a 
particularly useful theory. For such a pathological system the only way to identify the 
accessible part of phase space is to carry out a molecular dynamics simulation. 

In a more typical situation, with Lyapunov-unstable phase-space mixing, the 
phase-space average and molecular dynamics simulations can be expected to agree. A 
typical molecular dynamics simulation proceeds according to the following plan: 

(I) Generate initial configuration and velocities. 
(2) Advance coordinates and velocities by one time step dt. 
(3) Update averages by summing or integrating. 
(4) Unless enough time has been sampled GO TO (2). 

If the basic computer program is to be used for a variety of problems it is convenient to 
impose the periodic boundaries and to calculate the forces in separate subroutines. 

For large systems it would be time-consuming and unrealistic to include 
interactions between all of the N(N-1)/2 pairs of particles in the system. Generally we 
would expect shielding to make interactions beyond the first few neighbors of limited 
physical interest. For this reason the force calculation is usually cut off at a distance 
only somewhat larger than the expected nearest-neighbor separation. Thus the 
interaction of two particles is typically zero, except when the two are within the 
relatively-short range of the forces. In a periodic system it is usual to restrict all the 
particle coordinates to lie between 0 and L, or, alternatively, between -L/2 and +L/2. 
Then the difference in any two coordinate values, xij = 3 - 3 say, lies between -L and L. 
The “nearest-image distance” which gives the coordinate difference between Particle i 
and the closest version of the periodic Particle j, is then computed with the smallest (in 
magnitude) of three possible values, {xij - L , Xij , Xij + L). See again the nearest-image 
convention as illustrated in Figure 5.5. It is convenient at the end of each time step to 
replace coordinates in a fixed interval, either that from 0 to L or that from -L/2 to +L/2. 
For an integration technique such as Stoermer’s, which computes x(t+dt) from x(t) and 
x(t-dt), both x(t+dt) and x(t) need to be’shifted simultaneously. 

The Lennard-Jones pair potential, 

has infinite range, so that the time required to calculate the force for N atoms varies as 
N(N-1). To avoid this expense Holian and Evans suggested using an interpolating 
cubic spline between the inflection point rI and the cutoff radius rM: 

,% 

Such a smooth cutoff is vital to reproducibility of results. 



Let us apply the ideas just discussed to an isothermal-isobaric computer 
simulation. For simplicity we consider a two-dimensional solid system at zero 
pressure. But the calculations can be generalized easily. From the solution of the 
equations of motion we will obtain time-averaged values for the energy and volume at 
the specified temperature and pressure. We choose to study 36 Lennard-Jones-spline 
particles at a temperature of 0.20~/k, roughly half the melting temperature. Under 
these conditions the triangular lattice solid phase shown in Figure 5.10 is mechanically 
and thermodynamically stable. The lattice coordinates and initial velocities can be 
generated as follows: 

INDEX = 0 
TEMP = 0.20 
IX = 0 
IY = 0 
DO 10 IROW = 1,6 
DO 10 JCOL = 1,6 
INDEX = INDEX + 1 

8 VX(1NDEX) = 10.0" (RANDOM(IX, IY) - 0.5) 

IF (RANDOM(IX, IY) .GE.EXP (-VX(1NDEX) *VX(INDEX) / (2.0*TEMP) ) GO TO 8 
9 VY(1NDEX) = lO.O*(RANDOM(IX,IY) - 0.5) 

IF(RANDOM(IX,IY) .GE.EXP (-=(INDEX) *VY (INDEX) / (2.0*TEMP)) GO TO 9 
IF (INDEX. EQ . (INDEX/:!) * 2  ) XNOW (INDEX) = IROW - 0.75 

IF (1NDEX.NE. (INDEX/2) * 2 )  XNOW (INDEX) = IROW - 0.25 

YNOW (INDEX) = (JCOL - 0.5) *SQRT (0 .75 )  

10 CONTINUE 

where RANDOM (Ix, IY) , described in Section 3.10, generates suitably random numbers 
between zero and one and changes the random-number "seeds" IX and IY each time 
it is called. To convert the lattice coordinates, with a nearest-neighbor separation of 
unity, to "reduced" coordinates corresponding to a total volume of unity, divide both x 
and y values by the square root of 1 8  . 0 *SQRT (3 . 0 ) . At the end of each time step it is 

Figure 5.10. 36-particle section of a 
periodic triangular lattice with 
interparticle spacing d and area 
18(31/*d). 
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convenient to store the self-explanatory variables { XNEW, XNOW, XOLD } and to replace 
the variables XOLD and XNOW by XNOW and XNEW. Initially, set XOLD ( INDEX) = 

XNOW ( INDEX) - VX (INDEX) *DT . 
In our %-body two-dimensional example the dynamics is described by 2N + 3 = 75 

differential equations of four types: 

k = (1/2)dlnV/dt; dk/dt = VAE'/(kT4) ; 4 = AK/&&. 

The first of these represents a set of 72 second-order equations of motion, equivalent to 
144 first-order equations, written in terms of reduced variables scaled by the square root 
of the volume V. In each the force Fij is a function of the distance xijV1/2. The three 
remaining (first-order) equations determine the controlled variables: strain E, strain rate 
k, and friction coefficient 5. The one-dimensional strain is half the two-dimensional 
volume strain, dlnx + dlny = dlnV. The last two control equations describe the 
response of the strain rate k and the friction coefficient 5 to the instantaneous pressure 
and temperature fluctuations AP and AK, which are calculated using the instantaneous 
mechanical definitions: 

P 

K = (1/2)Xp2/m. 

The ij sum is carried out over all pairs of particles and the kinetic-energy sum includes 
each particle once. 

As in the illustration above, the initial coordinates generally are chosen from a 
close-packed periodic crystal arrangement. The initial velocities are usually chosen 
from a Maxwell-Boltzmann distribution; the velocities can subsequently be made to 
sum to zero by subtracting (l/N)& from each one. Then the equations of motion are 
converted to corresponding difference equations: 

Eo = (V, - VJ/(Vo4dt) ; 

( E, - kJ/2dt = V,AJ?/(kT~~) ; 



Provided that values of the strain rate k = d&/dt, the friction coefficient 5, and the 
set of reduced coordinates (x} are saved from the previous time step this set of 2N + 3 = 

75 equations can be solved in an explicit four-step process: 
1. Compute the set of new coordinates {x+) from the first equation. 
2. Compute the "volume" (here actually an area) V+ from the second equation. 
3. Compute the new one-dimensional strain rate, k+ from the third equation. 
4. Compute the new friction coefficient c+ from the fourth equation. 
There are a variety of interesting features in the solution. To test the computer 

program for reversibilitv at time t (although the underlying equations are obviously 
reversible) exchange the "now" and "new" coordinates and change the signs of k and 5; 
then take up the calculation again. The trajectory will be retraced, limited in accuracy 
only by computer roundoff. 

To test the computer program for numerical stabilitv try increasing the time step 
from a conservative value of O.O025(mc9/&)1/*. The equations are still numerically 
stable for a considerably larger time step, perhaps eight times larger, but become 
unstable, for larger values. 

Problems 
1. For the one-dimensional Nos&Hoover oscillator problem, 

find the maximum time step for which the generalized Stoermer equations of 
motion just described and the Runge-Kutta equations of motion have 
solutions and comment on the nature of both solutions for a slightly smaller 
time step. 

2. Consider a single knnard-Jones particle oscillating between two fixed 
neighbors in one dimension. Study a canonical isothermal trajectory, using a 
characteristic energy-transfer time of (m&/&)1/2 and show that the Stoermer 
dynamics of this problem is stable, over a calculation of several vibration 
times, using a time step of dt = 0.09(mo2/&)1/2 at a temperature of kT/& = 0.35 
and, using a time step of 0.16(m02/~)1/2, at a temperature of kT/e = 0.05. 

j ;  = -x - c; ;  4 = ;2 - 1, 

If the temperature is defined by the equation NkT = K then the total energies and 
the densities, relative to the zero-temperature zero-pressure density po, should be 
within a percent of the following values, obtained with relatively short runs, tmax = 
100(md/&)1/2, using .time steps of 0.005(m02/~)1/2 or O.Ol(mo2/&)1/2 : 

Temperature kT/c 0.20 0.25 0.30 
Energy E/Nc -2.56 -2.44 -2.30 
Density p/po: 0.955 0.941 0.925 

? 
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The relaxation times zv and ZT were arbitrarily chosen equal to 36(mc~2/~)1/2 and 
(m&/&)1/2, respectively. The same computer program used to generate these results 
can also be used for isoenergetic or purely isothermal simulations by removing the 
extraneous non-Newtonian forces. Because numerical integration is approximate, it is 
convenient to check the work by examining the constancy of energy and momentum 
and the reversibility of the trajectories. It might be thought that introducing 
fluctuations in energy and volume would destroy any constants of the motion, but this 
is wrong. For periodic boundaries the quantity, 

C = Q, + K + PoV + (DkT/2)(~+)2 + I&,(TT~)~ +2K&dt', 

where the current time t is the upper limit on the friction-coefficient integral, is a 
constant of the motion. 

Problem: 
Show that the time derivative of the function C defined above, evaluated by 
applying the chain rule to derivatives with respect to x, V, and k, is identically 
equal to zero so that the constancy of C can be used as a numerical check of the 
computation. 

5.11 Stabilitv 
Before Lyapunov instability was recognized as a nearly universal feature of 

coupled differential equations, stability was easy to define. A numerical technique was 
said to be "stable" if two initially close solutions remained close together. This 
definition is not useful in dealing with Lyapunov-unstable equations. For these 
systems it is not easy to separate intrinsic instability of the equations from additional 
numerical instability. A logical requirement is that any additional instability added by 
the solution algorithm should be small relative to the intrinsic instability in the 
equations being solved. 

In our Chapter 1 example of the Lyapunov-unstable bouncing ball we saw that the 
information loss rate was about one decimal digit in two bounces. This is typical also 
for a dense fluid, and means that the initial conditions no longer determine the details 
of the solution after about a dozen collisions per particle. Despite this "sensitivity to 

1 

initial conditions" there is no evidence that the trajectory so generated differs in any 
way from the "better" trajectory which could be generated by using doubleprecision 
arithmetic. 

Numerically-timereversible algorithms, like the Stoermer algorithm, are 
specially well-behaved. The underlying reason for this can be seen in analyzing the 
linear hannonic-oscillator problem '>; = -x with the initial condition = 0. For a time 
reversible method the solution of this problem cannot gain or lose energy because such 
a hypothetical gain or loss would need to be reversed in the reversed trajectory. Thus 
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the linear oscillator problem undergoes a phase error rather than an amplitude error. 
The rate at which a time-reversible trajectory propagates is slightly too fast or too slow. 
From an intuitive standpoint phase errors seems less serious than amplitude errors, 
and for two different reasons. First, in a many-body problem, phase errors tend to 
cancel to a large extent, making the time-reversible algorithms unreasonably good. 
Second, amplitude errors tend to amplify through Lyapunov instability, while phase 
errors do not. 

investigation on a case-by-case basis. Its presence can readily be detected by following 
the phase-space separation of two neighboring trajectories. If the separation is 
amplified exponentially, as exp(ht), the underlying motion is Lyapunov unstable. In 
Chapter 11 we will discuss numerical methods for the accurate determination of the 
Lyapunov exponent h. 

The presence of Lyapunov instability rules out the generation of trajectories 
which are accurate at long times. Nevertheless these trajectories need to satisfy some 
basic criteria for acceptability. The main criteria are the preservation of constants of the 
motion. In isoenergetic Newtonian mechanics with a fixed number of particles and 
with forces occuring in pairs, with Fij + Fji = 0, mass and momentum conservation are 
nearly automatic. Conservation of energy remains as a useful criterion for 
acceptability. 

analogs of energy conservation which serve as useful checks of the numerical work. 
For the Nos&Hoover harmonic oscillator, with a frictional force -cp maintaining a 
temperature of unity and following the equation of motion 4 = (p2 - 1 )/z2, Nos6"s 
generalized Hamiltonian, 

Lyapunov instability is itself a more-subtle nonlinear phenomenon which needs 

In Nos&Hoover mechanics, where energy is no longer conserved, there are 

-. , 

is a constant of the motion. Because Nos6's equations satisfy integral feedback they are 
absolutely stable from the standpoint of this constant of the motion. For other 
methods, such as the fourth-order Runge-Kutta method, a rescaling of the velocities: 

can correct for longtime algorithmic amplitude errors. 

5.12 Parallel Computation 

improvements in computer speed and storage capacity. Computer speed is limited by 

doubles in three years. In 1990 low-cost transputers are available which make it 

The scale and complexity of molecular dynamics simulations keeps pace with 

the speed of transmitting data and is currently doubling every ten years. Computer size r- 
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possible to carry out CRAY-size CRAY-speed computations at about one-thousandth 
the cost of a CRAY computer. By linking transputers together in a checkerboard or cube 
arrangment a calculation can be divided into roughly equal nearly-independent parts 
which exchange boundary and global average information at the completion of each 
time step. For efficiency the problem treated needs to be large enough that the data 
exchange time is small relative to the computational time within each processor. For 
the 64transputer SPRINT at Livermore it is relatively inefficient to study problems 
with fewer than a few thousand particles. 

In continuum mechanics each zone interacts only with its contiguous neighbors. 
Thus distributing parts of a problem to an array or processors is natural for continuum 
problems in which space can be divided into cells. Atomistic fluid simulations require 
that particles can change neighbors. To take advantage of this subdividing for 
molecular dynamics requires additional programming. The simplest approach is to 
class* particles’ locations within a regular gridwork of cells, with a cell width or grid 
spacing equal to the range of the interparticle forces. By storing the grid coordinates of 
each particle as well as the coordinates relative to its gridpoint those particles with 
which it interacts can be readily identified. The required information can be stored 
more efficiently by using a ’linked list.” 

otherwise occur in systems hundreds or thousands of atomic diameters in size. At 
present an investment of the cost of an automobile in 64 commerically-available 
megabyte transputers makes it possible to follow the dynamics of one million two- 
dimensional Lennard-Jones particles in about 30 seconds per Stoermer time step. 

The gridwork or cell approach reduces the loss of significant figures which would 

5.13 Hard-Sphere Dynamics 
When molecular dynamics was new it was necessary to test theoretical predictions 

for the simplest possible interesting system, a classical fluid of three-dimensional hard 
spheres. Alder and Wainwright at Livermore developed efficient methods for solving 
the equations of motion for the (discontinuous) hard-sphere potential. The solution 
method is very different from the Runge-Kutta or Stoermer approaches useful for 
continuous potentials. Because the hard spheres travel along straight lines between 
collisions, and at collision simply exchange relative velocity, a hard-sphere molecular 
dynamics program can be based on a tabulation of times to collision for all pairs of 
spheres which might reasonably collide. 

-7 For hard spheres the molecular dynamics follows this plan: 
(1) Choose initial coordinates and Velocities. 
(2) Compute the times {tijj which must pass before i and j collide. 
(3) Select the shortest time and advance all particles. 
(4) Change the velocities of the colliding particles i and j. 
(5) Recompute the tik and tjk for the colliding particles. 
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(6) Update averages. 
(7) Unless sufficient collisions have occurred GO TO (3) or GO TO (2). 

The collision-time table is occasionally refreshed completely and is modified for the 
two colliding particles at every collision. 

Problem 
Integrate the equations of motion for a periodic four-particle chain of Hooke’s 
Law particles, choosing conditions that propagate a rightmoving sinusoidal 
wave through the system. Find dt such that the energy is conserved to four 
figures throughout one wave traversal time. You should find that both the 
kinetic and potential energies are constants of the motion. 

5.14 Summarv and References 
The generalized Stoenner method, which is highly-stable and minimizes storage 

requirements, is particularly well-suited to large-scale computations of all kinds. The 
same general scheme can be applied to isoenergetic, isokinetic, isothermal, and isobaric 
simulations. With such methods simulations involving billions of particles are now 
technically feasible. But smaller systems of perhaps 100 atoms often provide 
sufficiently useful results. For mixing systems the results of small-system simulations 
appear to be in exact agreement with Gibbs’ statistical mechanics. Computational 
efficiency is best with periodic boundaries and very smooth potential functions with 
continuous forces. The many-body embedded-atom approach provides an efficient 
model for simulating simple metals. 

-\ 
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The explosive growth of the computer industry is reflected in the research literature on 
molecular dynamics. A sceptical attitude is a specially useful preprequisite to research in this 
area. The Proceedings of the Enrico Fermi Summer School Course 97, ’Molecular-Dynamics 
Simulation of Statistical-Mechanical Systems” as well as D. Frenkel, I. R. McDonald, and G. 
Ciccotti’s reprint volume Simulation of Liquids and Solids (North-Holland, Amsterdam, 1986) 
give condensed summaries. See also D. C. Rapoport‘s “Large-Scale Molecular Dynamics 
Simulation Using Vector and Parallel computers,” Computer Physics Reports 9 , l  (1988). An 
admirable comprehensive collection of references and techniques has been provided by M. P. 
Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987). 

T. Menzel, “The Superperiod of the Nonlinear Weighted String Problem,” Advances in 
Mathematics 9,399 (1972). The series ”Studies in Molecular Dynamics,” mostly by B. J. Alder 
and T. E. Wainwright, chronicles the early days of hard-disk and hardsphere dynamics. See for 
instance the fourth paper in the series, ’The Pressure, Collision Rate, and Their Number- 
Dependence for Hard Disks,” Journal of Chemical Physics 46,686 (1967). Soft-sphere 
thermodynamic properties are discussed in a paper by W. G. Hoover, M. Ross, K. W. Johnson, 
D. Henderson, J. A. Barker, and €3. C. Brown, ”Soft-Sphere Equation of State,” Journal of 
Chemical Physics 52,4931 (1970). In addition to the papers on NosCHoover mechanics cited in 
Chapter 1 see also H. A. Posch, W. G. Hoover, and F. J. Vesely, ”Dynamics of the Nos6-Hoover 
Oscillator: Chaos, Order, and Stability,” Physical Review A 33,4253 (1986). 

The use of Stoermer-based algorithms in recent million-atom simulations is discussed in 
B. L. Holian, A. J. De Groot, W. G. Hoover and C. G. Hoover, “Time-Reversible Equilibrium 
and Nonequilibrium Isothermal-Isobaric Simulations with Centered-Difference Stoermer 
Algorithms,” Physical Review A 41,4552 (1990). The SPRINT computer is described by A.J. De 
Groot, S. R. Parker, and E. M. Johansson, in SVD and Signal Processing; Algurifhms, 
Applications and Architectures, E. F. Deprettere, Editor (North-Holland, Amsterdam, 1988). 

Body Interactions in Rare Gases: Krypton and Xenon,” Physical Review Letters 57,230 (1986) 
and in earlier work referred to there. The very smooth Lennard-Jones spline potential was 
invented by B. L. Holian and D. J. Evans, “Shear Viscosities away from the Melting Line: 
Comparison of Equilibrium and Nonequilibrium Molecular Dynamics,” Journal of Chemical 
Physics 78,5147 (1983). The embedded-atom potential model for metals is described in S. M. 
Foiles, M. I. Baskes, and M. S. Daw, ”Embedded-Atom-Method Functions for the Face- 
Centered-Cubic Metals, Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys,” Physical Review B 33,7983 
(1986). The plnp form of the embedded-atom metal potential discussed in Section 4 was 
developed at Los Alamos by Art Voter, Brad Holian, and the Hoovers. For a recent application 
see ”Largescale Elastic-Plastic Indentation Simulations via Nonequilibrium Molecular 
Dynamics,” W. G. Hoover, A. J. De Groot, C. G. Hoover, I. Stowers, T. Kawai, B. L. Holian, T. 
Bola, S. Ihara, and J. Belak, Physical Review A (December, 1990). 

For a review of Fermi, Pasta, and Ulam’s calculations at Los Alamos see J. L. Tuck and M. 

John Barker‘s accurate determination of the rare-gas force laws is summarized in ”Many- 
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6.1 Introduction 

theoreticd calculations based on Gibbs’ ensemble approach to equilibrium 
thermodynamic properties and on Boltzmann’s kinetic-theory approach to 
irreversibility and transport properties. Low-density series calculations based on these 
microscopic theories could be compared directly to the corresponding measured results 
of computer simulation. This direct comparison of theoretical calculations with 
computer experiments avoided the force law uncertainties which inevitably cloud the 
interpretation of laboratory experiments. Molecular dynamics simulations make it 
possible to base both theoretical predictions and computer experiments on exactly the 
same force laws. 

dimensional hard disks and three-dimensional hard spheres. For such hard particles 
the thermodynamic equation of state links pressure to the only one relevant 
thermodynamic state variable, density. Two fundamental hard-sphere properties, the 
collision rate and the two-body probability distribution, are directly related to the 
pressure. The magnitude of the kinetic temperature is irrelevant and only sets the 
time scale, with the motion proceeding at a rate proportional to the square root of the 
temperature. Thus, at any density only a single temperature needs to be studied. If all 
the particle velocities were multiplied by (T’/T)1/2, corresponding to a change in 
temperature from T to T’, the resulting particle trajectories would be unchanged. Only 
the rate at which the trajectories are traced out would vary. 

Given a fixed thermodynamic state one can still vary both the boundary 
conditions and the number of particles. At Livermore, Alder and Wainwright 
simulated the Newtonian dynamics of periodic equilibrium hard-sphere systems 
including from 4 to 500 particles and compared time averages of their measured 
properties with the predictions of approximate models. Figure 6.1 shows the Alder- 
Wainwright equation-of-state results for relatively-small systems of hard disks and 
spheres. Until these data were generated, the pressure for the high-density fluid was 
uncertain within a factor of two and even the existence of the hard-disk and hard- 
sphere solid phases was uncertain and controversial. 

expansion would correctly describe the pressure. The low density simulations 
confirmed this expected agreement. What would happen at high density was 
controversial. Would the strongly-compressed fluid form an ordered crystalline 

The first molecular dynamics simulations were designed to test and extend 

At first, the force laws used were the simplest possible, corresponding to two- 

For moderately dense fluids it was generally expected that the Mayers’ virial 
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Figure 6.1. Computed mechanical 
equations of state for hard disks 
(lower curve) and hard spheres 
(upper curve). In both cases the 
high-density solid phase can coexist 
with a lower-density fluid phase. 
The close-packed volume is Vo. 
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solid or a disordered glass? Because the harmonic approximation is never valid for the 
hard-sphere solid phase the relative stability of the fluid and solid phases could only be 
guessed at. Alder and Wainwright’s dynamic simulations indicated a stable solid phase 
at high density linked to the lower-density fluid phase by a van-der-Waals-like loop, as 
is shown in Figure 6.2. These hard-disk and hard-sphere calculations established the 
ability of computer simulation to locate phase transitions and to furnish reliable 
equations of state for dense fluids and anharmonic solids. Of the many theoretical 
approaches which preceded computer simulation only the exact theories, the Mayers’ 
gas-phase virial theory and the quasiharmonic solid-phase theory, have turned out to 
have lasting value. The other approaches were all approximations, and became 
defunct as computer simulations began to take on the role of experiments, determining 
which of the many approximate models was best. 

As the surviving models became more sophisticated and more nearly accurate the 
goal of computation became more ambitious: quantitative agreement with laboratory 

8.5 I I I 

Figure 6.2. Van der Waals loop for 
periodic systems of 870 Hard Disks. 
The smooth curve indicates the 
averaged result of dozens of high- 

hundreds of hours of computer 
time. Typical uncertainties in the 
measured pressures for a single 
computation were as much as 10%. 

7.5 - speed computations requiring 
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experiments on real materials. That is the primary goal of equilibrium molecular 
dynamics today. This work is limited primarily by difficulties in determining useful 
models for the interatomic forces, as was outlined in Chapter 5. 

other than thermodynamic state. The results of the simulations depend upon the 
number of particles, the boundary conditions, the choice of ensemble, and the 
timescales describing the rates of heat and work exchange between system and 
surroundings. We discuss the use of computational results in thermodynamic phase- 
stability calculations. This application makes it possible to generate phase diagrams 
from the results of molecular dynamics simulations. 

Here we emphasize the simplest prototypical equilibrium applications of 
molecular dynamics, for one- and two-parameter two-body force laws, designed to 
measure average properties from Gibbs’ ensemble theory. In addition to 
thermodynamic properties, the two-body distribution function, which is useful in 
applying thermodynamic perturbation theory, is discussed. We indicate how the elastic 
and defect properties of solids can be obtained from the equilibrium simulations. Non- 
equilibrium applications of molecular dynamics are discussed in Chapters 10 and 11. 

Here we begin by discussing the dependence of the simulated results on variables 

-\ 

6.2 Number-Deuendence, Ensemble-Dependence, - and TimeDeuendence 
Simulations designed to characterize the equation of state can best minimize 

number dependence by using periodic boundaries. This choice avoids surface effects of 
order N-1/*. Choosing the number of particles to be studied is more difficult, and 
depends on the property being studied as well as the available computer time. Hard 
and fast rules have exceptions, but the concepts involved in planning computer 
simulations are simple. In order best to approximate the largesystem limit the 
residual influences of transients from the initial conditions, uncertainties due to the 
finite sampling time, as well as the intrinsic errors resulting from number-dependence, 
should all be roughly equal. In a typical situation, with each of these errors varying as a 
power of the number of particles and the time period of the simulation, it is both cost- 
effective and educational to study a series of small calculations, extrapokfing to the 
largesystem limit, rather than spending the same amount of computer time on the 
largest feasible calculation. 

series, described in Section 4.13, makes it possible to estimate the number-dependence 
of the pressure and specific energy. Both should show variations of order l / N  and, 
except near phase transitions Alder and Wainwright’s hard-particle simulations have 
verified this expected behavior. In addition to these known systematic sizedependent 
errors the sampling time interval is significant. Data from early times, before transient 
inhomogeneities decay, must be discarded. We can guess that the time required should 
correspond to the time required for mass, momentum, and energy to diffuse across the 
system. System size varies as NI/D in D dimensions. The Central Limit Theorem 

How many particles should be used? For periodic systems the Mayers’ virial 
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suggests, and kinetic theory confirm 
varies as the square of the length, requiring a time of the order of N2/D times the 
collision time. 

nearly-independent single-particle contributions fluctuate on the time scale of a 
collision, the Central Limit Theorem suggests that N2 independent one-particle 
samples, corresponding to the order of N collisions for each of the N particles making 
up the system, would bring the expected uncertainties in one-particle averaged 
quantities down to the same level, of order 1/N. For collective many-particle 
relaxation properties, such as stress-tensor fluctuations, the number of collisions per 
particle might rather need to vary as N2 to generate N2 independent samples. Thus, for 
a fixed level of accuracy in a two-dimensional system, a linear doubling of system size 
means an increase in computing of factors of 8 or 64 as well as a fourfold increase in the 
number of particles and in computer storage capacity. 

Choice of ensemble is mainly determined by convenience. The generalized forms 
of mechanics which control pressure and temperature by integral feedback make such 
simulations hardly more complicated than those carried out at constant energy and 
density. But the ensemble choice does affect the fluctuations in the results, which are 
usually of order 1/N or (lnN)/N. Stirling's approximation to N! indicates that the 
finitesystem free energy and entropy per particle deviate from the largesystem 
limiting value by terms of order (lnN)/N: 

that the time required to diffuse such a length 

For singleparticle intensive properties, such as the kinetic temperature, in which 

The effect of these corrections can largely be eliminated by computing the free energy 
and entropy relatiae to ideal gases with the same number of particles. With the ability 
to manipulate billions of degrees of freedom on the near horizon the typical number- 
dependence of computer experiments with errors of order N-1, N-l(lnN), N-1/2, or 
even N-113 no longer prevents accurate computation, but an understanding of these 
effects can save considerable time and effort. 

The numerical quality of results in molecular dynamics can always be improved 
by longer calculations. The Central Limit Theorem suggests that uncertainties due to 
sampling time can be cut in half by quadrupling the sampling time. But the 
calculations themselves are imperfect models of reality so that sampling time errors are 
usually not the main cause of disagreement with experiment. Selecting the proper 
physical model is still more an art than a science. 

Thermodynamic properties are thought of as characterizing "bulk" matter, 
enough material so that surface effects and fluctuations can be ignored but not so much 
that diffusion times exceed reasonable observation times. For real materials, periodic 
boundaries are not a possibility. Real materials exhibit size-dependence too, with 
surface effects, decays of transients, and sampling fluctuations. In order that the 
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fraction of surface particles be below 0.1% in three dimensions a micron-sized sample 
of about 1012 molecules is required. The diffusion time for such a sample is a 
reasonable value, about a millisecond. The diffusion time for a cubic centimeter of 
water is still reasonable, about a day, but the diffusion time for a cubic meter of water is 
unreasonable, about 30 years. The scales of computer experiments and laboratory 
experiments began to overlap at the micron level in 1984, with the simulation of a 
krypton film on graphite at the same scale as the corresponding physical experiment. 
By using periodic boundaries the computer experiments can reach micron accuracy 
with only 100 atoms. 

relative to surface effects, and are of order 20/N for a cubic micron of water. These 
deviations are of the same order as the shifts in average values incurred by changing 
from one Gibbs ensemble to another. Fluctuations and ensemble shifts are completely 
negligible from a thermodynamic standpoint. 

A variety of calculations have been carried out to check the number-dependence 
of thermodynamic phase equilibria. With periodic boundary conditions the primary 
effect follows from the InN/N dependence of the free energy. The fluid phase is 
stabilized by density fluctuations, and so encroaches on the region of solid-phase 
stability as the number of particles is increased. 

In the case of the Lennard-Jones potential, 

The bulk entropy and free energy deviations of order InN/N are always negligible 

if the nearest-image convention is used in calculating the energy, then the truncation 
error, which is proportional to 1 /N, is about the same as the 1/N errors in the energy 
and pressure, still exceeding 1% of the binding energy for a cutoff radius of 40. 
Generally the deterioration of numerical integration accuracy caused by discontinuous 
forces makes such forces undesirable. 

6.3 Pair Distribution Functions 

= E@, both the internal energy E = K + @ and the pressure tensor P = PK + Pa can be 
expressed in terms of one-particle and two-particle sums: 

For the simplest model of the many-body potential energy, a sum of pair terms, @ 

E = E(p2/2m) + 24 ; PV = Z(pp/m) + ZrF . 

The time-averaged values of the pair sums Q and ErF can both be expressed in terms 
of the probability prob(r)dr for finding the distance separating a particular pair of 
particles in the range from r - (dr/2) to r + (dr/2). The potential energy s u m  @ = 

includes (N/2)(N-l) terms, one for each pair of particles in the system. For a 
homogeneous fluid state these all have identical time-averaged values: 



For a fluid in hydrostatic equilibrium the diagonal elements of the PV tensor are equal, 
making it possible to express the scalar compressibility factor PV/NkT in terms of the 
angle-averaged force between particles a distance r apart: 

x 

Both the total energy E and total compressibility factor PV include N(N-1)/2 single-pair 
contributions. 

The pair distribution function for real liquids and solids can be reconstructed from 
its Fourier Transform, measured by neutron or may scattering. The pair function 
provides direct structural information, the number density of particle pairs a distance r 
apart. It is usual to define the "radial distribution function" g(r) as the ratio of this pair 
probability to the ideal-gas pair probability at the same density. Thus the number of 
pairs of particles in the range dr about r, divided by [(N(N-l)/2]2mdr/V in two 
dimensions, or [(NW-1) /2]47cr2dr/V in three dimensions, defines the radial 
distribution function. The radial distribution function is unity for sufficiently "large," 
but not too large, values of r. The distance r must be large relative to the range of 
correlations and simultaneously small relative to the box size. Despite the influence of 
the periodic boundary conditions on g(r) typical small-system effects on 
thermodynamic properties are of order l/N. In an N particle system confined to a 
volume V the pair distribution function g(r) can be measured and used to evaluate the 
integral forms for the time-averaged potential energy and the compressibility factor, 
PV/NkT. Both thermodynamic quantities can be expressed as spatial integrals 
weighted by g(r). In three dimensions these are: 

c@> = (N/2)(N-l)<@> = RJ-l)(N/ZV)I~(r)4xr2g(r)dr ; 

The pair or "radial" distribution function g(r) is an essential part of 
thermodynamic perturbation theory. The theory expresses the Helmholtz free energy 
for a perturbed Hamiltonian in terms of the Helmholtz free energy and the pair 
distribution for a reference Hamiltonian. This approach was discussed in Section 4.14. 
In principle, any of Gibbs' ensembles can be used to calculate the probability of finding 
two particles a distance r apart by integrating over the coordinates of the remaining N-2 
particles. In the canonical ensemble this probability has the form: - 



and the Mayers’ approach of Section 4.13 can be applied, giving a number density 
expansion for the radial distribution function: 

The exact expression, given by the full expansion, is as difficult to evaluate as is the 
partition function itself. On the other hand molecular dynamics lends itself easily to 
measurement of the pair and tiplet distribution functions. In the pair case simply 
construct a histogram in which the coordinate separations of pairs of interacting atoms 
are collected during the force calculation. Pair probability results beyond the periodic- 
boundary nearest-image separation are not reliable. 

Problems: 
I. 

2. 

Work out the explicit form of the integral just given, jf13f23dr13, for one- 
dimensional hard rods of length 0. 
Determine the probability distribution prob(Iq1) from a Runge-Kutta solution of 
the motion of a one-dimensional classical harmonic oscillator with 
HamiItonian H = (1/2)(q2 + p2) = 1/2 using 10,20,40, and 80 divisions of the 
interval from 141 = 0 to Iql = 1. Compare these data with the analytic result, 
( 2 / ~ ) ( 1 -  q2)-1/2 and discuss the use of extrapolation techniques to minimize 
the errors. 

,- 

6.4 Free Enerav and Phase Equilibria - 

ordinary ice, “Ice I,” and liquid water can coexist, with the same temperature and 
pressure but with different energies and densities. All pure substances display such 
phase equilibria in characteristic reproducible temperature and pressure ranges with 
phase boundaries across which two physically distinct phases can coexist at thermal and 
mechanical equilibrium. The coexisting phases generally differ in all of their 
properties with the exceptions of pressure, temperature, and composition. There is no 
limit to the number of phases which a particular material can exhibit, but the number 
of coexisting phases, at a particular temperature and pressure, is limited. Gibbs’ “Phase 
Rule,” based on equating the chemical potentials, the pressure, and the temperature, 
for a system with C distinct components, gives the limit, C + 2. Thus a pure single 
component material, like water, can exhibit at most three coexisting phases. 

different phases. For a single simple material like water the coexistence of any two 
such phases can be described by a thermodynamic ”phase line” along which the two 
phases coexist at equal pressure and temperature, P12(T) = Pl(T) = P2(”). The 
intersection of two such lines gives a triple point, at which three phases coexist, with 

Ice water is a prototypical two-phase system. At pressures below two kilobars 

In Section 2.2 we discussed a portion of the water phase diagram containing eight 
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PIB(T) = PI(T) = P2(T) = P3(T) equal to the same "triplepoint" pressure for all three 
phases. Refer to the phase diagram of water in Section 2.2 for several examples. For 
pure water the temperature and pressure are 273 kelvins and 592 pascals at the {ice I + 
liquid water + water vapor) triple point. This easily-reproduced point is used as a 
primary temperature standard. 

As a sample phase-line calculation, let us estimate the dependence of the 
"sublimation pressure" on temperature for a solid in equilibrium with its vapor. For 
simplicity, we describe the solid as a harmonic crystal, with canonical partition 
function, 

and we consider its equilibrium with such a low-density vapor that the vapor can be 
treated as ideal, with canonical partition function, 

k,, = (Ve/NXDIN. 

We then apply Gibbs' idea and maximize the partition function for a system containing 
both phases. The condition of "chemical equilibrium," here a sublimation 
equilibrium, corresponds to maximizing the partition function in the same way as do 
the thermal and mechanical conditions of equilibrium. The chemical analog of 
temperature and pressure is called "chemical potential," and is equal to the equilibrium 
derivative of free energy with respect to Ni. In a closed system with fixed volume, 
temperature, and number of particles, phase equilibrium occurs when the vaporization 
of one additional particle causes no change in the canonical partition function, 

Thus the equilibrium vapor pressure of a solid has a very strong exponential 
dependence on the inverse temperature: 

P/kT = (2~~2/kT)D/2exp(+~,/NklT3 . 

In this sublimation example the chemical potentials of the solid and gas phases are 
equal for phase equilibrium. This condition defines the "sublimation line," PsG(TsG). 
A calculation with liquid included would similarly predict the unique pressure- ,. 
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Figure 6.3. Time-averaged density 
profile for the three-dimensional 
Lennard-Jones triple point. 
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temperature point at which the solid, liquid, and gas phases all have the same chemical 
potential. This is the "triple point," (PSLG,TSLG). 

Typically a change in the pressure or temperature of two interacting phases causes 
the thermodynamic properties, density and energy, for instance, to change 
continuously. Molecular dynamics makes it possible to study and to simulate such 
phase equilibria by both direct and indirect methods. The direcf approach requires 
simulating the two-phase interface in a sufficiently large system that the resulting 
equilibrium reflects that of bulk matter. Ladd and Woodcock carried out a direct 
simulation of the triple point of argon in this way, with a 1500-atom isochoric and 
isoenergetic system in which all three phases simultaneously coexisted. Figure 6.3 
shows a density profile taken during their simulation. The profile shows coexisting 
solid, liquid, and vapor regions. Such a threephase equilibrium is stable to small 
changes in the volume or energy but would be unstable to any change in pressure or 
temperature. This is because all three phases are simultaneously stable for only a single 
value of pressure and temperature but over wide and continuous ranges of volume 
and energy, corresponding to any point in the triangular composition diagram shown 
in Figure 6.4. Because the chemical potentials of the three phases have different 
dependences on pressure and temperature the coincidence of all three phases fixes a 
definite thermodynamic pressure-temperature point, the "triple point." 

Figure 6.4. Triangular three-phase 
diagram. The "mole fraction" of 
the three components is 
proportional to the length of the 
perpendicular to the opposite side 
of the triangle. The sum of the 
three lines is constant, unity, for 
any composition. 
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Problem: 
Discuss the possibility of studying two-phase and three-phase equilibria with 
independent variable sets (V,T) and (P,E). 

The fundamental microscopic criterion for phase equilibrium is the balance of 
chemical potential, p = -kT(alnZ/aN), so that the partition function is unchanged by 
the transfer of matter between any pair of coexisting phases. Indirect approaches to 
phase equilibria can be based on the measurement, or calculation, of any one of the 
thermodynamic potential functions, {E(S,V), H(S,P), A(T,V), G(T,P)), for the coexisting 
phases. In that way the composition of a two-phase system can be computed without 
the need for the kind of direct simulation carried out by Ladd and Woodcock. Many 
methods have been developed for this purpose. For fluid phases the most 
straightforward approach is to calculate the excess Helmholtz free energy (relative to an 
ideal gas with the same N, V, and T) by combining temperature and volume 
integrations: 

d(AExCess/NkT) = (4/NkT)dlnT - [(PV/NkT)-l]dlnV . 

