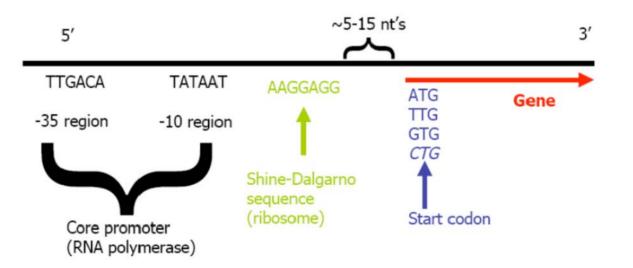

Annotation Presentation Annotation Presentation Week 4


Alternative Start Codons & Novel ORFs

The Automated Gene Caller (i.e., Glimmer)

What does an Automated Gene Caller do?

- Scans all nucleotides in a genome.
- Looks for "punctuation marks" that determine where genes start and stop (i.e., regulatory sequences that define where genes begin and end).

The Brilliant Student (You)

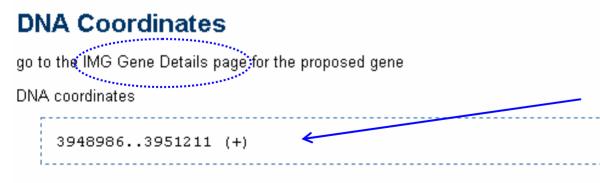
What will you do?

Double check the work of the Gene Caller.

- ✓ Is there evidence supporting proposed start codon?
- ✓ Is there an <u>alternative position</u> possible for the start codon?

Examine all six reading frames.

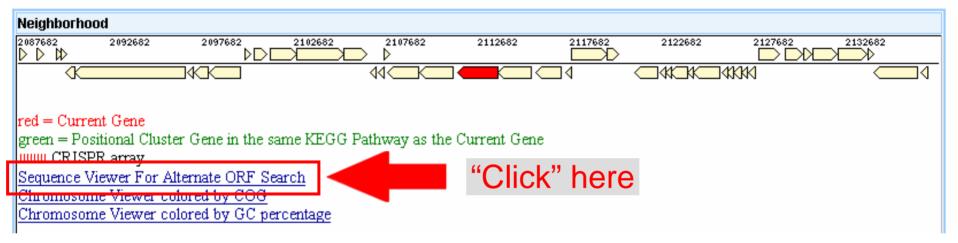
✓ Is there a *novel* open reading frame (ORF) missed by Gene Caller?


Let's get started with the first task:

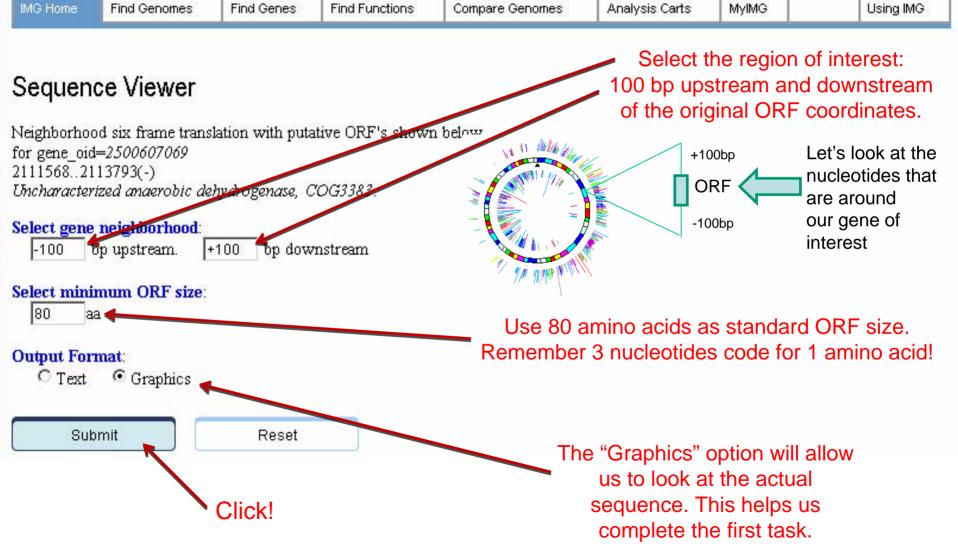
Verify the position for the Start COdon

In the imgACT Lab Notebook...

Basic Information Module • Module Instructions IMG Gene Object ID go to the IMG Gene Details page for the proposed gene enter Gene Object ID (OID) 2501578154 Quick link to Gene Details page for assigned gene (enter URL) http://img.jgi.doe.gov/cgi-bin/edu/main.cgi?section=GeneDetail&page=geneDetail&gene_oid=2501578154

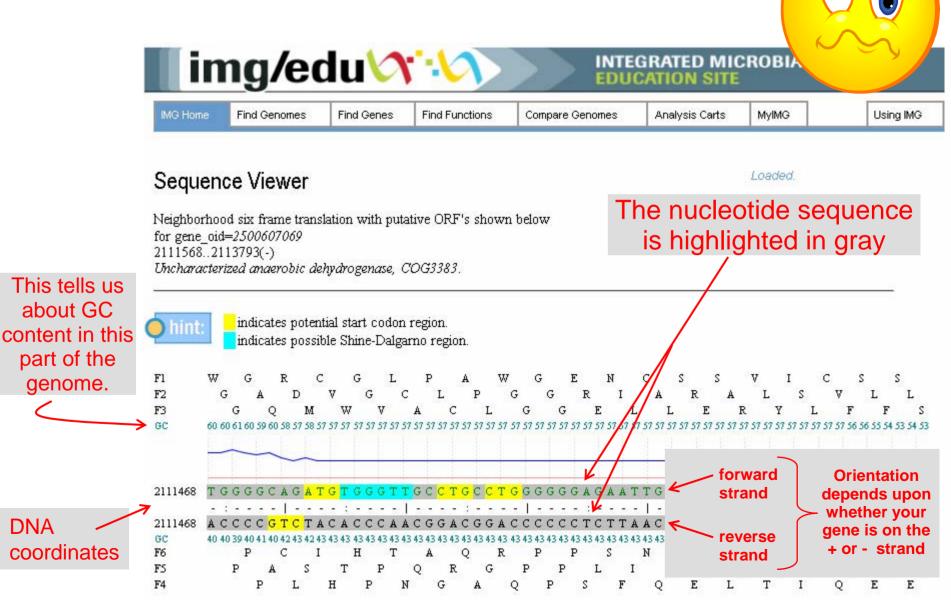

Recall:

You previously entered the DNA coordinates set by the automatic Gene Caller. This information was found on the Gene Detail page.


Gene Detail Page in img/edu

in	ng/ed	lu 🕅	·· \		TEGRATEI UCATION			. GENC	OMES	
IMG Home	Find Genomes	Find Genes	Find Functions	Compare Genomes	Analysis	Carts	MyIMG		Using IMG	
Gene Searc	h BLAST Phyl	ogenetic Profilers	3	1 1					-	
Gene De	etail						Loaded.			
Sequence External	For Function Pred Search Sequence Search quence Search	ictions				•				ail page open ile working
Gene In Gene Inform	formation									
Gene Objec	:t ID	2500607069								
Gene Symb	ol	1								
Locus Tag		PlimDRAFT	19450							
Product Na	me	Uncharacteriz	ed anaerobic dehy	drogenase, COG3	383					
IMG Produc	t Source	COG3383		-						
Genome		Planctomyces	limnophilus DSN	I <u>3776</u>						Scroll down
DNA Coordi	inates	2111568211	3793 (-)(2226bp)							_
Scaffold So	urce	Planctomyces	: limnophilus DSN	I 3776 : PlimDRAF	T 4083246 (C168 (54	423025bp)			
IMG ORF Ty	pe									
GC Content		0.58								
External Lin	nks									
Fused Gene	9	No								
Fusion Com	nponent	No								
Protein Info	ormation									
Amino Acid	Sequence Length	741aa								

Evidence For Function Prediction



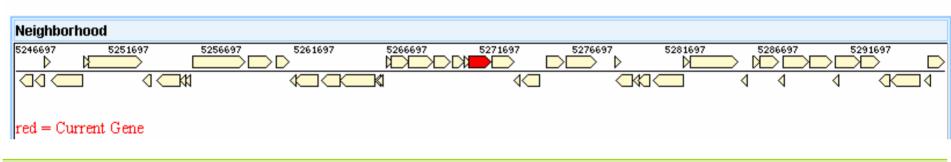
After you click submit, you will see something like this:

IMG Hom	e Fin	d Genor	nes	Fin	d Ger	nes	Find	Functions		Compare	Genomes		Analysi:	s Carts	1	/lylMG		_		Using	g IMG
Seque	ence ^v	√iew	'er												Lo	adec	l.				
	hood siz oid=250			lation	with	n puta	tive Ol	₹F's sho	wn be	low											
	_010=230 211379		09																		
	cterized (hir do	hvdro	gon	no C	OG33	23													
or there is			010 166	yuro	60m																
	_																			-	
						44283															
hint:		licates																			
hint:		licates licates																			
hint:	in t																				
hint:	w G	licates	possil C	ole Sh	nine-I G	Dalgar L		ņion. A	w		e n	с	S	S	v	I		с	S	2	S
hint:	w G G	licates	possil C D	ole Sh				țion.	G	G	R	c I	S A 1	S R J	V A	I L	S	c v	S	د L	SL
hint:	w G G G	licates R A Q	possil C D M	v v	uine-I G G	Dalgar L C V	p L A	țion. A C L	G	G G G	R E	L	L	E	V A R	I L Y	L	c ⊽	S F	L F	S L
hint:	w G G	licates R A Q	possil C D M	v v	uine-I G G	Dalgar L C V	p L A	ņion. A	G	G G G	R E	L	L	E		I L Y 57 57 5	L	C ▼ 7 57 57	S F 56 56	2 L F 55 54 5	S L 53 54
hint:	w G G G	licates R A Q	possil C D M	v v	uine-I G G	Dalgar L C V	p L A	țion. A C L	G	G G G	R E	L	L	E		I L S7 57 5	L	C V 7 57 57	S F 56 56	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S L 53 54
hint:	w G G G	licates R A Q	possil C D M	v v	uine-I G G	Dalgar L C V	p L A	țion. A C L	G	G G G	R E	L	L	E		I L 57 57 5	L	C ▼ 7 57 57	S F 56 56	L F 55 54 5	S L 53 54
hint:	w G G G	licates R A Q	possil C D M	v v	uine-I G G	Dalgar L C V	p L A	țion. A C L	G	G G G	R E	L	L	E		I L 57 57 5	L	C V	S F 56 56	S F 55 54 2	S L 53 54
	G G 60 61 60	licates R A Q) 59 60 58	D M S 57 58 5	v v v 7 57 57	ine-I G G 57 57 :	Dalgar L C V S7 57 57	P L A 57 57 57	țion. A C L	G 0 57 57 5	G G G 7 57 57 57 .	R E 57 57 57 57	L 57 57 57 :	L 17 57 57 :	E 57 57 57 :	57 57 57		L 17 57 51		_	_	_
	G G 60 61 60	licates R A Q 0 59 60 58 G C A	D D S7 58 5	ole Sh V W 7 57 57	G G 57 57 :	Dalgar L C V 57 57 57 G T T	P L A 57 57 57 G C C	ion. A P C L 57 57 57 57	G 57 57 5 T G G	G G G G G	R E 57 57 57 57 G A G A	L 57 57 57 :	L 57 57 57 . G C T (E 57 57 57 : C G A (57 57 57 G C G	TTA	L 17 57 51	TG	ТТ	CTT	_
11468	W G G 60 60 61 60 T G G G	Licates R Q 0 59 60 58 G C A 	D M S7 58 5 G A T	ole Sh V W 7 57 57 G T - :	G G 57 57 :	Dalgar L C V 57 57 57 G T T 1	P P S7 57 57 57 G C C	jon. A P C L 57 57 57 57 T G C C	G () 57 57 5 57 6 0 T G 0 	G G 7 57 57 57 57	R E 57 57 57 57 G A G A	L 57 57 57 : A T T (1	L 57 57 57 :	E 17 57 57 : C G A (- : -	57 57 57 G C G	TTA	L 17 57 51	TG	ТТ	CTT	_
2 3 2 111468 111468	W G G 60 60 61 60 T G G G - :	Licates R A Q 0 59 60 58 G C A C G T	C T A	v w 7 57 57 - : . C A	ine-I G G S7 S7 : G G G	Dalgar L C V 57 57 57 G T T 1	P L A ST ST ST G C C C G G	ion. A P C L 57 57 57 57 T G C C - :	G 57 57 57 T G C A C C	G G G G G G G G G G G G G G G C C C C	R E 57 57 57 57 G A G A - : C T C T	L 57 57 57 57 5 A T T (1 T A A (L 57 57 57 . G C T (C G A (E 17 57 57 : C G A (- : -	57 57 57 G C G	TTA	L 17 57 51	TG	T T A A	CTT	T C A G
hint:	W G G G 60 60 61 60 T G G G - : A C C C	Licates R A Q 0 59 60 58 G C A C G T 0 41 40 42	C T A	V W 7 57 57 - : . C A 3 43 43	ine-I G G S7 S7 : G G G	Dalgar L C V 57 57 57 G T T 1	P L A ST ST ST G C C C G G	ion. A P C L 57 57 57 57 T G C C - : A C G G 43 43 43 43	G 57 57 57 T G C A C C	G G G G G G G G G G G G C C C 3 43 43 43	R E 57 57 57 57 G A G A - : C T C T	L 57 57 57 57 5 A T T (1 T A A (L 57 57 57 . G C T (C G A (E 17 57 57 : C G A (- : -	57 57 57 G C G	TTA	L 17 57 51	TG	T T A A	C T 7 - G A 4 45 46 4	T C A G
2 3 c 111468 111468 c	W G G G 60 60 61 60 T G G G - : A C C C 40 40 39 40	R A Q 0 59 60 58 C G T 0 41 40 42	C T A	V W 7 57 57 - : . C A 3 43 43	G G 57 57 57 57 57 57 57 57 57 57 57 57 57 5	Dalgar L C V 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 5	P L A S7 57 57 57 G C C C G G 43 43 43	ion. A P C L 57 57 57 57 T G C C - : A C G G 43 43 43 43	G 57 57 57 5 T G C A C C	G G G S S S S S S S S S S S S S S S S S	R E 57 57 57 57 G A G A - : C T C T 43 43 43 43	L 57 57 57 57 5 A T T (1 T A A (43 43 43 4	L 17 57 57 57 . G C T (G A (3 43 43)	E 17 57 57 : C G A (- : - G C T (3 43 43 (37 57 57 3 C G 3 C G 3 3 43 43	TTA	L 17 57 51	T G : - A C 3 43 43 R	T T A A 44 44	C T 7 - G A 4 45 46 4	T C A G 47 46

HOW AM I SUPPOSED TO READ THIS??

Deciphering Sequence Viewer in Graphics Mode

WHICH STRAND IS MY GENE ON?


Example of **plus** strand gene orientation:

DNA Coordinates

Find this on the Gene Details page for the proposed gene.

enter coordinates

5271121..5272269 (+)(1149bp)

Example of **minus** strand gene orientation:

DNA Coordinates

Find this on the Gene Details page for the proposed gene.

enter coordinates

2111568..2113793 (-)(2226bp)

Evidence For Function Prediction

Evidence For Function Prediction

HOW AM I SUPPOSED TO READ THIS??

