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Finsler geometry is just Riemannian geometry without
the quadratic restriction.

– S.-S. Chern



Riemann’s Habiltationsvortrag (1854)
On the Hypotheses which lie at the Foundation of Geometry

• developed the notion of an n-dimensional manifold, along
with submanifolds (as level sets of functions);

• defined the general notion of a metric (line element) on a
manifold;

• solved the equivalence problem for Riemannian metrics:

• showed the existence of n(n−1)
2 scalar invariants;

• if these invariants all vanish, metric is flat;
• in the 2-dimensional case, one scalar invariant (Gauss

curvature K)
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Riemann’s conception of a metric

• Line element on a curve γ : [a, b]→M parametrized by t:

ds = F (x, ẋ) dt

where F is chosen so that L(γ) =
∫ a
b F (x, ẋ) dt is a

plausible measure of length.

• Riemann’s conditions on F
• F is homogeneous of degree 1 in ẋ:

F (x, λẋ) = λF (x, ẋ)

• F (x, ẋ) = F (x,−ẋ).
• Riemann’s simplest case:

F (x, ẋ) =
√
gij(x)xixj

where the gij are continuous and non-negative
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√
gij(x)xixj

where the gij are continuous and non-negative



Riemann’s conception of a metric

• Line element on a curve γ : [a, b]→M parametrized by t:

ds = F (x, ẋ) dt
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The next case in simplicity includes those manifolds in
which the line-element may be expressed as the fourth
root of a quartic differential expression. The
investigation of this more general kind would require no
really different principles, but would take considerable
time and throw little new light on the theory of space....

- Riemann (1854)



Paul Finsler

• On Curves and Surfaces in Generalized Spaces, PhD thesis
(1919)

• Returned to Riemann’s general notion of a metric with a
modified homogeneity condition:

F (x, λẋ) = λF (x, ẋ)

for λ > 0 only.

• Illustration (Finsler): when walking different paths on a
hillside, speed depends on direction of path



Definition . In modern language, a Finsler metric on a
manifold M is a function

F : TM → [0,∞)

with the following properties:

• Regularity: F is C∞ on the slit tangent bundle TM \ 0.

• Positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0.
(Here x is any system of local coordinates on M and (x, y)
is the corresponding canonical coordinate system on TM .)

• Strong convexity: The n× n Hessian matrix

(gij) =

[
∂2(12F

2)

∂yi ∂yj

]

is positive definite at every point of TM \ 0.
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A Finsler metric F determines its indicatrix bundle Σ ⊂ TM
defined on each fiber TxM by

Σx = {y ∈ TxM |F (x, y) = 1}.

The strong convexity condition implies that Σx is a smooth,
strongly convex hypersurface enclosing 0x ∈ TxM .

In the Riemannian case the indicatrix must be an ellipsoid
centered at 0x, but in the Finsler case it may be much more
general. In particular, it need not even be symmetric about the
origin.



Conversely, suppose Σ ⊂ TM is such that each Σx is a smooth,
strongly convex hypersurface enclosing 0x ∈ TxM . Then Σ
uniquely determines a Finsler metric F on M , and Σ is called a
Finsler structure on M .

It is often convenient to define a Finsler metric in this manner.



Examples of Finsler metrics on surfaces

Perturbed quartic metric:

F (x1, x2, p, q) =

√√
p4 + q4 + λ(p2 + q2), λ > 0

Note that

det(gij) = λ2 + λ
(p2 + q2)3

(p4 + q4)3/2
+

3p2q2

p4 + q4

tr(gij) = 2λ+
(p2 + q2)3

(p4 + q4)3/2
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Examples of Finsler metrics on surfaces, cont’d

• The limaçon metric with indicatrix given in polar
coordinates by

R = 3 + cos θ.

• Randers metrics: family of metrics defined by choosing
indicatrices of the form

R =
1

1 +B cos θ
, 0 < B < 1

(off center ellipses).
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Local geometry of Riemannian surfaces

Let M be an oriented Riemannian surface M , and let Σ3 ⊂ TM
denote the indicatrix (unit circle) bundle of M .