The solid-phase free energy can be roughly estimated, with errors usually no greater 
than 0.2NkT, from either the Einstein model or from the quadratic-form 
"quasiharmonic" approximation to the Hamiltonian. If desired, either approximate 
model for the free energy can then be corrected by a constant-volume energy 
integration: 

where the excesses are defined relative to the model's free and internal energies. 

of phases outside their natural ranges of stability by introducing artificial constraint 
fields. Such an extension is a requirement for a phase with an equation-of-state surface 
P(V,T) surrounded by neighboring phases' surfaces. Ice III is such an example. The 
hard-sphere solid presents a similar difficulty because there is no thermodynamically- 
stable limiting hard-sphere solid state for which the entropy can be calculated 
analytically by applying Third-Law statistical calculations. For hard spheres the 
harmonic approximation never applies. At high density the hard-sphere free energy 
diverges to infinity. Computer simulations show that the hard-sphere solid phase 
becomes thermodynamically unstable at about 36% expansion from close-packing and 
mechanically unstable at about 60% expansion. The hard-sphere solid entropy can 
nevertheless be evaluated in numerical simulations by artificially stabilizing the phase 
with a potential which favors it over the competing phases. For example, the solid 
phase can be reversibly extended all the way to the low-density limit by forcing each 

In free energy calculations it is sometimes convenient to simulate the properties 

*-. 
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Figure 6.5. The fluid and solid 
mechanical equations of state are 
shown for hard disks(ab0ve) and 
hard spheres(below). In both cases 
the solid-phase equations of state 
can be extended to low densities by 
imposing the single-occupancy 
restriction on the simulation. The 
corresponding calculations 
provided the first accurate 
determination of the transition 
densities of the coexisting phases. 

particle to occupy an individual cell. See Figure 6.5 for both the hard-sphere and the 
analogous hard-disk case. Each disk is artificially confined by walls to the region closer 
to its own equilibrium lattice location than to any other. But interactions with 
neighboring disks, crossing the confining wall potentials, are still possible, as indicated 
in the Figure 6.6. The perturbation to the thermodynamic properties induced by the 
cell walls is negligible in the range where the solid is stable. Outside that range the 
spatial ordering imposed by the cell walls prevents the melting of the solid and makes 
it possible to compute the solid-phase free energy by integrating the thermodynamic 
equation of state for the artificially stabilized phase. Figure 6.5 shows the hard-sphere 
equation of state for the fluid and solid phases, including the artificially-stabilized 
extension of the solid phase to low density. 

Problem: 
If the probability for a deviation r, within dxdydz, from a particle’s most-likely 
position is Gaussian, (2~02)-3/2exp(-r2/ Z$)dxdydz, find the probability that this 
particle lies outside a spherical volume V/N when the root-mean-squared 
average value of r is one-eighth the nearest-neighbor separation d. Use the 
spacing appropriate for a face-centered-cubic crystal, (V/N) = d3/2*I2. 
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Figure 6.6. Single-occupancy cells for 
hard disks. The center of each disk is 
required to remain within that disk’s 
private cell. Because the edges of 
these particles can project beyond the 
cell boundaries third-neighbor disks 
can interact. Two such disks are 
lightly shaded. The pressure of this 
singleoccupancy system lies within 
10% of the fluid pressure. 

6.5 Oneparameter Equations of State 
The thermodynamic states of real materials depend upon two independent 

variables in addition to composition, a thermal variable as well as a mechanical 
variable, so that a complete thermodynamic description of a system with fixed 
composition requires that a two-dimensional state space be mapped out. An accurate 
study of a typical fluid phase, for instance, would require perhaps 100 separate points. 
With today’s inexpensive work stations such a project is feasible, but still daunting. For 
most applications a simpler phase diagram with only a single independent variable can 
be adequate and the number of phase points studied can be reduced tenfold. The family 
of inverse-power “soft-disk” or ”soft-sphere” potentials, 

provides a simple prototypical thermodynamics and hydrodynamics, with both fluid 
and solid phases, as well as intermediate unstable ”glassy phases,” with all these phases 
described by a single independent variable which serves to combine together density 
and temperature. These single-component glassy phases are interesting disordered 
solids which are typically less stable than crystalline solids. That glasses are less stable 
than crystalline solids is empirical, the result of experience as well as calculation. It is 
not even obvious that the lowest-energy arrangement of atoms is a regular lattice. At 
finite temperatures when both entropy and energy contribute to stability, the relative 
stability of glassy phases it is even harder to judge. The fact that the rare gases and 
simple metals generally crystallize into regular lattice forms suggests that covalent 
bonds or a mixture of different particle sizes are required to stabilize the glasses 
observed in nature. Nevertheless, because the thermodynamically unstable but 
rnechanicaIZy stable glasses are prevented by their relatively long diffusion times from 
crystallizing, they can exhibit reproducible thermodynamic properties-energy, 
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pressure, temperature, density, entropy-which depend upon cooling rate in addition 
to the usual thermodynamic state variables. 

equilibrium is absent, due to the absence of attractive forces. Crude models of real 
materials, particularly at high pressure where the contributions of attractive forces are 
small, can be readily constructed by choosing an appropriate repulsive exponent n. The 
effects of attractions can be treated as a perturbation, as in van der Waals' equation, and 
simply be added on to the repulsive soft-sphere properties. 

can be described in terms of a single independent variable combining temperature and 
volume. The more straightforward demonstration begins with Gibbs' canonical 
partition function, written in terms of the reduced coordinates used in discussing 
isobaric dynamics in Section 5.9. We again choose a D-dimensional volume, cubic for 
D = 3, and define variables 0 e {xi} e 1 spanning the volume. For statistical mechanics, 
this is enough. Gibbs' canonical partition function takes the form 

For the purely-repulsive inverse-power potentials, {@(r) = e(o/r)n}, the gas-liquid 

There are two ways to see that the thermodynamics of inverse-power potentials 

Because the limits of integration are volume independent it is clear that the excess 
(relative to an ideal gas with the same {N,V,T}) Helmholtz free energy, computed from 
the ratio 1n[Z/Z1deal], can only depend on the temperature and volume in the 
combination TV(n/D) which appears in the integral. Likewise the nonideal parts of the 
pressure and energy, (PV/NkT) - 1 and (@/NkT) = (E/NkT) - (D/2), can depend only 
on the combination (NoD/V)n/D(E/kT) and, because both are derivatives of the excess 
Helmholtz free energy with respect to the same argument, they are related to each 
other: 

(PV/NkT) - 1 = (n/D)(@/NkT). 

This relation between energy and pressure is again the virial theorem, a special case of 
which led to the establishment of Newtonian mechanics from Kepler's Laws. 

the density variation can alternatively be derived directly from the equations of motion 
by introducing a reduced time, r = t(kT/rn)l/2V-1/DI as well as the reduced coordinates 
{Xi}, scaled in terms of the interparticle spacing (V/N)l/D. With corresponding initial 
conditions the solution of the equations of motion {x(t*)} depends on temperature and 
volume only through the combination: 

The same corresponding-states relation between the temperature variation and 
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For a system with hard-sphere interactions (n = 4 it is obvious that particle trajectories 
traced out at the same density but at two different temperatures differ only in the 
relative rates of motion. The sequence of configurations is exactly the same at any 
temperature for corresponding initial and boundary conditions. For soft spheres a less 
obvious, but similar, result holds. The number density can be increased with 
temperature so as to keep the sequence of collisional scattering angles unchanged so 
that the time history of the scaled configuration, (r/Vl/D) is independent of 
temperature. This condition corresponds to keeping the ratio of kinetic and potential 
energies fixed. 

Problem: 
Show that the scaled dynamics for the inverse-power potentials depends only 
on the scaled initial conditions and the parameter (E/kT)(NoD/V)n/D. 
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The special case n = 00, corresponding to hard spheres in three dimensions and hard 
disks in two, was the first to be extensively investigated by molecular dynamics and 
established the ability of dynamical simulations to characterize phase transformations. 
It is qualitatively different from the smaller values used to describe real materials. The 
limiting hard-sphere potential has neither a harmonic expansion nor a nonideal 
constant-volume heat capacity. For hard spheres the constant-volume heat capacity 
always has the ideal-gas value, 3Nk/2. 

easily visualized at constant volume. At sufficiently low temperatures the harmonic 
approximation applies. In this case the kinetic and potential energies contribute 
equally to the total heat capacity of DNk. When the particle displacements becomes 
sufficiently large (about one-seventh of the interparticle spacing in the three- 
dimensional case) the face-centered cubic close packed crystal melts to a fluid with a 
somewhat higher heat capacity. The heat capacity then falls, approximately as l/T, to 
the ideal-gas value as the system becomes progressively more ideal through heating. 

The variation of the equation of state in three dimensions with n can be seen in 
Figure 6.7. Both the static lattice energy, cPo, and the thermal kinetic energy, 3NkT/2, 
have been subtracted from the energies shown. Lindemann’s rough melting criterion, 
described below, 

The equation of state for an inverse-power soft-disk or soft-sphere system is most 

where d is the interparticle spacing and <62>1/2 is the (three-dimensional) rms 
vibrational amplitude, suggests that a reduced temperature scale based on the Einstein 
frequency would bring the data for different n into correspondence. The data show that 
this corresponding sfafes  relation is a useful approximation. 

-, 
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Problems: 
1. For the soft-sphere potential functions @ = dcT/r)* use Lindemann’s melting 

criterion to estimate the maximum value of n for which the harmonic 
approximation gives a useful description of the solid phase. 

2. Use an Einstein-like model of the hard-sphere face-centered-cubic solid to 
estimate a ”vibrational amplitude” for hard spheres. That is, with all spheres 
but one fixed at their perfect-lattice positions, estimate the maximum 
displacement possible for the one moving particle. If the partition function is 
proportional to the 3Nth power of this amplitude, show that the mechanical 
equation of state has the ”free-volume” form given below. 

At low density the extrapolated large-N limits of the two- and three-dimensional 
hard-disk and hard-sphere equations of state PV/NkT agree perfectly with the 
corresponding limiting values from the Mayers’ virial expansions: 

P2V/NkT = 1 + Bp + 0.7812(Bp)2 + 0.5327(Bp)3 + ... ; B = (1/2)n02 ; 

P3V/NkT = 1 + Bp + 0.625(Bp)2 + 0.28695(Bp)3 + ... ; B = ( 2 / 3 ) ~ 0 3  

Here p is the number density N/V rather than the mass density. At high, solid-phase 
densities the measured pressure is more closely described by the ”free-volume” form 
derived from the cell model: 

e. , 



In an intermediate density interval, beginning about 2/3 the maximum density in 
three dimensions and 3/4 in two dimensions, in what Wood once called the “interval 
of confusion,” pressure fluctuations are relatively large. Hundreds of hours of 
computer simulation were required for the accurate averages establishing a van der 
Waals-like loop joining the fluid and solid phases. 

crystalline phases at sufficiently high pressure. The difficulty in packing spheres 
randomly so as to achieve the close-packed density makes the existence of two distinct 
phases seem obvious today. But in the days before computer simulation the possibility 
of a first-order (discontinuous) transition between the phases was hotly debated. 

model of melting, for instance, declares that melting occurs when the root-mean- 
squared displacement reaches a characteristic fraction of the interparticle spacing. The 
model is a useful rule of thumb. Figure 6.8 shows that this relation is satisfied, 
approximately, by three-dimensional solids and that the fraction is about 1/7. On the 
other hand two-dimensional solids have a mean-squared displacement which varies as 
the logarithm of the crystal size, so that the “Lagrangian” fluctuation in the spacing 
between neighboring particles is more significant than the “Eulerian” position 
fluctuation relative to a fixed location in space. All approximate models of melting or 
freezing based on the properties of a single phase wrongly ignore the fact that phase 
equilibria depend on the properties of two or more competing phases rather than on 
the mechanical instability of one phase. 

Despite the lack of attractive forces hard disks and hard spheres both exhibit stable 

“Theories” of melting were then, as they still are, just models. The Lindemann 
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Problem: 
Work out the canonical partition function for two hard disks in a two- 
dimensional rectangular periodic “volume” with sidelengths L and 31/2L. 
Show that this system has a melting transition at a density near 3/4 the 
maximum density. At what density could the cooperative motion of three- 
dimensional hard-sphere atoms in parallel close-packed planes lead to a 
corresponding melting transition? 

- 
Figure 6.8. Estimates for the root- 

by the nearest-neighbor spacing, for 
- face-centered-cubic inverse-power 

solids at their melting points. The 
entry n = - corresponds to hard 

- mean-squared displacement, divided 
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6.6 Two-Parameter Eauations of State 
Morecomplicated two-parameter force laws such as the Lennard- Jones-spline 

detailed in Section 5.10 are still sufficiently simple for a Corresponding States Principle 
to apply. Whenever the pair potential function $(r) is the product of a characteristic 
energy E and a function involving a single characteristic length 0 the thermodynamic 
properties can be expressed in terms of a corresponding scaled volume, V/N@ and a 
scaled temperature ~ T / E .  An example is the Lennard-Jones potential: 
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which was investigated intensively beginning with Rahman and Verlet‘s 
investigations. The Lennard- Jones-spline potential is much better suited to numerical 
work because the higher-neighbor interactions are absent and the potential and its 
derivatives are continuous. 

The phase diagram for the Lennard-Jones potential is compared to that for argon 
and to the predictions of van der Waals’ equation in Figure 6.9. For any given state 
point the isoenergetic Newtonian equations of motion are solved, giving pressure and 
temperature as functions of volume and energy. Even though later work by John 
Barker showed that the true shape of the interatomic potential for argon is significantly 
different from the Lennard-Jones form, with a less-steep repulsion and a deeper 
narrower well, the semi-quantitative agreement leaves no doubt that computer 
simulation can reproduce the details of macroscopic thermodynamic behavior by using 
simple atomistic models for the interactions. 

I I i I I 

I 

Figure 6.9. Comparison of the 
Lennard-Jones, van der Waals, and 
Argon gas-liquid coexistence regions. 
The Lennard-Jones critical point is 
slightly too high relative to the 
experimental point for argon 
(indicated by an arrow). The 
Lennard-Jones coexistence curve 
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6.7 Manv-Parameter Equations of State 
Calculations can be made more flexible, and more complicated, in a variety of 

ways. To represent a polar molecule, water, for instance, a rigid framework of charges 
can be arranged to reproduce the dipole and quadrupole moments of the molecule. 
The dipole moment can be made to depend on the local electric field at the molecule, 
computed by adding contributions from other molecules, so as to reproduce the 
macroscopic polarizability. There is no logical end to the complex process of adding 
parameters in order to fit experimental data. 

The number of published simulations using molecular dynamics now numbers 
in the thousands. The complete list of materials investigated with computer 
simulation is correspondingly vast, including mixtures of polar and nonpolar liquids, 
alkali halides, alkali metals, salts, unsaturated and saturated hydrocarbons, superionic 
conductors, semiconductors, metals, as well as molecules and membranes of biological 
interest. As an example of a conceptually simple and interesting model consider 
Sumnesh Gupta's recent simulations of propane and benzene. In both these cases the 
molecules were represented as rigid frameworks of Lennard- Jones interaction sites, 
with the sites chosen to occupy three of the four vertices of a square for propane, C3H8, 
and the six vertices of a regular hexagon for benzene, C6Hb. With a CRAY computer 
500 such molecules could be followed for lo4 time steps, allowing the pressure and 
energy to be determined with an accuracy of better than one percent. Gupta carried out 
a parallel set of calculations leaving out the attractive forces, with the goal of 
evaluating perturbation theory for noncentral forces. The pair distribution function for 
the propane model is compared to that calculated with a purely-repulsive reference 
fluid in Figure 6.10. 

Problem: 
What should the limiting low-temperature and high-temperature heat 
capacities, CV, for Gupta's models of propane and benzene be? 

2.5 . , I 1 1 I 1 



6.8 Elastic Solids 

induced by sound waves can be measured experimentally by a variety of methods and 
compared to corresponding theoretical calculations using models for the interatomic 
forces. These models aim to calculate the elastic constants {C} in the linear Hooke’s- 
Law relation linking the stress and strain tensors: 

Both slow isothermal deformations and the relatively-fast adiabatic deformations 

The proportionality coefficients, which have units of stress, are the ”elastic constants.” 
The adiabafic elastic constants {Cs} determine the speed of propagating sound waves. 
The isofherma2 elastic constants {CT} describe the stresses required for isothermal 
deformations of these solids. To take advantage of the correspondence between 
microscopic calculations and macroscopic experiments the elastic properties of crystals 
have been investigated in considerable detail. The use of periodic boundaries makes 
contact with the usual plane-wave approach of solid state physics in which phonons 
periodic in space and time are investigated. Free-boundary simulations would be 
complicated by the presence of a vapor phase, surface relaxation and reconstruction, as 
well as the possibility of a liquid surface film. 

Let us consider the simplest three-dimensional case, a periodic cubic crystal subject 
to small deformations from the stress-free state. For a general stress-free crystal each of 
the six stress components { ox,, on, o,, oxy, oyv o,, } can respond to changes in each of 
the six elastic strains { EX,, %, 
constants to describe the linear response. For a cubic crystal symmetry reduces the 
number of nonzero constants to just 12, among which there are only three distinct 
stress-strain coefficients, C11, C12, and Cu: 

i+, cZx 1 , requiring an array of 36 elastic 

Figure 6-11. Deformations from 
which the elastic constants Cii, C12, 
(right) and Q (left) can be 
determined. 

See Figure 6.11 for a pictorial representation of these defmitions. The conventional 
usage of the subscript 44 to indicate the coupling of shear stress to shear strain in cubic 
crystals is strange, but too well-established to ignore. The coefficients Cij can be 
calculated indirectly from Gibbs’ canonical partition function by working out the Taylor 
series expansions of the internal energy and the Helmholtz free energy as power series 
in the strains. The coefficients in the strain series are then obtained as equilibrium 
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Figure 6.12. The scarcely-perceptible 5% 
shear deformation of a 9-particle crystal. 

ensemble averages in the unstrained state. The required ensemble averages include 
slowly-convergent fluctuations of pressure-tensor or strain-tensor components. 

conditions of real experiments illustrates the simplifications possible with a regular 
repeating structure. If a periodic crystal is simply constructed with a built-in strain, 
imposed by applying properly-chosen oblique boundary conditions, then the mean 
stress-tensor components give directly the elastic constants without the need for 
evaluating fluctuations. This is a simple and effective method for determining the 
elastic response of solids. The deformation shown in Figure 6.12 illustrates this idea. It 
shows a 9-atom periodic Hooke's-Law crystal which has undergone a shear strain of 
0.05 = du,/dy from its stress-free state. In Figure 6.12 the nearest neighbors interact 
with Hooke's-Law springs with force constant K and rest length d. The corresponding 
potential energy increase is 0.0004686~d~ per particle. The virial-theorem value of the 
shear stress: 

A more direct purely-computational approach more closely resembling the 

oxy = -(l/V)G<yF/r = 0.02163~, 

gives a corresponding shear modulus of 0 . 4 3 2 6 ~ ~  not far from the analytic value for an 
infinitesimal strain, (3/16)*/2~ = 0.4330~. 

6.9 Defects and Surfaces 
Perfect crystals are rare. Entropy encourages vacancies. The classical canonical 

partition function for a stress-free crystal containing a single vacancy differs from that 
of a perfect crystal by a multiplicative factor of Nexp(-Ev/kT)II(v/v'), where N is the 
number of sites available for occupation by a vacancy, EV is the corresponding increase 
in energy due to the presence of the defect, and the perfect-lattice vibrational 
frequencies {v} shift to the set {v'} in the presence of a vacancy. Quantitative 
calculations are simplest using periodic boundaries. With periodic boundaries it is 
evident that every configuration of a perfect N-atom crystal corresponds to N different 
configurations of an (N-1)-atom crystal with a single vacant site. In the absence of 
lattice relaxation around the vacant site it can likewise be seen that the "missing" 
interactions due to a vacancy are identical to those which bind a particle to the lattice. 
Thus in a perfect crystal, with pairwise additive forces, the vacancy energy Ev and the 
binding energy are identical. For copper the vacancy energy of 1.3 electron volts is 
about 50 times kT at room temperature. Thus an equilibrium room-temperature 



copper crystal with exp(50) atoms should contain on the order of a single vacancy. For 
triplepoint argon the vacancy energy is much less, roughly 10 times kTp.  At the 
melting point the density of vacancies in solid argon is roughly one part per million. 
Thus vacancies play a nearly negligible role in the equilibrium thermodynamic 
properties of solids. Their role in promoting diffusion is an interesting 
nonequilibrium problem. 

Surfaces are a much more interesting equilibrium phenomenon because they can 
be avoided only in computer experiments. Surface atoms have a much higher energy 
than do bulk atoms, so it is thought that they may nucleate a liquid film at 
temperatures below the bulk melting temperature. Ladd and Woodcock’s density 
profile certainly suggests a gradual transition from solid to liquid. This area appears to 
be a promising one for future research. 

6.10 Summarv and References 

the effects of size dependence, statistical fluctuations, and the residual influence of 
initial conditions. With proper care phase equilibria can be reliably characterized by 
direct simulation, or by indirect thermodynamic calculations. Phase diagrams for a 
variety of simple force laws have been so generated and serve as model descriptions for 
real materials. Many such data can be successfully correlated with semiempirical 
corresponding-states approaches related to Lindemann’s melting model. Special 
simulation techniques can be used to study the properties of vacancies and other crystal 
defects. 

A carefully-designed molecular dynamics simulation simultaneously minimizes 

The hard-sphere transition was characterized accurately in 1968. See “Melting Transition 
and Communal Entropy for Hard Spheres,” W. G. Hoover and F. H. Ree, Journal of Chemical 
Physics 49,3609 (1968) and “Studies in Molecular Dynamics. V. High-Density Equation of State 
and Entropy for Hard Disks and Spheres,” by B. J. Alder, W. G. Hoover, and D. A. Young. For a 
Lennard-Jones tiple-point study see A. J. C. Ladd and L. V. Woodcock, ”Interfacial and Co- 
existence Properties of the Lennard-Jones System at the Triple Point,” Molecular Physics 36,611 
(1978). ”Surface Melting” J. G. Dash, Contemporary Physics 30,89 (1989) reviews the evidence 
for the existence of thick liquid films on solids just below the melting point. 

described by G. A. Mansoori and F. B. Canfield, ”Variational Approach to the Equilibrium 
Thermodynamic Properties of Simple Liquids,” Journal of Chemical Physics 51,4958 (1971). S. 
Gupta’s polyatomic simulations are summarized in ”Computer Simulation and Perturbation 
Theory of FIuids Modelled Using Three- and Six-Site Lennard-Jones Potentials,” Molecular 
Physics 68,699 (1989). For the first large-scale atomistic simulation see ”Molecular-Dynamic 
Simulations of the Incommensurate Phase of Krypton on Graphite Using More Than 100,000 
Atoms,” F. F. Abraham, W. E. Rudge, D. J. Auerbach, and S. W. Koch, Physical Review Letters 
52,445 (1984) as well as Farid Abraham’s stimulating review, ”Computational Statistical 

(1986). 

The indirect route to phase equilibria through thermodynamic perturbation theory is 
. 

Mechanics, Methodology, Applications, and Supercomputing,” Advances in Physics 35,l ,-‘ 
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7.1 Introduction 
Hydrodynamics once meant the dynamics of water. But the breadth of the subject 

has come to include general flows of continuous matter, solids as well as fluids, as well 
as related problems in static stress analysis in which there is no flow at all. Thus 
another classical body of knowledge, elasticity theory, is included in hydrodynamics. 
The fundamentals of hydrodynamics parallel those of molecular dynamics: 
conservation of mass and energy, together with Newton's equations of motion for the 
flow of momentum. In hydrodynamics continuum constitutive equations are the 
analog of atomistic forces, and serve to distinguish one material from another. But the 
hydrodynamic equations of motion have to be developed for continua rather than 
particles. The forces causing flows are either external forces, from fields or moving 
boundaries, or internal forces, described in terms of the hydrodynamic pressure tensor 
I?. Thus the hydrodynamic analog of interatomic forces is the "constitutive relation" 
describing the response of individual materials to sources of momentum and energy. 
The mechanical constitutive relation or "equation of state" for each material gives the 
pressure tensor as a function of the geometric flow variables, strains in the case of 
elastic solids and strain rates in the case of viscous fluids. 

variable, temperature or internal energy, the constitutive equations needed to specify a 
well-posed hydrodynamic problem must describe also the flow of energy in response to 
temperature gradients. Energy flows are usually assumed to follow Fourier's law of 
heat conduction, Q = -eVT. Once both the mechanical and thermal constitutive 
relations are given, the remaining task is to solve Newton's equations for the motion 
together with Fourier's heat flow equation for the energy. 

hydrodynamics, many more than in molecular dynamics because the underlying 
equations are partial differential equations rather than ordinary ones. The 
hydrodynamic equations are typically irreversibk, rather than reversible, and 
absolutely unstable when reversed, so that it is only possible to predict the future. The 
past is inaccessible. The chief simplifying feature of the continuum approach, relative 
to the atomistic one, is that the flows take place in one-, two-, or three-dimensional 
geometrical spaces rather than in the abstract many-dimensional phase space of 
statistical mechanics. 

simulations. The system of interest has to be described by fewer than a billion degrees 
of freedom, and followed in time for no more than a million time steps. The 
computational work involves the evaluation of spatial derivatives, usually evaluated 

Because the macroscopic thermodynamic view includes an additional thermal 

There are a variety of analytic and numerical methods for solving problems in 

The numerical limitations are similar to those governing molecular dynamics 



with centered-difference approximations, as well as fime derivatives, which can also be 
evaluated with difference methods or by using the same Runge-Kutta methods suitable 
for the ordinary differential equations of particle mechanics. The usual approach to 
continuum problems is to "discretize" the continuum, using finite-difference or finite- 
element methods to describe the solution in terms of nodal or cell variables. An 
attractive alternative for linear problems is to represent the field variables by truncated 
Fourier series. The numerical simulation of mass, momentum, and energy flows based 
on the equations of hydrodynamics is an active area of research which influences and 
profits from developments in computation. We will discuss elementary analytic and 
numerical approaches to specific continuum problems in Chapter 8. 

Just as in molecular dynamics most hydrodynamic flows are driven by the 
interaction of initial conditions with specified boundary conditions. Unlike the time- 
reversible mechanical equations governing molecular dynamics the hydrodynamic 
flow equations are irreversible and would therefore generally decay to a state of 
uniform motion in the absence of external driving forces. 

The fundamental picture on which the hydrodynamic approach is based is the 
continuum approximation. It is assumed that matter can be treated as continuously 
variable, with properties that change continuously and differentiably in space and time. 
The fundamental equations are derived by considering flows within infinitesimal 
volume elements. The derivations indicate that the solutions of the fundamental 
equations will be useful provided they describe material properties which vary slowly 
on an atomistic scale. The generation and motion of shockwaves and dislocations as 
well as the failure of materials through fracture or flow are examples of problems for 
which the usual continuum approach can fail. The underlying continuity assumption 
is responsible for disagreement with experiment whenever the discontinuous 
properties of real matter are important. 

7.2 Hvdrodvnamic States 
Hydrodynamic systems require the specification of a thermodynamic state at every 

point, possibly as a function of time, though often the goal of a hydrodynamic 
simulation is the characterization of a nonequilibrium steady state in which time plays 
no essential role. Composition and mass density are the usual mechanical state 
variables, and these can be augmented by temperature or energy density whenever 
thermal properties are important. A constitutive description of the material is then 
required to express the momentum and energy flows in terms of the state variables. In 
addition to these material properties of thermodynamics, information describing the 
flow itself must be given. The boundary separating the hydrodynamic system from its 
surroundings can act as a source or a sink of mass, momentum, and energy. These 
boundary conditions are generally idealizations taken to represent experience. The 
underlying atomistic behavior responsible for these observed boundary conditions is 
an active area of research. 

r 
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From the material and boundary information the flows of mass, momentum, and 
energy are to be calculated. The plan of a typical time-dependent hydrodynamic 
calculation is as follows: 

la. Describe the constitutive properties. 
lb. Specify the initial conditions. 
IC. Describe the boundary conditions. 
2. Calculate new coordinates from the velocities. 
3. Calculate new stresses, including viscous contributions. 
4. Calculate accelerations from the stress gradients. 
5. Calculate new temperatures from the energy and composition. 
6. Calculate heat flows from the temperature gradients. 
7. Calculate new velocities from accelerations. 
8. Unless the calculation is complete, GO TO 2. 

None of these steps can be carried out until a coordinate system describing the system 
of interest has been developed and used to generate a finite-element or finite-difference 
mesh upon which the solution is to be followed. The two most useful types of 
coordinate systems are described in the next Section. 

7.3 Eulerian and Lavranaian Coordinate Svstems 

coordinate systems can be used. "Eulerian" coordinates are fixed in space. In the 
Eulerian description matter flows through a fixed grid, as in Figure 7.1. Such a 
coordinate system is ideal for studying the approach to a stationary nonequilibrium 
state. The changing mass, momentum, and energy in each 'hydrodynamic zone is 
computed by summing up the corresponding flux contributions across the zone 
boundaries. 

In a numerical solution of the hydrodynamic equations two specially simple 

Figure 7.1. Eulerian zones, fixed in 
space, through which material 
streams. 



Transient problems, particularly those involving large deformations or the 
tracking of interfaces separating different materials, are not so easily treated with a fixed 
coordinate frame. For them Lagrangian coordinates are a better choice. In the 
Lagrangian description coordinates are measured in a fixed laboratory frame, but refer 
to particular elements of the moving fluid or solid and follow the flow. There are no 
comoving mass fluxes in a Lagrangian problem unless the system contains 
interdiffusing species. 

7.4 Continuitv Eauation 

Because the material being studied is a continuum it is assumed that the flow 
properties are continuous differentiable functions of their arguments, except at 
boundaries. We begin with a fixed laboratory frame in which a gridwork of cell 
boundaries divides the continuum into Eulerian zones, as shown in Figure 7.1. We 
focus on one of these zones in order to formulate the continuum analogs of atomistic 
mass, momentum, and energy conservation. 

The mass flowing into an Eulerian zone extending from x - (6x/2) to x + (6x/2) 
and with fixed boundaries 6a normal to the x axis, is given by the difference between 
the mass loss rate (-p6a;() on the right and the mass gain rate (+p6a;() on the left. These 
rates can be visualized as dot products of the "mass flux" pv, and a vector normal to the 
area 6a. If the flow velocity and mass density are both continuous variables then the 
time rate of change of mass, or equivalently, density, can be expressed as a power series 
in dx. Dividing by the zone volume, the first nonvanishing term is: 

The continuity equation is the macroscopic analog of conservation of mass. 

--_ 
. I  

Figure 7.2. mows entering and 
leaving a fixed Eulerian zone. 
During a short time interval dt the 
striped material enters the fixed 
Eulerian zone. Simultaneously the 
dotted material in the zone flows out. 
The continuity equation furnishes an 
exact description of such a flow. 



The density derivative (ap/at) is a partial derivative because it is calcula.zd at a fixed 
spatial location. The space derivative -a(pv)/ax is likewise a partial derivative because 
the contributing flows are measured at the same time. By analyzing a series expansion, 
assuming sufficient differentiability, we can show that the deviations from the first 
nonvanishing terms shown above vanish as (6x)2 so that the differential equation is 
valid for sufficiently small zone widths 6x. 

By choosing a small square or cubic Eulerian zone the derivation just outlined for 
a one-dimensional flow can readily be generalized to two- and three-dimensional flows. 
See Figure 7.2. Adding up all the contributions for flow into and out of the area 
element in a two-dimensional continuum gives, for instance 

The last dot-product form of the Continuity equation, (ap/at) = -V*(pv), uses the “del” 
operator V to represent (d/dx,d/dy) in two dimensions or (d/dx,d/dy,d/dz) in three. 

Let us derive the same result using the comoving Lagrangian coordinate system. 
Notice that the variation in density for a moving fluid is fundamentally different from 
that of a fixed Eulerian zone. The density change experienced by a moving element 
includes not only the fued-space derivative @plat) but also the change in density 
encountered as a consequence of motion, v(ap/ax). It is simplest to calculate the 
complete density change for an initially-square two-dimensional Lagrangian comoving 
volume element. The mass of any such element, p6x6y, is constant. As the element 
moves, with the flow velocity v(x,y), both the density p and the size 6 x 6 ~  can vary but 
their product is fixed. The comoving Lagrangian time derivative of the logarithm 
must therefore vanish: 

0 = (d/dt)ln(p6x6y) = (dlnp/dt) + (dln6x/dt) + (dln6y/dt) = dlnp/dt + V-v = 0 ,  

giving the usual Lagrangian form of the continuify equation, dlnp/dt + V-v = 0, valid 
for one, two-, and three-dimensional continua. To see that this form is equivalent to 
the Eulerian version of the continuity equation it is necessary to expand the Lagrangian 
derivative of density, explicitly indicating the changes of density with time and with 
space. In two dimensions the expansion is: 

In combination with the form dlnp/dt + V-v = 0 we find 

(+/at) + vvp = -pv*v , 
’.. 
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equivalent to the Eulerian form above. Just as before the derivation requires only that 
the flow velocity be sufficiently differentiable. The neglected terms are of order 8x2, 
6x8y, and Sy2 and can be made arbitrarily small. The continuity equation also follows 
from the identity that the volume strain rate is given by the divergence of the velocity. 

conservation of mass is called the continuity equation. The Eulerian and Lagrangian 
coordinates are not the only possible choices for expressing the continuity equation. 
Evidently the density change could just as well be calculated in an arbitrarizy moving 
frame, by adding an appropriate convective derivative to the Eulerian derivative. One 
situation in which another coordinate frame is the simplest choice is the shockwave 
problem. Then the flow equations are simplest when described in a frame moving 
with the shockwave so that all the time derivatives, such as (ap/at) and (av/&), vanish. 

The flow equation relating the density change to the velocity through 

Problem: 
Consider the one-dimensional motion of a longitudinal sinusoidal wave, with 
wavelength I, which obeys the "wave equation" (E%/&) = c2(i32u/ax2) where u 
is the "displacement" of the medium from its undisturbed rest state. Let the 
mass density p and sound velocity c of the medium also be unity. Work out 
the analytic variation with time of the coordinates, velocities, and pressure, in 
both the Eulerian and Lagrangian coordinate systems. Assume that the 
constitutive relation is a linear one, with P,, = -pc*exx where the strain E,, is 
the x derivative of u. Estimate the error that would be incurred in a numerical 
propagation of the wave for a distance of one wavelength if the second spatial 
derivative is replaced by a centered-difference approximation. Let the system 
be periodic, with a length equal to the wavelength, and divided into 10 equal 
zones. Check your analysis with a Runge-Kutta simulation. 

7.5 Pressure Tensor 
The flow of momentum can also be described in either Eulerian or Lagrangian 

coordinates. From the Eulerian standpoint it is most natural to think of momentum as 
flowing into and out of a fixed zone. From the alternative viewpoint of a comoving 
Lagrangian zone it is more natural to focus on the forces exerted on a moving zone by 
neighboring zones. A momentum flux is required in either case. When this flux is 
measured in the cornoving frame it is called the pressure tensor, and the components 
are the force/area ratios. The pressure tensor, or "Pressure" for short, describes the 
force per unit area exerted by a Lagrangian fluid element on the surrounding fluid. 
Pressure is a second rank (two-subscript) tensor because two directions are required to 
describe the force/area ratios. These two are the direction normal to the area and the 
direction of the force. The force per unit area exerted on the positive side of a surface 
perpendicular to the x axis has components - P,,, - P 
fundamental definition of Pij is the flux of j momentum in the i direction. 

and - Pxz. Thus the 
XY' 
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Problem 
Show that the hydrostatic pressure in a fluid with variable mass density p(z) 
and in mechanical equilibrium under the influence of a gravitational field g, 
which accelerates mass in the negative z direction, satisfies the equation 

dP/& = dP,,/dz =-pg . 

In solid mechanics it is usual to discuss the stress tensor, or stress, rather than 
pressure. The word "tensor" was originally developed to describe the tension in solids 
under load. The stress tensor CJ is just the negative of the pressure tensor, 

-pxx -pxy -pxz 

6 =  -Pyx -pyy -pyz 
-Pzx -Pzy -I?, . 

For the simplest isotropic elastic solids it is usual to neglect the distinction between 
isothermal and adiabatic deformation and to describe the response of stress to strain in 
terms of two material properties. Only two are required because only two modes of 
deformation are possible for an isotropic material, volume change and shape change. 
Thus the pair of material properties describing a general elastic response can be the bulk 
and shear moduli, B and G. Equivalently the two Lame constants, q and h, can be used. 
The definitions of B and G are: 

while the Lam6 constants are defined by the phenomenological Hooke's-Law 
description of the stress tensor as a linear function of the strains: 

6 = h(V*u)I + q(Vu + Vut) . 

In this definition of h and q I is the unit tensor and u is the vector displacement from 
the stress-free reference state. Because the study of tensors and tension began with 
experiments on the deformation of rods an alternative description of elastic behavior is 
often adopted. The alternative is based on the simplest experiment, the extension of a 
uniform test cylinder. An isotropic cylindrical rod of rest length L, which has been 
extended in length by 6L parallel to.the x axis, is said to have been strained, undergoing 
a strain E, = SL/L; unless special precautions prevent it the stretching will induce 
accompanying strains % = E,, = E in the radial direction. The resulting components of 
the pressure tensor and stress tensor are: 



-Pw = ayy = -Pa = h(E,  + 2E) + 2qe. 

Using again the shorthand notation V to represent (a/ax,a/ay) in two dimensions or 
(a/ax,a/ay,a/az) in three gives a form valid for either two- or three-dimensional 
isotropic continua: 

P = -h(V*u)I - q(Vu + Vut) , 

where I is the unit tensor. In one dimension V*u and Vu are identical and there is only 
a single elastic modulus. If the sides of a three-dimensional elastic rod are maintained 
stress free then the ratio of the contraction of the bar to the extension, is called 
Poisson’s ratio, v, and given by the expression v = h/(2q + a). The ratio of the 
longitudinal stress to the strain in this experiment is called Young’s modulus, usually 
denoted by E: 

Problems: 
1. 

2. 

Show that the one-dimensional analog of Young‘s modulus E, axx/%x, for a 
one-dimensional chain of particles linked by Hooke’s-Law springs is equal to 
the spring constant K. For a two-dimensional strip of nearest-neighbor 
triangular-lattice particles linked by Hooke’s-Law springs show that Young‘s 
modulus, is 8q/3 = (2/3)43~. 
Estimate Young‘s modulus for diamond, assuming a typical vibrational 
frequency of 1013 hertz. 

Figure 7.3. Forces on a 
comoving Lagrangian zone 
are described by the pressure 
tensor. The element Pij 
gives the force in the jth 
direction on the face 
perpendicular to the ith 
direction. 

, 
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An important, but far from obvious, property of the pressure tensor is its 
symmetry. The off-diagonal elements are equal in pairs: 

for instance. This symmetry is required for mechanical stability. If any pair {Pi-+&&) of 
off-diagonal elements were not precisely equal then the resulting torque would vanish 
less strongly than the mass as the volume element became smaller, causing infinite 
angular accelerations. Thus the symmetry of the pressure tensor follows from the 
requirement that the continuum must have well-defined accelerations. To see this, 
consider the two-dimensional element of area shown in Figure 7.4 and imagine that 
Pyx exceeds Pxy by 6P. The effect would be a counterclockwise rotation increasing 8. 
The resulting surface forces do work 6PL2de during a positive rotation de which is 
converted into kinetic energy of the area element (1/2)<pv2>L2 = (1/2)<p(rl))bL2 = 

(pL462/12) = GPL2de. Setting the time derivatives of these two equal energies equal to 
each other gives an ordinary differential equation for the rotation: 

Thus the angular acceleration diverges as L-2 if the pressure tensor is not symmetric. 

Problem: 
Show that the same result for the angular acceleration is obtained in three 
dimensions if again PF exceeds Pxy by 6P. 

The symmetry of the pressure tensor can also be seen directly from the atomistic 
point of view in a system composed of particles which exert central forces on one 
another. To see this, remember the virial theorem expression for the pressure tensor: 

F,=PvL 

PV = ZrijFij + C(pp/m) . 