Deciphering Sequence Viewer in Graphics Mode

Review single letter codes for ar

AA results from

reverse DNA strand

(F4, F5, & F6)

F6

FS

F4

P

Ρ

C

I

S

L

H

Т

н

Т

P

Ρ

A

Q

Ν

Q

R

G

R

G

A

P

Ρ

0

P

Ρ

Ρ

S

F

T

S

N

Q

S

S

R

Ε

R

Д

L

*

Ν

Т

R

D

Ι

Ν

Т

Q

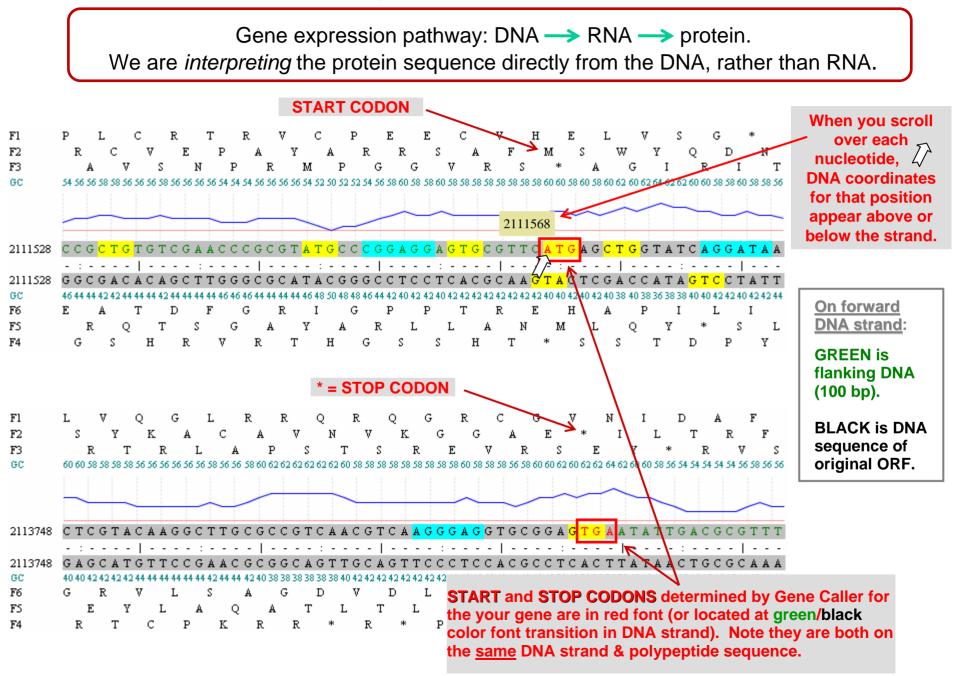
K

R

Ε

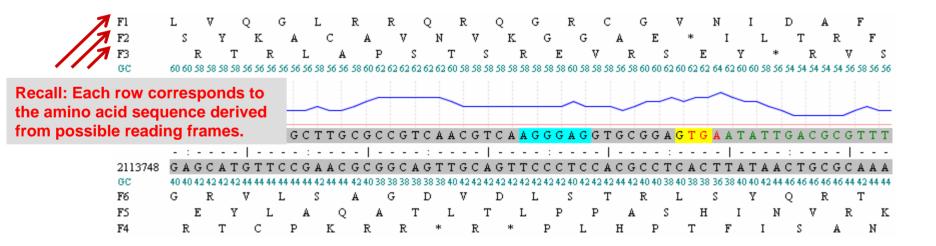
R

Ε


for ami		^{ds!} mg/eo	duØ	<u>(:.))</u>		GRATED MIC		
,	IMG Home		Find Genes	Find Functions	Compare Genomes	Analysis Carts	MyIMG	Using IMG
	Neighborho for gene_oi 21115682	terized anaerobic de		ative ORF's shown <i>COG3383.</i> 1 region.	codor	ronroont	ts a differ frame orresponc eotide se	rent ding to
AA results from forward DNA strand (F1, F2, & F3)	F1 W F2 F3 60 60	W G R C G A D G Q M	C G L V G C W V	P A W C L P A C L	GEN GGRI GGEL		VIC LS RYL	S S V L L F F S
	2111468 T - 2111468 A	- : A C C C C <mark>G T C</mark> T A	: ACACCCAA	: A C G G A C G G A	G G G G G G G A G A A T - : C C C C C C C T C T T A 43 43 43 43 43 43 43 43 43 43 43 43	ACGAGCTCO	: GCAATAGA	 .CAAGAAGA

Helpful tools to keep handy while deciphering!

Insert table of genetic code and table of single letter abbreviations for amino acids


Initiation frequency in *E. coli*: AUG > GUG > UUG > CUG Stop codons: UAG, UAA, UGA

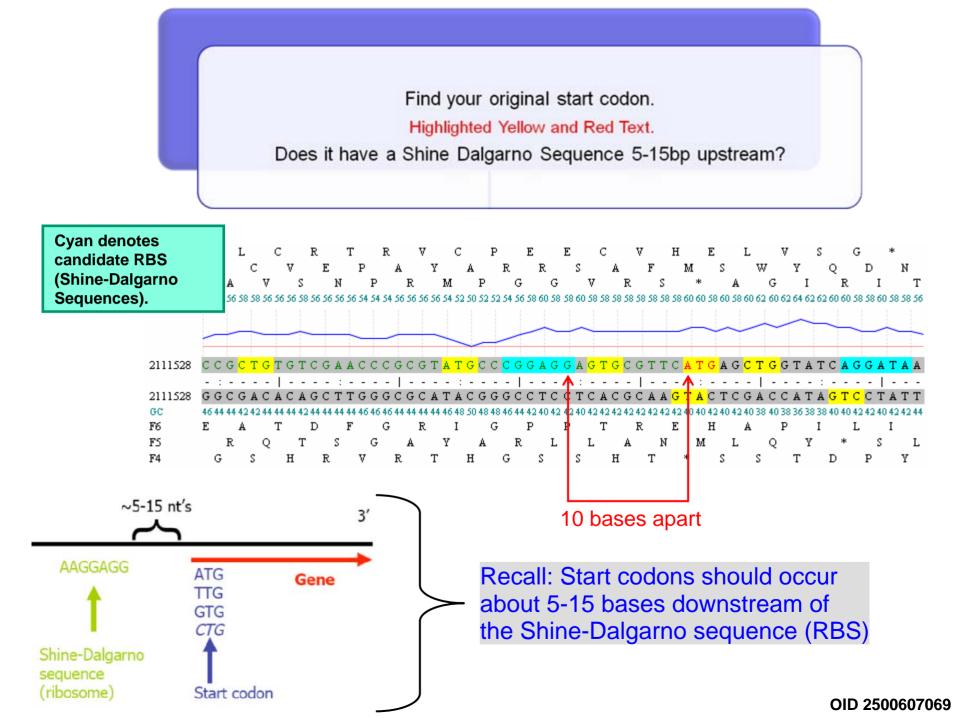
More on... Deciphering Sequence Viewer in Graphics Mode

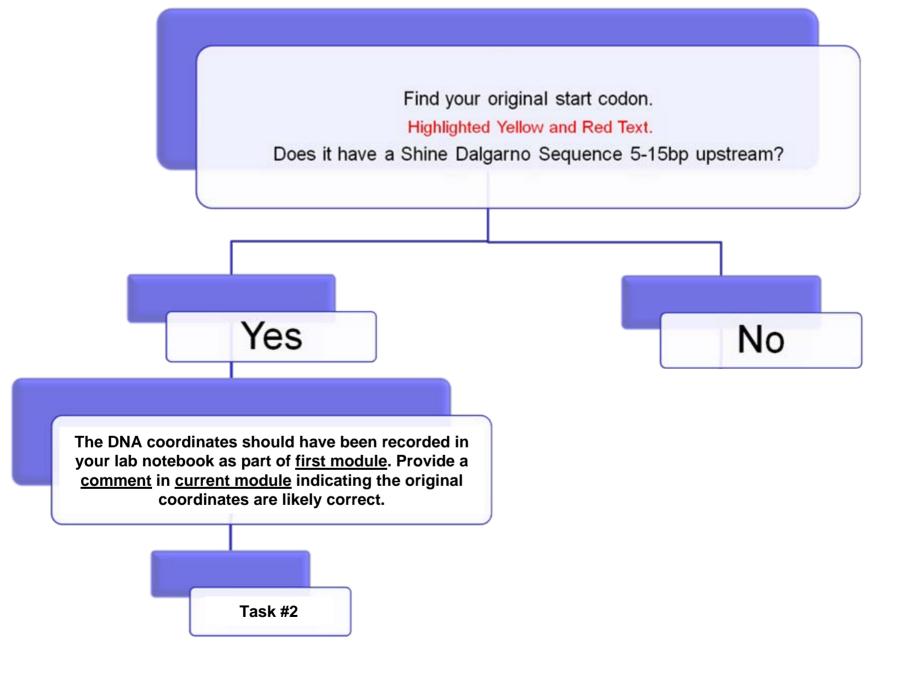
More on... Deciphering Sequence Viewer in Graphics Mode

