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Abstract

The first part of this thesis is a study of modules over elliptic algebras, espe-
cially, modules of Gelfand-Kirillov dimension 2 An elliptic algebra A is associated
with a certain automorphism of a one-dimensional scheme E, generally an elliptic
curve, and, every elliptic algebra defines a 'non-commutative projective plane' proj-
A, sometimes called a quantum plane. Therefore, the study of modules translates
into an interplay between the geometries of E and of quantum planes. First, we
consider Cohen-Macaulay modules and their relation to geometry. The relation
to geometry is studied by looking at 'the points of a given module M' and corre-
sponding 'incidence relations' (a point p of E is said to be a point of M if there is a
non-zero map from M to the point module Np). Next, we study injective modules,
the main objective being an explicit construction of a "residue complex" (a minimal
injective resolution) for elliptic algebras, which we partially achieve. The second
part of the thesis contains the construction of a residue complex (a minimal injec-
tive resolution) for regular algebras of dimension 2 which are twisted homogeneous
coordinate rings of the projective line. Residue complexes for twisted coordinate
rings have been previously constructed by geometric methods. Our method is al-
gebraic, based on a unique factorization result for twisted coordinate rings, and
(non-commutative) localizations of the algebra at orbits of points of the projective
line.
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INTRODUCTION

This thesis has two parts: the first part (chapters and 2 is a study
of modules over elliptic algebras and geometry of quantum planes, and the
second part (chapter 3 is a construction of "residue complex" (a minimal
injective resolution) for regular algebras of dimension 2.

Elliptic algebras are the interesting cases of regular algebras of dimension
3 [ATV1]. It was shown in [AS] that a regular algebra of dimension 3 can
have r generators and r relations (each of degree 5-r) where r = 2 or 3 To
every regular algebra of dimension 3 there is an associated triple E, a, )
[ATV1], where E is a scheme E C p2 if r = 3 and E C P1 x P1 if r = 2,
a is an automorphism of E and is an invertible sheaf on E whose global
sections define a morphism r E --+ pr-1. The most interesting case of a
regular algebra of dimension 3 is when r = 3 and E is a cubic divisor in the
projective plane p2. This is the case we call the algebra an elliptic algebra.
A Sklyanin algebra is a special example of an elliptic algebra where the cubic
divisor E is an elliptic curve and a is a translation on E. In an eiptic algebra
A, there is a normalizing element g of degree 3 unique up to a scalar factor;

and, there is an isomorphism of graded rings = AlgA _-_+ D,,>OHO(E,,C,,)
0,n-1

where C LO' ... IC ,and C = ,*,C [ATV1, Theorem 2.

Let A be an eptic algebra. By a quantum plane [Ar], we mean the
4non-commutative projective plane' proj-A where proj-A is defined to be
the quotient category gr-A/tor-A (gr-A is the category of finitely generated
graded A-modules and tor-A is the subcategory of gr-A consisting of torsion
modules). Thus, by definition, the algebro-geometric properties of quantum
planes are described in terms of the modules over elliptic algebras.

The study of modules over elliptic algebras was started in [ATV1, ATV2],
where the interest was primarily on modules of Gelfand-Kirillov (gk-) dimen-
sion 1. It was shown that the points of E parametrize certain A-modules
called point modules. A point module N is a graded A-module with these
properties: (i) No = k, (ii) No generates N, and (iii) the Hilbert func-
tion hN(n = dimk(Nn = for n > We say that an A-module M is
Cohen-Macaulay if pd(M = 3 - gk(M), (where pd(M), resp. gk(M) is the
projective dimension, resp. Gelfand-Kirillov dimension of M), and say that
it is normal if it is Cohen-Macaulay and its Hilbert function hm satisfies the
condition: hm(n = for n < and hm(O 5 0. An A-module M is Cohen-
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Macaulay if and only if Extq (M, A) = for q 4_ 3 - gk(M) [ATV2, 4]. TheA

module M = Ext 3-gk(") (M, A) is called the dual of M. The point modulesA
are precisely the normal modules of gk-dimension and multiplicity .

The first chapter of my thesis is a study of Cohen-Macaulay modules over
elliptic algebras and their relation to the geometry of quantum planes. We
first give (§I.2 a geometric interpretation of the duality N -+ Nv between
left and right (shifted) point modules, in terms of an auto-bijection p of the
set of points of E. We later use this to describe the geometry of normal
modules. Our main interest then is in normal modules of gk-dimension 2,
simply called gk-2 normal modules. A gk-2 normal module has a minimal
resolution of the form (I.3.2)

0 , A(-ji) ED ... ED A(-j,) -* A(-ij) ED ... ED A(-i,) -. M 

with i,,j, 0. Since a minimal resolution is unique up to isomorphism,
the sequence of indices 7 = ij, . . . , i,; ji, . . . , j,) is unique where we arrange
ij,..., 4 and jl,...,j, in increasing order. We call this sequence the type
of M. We show that the Hilbert function of a gk-2 normal module is convex
and use this to conclude that there are only finitely many types of critical gk-
2 normal modules in any given multiplicity. Next we consider the geometry
of gk-2 normal modules. To study the relation to geometry, we look at the
4points of a given module M', i.e., the points p on the cubic divisor E, such
that M has a non-zero map to corresponding point modules Np. We prove
that there is a natural way to describe the points of gk-2 normal modules
(Theorem 13.21): the points of a gk-2 normal module M are the zeroes
of a certain global section sm of an invertible sheaf L, on E. It turns out
that the invertible sheaf C depends only on the type of the module M,
and the section sm is independent, up to a scalar, of the choice of minimal
resolution. The invertible sheaf L, is given by the formula 1.3.19)

L = CP'401.