/ 

Fx=Py,L 

Figure 7.4. Rotational forces 
corresponding to Pxy and I?? 
Unless the pressure tensor is 
symmetric the angular acceleration 
from these forces diverges as L 
approaches zero. 

F =-PV L 
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The two contributions to the PV tensor product, rijFij from each interacting pair of 
particles and (pp/m) from each mass, both have this symmetry. It is possible to define 
nonsymmefric pressure tensors for molecules interacting with noncentral forces but we 
shall not do so. 

To develop more familiarity with the pressure tensor we will work out the 
relations linking the Cartesian and polar-coordinate representations of I?. Given the 
flu of x momentum in the x direction Pxx and the flux of x momentum in the y 
direction PF, it is clear that the flux of x momentum across a sampling plane normal to 
the radial direction is 

P,cose + PFsinO . 

Similarly, the flux of y momentum, across the same sampling plane, normal to the 
radial direction is 

PXycos8 + Pyysine . 

The radial components of these two contributions make up the total radid flux of 
radial momentum. P, is the radial part of these two momentum fluxes: 

The combination (Pxy + PF) is of course 2Pxy = Pyx, but has been written as is for 
clarity. 

direction is the pressure-tensor component Pro: 
The corresponding shear flux contributions of these x and y momenta in the 8 

Finally, considering the flow of 8 momentum across a sampling plane perpendicular to 
the direction of increasing 8 leads to the result: 

Peg = [Pxxsin2B - (Pxy + PyX)sinecose + Pyycos281 . 

Exactly these same results follow automatically from the mathematical operation of 
tensor rotation from the original Cartesian xy frame through an angle 8 to the local 
Cartesian version of the polar-coordinate frame: 

cos(0) sin@) 

-sin(e) cos(8) . 
r(r,e) = R*P(X,~)-R~;  R = 

, 
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Problem 
Consider a two-dimensional particle with mass m, moving in a box with area 
V and with momentum p = (px,py). What are the instantaneous contributions 
of this particle to the Cartesian pressure tensor components Pxx, PT, and PW? 
Express the momentum of this same particle in polar coordinates, p = (p,pe). 
Then also compute the contribution to the polar-coordinate momentum fluxes 
Prr, Pro, and Pee, all in terms of the original momentum components px and py. 

7.6 Eauation of Motion 

point in space. The vector divergence of this tensor, together with any external 
gravitational or electromagnetic forces, can then be used to calculate accelerations. To 
establish this result we again consider a Lagrangian cube 6 x 6 ~ 6 ~  of material moving 
with the flow velocity u(r) = u(x,y,z). The acceleration of this comoving cube in the x 
direction, for instance, has three independent contributions -(aP,/ax)6x6y6z from the 
difference of the pressure forces applied at the x faces, -(&’F/ay)6y6z6x from those at 
the y faces, and -(aPzx/~z)6z6x6y from the z faces. If the pressure tensor is sufficiently 
differentiable, the errors in the resulting differential equation of motion will vanish as 
the square of the cube’s sidelength. In the absence of external fields the x component of 
the equation of motion is 

Assume a continuous differentiable form for the pressure tensor P(r) at every 

pux = -(V*P), . 

The generalization, valid in any number of dimensions, is 

pu =-vel? = +v*o, 

where the ordinary time derivative signifies the comoving Lagrangian derivative 
following the motion. 

coordinates. In such a case the stress and strain tensors can be transformed by standard 
mathematical techniques, or by physical reasoning, as illustrated in the last Section, or 
the new equations can alternatively be derived by force balance. To illustrate the latter 
approach, consider the radial forces on the two-dimensional area element rdrde shown 
in Figure 7.5. The product of the mass and the radial acceleration (prdrde);, is given 
by the s u m  of two terms. The radial components of the forces on the two curved 
surfaces are: 

It is sometimes convenient to use curvilinear coordinates rather than Cartesian 



Figure 7.5. Force balance 
calculation using polar coordinates. 
Notice particularly that the forces 
on the straight sides of the polar 
volume element have resultants in 
the radial direction. 

The radial components of the forces on the two flat boundaries are of two kinds; the 
~ shear components, 

7.7 Navier-Stokes Eauations 

the work required to accomplish the deformation. The hypothetical reversible process 
of thermodynamics requires the least work and the greatest amount of time. It is 
reasonable, and in accord with considerable experimental data, to suppose that the 
pressure tensor, for a simple fluid away from equilibrium, can be expanded as a power 
series in the strain rate. Because typical strain rates seldom exceed a megahertz while 

because it is likewise supported experimentally, to truncate the presumed expansion 

It is the result of experience that the more rapidly a fluid is deformed the greater is 

,-- 
L, 

one could expect stress to relax at gigahertz or terahertz rates it is likewise "reasonable," 
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after the first nonvanishing term. The additional nonequilibrium term, proportional 
to the strain rate, introduces Newton's phenomenological "viscosity" into the 
constitutive relation. For isotropic fluids there can be only two viscosities, a "shear" 
viscosity which resists changes in shape and a "bulk" viscosity which resists changes in 
volume. It is advantageous in formulating hydrodynamics to express the bulk 
viscosity in terms of a hybrid viscosity h = qv - (2q/D), where q is the shear viscosity. 
The motivation for this queer choice is the simple form taken by the stress tensor. We 
will see that this form is analogous to the equations describing elastic deformation in a 
homogeneous isotropic medium. 

Problem: 
Calculate the time required for an iron atom to move one interatomic spacing, 
0.25 nanometers, at the room-temperature thermal velocity (3kT/m)1/2 and 
discuss why it is that the longitudinal sound velocity in iron, nearly 6 km/sec, 
is about fifteen times faster than the corresponding thermal speed. 

The pressure tensor P (the negative of the stress tensor o) for a Newtonian fluid 
has the form 

h 

4 

where the equilibrium pressure Peq and the two viscosity coefficients q and h all depend 
upon the local thermodynamic state and the superscript t indicates the transpose of the 
velocity gradient tensor Vu. This equation is the constitutive relation for a 
"Newtonian fluid." To understand the significance of this tensor form it is useful to 
consider the three special cases shown in Figure 7.6. If a fluid expands isotropically 
with a volume strain rate k = (i3uX/i3x) + (i3uY/i3y) + (i3uZ/i3z) = V*u = dlnV/dt, then the 
pressure must also be isotropic and the tensor must be diagonal, with all three diagonal 
elements equal to Pq - [h + (2/3)~& Thus the "bulk" viscosity, which gives the excess 
pressure in compression and the excess tension in expansion is 

Figure 7.6. Deformations of a shaded volume element illustrating isotropic expansion 
(left) as well as two shear deformations (center and right). -, 



Problem 
Show that the bulk viscosity is qv = h + q in a two-dimensional Newtonian 
viscous fluid. 

Next consider the steady shear of a fluid, with ux = ky, where k is the shear strain 
rate. Then the only nonvanishing element of Vu is (au,/ay) = k. Because this element 
of Vu contributes to the viscous pressure tensor element PF as well, through the 
transpose of Vu, the corresponding (symmetric) pressure tensor for this simple shear 
flow is 

The typical hydrodynamic fluid, water, has a room temperature shear viscosity of 0.01 
poise = 0.001 pascal seconds. If we describe the viscosity in terms of a relaxation time, 
the "Maxwell relaxation time," by dividing the viscosity by the shear modulus (here we 
can use the shear modulus for ice as an estimate because the zero-frequency shear 
modulus for water is zero), a value of order one picosecond results, correctly suggesting 
that the mechanism for viscous flow is atomic rearrangement. By way of contrast, the 
typical gas, air, has a room temperature shear viscosity one thousand times less and a 
modulus perhaps one hundred thousand times less than that of water. Thus the 
Maxwell relaxation time for air is about a nanosecond, and corresponds to the time 
between collisions. 

Last, consider a fluid which is being squeezed in the x direction and stretched in 
the y direction, so that V*u vanishes and the deformation takes place at constant 
volume. The pressure tensor for that flow, described by two elements of the velocity- 
gradient tensor, dux/dx = + k/2 < 0 and duy/dy = - k/2 > 0, is 

Because this flow is identical to the previous example, in a coordinate frame which has 
been rotated 450, w e  see that shear need nof involve off-diagonal pressure tensor 
camponenfs. These are fully equivalent to differences in diagonal elements in a 
rotated coordinate system. 

The equation of motion for a viscous fluid is called the Navier-Stokes equation: 

pli  = -V*P = -V*[(P,, - hV*u)I - q(Vu + Vuf)] . 
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It is often assumed that the fluid flow is incompressible, with V-u = 0, so that the bulk 
viscosity does not influence the flow, but we use the term Navier-Stokes equation to 
mean the equation of motion for a fluid with Newtonian viscosities, both shear and 
bulk. If the material properties have no dependence on energy then the Navier-Stokes 
equation together with the continuity equation is enough to formulate a well-posed 
problem. In the more usual case that energy plays a role then the flow of energy, as 
discussed in Sections 9 and 10, must be included also. 

'i 
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7.8 Elastiatv Equations - 

Although all materials have a directionally-ordered structure on the atomistic 
level that structure is often irregular enough on a larger scale, perhaps a micron, so that 
the material can be treated as macroscopically homogeneous and isotropic. In 
analyzing the small deformations associated with stresses that are small relative to the 
moduli, that is, stresses of order a few atmospheres for typical solids, it is useful to 
imagine expanding the stress tensor as a series in the strains and to keep only the fist 
nonvanishing term. Displacement is not the same as deformation. Deformation 
requires a symmefric displacement gradient. Strain is related to the displacement 
gradient. Strain is fundamentally a second-rank (two-index) tensor because the 
direcf ion of displacement varies with locafion. Antisymmetric combinations of 
displacement gradients correspond to rotations irrelevant in the linear theory of a 
symmetric pressure tensor. 

In hydrodynamics the symmetrized velocity gradient leads to linear stress 
deviations from equilibrium. In elasticity theory, displacements replace the velocities 
and the symmetrized displacement gradient, Vu + Vut, likewise describes deviations 
from the unstrained stress-free state. For the simplest possible idealized elastic 
continuum, assumed to be both homogeneous and isotropic, the linear equation of 
state has the same form as that for a viscous fluid: 

1 

o=hV*uI +q(Vu+Vut), 

7 

where again I is the unit tensor. The equilibrium stress is not written explicitly 
because, in elasticity theory, the stress expansion is ordinarily carried out about the state 
of zero stress. Otherwise it is necessary to define and use nonlinear strains. 

The elastic moduli q and h are called the Lame constants. Their numerical values 
range from about an atmosphere in very soft materials, such as rubber, to several 
megabars for hard materials, such as diamond. The ratio of the viscosity coefficients, 
with units of [pressure x time], to the moduli are again 'Maxwell relaxation times" 
with typical numerical values on the order of an atomic collision time, about a 
picosecond. 

1. 



7.9 Heat Flux Vector 
The heat flux vector completes the formal list of ingredients required for a 

continuum description of the flow of mass, momentum, and energy. Heat flux 
describes the comoving flow of energy, with units [energylarea x time] = [power/areal. 
The "area" becomes a length in two-dimensional problems. Like the pressure tensor 
the heat flux vector requires definition in the comoving Lagrangian frame. If we 
imagine inserting a thin insulating comoving area in an otherwise unchanged 
continuum, the tendency of opposite sides of the insulator to heat and cool would 
reveal the presence of a heat flux. If the temperature gradients are sufficiently small it 
is reasonable to imagine expanding the heat flux as a power series in the gradient and to 
keep only the first nonvanishing term. The result is Fourier's Law: 

The dot product is used here as a reminder that the heat conductivity K can be a tensor 
if the medium is anisotropic, as is graphite for instance. The anisotropy can be induced 
in an isotropic medium by external fields or by rotations. For example, in a rapidly 
rotating cylinder of fluid, hot in the center and cold on the boundary, the flow of heat is 
not entirely radial, even in the comoving frame. 

Problem: 
The steady comoving (corotating) heat flow in a rapidly-rotating annulus of 
fluid or solid, heated at the inner radius and cooled at the outer radius, can be 
described by an alztisymmetric heat conductivity tensor with K~~ = -IC>.(. 
Sketch the flux lines in the corotating frame and describe the mechanism 
responsible for the nonsymmetric contribution to the heat flux. 

Just as is the case for the pressure tensor it is possible to write down microscopic 
expressions relating the heat flux vector directly to the underlying particle coordinates 
and momenta. To do so imagine sampling the kinetic part of the heat flux component 

by considering the flow across an infinitesimal sampling plane perpendicular to the 
x axis. Average the position of this plane over all locations in the volume V. The 
quantity sampled, the rate at which energy crosses the sampling plane due to kinetic 
particle motion, is proportional to the normal velocity vx of crossing particles and to 
the energy transported: 

where the potential energy flow associated with each particle includes half of its 
interactions with other particles. 

. I  



The rate at which energy is transported across a sampling plane through the 
action of interparticle forces gives the remaining potential part of the heat flux: 

Exactly these same relations for the heat flux vector were derived in Section 5.5 by time 
averaging a microscopic expression involving the single-particle energy changes, {Ei). 

7.10 Energy -- Eauation 

can express the rate of change of specific energy e (that is, energy per unit mass) for a 
deforming and conducting volume element 6 x 6 ~ 6 ~ .  Such a volume element can do 
work on, and exchange heat with, its surroundings. These energy transfers obey the 
time-dependent version of the First Law of Thermodynamics, 

With microscopic expressions for the pressure tensor P and heat flux vector Q we 

Dividing by the volume completes the set of equations describing the flows of mass, 
momentum, and energy in a continuum. 

work done by a deforming Lagrangian volume element we mean to include nine 
similar contributions in three dimensions. In two dimensions there are four: 

In using the double-dot notation -RVu to represent the density of mechanical 

In the last form we have used the symmetry of the pressure tensor to combine together 
the two contributions to the shear strain rate Exy = (dux/dy) + (duy/dx). 

Although it is tempting, and even correct, to write the energy equation, 

P 

pG = -V*Q - RVU, 

by direct appeal to the First Law of Thermodynamics, such an argument cannot be 
made with confidence unless one has carried out the painful algebra required for a 
"rigorous" derivation. We indicate the steps here for the one-dimensional case, 
leaving the two- or three-dimensional analogs to the conscience of the student. 
Suppose density p(x,t) 9 p, velocity v(x,t) = v, pressure Pm(x,t) = I?, heat flwc Qx(x,t) E Q 



and energy density per unit mass, e(x,t) 
laboratory frame coordinate x, and the time t; then the rate at which the energy in a 
fixed Eulerian zone of length dx changes with time, (a/at)[pe + (1/2)pv2]dx is given by 
summing up the convective flow of energy -(a/ax>[pve + (l/Z)pv3]dx, the work done 
-(a/dx)(Pv)dx, and the heat flux -(aQ/ax)dx. The fixed zone length is common to all 
these contributions so that energy balance requires: 

e, are aI2 differentiable functions of the 

The left-hand side can be written: 

The right-hand side has the form: 

The time derivatives of the density and velocity can then be eliminated by 
straightforward substitution, using the Eulerian forms of the continuity equation and 
the equation of motion: 

The result is the much simpler Lagrangian form of the (one-dimensional) energy 
equation: 

pk = p[(ae/at> + v(ae/ax)l= - P ( ~ v / ~ x )  - ( ~ Q / ~ x I  . 

With this derivation of the energy equation we have obtained the complete set of 
Lagrangian equations for hydrodynamic flows: 

These equations, when supplemented by the constitutive equations for the pressure 
tensor and the heat flux vector are a closed set of equations, making it possible to 
simulate the dynamics of a continuum numerically. 



7.11 Summarv and References 

fixed “Eulerian” frame or in a material-fixed ”T-agrangian” frame. The comoving fluxes 
of momentum and energy are the “pressure tensor” and the ”heat flux vector.” Once 
the material-dependent “constitutive equations” describing the response of these 
comoving fluxes to velocity and temperature gradients are specified the conservation 
relations for mass, momentum, and energy lead to a well-posed problem. 

frame: 

Continuum flows of mass, momentum, and energy can be described in a space- 

The conservation relations take their simplest form in the Lagrangian comoving 

dinp/dt = -V*U ; p i  = -V*P ; p;Z = -V*Q - EVU . 
‘I 

These partial differential equations can be solved with numerical techniques 
resembling those applied to problems in molecular dynamics. 

The most useful references are Landau and Lifshitz’ Theory of EZusticity and FZuid 
Mechanics. The classic reference for solids is the text Elasticity by Horace Lamb. It is 
surprisingly hard to find a good treatment of stress in curvilinear coordinate systems. But see 
CompufafionaZ FZuid Mechanics and Heat Transfer by D. A. Anderson, J. C. Tannehill, and R. 
H. Pletcher (McGraw-Hill, New York, 1984). 
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8.1 Introduction 
Microscopic many-body mechanics and macroscopic continuum hydrodynamics 

are equally complex. Just as in mechanics, real problems in hydrodynamics generally 
require numerical work. Only a few textbook examples can be solved analytically. The 
deceptively-simple structure of the Navier-Stokes equations, when combined with 
equally simple constitutive equations and stationary boundary conditions, conceals the 
ability to generate the wildly chaotic behavior of a waterfall. It might well be thought 
that this capability for chaos comes about because a continuum description requires an 
infinite number of degrees of freedom, not just a finite number. But this view is 
wrong. A large number of degrees of freedom is not at all necessary for unpredictable 
chaotic behavior. Three quadratic ordinary differential equations can produce chaos. 
Lorenz’ caricature of the Navier-Stokes equations, truncated to only three degrees of 
freedom with quadratic interactions, the simplest possible form of nonlinearity, is fully 
enough for chaos. Further, the number of effective degrees of freedom in a continuum 
is actually not inhi te  because short wavelengths are inactive. Features with short 
wavelengths (small h) have even shorter lifetimes, of order h2, because they are 
strongly damped by viscous forces of order l /h .  This damping is a fortunate 
circumstance. The numerical simulation of hydrodynamic flows would be impossible 
were it not for this loss of high-frequency modes. 

Stationary solutions of the Navier-Stokes equations can represent interesting 
steady nonequilibrium fluid flows, with constant mass, momentum, and energy 
currents fed by boundary fluxes and external forces. In contrast, the only stationary 
solutions of the atomistic equations of motion represent cold motionless solids. The 
stationary Navier-Stokes solutions representing nonequilibrium dissipative 
irreversible flows are either stable or unstable to small perturbations. Close enough to 
equilibrium these flows must certainly be stable. Stability far from equilibrium is often 
hard to judge. 

dissipative, continuously converting work into heat until only uniform motion 
remains, well-behaved steady-state solutions can certainly be found sufficiently close to 
equilibrium by reducing the strength of the nonequilibrium driving terms. In this 
Chapter we focus on plane Couette flow, Poiseuille flow, and the Stokes flow around a 
slowly-moving sphere, three of the most elementary illustrative problems, for three 
reasons. First, these simple stationary flows, and the analogs of the first two for heat 
flow, provide operational methods for measuring the viscosity and heat conductivity 
required in analyzing more complex situations. Second, these simple flows share many 
physical and mathematical features with their more complex chaotic relatives. Finally, 

Because the viscosity and conductivity in the Navier-Stokes equations are 
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these stable stationary flows provide much-needed checks for the numerical approaches 
which are necessary for most real applied problems. After describing these elementary 
examples we outline numerical techniques which can be applied to more complex and 
more realistic hydrodynamic problems. 

8.2 Plane Couette Flow 
A viscous fluid confined between two coaxial rotating cylinders can exhibit a 

variety of unstable unsteady size-and-shape-dependent two- and three-dimensional 
flows as the relative rotation rate is increased, but if the sample size and rotation rates 
are both sufficiently small a stable laminar two-dimensional flow can result in which 
fluid viscosity smoothly dissipates the momentum imparted to the fluid by the moving 
cylinders. If both cylinder radii greatly exceed the size of the gap between the cylinders, 
then the simplest special case, "plane Couette flow" results, with the angular velocity 
increasing linearly with radius. See Figure 8.1. In a Cartesian coordinate system, with 
the radial direction replaced by y and the tangential direction by x, this prototypical flow 
has the form 

where k is the strain rate and the x velocity component ux matches the wall velocity at 
limiting values of y, here chosen equal to +L/2. We wish to consider only the laminar- 
flow case in which there is no motion in the z direction. We therefore describe the 
motion in the xy plane. 

V-o are satisfied within the pow with the stream velocity u = (ux,O), with ux 
proportional to y, and a constant stress tensor o, which includes the viscous 
contribution oq = oF = E :  

The two-dimensional Navier-Stokes equations of motion p; = p(au/&) + pu*Vu = 

P(aux/at) = - pux(aux/ax) - puy(aux/ay) + (aox,/ax) + @o#y) = - 0 - 0 + 0 + 0 = 0 ; 

P(auy/at) = - pux(auy/ax) - puy(auy/ay) + (aoxy/ax) + (aoyy/ay) = - 0 - 0 + 0 + 0 = 0 . 

/ 
Figure 8.1. Plane Couette Flow. The 
horizontal velocity component ux is 
a linear function of the vertical 

+ 
+ coordinate y: 

u x  = EY. 



do2 
The two Navier-Stokes equations of motion are also satisfied at the boundaries, y = 
&L/2, provided that these boundaries exert forces matching the viscous force per unit 
area Pxy = Py” = -qk exerted by the shearing fluid. At high rates of strain, viscous 
heating, proportional to k2, can complicate the analysis of this problem, by causing the 
fluid temperature, density, viscosity, and heat conductivity to vary in space and time. 
These nonlinearities can be ignored if, as is the usual case, the heating rate is 
sufficiently small. For water, with a strain rate of 1 hertz, the rate at which mechanical 
energy is converted into heat is O.Olergs/(gram second). Thus, except on a time scale of 
years, the nonequilibrium state induced by plane Couette flow can be treated as 
stationary, isochoric, and isothermal. 

velocity perturbation of the form, 
Plane Couette flow is also stable to small perturbations. Consider, as an example, a 

6ux = &,(t)sin&,y) ; k, = Zm/L . 

The wave vector component k, has been chosen so that the corresponding velocity 
perturbation vanishes on the boundaries at y = &L/2 for n = 1,2,3, ... . If such a 
perturbation is introduced into the constant-volume ”linearized” (meaning: ignoring 
terms of order u2, including heating) equation of motion: 

then the two-dimensional diffusion equation for velocity results, with the kinematic 
viscosity v = (q / p) replacing the usual diffusion coefficient: 

The amplitude of the sinusoidal velocity perturbation 6s(t) decays exponentially with 
time: 

with a characteristic n-dependent decay time 2, = (p/qk$ = (p/q)(L/Zxn)2. 

kinematic viscosity v = (q/p) of about 0.02[cm2/sec]. For the maximum wavelength, L, 
the decay time, in seconds, is roughly L*, where L is measured in centimeters. During 
the decay the walls perform extra work. The extra stress at the boundary due to the 
perturbation is St+ = -q6s,(t)k,cos(kny) corresponding to an extra work per unit wall 
area of 

To make the problem definite, consider room-temperature water, which has a 
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For centimeter lengths and hertz strain rates, corresponding to perturbation lifetimes of 
the order of seconds, the extra work is completely negligible compared to the thermal 
energy content of the fluid. 

Problem: 
Suppose that liquid water undergoes steady plane Couette flow in a channel 1 
centimeter wide with a constant strain rate k of I hertz. The boundaries of the 
channel are maintained at a constant temperature T. The resulting stationary 
temperature profile should satisfy the steady linearized heat-flow equation, 

0 = (aT/at) = WV2T + (aT/at)~urce, 
where the "source term" (q / pep@ gives the rate of temperature increase due to 
viscous heating. The rate at which kinetic energy density is converted into 
thermal energy density is given by the product of the shear stress and the strain 
rate, ob = qk2. Dividing this power density by the heat capacity per unit volume 
pcp gives the source term described above. For simplicity assume that the 
viscous heating is uniform throughout the fluid and further ignore the 
temperature dependence of DT, q, and p. .Calculate the stationary temperature 
profile across the channel assuming that the thermal diffusivity of water, DT = 

( K / P C ~ ) ,  is 1.23cm2/sec. What is the boundary heat flwc required to maintain 
this stationary thermal state in the water? 

8.3 Poiseuille Flow 
Shear viscosity is conventionally measured by allowing fluid to flow through a 

vertical cylindrical tube of radius R under the influence of gravity g. Consider a fluid 
with shear viscosity q and mass density p, falling steadily through a cylindrical tube, 
driven by the gravitational acceleration g, as shown in Figure 8.2. For a sufficiently 
small radius R or a sufficiently large viscosity q, the flow is slow, so that the Navier- 
Stokes equations can safely be linearized. In this case the mass flux is inversely 
proportional to the viscosity, as we shall see. Just as in studying plane Couette flow we 
will ignore the small flow-induced changes in material properties, density, 
temperature, viscosity, and conductivity. The resulting linearized equation of motion 
can be applied to the viscous surface forces and the gravitational "body" (bulk) force 
acting on a small cylinder of fluid, coaxial with the tube, but with a smaller radius, r, 
and with length dz. The viscous upward force integrated over the curved surface, 
+2m-q(duz/dr)dz, must exactly balance the net downward gravitational body force, 
integrated over the volume, +m2pgdz = -m2(dP/dz)dz. The linear differential 
equation which results from equating these forces can then be integrated to find the 
velocity profile u&), choosing the integration constant such that the velocity at r = R 
vanishes. The resulting velocity profile is a parabola, with maximum (downward) 
speed along the axis of the tube: 7 



Figure 8.2. Steady gravity-driven 
Poiseuille flow field in a vertical 
cylindrical tube. The vertical 
velocity depends quadratically on 
the horizontal coordinate. 

Exactly the same profile results if the force balance on an infinitesimal cylindrical 
shell, of thickness dr, is analyzed. In this latter case the inner surface of the shell is 
accelerated downward and the outer surface upward, by viscous forces. For an 
infinitesimal shell the difference in the viscous forces is drdz(d/dr)[2~rrl(du,/dr)l and 
the integrated gravitational body force is 2nprdrdzg. The resulting second-order 
ordinary differential equation: 

, 

can be integrated once, from 0 to r, yielding the same first-order differential equation as 
was obtained by considering the force balance on a cylinder rather than a shell: 

Just as in the linear analysis of plane Couette flow, linearized Poiseuille flow has to be 
sufficiently sIow for the flow to remain laminar and with negIigible heating. In practice 
there is no difficulty in meeting these conditions. 

gives the mass flow [mass/timel: 
Given the flow profile, uJr) = (g/4)[r2 - R2](p/q), an integration over the radius r 

, 
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showing that the total flow of mass varies inversely with the viscosity and at a rate 
varying as the fourth power of the tube radius. The negative sign corresponds to 
downward flow. 

Problem: 
1. The flow just described should exhibit "turbulent instability" (described in 

Section 8.6) near a "Reynolds number" of 2000, where the (dimensionless) 
Reynolds number is the product of the-tube radius and average speed, divided 
by the kinematic viscosity. Estimate the radius of a tube providing this 
Reynolds number for water in the earth's gravitational field. 

8.4 Stokes' Flow Past a Sohere or Disk 
If a sphere falls sufficiently slowly through a viscous fluid intuition suggests that 

the resistance should vary as the exposed area times the viscous stress (which varies as 
the velocity divided by the diameter of the moving body) and must balance the 
gravitational force. Thus, for a slowly falling sphere, the flow should vary linearly in 
the viscosity, velocity, and radius. This rough analysis is in fact correct for sufficiently 
slow motion, but fails when the flow is rapid, when many varieties of wild instabilities 
result. 

The detailed analysis of the low-speed resistance, leading to a retarding force on a 
falling sphere proportional to the radius, shear viscosity, and velocity, can be found in 
Chapter XI of Lamb's Hydrodynamics. For a sphere of radius R, falling downward with 
speed V, the radial flow velocity v,(r,8) of the surrounding fluid a distance r away from 
the center of the sphere is: 

v, = Vcos(0)(3r2R - R3)/2r3 , 

where 9 is measured relative to the direction of motion. Notice that fluid just in front 
of the sphere moves radially with the radial velocity V while fluid at the rear of the 
sphere, moves radially with the radial velocity -V. Both of these locations as well as 
any other on the surface of the sphere have exactly the same Cartesian velocity, V in 
the direction of the accelerating field. The angular (0) velocity ve of fluid motion in the 
xy plane (setting z equal to zero) for this same problem is 

ve = Vsin(0)(R3 - 5r2R)/4r3 . 

Thus the fluid velocity matches the sphere velocity at all points on the surface of the 
sphere. The flow field around the sphere is indicated in Figure 8.3. From the flow field 
the force exerted by the fluid on the sphere can be calculated: 

,--. 

F = -6xqRV. 
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Figure 8.3. Steady "Stokes' How" about a slowly-moving sphere immersed in a 
viscous fluid. At the left the laboratory-frame velocities are indicated by lines. At the 
right the flow of the fluid relative to the sphere is indicated. For clarity the horizontal 
component of the flow velocity has been increased by a factor of ten in this Figure. 
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If instead the fluid were allowed to "slip" around the sphere, so that the tangential 
velocity were not forced to match the sphere velocity on the surface, the resistance 
would be reduced to two thirds this value. 

follows easily from dimensional analysis: if we consider the units of sphere radius R[Ll, 
fluid viscosity q[M/LT], and sphere velocity v[L/T], it is apparent that a force, with units 
[ML/T2] and depending only upon powers of these three physical quantities can result, 
if, and only if, each contributing factor is linear. We could just as easily apply the same 
reasoning in two dimensions, considering the fall of a planar disk through a viscous 
two-dimensional fluid. Only the units of viscosity are different. In two dimensions the 
units of viscosity are [M/T]. In two dimensions both the intuitive argument and 
dimensional analysis lead to the same result, that the frictional force on a falling disk is 
independent of the size of the disk. This paradoxical result, "Stokes' Paradox," can be 
understood by using the Navier-Stokes equations to analyze the way in which the 
boundary influences the two-dimensional flow. Experiments, carried out by timing the 
fall of horizontal wires in water, agree with the relatively-complicated analysis. Both 
approaches show that the resistance depends ZogarithmicaZZy on the distance to the 
boundary. Even in the simpler three-dimensional case the simple laminar flow 
around a moving sphere has also a paradoxical characteristic. The kinetic energy 
associated with the flow, the volume integral of (p/Z)v2, diverges. 

At sufficiently high speeds the analysis can fail in three dimensions too when the 
retarding force proportional to the mass of fluid being disturbed must be included. To 
see this consider a 100 kilogram skydiver falling steadily through the earth's 

Apart from the numerical multiplier, 6z, the "Stokes' Drag'' formula just given 
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atmosphere. The gravitational force of 1000 newtons must be balanced by the 
atmospheric drag force. The viscous force exerted by the atmosphere is of order area x 
velocity gradient x viscosity, or, for air, 1 square meter x (veloaty/meter) x 
0.001 (kilogram/metersecond) , requiring a nearly-relativisitic velocity of 106 
meters/second to balance the gravitational force. But the terminal velocity for a man is 
actually four orders of magnitude smaller. The correct order of magnitude results if we 
take into account an additional energy-loss mechanism, quadratic rather than linear, 
noting that the falling body leaves behind a wake of meter-size vortices rotating at the 
body’s velocity. The flow is unstable and turbulent. 

Problem: 
Carry out the estimate suggested above for the terminal velocity. 

8.5 More-General Analvtic Solutions 

sufficiently small that quadratic terms in the equation of motion can be ignored: 
Consider a small-amplitude velocity flow field u(r,t) with the magnitude of u 

In such a case any initial-value velocity field can be propagated forward in time using 
the Zinearized equation of motion for a viscous fluid: 

(au/at) = (q/p)V2u. 

The linearized equation does not distinguish between Eulerian and Lagrangian 
derivatives. It is equivalent to a diffusion equation for velocity: 

,-. 

Except at boundaries, where additional conditions may need to be imposed, any two 
solutions of such a linear equation can be superposed so that the progress of any initial 
condition, represented as a sum of orthogonal functions, continues to be represented by 
the s u m  as these functions are propagated forward in time. If the initial velocity 
distribution is represented by a Fourier series then the coefficient of exp(ik*r), A&), 
decays exponentially to zero with a characteristic time of Tk = (p/qk*). 

Another useful analytic method is to represent the initial condition as a set of 
delta functions. These decay as Gaussian functions, with halfwidths increasing as the 
square root of the elapsed time: 



Both the Fourier and Gaussian solutions are irreversible and can only be propagated 
forward in time. The Gaussian function is obviously singular at the time origin, while 
the Fourier coefficient appears not to be. But notice that the exponential growth rate (as 
opposed to decay) of either an inverted Fourier series, or a series of delta functions, is 
limited only by the number of significant figures kept. 

related problem in elasticity theory because the underlying linearized equation of 
motion is the same: 

The solution of any small-amplitude problem in fluid dynamics corresponds to a 

p(du/dt) E p i  = v-0 ; (3 = h(V*u)I + q(Vu + Vuf) . 

For instance the Stokes-flow velocity field around a sphere of radius R, moving with a 
veZocify u through a viscous "incompressible fluid" [meaning that h. + (2/3)q is infinite 
for the fluid] is identical to the corresponding elastic displacement field in an elastic 
continuum. In the corresponding elastic problem a rigid spherical inclusion of radius 
R is displaced by a distance u. The shear modulus of the elastic continuum q must have 
the same numerical value as does the shear viscosity of the corresponding fluid and the 
elastic bulk modulus, 3L + ( 2 / 3 ) ~  in three dimensions, must be large enough to 
correspond to the motion of an incompressible fluid. We discuss this correspondence 
between elastic and viscous solutions of flow problems in Section 8.8, Numerical 
Methods. 

-, 

8.6 Turbulence 

problems. The details depend upon the boundary conditions and cover a range of 
length scales from the minimum "Kolmogorov" length of about 1 millimeter, up to 
the size of the object in question, whether it is a submarine, jet airplane, continent, or 
galaxy. Numerical simulation will continue to make real contributions to turbulent 
problems for the foreseeable future because most such problems lie beyond the 
capability of any conceivable future computing machine. 

What is turbulence? It is a complex fluctuating flow resulting when the 
Lyapunov instability of the hydrodynamic equations generates information more 
rapidly than it can be dissipated by viscosity, making the flow field unpredictable, except 
in a statistical sense. 

When does turbulence occur? We can estimate this by comparing two significant 
times for a typicd Lagrangian vohne  element, the time ZShear required for it to change 
shape, and the time Z D ~ ~ ~ ~  in which viscosity can dissipate the velocity gradients 
causing the shape to change. If the decay time is too slow we can expect that the fluid 
will progress in a turbulent fashion. Let us estimate the two times for the deforming 

and the bottom surfaces: 

Turbulence is a macroscopic manifestation of the chaos lurking in most nonlinear 

h 

i/ cube of sidelength L shown in Figure 8.4, with a velocity difference v between the top 
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Figure 8.4. Deforming cube. The 
corresponding Reynolds Number is 
Lv/v, where v is the ''kinematic 
viscosity," 77 / p. 

Thus we expect the flow to be regular or chaotic depending on the (dimensionless) ratio 
of these times, called the Reynolds Number, Re: 

A 

where v is the conventional symbol for the kinematic viscosity, v = (q/p). The 
Reynolds number is a useful criterion for similarity in flows. For Reynolds numbers 
less than 1000 or so the flow is typically laminar. For larger Reynolds numbers the flow 
becomes turbulent. Why 1000 rather than one? The straightforward approach to this 
question is to Fourier-analyze the Navier-Stokes equations for a particular flow, such as 
the Poiseuille flow experiment described in Section 3. If this is done results agreeing 
with experiment for the instability threshold can be obtained. An oversimplified 
estimate can be based on the observation that the characteristic decay time for the linear 
problem involves a dimensionless factor of (2.n)2, about 40. The nonlinear instability 
can be characterized by the square of this same factor. 

Problem: 
Estimate the minimum length scale at which turbulent flow can occur, the 
"Kolmogorov length," for the atmosphere and for the ocean by finding the 
minimum length for which motion at the sound velocity can lead to a 
Reynolds number of 2000. 

The transition from orderly laminar motion to chaos can be (and has been) 
followed in excruciating detail for sufficiently simple boundary conditions. In the next 
Section we discuss a simple prototypical problem, now nearly 100 years old, but still the 
subject of intensive investigations and still regularly yielding surprising results. 



Figure 8.5. Top view (left) of B6nard’s convection cells. The circulation within 
these cells and the deformation of a typical cell are indicated in the other two views. 
All three views are taken from Subrahmanyan Chandrasekhar’s classic treatise, 
Hvdrodvnamic and Hvdromannetic - Stabilitv. 

8.7 Ravleivh-Benard Problem 
The Rayleigh-Bknard problem originated in the study of the regular convection 

cell structures seen in fluid layers heated from below. A regular pattern of hexugonuI 
convection cells is shown in Figure 8.5. In each hexagonal columnar cell hot fluid rises 
in the center and cooler fluid falls at the perimeter of the cell. Individual particle 
trajectories are indicated in the Figure. If the convecting layer is relatively shallow a 
simpler cylindrical flow can be observed. In the latter case neighboring rolls rotate in 
opposite directions and generally transport energy upward. 

In both cases there is no overall mass transport. The upward and downward mass 
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currents balance. But irreversible Fourier heat conduction, on the other hand, insures 
that the rising hot fluid transfers heat to the upper boundary while the falling cooler 
fluid picks up heat from the lower boundary. Thus the direction of heat transfer is the 
same for clockwise or counterclockwise roll motions. Neighboring cylindrical rolls 
rotate in opposite directions as they transport energy upward. Both the roll motion and 
the hexagonal circulation cells are driven by gravitationally-induced buoyant forces and 
are retarded by viscous forces, allowing steady states to develop. These flow patterns are 
among the simplest examples of nonequilibrium steady states, driven by boundary 
sources and sinks of heat. Such a problem depends upon the thermal expansion, heat 
capacity, heat conductivity, and shear viscosity of the conducting fluid. We will 
consider here a qualitative treatment of this problem and point out the connection, 
established by Loren, with chaotic mechanics. 

To begin, we consider heat flow through a fluid layer of thickness L, heat 
conductivity IC, and shear viscosity q heated from below in the presence of a 
gravitational field g. If the temperature difference AT driving the flow of heat is 
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sufficiently small then the fluid is static with velocity zero everywhere, and the rate at 
which energy travels from bottom to top is given by Fourier's Law: 

(Power/Area)Static = dT/L.  

-. 

A potential competing mechanism for energy transfer is the dynamic rotation of 
convective rolls with a characteristic speed v, and a corresponding heat transfer time 
L/v. The rate at which such dynamic rolls transfer thermal energy depends upon the 
heat capacity per unit volume pc: 

(Power/Area)wamic = pcATv. 

Because the dynamic roll mechanism is damped by viscosity the rolls are dormant for 
small temperature differences. In the absence of a large temperature difference the 
viscous force per unit area retarding the roll motion: 

exceeds the buoyant driving force of thermal expansion: 

FLift/Area = (ap/aT)ATgL. 

But for large temperature differences the forces can balance. When they do, the 
dynamic roll velocity can be estimated by equating the magnitudes of the two forces: 

1 
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The resulting transition from conduction to convection has been exhaustively studied 
because it can be understood in part through Fourier analysis of the flow field. Further 
transitions, for greater temperature differences AT, can be understood to a lesser extent. 
Quantitative agreement would require the rigid boundary walls and finite roll lengths 
of laboratory experiments rather than the periodic boundaries favored by numerical 
analysts. The observed fact that the roll patterns can change on a time scale of days is 
clear evidence that even apparently simple hydrodynamic problems can lie far beyond 
the possibility of comprehensive numerical simulation. 