We may also think of Σ as the oriented orthonormal frame
bundle of M , i.e., the bundle over M whose fiber over each
point x ∈M consists of the oriented, orthonormal frames
{e1, e2} for the tangent space TxM , via the identification

{e1, e2} ↔ e1.
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There are canonical 1-forms ω1, ω2 on Σ satisfying the
conditions that:

• ω1, ω2 are semi-basic for the projection π : Σ→M .

• For any section σ : M → Σ of the orthonormal frame
bundle, the pullbacks ηi = σ∗(ωi) satisfy

ηi(ej(x)) = δij .

• The Riemannian metric is then g = (ω1)2 + (ω2)2.

The forms ω1, ω2 are called the dual forms on Σ.
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Furthermore, there exists a unique 1-form α on Σ which is
linearly independent from ω1, ω2, and a function K on Σ so that

dω1 = −α ∧ ω2 (1)

dω2 = α ∧ ω1,

dα = K ω1 ∧ ω2. (2)

α is the Levi-Civita connection form; the function K is
semi-basic and is the Gauss curvature of the Riemannian metric
on M .
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Together, equations (1) and (2) form the structure equations for
the canonical coframing (ω1, ω2, α) on Σ.

The Gauss curvature K, together with its covariant derivatives
K1,K2, defined by the condition

dK = K1 ω
1 +K2 ω

2,

form a complete set of local invariants for the Riemannian
metric on M .



Geodesics for Riemannian surfaces

Any curve γ : [a, b]→M that is parametrized by arc length has
a canonical lift

γ′ : [a, b]→ Σ.

The length of γ is given by

L(γ) =

∫
γ′
ω1.

Moreover, the geodesic equations define a canonical vector field
on Σ, and the lifted geodesics are precisely the integral curves
of this vector field.

In terms of the canonical coframing, the geodesic vector field is
tangent to the line field given by {ω2, α}⊥. The geodesic
equations may be written in the form

ω1 = ds, ω2 = α = 0.
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Local geometry of Finsler surfaces

Let M be a surface and let Σ ⊂ TM be a Finsler structure on
M .

Defining a canonical coframing on Σ requires a bit more work
than in the Riemannian case, because there is no notion of
orthogonality for a Finsler metric.
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Following (Bryant 1995), we say that a vector v ∈ TuΣ is monic
if

π′(u)(v) = u

(where π′(u) : TuΣ→ Tπ(u)M). The set of monic vectors forms
an affine line in TuΣ.

Next, we say that a non-vanishing 1-form η on Σ is:

• monic if η(v) = 1 for all monic vectors v.

• null if η(v) = 0 for all monic vectors v.

Any two null 1-forms are linearly dependent, and the difference
of any two monic 1-forms is a null 1-form.
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The following result is due to Cartan:

Proposition . Let Σ ⊂ TM be a Finsler structure on an
oriented surface M . Then there exists a canonical coframing
(η1, η2, φ) on Σ with the properties that:

• η1, η2 are semi-basic for the projection π : Σ→M .

• η1 is monic, and η2 is null.

• dη1 = −φ ∧ η2.

• η1 ∧ dη1 = η2 ∧ dη2.

• φ ∧ dη1 = φ ∧ dη2 = 0.
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This coframing satisfies the structure equations

dη1 = −φ ∧ η2

dη2 = φ ∧ η1 − I φ ∧ η2 (3)

dφ = K η1 ∧ η2 + J φ ∧ η2.

The functions I, J,K with their covariant derivatives form a
complete set of local invariants for the Finsler structure.

• The Finsler structure is Riemannian if and only if I ≡ 0
(and J ≡ 0).

• K is the flag curvature. It is a function on M if and only if
Σ is Riemannian, in which case it is the Gauss curvature.
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As in the Riemannian case, the geodesic equations on Σ take
the form

η1 = ds, η2 = φ = 0.

In contrast to Riemannian geodesics, Finsler geodesics are not
necessarily reversible.