Here p,(a) is a polynomial in a (related to the Hilbert series) and P-(O' is
the action of p, on L, where we consider Pic(E) as a module over the group
ring Z< a>, the action of a being the pullback by the functor a*. We denote
the divisor of zeroes of sm by div (M) and call it the divisor of M. We describe
the points of the dual, Mv, of a normal module M in terms of the points of
M (Theorem 13.32): we show that div(Mv(-c) = a-ldiv(M), where is
an integer such that Mv(-c) is normal. The next results (Theorems I.3.36,
3.41) describe how the points of different gk-2 normal modules are related.
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We study the gk-2 normal modules of multiplicity 2 in more detail (§I.4),
especially, the conic modules and their geometry. A conic module is a mod-
ule of the form A/OA, where is a quadratic: 54 E A2- We give some
results about the criticality and factorization of conics: we show, for exam-
ple, that a quadratic can factorize into linear forms in at most four different
ways, there being an example in a Sklyanin algebra where four distinct fac-
torizations for a quadratic exist.

We introduce the notion of gk-1 equivalence between modules ffl.5): two
finite A-modules are gk-1 equivalent if their images in the quotient category
gr-A/GK<l are isomorphic, where G<l is the localizing subcategory of
gr-A consisting of modules with gk-dimension at most 1. The notion of
gk-1 equivalence is useful because the category gr-A/GK<l is related to
the category mod-Ao (where A = A[g-l], g being a normalizing element of
degree 3 unique up to a scalar). We conjecture that there is a type of
gk-2 normal modules which is generic in the sense that every gk-2 critical
module is gk-1 equivalent to a shift of a module of type \; and, show how
the maps to point modules can be used to prove this conjecture under a
certain hypothesis. (The gk-1 equivalence is also used in the next chapter
to classify indecomposable injective modules.)

The appendix A gives a classification of conics in the 'Weyl Plane', i.e.,
the quantum plane corresponding to the non-reduced case of the eptic
algebra where the associated cubic divisor E is the triple projective line
3PI. We use some known results, and derive some others, about the module
theory of the Weyl algebra to give a classification of conic modules up to gk-
I equivalence. They can roughly be classified as parabolic and hyperbolic.
There is nothing novel about parabolic modules, but, hyperbolic modules
are "quantized': two critical hyperbolic modules A/(yz+ax2)A and A/(yz+
OX2)A are equivalent if and only if a - E Z. The last result is based on
[Di] and [Mr1J.

The second chapter is a study of injective modules over elliptic algebras.
We say that an indecomposable injective module is f class if it is an
injective hull of a finite critical module of gk-dimension j. Our main objec-
tive behind studying injective modules was to construct a minimal injective
resolution of A

0 A + E3 --+ E2 --* El --* E - 0

where E would be a direct sum (with certain multiplicities) of the inde-
composable injective modules of class .6i. This would be an analogue of the
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residue complex for commutative projective plane, and could be called a
44 residue complex" for quantum plane. We show (Theorem II.1.12) that, up
to an isomorphism, the indecomposable injective A-modules of class 62 are
exactly the injective hulls, EA(Ma), of gk-2 critical Cohen-Macaulay mod-
ules M, one from each gk-1 equivalence class a. Then we show (Theorem
II.2.8) that the injective hull of the module = Al(g) is isomorphic to
QIA(g), where Q is the graded field of fractions of A and A(,) is localization
of A with respect to the Ore subset consisting of homogeneous elements of
A - g). On the other hand, the module Q/A (where A = A[g-1]) is an
injective module which decomposes as a direct sum of injective hulls of gk-2
critical modules not gk-1 equivalent to B. Thus we construct a resolution of
A up to the E 2 term:

0 A Q - QIA(,,) ED Q/A

We do not know yet how the El term and the "residue-map" E 2 --+ E 1
look like. But we do describe the injective hull of a point module as a
direct limit of essential extensions, and show that its gk-dimension is 1 In
the final section, we obtain a Matlis-type duality (II.4.15) for certain non-
commutative complete local rings; the motivation for this coming from the
algebra R = Ag), the g-adic completion of the local ring Ag). Thus for a
finite graded right R-module M we have

HOMR (HOMR(M, E), E) M

where R is the opposite ring of R and E is a bimodule (in our case, QIA(g))
which is an injective hull of Rl(§).

The final chapter of my thesis is a construction of a "residue complex"
(a minimal injective resolution) for a regular algebra B of dimension 2 It
is well-known that regular algebras of dimension 2 are twisted homogeneous
coordinate rings of the projective fine PI. To construct the resolution, wek
employ certain results which are valid for twisted homogeneous coordinate
rings of general projective space pn. So, we start, in the first section, withk
a unique factorization result for the twisted coordinate rings B(X, c,,C),
where X = pn a is an automorphism of X, and C Ox(l). Recall thatk
B is defined [AV] by B = EDn>0 HO(X LO where Cn C 'Co, L,,n-1.
The uniqueness of factorization is in terms of the orbits of the irreducible
elements. The key fact we use is the equivariance a*,C �-_ . In the second
section, we use the factorization to get a partial fraction decomposition for
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non-negative degree elements of the graded quotient field of the twisted co-
ordinate ring B(P', a,,C). The partial fraction decomposition is used laterk
to show the surjectivity of a "residue-map" in the complex. In the third sec-
tion, we construct a "residue-complex" for a regular algebra of dimension
2. Residue-complexes for general twisted coordinate rings have previously
been constructed in [Yel], by geometric methods. Our method is rather al-
gebraic, using (non-commutative) localizations B, of the algebra at orbits
w of points of P1. We define as the graded quotient ring of B with respectk
to the Ore subset S, 10 homogeneous element of I ) � VP E
Let K be the Z-graded quotient field of B, and HOMk(B, k). Then,
there is an exact sequence

0 --+ B --+ K --* EDKIB, --+ B(2) 0

which is a minimal injective resolution of both as a left and right -
module. The injective B-module KIB,, is a direct sum of injective hulls of
point modules corresponding to the points in the orbit w. We also consider
the ("sheafified") version of this sequence in the category Proj-B, where we
use a Grothendieck-Serre-type duality for the non-commutative projective
scheme Proj - B. (Proj - B = Gr - B/Tor - B, Gr-A is the category of
all graded A-modules and Tor-A is the subcategory of Gr-B consisting of
torsion modules). The appendix B describes and proves the Serre duality for
regular algebras, using some known results about their dualizing complexes
[Yel].
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I

COHEN-MACAULAY MODULES
OVER ELLIPTIC ALGEBRAS

In this chapter we study modules over elliptic algebras, especially modules
of Gelfand-Kirillov (gk-)dimension 2 and their relation to the geometry in
the quantum plane.