The "Rayleigh number" Ra is a dimensionless ratio describing the deviation of 
the Rayleigh-Benard system from equilibrium. The Rayleigh number is just the ratio 
of our estimates for the two competing heat fluxes, using the roll velocity estimated 
from force balance: 

1 

Ra = PowerDynamic/PowerStatic = pcATv/(dT/L) = PCVL/K = 
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Provided that the Rayleigh number is sufficiently small the problem is a simple one 
with a linear temperature profile and with heat being transmitted from bottom to top 
by conduction. If the temperature difference becomes large enough a more efficient 
mode of energy transport is the formation of turbulent rolls or convection cells. 

To describe the motion of a fluid heated from below in the presence of a 
gravitational field from the standpoint of computational physics is difficult because the 
time scale of the changing patterns can be days of real time. But the Rayleigh-Bknard 
problem is of interest in demonstrating that the chaos which pervades atomistic 
equations of motion is present on the continuum level too. 

equations, written down by Lorenz in 1963 and historically responsible for much of the 
current interest in chaos. The three equations describe the time evolution of the 
clockwise rotation rate of the rolls, x, and the horizontal and vertical heat transfer rates, 
y and z: 

A truncated Fourier analysis of this problem leads to three simultaneous 

The parameters o, Ra, and b correspond to the Prandtl number V C ~ / K ,  the Rayleigh 
number, and a geometric variable describing the aspect ratio of the flow. A longtime 
trajectory in xyz space using the most popular combination of the three parameters 
{c = 10, Ra = 28, b = 8/3} leads to the familiar chaotic attractor shown in Figure 8.6. 

Figure 8.6. The ‘Zorenz attractor,” 
for {Q = 10, Ra = 28, b = 8/31 has a 
dimensionality slightly greater 
than 2. The Figure was generated 
using the initial conditions (x,y,z) = 
{-7,-11,+17}. 
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This attractor is almost a two-dimensional object. In fact it is an example of a 
"fractal object," with "information dimension" of approximately 2.06. We will define 
the concepts of fractal objects and their fractal dimensionality in our study of 
nonequilibrium dynamics in Chapters 10 and 11. 

8.8 Numerical Methods 
Since the early days of computers the literature describing research in 

computational fluid dynamics has grown continuously more complex while the 
governing equations have remained remarkably simple in structure. Some of the 
many people working in this field, competing for limited resources, have found it 
useful to stress the new and abstruse to a degree seldom matched outside the medical 
and legal professions. As a result, much of the accumulated knowledge in the field is 
inaccessible to outsiders. For this reason it is plausible that in the upcoming post- 
teraflop age the automation of a few relatively simple but computationally-intensive 
methods may occasionally prevail over the proliferating more-efficient but less- 
accessible algorithms designed for special problems. In choosing to pursue simple 
approaches to complex phenomena we outline elementary methods for solving 
idealized two-dimensional problems in elasticity and fluid flow in this Section. 

To begin we consider two-dimensional isotropic problems in linearly-elastic 
deformation. In this case the linearized (in displacement) equation of motion and the 
linear (in strain) stress tensor have the form: 

p(aulat) = v.0 ; 0 = hV*uI + q(Vu + Vut) . 

where u stands for elastic displacement and the constitutive properties h and q are 
Lam6's elastic constants. For simplicity we will restrict our examples to stationary 
solutions for which the time derivatives all vanish. 

quadratic form in the displacements: 
In the elastic case we wish to minimize the total (integrated) potential energy <P, a 

, .& 

where the double dot notation indicates a sum over all the D* = 4 products of 
corresponding ij  elements: A B  = CAijBij. Let us illustrate how this form for the elastic 
energy arises by working out the two-dimensional case in detail. In an isotropic 
Compression, with AV/V = izXx + izYY = 2 ~ ,  the hydrostatic elastic stresses oxx and on are 
equal and the elastic energy of compression is proportional to the bulk modulus, B = 

(h+q) in two dimensions: 
-% 



In the simple shear of an isotropic medium the energy density, (1/2)qe2 for dux/dy = E, 

must be independent of the direction of the coordinate axes. A counterclockwise 
coordinate rotation through an angle 8, with (x’,y’) = (xcose + ysinO,-xsine + ycose) 
shows that the simple (x,y) shear deformation is equivalent to the set of deformations 
(E= = - E~ = Esin0cos0 ; cXy = &(cos% - sin28 )}. The corresponding deformation energy 
turns out to be, as it must, independent of 8: 

In the corresponding viscous case, where u is the stream nelocify, we would minimize 
instead the volume-integrated rate of viscous dissipation. The two solutions, elastic 
and viscous, would be identical provided that we could choose elastic coefficients with 
q <e h corresponding to incompressible flow. 

We can obtain numerical solutions of such elastic problems by using either 
Lagrangian or Eulerian coordinates. In the Lagrangian case we could begin by spanning 
the domain of the problem with a simple triangular lattice, as shown in Figure 8.7, 
with nearest-neighbor points of mass m joined by Hooke’s-Law springs of rest length d 
and force constant K. For illustrative purposes we can imagine a regular lattice of 
identical triangles, but, as the example problem in the Figure indicates, this restriction 
is by no means necessary. 

A calculation of the energy required for a small shear or compression of a regular 
triangular lattice shows that the corresponding Lam4 constants q and h are simply 
related to the Hooke’s-Law force constant K: 

-. 
1^ 

Figure 8.7. Representation of an 
elastic body as a set of contiguous 
”finite-element” Lagrangian zones. 
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Problem: 
Consider the following three sets of small homogeneous deformations of a 
regular triangular lattice in which nearest-neighbor particles interact with a 
Hooke’s-Law potential, @(r) = (~/2)&2, and the rest length of the springs is d. 

1. Uniform expansion: G~ = +E ; E~ = +E. 

2. Uniform shear: ~ x y  = [(du,/dy) + (duy/dx)l = +E. 

3. Uniform shear: G~ = + ~ / 2  ; ~ y y  = 4 2 .  
Show that the bulk modulus, h + q, from Case 1 and the shear modulus q from 
Case 2 imply that q = h = 31/2~/4.  Show that Case 3 can also be described by 
exactly the same shear modulus q as was Case 2, establishing the fact that the 
triangular lattice is elastically isotropic for small displacements. 

The triangular lattice with central forces implies a definite relation between the 
two Lam6 constants, q = h. To treat the general case the energy needs to be written as a 
sum of dilatational and shear contributions. This can be done without difficulty. If we 
consider a dilatational potential responding only to the dilation of each tiangle: 

the corresponding elastic constant resisting shear is zero and the corresponding 
contribution to the bulk modulus h + q is proportional to a. In carrying the 
calculations out it is convenient to write the area of a triangle A in terms of the three 
sidelengths, {r,s,t): 

A = (1/4)[2r2s2 + 2r2t2 + 2s2t2 - #-  s4 - . 

1 

If we likewise consider a shear potential @Shear responding quadratically only to 
the shear of initially-identical equilateral triangles, with sidelengths r, s, and t in a 
deformed state: 

@Shear = C(P/2)[(r - ~ 1 2  + (S - t)2 + (t - 1-12] , 

the corresponding contribution to the bulk modulus B vanishes and the shear 
modulus G is proportional to P. Thus, by using a combination of the volume and 
shear potentials we can choose the force constants a and p to match any desired ratio of 
the moduli, B/G = (h + q)/q = (h/q) + 1 = (a/P). 

algorithms will be more widely adopted. Figure 8.8 shows “SPRINT,” a present day 
computer providing the high speed performance and reliability of a CRAY computer at 
1/1000 the cost. The SPRINT computer, built by Tony De Groot as a Ph. D. thesis project 
in the University of California’s Department of Applied Science at Livermore, contains 

As computer hardware costs continue to decline relative to software costs simple 

’9 
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Figure 8.8. Tony De Groot and the 
SPRINT computer, built as a Ph. D. 
dissertation project in the 
Department of Applied Science, 
University of California at 
Davis/Livermore. In simulating the 
motion of more than one million 
atoms this machine outperforms the 
CRAY "supercomputers" at a 
fraction of the cost. - 

. I  

64 one-megabyte processors. There is no technological barrier to building a thousand- 
fold larger version of this same machine. The growing availability and increasing 
power of such low-cost parallel computers suggests that in the future relatively simple 
approaches to numerical solutions may prove generally more cost-effective than 
cumbersome specialized schemes designed primarily to reduce problem size with an 
increased time step. 

A simple two-dimensional Eulerian finite-difference scheme can be based on a 
regular or irregular quadratic or triangular grid in which the space derivatives are 
evaluated by finitedifference approximations while the time derivatives are accurately 
integrated using a Runge-Kutta technique. At Keio University Makoto Kubota and 
Toshio Kawai have followed this approach, developing an automatic language Distran 
('Translator for Distributed S ys terns") for the description of hydrodynamic problems 
specially for parallel processors. Let us formulate and solve a very simple such 
problem to illustrate some of the steps involved. 

Our sample problem is shown in Figure 8.9. It represents the top-to-bottom steady 
flow of a fluid, driven by gravity through a regular periodic array of square obstructions. 
The "unit cell" for this problem is spanned by 36 equally-spaced points joined at the 
edges with the usual periodic boundaries. 
problem need to be written in Eulerian space-fixed coordinates rather than in 
Lagrangian material-fixed coordinates. Thus the two-dimensional continuity equation 
and equation of motion, dlnp/dt = -V-u ; p i  = -V-P , can be used to calculate the time 

The hydrodynamic equations for this 
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Figure 8.9. Downward flow, driven by 
gravity, around a periodic array of square 
obstacles using periodic boundary 
conditions. The 36-node solution 
described in the text has been repeated 
four times and is shown in four periodic 
cells, covering 144 nodes in all. The 
obstacles span 4 nodes in each 36-node 
portion of the solution. 

evolution of the equilibrium pressure Peq(p) and velocity u = (u,v) at fixed locations in 
space: 

To simplify the calculation of the pressure derivative, @P,,/at), we have ignored the 
density gradient Vp. For relatively gentle flows this is a reasonable approximation, 
because the density is nearly constant and u.Vp is of second order in the volume strain 
while pV-u is first order. We also have ignored the bulk-viscosity contribution to 
(au/at): -(q + h)(V*u)/p. In a flow where shear predominates over compression this too 
is a reasonable approximation. 

The equation of motion in the vertical direction follows from the horizontal 
example by symmetry, except that the vertical gravitational acceleration -g must be 
added 

The unknowns describing the problem are just three in number at each Eulerian grid 
point, one each for the equilibrium pressure and the two components of velocity. The 
steady-state solution shown in the Figure 8.9 was achieved in 400 fourth-order Runge- 
Kutta time steps of 0.35, starting with the fluid at rest. The calculation is unstable with 
a time step of 0.40. Let us describe the solution of this problem based on the general 
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approach outlined in Chapter 7, but omitting heat flow, and the explicit calculation of 
the stresses: 

la. DescriDtion - of the constitutive properties. 

equal to unity. The mechanical equation of state is taken to be isentropic, without any 
explicit dependence on energy. 

For convenience we choose the sound speed and the kinematic viscosity both 

lb. SDeafv the initial conditions. 

velocity and pressure are zero everywhere. The gravitational field strength is 
arbitrarily chosen equal to 1.0 in this example problem. 

The horizontal and vertical grid spacings are taken equal to unity. The initial 

1 c. Describe the boundarv conditions. 
The velocity at the four central grid points is a fixed boundary condition and 

remains zero for all time. Periodic boundaries are applied in both the horizontal and 
the vertical directions. 

2. Calculate the time derivative of the local-eauilibrium pressure from the velocities. 
The time-rate-of-change in the equilibrium pressure at each point, including 

those points where the velocity vanishes, (al?,,/at) = -c2pV-u, is calculated from the 
divergence of the velocity field, V-u G (1/2)[u+, - u+-, + vo+ - vel. In locating the four 
nearest neighbors indicated by the subscripts the periodic boundary conditions are used 
for all edge sites. 

3. Calculate the time derivative of the velocitv from the pressure-tensor gradient. 
(&/at) and (&/at) require only V2u and V2v in addition to the velocity and 

equilibrium pressure gradients. V ~ U ,  for instance, is evaluated from the finite- 
difference approximation: 

, 
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Just as before, the neighbors contributing to the derivatives for edge sites are located by 
using the periodic boundaries. 

4. Advance the pressure and velocitv components in time. 

Section 6 of Chapter 1 with dt = 0.35 is a good choice. 
For the time integration the fourth-order Runge-Kutta method described in 

5. Unless the calculation is comulete, GO TO 2. 



The calculation converges quickly to the steady solution shown in the Figure. 
The subroutine "RHS (YNEW, YDOT) " used has the following form: 

G = 1.0 

--4 

INDEX = 0 
DO 10 I = 1,6 
DO 10 J = 1,6 
INDEX = INDEX + 1 
U(1,J) = YNEW(1NDEX) 
V(1,J) = YNEW(1NDEX + 36) 
P(1,J) = YNEW(1NDEX + 72) 

10 CONTINUE 

DO 20 I = 1,6 
DO 20 J = 1,6 
I P = I + 1  
I M = I  - 1 
J P = J + 1  
J M = J - 1  
IF(IP.EQ.7) IP = 1 
IF(IM.EQ.0) IM = 6 
IF(JP.EQ.7) Jp = 1 
IF(JM.EQ.0) JM = 6 
UDOT (I, J) = U (IP, J) +U (IM, J) +U (I, JP) +U (I, JM) -4.O*U (I, J) 
VDOT (I, J) = V (IP, J) +V( IM, J) +V( I, JP) +V (I, JM) -4.O"V (I, J) 
UDOT (I, J) = UDOT (I, J) 
VDOT(1,J) = VDOT(1,J) -0.5*(P(I,JP)-P(I,JM)) - G 
UDOT (I, J) = UDOT (I, J) 
UDOT (I, J) = UDOT (I, J) 
VDOT (I , J) = VDOT (I, J) 
VDOT (I, J) = VDOT (I, J) 

-0.5" (P (IP, J) -P (IM, J) ) 

- 0.5*U (I, J) * (U (IP, J) -U (IM, J) ) 
- 0.5*V (I, J) * (U (I, JP) -U (I, JM) ) 
- 0.5*U (I, J) * (V (IP , J) -V (IM, J) ) 
- O.5*V( I, J) * (V (I, JP) -V( I, JM) ) 

PDOT(1,J) = -O.S*(U(IP, J)-U(IM, J)+V(I,JP)-V(I,JM) ) 
20 CONTINUE 

DO 30 I = 3,4 
DO 30 J = 3,4 
UDOT(1,J) = 0 . 0  
VDOT(1,J) = 0.0 

30 CONTINUE 

INDEX = 0 
DO 40 I = 1,6 
DO 40 J = 1,6 
INDEX = INDEX + 1 
YDOT (INDEX) = UDOT (I, J) 
YDOT(1NDEX + 36) = VDOT(1,J) 
YDOT(1NDEX + 7 2 )  = PDOT(1,J) 

40 CONTINUE 

RETURN 
END 

a 
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In real applications the time step used in such a hydrodynamic simulation needs 
to satisfy two stability criteria. The time step dt must be sufficiently small that 
information travels no farther than one mesh point per time step. For information 
travelling at the sound speed this gives the ”Courant condition”: 

where dx is the spacing of the computational mesh and c is the speed of sound. The 
equivalent restriction for the diffusive flow of momentum, through the kinematic 
viscosity v, is 

Other things being equal, this suggests that numerical convergence will be most 
efficient when both restrictions are equally effective, with dx = 2v/c. Except in studying 
boundary phenomena or shockwaves such a mesh size is unphysically small, of the 
order of the mean free path. In practical applications the viscosity can be made 
artificially large, or the sound speed artificially small, in order to enhance convergence. 

Problems 
1. Reproduce the velocity field shown in the Figure for the 6x6 36-site periodic 

flow described in the text. 
2. Enlarge the calculation described in the text to a 32x32 1024site square with a 

zero velocity obstacle occupying the central 16x16 square of 256 sites. Use an 
offset form of periodic boundaries identifying the lattice of periodic points at 
((24 k 8)m,32n), using the plus sign for n even and the minus sign for n odd. 
Solve for the motion with field strengths of 0.1, 0.2,0.3, and 0.4. You should 
find a stationary solution, a stable fluctuating solution, and an unstable 
soh ti on. 

3. Consider the propagation of a sound wave in a one-dimensional Hooke’s-Law 
chain. The displacement of the particle located at x in the unstrained chain is: 

6x = Acos[kx - at] ; w = 2(~/m)~&in(kd/2) ; k = (27dh) . 

Use the gradient of the strain, E = (a6x/ax), to show that the difference between 
the Eulerian and Lagrangian strain rates, 4lnp/at and -dlnp/dt, is of order 
(A/@. 

4. Consider a one-dimensional system satisfying the finite-difference version of 
the diffusion equation, 

,-, 

ap/at z [po(t + dt) - po(t)l/dt = [D/(d~)~l[p+ - 2 ~ 0  + PJ 2 D p p  
______ 
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and determine the maximum time step dt for which an initial condition with 
spatially alternating positive and negative values of the density perturbation 
+Sp decays. 

5. Consider a one-dimensional system satisfying a finite-difference version of the 
wave equation, 32p/3t2 = c*V2p , and determine the maximum time step dt for 
which an initial condition with spatially alternating positive and negative 
values of the density perturbation +6p continues to propagate. 

8.9 Summarv and References 
The stable field-induced velocities found in stationary hydrodynamic flows, 

including Couette flow, Poiseuille flow, and Stokes flow, can be used to measure 
viscosity. For such slow flows the distinction between Eulerian and Lagrangian 
derivatives can be ignored and a Fourier series or sum-of-Gaussians can represent the 
solution. The underlying equations of hydrodynamics can also produce turbulent flow 
fields if the relative strength of the driving forces is high enough. Lorenz' truncated 
three-term model of Rayleigh-Benard flow is the simplest set of chaotic equations to 
emerge from the hydrodynamic equations. 

A variety of numerical methods well-suited to the low-cost simulations of the 
future can be applied to special problems in hydrodynamics. The simplest approaches 
use finite-difference approximations for the spatial derivatives of the flow variables. 

For applications of the hydrodynamic equations the Physics of Fluids and the Journal of 
Fluid Mechanics should be consulted. An idea of the thousands of approaches to numerical 
solutions can be found in the Proceedings of the 21th International Conference in FZuid 
Dynamics held at Williamsburg , Virginia in 1988, published as Volume 323 in the Springer- 
Verlag series Lecture Notes in Physics. The article "A Comparison of Numerical Schemes on 
Triangular and Quadrilateral Meshes," by D. R. Lindquist and M. B. Giles, emphasizes some of 
the interesting loose ends prevailing in the numerical work. E. N. Lorenz' original work, 
''Deterministic Nonperiodic Flow," in the Journal of Atmospheric Science 20,130 (1963) is a 
model of clarity. 
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9.1 Introduction 

constitutive relations to underlying atomistic force laws and 
to explain and describe the nonequilibrium hydrodynamic 
states of gases. The nonequilibrium state description needs 
to account for the structure and evolution of the 
nonequilibrium states as well as their decay, “the approach 
to equilibrium.” In kinetic theory this ambitious program is 
to be based on the statistical-mechanical analysis of isolated 
uncorrelated two-body collisions. The main analytical tool 

Kinetic Theory aims to relate nonequilibrium 

available for this work is the Boltzmann Equation, the subject of Section 9.5. The 
Boltzmann Equation provides a description, accurate for low-density gases, of the effect 
of two-body collisions on the one-body phase-space density f(r,p,t). The binary 
molecular collisions on which the equation is based lie near the limit of analytic work. 
Force laws more complex than hard spheres typically require numerical work even in 
this simplest case. In summary, kinetic theory is the discipline developed to explain 
gas-phase properties, mainly the nonequilibrium properties ignored by Gibbs, by 
analyzing the uncorrelated binary collisions which dominate low-density gas dynamics. 

Because most nonequilibrium systems are close to rather than far from 
equilibrium, their structure and evolution can be usefully and reproducibly 
characterized by local vaiues and gradients of concentration, momentum, or energy, 
neglecting both higher-order derivatives and nonlinear terms. The gradients drive 
flows of mass, momentum, and energy which tend relentlessly toward equilibrium. To 
persist, the gradients must be maintained by nonequilibrium boundary conditions. 
They would otherwise die away. Most of kinetic theory has to do with the linear theory 
of these nonequilibrium gradient-induced flows. The linear flow properties are 
summarized in Fick’s, Newton’s, and Fourier‘s empirical rules, or “Laws,” for the 
fluxes of mass, momentum, and energy: 

, 
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J = -DVp ; I? = <Pes - hV-u)I - ~ ( V U  + V U ~ )  ; Q = -KVT . 

For three-dimensional fluids, the fluxes J, I?, and Q have respectively units of [mass, 
momentum, and energy per unit area per unit time]. In many applications of elastic 
theory and hydrodynamics the equilibrium pressure Peq is so close to zero as to be 
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negligible. In kinetic theory the situation is different and the equilibrium pressure 
must be included. Except in shock waves the nonequilibrium momentum flu is 
typically much smaller in magnitude than the background equilibrium pressure Peq 7 

NkT/V. All the transport coefficients and the equilibrium pressure can depend on 
the local state. In the linear theory such dependence is generally ignored. 

Kinetic theory, as summarized by the Boltzmann Equation, has succeeded in 
deriving these same linear relations linking the fluxes to the gradients from very 
reasonable assumptions. The theory further provides accurate estimates for the 
”transport coefficients,” D, h, q, and K, in terms of the interatomic forces. This direct 
link between microscopic models and macroscopic hydrodynamic properties is the 
analog of Gibbs’ link between microscopic states and macroscopic thermodynamic 
properties. But, unlike Gibbs’ theory, kinetic theory is restricted to gases. 

For gases the Boltzmann-Equation theory provides much more than the three 
linear transport laws. First, it is possible to show that the Maxwell-Boltzmann velocity 
distribution is fhe stationary solution for an isolated system. This distribution then 
provides equilibrium properties consis tent with the predictions of Gibbs’ equilibrium 
statistical mechanics. Boltzmann was able to demonstrate that uncorrelated binary 
collisions will eventually establish this stationary equilibrium Maxwell-Boltzmann 
velocity distribution in any isolated system and that the approach to this equilibrium is 
monotonic, resembling the monotonic increase of entropy described by the Second Law 
of Thermodynamics. From the conceptual standpoint this is the most important result 
derived from the Boltzmann equation: the Second Law of Thermodynamics. Subject 
only to the assumption that successive collisions are uncorrelated Boltzmann was able 
to “explain” irreversible hydrodynamic behavior, consistent with the Second Law of 
Thermodynamics, for isolated systems obeying reversible Newtonian mechanics. 

From the standpoint of applications to real gas-phase flows the quantitative 
prediction of transport properties is Boltzmann’s most important contribution. 
Starting from the Boltzmann Equation, it is possible to show, in agreement with 
laboratory experiments, that there are shear viscosity and heat conductivity coefficients 
with definite nonzero limits at low density. The Boltzmann Equation also correctly 
predicts the temperature dependence of these transport coefficients on the basis of the 
interparticle forces and so provided one of the earliest ways for getting direct evidence 
characterizing these forces from macroscopic measurements. 

A generation after Boltzmann’s work, the Mayers were successful in accounting 
for the density expansion of gas-phase equilibrium thermodynamic properties on the 
basis of the cluster theory outlined in Section 4.13. It is natural to think that a similar 
expansion procedure would work for nonequilibrium systems, with the shear viscosity, 
for instance, having a density power-series expansion with temperature-dependent 
coeffiaents. But away from equilibrium there is so fa r  no known high-probability 
partition function on which to base such an expansion. Kinetic theory makes use of 
Lyapunov-unstable particle trajectories which are highly sensitive to small 
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perturbations, making an expansion about the equilibrium state difficult. Recent work, 
both experimental and theoretical, makes it highly unlikely that a nonequilibrium 
density expansion exists. Despite this difficulty, there is a highly-useful approximate 
model for the nonequilibrium behavior of dense fluids, the Enskog model described in 
Section 13, which does have a density expansion. 

Likewise it might be expected that beyond the linear transport theory of diffusion, 
viscosity, and heat conduction lies an even richer field of nonlinear phenomena. 
Although the nonlinearity is real enough it seems extremely difficult to reach general 
conclusions. Nonlinearity generally implies chaos and chaos generally implies the 
need for case-by-case analysis. Because most readily-observed phenomena occur at 
greatly subsonic speeds phenomenological nonlinear terms are of limited utility. It is 
formate that in many cases the deviations from linear behavior are extremely small 
and are even more difficult to measure than they are to calculate. For simple fluids the 
experimental evidence for series expansions of the transport coefficients in powers of 
the strain rate or the temperature gradient is meager or nonexistent because the 
required rates and gradients must be large which in turn implies that the spatial 
resolution scale must be very small. Shockwaves, with a scale governed by the 
microscopic mean free path, are the prototypical nonlinear problem with the best 
promise of producing useful results. 

So the main goal of kinetic theory has remained the understanding of linear 
nonequilibrium phenomena for low-density gases. This restricted theory can be 
approached through the much simpler free-path theory, a straightforward intuitive 
approach yielding useful engineering estimates. This free-path theory can then be 
improved upon in a systematic way, at the expense of considerable analysis, by turning 
to the Boltzmann equation. In this Chapter we begin by outlining the approximate 
hard-sphere free-path theory and a useful intermediate approximation to the exact 
Boltzmann approach, the "Krook-Boltzmann" equation, which improves on the free- 
path theory by providing semiquantitative nonequilibrium distribution functions. We 
consciously avoid the study of nonlinear problems here, putting these off to the 
following two Chapters, because we believe that a direct numerical approach has so far 
been more profitable and illuminating than the existing relatively-cumbersome 
theoretical analyses. 

r ;  

9.2 Kinetic-Theorv States 
What are the state variables that need to be specified in order to develop and apply 

kinetic theory? The states of matter studied in gas-phase kinetic theory require the 
same general information as do hydrodynamic states. The initial spatial distribution of 
mass and composition must be specified, together with the thermodynamic state of gas 
under investigation, including a mechanical variable, such as density or pressure, and a 
thermal variable, such as temperature or energy. Finally, the constitutive flow 
properties, and the problem's boundary conditions, which can include time dependent 
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sources of mass, momentum, and energy must be given. The goal of gas-phase kinetic 
theory is then the same as the goal of hydrodynamic simulation, predicting the future 
state of such a system. Kinetic theory is in a way more basic than is hydrodynamics, 
through its link to interatomic forces, but its predictions are certainly less general, being 
restricted to gases. 

The predictions of the linear theory are accurately known and are summarized in 
Chapman and Cowling's classic work, The Mafhematical Theory of Non-Unifom 
Gases. They are identical to the phenomenological laws of Fick, Newton, and Fourier. 
Differences in concentration lead to particle currents. Differences in velocity lead to 
viscous drag and differences in temperature lead to heat flux. Beyond these three linear 
phenomena lies a chaotic nonlinear world where exploration is difficult and general 
understanding is meager. 

The Navier-Stokes equations furnish a very general description of fluid flow, 
equally-correct for dense fluids, like water or mercury, and dilute ones, like air. Kinetic 
theory is much more restrictive. Kinetic theory treats nearly-ideal gases, in which 
molecules collide only occasionally. Air at room temperature and pressure is the 
prototypical kinetic-theory medium. The atmosphere has a density only about one 
thousandth that of liquid air so that the nonideal pressure correction to the ideal gas 
law is much less than a percent. For air the approximation of isolated binary collisions 
is a reasonable one. 

In this Chapter our goal is limited. We use kinetic theory to discuss linear 
problems with nonequilibrium states so near to equilibrium that squares of the 
deviations can be ignored. By adopting this restriction we can avoid dealing with the 
details of nonequilibrium boundary conditions and thermostats. We will return to 
these important topics in discussing a method better suited to their study, 
nonequilibrium molecular dynamics, in Chapters 10 and 11. 

9.3 Hard-Sphere Collision Rate and Free-Path Distribution 
Collisions underlie transport theory. They are the basis of the Boltzmann 

Equation. Without collisions there could be no equilibration so that the linear 
transport laws could not hold. The relative simplicity of binary collisions, and their 
fundamental importance to transport theory suggests we begin with their study. The 
equilibrium collision rate for hard spheres is a relatively simple exact calculation and 
furnishes a good introduction to the details involved in the Boltzmann-Equation 
approach to kinetic theory. We will calculate this rate by choosing a particular type of 
collision for a particular pair of particles. By averaging over all such collision types and 
by noting that the longtime collision rate is the same for any pair of similar spheres we 
use this simple two-body calculation to calculate the many-body collision rate. 

-. 
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Figure 9.1. Collision geometry for 
two spheres colliding on the x axis, 
with vxl > V X ~ .  The leftmost sphere, 
Particle I, is shown at the origin. In 
the left view both spheres are shown. 
The right view shows also the 
equivalent collision of a large sphere, 
with a radius equal to the sphere 
diameter, and a point mass. 

Let us begin by considering the probability that during the time interval dt two 
Hard Spheres labelled 1 and 2 undergo a collision such that Sphere 2 collides with 
Sphere 1 within the infinitesimal area da which defines the positive x axis indicated in 
Figure 9.1. Notice first that in the Figure the collision between two identical spheres 
with radii 0/2 has been replaced by an equivalent collision between a large sphere of 
radius G and a mass point. Both bodies have the same mass, m. This same 
replacement could be made for any interaction which depends only on the distance 
between the two colliding particles. The area da is not shown. It would be an 
infinitesimal two-dimensional area perpendicular to the x axis. In the analogous two- 
dimensional case da would be replaced by a one-dimensional length perpendicular to 
the x axis. This probability calculation generalizes more easily to hard rods and hard 
disks than does the usual equivalent textbook calculation using spherical polar 
coordinates. To get the total collision rate r12 the x-axis collision rate needs to be 
multiplied by the ratio of the total collision area to the infinitesimal area da considered 
here: (4&/da) for spheres, (2m/da) for disks, and (2/da) for rods, where each of these 
particle types has a collision diameter CT. Evidently a collision can occur only if vxl > 
vx2 In that case the probability for collision during a sufficiently-short time dt is just 
the ratio of the possible locations for Sphere 2 (relative to 1) to the total volume V. In 
three dimensions these spatial locations leading to collision occupy a squat cylinder of 
cross-sectional area da and infinitesimal height (vx1-v,2)dt- Introducing the large- 
system equilibrium probabilities for the two velocity components completes the 
formulation of the average two-particle collision rate r12 as a definite integral: 

The two one-dimensional integrals can be evaluated by a 45 degree (clockwise) rotation 
of the velocity axes, switching to new velocities a and p (the Jacobian of the 
transformation is unity): 



Working the two integrals out gives the exact collision rates for two spheres, with the 
results for disks and rods following by analogy: 

All three results can be summarized in terms of the appropriate collision cross sections 
and the one, two-, and three-dimensional mean speeds, computed from the first 
moments of the corresponding Maxwell-Boltzmann distributions: 

v = (8kT/xm)l/2 ; cs = xo2 (spheres) ; 

v = (xkT/2m)1/2 ; cs = 20 (disks) ; 
c 

v = (2kT/m)*/2 ; cs = 1 (rods) . 

i-\ 

An alternative derivation of the collision rate, equally exact, but perhaps less plausible, 
can be based on computing the mean value of the relative speed of the colliding 
particles and observing that the scattering cross section is velocity independent. 

as the long-time average distance between a particle’s successive collisions. The 
average is most easily visualized by considering an equilibrium many-body hard- 
sphere system. The calculation of the average outlined here is exactly correct in the 
low-density limit. The sphere diameter is 0, defining the distance of closest approach. 
The total distance traveled by N hard spheres in time t is Nvt, where v is the three- 
dimensional mean speed, (8kT/nm)1/2 and the number of collisions TNt is 
N(N - 1)(1/2)1/2vm2t/V. The N-body collision rate rN, N(N - 1)/2 times the two-body 
rate r12, is an equilibrium property which can be calculated from the Mayers’ virial 
theory, by expressing the probability for finding pairs of spheres in contact as a power 
series in the number density N / V  

From the collision rate we can calculate ’Waxwell’s mean free path” AM, defined 

TNt = [N(N-l)(l/2)1/2v.no2t/V][l + 0.625(Nb/V) + 0.28695(Nb/V)2 + 0.1103(Nb/V)3 + ... 1, 



where the second virial coefficient b is 2~03/3. Because each two-body collision 
simultaneously terminates fwo free paths the average path length, c b ,  approaches the 
”Maxwell” mean free path h~ at low density, where spatial correlations can be ignored 

What is the distribution of the paths’ lengths around the mean? Visualize a 
dilute gas of atoms characterized by a velocity-independent collision probability 1 /z. 
We mean by this that any atom has a probability dt/z of undergoing a collision during 
the time interval dt. How many atoms, N(t), have undergone no collisions up to the 
time t? Evidently the set of uncollided atoms is depleted according to the linear 
relation: 

N(t + dt) = N(t) - N(t + [dt/Z])dt/~ 3 dlnN/dt = - I/% . 

Thus the number of uncollided particles falls off with time as N(O)e-t/z. Provided 
that the collision probability is velocity-independent the corresponding distribution of 
the paths travelled by the N particles is also exponential: 

But because the expected path length actually increases with speed, as shown in Figure 
9.2, the exponential free-path probability density which holds for spheres of the same 
speed is, when averaged over all velocities, a fairly-complicated function. The 
resulting exact low-density distribution was compared to distributions measured with 
molecular dynamics at a variety of fluid and solid densities by Einwohner and Alder. 
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Figure 9.2 Equilibrium dependence 
of the low-density hard-sphere free 
path on speed. The high-speed limit 
is exactly 2112 times the Maxwell 
mean free path. 
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Figure 9.3. Frequency distribution of 
free paths for low-density hard 
spheres. For short free paths the 
exact distribution lies above the 
single-speed exponential 
approximation. Such an exponential 
distribution is also approximately 
followed for dense hard disks and 
spheres, either fluid or solid. 
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The low-density calculated result, averaged over all velocities, is reproduced in Figure 
9.3 and is compared there to the single-speed exponential free-path distribution. The 
measured distribution taken from the molecular dynamics calculations showed that 
the shape of the free-path distribution is changed only a little as the hard-sphere gas is 
compressed to become a dense fluid. Even in thesolid phase the simple exponential 
approximation, 

where h~ is the Maxwell mean free path, is accurate within a few percent, for paths 
which are not too long. 

Problems: 
1. Reproduce the low-density plot of path length as a function of speed for 

spheres, and calculate the corresponding relation for disks and rods. 
2. What are the largest and smallest speeds possible affer a collision of two hard 

disks with initially equal speeds? What geometric situation leads to such a 
collision? 

3. Work out the Maxwell mean free path for a mixture of two hard-sphere gases 
with the same masses but with unequal diameters 01 and 0 2 .  Assume that the 
mixture contains N/2 spheres of both types. 

Before leaving the subject of free paths we mention a subtle factor of 
approximately two. For an exponential distribution of times to collision the time 
befween collisions is twice the time to the next collision. A gambling analogy should 
clarlfy this statement: by symmetry, the mean number of throws required to throw the 



next six with a fair die is the same as the number of throws which would have to be 
repeated to reach the last six: 

1(1/6) + 2(5/6)(1/6) + 3(5/6)(5/6)(1/6) + ... = 6 . 

Consider now a long series of throws. Evidently the mean number of throws in the 
many segments beginning and ending with a six approaches 12 for a sufficiently large 
sample. It is equally evident that in a large sample of N throws there are N/6 sixes 
partitioning the sample into N/6 segments with mean length 7, if both endpoints are 
included in each segment's length. Both results, 12 and 7, for the "mean segment 
length" are correct! In the first case segments are weighted according to their length 
while in the second case all segments are weighted equally. 

Problems: 
1. Consider sub-sequences of "heads" from a long sequence of N tosses of a fair 

coin. Estimate the number of subsequences containing n successive heads (of 
the forms THT, THHT, THHHT, ... for n = 1,2,3, ... ) as a function of n and 
compute the total number of subsequences containing at least one head. 

2. Consider a long sequence of N throws of a fair s-sided die with sides labelled 1, 
2, ... s. (In the example discussed in the text s is 6; s is 2 for a fair coin.) What is 
the probable number of sub-sequences composed solely of l's? Assume each 
such sub-sequence is preceded and succeeded by non 1's. Use a random- 
number generator, such as that appearing in Section 3.10, to check your 
estimate for s = 3. Choose N sufficiently large that the expected error in your 
"Monte-Carlo" result is less than a percent. 

Thus, by analogy, if we examine a snapshot of an equilibrium hard-sphere system 
and ask for the mean value of all paths currently being traversed we expect to find a 
value approximately twice the Maxwell free path. To see this for a simple approximate 
model, consider modifying the exponential distribution of free paths, 

so as to obtain a new probability Prob'(h)dh weighting each path according to its length: 

The mean value computed from this weighted distribution is 2<h>. The analogous 
exact kinetic-theory calculation is complicated by the dependence of the free path on 
velocity. The precisely-calculated value is (twice) the so-called 'Tait free path," with h~ 
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P 0.96hM. Formally the Tait path is the average over an equilibrium path distribution 
in which each path is weighted according to the time required to trace it out. 

the collisions occur at definite times and with scattering angles independent of the 
magnitude of the velocity, they also produce isotropic scattering in the center-of-mass 
frame. We now demonstrate this interesting and useful property by considering the 
collision of two spheres in the center-of-mass coordinate frame. See Figure 9.4. 

For convenience we choose the initial velocities of the two spheres to be parallel 
to the x axis so that the collision is defined by two variables: the first is the "impact 
parameter" b < 0 which gives the distunce of closest approach in the absence of forces 
(or, equivalently, an angle p e x/Z, with sin(P) = b/o); the second collisional variable is 
the angle a c 2x, which gives the direction of the point of collision from the origin in 
the yz plane. By symmetry all values of a are equally IikeZy. The probability of an 
impact parameter b in a range of width db about b is therefore 2n:bdb/xo2 with the 
directional probability, after collision, for the incoming particle independent of a, over 
each cone of constant b or J3. It is most convenient to describe the collision process in 
terms of yet another angle, the "scattering angle" 8 = n: - 2p, which depends only on b, 
or p. See again the Figure. The chain of identities is as follows: 

Hard spheres are particularly suited to kinetic-theory calculations. Not only do 

Prob(8)de = Prob(P)dP = Prob(b)db = 2bdb/$ = 2sin(P)cos(P)dp = sin(8)de ; (spheres) . 

2 

The calculated probability distribution, varying as the sine of the scattering angle 8 
between the x axis and the direction of the post-collision trajectory, and augmented by 
the uniform probability density in the angle a is sin(e)deda, exactly the same as the 
corresponding solid-angle volume element in spherical polar coordinates sin(+)d+de, 
establishing that the center-of-mass-frame scattering of two similar hard spheres is 
isotropic. 

Figure 9.4. Hard-Sphere collision 
geometry in a frame fixed on the shaded 
particle. The scattering particle enters 
from the right, at the relative velocity and 
with the impact parameter b. The relative 
velocity is scattered through an angle 
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Following the same calculation for the collision of two hard disks gives a cosine 
law, 

Prob(0)de = Prob(j3)dP = Prob(b)db = db/a = cos(p)dp = (I /2)sin(6/2)d0 ; (disks) , 

rather than the uniform distribution which would correspond to isotropy. The disk 
scattering is predominantly head-on. The geometry for other force laws is less-suited to 
analysis than to numerical evaluation. In particular the scattering no longer depends 
solely on direction so that the results must generally be tabulated as functions of the 
relative speed. Attractive forces add even more numerical complexity, at sufficiently 
low energy, by providing nearly-bound orbiting collisions. 