Yellow denotes possible alternative start codons.	4	L A 56 58	C 58 5	C 7 16 56	V S 56 58	R E 56 56	T N 56 50	P F 5545	R 4 54 :	A R 56 56	V Y 56 56	C M 54 53	A F 2 50 5	P 50 52 52	R G 54 56	E R 58 60	G 0 58	E S 58 60	C V 58 58	A R 58 58 .	V F 58 58	H S 58 58	M * 60 60 :	E S 58 60	L A 58 60	W G 62 60	V Y 62.64	S I 62 62	Q R 8 60 60	G D) 58 58	* I 60 58	N T 58 56
Cyan denotes candidate RBS (Shine-Dalgarno				-			: -			-		- :			- 1		-	- :			-		- :			-		- :		G G C C	-	
Sequences).	2	44 42 A	424	4 44 T	44 42	G C 44 44 D	44 44 F	464	6 46 4 G	44 44	с и 44 44 R	46 48 I	3 50 4	, G 1848 G	46 44	4240 P	0 42	4240 P	4242 T	42 42	42 42 R	42 42 E	40 40 4	- 1 42 40 H	4240 A	A C 38 40	СА 3836 Р	I A 3838 I	G I 340 40	1242 L	40 42 I	42 44
F5 F4	G	R	s	2	T H	R	2	v G	,]	A R	Т	Y	H	ι.	R G	s	L	s	L	A H	т	N	M *	s	L	Q S	Т	Y	D *	Р	2	Y Y

RBS = Ribosome Binding Site = Shine-Dalgarno Sequence

Always on SAME DNA STRAND AS THE START CODON


Remember: To initiate protein synthesis (translation), the ribosome interacts with the Shine-Dalgarno sequence in the mRNA immediately upstream of the proper start codon


Insert WebLogo of *E. coli* ribosome binding sites and start codons from <u>http://molbiol-tools.ca/Motifs.htm</u>

Reference: **Figure 1** in Schneider and Stephens (1990) Sequence logos: a new way to display consensus sequences. *Nucleic Acids. Research* **18**: 6097-6100.

Decision Tree

- The following slides contain a Decision Tree to aid in decision making as you proceed through the first task of this module.
- All of the steps provided in the tree will be elaborated upon throughout the presentation.
- The tree should act as an outline to help you map out your plan of attack!

Recording results in your Lab Notebook

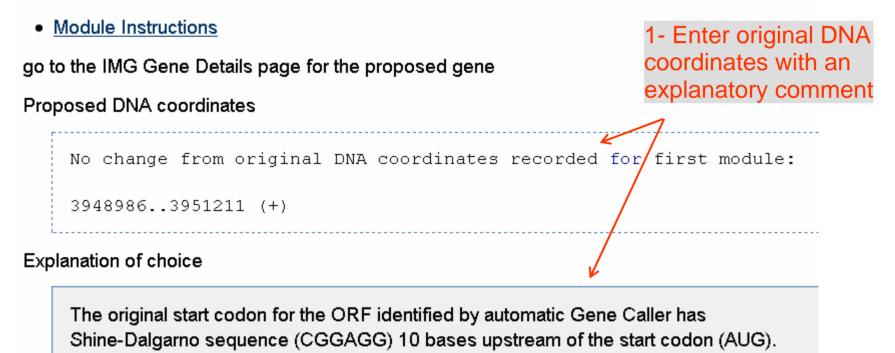
Scroll down

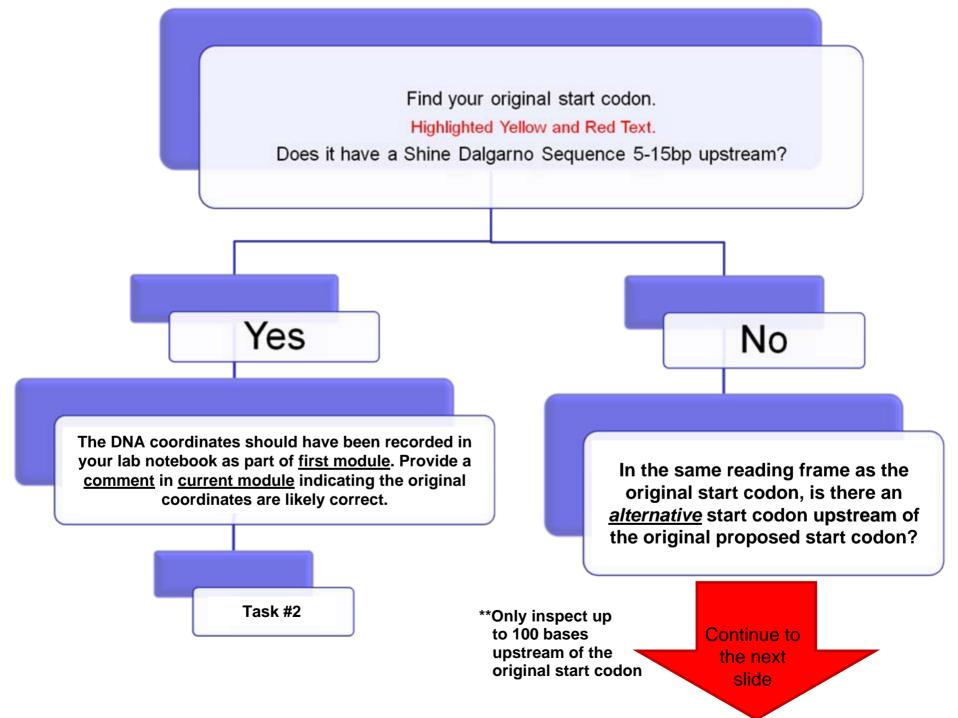
Alternative Open Reading Frame Module

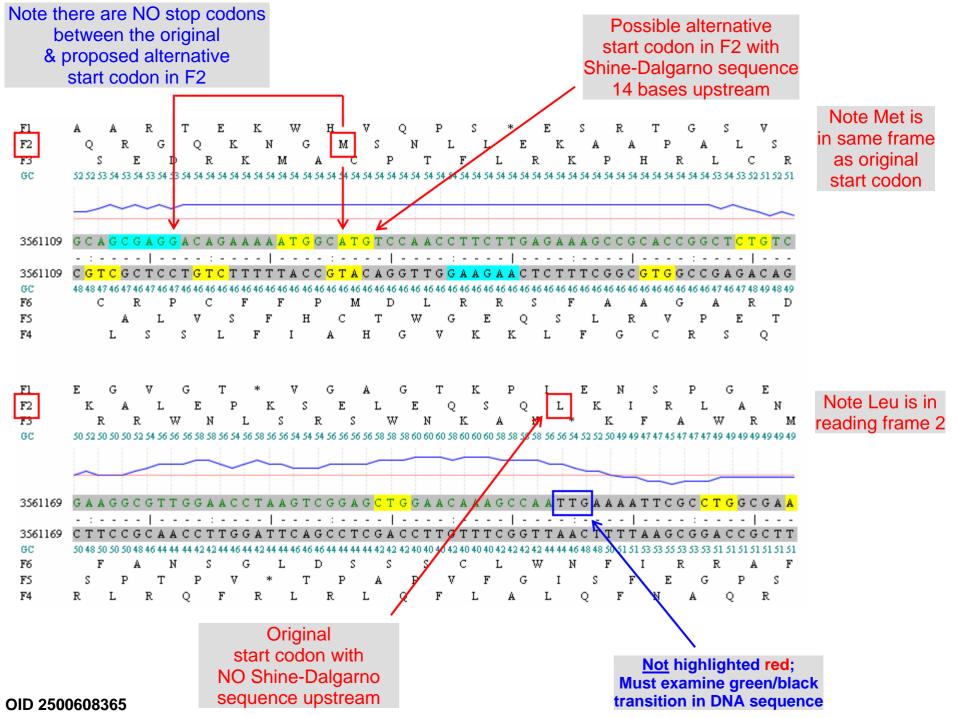
Module Instructions

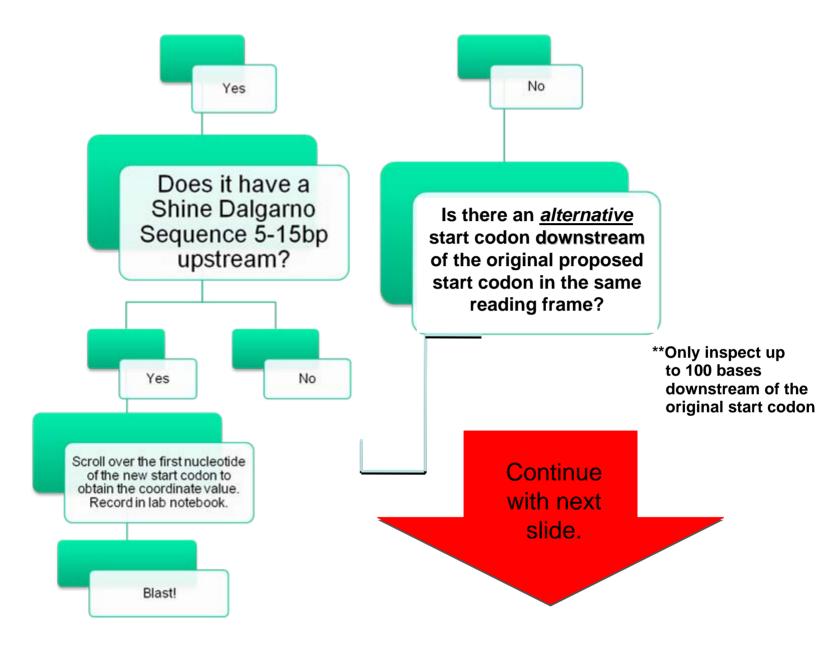
go to the IMG Gene Details page for the proposed gene