1 Background and Preliminaries

Let k be a fixed field. Let A be an N-graded connected kalgebra, finitely
generated in degree 1. ( A is connected if AO = k.) Such an algebra is called
a regular algebra if it satisfies the following conditions:

1. A has finite global dimension d,

2. A has polynomial growth, i.e., dimk(An < an6 for some positive real num-
bers a and .

3. A is Gorenstein, e, if the left module A k has a minimal graded resolution

0 __+ pd __+... __+ pl __+ p __+ Ak __ 0

of length d by projectives of finite type, then the transposed complex is a
resolution of a right module isomorphic to kA(C), the shift of kA to some
degree c :

0 +- kA(C) +_ pd' pl' _ p _ .

The last condition can also be stated as follows: Extq (A k, A) = ifA
q d and ExtdA(Ak, A) kA(C).

In this thesis, we will consider regular algebras of dimensions 2 and 3
only.

Regular algebras of dimension 3
A systematic study of regular algebras of (global) dimension 3 was started

in [AS], where it was shown that there are two basic possibilities for a regular
algebra of dimension 3 It has r generators and r relations, each of degree
s = - r, where r = 2 or 3 In [ATV1] these algebras were geometrically
realized by associating to them certain triples T = E, a,,C), where E is a
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scheme E C p2 if r = 3 E C PxP' if r = 2 , o is an automorphism of E,
and C is an invertible sheaf on E whose global sections define a morphism
7r E pr-1 (r is the inclusion of E in p2 if r = 3 or is the projection of
E on the first factor P1 if r = 2 In all cases, Al = HO(E,C). There are
four possibilities for the triples:

• the elliptic case:

1. r = 3 E is a cubic divisor in p2 , and C = OE(1)

2. r = 2 E is a divisor of bidegree 2,2) in P 1 x P 1, and C pr*1 Op (1)

• the linear case:

1. r = 3 E = p2, and C Op,(1)

2. r = 2 E = P 1 x P 1, and C t� pr*1 Op, (1)

In case r = 3 the algebra A has a resolution of the form

X

y
[XYZ] )3 1)3 Z(1. 1) 0 --+ A(-3) ) A(-2 M A- - A Ak -- 0.

Here A(v) denotes the shift of A by v. The elements x, y, z and the entries
of the 3 x 3 matrix M have degree 1. It follows from this resolution that,
for these algebras the case r = 3 the integer in the condition 3)
of the definition of regular algebras is 3 so that Ext3 (AkA) kA(3).A
These algebras have the same Hilbert function as that of a commutative
polynomial ring in 3 variables: diMkAn = n 2+ 3n 22 for n > and,
therefore have Gelfand-Kirillov dimension 3 They are viewed as "twists" or
44 quantizations" of the polynomial ring k[x, y, z] and are also called quantum
polynomial rings in 3 variables [Ar]. We will mainly be interested in the
elliptic case of a quantum polynomial ring, i.e., the case that our regular
algebra A corresponds to a cubic divisor E in p2. In this case, the algebra
A is simply called an elliptic algebra. Recall that an eiptic algebra is a (left
and right) Noetherian domain [ATV11. One of the most interesting cases is
when the cubic divisor E is an eiptic curve, and a is a translation on E.
In this case, A is called a Sklyanin algebra. The relations defining a generic
Sklyanin algebra A over an algebraically closed field can be put into the
form

(1.2) axy + byx + z 2 = 0, ayz + bzy + CX2 = 0, azx + bxz + Y = .
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The relations 1.2) define a regular algebra unless either a = = C3 or
two of the three quantities (a, b, ) are zero [AS, ATV1].

In this chapter the symbol A will always denote an elliptic algebra unless
otherwise stated. We will also assume the ground field k to be algebraically
closed.

Given an invertible sheaf M on E, we denote by MO' the pullback
o,*M. Thus, for an open subset U in E, MO'(U) is canonically identified
with M (oU) [AV,§2]. Given a section E HO(E, M), and a point E E,
we denote by sp the canonical image of s in the localization Mp and by s(p)
its canonical image in Mp/mpMp k(p), where mp is the maximal ideal
of the local ring Op. Given sections s and S2 of invertible sheaves Ml and
M 2 on E, we canonically identify (Sl 0 S2)(p) as Sl (P) 0 S2 (P) in k(p). Given
s E HO(E, M), we denote by s the canonical image of s under the natural
k-linear isomorphism

HO(E, M) ---+ H(E, MO').

Also, s(p) E k(p)' is canonically identified with s(ap) E k(op) under the

natural isomorphism k(p)' ---+ k(ap). For a section s E HO(E, M) we will
denote by div(s) the divisor of zeros of s. We have div(sO' = ldiv(s).

In an elliptic algebra A, there is a normalizing element g of degree 3,
unique up to a scalar factor; and, there is an isomorphism of graded rings

B = AlgA _-+ ED,,>oHO(E,,C,,) where C = LO' - .,CO"-' [ATV1, The-
orem 2 The algebra has Gelfand-Kirillov dimension 2 and is a domain
if the cubic divisor E is reduced. We will often consider the homogeneous
elements of B as global sections of the invertible sheavesC,,. For a homoge-
neous element E A, we denote by (or, by itself if no confusion arises)
its image in B. Note that for homogeneous elements and of B of degrees
n and m respectively,

(1.3a) (040 = 0(p) & 00"p)

and,

(1.3b) div (0. 0 = div (0 ,,n) = div(0 + -n div(0).