Problems 
1. Consider the inverse fourth power repulsive potential, often called the 

”Maxwell Model” potential. Use Runge-Kutta integration to confirm that 
simultaneously increasing the impact parameter b by a factor of 2, and 
decreasing the relative velocity v by a factor of 4 leaves the scattering angle 
unchanged. For a fixed relative velocity compare the dependence of scattering 
angle on impact parameter to that calculated for hard spheres. 

centrifugal force, pd-r, where p is the reduced mass m/2, to find the highest 
center-of-mass temperature, 

2. Consider the balance of the attractive two-body Lennard-Jones force with the 

for which the Lennard-Jones potential @ = 4~[(o/r)12 - (o/r)6] can provide an 
infinite scattering angle (that is, a long-lived binary molecule). 

9.4 Free-Path Theorv 

dimensional low-density gas is based on an equizibrium discrete-state single-speed 
model with one-sixth of the atoms traveling in each of the six Cartesian coordinate-axis 
directions at the mean thermal speed relative to the local stream velocity. We imagine 
that this caricature distribution is maintained at local equilibrium through the 
mechanism of collisions so that the fluxes arriving at any observation plane depend on 
the character of the distributions one mean free path away, from which the flowing 
particles originated. Because this theory is maximally approximate we will not point 
out the many places where refinements could be introduced. We will, for instance, use 

in the next Section, makes piecemeal refinement of this crude picture unnecessary. 

The simplest possible kinetic model for understanding a nonequiIibriurn three- 

h here to indicate both the free path and its average. Boltzmann’s Equation, introduced 
-, 

, 



To begin, consider a binary mixture of mechanically identical black and white 
hard spheres at mechanical and thermal equilibrium with constant total mass density 
(Nm/V) = p = PB + pw and temperature T, but with locally nonequilibrium 
concentration gradients, with nonvanishing gradients dpB/dx = - dpw/dx. We can 
estimate the mass flux JB [with units M/L2T] of black particles at x = 0 by summing up 
the streaming contributions from such particles’ last collisions at x = +h: 

7 

The error is of order A3 owing to the cancellation of the quadratic terms in the two 
expansions of the density flows at the observation plane, &vp~/6 .  The linearized result 
is exactly Fick’s First Law, with a free-path diffusion coefficient D p  = hv/3. For air the 
value is roughly 

For liquid water the assumptions are much less good, and the estimated value, 
1@cm2/second, is ten times too high when compared to the experimental value. 

To estimate the shear viscosity of a gas using this free-path version of kinetic 
theory we imagine an isothermal homogeneous flow field with strain rate dux/dy = k 
in which the x velocity component varies linearly with y and vanishes at our Eulerian 
observation plane, y = 0: 

<vx> = (du,’/dy)y = ky . 

The pressure-tensor component Pyx gives the flux of x momentum through the plane y 
= 0, given here by the difference of two currents originating below and above that plane 
and distant from it by one free path: 

The linearized result is exactly Newton’s viscous flow law, from which we can identify 
the free-path coefficient of shear viscosity: 

This density-independent result correctly predicts, or explains, the surprising fact 
that the shear viscosity approaches a nonzero limif at low densify. Although fewer 
particles are available to carry the momentum at low density the distance each travels 
between collisions, of order the free path h = V/(21/2Nn&, exactly compensates for the 
decreased number of carriers. 
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The heat conductivity defmed by Fourier's Law, Q = -KVT, can be caldated 
similarly, by imposing a temperature gradient. To avoid shock waves the 
concentration necessarily varies, in such a way that the pressure is constant: dlnT/dx + 
dlnp/dx = dlnP/dx = 0. We compute the energy flow across an observation plane at x = 
0. To avoid introducing the explicit dependence of concentration on x we replace the 
number density p / m  = N/V by the ideal-gas value P/kT and we use the estimate C p  
rather than Cv to estimate the dependence of the local energy on temperature. The 
resulting energy flux [M/T3] is 

Because the speed v = vx varies as the square root of temperature the derivative 
(dv/dx) = (dv/dT)(dT/dx) can be replaced by (v/ZT)(dT/dx) so that we can once again 
linearize the series expansion, and identify the free-path heat conductivity K: 

K~ = PCphv/6kT = (I /2)DmpcP = 0.150k(1nk'I')~/~/o~ ; cp = Cp/m. 

A comparison of our free-path results with the corresponding exact results from 
the Boltzmann Equation shows that our free-path transport coefficients all have the 
correct functional dependence on density and temperature and are therefore 
qualitatively correct. But the numerical values are too small. In particular the 
numerical coefficients 0.120 and 0.150 given above for the viscosity and heat 
conductivity are instead 0.179 and 0.678 in the exact theory. This quantitative 
disagreement is in part due to "velocity persistence," the statistically-averaged tendency 
of two- or three-dimensional particles to continue moving in their original direction of 
motion after collision. The free-path numerical errors are in larger part due to the 
nonlinear dependence of momentum and energy transport on velocity, with our 
uncorrelated single-speed averages underestimating the contribution of the faster 
particles. Even for hard spheres, a near-exact three-figure version of these calculations 
requires days, as opposed to minutes, of work analyzing the solutions of the Boltzmann 
Equation, the subject of the next Section. 

Problem: 
Extend the collision rate calculation to show that the average energy of 
colliding particles in D dimensions, (m/Z)<v=v>, is (D+l)kT/2. Then show that 
the equilibrium velocity persistence for D-dimensional hard spheres, 
CV'*V>~/<V-V>~, where v and v' indicate velocities before and after collision, is 
ID- (3/2)1/[D+(1/2)1. 
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Nose-Hoover Mechanics Liouville Theorem Hydrodynamics 

Gibbs’ Ensembles + Green-Kubo Theory Boltzmann Equation 

Second-Law Irreversibility and Computer Simulation 

Figure 9.5. Logical interconnections linking reversible Hamiltonian mechanics to 
Computer Simulation and to the irreversible behavior described by the Second Law. 

9.5 Boltzmann’s Equation 

based on simple assumptions, even though the details require painful algebra. Figure 
9.5 is a sketch showing the logical connections linking Hamilton’s Reversible 
Mechanics and macroscopic irreversibility. All of these connections rely on the concept 
of flow in a state space. Boltzmann’s Equation provides an exact description for low- 
density gases near equilibrium. We derive the equation here, primarily because the 
most important consequence of the equation, the proof of Boltzmann’s H Theorem, 
equivalent to a gas-phase Second Law of Thermodynamics, then requires very little 
additional algebra. 

The goal of Boltzmann’s Equation is to calculate the evolution of the one-particle 
probability density for those particles at r within dr and with momenta within dp of p 
at time t, f(r,p,t)drdp, by analyzing the effect of collisions statistically. We call a particle 
representative of these particles a ”Boltzmann Particle” to distinguish it from potential 
collision partners with other values of the momentum. In the absence of collisions the 
Boltzmann Equation and the Liouville Equation for Hamiltonian systems provide 
equivalent information, that particles stream through one-particle phase space with 
unchanged Lagrangian probability density, i = 0. Collisions change the one-particle 
density. The Boltzmann equation describes the effect of collisions statistically: 

There is an zesthetic pleasure in exploring the consequences of an exact theory 

The ”collision term” has been written here as the difference between a “gain” term and 
a ’loss” term. The loss term is the simpler of the two: (af /at)lo,,drdpdt includes losses 
from f(r,p,t)drdp due to collisions of a Boltzmann Particle during the time interval dt 
with Particles having momenta in the range dpl about p1 = mvl, of which f 1 =  

f(r,pl,t)drdpl such particles are available for collision. Notice that in the Boltzmann 



equation both the colliding particles are considered to come from the same location in 
space, r, not from locations one or two free paths distant. The construction of the 'loss 
term" parallels the collision-rate calculation of Section 9.3: 

where each collision is conveniently described in a coordinate system moving with the 
Boltzmann Particle's velocity v, so that Particle 1 appears to approach the Boltwnann 
Particle with relative speed vrelative = (l/m)l(p - p1) I with an impact parameter b and 
the angle 8. The angle 8 describes the orientation of the collision plane. For disks it is 
simplest to replace the three-dimensional integration bdbd8 by an integral over b 
values ranging from --CT to +a. 

Next, the "gain term" is constructed from the loss term by following a two-step 
procedure: first, invert space, changing r to -r; then, reverse time, running the spatially 
inverted collision backward in time. Because this two-part procedure is intricate we 
first illustrate it graphically for a particular numerical example. In Figure 9.6 each 
collision shown begins at the left and ends on the right. The Boltzmann Particle is 
shown with concentric circles. Particle 1 is shown as a single open circle. The Figure 
first shows, at the top, a loss collision conve ing the velocities (v,vI) to (v',vi> 

Figures 9.6(left) and 9Aright). Collision of a Boltzmann Particle, shown with 
concentric circles and initially at rest, with Particle 1, initially moving horizontally. 



with the coordinate origin chosen midway between the Boltzmann Particle and Particle 
1. This coordinate choice is convenient for visualizing the inversion operation. 
From the standpoint of the Boltzmann Equation, with the range of forces negligible 
relative to the mean free path, this coordinate origin befween the two partides is 
negligibly different from one fixed on the Boltzmann Particle. Next the spatially- 
inverted collision is shown, in which the signs of both particles’ Cartesian coordinates 
and velocities are reversed. At the bottom the time reversed inverted collision is 
displayed, with the spatially-inverted collision followed backward in time. 

convert the post-collision velocities v’ and vi back to v and VI by pairing up each 
conceivable loss collision with a corresponding gain collision. This collision-pairing 
process can be considered in any one of three coordinate frames. Figure 9.7 shows again 
the collision of Figure 9.6 in all three frames. Again the sequence of events follows 
from left to right. In the Laboratorv Frame the velocity changes are: 

The net effect of simultaneously inverting in space and reversing in time is to 

Bo1 tzmann-Particle: 
(0,O) f) (-L4 

Particle 1: 
(-2,O) - (-1,l) . 

Read the arrows to the right for the direct collision and to the left for the reversed 
inverse collision. In the Boltzmann-Particle Frame, a frame centered on the 
Boltzmann Particle, the velocity change of Particle 1 is 

Finally, in the Center-of-Mass Frame the velocity changes are: 

Boltzmann-Particle: 
(LO) - ( O A  

Particle I: 
( 4 0 )  * (0,l) . 

The impact parameter for this collision is 2-1/20. In either the Boltzmann-Particle 
frame or the center-of-mass frame the scattering angle for this collision is x / 2 .  

With only a slight increase in difficulty these same ideas can be applied to central- 
force collisions between Particles with different masses by introducing the reduced 
mass. Collisions between particles with shapes which lack inversion symmetry require 
special consideration which we are unwilling to provide. The interested reader is 
referred to Figure 2 of Tolman’s Sfatisfical Mechanics. 

Problem: 
> Work out the lefthand side of the Boltzmann Equation in spherical polar 

coordinates . 
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9.6 Maxwell-Boltzmann Distribution from the Boltzmann Euuation 

for an isolated system is the Maxwell-Boltzmann distribution: 
It is easy to show that the unique stationary solution of the Boltzmann Equation 

This follows from the fact that the collisions treated on the righthand side of the 
Boltzmann Equation conserve only mass, momentum, and energy, the first three 
moments of the velocity distribution. Because the other moments are not conserved 
by collisions any stationary distribution can depend only on mass, momentum, and 
energy. 

must also depend only on the conserved moments, and write it in terms of D+2 
unknown constants: 

To simplify the derivation we consider the logarithm of f, which, like f itself, 

where the subscript indicates a stationary distribution. By insisting that f have 
moments (p/m), p e n ,  and p[(DkT) + (<p>2/m)] the three constants can be identified 
uniquely, so that the stationary distribution must also be the equilibrium distribution. 
The resulting equilibrium distribution has the familiar Maxwell-Boltzmann form: 

The result that any arbitrary disfribufion describing an isolated system must change 
monotonically and irreversibly toward this Maxwell-Boltzmann form is the content of 
Boltzmann’s H Theorem, a link between microscopic gas-phase mechanics and the 
Second Law of Thermodynamics, discussed in the following Section. 

9.7 H Theorem and Irreversibility 

entropy is, apart from an additive constant, equal to the average value of -Nklnf: 
For a three-dimensional monatomic equilibrium ideal gas the thermodynamic 

S(N,E=[3NkT/2],V) /Nk = -<lnfq> = -(I /N)!fqlnfqdpdr = 

In(V/N) + (3/2)ln(2zmkT) + constant. 

This correspondence strongly suggests that a gas-phase analog for the Second Law of 
Thermodynamics, $isolated > 0, be sought by using the Boltzmann Equation to compute 
the time dependence of a nonequilibrium entropy -Nk<lnfneq>. This idea is a good 
one, at least for dilute gases. In an isolated system, or even in a system subject to time- 

- 
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forces, the sign of the entropy change from the 

Boltzmann Equation cannot be negative. To see this it is simplest to compute the 
spatially-averaged Lagrangian (comoving) derivative of the local single-particle phase- 
space entropy density, -kflnf. 

g/Nk = -(I /N)&d/dt)[flnfldpdr = -(l/N)%[l+lnfIdpdr = -(I /N)jknfdpdr = 

By using symmetry the righthand side can be written as the symmetrized s u m  of four 
integrals, one each for -(1/4)lnf’, -(1/4)1nfi, +(1/4)lnf, and +(1/4)lnfl. The sum can 
then be written: 

The final inequality, which demonstrates the inexorable increase of entropy, follows 
because both (f‘fi - ffi) and the logarithm of (f‘fi/ffl) necessarily have the same sign. 
This firm conclusion from the Boltzmann Equation is called the H Theorem. The 
Theorem shows that Boltzmann’s approximate nonequilibrium entropy cannot 
decrease in an isolated gas-phase system. This is a gas-phase demonstration of the 
Second Law of Thermodynamics. It is certainly the most impressive result of 
Boltzmann’s kinetic theory. 

The H Theorem attracted the attention of many of Boltzmann’s colleagues 
because it seemed too good to be true. Two objections to the H Theorem were raised, 
one by Loschmidt and one by Zermelo. Loschmidt objected to Boltzmann’s H Theorem 
on the grounds that reversible mechanics cannot predict irreversible behavior. He 
reasoned that because any trajectory going forward in time can be reversed, reversible 
equations can contain no unidirectional behavior. We will see in Chapter 11 that 
Loschmidt was simply wrong. Reversible equations can and do predict irreversible 
results. Of course, Boltzmann’s Equation is not time-reversible. Leaving aside the 
boundary conditions, if f were an even function of p then the righthand collisional side 
of the Boltzmann Equation would be independent of time while the lefthand side, i, 
would change sign in a time-reversed trajectory. 

Zerm6lo objected to the H Theorem on the basis of ’Toincar6 recurrence.’’ 
Poincare pointed out that Hamiltonian mechanics within a bounded region of phase 
space must ultimately(!) restore the initial conditions arbitrarily well. Thus any 
Hamiltonian trajectory along which entropy had increased would later necessarily 
have a compensating decreasing portion. For an isolated system Zermklo was right, but 
it is salient and sobering to remember that the Poincar6 recurrence time on which his 
argument is based exceeds the age of the universe for systems of perhaps two dozen 
degrees of freedom. Remember also that the dynamics is Lyapunov unstable on the 
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time scale of the collision time, typically nanoseconds to picoseconds. For an accurate 
dynamical history occupying a second of real time the underlying calculations would 
need to be canied out with an accuracy of 1012 decimal places. Just storing a single 
coordinate for such a calculation would completely fill the memory of today’s largest 
computer. 

The H Theorem’s explanation of macroscopic irreversibility on €he basis of 
microscopic dynamics and the two classical objections to it, Loschmidt‘s ”Reversibility 
Paradox” and Zerm6lo’s ”Recurrence Paradox” continue to raise adrenalin levels to this 
day. But there is no doubt that the Theorem is correct. In a classic calculation Alder 
and Wainwright confirmed, for an initially nonequilibrium single-speed periodic 
system of 100 hard spheres that, within statistical fluctuations, the increase of 
Boltzmann’s nonequilibrium entropy with time follows Boltzmann’s Equation and 
satisfies the H Theorem. See Figure 9.8. The small fluctuations seen about the 
equilibrium value remind us to remember Zerm6lo and Poincar6. We will return to 
the fascinating topic of the dynamical origin of irreversible behavior in Chapter 11. 
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Figure 9.8. Measured increase in a 
100-sphere low-density “Boltzmann 
entropy,” -klncf (v) >, for 1 00 hard 
spheres with identical initial speeds. 
The tick marks indicate the times at 
which the 100th and 200th collisions 
occurred. 

9.8 Numerical Solutions of the Boltzrnann Equation 
From the computational standpoint it is a challenging and demanding task to 

pose and solve interesting nonlinear problems in gas dynamics by solving the 
Boltzmann Equation. In the most general case the one-particle distribution function 
f(r,p,t) depends upon three space variables, three momentum variables, as well as time. 
Straightforward grid-based integration methods are not practical for such seven- 
dimensional problems. But the quantitative understanding of many such problems is 
crucial to applications in aerodynamics and plasma physics. There is no other 
reasonable approach when the molecular free path is comparable to the system 
dimensions. To solve the Boltzmann Equation the impractical six-dimensional phase- 
space grid can be replaced by a less-costly effective alternative closely resembling 
molecular dynamics simulation: numerical propagation of representative particles in a 
three-dimensional physical-space grid. The complete evolution of the distribution 

additive parts, a sfreaming collision-free part and a collisional part: i= (df/dt), + @f/at),. 
function can then be followed by describing its changes with time as the sum of two - 

- \  
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Between collisions particles “stream” through physical space according to the one- 
particle ideal-gas equations of motion: 

h 

‘1 

Generally the streaming trajectories between collisions can be evaluated analytically, so 
that there is no need for a time-consuming step-by-step Runge-Kutta or Stoermer 
integration. At intervals, as the particles are propagated, pairs of particles in each 
spatial bin are chosen for collision with a Monfe Carlo sampling procedure based on 
the local collision rate. The two parameters describing a low-density collision, the 
impact parameter b and an angle a defining the plane of the collision, are selected 
randomly. From these two parameters and the initial velocities the post-collision 
velocities can be determined. 

The collision sequence which results, combined with the streaming motion 
between collisions, provides an approximate solution of the Boltzmann Equation. 
Errors can be estimated and reduced by increasing the number of particles followed in 
each bin while simultaneously decreasing the bin sizes. Let us illustrate the velocity 
sampling technique for the simplest interesting situation, a spatial bin containing 
three identical hard spheres with total energy E = (1/2m)(pT i- p3 + pg) and zero center- 
of-mass velocity, VI + v2 + v3 = 0. We will show how to determine the equilibrium 
velocity distribution for such a bin. The solution of the Boltzmann equation is a 
continuous distribution, obtained from discrete particle dynamics by averaging. In a 
stationary problem the ”average” is a time average for a single long simulation. In a 
transient problem the average must instead be carried out over many similar 
simulations with slightly different initial conditions. 
problem is stationary, and can therefore be solved by generating a single long series of 
collisions. In the absence of external forces, velocity, and concentration gradients this 
requires only a statistical analysis of collisions. The Boltzmann-Equation collision rate 
for such a three-particle system is the sum of the three pair collision rates, with each of 
these proportional to the magnitude of the corresponding relative momentum: 

The present simple equilibrium 

p12 = p1- p2 ; pi3 3 p1- p3; p23 = p2 - p3. 

Thus the pair ij  can be selected with relative probability vij/(v12 + vi3 + v23) where the 
vij are the speeds corresponding to the relative momenta. 

For simplicity we choose to describe hard-sphere particles. As emphasized in 
Section 3, hard-sphere scattering is particularly simple because it is isotropic in the 
center-of-mass frame. If we use a random number R1 to select, for instance, Spheres 2 
and 3 for collision, the velocities after collision define the endpoints of a randomly- 
oriented diameter of a sphere of radius (v23)/2 centered at (p2 + p3)/(2m) 2 -p i / (h) .  



The two spherical polar angles 0 c 0 -c 2n and 0 c Cp c .n defining one of the two relative 
velocities can then be constructed from two random numbers R2 and R3: 

The resulting velocity distribution can then be time-averaged, if the problem is a 
stationary state, or simply repeated (with different random numbers) if the problem is 
transient. The following outline indicates the steps necessary in a computer program 
generating the properly weighted velocity distribution for three particles, as just 
described. 

1. Set speed bin weights all equal to zero. 
2. Choose colliding pair of spheres. 
3. Calculate time since last collision and add to bin weights. 
4. Choose angles 8 and $. 
5. Compute post collision velocities and return to Step 2. 

The bin weights referred to in Step 3 are simply the (properly normalized) times which 
the particles spend in the bins. These relative times can be updated at each collision for 
all three particles. 

In the equilibrium situation the resulting velocity distribution can be checked by a 
direct analytic calculation. If we describe the three sphere velocities {vi,v2/v3) with the 
variables vi, 8, and $, where the last two angles describe the velocities v2 + (1/2)vi and 
v3 + (1/2)vl as two endpoints defining the diameter of a sphere, centered at -(l/Z)vi, 
and with a radius [(E/m) - (3/4)v:]1/2, then the velocity distribution can be obtained by 
working out the integral: 

prob(v)dv = (v2dv)(v?dv?(desin~d$)61[(E/m) - (3/4)v2 - ~ ’ 2 1 1 / ~ )  , 

where v is the speed of Sphere I. The integral can be evaluated by using the identity: 

6{[(E/m) - (3/4)v2 - v ~ ] ~ / ~ ) / ~ { v ’ -  [(E/m) - ( 3 ; / 4 > ~ ~ 1 ~ / ~ )  = 

av’/a([(E/m) - (3/4>v2 - v*N = 1 /v’ I 
with the result: 

prob(v)dv = (v2dv)[(E/m) - ( 3 / 4 ) ~ ~ 1 ~ / ~  . 

In a nonequilibrium case the same sampling procedure can be used for the post- 
collision velocities but the trajectories must also be advanced between collisions by 
solving the ideal-gas equations of motion. 



Figure 9.9. Velocity distribution for 
a three-sphere periodic system 
based on 10,000,000 equilibrium 
collisions. 

Problem: 
Use Monte Carlo sampling to generate a 10,000-collision histogram for the 
three-sphere equilibrium problem described in this section. Use 100 bins. 
Compare the resulting histogram of the distribution of sphere speeds 
{prob(v)Av}, with the analytic result derived above, v2[(E/m) - (3v2/4)I1/2. 
How should the errors compare to those shown in Figure 9.9, generated with 
ten million collisions? Show, analytically and numerically, that <v2> = 2E/3m. 

9.9 Approximate Boltzmann Equation 

of these integration or sampling techniques. But to understand the form of the 
equation’s solution for linear problems of mass, momentum, and energy flow, a 
linearized Boltzmann Equation, called the ”Krook-Boltzmann” Equation or the 
”Exponential-Relaxation” Equation, provides a useful labor-saving alternative: 

An accurate solution of the Boltzmann Equation for a real problem requires one 

Here the gain and loss terms are approximated by linear functions of f rather than the 
exact quadratic ones. The motivation for linearity is simplicity. At the same time it is 
“reasonable” to expect relaxation toward equilibrium to occur in a time of order the 
collision time 2. Deviations from equilibrium are pictured as decaying due to 
interactions with a local-equilibrium bath described by f,(p,cv>,T), where the density, 
stream velocity, and temperature are “local variables,” functions of r. This simple 
picture is not far fetched. The rigorous Chapman-Enskog solution of the Boltzmann 
Equation proceeds by linearizing the deviations of f(r,p,t) about the local-equilibrium 

I 



distribution function fo and computing the effect of collisions on the perturbation by 
using the equilibrium distribution of velocities. 

the collision time even in dense liquids. Such linear functions would by themselves 
provide exponential decay to the equilibrium distribution fo in a collision time of order 
2. In any interesting problem the continuing influence of boundary conditions and the 
lingering effects of the initial spatial variation of fo slow or prevent this decay. In 
solving the Krook-Boltzmann equation the equilibrium distribution fo is to be worked 
out using the mean density, momentum, and energy at r. Likewise the collision time T, 
which governs the rate of approach to local equilibrium, can depend on these local 
variables as well as on the velocity. In OUT continuing pursuit of simplicity, we leave 
all of these refinements aside and assume that z is constant, equal to the time between 
collisions. 

The same general thermodynamic and hydrodynamic conclusions follow from 
the Krook-Boltzmann equation as from the true Boltzmann Equation. If vanishes 
then f must have the equilibrium form, fo. Furthermore, if we calculate the time 
derivative of flnf in comoving Lagrangian coordinates, we can introduce the 
equilibrium entropy and find the Krook-Boltzmann analog of the H Theorem: 

The success of the Enskog approach shows that the relaxation process is linked to 

-(I /N)%nfdpdr = 41 /N)lkf,, - f)ln[f/foldrdp/z > 0 . 

The integral jl(fo - f)ln[f,]drdp vanishes because the moments of f are used to define fo. 
The integral is included here to simplify the proof of the Krook-Boltzmann H 
Theorem. 

transport of mass, momentum, and energy in order to characterize the forms of the 
corresponding nonequilibrium distribution functions. 

In the following three Sections we apply this approximate Boltzmann equation to 

9.10 Diffusion 
In a system at mechanical and thermal equilibrium, concentration gradients give 

rise to proportional currents described by two phenomenological relations called Fick’s 
First and Second Laws of diffusion: 

In the MKS system of units the mass current J is measured in kilograms per square 
meter per second. Notice that reversing the time changes the signs of J and ap/& while 

Second Law follows from the First provided that the square of the concentration 

n leaving Vp and V2p unchanged. Thus both of Fick’s equations are irreversible. Fick‘s i, 
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gradient is negligible. In that case the chain-rule concentration dependence of D can be 
ignored. To derive Fick‘s Second Law, it is sufficient to compute the time rate-of- 
change of the mass inside an Eulerian zone dxdydz, by considering successively the flux 
differences across the x, y, and z faces. 

assumption. The reason for assuming a linear law, without including additional terms 
in V3p for instance, can be seen by considering the equilibrium situation in which the 
concentration is uniform. Figure 9.10 shows a division of the distribution function for 
vx into rightgoing and leftgoing parts. These two halves of the one-dimensional 
equilibrium Maxwell-Boltzmann distribution correspond to currents travelling at the 
one-dimensional distribution’s mean speed, (2kT/xm)l/2, about three-fifths the three- 
dimensional speed of sound (5kT/3m)1/2. The fact that there is no noticeable mass flow 
at equilibrium is due to the balancing of these two huge currents. Away from 
equilibrium the situation is different. If the concentration varies slowly with x then 
the current flowing to the right past an Eulerian observation plane is slightly different 
from that flowing to the left, reflecting the difference in source concentrations. 

Consider the Krook-Boltzmann Equation describing a time-independent 
concentration gradient, parallel to the x axis, in the absence of external fields: 

Fick’s first law, that the mass flu J, is proportional to the density gradient, is an 

We imagine that locally f can be written as the equilibrium distribution, f,, plus a first- 
order deviation zfl where f l  is also a function of velocity: 

= f(r,p) = f,(r,p) + zfi(r,p) + ”higher-order terms” . 

--- 

This assumption is a reasonable one, even for a liquid, because z gives the timescale for 
the decay of nonequilibrium effects. As z approaches zero the Krook-Boltzmann form 
of the H Theorem guarantees that the equilibrium distribution, fo(r,p) results. Close to 

Figure 9.10. The average speed in 
each half of this one-dimensional 
velocity distribution is the mean 
speed, (2kT/xm)1/2. 
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equilibrium the first nonvanishing term on the lefthand side of the Krook-Boltzmann 

, Equation, 

must likewise approach the first nonvanishing term on the right, -fl. Thus the 
nonequilibrium steady-state distribution function has the form 

f = fo[l - z(p,/m)dlnp/dx + ... 1 . 

We avoid estimating the higher-order terms because these would require a speculative 
discussion of boundary conditions. (It is evident, for instance, that a strictly constant 
gradient, dp/dx, leads either to nonsense or, to a boundary.) We come back to the 
question of well-posed nonequilibrium steady states in the next two Chapters. 

But the linear deviation from the equilibrium distribution function already 
establishes most of the interesting results of linear transport theory. If we calculate the 
local mass current, by integrating fp over all p we find <Jx> = -(zkT/m)(dp/dx) so that 
the Fick's-Law diffusion coefficient is: 

where v is again the mean speed (8kT/.nm)1/2. The Krook-Boltzmann diffusion 
coefficient can be compared to our free-path estimate D p  = hv/3 by choosing vz = AM. 
The Krook-Boltzmann value then exceeds the Free-Path value by a numerical factor of 
3 ~ / 8 .  The true solution of the Boltzmann equation is somewhat higher. The analytic 
form of the true solution of the Boltzmann equation differs slightly from the Krook- 
Boltzmann form too. The perturbation zfl(p) is the product of the equilibrium 
distribution and a poZynomia2 in the velocity, rather than just a single linear term. But 
the t e r n  beyond the first do not change the qualitative features at all. The main 
advantage of the Krook-Boltzmann equation is the relative ease with which 
qualitatively-correct nonequilibrium distribution functions can be found. Figure 9.11 
illustrates the Krook-Boltzmann perturbation in two-dimensional velocity space. 

Before going on to calculate the viscosity and heat conductivity from the Krook- 
Boltzmann equation we note that were we boldly to define a nonequilibrium entropy 
in terms of <Infneq> the first-order term in the expansion around fo would vanish 
because entropy is a maximum at equilibrium. Because nonlinear terms require a 
discussion of boundary conditions and thermostats this means that we can draw no 
firm conclusions concerning a nonequilibrium entropy from the Krook-Boltzmann 
equation. 

-\ 
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Figure 9.11. Velocity probability contours for the perturbation function fi ,  from the 
nonequilibrium part of the Krook-Boltzmann equation. From left to right these 
represent diffusive, viscous, and heat-conducting flows. The functions displayed are 
xexp(-r2/2), xyexp(-r2/2), and (x/2)(r2 - 4)exp(-r2/2). The width of the bands is 0.1. The 
data plotted span the range -4 e (x,y) < +4. 

Problem: 
Because concentration gradients in liquids relax toward equilibrium in much 
the same way as in gases it is reasonable to use the Krook-Boltzmann equation 
for analyzing liquid diffusion. But the collision time for the liquid is orders of 
magnitude shorter than that for a gas. Use the Debye frequency for ice, or an 
estimate based on the sound speed in water, to estimate an appropriate Krook- 
Boltzmann collision time 2 for liquid water. Compare the resulting self- 
diffusion coefficient to the room-temperature value, 10-5cm2/ second. 

9.11 Viscosity 
To find the Krook-Boltzmann distribution function for a viscous shear flow we 

consider the simplest steady flow field ux = ky . Near equilibrium the corresponding 
distribution function approximates the local-equilibrium form: 

so that the lefthand side of the Krook-3olt~mann equation is 

As usual close to equilibrium, the righthand side, (f, - f)/z, is just -f1, establishing the 
result: 

The shear viscosity follows from the average of Py” = P,, : 
--- . 



-71; = Py. = bpfKB(pxpy/m) = - &~dpf,(p,p,/mkT)(p~~/rn) = -tkpkT/m = -P& , 

so that the shear viscosity is just the product of the pressure and the collisional 
relaxation time z: ~ K B  = Pz. Again using the correspondence between Maxwell's Free 
Path and the collision time z, vz = h~ we find an increase over the free-path prediction, 
qw, of 18%. If we include the even larger viscosity from the Boltzmann Equation we 
find the values: 

q = [0.120,0.141,0.179](mkT)~/2/~2, 

for the three approaches, free-path, Krook-Boltzmann, and Boltzmann. 

mass of 30 with a collision diameter of 0.3 nanometers results in a predicted room- 
temperature viscosity of 0.00022 poise, about 20% higher than the experimental value. 
For a liquid like water this gas-phase estimate would be much too low, by roughly a 
factor of 100. A much better estimate for water can be based on Andrade's idea that 
collisions transfer momentum a distance of one atomic diameter on a timescale of the 
Einstein vibrational period. For liquids this "collisional transport" is much more 
effective than the streaming mechanism described by the Boltzmann Equation and the 
Krook-Boltzmann approximation. Collisional transport is included, approximately, in 
Enskog's model for dense-fluid transport, discussed in Section 13. 

The Krmk-Boltzmann viscosity expression works well for air, where an atomic 

9.12 Heat Conduction 

axis is, 
The local-equilibrium distribution function for isobaric heat flow parallel to the x 

where P/kT(x) has replaced the number density p(x)/m to incorporate the constant- 
pressure condition required for mechanical equilibrium. Chain-rule evaluation of the 
lefthand side of the Krook-Boltzmann equation, i, followed by linearization around the 
equilibrium distribution, yields the result: 

-\ 

which is equal to the near-equilibrium righthand side, (f, - f)/z -fl. The relatively 
intricate shape of the nonequilibrium part of the distribution function, zfl, can be 
visualized from the contour plot shown in Figure 9.11 for the two-dimensional case. 

fourth and sixth moments of the equilibrium veloaty distribution function. This gives 
The heat current, Qx = Jf(px/m)(p2/2m)dp, can be worked out from corresponding - \  

____ ________- 



K = D(D + 2)pk(kT/m)~/6 = DpCp(kT/m)z/3, 
, 

where C, is the constant pressure heat capacity per particle, (D+2)k/2. 

Problem: 
Show the result just quoted for the heat conductivity. 

Making the usual substitution for the collision time and including the exact hard- 
sphere conductivity in the three-dimensional comparison leads to the values, 

K = [0.150,0.353, 0.678]k(mkT)1/2/~2, 

for the free-path, Krook-Boltzmann, and Boltzmann approaches. 

9.13 Enskog Model 
Enskog sought to modify the Boltzmann Equation to explain the transport 

properties of dense fluids. To a large extent he was successful. The Enskog "Model" 
provides transport properties lying within about a factor of two of the correct values for 
dense fluids. The model is a hard-sphere-based model incorporating two modifications 
of the low-density Boltzmann calculation of collisions. The modifications take into 
account two separate effects of high density. The first corrects the low-density N- 
particle equilibrium collision rate calculated from the Boltzmann Equation: 

increasing the collision rate by a multiplicative factor Y which follows from the Mayers' 
virial series: 

The second equally-important modification depends on the finite size of colliding hard- 
sphere particles, "action at a distance." In the dilute-gas Boltzmann Equation the 
colliding particles with momenta p and pi both represent the velocity distribution at r. 
In a dense fzuid the density, stream velocity, and temperature can vary on the scale of 
an atomic diameter. When a Boltzmann-Enskog Particle at r undergoes a "loss 
collision" with a particle one diameter distant, at rl = r + o, the corresponding 
"reversed-inverse" gain, collision described in Section 9.5, involves a particle with r; = 
r - B. We use the abbreviations +G and -G in the Enskog Equation to indicate these 

-. modifications: 



Y(r) is the ratio of the hard-sphere collision rate to the low-density rate calculated in 
Section 2. The collision rate is evaluated midway between the two colliding particles. 
In order to define this collision rate for a general force law, not just hard spheres, 
Enskog suggested matching the collisional part of the pressure for the fluid of interest, 
the ”thermal pressure” Pmermal s T(dP/dT)v, to the hard-sphere pressure. To do this 
an estimate for the effective hard-sphere diameter (I is required. An approximate 
diameter can be chosen by matching the high-temperature low-density second virial 
coefficient to the hard-sphere value, (2~03/3). 

To solve Enskog‘s equation the remaining step is to expand both the relative 
collision rates Y and the f-functions in spatial Taylor‘s series by introducing the density 
and temperature gradients. When this is done the perturbed nonequilibrium 
distribution function fl(r,p,t) turns out to be of exactly the same Boltzmann-Equation 
form as before, but multiplied by a linear function of the gradients. Likewise the 
nonequilibrium parts of the fluxes contain linear functions of the gradients. The net 
effect is to multiply the linear transport coefficients by explicit functions of the 
equilibrium collision rate ratio Y 

D/Do = l / Y ;  

q/q0 = [1+ 0.8bpY + 0.761CbpY)*l/Y; 

IC/% = [I + 1.2bpY + 0.755Cb~Y)~l/Y. 

The quantitative importance of these corrections can be seen by considering the 
extreme case of a liquid at its freezing point. At the maximum density of the hard- 
sphere fluid, where freezing OCCUTS, bp is 1.975 and Y is 5.8. The three contributions to 
the heat conductivity ratio K / I C ~  are respectively 0.17,237, and 17.1. Half of the middle 
term is associated with kinetic contributions to the flux, and half with potential. Thus 
“collisional transport,” the instantaneous transfer of momentum and energy from one 
colliding particle to another, accounts for almost all of the dense-fluid viscosity and 
thermal conductivity. Except in the case of diffusion, the streaming motion described 
by the Boltzmann Equation is relatively unimportant in dense fluids. 

9.14. Green-Kubo Theorv 
Only for dilute gases is the Boltzmann Equation correct. In dense fluids and solic IS 

an alternative approach to transport is required. Enskog’s model lacks the potential for 
systematic improvement required of a theory. At present, there is no useful analytic 

which makes use of equiIibrium computer data to predict nonequilibrium properties is 
theory of dense-fluid transport, so that computer simulation is required. An approach ,-\ 

_______ - 
____I_^ 



25 I 

7 

the formal solution of linear transport theory obtained by Green and Kubo. The result 
of their approach is to express the linear nonequilibrium transport coefficients in terms 
of equilibrium correlation functions: 

All the time integrations range from 0 to -. The integrands are often called 
“autocorrelation” functions because they express the correlation of fluctuations of a 
single property at two different times. Because equilibrium correlations are stationary, 
these Green-Kubo correlations can depend only on the time difference, t in the 
integrals above. By saving velocity, pressure, and heat flux data from the recent past, 
perhaps ten collision times, and accumulating the correlation functions in bins, all four 
transport coefficients can be determined simultaneously. 

The Green-Kubo results follow directly from the assumed linear forms of the 
underlying phenomenological laws. Fick’s Law, for instance, establishes that the 
probability density for a group of particles in the range dx about x at time t, and initially 
at the origin at time zero, has a Gaussian distribution, 

with a second moment < ~ 2 > ~ ~  = 2Dt. If we write the equilibrium average for c x b  at 
time t as an integral over two dummy time variables, tl and t2, the result is an 
equilibrium correlation integral for the diffusion coefficient D 

where the maximum integration time t has to be long relative to the collision time. 
The double time integral can be reduced to the Green-Kubo form by carrying out the 
following three steps. First, notice that the equilibrium correlation between tl and t2 
can depend only upon the time diflerence, tl - t2 (equilibrium averages are stationary), 
so that the double integral can be replaced by a single integral over the relative time At 
= t1- t2: 



Second, the finite time limits for the integration of the relative time variable A t  are 
formally replaced by f=. Finally, using the time-reversal symmetry of the equilibrium 
equations of motion reproduces the Green-Kubo final form, with integration limits of 0 
and -: 

D = I<vx(0)vx(t)>qdt. 
-_ 

This exact Green-Kubo form for the diffusion coefficient shows a close resemblance to 
the simpler inexact free-path and Krook-Boltunann models. If we imagine that 
velocity correlations decay exponentially in time, with a characteristic collisional 
relaxation time z independent of the velocity, then the equilibrium autocorrelation 
integral can be worked out and the approximate diffusion coefficient evaluated: 

The result is the same as that derived from the Krook-Boltzmann equation. 

an analogous way, by relating the shear viscosity to the long-time transverse diffusion 
of momentum: 

Helfand showed that the shear-viscosity autocorrelation integral can be derived in 

q = (p/mkT)<x2p2,>/2t. 