Definition . A Finsler metric is geodesically reversible if each
oriented geodesic can be reparametrized as a geodesic with the
reverse orientation.
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Finsler surfaces with constant non-positive flag
curvature

Theorem (Akbar-Zadeh 1988). Let M2 be compact. Then

1. a Finsler structure on M with K ≡ −1 is necessarily
Riemannian;

2. if K ≡ 0, M is either the torus or the Klein bottle.

This raised the question: what if K ≡ 1?
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Finsler surfaces with constant positive flag curvature

Theorem (Bryant 1995). There exist non-Riemannian Finsler
structures on S2 with K ≡ 1.

Theorem (Bryant 2004). A geodesically reversible Finsler
metric with K ≡ 1 on S2 is necessarily Riemannian.

Robert Bryant has also established results concerning constant
flag curvature, including Finsler metrics with exotic holonomy
groups (Bryant 2002)...

you are free to ask Robert about these results!
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Sub-Finsler geometry



Control theory example: wheel rolling without slipping
on a plane

State of system: (x, y, ψ, φ) (coordinates on Euc(2)× S1).



Velocity vectors for the wheel on the plane


ẋ
ẏ

ψ̇

φ̇

 =


φ̇ cosψ

φ̇ sinψ

ψ̇

φ̇

 = φ̇X1 + ψ̇X2

where

X1 = cosψ
∂

∂x
+ sinψ

∂

∂y
+

∂

∂φ
,

X2 =
∂

∂ψ



The 2-plane field D locally spanned by X1 and X2 is
bracket-generating: set

X3 = −[X1, X2] = cosψ
∂

∂y
− sinψ

∂

∂x
,

X4 = −[X2, X3] = cosψ
∂

∂x
+ sinψ

∂

∂y

then {X1, X2, X3} has rank 3 everywhere and {X1, . . . , X4}
spans TM .

Definition . A k-plane field D ⊂ TM spanned locally by
X1, . . . , Xk is bracket-generating if these vector fields and
their iterated Lie brackets locally span TM .



Definition . A curve γ : [a, b]→M is a horizontal curve if
whenever γ̇(t) exists, γ̇(t) ∈ Dγ(t).

Theorem (Chow, 1937) Let M be a connected manifold and
let D ⊂ TM be a smooth k-plane field on M . If D is
bracket-generating, then any two points p, q ∈M can be joined
by a piecewise-smooth horizontal curve.

Thus any two points in a manifold M with a bracket-generating
k-plane field D are connected by a horizontal curve. It makes
sense, therefore, to define a length functional for these curves.



Definition . Let M be a smooth manifold, and let D ⊂ TM be
a bracket-generating k-plane field.

1) A sub-Finsler metric on M is a smoothly varying
Finsler metric L on each subspace Dx ⊂ TxM . The triple
(M,D,L) is called a sub-Finsler manifold.

2) The sub-Finsler length of a smooth horizontal curve
γ : [a, b]→M is

L(γ) =

∫ b

a
L(γ(t), γ̇(t)) dt.

(If γ is piecewise-smooth, extend this definition in the
obvious manner.)

3) The sub-Finsler distance between two points p and q in
an sub-Finsler manifold is

D(p, q) = inf{L(γ) : γ is a horizontal curve connecting p and q }



Special case: sub-Riemannian metrics

If L is a Riemannian metric on D, it is called a
sub-Riemannian metric on M and M is a
sub-Riemannian manifold.



We will explore sub-Finsler structures in two cases:

• A rank 2 contact distribution on a 3-manifold

• A rank 2 Engel distribution on a 4-manifold



Local geometry of sub-Finsler contact 3-manifolds

A contact 3-manifold is a 3-manifold M equipped with a
2-plane field D satisfying the condition that

[D,D] = TM.

The following result is due to Pfaff.