Non-commutative projective schemes, Quantum planes

We recall very briefly the notion of a non-commutative projective scheme
associated to an N-graded non-commutative Noetherian algebra R over a
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field [Ar, AZ]. This definition is motivated by a fundamental theorem of
Serre [Se]. Let Gr - R (resp. gr - R) denote the category of all graded
right R-modules (resp. graded Noetherian right R-modules) with morphisms
being graded homomorphisms of degree 0, and let Tor - R (resp. tor -
R) denote the full subcategory of Gr - R (resp. gr - R) consisting of m-
torsion modules, where m= D,,>,R,,. (Recall that an element x of a graded
module M is said to be m-torsion if Mn = for some n. The set of torsion
elements in a module form a graded submodule of M denoted by t(M) A
module M is called m-torsion if t(M = M. A Noetherian torsion module
is necessarily finite k-dimensional.) The theorem of Serre states that if R
is commutative and generated in degree 1, then the category mod - Ox of
coherent sheaves on the (commutative) projective scheme X = Proj(R is
naturally equivalent to the quotient category gr-R/tor-R. In case R is non-
commutative, the projective scheme proj-R is defined to be the quotient
category gr-R/tor-R along with two additional structures: one is the object
OR in proj - R which is the canonical image of the right R-module RR in
proj - R, and the other is the shift functor SR M M on proj - R,
induced by the shift functor s of gr - R, s(M = M(1). So, by definition
"the projective scheme of R is the triplet proj - R = CR, OR, SR) where

CR = gr-R/tor-R. Sometimes one also defines the general projective scheme
of R, Proj-R, as the corresponding triplet Projo-R = Gr-R/Tor-R, OR, SR)-

For a module M in gr - R we will generally denote its image in proj - R by
the corresponding calligraphic letter M. Note that

Homproj-R(M, A/) = lim HomgR(M>,,, N>n)
n-+oo

where M>,,, EDk>nMk, N>n = EDA;>nNk- Further, M -. IV in proj-R if and
only if M>,, N>n in gr - R for large n.

When R is a quantum polynomial ring (in 3 variables), we call proj-R a
non-commutative projective plane or a quantum plane. As remarked earlier,
we will mainly be interested in the elliptic case of a quantum plane, i.e., the
quantum plane defined by an elliptic algebra A, and, in the following by
a quantum plane we will mean this case only. Thus, the algebro-geometric
properties of the quantum plane are, by definition, described in terms of
A-modules. We will define below points, lines and, later, conics in the quan-
tum plane in terms of certain modules called point, line or conic modules
respectively. Given an A-module, one of the objectives would be to describe
its points in the quantum plane.
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Basic results about modules
All modules considered will be graded modules, unless otherwise speci-

fied. By the term A-module we will mean a graded left or right A-module.
We denote the Gelfand-Kirillov (gk-) dimension of a module M by gk(M) A
module of gk-dimension m will simply be called a gk-m module. A finite A-
module will mean a finitely generated graded A-module. A module M is said
to be locally finite if each homogeneous component Mn is a finite dimensional
vector space over k and is said to be left bounded if M = for all n < < .
A finite module is clearly locally finite and left bounded. For a locally finite
module M, we denote its Hilbert function by hm: hm(n = diMk(Mn)- If no
confusion arises then we also denote by hm itself the Hilbert series of M:
hm(t = E diMk(Mn )tn. For a non-zero finite module M the order of the
pole of hm(t) at t = equals gk(M); and, the leading coefficient of the series
expansion of hm(t) in powers of (1 - t) is a positive integer called the mul-
tiplicity of M, denoted e(M) [ATV2 221]. In fact, the Hilbert function of
a finite module M is given by a polynomial p(n) for large n: hm(n = p(n)
for n > > 0. Then the degree k of p(n) is one less than gk(M) and the
leading coefficient of p(n) is e(M)lk!. We denote by M(v) the shift of M
by degree v MV)n = M,, and by M>, the tail (sub-)module defined by
A:On = Mn if n > v and (M�,,) = if n < v.

Recall [C,§7] that every left bounded A-module M has a minimal pro-
jective resolution which is unique up to (non-unique) isomorphism, and if
M is locally finite so are the projectives in the minimal resolution. A left
bounded module P is projective in the category of graded modules if and
only if it is free, i.e., isomorphic to a direct sum of shifts of the module A
[ATV2 26]. We will use the notation Ail,...,i, = Er=,A(ik). Let Mk
have a minimal resolution

(1.4) 0 _+ pn __+ pn-1 _-, ... pi _* po __* M __* 

with, say, pk = A(-ilk.... -irkk). (The negative sign is chosen to conform
to later notations, 33.) The uniqueness of the minimal resolution implies
that the sequence of indices (ilO, - , ir,,O ... ; iin.... 'rnn) is unique, where
we take the indices (ilk, - , i,,k) in increasing order. We call this sequence
the type of M. It follows again by the uniqueness of a minimal resolution
that if the modules M, and M2 are isomorphic, they are of the same type.
We will generally denote a type by or 7.

We use the symbol HOMA(M, N) to denote the graded group whose ho-
mogeneous component of degree v consists of degree-preserving homomor-
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phisms M - N(v). We use the notation HOMGA(M, N) for the group of
degree-zero homomorphisms in Gr-A. The categories Gr-A and A-Gr have
enough projectives and injectives [NV, Chapter A The derived functor of
the graded HOMA(M, N) is denoted by Extq (M, N). We will write Eq(M)A
for Ext (M, A).A

The key technique used to study modules is duality. If we denote by M
a finite module or a finite complex of projectives, then MD will denote its
dual RHOMA(M, A). Thus, when M is represented by

0 __+ pk __+ ... __+ pl __+ p __+ ,

(for example, a projective resolution of M when M is a module) then MD
is represented by the transpose sequence

0 _ pk* _ ... _ pl* _ p* +- ,

where P = HOMA(P, A). The q-th cohomology of this complex is Extq (M, A).A
The biduality isomorphism M __+ MDD expresses itself on Ext by a spectral
sequence [ATV2 2331

EPq = Extp (Ext -q (M, A), A) =�- M.2 A A

It can be put into the standard first quadrant form, by reindexing it as

(1-5) Epq = ExtP (EXtd-q (M, A), A) M[d].2 A A

Here M[d] denotes the shift of the complex M by position d, where d = 3,
the global dimension of the algebra A.