To illustrate a different approach more closely related to the nonequilibrium methods 
discussed in Chapters 10 and 11 we begin instead with a many-body local-equilibrium 
distribution function, modelled on Gibbs’ canonical distribution function: 

f(k,t=O) = exp[-(Zm@ + x(px - my$ + & + pZ}/ZmkT]/Z(N,V,T)N!h3N . 

If the boundary conditions include a steady shear flow, with k = dux/dy, the energy will 
increase, with AE(t) 
fnq/fq 
equilibrium value, keeping no terms beyond the linear term of order k,  we find: 

-h?,(s)Vkds, with the probability density f(t) unchanged, so that 
exp(AE/kT). If we then expand the distribution function about the 

f(t) = fq[l - &/kT)JPV(s)Vds] . 

In this way we can reproduce the remarkable result of Green and Kubo that the 
nunequilibrium pressure tensor component at time t can be written in terms of an 
equilibrium average: 
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Then, by repeating the argument that equilibrium correlations can depend only on 
time diflmences, t-s in this case, the final form for the shear viscosity becomes the 
Green-Kubo result: 

-il 

where the integration limits are 0 and Q). 
The corresponding calculation for volume deformation as opposed to shape 

deformation provides the equivalent formulation of the bulk viscosity. The bulk 
viscosity formula is obtained by replacing PV by 6P, the deviation of the instantaneous 
pressure, (P, + Py + Pz,)/3, from the long time average value. A relatively 
complicated argument establishes also the corresponding Green-Kubo link between the 
heat conductivity and the autoconelation function of the heat flwc. 

In summary, even for dense fluids and solids, aZZ the transport properties can be 
evaluated in terms of equilibrium time correlation functions. At present there is no 
technique for obtaining these correlation functions other than direct computer 
simulation. The transport Coefficients can alternatively be evaluated by direct 
simulation of nonequilibrium flow processes. That approach is the subject of the next 
two Chapters. 

9.15. Summary and References 
Kinetic theory describes the effect of collisions on the flow properties of 

nonequilibrium dilute gases. The effect of collisions can be treated approximately, in 
terms of the mean free path, or exactly, by solving Boltzmann's Equation. These 
approaches establish that the shear viscosity and thermal conductivity have definite 
nonzero values for dilute gases. Enskog's approximate treatment of the increased 
collision rate in dense fluids provides semiquantitative estimates for the marked 
increases of viscosity and conductivity over the low-density values and the 
corresponding decrease of the diffusion coefficient. 

The approximate Krook-Boltzmann equation, which assumes an exponential 
relaxation toward equilibrium, provides semiquantitative nonequilibrium distribution 
functions. Both this approximate approach and the Boltzmann Equation lead to H 
Theorems equivalent to the Second Law of Thermodynamics (but valid only for dilute 
gases). Despite the approximate nature of the Theorems' derivations they correctly 
identify collisions as the mechanism leading to chaos and irreversible behavior in 
nonequilibrium dilute gases. The Green-Kubo formulas express the nonequil ibrium 
transport coefficients in terms of equilibrium autocorrelation functions. These 
expressions can be derived by considering the time evolution of small perturbations to 
the Maxwell-Boltzmann distribution function. 



Kinefic Theory, by Present, supplements the standard works, Steve Brush’s translation of 
Boltzmann’s Lecfures on Gas Theory (University of California, Berkeley, 19611, Chapman and 
Cowling’s Mafhemaficd Theory of Nonuniform Gases, and Hirschfelder, Curtiss, and Bird’s 
Moleculur Theory of Gases and Liquids (Wiley, New York, 1954). See Reif‘s Sfaf&icuZ and 
Thermal Physics for a good treatment of the approximate Boltzmann Equation. For the free 
path calculations see T. Einwohner and B. J. Alder, ”Free Path Distributions and Collision Rates 
for Hard-Sphere and Square-Well Molecules,” Journal of Chemical Physics 49,1458 (1968). 
Alder and Wainwright‘s article describing the test of the H Theorem begins on page 97 of the 
1956 Proceedings of the Brussels W A P  Symposium on Transport Processes in Statistical 
Mechanics. Numerical solutions of the Boltnnann Equation have an extensive history. For an 
introduction see two recent papers in the Physics of Fluids: E. Meiburg, ”Comparison of the 
Molecular Dynamics Method and the Direct Simulation Monte Carlo Technique for Flows 
around Simple Geometries,” 29,3107 (1986), and G. A. Bird, “Direct Simulation of High- 
Vorticity Gas Flows,” 30,364 (1987). Helfand’s interesting derivation of the Green-Kubo 
expressions appears in “Transport Coefficients from Dissipation in a Canonical Ensemble,” 
Physical Review, 119,l (1960). 
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10.1 Introduction 
Gibbs developed equilibrium statistical mechanics, an exact microscopic 

prescription for analyzing the equilibrium thermodynamic properties of macroscopic 
systems. He showed that Boltzmann’s Relation between thermodynamic entropy and 
the number of microscopic states, S = klnW, holds not just for dilute gases, but also for 
any conceivable equilibrium system. Gibbs’ statistical mechanics is most easily applied 
to systems with independent or nearly-independent degrees of freedom, but numerical 
applications of his formulation can be extended to strongly-coupled degrees of freedom 
through systematic expansions such as the Mayers’ density expansion and through 
ensemble-based perturbation theories developed to extend the usefulness of reference 
results from computer simulation. 

Away from equilibrium no comprehensive logical foundation like Gibbs’ exists to 
describe the states of nonequilibrium systems, even very small simple systems with 
only one or two degrees of freedom. To solve the dilute gas problem Boltzmann used a 
simplified version of dynamics in which correlations are ignored. His approach can be 
applied far from equilibrium, but only to gases. To solve the linear-response 
perturbation-theory problem Green and Kubo used equilibrium dynamics and 
equilibrium distribution functions as their basis. Green and Kubo’s linear perturbation 
theory can be applied to any phase of matter, dilute or dense, but only dose to 
equilibrium. 

state,” a system driven away from equilibrium by stationary boundary conditions. 
Typical boundary conditions impose a specified mean velocity and a specified 
temperature on selected degrees of freedom. In order that these boundary conditions 
result in a nonequiIibrium steady stafe the time-averaged values of chemical potential, 
velocity, or temperature must vary along the system boundary. Away from 
equilibrium these boundaries must provide at least one source and at least one sink of 
energy for a steady state to be achieved. All the simple classic problems of 
hydrodynamics, such as Couette flow, Poiseuille flow, and the Stokes Drag on a Sphere, 
are stationary nonequilibrium steady states. It is embarrassing that for this simplest 
kind of nonequilibrium problem, there is at present no applicable atomistic theory. In 
such a case there is no real alternative to solving the equations of motion, simulating 
nonequilibrium systems with nonequilibrium molecular dynamics. This is the 
simplest approach. 

difficult? A clue is emerging from current research on chaotic systems. Chaotic 

From the conceptual standpoint the simplest nonequilibrium system is a “steady 

ar 

Why is it that a purely-theoretical treatment of nonequilibrium problems is so -. 



systems are characterized by the steady production of information called "sensitive 
dependence on initial conditions." The quantity of information so produced exceeds 
the content of any analytic theory. For this reason nonequilibrium studies necessarily 
focus on simulation as the simplest route to nonequilibrium behavior. 

Nonequilibrium computer simulations have three useful roles to play: (I) 
providing the basic data through computer experiments, generally providing more 
details and greater accuracy than is available in laboratory experiments, (2) helping to 
identify and analyze causal mechanisms underlying the observed results of computer 
experiments and having analogs in laboratory experiments carried out far from 
equilibrium, and (3) suggesting conceptual approaches for developing necessarily- 
approximate theoretical treatments modelling these two kinds of experiments. 

Unlike laboratory experiments, computer experiments are becoming steadily 
more elaborate without becoming more costly. The growth of transputer technology 
made it possible in 1989 to simulate nonequilibrium flows of as many as one million 
atoms. An enlarged portion of a single frame taken from a million-atom videotape 
appears in Figure 10.1. If the cost of a current "supercomputer" were invested in a 
machine based on SPRINT'S design, it would make possible simulating systems with 
biZZiuns of particles using exactly this same technology. Along with such revolutionary 
advances in parallel computation, laboratory inventions such as the scanning- 
tunneling and atomic-force-balance microscopes are beginning to provide useful 
nonequilibrium flow information on the atomic level. The gap between the atomistic 
systems modelled in computer simulation and those being studied in current 
engineering practice is narrowing. Engineering processes by definition involve 
nonequilibrium systems. For this reason nonequilibrium molecular dynamics 
methods of simulation is playing a growing role in designing engineering materials 
processes. Because the simplest processes are steady ones, and because these lie well 

Figure 10.1. Portion of a six-day 
simulation, involving 1,036,800 
atoms interacting with an 
embedded-atom potential typical of 
copper or nickel at half the melting 
temperature, carried out on Tony 
De Groot's SPRINT computer at the 
Livermore National Laboratory. 
Simulations of this kind are used to 
follow the rate, force law-, and 
temperature-dependence of the 
plastic yield strength. Here a disk- 
shaped indenter is penetrating the 
surface of a crystal made up to 720 
rows of 1440 atoms each. 
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beyond the capabilities of current theoretical kderstanding, we restrict OUT 

introductory study of nonequilibrium simulations to steady states. 

needs to be treated explicitly. Boundary conditions, described by special equations of 
motion, are crucial, for it is these which make it possible to create and maintain a 
nonequilibrium state. Nonequilibrium molecular dynamics simulations require 
additional variables. In our kinetic-theory description of nonequilibrium systems we 
introduced gradients in concentration, velocity, and temperature and measured the 
resulting fluxes of mass, momentum, and energy, with neither the need nor the desire 
to identify their sou~ces. In nonequilibrium simulations sources and boundary 
conditions must be specified explicitly. 

be extended to spatially-varying time-dependent processes. In this Chapter we outline 
the ideas underlying simulations of nonequilibrium steady states. These simulations 
require a Nonequilibrium Molecular Dynamics, an extension of Newtonian mechanics 
incorporating driving and constraint forces, while also including the same 
deterministic reversible thermostats which we applied to equilibrium systems in 
Chapter 4. In this Chapter we describe the nonequilibrium techniques and point out 
their intimate connection to the Second Law of Thermodynamics. In Chapter 11 we 
provide detailed applications illustrating these ideas. 

Just formulating a nonlinear nonequilibrium problem requires new ideas. Heat 

The steady-state simulation techniques described in these two Chapters can readily 

10.2 Forces in Nonequilibrium Molecular Dvnamics 

need to be introduced for performing mechanical work and transferring heat, the two 
fundamental energy-transfer mechanisms linking microscopic mechanics to 
thermodynamics. We seek a time-reversible deterministic description of 
nonequilibrium phenomena. Thus, away from equilibrium we expect that system 
variables necessarily include external coordinates, capable of doing work, and external 
heat reservoirs, capable of exchanging heat with selected system degrees of freedom. In 
such a nonequilibrium system the accelerations can be written in terms of the atomistic 
forces, boundary forces, constraint forces, and driving forces: 

In discussing externally-driven nonequilibrium systems explicit mechanisms 

p = F A + F B + F c + F ~ .  

The simplest system leading to interesting nonequilibrium steady states and 
involving all four types of forces is the Galton Board or Pachinko-Parlor Machine 
shown in Figure 10.2. For simplicity we use a two-dimensional Board with periodic 
boundaries so that the scattering particle cannot escape. A constant driving force FD 
plays the role of gravity or an  electric field, providing an energy source for the Board. A 
moderating constraint force FC acts to keep the kinetic temperature of the system fixed 
so that the direction, but not the magnitude, of the velocity can vary. The scattering 
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Figure 10.2. A portion of a periodic 
"Galton Board" in which a mass 
point scatters elas tically from fixed 
scatterers in the presence of a vertical 
accelerating gravitational field. A 
parallelogram unit cell of the 
periodic structure is indicated. An 
alternative hexagonal cell is 
illustrated in Figure 11.3. 

interaction can then be viewed either as a boundary force FB, if we choose a coordinate 
frame fixed on one particle, or as an atomistic force FA describing the collisional hard- 
disk interaction of the two particles in the alternative center-of-mass frame. We will 
return to this example system in Section 11.2. A snapshot of the steady-state Galton- 
Board phase-space distribution appears also in the present Chapter, in Section 10.5. 

In many-body simulations "Atomistic" forces are derived from potential 
functions such as the hard sphere or Lennard-Jones-Spline pair potential or the many- 
body embedded-atom potential discussed in Section 5.4. The Boundary forces, 
Constraint, and Driving forces can be, but typically are not, explicitly time-dependent 
and typically change the number of independent variables in the dynamical 
description. Simple examples of driving forces include the external field inducing a 
current in the Galton Board and the external strain rate driving a homogeneous 
periodic shear flow. The same Nos&Hoover or Gaussian friction coefficients used at 
equilibrium to simulate dynamics at a fixed temperature and pressure can just as easily 
be applied to nonequilibrium flows. Nos&Hoover friction coefficients are additional 
system variables providing constraint forces. In driven constrained systems the phase 
space can be extended to include new variables such as ~ N H  and k, or can alternatively 
be contracted by imposing constraints on existing variables. Gaussian friction 
coefficients depend explicitly on phase-space coordinates and open no new regions in 
phase space. By choosing appropriate external forces together with boundary 
conditions describing imposed velocity or temperature gradients all of the classical flow 
situations described by Fick's Laws of Diffusion, Newtonian viscous flow, and Fourier's 
Laws of Heat Transfer can be, and have been, simulated. 

By using special boundary regions, within which the velocity and temperature are 
specified, shear flow and heat flow can be simulated. The fist extensive 
nonequilibrium steady-state simulations proceeded in this way in order to simulate 
laboratory experiments as closely as possible. Boundary regions separated from the 
system by walls were used, as shown in Figure 10.3. But the directional effects present 
at any wall impose an artificial geometric order, suggesting that homogeneous periodic 
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Figure 10.3. 'fluid Walls," as used by 
Ashurst to drive a shear flow. The 
mean velocity and thermal 
temperature in each fluid wall is 
maintained constant by Gaussian 
constraint forces. The black disks 
represent particles moving upward. 
The white disks represent particles 

flows should deviate less from the properties of macroscopic systems. With periodic 
boundaries it is easy to generate a particle current, or currents, using an external field. 
The simplest such field corresponds to a driving force FD = &EJ, with half the particles 
accelerated in one direction and the remainder in the opposite direction. 

It is likewise straightforward to implement periodically shearing boundary 
conditions, though care must be taken to keep the particle trajectories continuous as 
they cross the fictitious periodic boundary. The periodic dynamics must be 
independent of the location of this imaginary boundary. The simplest formulation of 
periodic shear flow proceeds by defining a "momentum" p based on a velocity 
measured relative to the local average stream velocity, ky:  

;< = (px/m> + ky ; .j, = (py/m) . 

Provided that the strain rate k is constant, the Newtonian equations of motion in the 
laboratory frame become: 

. .  
m(d/dt)[x - EY] = px = F, - kpy ; 6, = Fy . 

The velocity-dependent force -kpy resembles a Coriolis force and describes the apparent 
horizontal acceleration, relative to the local stream velocity, resulting from vertical 
motion perpendicular to the streaming. These equations of motion simulate a 
nonequilibrium shear flow. We will see that an exact consequence of these 
nonequilibrium equations of motion is the Green-Kubo relation linking the 
nonequilibrium shear stress, -Pxy to the corresponding autocorrelation function: 

This relation is exact, even far from equilibrium, provided that the autocorrelation 
integral on the right hand side is integrated from time s = 0 to time s = t using the 
nanequilibrium equations of motion given above. A cyclic homogeneous version of 
this approach, changing the densify of the system, rather than the shape, as a function 
of time, with 

-P 

= Epcos(ot), provides the hysteretic response of bulk viscosity. 



It is not so obvious how to induce a steady heat current in a periodic system. 
Gillan and Evans used an external field EQ with a characteristic length h: Q ,= I/%. The 
field couples to individual-particle energy and pressure fluctuations and generates a 
heat current fully consistent with the exact linear-response theory of Green and Kubo: 

The {VGW} are the fluctuations of the individual particles’ contributions to the 
potential part, indicated by a superscript $, of the pressure tensor. The @E) are the 
fluctuating single-particle contributions to the internal energy: 

If Gauss‘ Principle is applied to the heat-flow problem, by finding the least-constraint 
force which generates a heat flux Qf the resulting equations of motion wrongly include 
the complete pressure-tensor fluctuations, 6~ = 6 ~ k  + 6 P f  not just the potential parts 
found in Gillan and Evans’ correct prescription. 

Close to equilibrium all of the nonequilibrium methods just discussed for 
generating diffusive, viscous, and conducting flows are fully consistent with the 
predictions of the Green-Kubo linear response theory. But these equations and the 
corresponding - - linear flows do not lead to nonequilibrium - steadv states. Instead the 
macroscopic irreversible increase in energy caused by the additional forces, 

causes each such nonequilibrium system to heat, so that the thermodynamic energy 
and temperature increase with time. For small deviations from equilibrium the 
heating rate is quadratic in the deviation from equilibrium, and typically very small for 
real flows. But in computer simulations the departure from equilibrium needs to be 
sufficiently large that the nonequilibrium fluxes can be distinguished from equilibrium 
thermal fluctuations. In computer simulations the resulting temperature increase 
serves to gradually reduce the influence of the driving field. The temperature increase 
would continue until the effect of the driving field became negligibly small relative to 
thermal fluctuations. If the temperature increase is slow enough, or can be made 
irrelevant by introducing appropriate scaled ,variables, then even such a nonsteady 
simulation can be used to generate correct transport coefficients. But an approach with 
the twin virtues of simplicity and elegance together with the additional promise of 
defining and treating nonlinear effects is to generate nonequilibriurn steady states by 
using thermostats to stabilize a thermal variable such as internal energy or 
temperature. In the next Section we discuss the thermostats that make it possible to 
generate nonequilibrium steady-state flows of mass, momentum, and energy. 
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10.3 Nonecluilibrium Thermostats 
In the equilibrium simulations described in Chapter 6, temperature was 

controlled by imposing a Gaussian constraint on the kinetic energy of selected degrees 
of freedom or, alternatively, by using the Nos6-Hoover integral-feedback force to 
impose a canonical distribution. Either approach is effective provided that the system 
is sufficiently mixing to reach equilibrium. Both approaches provide phase-space 
distributions which can be analyzed with Gibbs’ statistical mechanics. The time 
required to attain equilibrium is of considerable interest because there are cost 
advantages in speed. Unless it is specially desirable to follow the flow of heat through 
the system, the most efficient thermostat influences all of a system’s degrees of freedom. 

one, or several, particles, choosing new velocities randomly from an appropriate 
Maxwell-Boltzmann distribution, or, alternatively, by applying a random force together 
with a corresponding fixed frictional drag force. In computation such ”stochastic” 
probabilistic methods as these have drawbacks: the deterministic time-reversible 
character of the motion is destroyed, and with it, the constants of the motion crucial to 
checking numerical work; the stochastic irreversibility also complicates theoretical 
analyses based on the smooth phase-space flows satisfying Liouville’s Theorem. 
Finally, the numerical reproducibility of reversible dynamics is a useful tool in 
comparing and validating computational results. 

Thermalization could be accomplished by occasionally changing the velocity of 

Problems 
1. Write and test a computer program to follow the motion of a particle in a 

periodic shear flow, with stream velocity ux = ky, and with horizontal 
”boundaries” at { y ~ )  = 0, fl, k2 ... . Compute x, y, px, and py as functions of time 
and confirm that your numerical integration of the equations of motion 
provides a smooth continuous trajectory as the box boundaries are crossed. 

2. Compare the period of the lowest vibrational frequency to the time required for 
heat flow across the system, both for system diameters of 10,100, and 1000 
atomic diameters. For the heat flow use Horrocks and McLaughlin’s estimate 
for thermal diffusivity: K / ( P C ~ )  = vd2, where v is the Einstein frequency, d is the 
interparticle spacing, and cp is the heat capacity per unit mass. 

harmonic chain by a factor of l /e  by damping the motion of a single particle in 
the chain with a frictional force <p. Check this estimate by computer 
simulation for chains of 2,4,8, and 16 Hooke’s-Law particles with initial 
velocities selected from a Maxwell-Boltzmann distribution. See page 152. 
What is the apparent number-dependence of the optimum value of < for this 
specific damping force F(q,p) = Xp? 

3. Estimate the time required to reduce the kinetic energy of an N-particle 

. 



Gauss’ Principle of Least Constraint provides a time-reversible method for 
maintaining a fixed kinetic temperature and the Nos&Hoover thermostat similarly 
maintains, at equilibrium, a complete canonical distribution. Both these thermostat 
forces have time-reversible deterministic friction-coefficient forms: 

with the friction coefficients fluctuating with time. K is the kinetic energy of the 
degrees of freedom to which the Nos4-Hoover thermostat is applied and Q, is the 
potential energy associated with these same degrees of freedom. The parameter z 
determines the timescale of the thermostat response. The frictional forces can be 
applied throughout a system, or solely within special boundary regions, such as those 
driving shear or heat flows. Frictional forces can be applied to individual particles or to 
individual degrees of freedom. By combining the driving forces described in Section 2 
with these nonequilibrium thermostats we can simulate nonequilibrium steady states. 
In the following Section we analyze the corresponding phase-space structures. 

Problem: 
In Section 3.12 we saw that the extended canonical distribution 

f(q,p,C) Q: exp(-H/kT>exp(-S2t2/2> 
is consistent with a coordinate-weighted thermostat applied to an arbitrary 
subset of the momenta (p). Prove that this result can be further generalized to 
describe a thermostat which depends also on time: 

6 = F(q) - rpW(q,t); 4 = [OK/&) - 1Iw(q,t)/z2 - 
Notice that the distribution function is independent of the weight function 
w(q,t). 

10.4 Liouville’s Theorem Far From Equilibrium 

those used at equilibrium it is natural also to analyze nonequilibrium motions in a 
generalized phase space, extending or contracting the phase space, if need be, to include 
any strain rates, fields, or friction coefficients which vary with time and to satisfy any 
new constraints. In the corresponding extended or contracted phase space the 
continuous flow of probability density for any motion obeying differentiable equations 
of motion must still follow the phase-space continuity equation: 

Because most of the state variables for nonequilibrium systems are the same as 

where r now represents all of the coordinates, {q,p,l$, ... }, in the space. Phase-space 
flows following Hamilton’s equations of motion must obey the equilibrium form of 
Liouville’s Theorem, 3 = 0, because the contributions to the righthand side cancel for 
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each coordinate and its conjugate momentum. Gauss’, as well as Nos6 and Hoover‘s, 
thermostat forces -4p provide nonvanishing contributions to the righthand side 
because (ap/ap) is minus the friction coefficient 4. Thus for either of these forms of 
deterministic thermostatted mechanics the nonequilibrium analog of Liouville’s 
Theorem is the instantaneous phase-space identity: 

where the friction-coefficient s u m  is to be carried out over all thennostatted degrees of 
freedom; 4 is a “power loss,” the rate at which heat is extracted by the friction 
coefficient < corresponding to the temperature T. As a corollary, the comoving 
probability density in the extended, or contracted, nonequilibrium phase space varies 
with time in accordance with the time-integrated total energy -AQ extracted from the 
system by the thermostats: 

f(t) =f,e~p(-AQ/kT) . 

In the typical case, heat is extracted so that AQ = ZJQdt is negative and the probability 
density increases, indicating shrinkage of phase space volume. If heat were added the 
probability density would decrease, indicating expansion. This geometric identity 
relating phase volume and heat flow follows directly from the equations of motion for 
either form of thermostat. 

To simulate any nonequilibrium steady state at least two links with the outside 
world are necessary. These can be SOLU-C~S or sinks of chemical energy, work, or heat. 
The last two of these possibilities have been thoroughly investigated, beginning with 
Ashurst‘s work on the simulation of viscous and heat conducting flows by introducing 
two “fluid walls” to exchange momentum and energy with a central Newtonian 
region. The constraints of fixed total momentum and energy in the wall regions were 
maintained by adjusting the velocities at the end of every time step in a way equivalent 
to applying Gauss’ Principle of Least Constraint to the fluid-wall reservoir degrees of 
freedom. 

A fixed external field, like gravity, can provide the necessary energy source to 
maintain a nonequilibrium flow. So long as the force F = F(q) depends only on 
coordinates, the corresponding contribution to the phase-space flow density, (a/ap)F(q), 
is zero. Without a thermostat the equilibrium form of Liouville’s Theorem: = 0, 
applies to such a flow. 

Suppose the work-performing external field is time-dependent. Consider, for 
instance the corrugated moving wall shown in Figure 10.4, capable of doing work with 
a force F = F(q,t) depending upon both coordinates and the time. Even so (a/ap)F(q,t), 
and hence f are still both zero in the absence of heat reservoirs. By contrast, if heat is 
extracted by using mornentum-dependent forces F = F(p), then (a/ap)F(q/p,t), and 
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likewise .f are both nonzero. Such a situation is typical of nonequilibrium molecular 
dynamics simulations of periodic systems with static coordinateindependent fields. 
An example is the Galton Board. 

Problem: 
Formulate Cartesian equations of motion for a mass point moving in the two- 
dimensional potential $(r,0) = (r2/4)[2 + cos(30)] . Consider the nonequilibrium 
case in which the temperatures of the x and y motions differ. 

Figure 10.4 Shear flow induced by 
moving corrugated walls, equivalent 
to time-dependent boundary forces, 
generate a shear flow. The right (left) 
corrugations move up (down) at a 
fixed speed. 

f 

10.5 Divergence of the Noneciuilibrium Steadv-State kobabilitv Density 
What is a nonequilibrium steady state? A steady state can be characterized by 

properties which fluctuate about definite values, with the averages converging toward 
these values at long times. An isolated system, provided that its mechanics is 
sufficiently "mixing," eventually equilibrates and becomes an equilibrium system. A 
nonequilibrium system can be identified through its interactions with the external 
world. If the external world performs work upon and exchanges heat with such a 
system, or exchanges heat separately with distinct groups of degrees of freedom, then 
the system can achieve a nonequilibrium steady state distinguished from the time- 
independent equilibrium situation by nonequilibrium flows of mass, momentum, or 
energy. The flows can be described in either of two ways, in terms of the forces driving 
them, such as the external fields and external strain rates driving mass, momentum, 
and energy currents, or, alternatively, in terms of the steady values of these responding 
nonequilibrium currents. Thus a nonequilibrium steady state is characterized by a 
(time-averaged) stationary response to at least two fixed interactions with the outside 
world. 

If such nonequilibrium steady states are achieved by using Gaussian or Nos& 
Hoover thermostats then the phase-space probability density, according to the Liouville 
Theorem, inmitably behaves in a specific characteristic way, diverging to infinity. This 
divergence follows directly from the equations of motion: 
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Provided that the friction coefticients have a time-averaged nonzero steady-state sum, 
both f, and its logarithm, necessarizy diverge to infinity for Zong times. Because the 
product of phasespace volume and probability density is conserved, a negative time 
average for the friction-coefficient s u m  <Xc> would imply an unacceptable infinite 
phasespace volume, and so would be incompatible with a bounded phase-space 
distribution. Thus, in steady states, nonzero friction implies overall vositive fricfion , 
cZc> > 0. Both f and lnf must divewe in any nonequilibrium steadv-state flow. 

This divergence of the distribution function corresponds to a breaking of 
Loschmidt's time-reversal symmetry: formally, any trajectory along which the 
probability density is increasing and the volume is contracting, could evidently be run 
backward in time. But because the backward motion would increase the occupied 
phase-space volume, such a reversed solution cannot be allowed in a nonequilibrium 
steady state. 

Problems: 
1. Consider the one-dimensional motion of a point with unit mass in the 

potential 0 = - x - cosx with a friction coefficient determined by the equation 
4 = [p2 - I]. Determine the number of time steps for which this motion can be 
accurately reversed to the initial condition (x,p,c} = {O,O,O] using the fourth- 
order Runge-Kutta method and time steps of 0.1,0.01, and 0.001. 

2. Use a centered-difference algorithm to solve the Stoermer analog of the 
problem described above. Notice that an extra value of the coordinate needs to 
be generated initially, as well as just prior to reversal, to guarantee the 
algorithm's mathematical reversibility. 

Ih 

I 

This symmetry breaking exhibited by the nonequilibrium equations of motion is 
the "Arrow of Time" associated with the Second Law of Thermodynamics. For 
relatively short times the motion most easily occurs in such a way as to convert work 
to heat, not the other way around. For long times, in which a steady state is achieved, 
work must be converted into heat. The contrary motion is not a possible steady 
solution of the equations of motion. 

correspond to distribution functions diverging exponentially in the elapsed time. The 
significance of these formal divergences was unclear until computer simulation 
revealed that the corresponding steady-state phase-space distributions are zero-measure 
fractal objects, occupying subspaces of their original equilibrium phase spaces. Figures 
10.5 and 11.4 show examples. In the latter Figure successive phase-space cross sections, 
called Poincare sections, are shown for an ensemble of mass points falling through a 

From the mathematical standpoint, the long-time steady-state solutions 

% 

___; =-_ ----I - - _ _ _ l _ _ _ _ _ ~  -- - ~~ 



Figure 10.5. Poincare section of phase space for the Galton Board with field strength 
equal to 3p2/mo. The information dimension of this multifractal object is about 1.6. 
The dynamical approach to this structure is shown in Figure 11.4. 

-\ ., Pachinko-Parlor game’s periodic triangular lattice of scafterers at fixed kinetic energy. 
The phase-space density description of the motion spreads out, reflecting Lyapunov 
instability, while simultaneously shrinking to a zero-volume fractal object. 

At equilibrium such fractal states are not observable because their measure is 
negligible but away from equilibrium onZy these rare states can correspond to 
nonequilibrium steady states. The change from equilibrium to nonequilibrium is 
therefore not a simple one that can be described by perturbation theory. The phase- 
space geometry is fundamentally changed in a way which frustrates traditional analyses 
based on Taylor’s-Series expansions. i 

,- 
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10.6 Fractal Distributions 

must discuss these objects. They are an integral part of nonequilibrium statistical 
mechanics. What is a fractal? To begin, "Fractal" distributions have a self-similar 
structure on all scales of observation, no matter how small. The distribution of points 
never becomes a continuous differentiable density function describable by the usual 
probability density. A classic example, based on the Cantor set, is the Sierpinski sponge 
shown in Figure 10.6. The sponge is constructed by first removing 7/27 of a unit cube 
by cutting three intersecting holes of square cross section normal to the cube faces. Next 
a second set of three square holes is centered in each of the remaining 20 smaller cubes. 
The process is then repeated on ever-smaller scales. Each succeeding set of holes 
reduces the remaining mass of solid material by a factor 20/27 so that the limiting mass 
of the sponge is zero. 

In the zero-mass limiting case any enlarged version of any portion of the sponge 
reveals a corresponding infinite sequence of smaller-scale geometrically-similar 
models. If, for example, we choose a pair of the "ternary points" (see Problem 2 below) 
definitely in the sponge and separated by a vector r these two points correspond to 20 
pairs of geometrically similar points separated by parallel vectors in cubes three times 
smaller and to 400 similar pairs in cubes nine times smaller in width than the 
originals. Had the sponge been a solid three-dimensional object rather than a fractal 
one, the number of such corresponding pairs would instead have been 27 and 729 = 272. 

Because this same scaling construction is valid for enery pair of included points 
the number of pairs of such points lying within a distance range dr about r must vary as 
the ln20/ln3 = 2.727 power of r. That is, for small r,, an increase in the scale of 
observation from ro to 3r0 reveals precisely 20 times as many pairs of points in the 
structure, so that dlnN2(r)/dlnr is ln20/ln3 = 2.727. Because this scaling relation holds 
at a22 sufficiently small scales the Sierpinski sponge is said to have a "fractal 
dimensionality" of D2 = 2.727. For the sponge example we could instead consider 

Because all nonequilibrium steady states lead to fractal phasespace structures we 

Figure 10.6. Sierpinski Sponge 
constructed by repeatedly boring 
square holes in a unit cube. The 
width of the nth generation of 
holes is (1/3)n. 



individual points, triples of points, quadruples, and so on, and exactly the same scaling 
relation, with the number varying as the 2.727 power of the scale, would apply. For any 
set of points in the sponge at one scale there are exactly 20 similar copies on a three-fold 
smaller scale. This simple scaling doesn't occur in the fractal objects generated in 
phase-space flows describing mechanical systems. In phase space the numbers of pairs, 
triples, quadruples, ... typically scale with different powers of r and the resulting 
distributions are said to be "multifractal." The corresponding set of fractal dimensions, 
{Dl, D2, D3, D4, ... 1, depends on the number of points used to define it. 

Figure 10.5 shows a typical cross section of a "multifractal phase-space object" 
generated by the steady-state field-driven Galton-Board flow described in Section 2 of 
Chapter 11. For this object the fractal dimensionality varies: D1 = 1.81, D2 = 1.58, ... , 
down to zero, depending upon the number of points used to characterize it. The fractal 
nature of Lyapunov-unstable phasespace flows is a ubiquitous feature of 
nonequilibrium systems and furnishes the link between Lyapunov-unstable 
microscopic mechanics and the irrevezsbility characterizing phenomenological 
macroscopic thermodynamics. We discuss irreversibility in the following Section. 

Problems 
1. In constructing the Sierpinski sponge how does the surfice area of the sponge 

depend on the number of holes cut? 
2. Suppose that all locations in the unit cube are described in "base-3" form, so 

that the midpoint of the cube, for instance, is (0.111 ..., 0,111 ..., 0.11L.J where 
0.111 ..., base-3, corresponds in decimal notation, to 1/3 + 1/9 + 1/27 + ... = 1/2. 
Show that points in the Sierpinski sponge must have x, y, and z coodinates 
with at most a single 1 in the dth digit of their expansion. That is, the base3 
point (0.21,0.22,0.20) is "in" the sponge but (0.21,0.21,0.20) is not. 

3. Compute the fractal dimensionality of the Sierpinski carpet, the two- 
dimensional analog of the sponge shown in Figure 10.6. 

4. Generate one hundred thousand pairs of "acceptable" randomly chosen points 
in the unit square. Acceptable points have at most a single 1 in the dth digit of 
their ternary expansions, as described in Problem 2 above. Plot the logarithm 
of the number of such pairs of points which lie within a distance r of each 
other as a function of the logarithm of r, using periodic boundary conditions 
for points near the "boundaq" of the square. Is the fractal dimensionality 
consistent with that computed in Problem 3? 

5. Consider two periodic Cantor-like sets, with each constructed by repeatedly 
removing the "middle third" and intersecting the other at an angle 8, as shown 
in Figure 10.7. If each set has fractal dimensionality 1 + (ln2/ln3), compute the 
fractal dimensionality of the intersection and union sets. 

--. 
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Figure 10.7. Two periodic Cantor 
sets crossing at an angle of x / 3 .  

10.7 Irreversibilitv and the Second Law of Thermodvnamics 
The Second Law of Thermodynamics inexorably emerges from all steady-state 

nonequilibrium molecular dynamics simulations in a simple geometrical way, without 
the necessity for making any statistical approximations. 
eoolutions which convert work into heat can be presenf in nonequilibrium steady 
states. The common geometric characteristic of all these states is phase-space volume 
shrinkage in the comoving Lagrangian frame, leading ultimately to chaotic zero- 
volume strange attractors. This microscopic geometric property provides exactly the 
same thermodynamic predictions as does the macroscopic Second Law of 
Thermodynamics, to which it is equivalent. 

Let us show the link between the equations of motion and thermodynamics in 
detail for the simplest possible case. Consider a system linked to two NostSHoover heat 
reservoirs maintained at two different temperatures TL < TH. In the steady state the 
total heat transfer between the system and these reservoirs must vanish 

Only those dynamical 

where the last two sums correspond to the timeaveraged rates of heat transfer from 
the system to the hot and cold reservoirs. We use the abbreviations #H and #c to 
indicate the number of reservoir degrees of freedom. For either temperature, the Nos& 
Hoover equations of motion for reservoir degrees of freedom, 
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when multiplied by GT and time averaged, show that the average value of the product, 
cXtJT(p2/m)p, can be replaced by the product of the averages: 

Thus the steady-state condition for energy balance can be rewritten: 

At the same time, the geometric requirement that the occupied steady-state phase-space 
volume not diverge requires that the unweighted friction coefficient sum be positive, 
#H<cH> + #c<cc> > 0. The two simultaneous restrictions on the friction coefficients, 

taken together, can only be satisfied if the cold-reservoir coefficient SC is positive, and 
larger in magnitude than <H. In turn this requirement establishes that heat flows out 
of the system at the cold boundary and in at the hot, in agreement with Fourier‘s Law 
and with the Second Law of Thermodynamics. Similar demonstrations can be carried 
through for diffusive or viscous flows. 

Problem: 
Show how to extend this microscopic demonstration of the macroscopic 
Second Law of Thermodynamics to nonequilibrium processes which are 
periodic in time rather than stationary. 

For any nonequilibrium steady state including diffusion, viscous flow, or heat 
conduction, the motion inexorably develops in such a way that the probability collapses 
onto a (multi)fractal strange attractor obeying the Second Law of Thermodynamics and 
converting work into heat. This exact microscopic mechanical version of the Second 
Law of Thermodynamics applies to liquids and solids just as well as to gases. The only 
assumption is the use of a particularly-convenient form of heat reservoir, based on 
Gauss’ or Nos&Hoover equations of motion. It is clear that the nonlinear effects in 
systems with homogeneous thermostatting forces depend on the details of the 
thermostats. On the other hand there is no evidence that properties of steady-state 
nonequilibrium systems with boundary thermostats depend significantly on the type of 
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thermostat used. This independence of bulk properties to surface effects is in fact what 
makes hydrodynamics a useful and reproducible description of nature. In elastiaty 
theory, the corresponding observation that bulk elastic effects are (usually) independent 
of surface details is called ”Saint Venant‘s Principle.” 

The microscopic equations of motion for a nonequilibrium system describe a 
phase-space flow linking together two topologically-similar but dynamically-dissimilar 
strange geometric objects, a phase-space “source,” the repellor, and a phasespace 
”sink,” the strange attractor. The existence of these noneqdibrium-steady-state strange 
attractors and repellors resolves Loschmidt‘s reversibility paradox discussed in Section 
7 of Chapter 9. Although, as Loschmidt insisted, there are indeed states in the phase 
space which could violate the Second Law of Thermodynamics (states corresponding to 
time-reversed trajectories obeying that law) these states occupy a zero-measure fractal 
object, the ”Strange Repellor,” so that the possibility of finding such a state is not just 
small; it is exactly zero. 

many-dimensional phase space. Here we can only provide weak analogies with two- 
dimensional pictures or three-dimensional stereo views. To suggest the phase-space 
flow from a repellor to an attractor, consider the streamlines shown in Figure 10.8. The 
corresponding two-dimensional flow describes the progress of a one-dimensional 
particle with unit mass, moving along the x axis with momentum p. There is a 
constant accelerating field, of unit strength, and a Nos&Hoover thermostatting force. 
The corresponding equations of motion are these: 

It is hard to visualize the complex topological structure of these objects in a 

The unstable fixed point at (p,c) = (-l,-l) is the analog of a phase-space repellor, the 
source of the streamlines along which the motion occurs. Flow terminates at the 
analog of a phasespace attractor, the sink at (p,Q = (+l,+l). In many-body phase space, 
nonequilibrium flows originate in unstable multifractal repellor objects with 
dimensionalities of the same order as the dimensionality of the embedding space and 
then terminate on topologically similar attractors in which the momenta and friction 
coefficients have reversed signs. This last feature is shared by the two-dimensional 
example just outlined. Chaotic phase-space flows differ from this two-dimensional 
example in that they have no fixed points. 
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Figure 10.8. Streamlines in (p,c) 
space for the differential equations: 

The flow links the repellor source 
at (-1,-1) to the attractor sink at 
(+l,+l). 