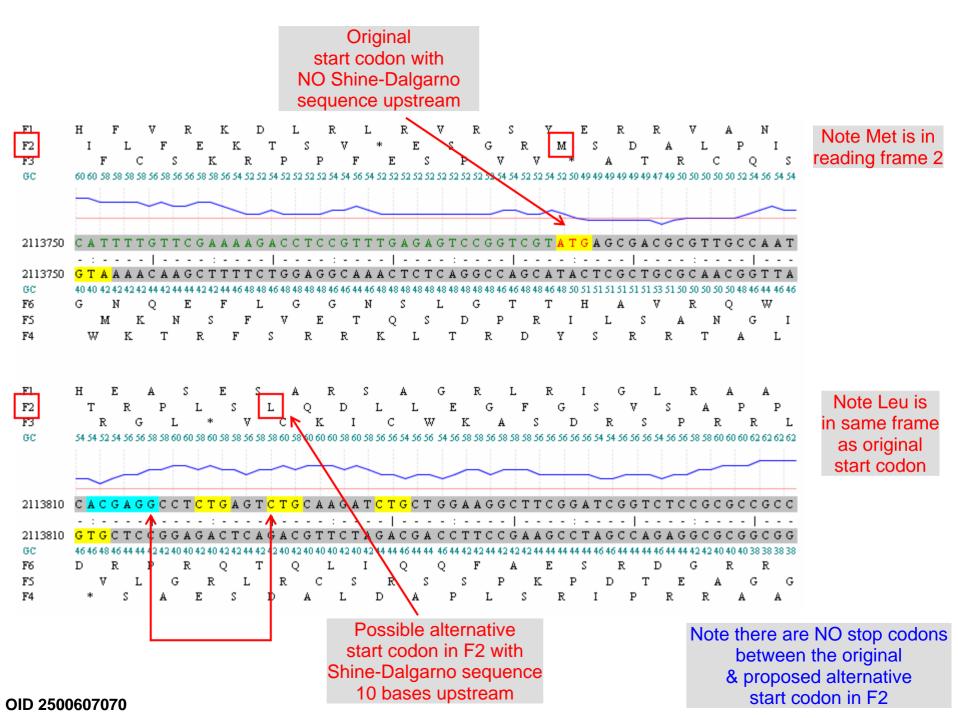
Proposed DNA coordinates


enter in lab report


Explanation of choice


explanation


Recording results in your Lab Notebook


Alternative Open Reading Frame Module

No

For genes with possible alternative start codon...It's time to BLAST!

• BLAST your results:

- Construct a "revised" protein sequence in FASTA format (add or subtract amino acid residues in proper reading frame to reflect new start codon position then copy/paste into lab notebook).
- Submit as query for a BLAST search of NCBI database (Genbank, SwisProt).

• Your results from BLAST:

- Compare results from original blast search with those from new blast search.
 - Determine if statistics have improved.
 - REMEMBER: higher bit score, lower e-value, higher % identity and/or longer alignment length are all good arguments that the alternative start codon is a better choice

Create new headings & boxes for entering amino acid sequence in FASTA format for ORF with alternate start codon

Alternative Open Reading Frame Module

Module Instructions

go to the IMG Gene Details page for the proposed gene

Protein Sequence for ORF with Alternate Start Codon

Construct this from Sequence Viewer on the Gene Details page for the proposed gene.

enter AA FASTA format

1- Add headings and box in lab notebook

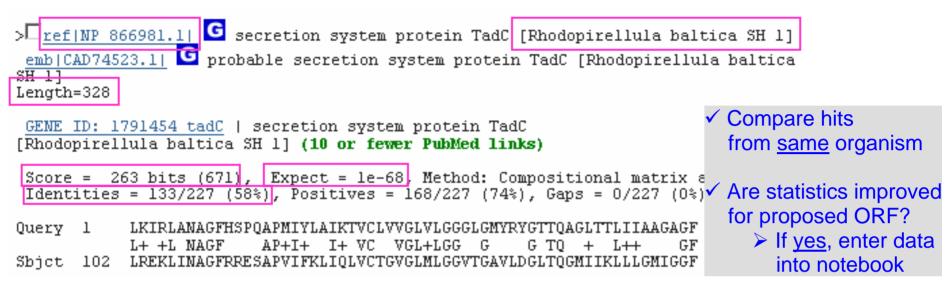
2- Copy/paste modified protein sequence into box

>OID 2500608365 Flp pilus assembly protein TadC with alternative start codon MSNLLEKAAPALSKALEPKSELEQSQLKIRLANAGFHSPQAPMIYLAIKTVCLVVGLVLGGGLGMYRYGTTQAGLT TLIIAAGAGFYLPEGVLAYLISKRKQAIFLQLPDVLDLLVVCVEAGLGLDAGLRRVAEELKDTAPEICGELAMCNL QLQMGRNRRDMLHDLGVRTGVDDVKALVAIMIQADKFGSSIAQALRVQSDSMRVKRRQIAEEKAQKTAVQMLFPMV IFIFPGIFVVLVGPAAIKMMDQLLNKP

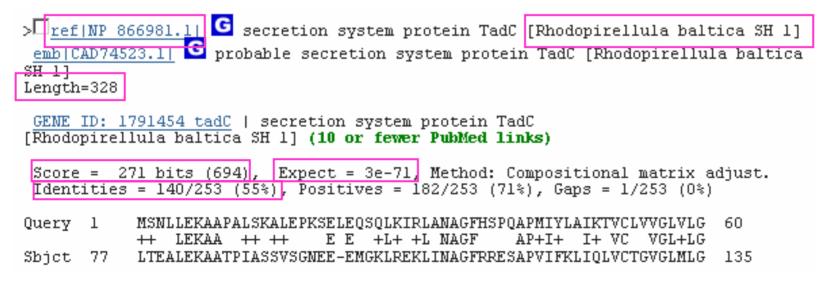
**NOTE highlighted portion was added to the original amino acid sequence since the alternative start codon (AUG) is located 26 residues upstream of the original start codon (UUG, which encodes Leucine)

OID 2500608365

NCBI BLAST can be accessed from lab notebook link


Sequence-based Similarity Data Module

Module Instructions


BLAST

go to http://www.ncbi.nlm.nih.gov/blast -

BLAST Results for ORF with original start codon (Gene Caller)

BLAST Results for ORF with alternative start codon proposed by student!