Recall that an A-module is said to be critical if it is not zero and every
proper quotient has lower gk-dimension A module M is called pure if the
gk-dimension of all its non-zero submodules equals gk(M). A critical module
is pure. The gk-dimension provides a filtration of a finite A-module [ATV2,
2.29]:

Proposition 16 Let M be a finite A-module of gk-dimension m.
(i) There exists a finite filtration of M (called critical series of M) whose

successive quotients are critical.
(ii) The sum M, of all submodules of M of gk-dimension < v is a char-

acteristic submodule of M, gk(M,) v, and there is a filtration

(1.7) MO C Ml C ... C MM- C Mm = M,
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such that the quotient MIM,-, is pure v-dimensional.

An important fact is that the filtration defined by the spectral sequence
(1.5) is the same as the filtration defined by gk-dimension 1.7) [ATV2, §4].

We denote the projective dimension of a module M by pd(M), and
write Eq(M) for Extq (M, A). An A-module M is called Cohen-MacaulayA
if pd(M = 3 - gk(M). This is equivalent to saying that Eq(M = for all
q 54 3 - gk(M) [ATV2, 4]. An A-module is said to be normal if it is Cohen-
Macaulay and satisfies the condition: hm(n = for n < , hm(O) 0. For
a Cohen-Macaulay module M there exists a unique integer m such that the
shift M(m) is normal. We call this shifted module normal shift of M. The
dual Mv of an A-module M is defined to be the module E3-gk(M)(M) We
collect the basic facts about the duality in the following proposition. We
denote the augmentation ideal A>, by rn.

Proposition 1.8. Let M be a non-zero finite A-module of gk-dimension m.
Then

(i) Eq(M = if q < 3 -
(ii) gk(Mv = m, and e(Mv = e(M).
(iii) If m, < 3 then Mv is Cohen-Macaulay.
(iv) There is a canonical map um M Mvv which is an isomorphism

if and only if M is Cohen-Macaulay.
(v) ker(ttm) is the maximal submodule of M which has gk-dimension

< m, and gk(cokeriL) < m, - 2 Thus, a Cohen-Macaulay module is pure.
(vi) E(M = M* = if and only if m < 3.
(vii) The following conditions are equivalent:

(a)E3(M = ,
(b M is m-torsion-free,
(c) socle(M = HOMA (k, M) = 
(d) pd(M < 3.

The proofs are given in [ATV2, 24].

2 Duality among Point Modules

We recall the basic results about Cohen-Macaulay modules of gk-dimension
1 [ATV2, 6]. An A-module N of gk-dimension is Cohen-Macaulay if
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and only if its socle is zero. The gk-1 normal modules of multiplicity are
precisely the point modules. A point module is an A-module with these
properties: (i) No = k, (ii) No generates N, (iii) diMk(Nn = for a n > .
It is known [ATV1, 3] that point modules are in bijective correspondence
with points on the cubic divisor E. Given a point E E, we denote by Np
(resp. PN) the corresponding right (resp. left) point module. In fact, the
point module Np (resp. pN) is isomorphic to AlWpA (resp. AIAWp) where
Wp = I E Al I (p = 0} is the two-dimensional k-vector space of linear
forms vanishing at p. The point modules are actually B-modules and one
can write Np = BlWpB, pN = BIBWp A point module is critical as an
A- or a B-module [ATV2 6171. As A is generated in degree 1, it follows
that the only submodules of a point module N are the tails N>k. The tails,
being socle-free, would be again shifted point modules. In fact, the shift is
related to the automorhism in the following way.

Proposition 21. (i) Np(l)>o is isomorphic to Np as a right A-module.
(ii) pN(1)>o is isomorphic to -,PN as a left A-module.

Proof. (i) Choose a linear form w such that w(p) 0. Define a map
B - Np(l = BlWpB)(1) by b 4 wb. As (wb)(p = w(p) 0 b(ap), we have
(wb)(p = 0 �* b(ap = 0. Thus the map factors through an injective map
Np --+ Np(l). Comparing dimensions one sees that Np Np(l)>o. It is
similar to verify (ii).0

Corollary 22. (i) (Np)>,, - N,.p(-n). (ii) pN>n - -npN(-n).

Proof. By induction, it suffices to note that (Np)> = Np(1))>O(-1)
Np(- 1). 0

Let Arp denote the image, in proj-A, of the point module Np. By a point
in the quantum plane we mean an object of proj-A which is isomorphic to
Arp for some E E. Note that Xp , is equivalent to (Np) >n - (Nq)>n

for some n, and hence to p = q Corollary 22). Thus points in The quantum
plane are in bijective correspondence with point modules or with points on
E, and sometimes we will identify a point in the quantum plane with a point
on E.

It follows from Proposition (1.8 iii, iv) that N -+ NV = E2(N) is a
duality between left and right gk-1 Cohen-Macaulay modules of multiplicity
1. Here we describe this duality geometrically in terms of an auto-bijection
p of the set of points of E.

By a linear form (in A) we mean a non-zero element of Al and, since
A, = = HO(E, L), we regard it as a global section of C. A linear form I
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defines a line f I = in the projective plane p2. If no confusion arises, we
will denote by I itself the line that I E Al represents. We say that a near
form passes through a point, or two linear forms intersect at a point etc. if
the corresponding lines have the same property. Recall that div(l) denotes
the divisor of zeros of 1, which has degree 3 This means the same thing as
(I.E), the intersection of the line (represented by) I and the cubic divisor E,
counted with multiplicities.

Lemma 23. Let wl, W2,11,12 be linearforms in A such that 11W2+12WI = ,

then 11, 12 (resp. W1, W2) intersect at a point on E. Assume 11, 12 to be linearly
independent, and let p (resp. P) be the point of intersection Of 11, 12 (resp.
W1, W2)., Then

(2.4) div(wi - a(div(li - p) i = 12.

Proof. Since 11 W20 = 12 Wla, we get by 1.3)

(2-5) div(11 + a-ldiv(W2 = div(12) + a-ldiv(wi).

