Dongqing Zhu

What is chunking

Why chunking

How to do chunking

An example: chunking a Wikipedia page
Some suggestion

Useful links

recovering phrases constructed by the part-
of-speech tags

= finding base noun phrases (focus of this tutorial)

= finding verb groups, etc.

W e
PRP

S a w
VBD

[t]h
DT

e

viell|lllolw

J]

d ol g
NN

NP

e

NP

e

Information Extraction

keywords extraction
entity recognition
relation extraction
other applicable areas

Whatis an NP chunk

= base NP

= an individual noun phrase that contains no other
NP-chunks

Examples:

= 1. We saw the yellow dog. (2 NP chunks, underlined text)

= 2. The market for system-management software for
Digital's hardware is fragmented enough that a giant such as
Computer Associates should do well there. (5 NP chunks)

Trees

W e S| a|w t h e vie l|ll ow d og
PRP VBD DT J] NN
NP NP

S
Tags

o

= |OB tags (I-inside, O-outside, B-begin)
= label O for tokens outside a chunk

W e

PRP
B-NP

5 a w

VED
0

t h e

DT
B-NP

vy e l 1 ow

3
I-NP

d o g

NN
I-NP

2

TREE File format:
(S
(NP the/DT
little/JJ yellow/J)
dog/NN)
barked/VBD
at/IN
(NP the/DT
cat/NN))

IOB File format:

he RPR B-NP
Accepted VBD B-VP
The DT B-NP
Position NN [-NP

Two approaches will be covered in this tutorial

= approach one: chunking with regular expression
= approach two: train a chunk parser

Use POS tagging as the basis for extracting
higher-level structure, i.e, phrases

Key step: define tag patterns for deriving
chunks

= atag pattern is a sequence of part-of-speech tags
delimited using angle brackets

= example: <DT>?<JJ>*<NN> defines a common NP
pattern, i.e., an optional determiner (DT) followed by any
number of adjectives (JJ) and then a noun (NN)

Define tag patterns to find NP chunks

Python code (remember to install and import nltk)

sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), ("dog", "NN"), ("barked",
"VBD"), ("at", "IN"), ("the", "DT"), ("cat", "NN")] # a simple sentence with POS tags
pattern = "NP: {<DT>?<JJ>*<NN>}" # define a tag pattern of an NP chunk
NPChunker = nltk.RegexpParser(pattern) # create a chunk parser

result = NPChunker . parse(sentence) # parse the example sentence
print result 5 # or draw graphically using result.draw() \

(S / S’

(NP the/DT little/JJ yellow/JJ dog/NN) NP VBD IN NP

barked/VBD IS aalh o S 1 '; ® i
t/| N DT J‘J JJ NN barked at DT NN

a \ ‘ l | | ‘

(NP the/DT cat/NN)) the ittle vellow jog e o

More tags patterns/rules for NP chunks

= determiner/possessive, adjectives and noun:
{<DT|PP\$>?<JJ>*<NN>}

= sequences of proper nouns: {<NNP>+}

= consecutive nouns: {<KNN>+}

define several tag patterns, used in the way as previous slide
patterns = """
NP: {<DT|PP\$>?<JJ>*<NN>}
{<NNP>+}
{<NN>+}

[LELANY

NPChunker = nltk.RegexpParser(patterns) # create a chunk parser

Obtain tag patterns from corpus

Data from CoNLL 2000 Corpus (see next slide for how to load this corpus)
(NP UAL/NNP Corp./NNP stock/NN) # e.g. define {<NNP>+<NN>} to capture
this pattern

(NP more/JJR borrowers/NNS)

(NP the/DT fact/NN)

(NP expected/VBN mortgage/NN servicing/NN fees/NNS)

(NP a/DT $/$ 7.6/CD million/CD reduction/NN)

(NP other/JJ matters/NNS)

(NP general/JJ and/CC administrative/JJ expenses/NNS)

(NP a/DT special/JJ charge/NN)

(NP the/DT increased/VBN reserve/NN)

Note that by adding more rules/tag patterns, you may achieve high recall but the
precision will usually go down.

Use CoNLL 2000 Corpus for training

= CoNLL 2000 corpus contains 270k words of WS
text

= divided into training and testing portions
= POS tags, chunk tags available in IOB format

get training and testing data

from nltk.corpus import conll2000

test_sents = conll2ooo.chunked_sents('test.txt', chunk_types=['NP'])
train_sents = conll2o0o.chunked_sents('train.txt', chunk_types=['NP'])

training the chunker, ChunkParser is a class defined in the next slide
NPChunker = ChunkParser(train_sents)

Training a chunk parser in NLTK

Define ChunkerParser Class

= to learn tag patterns for NP chunks

class ChunkParser(nltk.ChunkParserl):
def __init__(self, train_sents):
train_data = [[(t,c) for w,t,c in nltk.chunk.tree2conlltags(sent)]
for sent in train_sents]
self.tagger = nltk.TrigramTagger(train_data)

def parse(self, sentence):
pos_tags = [pos for (word, pos) in sentence]
tagged_pos_tags = self.tagger.tag(pos_tags)
chunktags = [chunktag for (pos, chunktag) in tagged_pos_tags]
conlltags = [(word, pos, chunktag) for ((word, pos),chunktag)
in zip(sentence, chunktags)]
return nltk.chunk.conlltags2tree(conlltags)

ting a chunk p

Evaluate the trained chunk parser

>>> print NPChunker.evaluate(test_sents)

#10B Accuracy: 93.3%
ChunkParse score:

Precision: 82.5%
Recall: 86.8%
F-Measure: 84.6%

the chunker got decent results and is ready to use
Note: I0OB Accuracy corresponds to the 10B file format described in slide
‘Representation of chunk structures’

Approach One

= Pros: more control over what kind of tag patterns
you want to match

= Cons: difficult to come up with a set of rules to
capture all base NP chunks and still keep a high
precision

Approach Two
= Pros: high P/R for extracting all NP chunks

= Cons: possibly need more post-processing to filter
unwanted words

Chunking a Wikipedia page

a Wikipedia page

POS tagging tokenization

Plain text
file

sentence
segmentation

keywords a list of

SERETA extraction keywords

plain text

WG LCIENEL IS BoilerPipe APl o S file

L = B)

: keywords

Python code for segmentation, POS tagging and tokenization

import nltk

rawtext = open(plain_text_file).read()

sentences = nltk.sent_tokenize(rawtext) # NLTK default sentence segmenter
sentences = [nltk.word_tokenize(sent) for sent in sentences] # NLTK word tokenizer
sentences = [nltk.pos_tag(sent) for sent in sentences] # NLTK POS tagger

plain text
file

Wikipedia page) B 216]] (171NN

sentence
segmentation

keywords
for sent in sentences:

TO DO LIST (already covered in a few slides ahead):

1. create a chunk parser by defining patterns of NP chunks or using the trained one
2. parse every sentence

3. store NP chunks

POS tagging tokenization

plain text

Wikipedia page) H21671 SIFRIT VAV file

sentence

POS tagqgin izati
gging tokenization S

chunking J—w keywords

extract the keywords based on frequency

A little help

a tree traversal function for extracting NP chunks in the parsed tree

def traverse(t):
try:
t.node
except AttributeError:
return
else:
if t.node =='NP"': print t # or do something else
else:
for child in t:
traverse(child)

Tag patterns used for this example: 1. {<NN>+}

2. {<JJ>*<NN>} 3. {<NNP>+}

Top unigram NP
chunks

(freq, term) pairs:

(118, 'iphone’)
(55, ‘apple’)

(19, 'screen’)
(18, 'software')
(16, 'update’)
(16, 'phone)

(13, 'application’)
(22, 'user')

(12, 'itunes')

(11, 'june’)

(10, 'trademark’)

Top bigram NP chunks

(6, 'app store')

(4, 'ipod touch")

(3, 'virtual keyboard')
(3, 'united kingdom")
(3, 'steve jobs')

(3, 'ocean telecom’)
(3, 'mac os x')

Top NP chunks containing >2 terms

(3, 'mac os x')

(1, 'real-time geographic location’)

(1, 'apple-approved cryptographic signature’)
(1, 'free push-email service')

(1, 'computerized global information’)

(1, 'apple ceo steve jobs')

(3, 'direct internal camera-to-e-mail picture')

Guess what the
title of this
Wikipedia page.is?

WIKIPEDIA

The Free lopedia

Main page
Contents.
Featured content
Current evenis
Fandom article

Donate to Wikipedia

~ Imteraction
Help
About Wikipedia
Community portal
Recent changes

Contact Wikipedia
» Toolbox
b Printfexport

* Langusages
Benapycsan
(TapawkeslE])
Brezhwoneg
Ewnrapckm
Catald
Cesky
Cymraeg
Dansk
Deutsch
Eesti
EMAmaxa
Espariol
Esperanto
Euskara

Frangais

Gasilge

Galego

Article

Discussion

iPhone

From Wikipedis, the free encyclopedia

The iPhone (pronounced Mamfoun

Amn iPhone can function as a video camera, a camera phone with text messaging and visusl woicemail, a portable media player. and an Inten

than a physical one. Third-party as well as Apple application software is available from the App Store, which launched in mid-2002 and now

Thiz article iz abouf the line of emariphones designed by Apple inc. For ofher vzes, see iFPhone (dizembigusfion).

%

shows, films. and celebrities.

There are four generations of iPhone models, and they were accompanied by four major releases of i0S (formerly iPhone OE). The original
capabilities and A-GPS location. The iPhone 3GE added a compass, faster processor, and higher resolution camera, including video. The iP
2011, when a CDMA version of the iFhone 4 launched for Verizon.

Contents [hids]

1 History and awailability

2 Hardware

2.1 Screen and input

2.2 Audio and output

2.2 Battery

2.4 Camera

2.5 Storage and SIM

2.6 Liguid contact indicators

2.7 Included items.

2 Model comparison
4 Software

@ o

4.1 Interface

4.2 Phone

4.2 Multimedia

4.4 Imtemeat connectivity

4.5 Text input

4.6 E-mail and text messages
4.T Third-party applications
4.8 Accessibility

ntellectual property

Resirictions

6.1 Activation

6.2 Unapproved third-party software and jailbreaking

6.2 SIM unlocking
6.2.1 United States

A 2T Imiberd W

This article may be too long to read and navigate comfortably. Please consider split

EVE-fizfin) is & line of Internaet and multimedis-enabled smartphones designed and marketed by Apple Inc.

If using approach one, define a few good tag patterns to
only extract things you're interested

= e.g.do notinclude determiners
= define tag patterns for n-gram (n<4)

If using approach two, do some post-processing
= drop long NP phrases

Try to form a tag cloud by just taking frequent bigram
and trigram NP chunks, and use PMI or TF/IDF
information to prune a bit, and then add some unigrams
(remember you are only allowed to have no more than 15
tags)

Chapters from book Natural Language
Processing with Python

LingPipe does chunking in a very similar way

http://nltk.googlecode.com/svn/trunk/doc/book/ch05.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch05.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch07.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch07.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch07.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html