~ 

Problem: 
For both fixed points of the set of equations (E; = 1 - cp ; = p2 - I), (-l,-l) and 
(+l,+l), introduce new variables Ap and AC , where these new variables give 
the offset of a nearby point (p,c) from the fixed point. Next linearize the 
differential equations in Ap and A<, ignoring terms of the second order in these 
offset variables. Finally, eliminate either Ap or AC from the equations to obtain 
a linear second-order equation for the remaining variable. Discuss the form of 
this equation in the vicinity of each of the two fixed points. 

The strange attractor, to which steady nonequilibrium phase-space motions must 
collapse in obeying the Second Law, is aptly named. On it the Lyapunov exponents 
which describe the stability of the flow have a negative sum signifying compression of 
the flow. Nevertheless nearby trajectories separate exponentially fast from one 
another. It is this simultaneous collapse and divergence which makes these objects 
"strange". In the time-reversed repellor the signs of these exponents are reversed. 
Trajectories still separate, but the flow expands. The repellor is accordingly dynamically 
less stable than the attractor. That is, phase-space points close to it are generally 
repelled. It is these phase-space objects, the zero-measure strange attractor and 
corresponding repellor which provide reversible microscopic analogs for the 
irreversibility described by the macroscopic Second Law of Thermodynamics. BJr 
adopting a mechanical definition of heat reservoir based on the ideal-gas - temperature 
scale we have derived the irreversible Second Law of Thermodvnamics directlv from 
time-reversible microscopic mechanics. 
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10.8 Summarv and References 
Nonequilibrium molecular dynamics typically includes atomistic, boundary, 

constraint, and driving forces. The extra forces make it possible to simulate diffusive, 
viscous, and heat flows with external fields, heat reservoirs, and time-dependent 
boundary conditions. The Green-Kubo theory of the transport coefficients is an exad 
formal analysis of the linearization of these simulations, and is valid for sufficiently 
small mass, momentum, and energy currents. The phase-space continuity equation, 
dlnf/dt = Cc = -CQ / kT, expresses the connection between the heat transfers 
maintaining a steady state and the changing size of a comoving phase space 
hypervolume: the product f(r)N, where Ar' is a comoving phase-space volume 
element, is conserved by the equations of motion. In nonequilibrium steady states f 
diverges and AI? approaches zero. The corresponding steady-state limit is a zero- 
volume phase-space object, a (mu1ti)fractal strange attractor. Time-reversed "repellor" 
states, which would violate the Second Law of Thermodynamics, can never be 
observed, because these repellor states are dynamically unstable and of zero measure. 
The microscopic mechanical basis of the Second Law of Thermodvnamics is the 
Lvapunov-unstable strangeattractor - dvnamics of noneauilibrium steadv states. 

For an early review "Nonequilibrium Molecular Dynamics" see W. T. Ashurst and W. G. 
Hoover, Advances in Theoretical Chemistry 1,l  (1975). See also my MoZecuZar Dynamics 
(Springer-Verlag, Berlin, 1985). The paper by D. Farmer, E. Ott, and J. A. Yorke, 'The 
Dimension of Chaotic Attractors," Physica 7D, 153 (1983) contains interesting examples and 
careful definitions of two of the many fractal dimensions. Applications of A. Chhabra and R. 
V. Jensen's method, described in "Direct Determination of the f(a) Singularity Spectrum," 
Physical Review Letters 62,1327 (1989), can be found in W. G. Hoover and B. Moran, "Phase- 
Space Singularities in Atomistic Planar Diffusive Rows," Physical Review A 40,5319 (1989). 
The Sierpinski Sponge drawing is taken from B. B. Mandelbrot's The Fracfd Geometry of 
Nature (W. H. Freeman, San Francisco, 1982). For a simple onedimensional model with a 
fractal nonequilibrium distribution function see W. G. Hoover, H. A. Posch, B. L. Holian, M. J. 
Gillan, M. Mareschal, and C. Massobrio, "Dissipative Irreversibility from Nos6's Reversible 
Mechanics," Molecular Simulations 1,79 (1987). The Galton Board multifractal attractors can 
be found in B. Moran, W. G. Hoover, and S. Bestiale, "Diffusion in a Periodic Lorentz Gas," 
Journal of Statistical Physics 48,709 (1987). The connection of fractal phasespace distributions 
to the Second Law of Thermodynamics is discussed in B. L. Holian, W. G. Hoover, and H. A. 
Posch, "Resolution of Loschmidt's Paradox: The Origin of Irreversible Behavior in Reversible 
Atomistic Dynamics," Physical Review Letters 59,lO (1987). This paper, with a different title 
and with the authors' names permuted, was twice rejected by Editor Basbas. See also W. G. 
Hoover, "Reversible Mechanics and Time's Arrow," Physical Review A 37,252 (1988). This 
paper was rejected by Editor Lebowitz of the Journal of Statistical Physics. 
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11.1 Introduction 

simulations of mass, momentum, and energy flow in order to illustrate the basic 
techniques with examples. Because determining the structure of strong steady 
shockwaves is probably the simplest highly-nonlinear nonequilibrium fluid-flow 
problem with relatively simple boundary conditions, we choose to describe the 
corresponding simulations in detail. We also illustrate the application of 
nonequilibrium molecular dynamics to the calculation of molecular relaxation rates 
and describe a related method for the quantitative characterization of many-body 
phase-space flows through an accurate determination of the spectrum of Lyapunov 
exponents. 

In choosing these examples for discussion we include many-body results together 
with the simplest possible illustrative few-body cases. This is not at all to suggest that 
small systems with one- or two-parameter pairwise-additive force laws are sufficiently 
complex to reproduce the quantitative properties of real materials. It is rather to 
emphasize that prior understanding of the behavior of small systems simplifies the 
simulation of the larger ones while saving both computer time and time spent 
analyzing results. 

In this Chapter we describe applications of nonequilibrium molecular dynamics to 

11.2 Diffusion 
We have seen that the diffusion coefficient D in Fick's Second Law, ap/& = DV2p, 

can be calculated in either of two equivalent ways: by measuring the equilibrium 
displacement history or by storing and integrating the corresponding equilibrium 
velocity autocorrelation function discussed in Section 9.14 

In either case the sampling time t has to be long relative to the collision time 
responsible for destroying correlations by scattering. Qualitatively, velocity correlations 
decay in a time of order the collision time 2: 

C V ~ ( O ) V ~ ( S ) > ~  = (kT/m)exp(-s/z) , 

but this simple exponential form is an oversimplification. The correlation function 
must be men in the time and is not necessarily monotonic. In the solid phase, for 
which the diffusion coefficient is nearly zero, the negative and positive oscillations in 
the correlation function nearly cancel. The autocorrelation data are typically 
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unreliable beyond the time L/c at which <x2> is perturbed by boundary soundwave 
reflections. Generally periodic boundaries are used in all spatial directions, but for 
some applications in materials science it is instead desirable to analyze diffusion on 
surfaces and interfaces. 

The diffusion Coefficient is usually measured by straightforward Newtonian 
molecular dynamics by averaging total particle displacements as a function of time, or, 
equivalently, by accumulating binned values of the velocity autocorrelation function 
<v(t)v(t+ndt)>. For most calculations, the periodic boundaries discussed in Section 5.3 
are used. If the displacements are to be measured it is simplest to ignore the periodic 
boundaries, allowing the particle coordinates to grow beyond the size of the box length 
L. In computing the forces from these wide-ranging coordinates the apparent distance 
component Xij = x(i) - x(j) for a potentially-interacting pair of particles i and j needs first 
to be brought into the nearest-image range from -L/2 to +L/2 

XIJ = XIJ + 100 .O*L - L*INT( (XIJ + 100.5L) /L) , 

before the corresponding force is calculated. Because only single-part icle coordinate 
changes are required the diffusion coefficient converges more rapidly than does either 
the viscosity or heat conductivity, which both reflect fluctuations in intrinsically many- 
particle properties. 

The equilibrium diffusion calculation can be connected to nonequilibrium 
molecular dynamics through the Green-Kubo linear-response theory. That theory 
provides an exact link between the equilibrium position fluctuations <xbeq and the 
nonequilibrium current c&,eq induced by an infinitesimal external field EJ parallel to 
the x axis. Such an external field also provides a strictly-nonequilibrium method for 
defining and measuring the same coefficient outside the linear regime. 

To see the connection between the current and the diffusion coefficient, imagine a 
field of strength EJ which accelerates half the particles in the positive direction and half 
in the negative direction, with FD = “EJ, so as not to affect the center-of-mass velocity. 
We imagine that the field is turned on at time 0. After a time t has passed the field- 
independent internal energy of the system, E = Q + K , has changed (usually the 
change is an increase) by AE = =,Ax, where Ax is the distance moved in the field 
direction during the time interval (0 + t}. As discussed in Section 10.4, Liouville’s 
Theorem still applies to the motion, because the external force is velocity-independent, 
so that the system phase-space probability still has the original zero-time equilibrium 
value, f,. But during the time interval t external work has changed the internal energy 
E = 

space, fnqcf> = fqlO) = exp(-E,/kT) exceeds the equilibrium value corresponding to the 
energy at time t by a multiplicative factor exp(+AE / kT): 

+ K from E, to E, + AE. Thus the nonequilibriurn probability density in phase 

- 



The simple structure of this relation conceals the need to connect the phasespace 
coordinates at time t (upon which fnq depends) to the phase-space coordinates at time 
zero (for which the equilibrium distribution fq is known to apply). This relation 
linking the phase-space densities at two different places and times is exact because the 
known equilibrium probability density depends only on energy. The phase-space 
location reached at time t depends not only on the initial phase-space coordinates but 
also on the strength of the external field EJ. We can use this exact nonequilibrium 
distribution to express the current at time t in terms of a nonlinear average over the 
equilibrium distribution function: 

where, in each of these four expressions, the dynamics leading to an energy increase AE 
between times 0 and t is calculated with the influence of the fieZd El incIuded. If we 
then expand the exponential exp(+AE/kT) to find the linear part of the response we fkd 
directly the Green-Kubo autocorrelation form: 

so that the current is proportional to the same velocity autocorrelation integral 
kltcv(0)v(t)>,q that appears in the diffusion coefficient. 

correlations from the equilibrium product of B v X ( O )  and C&vx(t). This two-time 
correlation of the current with itself involves N autocorrelation terms of the form 
vxl(0)vxl(t). Of the remaining N(N - I) terms of the form v,l(O)v&), N2/2 are 
multiplied by -1 and (N2/2) - N are multiplied by +I, contributing a net value for the 
linear current of: 

The factor of N2/(N-l) is the final result of summing the positive and negative 

The two types of velocity correlations can be combined because the average value of vx2 
is -v,l/(N - 11, by conservation of total momentum. 

D is: 
Thus, the final result linking the linear conductivity o to the diffusion coefficient 



- 
- 4d’- 

d d  - 

I -  

0.10 - I I I I I 

d) d d d  - 
4)) - 

- 
- P - 

- - 
- - 

I I I I I 0 

,-. 

Figure 11.1. Nonequilibrium 
simulations of mass flow for a dense 
Lennard-Jones fluid at N&/V = 0.85 
and kT/e = 1.08. The Green-Kubo 
theory gives the zero-field intercept 
exactly. 

Figure 11.1 shows the result of a series of nonequilibrium simulations for a dense fluid 
of 108 Lennard-Jones atoms at relatively large fields. The small-field intercept gives the 
expected agreement with an independent Green-Kubo calculation, in agreement with 
the analysis just outlined. 

the field be extracted by using Nos&Hoover thermostatting forces: 
To generate a nonequilibrium steady state it is only necessary that the energy from 

In three-dimensional problems the thermostat can be applied to one, two, or all three 
spatial directions and separate thermostats can be used for the positive and negative 
contributions to the mass current. Because the heating varies as the square of the 
current, all of these choices have no bearing on the linear response but each affects the 
definition and the numerical value of the nonlinear conductivity. Notice that the 
equations of motion are time reversible, with p and c both changing sign on a reversed 
trajectory while the coordinates, field, forces, and energies are all unchanged. 

presence of thermostats it is always possible to define an analogous potential which is a 
constant of the motion. This furnishes a useful check of the computer simulation. For 
the one-dimensional equations of motion just given the time derivative of [a + K + 
(#kT/Z)(dJ2 + kds(#kTc(s) - (El/m)VJx(s)}] is identically zero. This follows from the 
equations of motion: 

Although the internal energy is no longer a constant of the motion in the 



Figure 11.2. Portion of a Galton 
Board illustrating a sequence of 99 
collisions for a field strength of EJ = 
4(pZ/mo). The kinetic energy of the 
falling particle, p*/Zn/ is 
maintained constant by using a 
Gaussian thermostat. The scatterer 
density is 4/5 the close-packed 
density. 

If the Runge-Kutta method is being used to integrate the equations of motion the two 
integrands {#kTc(s) and -(EJ/m)VJJs)] can simply be added to the list of differential 
equations being integrated. 

Thermodynamics in the way outlined in Chapter 10. That is, the phase-space 
representation of the dissipative many-body dynamics, in the process of converting 
work (from the field) into heat (extracted by the frictional reservoir forces) collapses to 
occupy a multifractal strange attractor in phase space. In order to visualize such a 
phase-space flow it is useful to study a much smaller problem, the isokinetic Galton 
Board shown in Figure 11.2. A related shear-flow example is discussed in Section 11.3. 

explicitly in the Galton Board phase space. In that problem a single mass point travels 
through a fixed array of elastic hard-disk scatterers. If the equations of motion are 
chosen to keep the kinetic energy fixed, with the field EJ in the x direction, the equation 
of motion for the momentum can conveniently be written in terms of the polar angle 
8 giving the direction of motion relative to the field direction. With the magnitude of 
the momentum fixed and equal to p, this polar-coordinate isokinetic equation of 

The differential equations for this field-driven flow obey the Second Law of 

The fractal nature of the distribution function for a diffusive flow can be seen 

motion is: 

where (ae/at), describes the impulsive change of the moving mass point's momentum 
associated with the elastic hard-disk scatterer collisions. 

Problems: 
1. Show that between collisions the Galton Board equation of motion, 

0 = -(EJ/p)sin(B) results if the Cartesian isokinetic equations of motion: 



px = EJ - cpx ; iy = - cpy ; < = ErpX/p2, are rewritten in polar velocity 
coordinates, with px = pcos(6) and py = psin(8). 

different but equivalent problem, the acceleration of two similar hard disks in 
opposite directions in a system with periodic boundary conditions, zero center- 
of-mass velocity, and a fixed kinetic energy. 

dimensional analog of the Galton Board. Choose the field direction parallel to 
the direction $ = 0. 

2. Relate the solution of these equations of motion to the solution of a slightly- 

3. Derive the spherical polar-coordinate equations of motion for the three- 

The equation of motion between collisions can be integrated analytically to find the 
&ajectories: 

A x = -  (~/mE~)ln[sin(8)/sin(8,)] ; Ay = - (p*/mEJ)(8 - 8J ; 

- 

where the vector describing the distance traveled during the time interval At between 
successive hard-disk collisions has components Ax and Ay while the velocity direction 
changes from 8, to 8. The intersection of the analytic trajectory with the force field of 
the succeeding scatterer can then be found by a rapidly-converging iterative process. 
Figure 11.2 shows a sequence of 99 collisions constructed in this way. Successive 
Galton-Board collisions can be calculated at the rate of about 107/hour on a CRAY-1 
computer and used to produce phase-space strange-attractor cross sections such as those 
shown in Figure 10.5 for a field strength of EJ = 3(p2/mo). (See Sections 10.5 and 10.6). 
The coordinate system describing each collision is based on two angles, a and p. The 
location of each collision relative to the field direction is specified by a; the direction of 
motion following each collision, relative to the normal, is given by an angle p. See 
Figure 11.3. 

r 

Figure 11.3. Definitions of the 
configurational angle a and the exit 
velocity angle p for a Galton Board 
collision. The direction of the 
particle velocity relative to the 
external field is described by the 
angle 8. 



Analysis of such patterns of successive collisions, measuring the number of pairs 
of attractor points separated by a distance less than r, provided the first clear evidence 
for the fractal nature of nonequilibriun phase-space distributions. In the attractor 
approached in Figure 11.4 the number of pairs of attractor points lying within a range r 
of each other varies as r1-6. For field strengths up to that used in generating Figures 11.2 
and 11.4, E = 39/mo, numerical work indicates that, despite the reduced 
dimensionality of the strange attractor, all parts of phase space are included in the 
fractal strange attractor. The equivalent zero-field two-disk system is known to be 
ergodic in its equilibrium configuration space. Evidently this ergodicity holds also in 
the nonequilibrium steady state generated by small-to-moderate fields. For somewhat 
higher field strengths the motion is no longer ergodic. 

Problem: 

the x axis. The area of the scatterer lattice is expanded 25% from the the minimum 
(close-packed) area. There is a sfable limit cycle in which a moving mass-point particle 
can bounce periodically between two neighboring scatterers of diameter 0. Show this 
surprising result by considering two scatterers, with x coordinate (3 /4>1/2(5 /4)1/20 and y 
coordinates +(1/2)(5/4)1/20. Find the corresponding values of the angles a and f3 to an 
accuracy of 0.01 by developing a “shooting technique,” with the mass point initially 
located on the positive x axis and moving in the y direction with speed p/m. 

Consider a Galton Board problem with a field strength EJ = 4(p2/mo) parallel to 

11.3 Shear Viscosity and Yield Strength 

equilibrium pressure-tensor autocorrelation function: 
Green-Kubo linear response theory expresses the shear viscosity q in terms of an 

In Section 10.2 we saw that this same expression is the exact linear approximation to 
the results of nonequilibrium molecular dynamics simulations in which the boundary 
conditions impose a steady shearing motion, with the systematic motion in the x 
direction proportional to the y coordinate, ax> = ky. The corresponding periodic shear 
can be viewed either in terms of sliding rectangular cells or as a homogeneous oblique 
shear. The first of these two alternatives is the simpler to program because it avoids the 
nuisance of defining time-varying oblique coordinates and periodically resetting them. 
See Figure 11.5. 

describing the motion in the central rectangular cell are: 
In the simpler Cartesian case the equations of motion in a fixed laboratory frame 

r 

= (px/m) + by ; 9 = (p,/m) ; px = Fx- kpy ; py = FYI 
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Figure 11.4. Evolution of two Galton Board ensembles 
toward the strange attractor for a field strength E = 
3(p2/mo). The initial ensembles, shown at the center, are 
displayed again after +I, e, k4, and +8 collisions. The 
Poincare sections going upward from the center 
correspond to progressing forward in time. The sequence 
of sections eventually converges the steady-state 
multifractal "strange attractor." Going backward in time 
(downward in the Figure) the two ensembles approach 
instead the multikactal repeZZor which is the (time- 
reversed) mirror image of the attractor. In the same 
Figure we include the tine-reaersed {a,P} trajectories for 
both ensembles of points. Each trajectory has been 
followed backward in time for I, 2,4, and 8 collisions. A 
comparison of this reversed evolution with the forward 
development verifies the reversibility of the underlying 
equations of motion. The reversibility of the equations 
corresponds to reversing the sign of the momentum. For 
any initial distribution symmetric about the sinP axis [the 
horizontal axis in this view of the Poincar6 sections] the 
development backward in time would provide an exact 
mirror-image of the forward development. For the 
asymmetric distributions shown in the Figure the 
symmetry is lost, but, as the Figure suggests, the longtime 
limiting solution is nevertheless the same, a set of 
"strange attractor" points in the forward direction, and a 
corresponding mirror-image set of "strange repellor" 
points in the backward direction of time. 

In the nonlinear case shown here the distribution 
function f diverges, exponentially fast, as the integrated 
current strength, f/fo 0 exp[<c>t] = exp[~dtJ~(t)V(E~/~T)J ,  
so that the comoving phase-space volume shrinks rapidly 
to zero despite the reversibility of the equations of 
motion. This Figure illustrates the development of two 
distinct sets of 10,000 separate initial conditions toward the 
strange attractor cross-section characterizing the steady 
state. In both cases the average current associated with the 
last pidure lies within a percent of the steady-state value. 



Figure 11.5. Two equivalent 
methods for describing a periodic 
shear flow. The Cartesian description 
is the simpler of the two. 

where F, and Fy are the usual components of the Newtonian atomistic forces due to 
collisions. The shearing periodic boundaries imply that vertically-displaced periodic 
images of each particle at y k L move with a strain-rate and coordinate-dependent 
horizontal velocity component, (px(y)/rn) -C L& If we define the internal energy E as the 
comoving Lagrangian energy, that part of the energy which is independent of the 
boundary motion, E = @(r) + K(p), then the internal energy change with time E has the 
form expected from the First Law of Thermodynamics, E = -W. This conclusion 
follows directly from the equations of motion: 

We have used the microscopic representation of the pressure tensor from Section 5.6 to 
introduce Pxy Although this microscopic energy change can have either sign, positive 
or negative, the corresponding energy change is always an increase for a macroscopic 
flow described by a Newtonian viscosity q, whether the sign of the strain rate is positive 
or negative: 

Because, for the equations of motion describing this shear flow, (a t  /aq) and cap /ap) 
both vanish, so must the weighted SUM, Xf[(a;f/aq) + <ab/ap)] = 0 E - dlnf/dt; again 
Liouville’s Theorem guarantees that the Lagrangian time derivative of the distribution 
function 1 vanishes so that f propagates unchanged. During this propagation the 
internal energy has increased from its initial value by an amount jkds = -iVh?xyds = 
AE, giving an exact relation linking the nonequilibrium. distribution function at time t 
to the equilibrium distribution at time zero: 

fnq(t) = fq(0) = fq(t)exp[AE/kT] = fq ( t ) exp[~(v /k~~P~(s )ds l .  
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From this nonequilibrium distribution function the usual Green-Kubo result follows 
by linearization. Just as in the case of diffusion it needs to be emphasized that the 
coordinates at time t are linked to the coordinates at time zero through the strain-rate- 
dependent dynamics, so that the simple notation conceals the need for solving the 
underlying many-body problem. This link between the nonequilibrium and 
equilibrium distribution functions is called a "Kawasaki relation." It follows directly 
from Liouville's Theorem for the phase-space flow. 

to a 'large-scale" (864 particles and l@ time steps) liquid-phase simulation, in a 
pioneering attempt to reproduce the experimental values of the diffusion coefficient, 
bulk and shear viscosities, and heat conductivity for liquid argon at its triple point, both 
the shear viscosity and the heat conductivity that resulted were in poor agreement with 
the experimental data. The direct nonequilibrium methods provided a welcome 
alternative computational method. A nonequilibrium shear viscosity simulation can 
be based on the same equations of motion used to derive the Green-Kubo results, 

When the Green-Kubo expressions for the transport coefficients were first applied 

px = F, - 'EPY - cpx ; P, = Fy- 5Py 

but with the addition of a time-varying friction coefficient designed to achieve a 
nonequilibrium steady state. The friction coefficient regulates the comoving kinetic 
temperature, the temperature measured relative to the stream motion: G / N  = (DkT/2) 
in D dimensions. In two dimensions, for instance, the mean value of the comoving 
kinetic energy per particle, 

can be controlled by using the Nos&Hoover friction coefficient: 

Alternatively, either the comoving kinetic energy or the comoving internal energy can 
be made a constant of the motion by using a friction coefficient based on Gauss' 
Principle of Least Constraint. 

Problem: 
Use Gauss' Principle of Least Constraint to find both the isokinetic and 
isoenergetic forms of the thermostatted shear-flow equations of motion for a 
two-dimensional periodic system. 

T 
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Figure 11.6. Excess shear viscosity 
(relative to the zero-density kinetic- 
theory value computed for this 
same temperature) for Lennard- 
Jones fluids covering a wide range 
of temperature and density. All the 
data can be roughly described as 
following a quartic dependence on 
the reduced density. 
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Computer simulations based on both the equilibrium Green-Kubo equations and 
the thermostatted nonequilibrium equations of motion have by now been carried out 
for a wide range of fluid thermodynamic states. For the Lennard-Jones potential the 
sampling of results shown in Figure 11.6 reproduces quite well both the decrease of 
viscosity with increasing temperature seen in real liquids and the increase typical of 
real gases. Except at high densities these results are insensitive to strain rate. Near the 
phase-diagram "melting" or "freezing" line linking the liquid and solid phases the 
dense fluid viscosity varies roughly as the square root of the strain rate, but at strain 

r-. 

rates much too high for routine laboratory measurements. See Figure 11.7. 
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The nonequilibrium simulations, when applieG to fluids at very high strain rates, 
reveal two kinds of reproducible nonlinear behavior which are most interesting. At 
sufficiently high rates of shear the particles tend to order into one-dimensional chains 
or two-dimensional sheets, as shown in Figure 11.8. This behavior, first seen in 
computer experiments, was later verified with laboratory experiments on the shear of 
micron-sized spheres. Such a 'large" sphere size, relative to atoms, had to be used 
because the strain rates required to achieve these shear-induced phase transformations 
with simple molecules are of order 1012 hertz, too high to achieve except with 
shockwaves. 
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Figure 11.8. Ordering of 500 hard 
spheres, 60% expanded from close- 
packing, by a rapid shear flow, 
taken from J. J. Erpenbeck, Physical 
Review Letters 52,1333 (1984). 0.2 
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The nonequilibrium simulation of shear can just as well be applied to solids as to 
fluids, without any change in the equations of motion. The response of macroscopic 
isotropic solids to shear is conventionally called "plastic yielding" rather than viscous 
flow because simple metals tend to deform at a relatively-constant shear stress which 
varies only slowly with strain rate. This shear stress is an effective "yield stress," which 
would correspond, for a fluid, to the product of a viscosity coefficient and the strain rate: 

Conventional laboratory measurements explore strain rates up to about a megahertz 
while computer simulations are most easily carried out at much higher rates. But the 
gap between laboratory and computer experiments is narrowing rapidly from both 
sides. The "highest" of the experimental shear rates just overlap the low-rate limit of 
what can be done with periodic computer simulations. 

attained by following the shear of a periodic crystal containing a single pair of 
To see this, consider the minimum possible computational plastic strain rate, 



Figure 11.9. A pair of edge 
dislocations in a two-dimensional 
triangular-lattice crystal. 

dislocations. (See Figure 11.9.) Consider a two-dimensional crystal containing lo5 
atoms with a unit cell area of 10-10 square centimeters. If the two dislocations move at 
a speed of 104 cm/sec and the spacing between adjacent atomic rows is 2 x lU-8 cm, the 
corresponding "plastic" strain rate, the product of dislocation density, speed, and the 
interatomic spacing is: 

By increasing the strain rate, and the corresponding dislocation density, computer 
simulations of the shear of solids can reach strain rates of up to 1012 hertz, 
corresponding to the relative motion of neighboring atoms at the sound speed. Under 
these maximally-extreme conditions the data shown in Figure 11.10 establish that the 
shear stress reaches about 10% of the shear modulus. At lower rates the stress varies as 
a temperature-dependent power of the strainrate, Y = i p .  Although the exponent Pis 
lower at low temperature the rate-dependence shown in Figure 11.10 is much stronger 
than that observed experimentally at lower rates. 
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Figure 11.10. Dependence of the 
plastic shear stress CJ on strain rate k 
for solids undergoing steady plastic 
flow. The isotherms correspond to 
temperatures of 0.3,0.6, and 0.9 
relative to melting. At high strain 
rates all the isotherms converge to 
the maximum strength, about one- 
tenth the shear modulus. The 
extrapolations of the computer data, 
indicated by dashes, are in fair 
agreement with experimental data. 1 , 
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Just as the Galton Board served as the prototypical one-particle model for field- 
driven mass currents, there is a small-system caricature of nonequilibrium shear flow, 
the shearing “Lorentz Gas,” in which two particles (hard disks, for instance) obey the 
isokinetic periodic shearing equations of motion. These equations can be solved by 
following the same ideas used to describe the closely-related mass-flow problem in the 
Galton Board. In polar coordinates the two-particle shear-flow equations of motion 
reduce to the simple form: 

Between collisions the velocity direction defined by 8 rotates counterclockwise toward 
“fixed points” where 6 is zero. These occur at 8 = R for upward-moving disks and 8 = 
2z for downward-moving disks. Analytic expressions for the motion between 
collisions can then be found by integrating twice with respect to time. 

The resulting collision distribution resembles that found in the mass-current case. 
A sequence of 10,000 successive collisions is shown in the stereo Figure 11.11. Just as in 
the Galton Board case successive collisions can be characterized by two angles a and f3 
giving the location of the collision relative to the x axis and the direction of the velocity 
after collision. In addition a phase angle y with 0 e y < 2z is required to describe the 
collision time relative to the boundary shear at the instant of collision. Thus collisions 
in a periodic two-body shear flow require the three-dimensional space of the stereo 

Figure 11.11. Stereo view of a three-dimensional phase-space attractor describing 
10,000 successive collisions in the periodic shear flow of two hard disks. The 
collision variables 0 < a < 2x and -1 < six$ < +I are the horizontal and vertical 
coordinates. The third dimension is the phase of the periodic boundary condition. 

-? 



Figure for their description. The distribution of collision points in this three- 
dimensional space is rnultifracfal, with an appearance reminiscent of the two- 
dimensional Galton-Board attractor. Figure 11.12 shows the dependence of the 
included number of pairs of points on distance in the three-dimensional phase space. 
The corresponding "correlation dimension" is D2 = 2.3. 
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Figure 11.12. The ratio of the 
number of pairs of points lying 
within a distance r to the total 
number of such pairs for the 
strange attractor fractal object 
shown in Figure 11-11. The slope 
gives the corresponding correlation 
dimension, D2 = 2.3. 

11.4 Heat Conduction 

than diffusion or viscous flow. Heat flow requires a minimum of three particles for its 
simulation, not just two. In Chapters 5 and 7, we showed that each spatial component 
of the heat flw vector Q could be written as a sum of two terms, "kinetic" and 
"potential" respectively: 

Dense-fluid heat conduction is an intrinsically more complicated phenomenon 

Q~ = ~ k ,  + Q$ ; 

In a system containing only two identical particles and with a fixed center-of-mass both 
(PI + p2) and Zv, vanish, and so also must the heat flux vector Q = (Qx,Qy). In the two- 
dimensional three-particle case the constraints of fixed center of mass, fixed 

Problem: 
In fluid rnixfures involving two or more separate components mass and heat 
diffusion are generally coupled. Diffusion of one species relative to another 
generally induces a (Dufour effect) heat flow. Likewise, heat flow in a mixture 
generally induces a corresponding (Soret effect) relative diffusion current. 

these effects. 
Discuss the simplest possible periodic atomistic system needed to simulate - 
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momentum, fixed current and fixed temperature are a total of 2 + 2 + 2 + I = 7 
constraints, leaving relatively unwieldy four-dimensional collision-space and five- 
dimensional phasespace objects for analysis. 

Nonequilibrium many-body simulations of heat flow have been carried out in 
three different ways. The most direct of these approaches is to follow the dynamics of a 
Newtonian system coupled to two separate heat-reservoir regions, maintained at 
different temperatures, and to measure the heat flow from one reservoir to the other 
through the intermediate Newtonian system. See Figure 11.13. A related but less- 
direct approach is to measure the curvature of the steady-state temperature profile, 
d2T/dx2, or, equivalently, the boundary heat flux in a shear flow driven by 
thermostatted boundaries. In a uniform shear flow the viscous work acts as a heat 
source spread throughout the fluid, and the conductivity can be determined by 
measuring the rate at which the resulting heat current reaches the boundary. An even 
more indirect but very effective approach avoids reservoirs, and their influence, 
altogether, using instead Gillan and Evans’ artificial field, sensitive to individual 
particle’s contributions to the instantaneous energy and pressure tensor, and chosen to 
provide exact consistency with the Green-Kubo relation. 

with periodic boundaries. The additional driving forces {FD} for each particle have 
components both in the flu direction and in the transverse direction(s1. The 
components depend upon each particle’s contributions to the energy and the potential 
part of the pressure tensor. Here we use the inverse length l / h  as a measure of the field 
strength used to induce a heat flux, indicate each particle’s energy relative to the 
instantaneous average <E> by 6E = E - <E>, and similarly indicate each particle’s 
relative contributions to the pressure-tensor components by 6Pij. Then the two- 
dimensional equations of motion necessary to drive a nonequilibrium steady-state heat 
current in the x direction have the form: 

The equations of motion for this last approach apply to a homogeneous system 

* 

This artificial field performs exactly the same work, for a given heat current, as would 
be dissipated at thermal heat reservoirs. It is straightforward to show that the work 
done by the extra force proportional to ( l / h )  is also proportional to the microscopic heat 
flux: 

mWk = (1 /h)X[6Epx + V6Px$px + VSPx%py 1 

It is unnecessary to subtract the mean flux contribution {vXcE/N>} from the sum, 
Zvx[(p2/2m) + $1, because these contributions necessarily sum to zero. 



Figure 11.13. Steady conduction 
through a bar linking two heat 
reservoirs. The shading indicates 
temperature. The left hot reservoir 
is shaded and the right cold reservoir 
is white. 

For small field strengths ( l /h )  the dissipation of this work into heat varies as 
(1/1)2 and must approach that calculated from linear irreversible thermodynamics 
which can in turn be calculated from the thought experiment shown in Figure 11.13. 
Imagine the steady flow of heat in a homogeneous bar to be driven by a temperature 
difference AT cc T. Let us attempt to estimate the rate at which the entropy in the bar 
changes with time. The change from the constant heat flux Q, through a cross section 
A is evidently 

5 = Q,A{[T + (AT/2)]-1- [T - (AT/2)]-1) ; Q, > 0 ; AT > 0 . 

There is clearly an increase in entropy at the hot end, where heat enters and a 
somewhat larger decrease at the cold end. This mismatch in the two entropy changes, 
with the loss outweighing the gain is embarrassing, because any reasonable "entropy" 
in a nonequilibrium steady state can obviously neither increase nor decrease. This 
contradiction is the macroscopic manifestation of the microscopic collapse to a strange 
attractor discussed in Section 10.5. In the microscopic case there is no way to rescue the 
equilibrium Gibbs-Boltzmann entropy S = -k<lnf>, in discussing a nonequilibrium 
steady state because <lnf> diverges. 

nonequilibrium entropy and to make it constant in nonequilibrium steady states by the 
bald expedient of adding a phenomenological "entropy production," Ssurce : 

In the macroscopic case it is traditional to imagine a vaguely-defined 

forcing the total change of the "entropy" of the bar to vanish. Thus, 

,.- 
_ I  
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where the {=} indicate relations which hold if the temperature gradient is so small that 
terms of order AT3 as well as the temperature variation of the conductivity can be 
ignored. Then the heat conductivity can be expressed in terms of the work done by the 
external field, and the induced heat flux Q : 

KT = XQ, . 

All three of the purely-nonequilibrium steady-s tate approaches just outlined 
provide limiting conductivities consistent with those from equilibrium calculations 
based on the Green-Kubo conductivity formula: 

r* 

The results obtained from these simulations illustrate an interesting corresponding- 
states relation for dense-fluid transport coefficients. This scaling relationship is, like 
van der Waals’ equation of state, a semiquantitative model, rather than a theory. But it 
is nevertheless quite useful for practical applications. To develop the model we picture 
the liquid as composed of particles at a sufficiently high density that their motion can be 
described as vibrational. 

The conductivity can then be crudely estimated by imagining that a vibrating 
particle transports energy from its hotter to its cooler neighbors at the Einstein 
frequency through an area d2, where d is the interparticle spacing. Leaving aside 
multiplicative factors of order 1, so that the heat capacity Cp can be replaced by k, the 
corresponding conductivity K has the form: 

At the same time, the thermodynamic entropy from the Einstein model, measured 
relative to an ideal gas, has a related form: 

suggesting that conductivity data can be correlated with the thermodynamic entropy. 
A similar approximate relation should also hold for the shear viscosity. To 

estimate the viscosity, imagine again the vibrations of a typical fluid particle. These 
transport a momentum of order -(mkT)1/2d& from neighbors below to neighbors 
above. This vibrational momentum flows through an area of order 62  at the Einstein 
frequency. The corresponding reduced shear viscosity coefficient is the same as the 



reduced conductivity: 

These scaling relations for viscosity and conductivity suggest defining reduced 
transport coefficients, multiplying q and K by (V/N)2/3 = d2 and dividing by T1/2, 
proportional to the thermal velocity. Thus logarithmic plots of the reduced viscosity 
and conductivity should both vary linearly with the excess entropy. Figure 11.14 shows 
that this rough approximation is an adequate semiquantitative description of transport 
in dense fluids. It does not work for gases, for which the vibrational description makes 
no sense so that the predicted transport coefficients are undefined. 

This same vibrational approach can also be applied to heat conduction in solids, 
but with considerable difficulty at low temperatures where the scattering length for 
sound waves exceeds the system size. At the lowest temperatures the scattering from 
crystal defects is the dominant mechanism for scattering. The scattering varies as the 
thermal cross section CS swept out by the atoms, which can be estimated from the 
vibrational spectrum, 

CS = n# = a(DkT/m)ca-b. 

In solids this same method has been used successfully to measure the thermal 
conductivity and to compare that conductivity with the predictions of a solid-phase free 
path theory based on phonon transport. 
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Figure 11.14. Corresponding states plot of reduced fluid-phase viscosity (left) and heat 
conductivity (right). The data span a wide range of computer simulations including 
plasmas, hard spheres, soft spheres, and the Lennard-Jones potential. The abscissa 
give the entropy relative to an ideal gas at the same density and temperature. 
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11.5 Shockwave Structure 
Strong fluid shockwaves contain particularly interesting far-from-equilibrium 

states. They occupy a small rapidly-moving transition region in space which links 
together two equilibrium states of matter. It is this link with equilibrium properties 
which makes shockwaves an important source of equation-of-state information under 
extreme conditions. Shockwaves link a relatively cold low-pressure region to a 
relatively hot high-pressure region. Figure 11.15 shows the structure of a typical sfrong 
shockwave, representing the compression of liquid argon from the triple point to a 
temperature of 12,000 kelvins at a pressure of nearly half a megabar. Figure 11.16 
illustrates three separate coordinate frames in which the shockwave can be observed. 
The spatial extent of the transition region, the “shock width” is small, typically of order 
the mean free path and here about equal to one atomic diameter; in the laboratorv 
frame the transition region moves at the “shock speed,” %, somewhat greater than the 
speed of sound. In the simpler comovinv frame the shock is fixed, cold material 
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Figure 11.15. Variation of density, 
pressure tensor, internal energy, 
and temperature for a steady strong 
Lennard-Jones shockwave starting 
near the triple point. The number 
density increases from No3/V = 
0.844 to 1.571; the pressure from 
I?$/& = 0 to 917; the internal energy 
from E/Ne = -5 to 246; and the 
temperature from kT/E = 0.722 to 
100. The corresponding final 
temperature for argon is about 
12,000 kelvins, a bit more than one 
electron volt. The full curves were 
calculated by solving the Navier- 
Stokes equations, using local values 
of the transport coefficients. The 
corresponding results from 
molecular dynamics are indicated 
by circles. 
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Figure 11.16. Shockwave motion 
seen in three coordinate frames: 
the Zaborafory frame, with piston 

- r  

speed up and shockwave speed u~ 
the stagnation frame, in which cold 
fluid moving at uD is brought to 
rest by a riad w<U; the shickwave n 
frame, fixed on the wave, in which 
cold fluid enters at speed us and 
exits at speed us - up. 

flowing toward the front from the right at speed us, and hot material exiting toward the 
left at speed us - up. 