OID 2500608365

Recording results in your Lab Notebook

Find this on the Gene Details page for the proposed g enter coordinates	ene.	F1 F2	A A R T E K W H V Q O R G O K N G M S N							
enter proposed DNA coordinates	Adjust DNA coordinates	F3 GC	S E D R K M A C P '							
35611313561898 (+)(765bp) 🖌	& base pairs.		25(112)							
Reasoning		3561109	GCAGCGAGGACAGAAAAATGGCATGTCCA.							
sequence 14 bases upstream of an alternative s BLAST statistics for the ORF using the alternati with the ORF having the original start codon. In to 263 bits) and the E-value was lower (3e-71 cc codon. However, the percent identity was lower compared to 58%). Also of note is that the lengt both). Taken together, I believe there is sufficien the start codon for this gene is a better choice t	of the original start codon there is a Shine-Dalgarno tart codon (ATG). Furthermore, the NCBI protein ve start codon improved in comparison to the search particular, the score was higher (271 bits compared mpared to 1e-68) for the ORF with an alternative start for the alternative compared to the original (55% h of the alignment did not change (328 amino acids for t evidence to suggest that the alternative position for han the original position. My conclusion is based on quence at appropriate distance from the start codon,	3561109 GC F6 F5 F4	$\frac{C}{G} \frac{TC}{TC} \frac{G}{G} C T C C T \frac{G}{G} \frac{TC}{TC} T T T T T T T A C C T A C A G G T T T T T T A C C T A C A G G T T A C A G G T T T T T T A C C T A C A G G T T A C A G G T T A C A G G T T A C A G G T T A C A G G T T A C A G G T T A C A G G T T T T T A C C T A C A G G T T A C A G G T T T T T A C C T A C A G G T T A C A G G T T A C A G G T T A C A G G T T A C A G G T T A C A G G T T A C A G G T T A C A G G T T A C A G G T T T T T A C C T A C A G G T T T T T A C A G A C A G T A C A G G T T A C A G G T A C A G A C A G A C A G A C A C A G A C A C$							
BLAST Results Gene product name (same hit as in Module 2)			2- Copy/paste sub-							
secretion system protein TadC			headings & field boxes							
Organism			from Sequence-based Similarity Data module.							
Rhodopirellula baltica SH 1			Similarity Data module.							
Length, E-Value, Score, Percent identity, Positives, a	nd Gaps		3- Fill in with your results							
	4), Expect = 3e-71, Method: Compositional ives = 182/253 (71%), Gaps = 1/253 (0%)	matrix ad <u>:</u>	from BLAST search using							
Alignment of the BLAST hit and the query sequence			 ORF with alternate start codon for gene. 							
++ LEKAA ++ ++ E 1	EQSQLKIRLANAGFHSPQAPMIYLAIKTVCLVVGLVLG 60 E +L+ +L NAGF AP+I+ I+ VC VGL+LG EMGKLREKLINAGFRRESAPVIFKLIQLVCTGVGLMLG 135	;	OID 2500608365							

Are the BLAST results always better? NO!

For example. . .

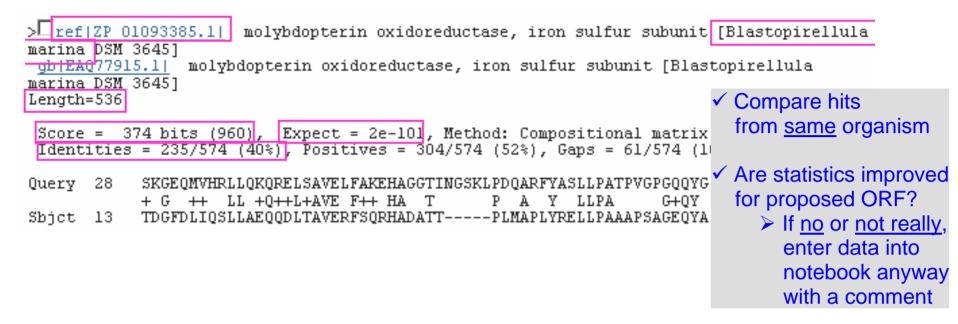
Alternative Open Reading Frame Module

Module Instructions

go to the IMG Gene Details page for the proposed gene

Protein Sequence for ORF with Alternate Start Codon

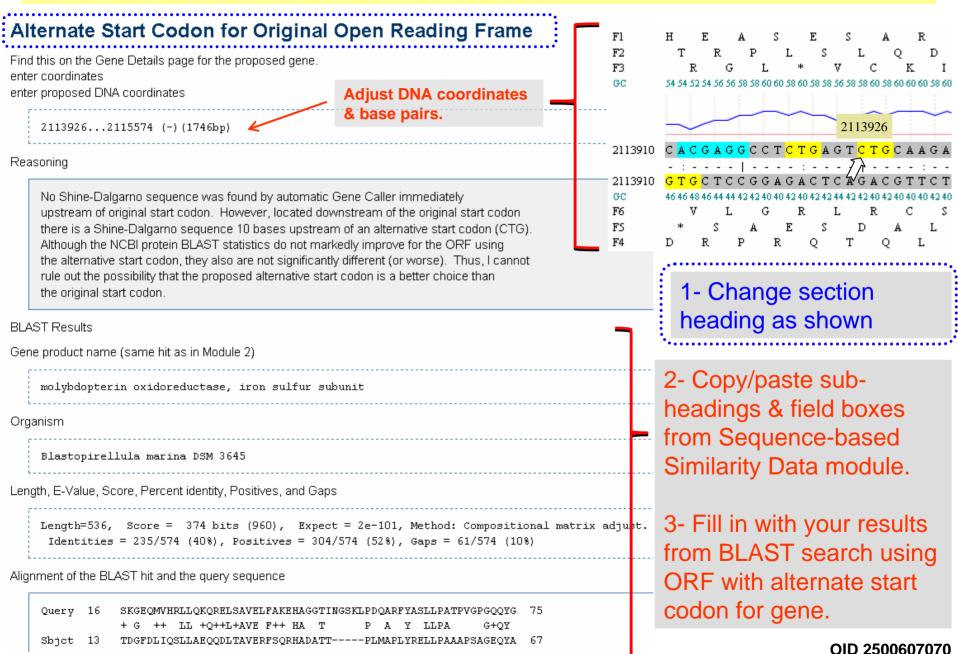
Construct this from Sequence Viewer on the Gene Details page for the proposed gene.

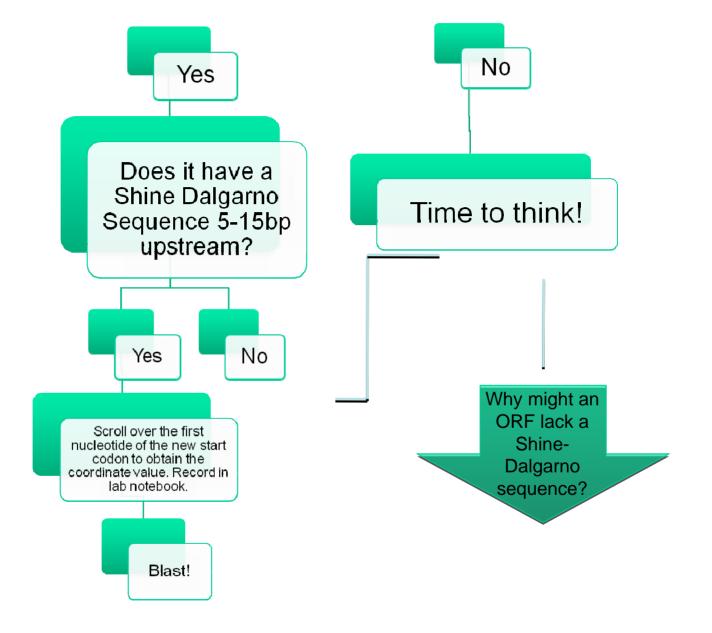

enter AA FASTA format

>OID 2500607070 Fe-S-cluster-containing hydrogenase components_alternative start codon LQDLLEGFGSVSAPPSKGEQMVHRLLQKQRELSAVELFAKEHAGGTINGS KLPDQARFYASLLPATPVGPGQQYGFEVDLDRCSGCKACVTACHSLNGLD DSETWRDVGLLIGGTETLPVMQHVTAACHHCLEPACMTACPVNAYEKDAF TGIVRHLDDQCFGCQYCTLACPYNVPKYHAAKGIVRKCDMCSNRLKNGEA PACVQACPHEAISIRIVDVSRVTENAEADHFLPAAPEPYITLPTTYRTT RVFPRNMLPADYYSVSPQHPHWPLIVMLVLTQLSVGAFAAGSFLEEALDT ELATAFRPIHATGALVLGLLALGASTLHLGRPLYAFRGILGFRHSWLSRE IVAFGLFAGLAVPFAGLCWGLPLLEVSGSPWGKLAGELLPTLSPSVACVG VIGVFCSVMIYVFTRRELWSLERTLIRFSLTTILLGVATIWLMWLAVGF LSDDEWHQLAQNLTRPLARSVIILTTLKLLYDISLLRHLATFRNSPLKRS ALLVVGPLRGFSIGRLVLGVVGGVVIPAAFAAVPIHDPIQFTTTSAVFVG OMWVACLGGELLERYLFFSAVSNPRMPGGVRS

**Recall that this gene had residues deleted from the original amino acid sequence since the alternative start codon (CUG, which encodes Leucine) is located 12 residues downstream of the original start codon (AUG)

OID 2500607070

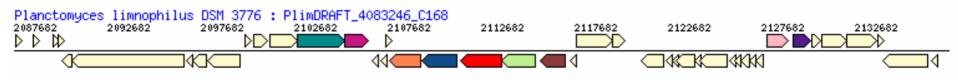

BLAST Results for ORF with original start codon (Gene Caller)



BLAST Results for ORF with alternative start codon proposed by student!