Let (M,D) be a contact 3-manifold. For every point p ∈M ,
there exists a neighborhood U of p and a local coordinate
system (x, y, z) on U , based at p, such that

D = {dz + 1
2(x dy − y dx)}⊥.
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Let (M,D) be a contact 3-manifold. For every point p ∈M ,
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D = {dz + 1
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Theorem (Hughen, 1995) Let (M,D, 〈, 〉) be a
sub-Riemannian contact 3-manifold. There are canonical
1-forms ω1, ω2, ω3, α on the unit circle bundle Σ over D
satisfying the structure equations

dω1 = −α ∧ ω2 +A1 ω
2 ∧ ω3 +A2 ω

3 ∧ ω1

dω2 = α ∧ ω1 +A2 ω
2 ∧ ω3 −A1 ω

3 ∧ ω1 (4)

dω3 = ω1 ∧ ω2

dα = S1 ω
2 ∧ ω3 + S2 ω

3 ∧ ω1 +K ω1 ∧ ω2.

The functions A1, A2,K, together with their covariant
derivatives, form a complete set of local invariants for the
sub-Riemannian structure (M,D, 〈, 〉).



Theorem (Clelland, M) Let (M,D,L) be a contact
3-manifold with a sub-Finsler metric L, and let Σ be the
indicatrix bundle over M . There are canonical 1-forms
(η1, η2, η3, φ) on Σ that satisfy the following structure equations:

dη1 = −φ ∧ η2 +A1 η
2 ∧ η3 + (A2 + 1

2IK) η3 ∧ η1 + J1 φ ∧ η3

dη2 = φ ∧ η1 + (A2 − 1
2IK) η2 ∧ η3 −A1 η

3 ∧ η1 + J2 φ ∧ η3

− I φ ∧ η2 (5)

dη3 = η1 ∧ η2 − I φ ∧ η3

dφ = S0 η
3 ∧ φ+ S1 η

2 ∧ η3 + S2 η
3 ∧ η1

− J1 φ ∧ η1 − 2J2 φ ∧ η2 +K η1 ∧ η2.

Moreover, the indicatrix bundle Σ is the unit circle bundle for a
sub-Riemannian metric if and only if I ≡ 0.



Geodesics of sub-Finsler contact 3-manifolds

The problem of finding length-minimizing curves is complicated
by the fact that we do not allow arbitrary variations of γ, but
rather only variations of γ through horizontal curves of D.

By the Griffiths formalism, we may convert this constrained
variational problem on Σ to an unconstrained problem on an
affine sub-bundle

Z ⊂ T ∗Σ.

Extremals of the unconstrained length functional on Z then
project to extremals of the original, constrained variational
problem on Σ.



Example: the Heisenberg group

Let H be the Heisenberg group, defined by

H =


1 y z + 1

2xy
0 1 x
0 0 1

 : x, y, z ∈ R

 ∼= R3,

and let the contact structure on H be the rank 2 distribution

D = {dz + 1
2(x dy − y dx)}⊥.
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Example: A “limaçon metric” on H.

For an example in which the geodesics are not liftings of conic
sections, consider the sub-Finsler metric whose indicatrix is the
convex limaçon with polar equation

R = 3 + cos θ.
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Projections onto the xy-plane



Theorem (Clelland, M 2006)

For any homogeneous sub-Finsler metric F on the Heisenberg
group H, the sub-Finsler geodesics are straight lines parallel to
the xy-plane or liftings of simple closed curves in the xy-plane.
In the latter case, the simple closed curves are the curves of
minimal Finsler length enclosing a given area in the plane.



Local geometry of sub-Finsler Engel manifolds

Definition . An Engel manifold is a 4-manifold X equipped
with a rank 2 distribution D satisfying the conditions that

• rank([D,D]) = 3, and

• [D, [D,D]] = TX

at each point of X.

Example: Euc(2)× S1 with the 2-plane field D defined by the
wheel-on-the-plane control system.



Theorem (Engel)

Let (X, D) be an Engel manifold. For every point p ∈ X, there
exists a neighborhood U of p and a local coordinate system
(x, y, z, w) on U , based at p, such that

D = {dy − z dx, dz − w dx}⊥.