If 11,12 did not meet on E then div(11 = o1div(w1),div(l2 = a-ldiv(W2)-

This would imply that a*L - , but we know that a does not fix the class
of ] in Pic(E) [ATV1, Theorem 3 SO, 11, 12 intersect on E. Similarly
it follows that W1, W2 intersect on E. If 11, 12 are linearly independent then
so are W1, W2. Thus 11, 12 (resp. W1, W2) have a single point in common,
say p (resp. P). It follows then from the relation 2.5) that div(li - p
a-1 (div(wi - P) for i = 1 2 which is same as 2.4). 0

Sometimes we write formula 2.4 as

(wi.E - = (li.E - p) i = 12.

(2.6) Let p be a point on E, Np the corresponding point module. Let
111, 12} be a basis of Wp. Then Np has a minimal resolution of the form
[ATV2,6.7]

W2

W1
(2.7) 0 --+ A(-2) - A(-1) e A(-1) A --* Np --* 0.

with 11W2 12W1 = 0; W1, W E Al. In view of Lemma 2.3), it follows that
W1, W2 intersect on E. We denote this point by p(p). So far this depends
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upon the choice of a basis for Wp as well as the choice Of W1, W2 in (2.7).
We now show that for a given point p, p(p) does not depend on the choice
of basis for Wp nor on the choice Of W1, W2 in 2.7). This is shown by the
following intrinsic characterization of p(p).

Proposition 28. Let p be a point on E and p(p) as defined in 2.6). Then

V ,(2.9) (Np) pp)N(2).

Proof. Since W1, W2 form a basis for the space Wp(p) of linear forms vanishing
at p(p), we have pp)N = AIA(wi, W2). Further, as 1W2 +12W1 = 0, we have
the following resolution of the left A-module pp)N

W2

(2.10) 0 --* A(-2) A(- 1 E A- 1) __ - A + pp)N -- 0.

On the other hand, applying the functor HOMAA) to the resolution 2.7)
of Np gives the following complex of left A-modules

W2

W1
(2.11) 0 -- A A(1) ED A(1) - - A(2) , 0

where the map [11, 121 is infective We have used the fact that Hom(Np, A)

0 (1.8 vi). Thus (Np)v = EXt2 (Np, A) = A(2)/im 12 which by 2.10 is

same as p(P)N(2). 0

Since two (left or right) point modules are isomorphic if and only if the
corresponding points are equal, we see that we have a (well-defined) map

(2.12) p E -- E.

defined algebraically by 2.9). The map p is a bisection (Proposition 214 i).
Thus the algebraic duality between (shifted) point modules has the following
geometric interpretation in terms of the auto-bijection p of the points of E.
For a point E E, p(p) is the unique point on E with this property: for
any line I through p, the line ' such that a(I.E - p) c t'.E passes through
p(p); in fact, 1'.E = (I.E - p) + p(p). For technical reason, to become clear
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later, we will cal a1pp rather than pp) the point dual to . We use the
notations

(2.13) P V 01-1 p(p), P = -'(P).

We collect the basic facts about the map p in the following proposition.

Proposition 214. (i) The map p is a bisection.
(ii) No point is self-dual, i.e., the map o-ip has no fixed point.
(iii) p commutes with : pa(p = op(p) for all p E E.
(iv) In case of a Sklyanin algebra, p = a-2.

Proof. The statement (i) follows from the biduality isomorphism Np
(Np)vv for point modules. More explicitly, one can show as in 2.8) that
(qN)v (N,7(q))(2) for some point q(q) on E. This gives another well-
defined map q E --+ E. Now, the maps p and are inverse to each other.
Indeed, (p(p)N)v - (Np)v(-2))v -- Np(2)vv -- Np(2) so that qp(p = .
Similarly, p(p = -

To prove (ii), suppose ap = pp for some point . Then, in the notations
of 2.6), it follows from Lemma 2.3) that div(wi = o(div(lj)), implying
that o*,C L, which is a contradiction.

We prove (iii). From 2.1), we have a short exact sequence

0 -- Np(-1) --+ Np --+ kA --+ 0

which gives the following long exact sequence of cohomology

= E 2(kA) --* E2(Np) --* E 2(Np(-l)) --+ E(kA) - 0-

Since E 2(Np = pp)N(2), E2(Np(-l) = p,(p)N(3) and E 3(kA = Ak(3),
we get an exact sequence

0 -- pp)N , p,(p)N(1) --+ Al) -- 0.

Thus we have an isomorphism pp)N ,, pa(p)N(1)>o. Since, by 2.1), the
latter is isomorphic. to,,-,P,'(P)N, we get p(p = a-1 pa(p).

To prove (iv), choose PO as the origin on E and let a be translation by
the point q, in the group law of E, so that

(2.15) p + q - ap + po for all E E

where - means linear equivalence of divisors. Now let be a line through
p, .E = P + PI P2, say. Then 2.3) tells that P P + P - PP + aP1 + UP2
Using 2.15) we get pp + 2 - p + 2po, hence pp = 2p. 
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3 Normal modules of GK-dimension 2

In this section we study Cohen-Macaulay modules of gk-dimension 2 and
their "points" in the quantum plane. Recall the notation

(3-1) A(il,...,i, = E=1A(i1,).

Proposition 32. Let M be a Cohen-Macaulay A-module of gk-dimension
2 and multiplicity e. Then M has a minimal resolution of the form

(3.3) 0 - A(-jl,..., Jr) f ) A(-il,. - , -ir) + M --+ 

where r < Fr=J Uk - ik = e Choosing (il, . ir) and U1, ir) in in-
creasing order, we have ik < A k r). Further, if M is critical then
ik+1 < A k = r - 1).