> ref[ZP 01093385.1] molybdopterin oxidoreductase, iron sulfur subunit [Blastopirellula
marina DSM 3645] gb/EAQ77915.1 molybdopterin oxidoreductase, iron sulfur subunit [Blastopirellula
<u>marina DSM</u> 3645]
Length=536
Score = 374 bits (960), Expect = 1e-101, Method: Compositional matrix adjust. Identities = 235/574 (40%), Positives = 304/574 (52%), Gaps = 61/574 (10%)
Query 16 SKGEQMVHRLLQKQRELSAVELFAKEHAGGTINGSKLPDQARFYASLLPATPVGPGQQYG 75 + G ++ LL +Q++L+AVE F++ HA T P A Y LLPA G+QY
Sbjct 13 TDGFDLIQSLLAEQQDLTAVERFSQRHADATTPLMAPLYRELLPAAAPSAGEQYA 67

Recording results in your Lab Notebook


WHY? WHY? WHY NOT?! Interpreting Your Negative Results (i.e., no Shine-Dalgarno, no alternative start codon, etc.)

• Maybe there is flexibility in the amount of sequence conservation needed in the Shine-Dalgarno (S-D) that allows ribosome binding

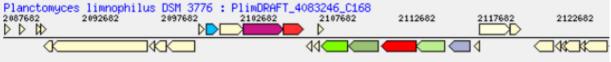
Insert **Figure 33.9** from Garret & Grisham *Biochemistry* (2nd Ed.) Alignment of various Shine-Dalgarno sequences recognized by *E. coli* ribosomes.

WHY? WHY? WHY NOT?! Interpreting Your Negative Results (i.e., no Shine-Dalgarno, no alternative start codon, etc.)

- Consider possible mutations in DNA sequence
 - Remember "draft genome" problems?
- Consider a ribosome "skid" if your gene is part of an operon
 - Maybe your gene is in the middle or at the end of an operon. And perhaps only the first gene in the operon has a S-D upstream of the start codon and has a stop codon within 5-15 nt of the start codon for the next gene in the operon. In this case, the genes may be close enough that the ribosome does not need to completely dissociate from the RNA transcript, instead it "skids" along and begins translation of the next gene in the operon without needing to bind a second S-D.
 - Look at the ortholog neighborhood map! (Review Gene Context in HGT module)

Recording results in your Lab Notebook

Alternate Start Codon for Original Open Reading Frame


Find this on the Gene Details page for the proposed gene. enter coordinates enter proposed DNA coordinates

No change from original DNA coordinates recorded for first module:

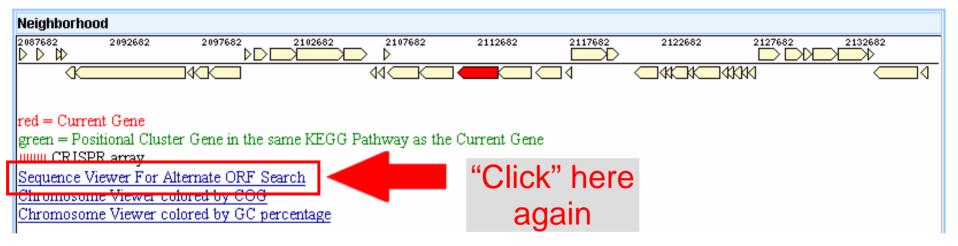
2111568..2113793 (-)(2226bp)

Reasoning

Although the ORF identified by automatic Gene Caller does not have an obvious Shine-Dalgarno sequence upstream of the start codon, an alternative position for the start codon also was not apparent. It is possible that the S-D sequence for this gene is not well conserved or that there are point mutations in the DNA sequence that made the S-D unrecognizable (e.g., draft genome problem). Notably, upon inspection of the ortholog neighborhood, it is possible that this gene is part of an operon. As shown below, the gene (light green) preceding my gene (red) may be close enough to be transcribed together as an operon. Consistent with this hypothesis, the green gene (which encodes a Fe-S-cluster-containing hydrogenase component as ascertained by the automated Gene Caller) does indeed have a start codon preceded by a Shine-Dalgarno sequence (provided the alternative position is correct). The two genes also may have a functional relationship (e.g., hydrogenase vs. dehydrogenase) as would be expected if part of an operon. If my gene is indeed part of an operon, then it's possible that the initiation of translation occurs from a ribosome "skid" after completion of translation of the preceding gene.

1- Change the heading

2- Enter original DNA coordinates with an explanation


NOW for the second task:

Hunting for Potential **Novel** Open Reading Frames (ORFs)

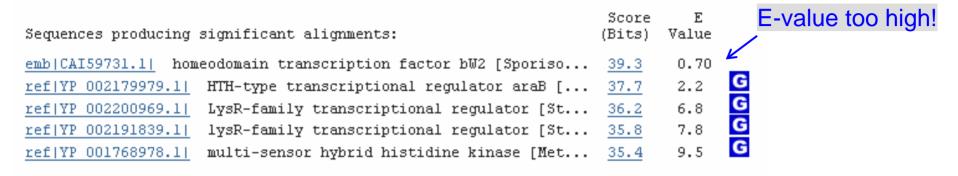
Return to the Gene Detail Page

IMG Home	Find Genomes	Find Genes	Find Functions	Compare Genomes	Analysis Carts	MyIMG	Using IMG	
Gene Searc	ch BLAST Phyl	- logenetic Profilers	n R					
Gene D	etail					Loaded.		
Sequence External IMG Sec Homolog	Sequence Search quence Search	<u>lictions</u>						
Gene In	formation							
Gene Inforn	mation	2500607069						
Gene Inforn Gene Objec	mation ct ID	2500607069						
Gene Inforn Gene Objec Gene Symb	mation ct ID pol	2500607069 PlimDRAFT_	19450					
Gene Inforn Gene Objec Gene Symb Locus Tag	mation ct ID pol	PlimDRAFT_		7drogenase, COG3383				
Gene Inforn Gene Objec Gene Symb Locus Tag Product Na	mation ct ID ool ime	PlimDRAFT_		7drogenase, COG3383				
Gene Inforn Gene Objec Gene Symb Locus Tag Product Na IMG Produc	mation ct ID ool ime	PlimDRAFT_ Uncharacteriz COG3383						Scroll dow
Gene Inforn Gene Objec Gene Symb Locus Tag Product Na IMG Produc Genome	mation ct ID pol nme ct Source	PlimDRAFT_ Uncharacteriz COG3383 Planctomyces	zed anaerobic dehj	- <u>1 3776</u>				Scroll dow
Gene Inforn Gene Objec Gene Symb Locus Tag Product Na IMG Produc Genome DNA Coordi	mation ct ID bol ime ct Source inates	PlimDRAFT_ Uncharacteriz COG3383 Planctomyces 2111568211	zed anaerobic dehj s limnophilus DSN 13793 (-)(<u>2226bp</u>)	- <u>1 3776</u>		423025bp)		Scroll dow
Gene Inforn Gene Objec Gene Symb Locus Tag Product Na IMG Produc Genome DNA Coordi Scaffold So	mation ct ID pol nme ct Source inates purce	PlimDRAFT_ Uncharacteriz COG3383 Planctomyces 2111568211	zed anaerobic dehj s limnophilus DSN 13793 (-)(<u>2226bp</u>)	<u>4 3776</u>		423025bp)		Scroll dow
Gene Inforn Gene Objec Gene Symb Locus Tag Product Na IMG Produc Genome DNA Coordi Scaffold So IMG ORF Ty	mation ct ID pol ime ct Source inates purce ppe	PlimDRAFT_ Uncharacteriz COG3383 Planctomyces 2111568211	zed anaerobic dehj s limnophilus DSN 13793 (-)(<u>2226bp</u>)	<u>4 3776</u>		423025bp)		Scroll dow
Gene Inforn Gene Objec Gene Symb Locus Tag Product Na IMG Produc Genome DNA Coordi Scaffold So IMG ORF Ty GC Content	mation ct ID pol me ct Source inates purce /pe	PlimDRAFT_ Uncharacteriz COG3383 Planctomyces 2111568211 Planctomyces	zed anaerobic dehj s limnophilus DSN 13793 (-)(<u>2226bp</u>)	<u>4 3776</u>		423025bp)		Scroll dow
Gene Inform Gene Object Gene Symb Locus Tag Product Na IMG Product Genome DNA Coordi Scaffold So IMG ORF Ty GC Content External Lin Fused Gene	mation ct ID pol nme ct Source inates purce ppe t t	PlimDRAFT_ Uncharacteriz COG3383 Planctomyces 2111568211 Planctomyces	zed anaerobic dehj s limnophilus DSN 13793 (-)(<u>2226bp</u>)	<u>4 3776</u>		423025bp)		Scroll dow