Shockwaves are a typical feature of rapid compression processes. This is because 
sound velocity is typically an increasing function of density. Thus a pressure wave in 
which the density gradually increases tends to steepen as the denser hotter high- 
pressure portion of the wave overtakes the low-pressure portion. Only the presence of 
viscosity (and to a lesser extent, heat conductivity) prevents such a propagating one- 
dimensional wave from becoming infinitely steep. As the concentrating effect of 
nonlinearity causes the wave to become steeper, the longitudinal strain rate dux/dx 
increases in magnitude until the resulting viscous stress just offsets the concentrating 
effect of nonlinearity. When the two effects balance, a steady one-dimensional 
shockwave can result. At least locally a well-defined transition region between cold 
unshocked fluid and hot shocked fluid can be seen. 

Such a shockwave simultaneously displays longitudinal gradients in density, 
velocity, and energy. Both the pressure and the temperature are anisotropic, with 
P,, ;t Pyy and T, # Tw In strong shocks the longitudinal and transverse stresses and 
temperatures can differ by as much as a factor of two. Viscosity and conductivity act to 
smooth out these gradients. Because the problem is a one-dimensional steady one, it is 
relatively easy to solve the corresponding continuum hydrodynamic equations and to 
simulate the atomistic flow with molecular dynamics. If we consider the flow of mass, 
momentum, and energy in the coordinate system shown at the bottom of Figure 11.16 
as centered on the shockwave, then the mass, momentum, and energy fluxes are 
necessarily constant throughout the shockwave. W e  arbitrarily choose the x axis to 
parallel the direction of shock propagation and use the notation pu, for mass flux, 
P, + p 4  for the xx component of the momentum flux, and pu,[e + (Pxx/p) + (14/2)1+ 
Q, for the x component of the energy flux. The heat flux vector contribution, Q ,  is the 
conductive flow of heat over and above that carried by the motion of the fluid. When 
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these fluxes are evaluated in the cold material, which moves toward the shock front at 
speed us and hot material, which moves away from the shock front at speed (us - up) 
we obtain three equations linking together the thermodynamic properties of the cold 
and hot equilibrium states, the shock speed us, and the particle or piston speed up: 

1 

Notice that the longitudinal heat flux component Qx vanishes away from the shock 
front and that because the material is afluid the longitudinal and transverse pressure- 
tensor components P, and Pyy become equal to the equilibrium pressure, P(p,E), as the 
tensor becomes isotropic. By eliminating the two speeds from the three equations the 
Hugoniot relation for the work done in compression results: 

Iq 

’. 

Thus the strength of the shockwave can be described by specifying either of the two 
speeds us and up, or any of the variables idenwing the final thermodynamic state: PF, 
Vp EF. From the equation of state the rate at which a shockwave travels can then be 
calculated, just as we did for an ideal gas in Section 7 of Chapter 2. 

Shockwaves have been simulated, using molecular dynamics, in two different 
ways, both different from that suggested in Section 2.7. A transient method is indicated 
in Figure 11.17. It incorporates time-dependent boundary conditions. Imagine that the 
original x coordinates for all particles in the system lie in the range from -L(O)/2 to 
+L(O) / 2  

-L(O)/i c {XI c +L(0)/2. 

Then consider a molecular dynamics simulation in which the periodic images of all 
those particles, necessary for calculating the forces on particles near either end of the 
periodic box, are located as usual at x = kL, but with L(t) a decreasing function of time: 

L(t) = L(0) - tup ; 



Figure 11.17. Special boundary 
t- t 4 conditions which produce two 

symmetric shockwaves at each 
boundary linking the system to a 
periodic images. Shock velocities are 
shown at the top in the laboratory 
frame. Laboratory frame velocities 
are shown at the base. Hot shocked 
regions are shaded. 
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The effect of such a boundary condition is to compress the periodic system 
simultaneously from both sides, using “pistons” which are replicas of the system itself. 
Two similar shockwaves then move from the box boundaries at x = &L(t)/2 toward the 
center of the box at the “shock speed” us. The calculation is completed when the two 
shockwaves reach the center, at t = L(0)/(2uJ. During the period of steady propagation 
the binning of coordinates, velocities, and the fluxes in frames centered on the moving 
shockwaves generates a statistical description of the shockwave profile. In the binning 
process it is advisable to smooth the data over one bin width by distributing each 
particle’s contributions into two adjacent histogram bins with weights that change 
continuously in time and space. By further subdivision of the data in each spatial bin 
into local velocity bins it is quite possible to determine the deviation of the velocity 
distribution from the Maxwell-Boltzmann form. Figure 11.18 shows the variation of 
the fourth moment of the velocity distribution relative to the square of the second 
moment. All the data shown were generated with a 4800 particle simulation, initially 
made up by linking 150 periodic cubes containing 32 particles each. 

particles enter the problem at one boundary and leave at the opposite boundary, 
gaining or losing an additional thermal velocity component when crossing the 
boundary between a “skin” region, having a width equal to the range of the forces, and 
bulk material. Within the two skin regions the particles move at a steady speed. Both 
this approach and the transient method have been used successfully. 

The measured atomistic profiles can then be used to test the predictions of the 
Navier-Stokes equations, the solution of the flow equations for mass, momentum, and 
energy, making Newton’s and Fourier‘s constitutive assumptions as described in 
Chapter 7: 

An alternative to the transient simulation just described is a steady flow, in which 

P = (p.4 - hV.u)I -  VU +  VU^) ; Q = -KVT . 

, 

r 

To solve the conservation equations for the mass, momentum, and energy flux is a 
four-step process: 
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0 Figure 11.18. Deviation of the fourth 
velocity moment <vi> from the 
equilibrium value, 3<(vz)2>, in a 
dense-fluid shockwave profile. The 
abscissa spans a distance of 250. 

if-. 

0 

1. Start with the general conservation equations: pu, = A ; Pxx + puz = B ; 
pu,[(E/m) + (Pxx/p) + (uz/2)1+ Qx = C , where A, B, and C are constants satisfying the 
Hugoniot relations describing mass, momentum, and energy conservation, using the 
first of these equations to eliminate the variable ux in favor of p. 

2. Introduce the Newtonian and Fourier constitutive relations to obtain two 
coupled ordinary differential equations linear in dp/dx and dT/dx. 

3. Integrate the corresponding equation for dp/dT = [(dp/dx)/(dT/dx)] to find the 
thermodynamic states through the shockwave. 

4. Use the values of T(p) from Step 3 to integrate the profile equations from Step 2 
to find p(x) and T(x). 

m 

In order to carry out the calculation it is necessary to have an analytic or tabular 
equilibrium equation of state induding the dependence of the transport coefficients {h = 

r lV  - (2/D)q, q, K} on thermodynamic state. The Navier-Stokes calculation just 
outlined is numerically unstable if the integration begins in the cold state but 
converges easily if carried out from the hot state to the cold state. The thermodynamic 
profiles computed in this way are again compared to the corresponding molecular 
dynamics simulation in Figure 11.19. The good agreement between the Navier-Stokes 
linear-transport predictions and the dynamical simulation is amazing. The atomistic 
profiles shown were generated using the transient method to generate two symmetric 
shockwaves. Such a shock process is typical of what can be achieved experimentally 
with strong shockwaves. Shockwaves are a convenient way of measuring 
thermodynamic data under extreme conditions, at pressures too great for confinement 
in static experiments. In experimental shockwave research shockwaves are generated 
by using an energy source to drive a steady profile through a sufficiently long sample to 
reach and record steady-state conditions. Typically the two velocities us and up are 
measured. From these the hot-state density, pressure, and energy can all be calculated. 
Compressed gas, conventional explosives, and thermonuclear explosives have all been 
used as energy sources for the waves. 

the transport coefficients can be calculated by dividing the measured fluxes by the 
corresponding gradients. The measured viscosity and heat conductivity lie within 30% 
of their small-gradient values. Both transport coefficients are effectively somewhat 
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From the shockwave profiles generated during molecular dynamics simulations, 
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larger than the Navier-Stokes values. These increases reflect the disordered structure 
of the dense shocked fluid, which promotes more-rapid propagation of momentum 
and energy than the more-ordered equilibrium structure. Theoretical estimates of the 
effects of finite wavelength and frequency on transport coefficients typically predict 
reduced, rather than enhanced, values. 

11.6 Vibrational Relaxation 
Nonequilibrium molecular dynamics is by no means restricted to constitutive 

problems. It can be applied also to a variety of kinetic problems, both transient and 
steady. One of the most interesting, with potential applications to the study of chemical 
reaction rates in condensed matter as well as the interaction of laser radiation with 
matter is the determination of energy relaxation rates. 

1.6 Figure 11.19. The points shown are 
1.4 the measured molecular dynamics 

> shockwave profiles for the same 
shockwave shown in Figure 11.15. a. 1.2 

z 1.0 Here the Navier-Stokes results are 
0.8 shown dashed. The dynamic 

simulation and the Navier-Stokes 
approximation have exactly the same 
fluxes of mass, momentum, and 
energy. The difference in the slopes 
according to the two approaches is 
about 30% near the shockwave 
center, indicating that the effective 
transport coefficients are 30% larger 
than the small-gradient Newtonian 
and Fourier values. In the Navier- 
Stokes continuum calculations it is 
assumed that the fluid exhibits 
Newtonian viscosity and Fourier 
heat conduction. 
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Holian studied the vibrational relaxation of a realistic model of dense nitrogen, 
compressed to twice normal density. The thermodynamic state studied is typical of 
chemical detonations, with moderate compression and temperatures of a few thousand 
kelvins. By separating the energy of each molecule into translational, rotational, and 
vibrational parts, three separate temperatures can be defined for such a system: 

3NkT~/2 = Ern.* ; NkTR = (1/4)xmr*d ; NkTv = (1/4)%v*, 

where the notation indicates the division of the total kinetic energy into parts. The 
atomic mass, rotational frequency, and vibrational-mode velocity are respectively m, o, 
and v. In such a system under shockwave conditions energy flows first into the 
translational motion, then to the rotational motion, and finally, to the vibrational 
motion. This last step can be very slow because the vibrational force constant is 
considerably larger than the effective force constant governing a collision between 
molecules. 

Problem: 
Consider a linear chain of three identical unit masses joined together by two 
Hooke's-Law springs with force constants of 1 and 100. Solve the equations of 
motion and find the maximum potential energy transfer from the righthand 
spring to the lefthand spring. Take the initial state motionless, but with 
displacements +6, +6, and -26. Why is it that the potential energy initially 
stored in one spring is not eventually transferred to the other spring? 

A straightforward approach to the measurement of energy relaxation is to observe 
the three temperatures as functions of time and to fit the results to a set of linear 
relaxation equations: 

, C -  

In the case of vibrational relaxation the relaxation times zvT and z~~ are considerably 
longer than zRT so that the rotational and translational temperatures reach a common 
equilibrium long before the vibrational modes are excited. Thus a single relaxation 
relation results: 



where the relaxation is to the common temperature T which represents both 
translational and rotational modes. A difficulty with this approach is that the initial 
rate of change of the vibrational temperature depends fairly strongly on the exact (q,p,c} 
phase of the initial conditions, necessitating a large number of independent 
calculations. 

the virtual decay rate by measuring the friction coefficients required to maintain a fixed 
nonequilibrium steady-state temperature difference: 

Holian invented a simpler more-effective nonequilibrium method. He studied 

Holian maintained a tenfold difference between hot translational and rotational 
degrees of freedom at 4000 kelvins and cold vibrational degrees of freedom at 400 
kelvins. The measured rate of heat transfer required to maintain this temperature 
difference is a direct measure of the kinetic rate. 

The atomistic description of a dense fluid of diatomic nitrogen molecules was 
based on an interaction between nonbonded nitrogen atoms given by the exponential- 
six form: 

and with the interactions between the two atoms in each molecule described by a Morse 
vibrational potential function: 

Calculations were carried out in order to determine their sensitivity to the relaxation 
time z which determines the Nos&Hoover friction coefficient 5. For a wide range of 6 
values the rate constant was essentially unchanged, indicating a characteristic 
relaxation time of 11 nanoseconds. On the other hand, when instead Gauss’ Principle 
was used to keep the kinetic energy of the translational and rotational degrees of 
freedom consfanf, rather than allowing fluctuations, the result was a somewhat 
different, and apparently incorrect, relaxation time of about 13 nanoseconds. This is a 
second example of the failure of Gauss’ Principle of Least Constraint to provide correct 
answers to nonequilibrium problems. The first was discussed in Section 10.2. 

m 
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Figure 11.20. Motion of a 
comoving phase-space hypersphere 
centered on a trajectory. Satellite 
trajectory vectors (61, indicated by 
arrows, are constrained to remain 

following the motion. The required 
constraints yield the Lyapunov 
spectnun and can be imposed by 
using Lagrange multipliers. 

p orthonormal while otherwise 

0 

11.7 Lvauunov Suectra 
The analysis of nonequilibrium phase-space flows shows very clearly that 

Lyapunov instability is responsible for the irreversible behavior summarized by the 
Second Law of Thermodynamics. To follow the details of phase-space distortion it is 
necessary to follow more than a single phasespace trajectory. This can be done by 
following the motion of one or more neighboring “satellite” trajectories in the vicinity 
of an unperturbed “reference” trajectory. See Figure 11.20. 

space offset vector 6 = (6q,6p) from the reference trajectory. Provided that the equations 
of motion are sufficiently differentiable, the motion of the offset vector 6 describing the 
motion of the satellite trajectory relative to the reference trajectory can be linearized: 

Consider the unconstrained motion of a safelIife trajectory separated by a phase- 

.- 
In the case of a ”separable” Hamiltonian, H = Zp2/2m + (a(q), the equations simplify: 

In the typical Lyapunov-unstable case the satellite trajectory has a tendency to separate, 
exponentially fast, leading to an exponential growth of the separation vector 6 = (6q,6p). 
This growth can be prevented by using a Lagrange multiplier h(t), with the new 
equations of motion: 

64 = (1/m)6p - h6q ; 8p = (aF/aq)*6q - h6p ; 8 = D-6 - h6 ; 3L = 6**D*6/6L6. 

D is used here as an abbreviation for the matrix giving the equations of motion of the 
offset vector 6. This approach is not restricted to Hamiltonian systems. It can be 
applied generally, as suggested in the Figure. If, for instance, we consider the equations 
of motion of a thermostatted oscillator with mass, force constant, and thermostat 
relaxation time all set equal to unity: 

-. 



~ ~ ~ ~ - 1  lKI Figure 11.21. Equilibrium Lyapunov 
spectra for two- and three- 
dimensional dense fluids and solids 
determined by molecular dynamics 
simulation. The number of 
exponent pairs is twice the number 
of degrees of freedom. 

-4 
Degrees of freedom Degrees of freedom 

the vector 6 is (6q,6p,66), and the nonzero components of the 3x3 matrix D are as 
follows: 

The superscript t indicates the transposed vector. It is easy to verify that the dot product 
6f.6 is a constant of the constrained motion. Because the equation of motion for 6 is 
h e a r  in the offset vector 6 the time average of the required "force," 4 6 ,  must exactly 
balance the unconstrained divergence rate, +h16, where hl is the largest of the 
Ly apunov exponents: 

Again because the equations for the propagation of the offset vectors are linear, the 
Lyapunov spectrum is independent of the vectors' magnitude. The single-exponent 
process just outlined can be systematically extended to find the entire Lyapunov 
spectrum. In so doing, it is convenient to choose the vectors such that P-6 is equal to 
unity. If a third satellite trajectory is chosen close to the first two, but with an offset 
vector orthogonal to the vector linking them that required force is the second-largest 
Lyapunov exponent. By continuing this process the entire spectrum can be evaluated. 
Typical spectra are shown in Figure 11.21 for solids and fluids in two and three 
dimensions. The maximum Lyapunov exponent corresponds, roughly, to an effective 
collision rate. That in the fluid is greater than the solid collision rate because the fluid 
structure is more disordered. 

The interpretation of the Lyapunov exponents is simplified by the reversible 
nature of the equations of motion. Reversibility suggests that any phase-space direction 
associated with growth corresponds to decay in the time-reversed solution of the 
equations of motion and pice versa. At equilibrium the forward and reversed 
trajectories are equally likely so that this symmetry argument is correct. The 
equilibrium spectra show the predicted symmetry with pairs of positive and negative 
exponents with equal magnitudes. The shapes of the spectra are reminiscent of the 
crude Debye models discussed in Section 8 of Chapter 4 as approximations to solid- 
phase vibrational spectra. _ _ _  
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Figure 11.22. Hooke’s-Law 
pendulum. When released from the 
high-energy vertical position, the 
motion is chaotic. 

Problem: 
Consider the Hooke’s-Law pendulum shown in Figure 11.22, with mass 1 and 
spring constant 4, in a vertical gravitational field of unit strength, and with 
minimum spring potential energy at a length of unity. The Hamiltonian for 
this system is H(x,y,px,py) = $(r) + mgh + [p2/2ml = 2(r - 112 + y + (1/2)[p2, + py’] , 
where the pendulum length is r = (x2 + y2)1/2 and the y coordinate corresponds 
to the height h. Use the Lagrange-multiplier method to show that a reference 
trajectory with initial condition [x = 0.00001, y = 11 is chaotic, with a maximum 
Lyapunov exponent equal to 0.13. Use the Runge-Kutta method to integrate 
nine first-order differential equations, one for each member of the set 
(x,y,px,py,6x,Gy,6p,6py,I}, where 6 is an infinitesimal offset vector of constant 
length, linking a nearby satellite trajectory to the reference trajectory, and I is 
the integral of the instantaneous Lagrange multiplier with respect to time: 
<h>T = I(t)/z ;‘I E h(t). 

Exactly these same ideas can be applied to nonequilibrium systems. If the phase 
space is extended by the inclusion of friction coefficients or strain rates then the satellite 
vectors acquire extra components and the dynamical matrix D which propagates the 
vectors becomes more complicated. Corresponding determinations of Lyapunov 
spectra have been carried out for nonequilibrium flows of mass, momentum, and 
energy. Because the equations of motion are time-reversible, even in the 
nonequilibrium case, it might be thought that the Lyapunov spectrum would retain 
the symmetry seen in equilibrium simulations. But, just as is required by the Second 
Law of Thermodynamics, the shrinking of phase-space hypervolume in the 
nonequilibrium steady state is accurately mirrored by a shift of Lyapunov exponents to 
more negative values. See Figure 11.23. The shifted exponents can be used to estimate 

-. 



the fractal dimensionality of the nonequilibrium steady-state distribution function. 
The most extensive investigations have analyzed periodic mass-current simulations 
and shear viscosity simulations, both periodic and boundary-driven. There is a 
relation, discussed in the next Section, between the phase-space dimensionality of the 
nonequilibrium distribution function and the Lyapunov spectrum. In the problems 
just mentioned it was found that at relatively high fields the fractal dimensionality D1 
of the corresponding nonequilibrium phase-space flow could be reduced by about 10%. 

Results for boundary driven shear flows indicated relatively smaller losses of 
dimensionality. We can anticipate that more powerful computers and perhaps better 
methods for characterizing fractal geometry will enhance OUT knowledge of the 
multifractal objects which are the microscopic mechanical analogs of the macroscopic 
Second Law of Thermodynamics. 

12.8 Phase-Space Dimensionalitv Loss 

of Thermodynamics was discussed in Section 10.7. We established there that the 
phase-space distribution corresponding to a nonequilibrium steady state shrinks to 
occupy a zero-volume fractal object called a "strange attractor." The corresponding 
time-reversed repellor, which would violate the Second Law of Thermodynamics, is 
intrinsically unstable-repelling rather than attracting-but likewise has zero phase- 
space volume. We can now make this general nonequilibrium qualitative analysis 
quantitative by expressing the consequences of irreversible behavior in terms of the 
Lyapunov Spectrum discussed in the last Section. In any steady nonequilibrium 
situation we use driving forces, Gaussian constraint forces, Nos&Hoover 
thermostatting forces, or a combination of these to impose any required mechanical 
and thermal boundary conditions. In the Nos&Hoover case the dimensionality of the 
corresponding phase space is increased by the inclusion of these friction coefficients {c} 
or strain rates (k}. In such a case the satellite vectors {6} = {(6q,6p,6<,&)} describing the 
separations of pairs of phase-space trajectories acquire extra components and the 
dynamical matrix D which propagates the vectors becomes correspondingly more 
complicated. 

In every case, just as is required by the Second Law of Thermodynamics, the 

relentless shrinking of phase-space hypervolume in the nonequilibrium steady state is 
accurately mirrored by a shift of Lyapunov exponents away from zero, with the sum of 
each exponent pair shifting downward from zero. 

The quazitative mechanical basis of the irreversibility described by the Second Law 
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Figure 11.23. Comparison of 
equilibrium and nonequilibrium 
Lyapunov spectra for a 32-particle 
three-dimensional dense fluid, 
showing the nonequilibrium shift of 
the exponents to more negative 
values. An external field drives half 
the particles to the left and half to the 
right. The equilibrium phase-space 
dimensionality is 192. The 
dimensionality is reduced by about 16 
by a driving field of strength 3 e / ~ ,  
where E and 0 correspond to the well 

0 50 n depth and the collision diameter. 

Detailed calculations have been carried out for a variety of diffusive, viscous, and 
heat-conducting flows. Figure 11.23 shows the measured exponent pairs for a periodic 
three-dimensional dense fluid with half the particles driven to the right, and half to 
the left, by an external field. If we think about the geometric significance of the 
Lyapunov exponents we can easily estimate the dimensionality of the phasespace 
attractor occupied by the nonequilibrium steady-state distribution function. The largest 
exponent describes the growth rate of a one-dimensional line in phase space, the rate at 
which pairs of trajectories depart from one another: 

h 

The s u m  of the largest two exponents gives the divergence rate for a two-dimensional 
area in phase space: 

A = (2.1 + h2)A. 

^*_ 

The sum of the largest fhree exponents gives the divergence rate for a three- 
dimensional volume in phase space, and so on. For any chaotic system at least 2.1 must 
be positive. But, for a stable phasespace flow, the sum of all the Lyapunov exponents, 
Ch = -Zc = -S, must be negative, with the entropy production $ positive. There must 
therefore be a critical dimensionality beyond which the exponent sum becomes 
negative. Kaplan and Yorke suggested that this critical dimension DKY of a phase-space 
object which neither grows nor shrinks with time be identified with the "information 
dimension" of the corresponding attractor. Any phase-space object with a larger 
dimensionality would have to shrink with time and could therefore not represent the 
s teady-state distribution function. Any phase-space object with a smaller 
dimensionality would have to expand with time and could likewise not represent a 

steady state. 
, 

\ 



Problems: 
1. Consider a cubic centimeter of liquid water sheared at a strain rate of 1 hertz. 

Assume a Lyapunov-exponent distribution: prob(h) = h1/3, and estimate the 
loss of dimensionality of the corresponding phasespace strange attractor. 

dimensionality loss AD for a dilufe-gas N-particle system is of order AD/N = 
(h/c)2(Vu)2 for a steady shear flow or (h/T)2(VT)2, for a steady heat flow, where 
here h is the mean free path, not a Lyapunov exponent. 

dimensionality loss AD for a dense-fluid N-particle system is of order AD/N = 

(o/c)2(Vu)2 for a steady shear flow or (o/T)2@")2, for a steady heat flow, where 
Q is the "collision diameter," approximately equal to the nearest-neighbor 
spacing in the fluid. 

2. Show that, for small departures from equilibrium, the phase-space 

3. Show that, for small departures from equilibrium, the phase-space 

Numerical work shows that at relatively high fields the fractal dimensionality 
DKY = D1 of homogeneously-driven nonequilibrium phase-space flows can easily be 
reduced from the equilibrium dimensionality by 10%. See again Figure 11.23 for an 
example. Geometric symmetry typically implies that the fractal dimension must be an 
even function of the driving field, equal for positive or negative fields of the same 
magnitude. The numerical simulations verified this expectation and showed that the 
low-field reduction in dimensionality was quadratic in field strength. Very similar 
results have been found for the dependence of other fractal dimensions for simple one- 
or two-particle systems. The finding that nonequilibrium phase-space distributions are 
fractal, with zero (hyper)volume relative to the equilibrium phase space provides a 
geometric interpretation of the Second Law of Thermodynamics: phase-space states 
violating the Second Law cannot be obserued because first, their measure is zero in the 
equilibrium phase space, and second, the phase space region occupied by such states is 
rnechanicaIZy unstable, repelling nearby trajectories. 

11.9 Summarv and References 
Nonequilibrium flow simulations agree well with experimental data in the linear 

range. Simulations of viscosity and thermal conductivity are currently accurate within 
about a percent. The resulting viscosities and conductivities follow rough 
corresponding-states relations analogous to van der Waals' equilibrium equation of 
state. Strong shockwaves provide an opportunity to study nonlinear transport free of 
boundary influences. The nonequilibrium simulations can also be applied to energy- 
transfer problems in vibrational relaxation. The ideas underlying constrained 
dynamics make it possible to characterize both few-body and many-body phase-space 
flows of equilibrium and nonequilibrium systems through the corresponding 
Lyapunov spectra and to quantify the fractal nature of the Lyapunov-unstable phase- 
space distributions underlying the macroscopic Second Law of Thermodynamics. 



-“- 

I”% 

,a 

Applications of Nonequilibrium Molecular Dynamics can be found in profusion in the 
Physical Review, The Journal of Chemical Physics, Molecular Physics, and the Journal of 
Statistical Physics. For a fairly recent summary see also the Proceedings of the Enrico Fermi 
Summer School Course 97, “Molecular-Dynamics Simulation of Statistical-Mechanical 
Systems” (North-Holland, Amsterdam, 1986) mentioned in Chapter 5. Examples with some 
historical interest include ”Shear Viscosity of the Lennard-Jones Fluid Near the Triple Point: 
Green-Kubo Results,” by J. J. Erpenbeck, Physical Review A 38,6255 (1988) and ”On the 
Number Dependence of Viscosity in Three Dimensional Fluids,” by D. J. Evans, G. P. Morriss, 
and L. M. Hood, Molecular Physics 68,637 (1989). See “Shockwave Structure via 
Nonequilibrium Molecular Dynamics and Navier-Stokes Continuum Mechanics,” by B. L. 
Holian, W. G. Hoover, B. Moran, and G. K. Straub, Physical Review A 22,2798 (1980) and 
“Lennard-Jones Triple-Point Bulk and Shear Viscosities. Green-Kubo Theory, Hamiltonian 
Mechanics, and Nonequilibrium Molecular Dynamics,” W. G. Hoover, D. J. Evans, R B. 
Hickman, A. J. C. Ladd, W. T. Ashurst, and B. Moran, Physical Review A 22,1690 (1980). The 
simple few-body viscosity model is described in “Lorentz Gas Shear Viscosity via 
Nonequilibrium Molecular Dynamics and Boltzmann’s Equation,” by A. J. C. Ladd and W. G. 
Hoover, Journal of Statistical Physics 38,973 (1985). For descriptions of the homogeneous heat- 
flow method see M. J. Gillan and M. Dixon, ”Calculation of Thermal Conductivities by 
Perturbed Molecular Dynamics Simulations,” Journal of Physics C 16,869 (1983) and D. J. Evans, 
”Homogeneous Algorithm for Thermal Conductivity,” Physics Letters A 91,458 (19821, as well 
as W. G. Hoover, B. Moran, and J. M. Haile, ”Homogeneous Periodic Heat Flow via 
Nonequilibrium Molecular Dynamics,” Journal of Statistical Physics 37,109 (1984) and 
”Corresponding States for Thermal Conductivities via Nonequilibrium Molecular Dynamics,” 
R. Grover, W. G. Hoover, and B. Moran, Journal of Chemical Physics 83,1255 (1985). 

References dealing with nonequilibrium relaxation are “Simulations of Vibrational 
Relaxation in Dense Molecular Fluids,” B. L. Holian, Journal of Chemical Physics 84,3138 (1986) 
and S. Baratham, I. L’Heureux, and R. Kapral, ”Reactive Dynamics in a Deterministic Heat 
Bath,” Journal of Chemical Physics 91,5602(1989). 

The standard method for determination of Lyapunov exponents, due to G. Benettin, L. 
Galgani, and J. M. Strelcyn, has been improved. See H. A. Posch and W. G. Hoover, “L,yapunov 
Instability of Dense Lennard-Jones Fluids,” Physical Review A 38,473 (1988) for instance. See 
also H. A. Posch, W. G. Hoover, and B. L. Holian, “TimeReversibie Molecular Motion and 
Macroscopic Irreversibility,” Berichte der Bunsengesellschaft fuer Physikalische Chemie 94,250 
(1990). 



12. Summarv 

The conceptual basis of macroscopic thermodynamics and microscopic statistical 
mechanics is the ideal gas. This simple model makes it possible to give quantitative 
definitions of pressure and temperature, to calculate the classical and quantum 
partition functions, and to link these two approaches through Bohr's Correspondence 
Principle. The simplicity of the macroscopic thermodynamic states described by the 
First, Second, and Third Laws of Thermodynamics, with one mechanical and one 
thermal variable specifying the thermodynamic state, corresponds microscopically to 
phase-space mixing, with all accessible regions of phase space equally likely to be 
occupied. The dissipation described by the Second Law of Thermodynamics, with work 
necessarily converted to heat, corresponds microscopically to Lyapunov instability. The 
Third Law of Thermodynamics affirms that statistical calculations are consistent with 
experience. 

interaction models to macroscopic properties. Gibbs showed that equilibrium 
properties can be worked out as phase-space averages rather than as time averages. 
Except in problems involving quantum effects, such as the ideal-gas reactions which 
require spectroscopic information, it is hardly more complicated to work out the time 
averages using molecular dynamics than it is to work out the corresponding phase 
averages using a Monte Carlo method. On the other hand, over the past 15 years 
perturbation theory has been improved to the point that equilibrium properties can 
often be calculated relatively easily without the need for either time averages or phase- 
space sampling. 

theory, that computational statistical mechanics has the most to offer. By using Nos& 
Hoover thermostats to define the temperature of nonequilibrium sys tems, the 
mechanical basis of the Second Law of Thermodynamics has been identified. The 
equations of motion show directly that for any cyclic microscopic process the summed 
reservoir heat-flow contributions satisfy an inequality equivalent to the Second Law: 

Computational statistical mechanics is a powerful tool for relating microscopic 

It is in dealing with nonequilibrium problems for which there is still no useful 

This remarkable link between microscopic mechanics and thermodynamics makes it 
possible to analyze the phase-space description of nonequilibrium systems. Interesting 
far-from-equilibrium simulations can be carried out. At the state of the art today, 
simulations with billions of degrees of freedom are feasible and simulations with 
millions of degrees of freedom are well within the research budgets of colleges and 
universities. 

effort and some good ideas makes the imaginative analysis of nonequilibrium 
The lack of an operational predictive nonequilibrium theory, despite tremendous 

, 
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simulations a promising subject for research work. The influence of nonlinear 
dynamical systems study on statistical mechanics has already led to closer ties between 
the equilibrium formulation of Gibbs and Boltzmann and computer simulation. It is 

, 

possible that a nonlinear theory may emerge to remove the present need for 
simulating each special case. But the prevalence of chaos in these Lyapunov-unstable 
problems guarantees that the information in a long-time solution exceeds the 
information we might provide. The nonlinearity of the same problems suggests that 
general principles will be ineffective, so that the need for computer simulation will not 
diminish. On the contrary. 

are as simple as possible. As computer power expands it is increasingly necessary to 
apply Occam’s Razor, looking for the simplest possible special cases that illustrate 
general principles rather than using more complex models. Experiments are beginning 
to record atomistic features, usually on a relatively long time scale and unfortunately 

with the fundamentals of simulation under control, there is promise of contributing to 

I am convinced that the most rapid progress can be made if the problems studied 

\ with the underlying forces largely unknown. But the new observations suggest that 
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real problems using massively-parallel computing. 

References: 
”The Teraflop Supercomputer,” G. Fox, Computers in Physics, 112 (January-February, 1990). 

For a recent million-a tom simulation see “LargeScale Elastic-Plastic Indentation Simulations 
via Nonequilibrium Molecular Dynamics,” W. G. Hoover, A. J. De Groot, C. G. Hoover, I. 
Stowers, T. Kawai, B. L. Holian, T. Boku, S. Ihara, and J. Belak, Physical Review A (December, 
1990). 



13. Useful Information 

Tolman's book provides a perceptive approximation to x: = 3.14159265358979: 
("Yes, I want a drink, alcoholic of course, after the heavy sessions involving quantum 
mechanics.") 

Age of the Universe: 3 x 1017 seconds 
Avogadro's Number: 6.02 x 1023 
Boltzmann's Constant: 1.38 x 10-23 joules/kelvin 
Bulk Moduli: 6 Mbar (Diamond); 0.4 Mbar (Lead) 
Bulk Sound Speed: 0.34 km/sec (Air); 1.5 km/sec (Water) 
Debye Temperatures: 1900 K (Diamond) 420 K (Iron); 90 K (Lead) 
Density: 19 gm/cm3 (Gold); 2.7 gm/cm3 (Aluminum) 

Earth's Gravitational Field: 9.8 meters/secz 
Electronic Charge: 4.8 x 10-10 esu 
Electronic Mass: 9.1 x 10-28 gm 
Longitudinal Sound Velocities: 6 km/sec (Iron); 2 kmlsec (Lead) 
Pachinko Ball Mass: 5.45 gm 
Planck's Constant: 6.626 x 10-34 jouleseconds 
Proton Mass: 1.7 x 10-24 gm 
Speed of Light: 3.0 x 1010 cmlsec 
Thermal Conductivity (Room-Temperature): 1 cal/cmsecK (Silver) 
Viscosity: 0.00018 poise (Air); 0.02 poise (Water) 
Yen Coin Mass: 1.000 gram 
Yen Coin Radius: 1.000 an 

~ a r t h  MSS:  6.0 x 1027 grams 

R = Nk = 83cm3atm/moleK = 2.0 cal/moleK 
"Electron Volt" = 11,400 K 
Waff = Joule/sec = lo7 erg/sec 

Stirling's Approximation: N! = (2nN)*/2(N/e)Nexpl 1 /12N) 
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Atomistic forces 
embedded-atom, 140 
Lennard- Jones, 137 
Lennard-Jones spline, 151 
soft spheres, 136 

Boltzmann’s equation, 235 
Brillouin zone, 109 
Bulk modulus, 187 
Bulk viscosity, 193 
Canonical ensemble 

derivation, 73 
heat capacity, 77 

Carnot cycle, 45 
Central limit theorem, 36 
Chemical potential, 167 
Chemical reactions, 115 
Constraints 

holonomic, 20 
nonholonomic, 21 

Compressibility factor, 57 
Continuity equation, 184 
Correlation dimension, 288 
Correspondence principle, 67,95 
Corresponding states, 172,292 
Couette flow, 201 
Courant condition, 220 
Critical point, 58 
Critical temperature, 58 
Crystal vacancies, 179 
Cubane, 98 
Cyclopropane, 98 
Degenerate states, 76 
Degrees of freedom, 2 
Diffusion equation, 9 
Distinguishability, 95,115 
Double pendulum, 17 
Einstein model, 110 
Elastic constants 

notation, 139 
adiabatic and isothermal, 178 

Elastic equations, 195 
Electronic heat capacity, 120 
Energy equation, 197 
Enskog transport model, 249 
Enthalpy, 60 
Entropy 

-? definition, 47,50 

ideal gas, 94 
production, 290 
Sackuer-Tetrode formula, 94 

Equation of motion, 191 
Equation of state 

elastic solids, 178 
ideal gas, 38 
many parameter, 177 
one parameter, 171 
Newtonian viscous fluid, 193 
two parameter, 176 
vanderWaals, 56 

Equilibrium constant, 116 
Equipartition theorem, 92 
Ergodic theory, 133 
Eulerian and Lagrangian coordinates, 183 
Eder’s equations of motion, 99 
Feedback 

differential (Gauss), 32 
integral (Nos&Hoover), 32,85 

First law of thermodynamics, 42 
Fick’s laws, 222,244 
Fourier‘s law, 196,222 
Fractals 

correlation dimension, 288 
definition, 266 
information dimension, 305 

Free path distribution, 229 
Free-path transport theory, 232 
Galton board, 258,278 
Gaussian integrals, 104 
Gauss‘ principle, 21 
Gibbs’ free energy, 61 
Global error, 11 
Grand canonical ensemble, 86,117,120 
Green-Kubo theory, 250,259 
H theorem, 238 
Hamiltonian mechanics, 24 
Hard disk thermodynamics, 161 
Hard sphere collision rate, 225 
Hard sphere thermodynamics, 169,174 
Harmonic chain, 103 
Harmonic oscillator, 67, 100 
Heat capacity 

electrons in metals, 120 
fluctuation formula, 77 
oscillator, 102 
phonons and photons, 119 

Heat flux, 142,288 
Heat reservoirs, 40,75,261 
Heat theorem, 141 



Helmholtz’ free energy, 60 
Hugoniot relations, 55 
Hypersphere volume, 70 
Hydrodynamics, 181,200 
Ideal gas temperature, 29 
Impact parameter, 231 
Integration errors, 11 
Irreversibility, 239,269 
Joule-Thomson experiment, 52 
Kawasaki relation, 283 
Kepler’s laws, 4 
Kinematic viscosity, 202,209 
Kinetic theory, 222 
Kolmogorov length, 209 
Krook-Boltzmann equation, 243 
Lagrange multipliers 

canonical ensemble, 73 
Gauss‘ principle, 22 
Lagrangian constraints, 20,32 

Lagrangian mechanics, 16 
Lam6 constants, 195 
Least action principle, 19 
Lennard-Jones spline potential, 151 
Lennard- Jones thermodynamics, 127,176 
Lennard-Jones transport properties, 284 
Lindemann’s melting model, 173, 175 
Liouville’s theorem, 26, 262 
Local error, 11 
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Rayleigh waves, 109 
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Runge-Kutta integration, 10 
Satellite trajectories, 301 
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Schroedinger’s equation, 67 
Second law of thermodynamics 
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Shear modulus, 187 
Shear viscosity, 193,280 
Shockwave compression, 53 
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thermodynamic, 58 
trajectory, 6 

Star graphs, 123 
Stoermer Hamiltonian, 25 

Stoermer integration, 10 
Stoermer computer program, 13 
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Heat conductivity, 222,251,292 

Transverse wave, 108 
Triple point, 166 
Turbulence, 208 
van der Waals‘ equation, 56 
van der Waals loop for hard disks, 161 
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Vibrational temperature, 96 
Virial series approximation, 125 
Virial theorem, 5, 140 
Wave function symmetry, 95 
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Zero point energy, 102 
Zeroth law of thermodynamics, 41 



William Graham Hoover was born in Boston on 18 April 1936. With a 1958 
AB from Oberlii College, he completed his doctoral studies with Andrew De ROCCO 
in Physical Chemistry at the University of Michigan in 1961. After a year of 
postdoctoral work with Jacques Poirier, at Duke University, he became a staff 
physicist at the Lawrence Radiation Laboratory in Livermore, California. Since 1972 
he has held a joint appointment in the Department of Applied Science, University of 
California at Davis, while carrying out sabbatical research at the Australian National 
University (1977-1978), the University of Vienna (19841, and Keio University (1989- 
1990). Professor Hoover has climbed more than 250 separate peaks in California's 
Sierra Nevada. He has published about 150 research papers, including the 
monograph Molecular Dvnamics, published by Springer Verlag. He lives with his 
wife and former student, Carol Griswold Hoover, on a ranch in Stanislaus County, 
California. His daughter, Frances Hoover Waid, works for the Sierra Club in 
Oakland, California; his son, Nathan Edgar Hoover, works for Teradyne in Tokyo. 
The photograph of the Hoovers was taken on the summit of Mount Langley in July 

-. 
, /  

of 1990. 