Geodesics of Sub-Finsler Engel Manifolds

Note: the variations of a horizontal curve must themselves
must be horizontal curves, that is, tangent to the 2-plane Engel
system at each point. Such variations are not guaranteed to
exist.

Definition . A horizontal curve γ : [a, b]→M is rigid if γ has
no C1 horizontal variations other than reparametrizations. A
horizontal curve γ is locally rigid if every point of [a, b] lies in a
subinterval J ⊂ [a, b] so that γ restricted to J is rigid.

Theorem (R. Bryant, L. Hsu 1994). Every Engel manifold
has a canonical foliation by curves that are locally rigid.



The wheel on the plane, again

Rigid curves for this system project to lines in the plane.



A natural Engel structure from surface geometry

Proposition (M, 2001) Let N be a surface with a Riemannian
metric 〈 , 〉, and let F(N) be the orthonormal frame bundle over
N . There is a canonical Engel system on F(N)× R so that

1) regular curves on N lift to horizontal curves of the Engel
system on F(N)× R;

2) the locally rigid curves on F(N)× R project to
Riemannian geodesics on N ;

3) the regular sub-Riemannian geodesics on F(N)×R project
to local extremals of the functional

F (α) =

∫
α

1 + κ2 ds

where κ is the geodesic curvature of α : [c, d]→ N .



Theorem (Clelland, M, Wilkens 2007) For a “tame”
sub-Finsler structure, locally there are canonical 1-forms
η1, η2, η3, η4, φ on Σ that satisfy the structure equations:

dη1 = −φ ∧ η2 + (T 1
03 φ+ T 1

13 η
1 + T 1

23 η
2) ∧ η3

+ (T 1
04 φ+ T 1

14 η
1 + T 1

24 η
2 + T 1

34 η
3) ∧ η4

dη2 = φ ∧ η1 − I φ ∧ η2 + (T 2
03 φ+ T 2

13 η
1 + T 2

23 η
2) ∧ η3

+ (T 2
04 φ+ T 2

14 η
1 + T 2

24 η
2 + T 2

34 η
3) ∧ η4 (6)

dη3 = η1 ∧ η2 + (−I φ+ T 3
13 η

1 + T 3
23 η

2) ∧ η3

+ (T 3
04 φ+ T 3

14 η
1 + T 3

24 η
2 + T 3

34 η
3) ∧ η4

dη4 =
(
(sin Θ) η1 + (cos Θ) η2

)
∧ η3

+
(
−I(cos2 Θ + 1)φ+ T 4

14 η
1 + T 4

24 η
2 + T 4

34 η
3
)
∧ η4

dφ = φ ∧ (T 1
03 η

1 + T 0
02 η

2 + T 0
03 η

3 + T 0
04 η

4).
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14 η
1 + T 4
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03 η
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02 η
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03 η
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04 η
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Back to the wheel on the plane, again

We can define a sub-Finsler metric for the wheel-on-the-plane
system that modifies the sub-Riemannian metric in a way that
makes curvature more costly.



Note that the sub-Finsler geodesic doesn’t curve as sharply as
the sub-Riemannian one.



Control systems

A control system may be described in local coordinates by an
underdetermined system of ordinary differential equations

ẋ = F (x, u), (7)

where x ∈ Rn represents the state of the system and u ∈ Rs
represents the controls. More generally, x and u may take
values in an n-dimensional manifold X and and s-dimensional
manifold U, respectively.



Control linear and control affine systems

• Control linear: can be locally represented as

ẋ = f(x)u, (8)

where f(x) is an n× s matrix whose entries are smooth
functions of x.

• Control affine (control system with drift):

ẋ = v(x) + f(x)u, (9)

where f(x) is as above and v(x) is a so-called drift vector
field that is not subject to control.

Control linear systems are well understood, but control affine
systems are ubiquitous and yet not as well understood.



Affine distributions
Definition . A rank s affine distribution F on an
n-dimensional manifolds M is a smoothly varying family of
s-dimensional affine subspaces Fp ⊂ TpM .