Evidence For Function Prediction

Change output from "Graphic" to "Text"

in	ng/ed	duV	·· \		RATED MIC	ROBIAI	L GENOMES	8
IMG Home	Find Genomes	Find Genes	Find Functions	Compare Genomes	Analysis Carts	MyIMG	Using I	MG
• Neighborhoo for gene_oid 211156821	=2500607069	-	tive ORF's shown	ı below				
Select gene	neighborhood: op upstream. • mum ORF size:	+100 bp dow.	nstream	Keep paramete as first	task.			
Output For • Text	mat: ○ Graphics <			SE TEXT optic OVEL open re				
Sut	mit r	Reset						
		Clicł	submit!					


in	ng/ec	lu 🖄	·· \		GRATED MIC	ROBIAL G	ENOMES
IMG Home	Find Genomes	Find Genes	Find Functions	Compare Genomes	Analysis Carts	MyIMG	Using IMG
Ieighborho or gene_oio 11156821	=2500607069		tive ORF's shown OG3383	below		Loaded.	NOTE: Usually the result with the longest amino acid sequence length is your original ORF
RKAGTCR RRQYAAV 2500607 WMRVSSP CTTIRKR GAAESNS	LGCSAETFHGPLS HGDGSGRLQRGVR 069_3_ORF3 T PRTVGRTTKSWRE PRWLTSSFQPLAG GAGLRPKPSLKF	TDSGKARAPLS FRCASLHLRRI ranslation FSKRKSKDCGS ARKRGRLLIPS	GVHQHRPDAHRRI RRIGRHGVRG of 2500607069 SVPTRPTRGSTRT GALVVSRRSGVRF	9 in frame 1, OR OGIARRGGQVRHGPQA 9 in frame 3, OR FWPVKCFRGSISWLCR RGKRWPTSTSFNWLLS	7 3, threshold	1 80, 140aa	HINT: A NOVEL ORF could be in a different reading frame from the original ORF
KMWKSASA SSRESISF FAR	FPGARLTFLIRPM ARFWLIHEWAVLV	RRSELINVPS) QMIHSPLIFS)	SPQPAAGRTRSA: LRIPSMISWYDQLI	9 in frame 4, OR IWAVSVLWYMSCTTRK FSVGMTLSSMLRMPAI			a
LVRPLVMH QLPEDRRL ETPLLYGG AAPILSNQ VVHVLHNQ LIHAQNAF	RNEDLSLSHSRSH RSAGLRMPLRSAS GHPFRAGPLHPPL LKDVEVGQRFPRR EIEPRKHFTGQVL DLRAVIGVLEIVS	ERHRPHAASSI PSSQQNERIRI FFDPAVVLNAI TPDLLDTTNAI VDPRVGRVGTI AQKVGRVAEEI	RLDGDPGVMGDLEG JVGQFRQRAGGLKI REVAGHTARTLLQP PLGINKRPLFLAPJ DDPQSFDFLFENSI PRTHGVALARDRII	9 in frame 5, OR CSCISRIDFDKRSLGI EEFCTTVGMIKTTILE NFKDGFGRRPAPELLS ASGWKDEVSHLGRFRI LHDFVVRPTVLGGDDT RSGSGFANVPRHQCQI GCSAGQAIVVHEAGEF	F 2, threshold	1 80, 426aa	We are interested i all ORFs with sequence length o at least 80 aa

INTEGRATED MICROBIAL GENOMES EDUCATION SITE

IMG Home	Find Genomes	Find Genes	Find Functions	Compare Genomes	Analysis Carts	MyIMG]	Using IMG
Sequence	e Viewer					Loaded.		
for gene_oid= 211156821	=2500607069	-	ive ORF's shown OG3383.	below				
o hint: 🔇	Copy and paste se	quence to BLAS	T and InterPro sca	n to test ORF translation				
ERKAGTORI		TDSGKARAPLS	GVHQHRPDAHRRI	9 in frame 1, ORI)GIARRGGQVRHGPQA	2, threshol	d 80, 10)2aa	
AWMRVSSPF TCTTIRKRF	PRTVGRTTKSWRE	FSKRKSKDCGS	SVPTRPTRGSTRI	9 in frame 3, ORI TWPVKCFRGSISWLCR RGKRWPTSTSFNWLLS	3, threshol	d 80, 14	lOaa	Copy/ comple
KMUKSASAH	PGARLTFLIRPN	IRRSEL INVPSF	SPQPAAGRTRSA:	9 in frame 4, OR IWAVSVLWYMSCTTRK SVGMTLSSMLRMPAI	3, threshol	d 80, 12	3aa	sequei BLAST
LVRPLVMH QLPEDRRLH ETPLLYGGO AAPILSNQI VVHVLHNQH LIHAQNARI	NEDLSLSHSRSH RSAGLRMPLRSAS GHPFRAGPLHPPI LKDVEVGQRFPRF LIEPRKHFTGQVI DLRAVIGVLEIVS	IERHRPHAASSF (PSSQQNERIRI (FFDPAVVLNAF (TPDLLDTTNAF (VDPRVGRVGTI (AQKVGRVAEEF	RLDGDPGVMGDLEG VGQFRQRAGGLKI REVAGHTARTLLQI PLGINKRPLFLAP PDPQSFDFLFENSI PRTHGVALARDRII	9 in frame 5, OR CSCISRIDFDKRSLGI EEFCTTVGMIKTTILE NFKDGFGRRPAPELLS ASGWKDEVSHLGRFRI LHDFVVRPTVLGGDDT RSGSGFANVPRHQCQI GCSAGQAIVVHEAGEF	2, threshol	d 80, 42	26aa	

Most translations will not produce significant hits

... Or will give no hits at all

Home Recent Results Saved Strategies Help BLAST/blastp suite/Formatting Results - YM9K9XGD011	001
and the second	
The distance of the second sec	
dit and Resubmit Save Search Strategies <a>Formatting options <a>Download	
00607069_1_ORF2 Translation of 2500607069	
Query ID ld 69962 Description 2500607069_1_ORF2 Translation of 2500607069 in frame 1, ORF	2,
threshold 80, 102aa Molecule type amino acid Ouery Length 102	
No significant similarity found. For reasons why, <u>click here</u>	
Other reports: Search Summary	

What do I enter in my lab notebook?

Create headings and boxes as indicated
 Enter "No significant hits"

Novel ORFs

Translation of genomic region obtained from TEXT view of Sequence Viewer

BLAST Results

No significant hits.

If your BLAST search does produce a significant hit...

A potentially valid NOVEL ORF will give you a high % identity, low e-value, & high bit score.

- Create headings and boxes as indicated in your notebook
- Fill in boxes with result from BLAST search using sequence for NOVEL ORF


Novel ORFs

Translation of genomic region obtained from TEXT view of Sequence Viewer

BLAST Results for significant hit(s):

Gene product name (top hit)
Organism
Length of alignment, Score, E-Value, Identities, Positives, Gaps
Pair-wise alignment of the database hit and the query sequence

Module tasks complete

Are you keeping up with your annotations? The 1st of 3 *imgACT* notebook checks will occur at the end of this week.