Proof. As pd(M = 1, M has a minimal resolution of the form 0 - P1
Po --* M --+ 0, where PO, P1 are projective, hence free. A consideration of
the Hilbert function shows that ranks of PO and P are equal (say, r), and
that Xr=l Uk - ik = e.k

Denote the map f in 3.3) by a matrix [M]. Choose (ii, ir) and
U1, - , r) in increasing order. The entries MU of [M] are homogeneous
elements of A with deg(Mkl = il - ik if M is a right module, whereas
deg(Mki = A - i if M is a left module. The minimality of the reso-
lution (e., in this case, the minimality of the number of generators r)
implies that there are no non-zero scalar entries in [M], so the entries of
[M] are either zero or have positive degree. Now the assertion ik < k
follows from the injectivity of the map f. For, if A ik for some k,
then Irn(A(-j1,.--,-ik)) C (For k = I this means
Im(A(-ji) = 0.) Comparing dimensions, we see that this contradicts the
injectivity of f.

To prove the final statement, suppose, on the contrary, that A ik+1
for some k. Then Irn(A(-j1,..., -jA:)) C A(-il, - , -ik), and the quotient
Q = A('-il,. -ik)/Im(A(-jl,. -jk)) will be a gk-2 module with mul-
tiplicity strictly less than e. This would imply that M has a proper gk-2
quotient, contradicting the hypothesis that M is critical. 

(3.4) For a gk-2 Cohen-Macaulay module M, the matrix [M] described
above depends on the choice of minimal resolution. However, as a minimal
resolution is unique up to isomorphism, the matrices corresponding to dif-
ferent minimal resolutions of M will differ only by automorphisms of the
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free modules EA(-ik) and EDA(-jk). Now note that the automorphisms of
a free right A-module EDr =1 A(- ik) with il < ir are given by r x rk
matrices [T], whose entries tki are zero if i ik < and are homogeneous
elements of A with deg(tkl) = il - ik otherwise. Such matrices are of the
44 upper block-triangular" form, i.e., there exists a partition r = ml + m,
such that tk = if k > ml +... + m, I < ml +... + m, for a v s;
diagonal blocks being invertible square matrices with scalar entries. (Note.
s = is also possible.) Thus for a right gk-2 Cohen-Macaulay module M,
if [Ml] and [M2] are the matrices corresponding to two minimal resolutions,
then [M2 = [SI(Ml][T], for some automorphisms [S] and [TJ of EDA(-ik)

and EA(-jk), respectively.

The type of a gk-2 Cohen-Macaulay module M is the unique set of in-
dices (il, - , ir;jl, - ,ir) appearing in its minimal resolution 3.3). If the
modules Ml and M2 are isomorphic, then they are of the same type. To say
that a gk-2 Cohen-Macaulay module is normal is same as saying that the
index il in 3.3) is 0. By a gk-2 normal type we mean the type of a gk-2
normal module. We will usually denote a gk-2 normal type by .

Proposition 35. Let Ml, M2 be gk-2 Cohen-Macaulay A-modules, and
M 1, M 2 their images in (the quantum plane) proj - A. Then

HomgA (Ml, M2) HInpr.�-A (M 1, M 2) 

Proof. Consider the exact sequence of cohomology by applying HOMA( X2)

to the short exact sequence 0 --+ (Ml&,, --+ Ml --+ T -- 0 where T is
a torsion module. To prove the proportion, it is sufficient to show that
HOMA(T, M = and Extl (T, M = for a torsion module T and a gk-2A
Cohen-Macaulay module M. We can assume T = k. Then, the first is clear
(1.8 vii). Now, using the resolution 3.3) and the fact Exti (k, A) = for
i 3 we get Extl (k, M) = 0. 0A

We show that the Hilbert function of a gk-2 normal module M is convex,
in the following sense: if we plot the function hm(n) for n E Z, and join
the successive points by straight line segments, then the graph is convex
(downwards). Further, in the notations of 3.2), hm(n = en for n >
i - 2 so that the graph is a straight line for n > j - 2 We prove the
convexity as follows. For any finite A-module M, whose Hilbert function is
hm(n), denote by sm(n) and cm(n), respectively, the slope and the curvature
functions defined as:

(3.6) sm(n = hm(n - hm(n - 1) cm(n = sm(n - sm(n -
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Note that, as we have defined, m(n) is the difference of the upper and lower
slopes at (n - ), rather than at n.

Theorem 37. Let M be a gk-2 normal module, as presented in 3.3). Then
CM(n = for n < , n > j, and cm(n) for < n < j,. If M is critical,
then cm(n) for < n < r-

Proof. Starting with the Hilbert function of the free A-module A(-i) we
can show that

CA(_O(n = 0 n < i,
1 n > i.

Since the Hilbert function is additive on exact sequences, so is the curvature
function. Thus, using the resolution 3.3) we get

r r

cm(n) = E CA(-i,,)(n 1: CA(-j,)(n = #Iiklik n} - #Ijkljk n.
k=1 k=1

Let us denote the cardinalities of the two sets on the right hand side by I(n)
and J(n) respectively. The inequalities A > ik, for a k 3.2), imply that
I(n) J(n), hence, cm(n > for a n. For n < , I(n = J(n = 0, and,
for n > r, I(n = J(n = r, thus completing the proof of the first part
of the theorem. For a critical M, we have k > ik+1 for < k < r, which
implies that for < n < jr, I(n) J(n) + 1, thus cm(n) 1. 0

Corollary 38. There are only finitely many types of gk-2 critical normal
modules of a given multiplicity e.

Proof. The theorem implies that

jr-1
e = slope of the final line segment E cm(n) ir-

n=O

Thus we have bounds for all the parameters in 3.2): < A e, 0 < ik <

e, r < e. This completes the proof. 

Example 39 [Case of multiplicity 1: Line modules].

For e = 1, the only critical normal type is 0; 1) and the corresponding
normal (right) module is MI = A/lA for some non-zero element I of Al. The
modules of this form are called line modules. Every element 54 E Al
defines a line I = 0} in the ordinary projective plane p = P(AI),
and line modules are in canonical bijective correspondence with lines in the
projective plane p2. A line module is critical [ATV2 61] and its Hilbert
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function is hm,(n = n + for a n > . Let M I denote the image of the
line module Ml in proj -A. By a line in the quantum plane we mean an
object of the quantum plane proj-A which is isomorphic to Ml, for some
0 E Al. It follows from 3.5) that Ml, Ml, if and only if MI, Ml,
Thus, the lines in the quantum plane correspond bijectively to line modules
and hence to lines in the ordinary projective plane p2.

