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What is chunking

Why chunking

How to do chunking

An example: chunking a Wikipedia page
Some suggestion

Useful links




recovering phrases constructed by the part-
of-speech tags

= finding base noun phrases (focus of this tutorial)

= finding verb groups, etc.
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Information Extraction

keywords extraction
entity recognition
relation extraction
other applicable areas



Whatis an NP chunk

= base NP

= an individual noun phrase that contains no other
NP-chunks

Examples:

= 1. We saw the yellow dog. (2 NP chunks, underlined text)

= 2. The market for system-management software for
Digital's hardware is fragmented enough that a giant such as
Computer Associates should do well there. (5 NP chunks)




Trees
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= |OB tags ( I-inside, O-outside, B-begin)
= label O for tokens outside a chunk
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Two approaches will be covered in this tutorial

= approach one: chunking with regular expression
= approach two: train a chunk parser



Use POS tagging as the basis for extracting
higher-level structure, i.e, phrases

Key step: define tag patterns for deriving
chunks

= atag pattern is a sequence of part-of-speech tags
delimited using angle brackets

= example: <DT>?<JJ>*<NN> defines a common NP
pattern, i.e., an optional determiner (DT) followed by any
number of adjectives (JJ) and then a noun (NN)



Define tag patterns to find NP chunks

# Python code (remember to install and import nltk)

sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), ("dog", "NN"), ("barked",
"VBD"), ("at", "IN"), ("the", "DT"), ("cat", "NN")] # a simple sentence with POS tags
pattern = "NP: {<DT>?<JJ>*<NN>}" # define a tag pattern of an NP chunk
NPChunker = nltk.RegexpParser(pattern) # create a chunk parser

result = NPChunker . parse(sentence) # parse the example sentence
print result 5 # or draw graphically using result.draw() \
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More tags patterns/rules for NP chunks

= determiner/possessive, adjectives and noun:
{<DT|PP\$>?<JJ>*<NN>}

= sequences of proper nouns: {<NNP>+}

= consecutive nouns: {<KNN>+}

# define several tag patterns, used in the way as previous slide
patterns = """
NP: {<DT|PP\$>?<JJ>*<NN>}
{<NNP>+}
{<NN>+}

[LELANY

NPChunker = nltk.RegexpParser(patterns) # create a chunk parser




Obtain tag patterns from corpus

Data from CoNLL 2000 Corpus (see next slide for how to load this corpus)
(NP UAL/NNP Corp./NNP stock/NN) # e.g. define {<NNP>+<NN>} to capture
this pattern

(NP more/JJR borrowers/NNS)

(NP the/DT fact/NN)

(NP expected/VBN mortgage/NN servicing/NN fees/NNS)

(NP a/DT $/$ 7.6/CD million/CD reduction/NN)

(NP other/JJ matters/NNS)

(NP general/JJ and/CC administrative/JJ expenses/NNS)

(NP a/DT special/JJ charge/NN)

(NP the/DT increased/VBN reserve/NN)

Note that by adding more rules/tag patterns, you may achieve high recall but the
precision will usually go down.




Use CoNLL 2000 Corpus for training

= CoNLL 2000 corpus contains 270k words of WS
text

= divided into training and testing portions
= POS tags, chunk tags available in IOB format

# get training and testing data

from nltk.corpus import conll2000

test_sents = conll2ooo.chunked_sents('test.txt', chunk_types=['NP'])
train_sents = conll2o0o.chunked_sents('train.txt', chunk_types=['NP'])

# training the chunker, ChunkParser is a class defined in the next slide
NPChunker = ChunkParser(train_sents)




Training a chunk parser in NLTK

Define ChunkerParser Class

= to learn tag patterns for NP chunks

class ChunkParser(nltk.ChunkParserl):
def __init__(self, train_sents):
train_data = [[(t,c) for w,t,c in nltk.chunk.tree2conlltags(sent)]
for sent in train_sents]
self.tagger = nltk.TrigramTagger(train_data)

def parse(self, sentence):
pos_tags = [pos for (word, pos) in sentence]
tagged_pos_tags = self.tagger.tag(pos_tags)
chunktags = [chunktag for (pos, chunktag) in tagged_pos_tags]
conlltags = [(word, pos, chunktag) for ((word, pos),chunktag)
in zip(sentence, chunktags)]
return nltk.chunk.conlltags2tree(conlltags)




ting a chunk p

Evaluate the trained chunk parser

>>> print NPChunker.evaluate(test_sents)

#10B Accuracy: 93.3%
ChunkParse score:

Precision: 82.5%
Recall: 86.8%
F-Measure: 84.6%

# the chunker got decent results and is ready to use
# Note: I0OB Accuracy corresponds to the 10B file format described in slide
‘Representation of chunk structures’




Approach One

= Pros: more control over what kind of tag patterns
you want to match

= Cons: difficult to come up with a set of rules to
capture all base NP chunks and still keep a high
precision