• F is strictly affine if none of the affine subspaces Fp are
linear subspaces. (Studied in depth by V. Elkin.)

• A point-affine distribution is an strictly affine distribution
F with a fixed vector field a0 ∈ F .

• Associated to F is the linear distribution

LF = {ξ1 − ξ2 : ξ1, ξ2 ∈ F},

called the direction distribution of F .



Almost bracket generating affine distributions

Set

F 1 = F

F i+1 = F i + [F, F i], i ≥ 1.

Definition . An affine distribution F on an n-dimensional
manifold M is almost bracket generating if rank (F∞) = n− 1
and for each p ∈M and any vector ξ(p) ∈ Fp, span
(ξ(p), (LF∞)p) = TpM .



Point-affine equivalence

• When are two seemingly different control systems actually
the same kind of system (locally)?

• In other words, can we describe different equivalence
classes of point-affine systems?

• If we can, we should be able to obtain normal forms
corresponding to the equivalence classes for these systems.



Rank 1 point-affine distributions on 3-manifolds

Theorem . (Clelland, M, Wilkens 2009) Let F be a rank 1
point-affine distribution on a 3-manifold M .

1. If F is almost bracket generating, then there are local
coordinates (x1, x2, x3) so that

F =

(
∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)
.

2. If F is bracket generating and LF 2 is integrable, then

F =

(
x2

∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)
.



Rank 1 point-affine distributions on 3-manifolds

Theorem . (continued)

3. If F is bracket generating and LF 2 is not integrable, then

F =

(
∂

∂x1
+ J

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

))
+ span

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
where H,J are arbitrary functions on M satisfying ∂H

∂x1
6= 0.



Example: single spin 1/2 quantum system

The time evolution of a quantum spin system is governed by
Schrödinger’s equation

U̇(t) = −iH(t)U(t) (10)

where U(t) ∈ SU(n) for each t. The Hamiltonian H(t) is the
n× n matrix

H(t) = Hd(t) +

m∑
j=1

uj(t)Hj .

where Hd is the drift vector field of the system.



Example: single spin 1/2 quantum system

In the case of NMR control of a single spin 1/2 system, the
state space is SU(2). There are local coordinates so that the
Hamiltonian is

H = Iz + u(t)Ix

where

Iz =
1

2

[
1 0
0 −1

]
, Ix =

1

2

[
0 1
1 0

]
.

Thus Schrödinger’s equation (10) becomes

U̇ = −i IzU + (−i IxU)u



Example: single spin 1/2 quantum system

The matrices −i Ix,−i Iz are in the Lie algebra su(2) with
commutator

[−i Iz,−i Ix] = −i Iy (11)

where

Iy =
1

2

[
0 −i
i 0

]
.

The point affine distribution is F = a0 + span(a1) where a0, a1
are the right-invariant vector fields

a0 = −i IzU, a1 = −i IxU,

and by (11) F is bracket generating.



Example: single spin 1/2 quantum system

This example falls into Case 3 of the normal form theorem for
rank 1 point-affine distributions on 3-manifolds. There are local
coordinates x1, x2, x3 so that the invariants of the system are

H = −e2f(x2,x3) tan (x1 + g(x2, x3)) + h(x2, x3),

J = 0

where f, g, and h satisfy the PDEs

e2ffx3 + gx2 + hgx3 + x3 = 0,

e2fgx3 + fx2 + hfx3 − hx3 = 0.



Optimal control of control-affine systems

Theorem (Clelland, M, Wilkens 2013). 1. Let F be a rank
1 strictly affine point-affine distribution of constant type on
a surface M2 and let Q be a positive definite quadratic cost
functional on F . If the structure (F , Q) is homogeneous,
then (F , Q) is locally point-affine equivalent to one of two
normal forms, with one local invariant.

2. Let F be a rank 1 strictly affine, bracket generating
point-affine distribution of constant type on a manifold M3

and let Q be a positive definite quadratic cost functional on
F . If the structure (F , Q) is homogeneous, then (F , Q) is
locally point-affine equivalent to one of six normal forms,
with three local invariants.