Approach Two
= Pros: high P/R for extracting all NP chunks

= Cons: possibly need more post-processing to filter
unwanted words



Chunking a Wikipedia page

a Wikipedia page

POS tagging tokenization

Plain text
file

sentence
segmentation

keywords a list of

SERETA extraction keywords



plain text

WG LCIENEL IS BoilerPipe APl o S file

L = B )

: keywords

# Python code for segmentation, POS tagging and tokenization

import nltk

rawtext = open(plain_text_file).read()

sentences = nltk.sent_tokenize(rawtext) # NLTK default sentence segmenter
sentences = [nltk.word_tokenize(sent) for sent in sentences] # NLTK word tokenizer
sentences = [nltk.pos_tag(sent) for sent in sentences] # NLTK POS tagger




plain text
file

Wikipedia page ) B 216]] (171NN

sentence
segmentation

keywords
for sent in sentences:

# TO DO LIST (already covered in a few slides ahead):

# 1. create a chunk parser by defining patterns of NP chunks or using the trained one
# 2. parse every sentence

# 3. store NP chunks

POS tagging tokenization




plain text

Wikipedia page ) H21671 SIFRIT VAV file

sentence

POS tagqgin izati
gging tokenization S

chunking J—w keywords

# extract the keywords based on frequency




A little help

# a tree traversal function for extracting NP chunks in the parsed tree

def traverse(t):
try:
t.node
except AttributeError:
return
else:
if t.node =='NP"': print t # or do something else
else:
for child in t:
traverse(child)




Tag patterns used for this example: 1. {<NN>+}

2. {<JJ>*<NN>} 3. {<NNP>+}

Top unigram NP
chunks

(freq, term) pairs:

(118, 'iphone’)
(55, ‘apple’)

(19, 'screen’)
(18, 'software')
(16, 'update’)
(16, 'phone)

(13, 'application’)
(22, 'user')

(12, 'itunes')

(11, 'june’)

(10, 'trademark’)

Top bigram NP chunks

(6, 'app store')

(4, 'ipod touch")

(3, 'virtual keyboard')
(3, 'united kingdom")
(3, 'steve jobs')

(3, 'ocean telecom’)
(3, 'mac os x')

Top NP chunks containing >2 terms

(3, 'mac os x')

(1, 'real-time geographic location’)

(1, 'apple-approved cryptographic signature’)
(1, 'free push-email service')

(1, 'computerized global information’)

(1, 'apple ceo steve jobs')

(3, 'direct internal camera-to-e-mail picture')

Guess what the
title of this
Wikipedia page.is?




WIKIPEDIA
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iPhone

From Wikipedis, the free encyclopedia

The iPhone (pronounced Mamfoun

Amn iPhone can function as a video camera, a camera phone with text messaging and visusl woicemail, a portable media player. and an Inten

than a physical one. Third-party as well as Apple application software is available from the App Store, which launched in mid-2002 and now

Thiz article iz abouf the line of emariphones designed by Apple inc. For ofher vzes, see iFPhone (dizembigusfion).

%

shows, films. and celebrities.

There are four generations of iPhone models, and they were accompanied by four major releases of i0S (formerly iPhone OE). The original
capabilities and A-GPS location. The iPhone 3GE added a compass, faster processor, and higher resolution camera, including video. The iP
2011, when a CDMA version of the iFhone 4 launched for Verizon.

Contents [hids]

1 History and awailability

2 Hardware

2.1 Screen and input

2.2 Audio and output

2.2 Battery

2.4 Camera

2.5 Storage and SIM

2.6 Liguid contact indicators

2.7 Included items.

2 Model comparison
4 Software

@ o

4.1 Interface

4.2 Phone

4.2 Multimedia

4.4 Imtemeat connectivity

4.5 Text input

4.6 E-mail and text messages
4.T Third-party applications
4.8 Accessibility

ntellectual property

Resirictions

6.1 Activation

6.2 Unapproved third-party software and jailbreaking

6.2 SIM unlocking
6.2.1 United States

A 2T Imiberd W

This article may be too long to read and navigate comfortably. Please consider split

EVE-fizfin) is & line of Internaet and multimedis-enabled smartphones designed and marketed by Apple Inc.




If using approach one, define a few good tag patterns to
only extract things you're interested

= e.g.do notinclude determiners
= define tag patterns for n-gram (n<4)

If using approach two, do some post-processing
= drop long NP phrases

Try to form a tag cloud by just taking frequent bigram
and trigram NP chunks, and use PMI or TF/IDF
information to prune a bit, and then add some unigrams
(remember you are only allowed to have no more than 15
tags)



Chapters from book Natural Language
Processing with Python

LingPipe does chunking in a very similar way


http://nltk.googlecode.com/svn/trunk/doc/book/ch05.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch05.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch07.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch07.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch07.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html