Example 310 [Case of Multiplicity 2.

Let us classify the critical normal types in multiplicity 2 In the notation
of 3.3), possible values of r are and 2 the possible normal types are 0 2)
and (0, 0; 1, 1), and, the corresponding normal modules are presented by

0 --+ A(-2) A + Ml 0,

0 - A1 E A1 , A ED A M2 - 0.

We will study these modules in more detail in section 4.

Definition 311. Let M be a right (resp. left) A-module and p a point of
E. We say that p is a point of M if there is a non-zero A-homomorphism
M --+ Np (resp. M -- pN).

Since a point module N is a critical module of gk-dimension 1, it follows
46that every non-zero morphism M N is surjective in high degrees (or,

equivalently, the corresponding morphism M --+ N in the quantum plane
proj-A is surjective). In fact, im(O = N)-,>,, for some n. Note also that if
p is a point of M then p is also a point of every submodule M' of M such
that MIM' is finite-dimensional.

Remark 312 If p is a point of a right module M then 0,np is a point of
M(n)>o and a-np is a point of M(-n) where n E N. Indeed, by induction
over n it suffices to prove the statement for n = . Now a non-zero homomor-
phism. M --+ Np gives non-zero homomorphisms M1)>o --* Np(l)>o Np
and M(1-1) --+ Np(-l) --+ N-ip 2.1). In view of (2.1ii), replacing a by
a_1 we get a similar result for a left module.

Remark 313 Let M be a right A-module and let MB denote the B-module
M A = MlMg. Since point modules are B-modules, therefore p is a
point of M if and only if there is a non-zero B-homomorphism MB --+ Np So
the points of M can be described by considering just the B-module structure
MB-
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We now show that the points of gk-2 normal modules of a given type
,r can be described in terms of the divisor of zeros of certain sections of an
invertible sheaf L, on E. First we need a couple of lemmas about the zeroes
of global sections. Recall that for a homogeneous element E A, denotes
its image in B, and is a global section of C = LO'. . . LO' Recall
also that for a point E E, Wp = E Al I (p = 0}.

Lemma 314. Let be a homogeneous element of A. Then E WpA if
and only if �(p) 0.

Proof. Define Ip 1 E Al�(p = 0}. Here, for an arbitrary E A, we say
that 0(p = if Oi(p = for all homogeneous components Oi of . Then
Ip is a right ideal of A containing WpA. If Ip j WpA then AlIp would be
finite k-dimensional, since Np is a critical gk-1 module. Thus n C Ip for
some n > . But this is a contradiction since for arbitrary large n there
exist sections E which do not vanish at p. 

(3.15) Recall that if (E, a,,C) is a regular triple then so is (E, -1 L)
[ATV1]. We denote by the twisted homogeneous coordinate ring of the
triple (E, -1,C), i.e., = EDn>oHO(E,,C C'_� ... ,CO,-(n-1) ). There is a
k-linear isomorphism called "transposition" in [Yel, 6]:

... 0C0,n)(0,*)-n+1 0
7, : Bn = H(E,,COC' H0(E,,C&,C'_1 ... ,C' Bn-

Summing over all n we get a map 7 B --* BO, which is actually an anti-
isomorphism of graded kalgebras [Yel, 617]. (There should not be any
confusion between the map 7 and a type 7 We will sometimes identify O
with the opposite algebra of B and a left B-module with a right B-module.
Since the points of an A-module M depend only upon the B-module MB
(Remark 313), we see that a statement about the points of a right A-module
can be translated into a statement about the points of a left A-module by
an appropriate replacement of a by a-1. We will sometimes use the index 
in a formula to denote the parity of a module: will be for a right module
and 1 for a left module.

The left analogue of Lemma 314 is the following.

Lemma 316. Let E A, then E AWp),,, if and only if �(a-(n-i)p = .

Proof. Clearly, E AWp)n * E BWp),. Since 1 is just identity, it
follows that E BWp)n if and only if 7� E (WpB)n. By Lemma 3.14)
this is equivalent to 7�)(p = 0. Using the definition 7(�) we
see that this is same as �(O,-(n-i)p = .
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Now to a given gk-2 normal type 7 we associate invertible sheaves ,
and L on E as follows.

Let Z[o,, o-l] be the Laurent polynomial ring, and Z[[o,, o-1]] the Lau-
rent series ring. We will write n-1 to represent the element -' 04. Morea-1 i=OUt n-,m (,n-1 - am-i = En-1 ,i
generally, for n, m > we a-1 a_1 a-1 i=O

M-1 a. We define an association M pm M an A-module, m EEi=O
Z[[o,, o-"]] by

PM(o,) o,)'hm(o,)

where hm(a) is the Hilbert series of M. Note that for a gk-2 module M,
pm E Z[cr, a-11 (the order of pole at of the Hilbert series for a gk-2 module
is 2 Alternatively, we could define this association by (1) associating to
the free A-module A(-n) the element n of Z[[o,,o-1]], and 2) requiring1 0,
the association to be additive on exact sequences. Now note that pm depends
only on the type of M 1.4), so that we have, in fact, an association: 0 �-4 p9.
For a gk-2 normal type = ij,...,i,;jj,...,j,), we have

Er=l(,,j,, 0,jk)
k(3.17) PA09

We see that, for a gk-2 normal type r, p,(a) is actually a polynomial in a.
Consider Pic(E) as a module over Z[a, o-l], the action of a being the

pull-back by the functor *. We denote the action of an element Enial
of Z[o,,a-1] on an invertible sheaf M by: (M)Fnil = 0(Monifi

(&ni
oi(m'i) In this notation,

_n_l= r_ (D ro, 0 Can-i cr-1
(3.18) n (n > ).

Now, for a gk-2 normal type7, define

(3-19) L = CP.,(O').

Explicitly, we can write

L' = ,Cj,-i,)" il 0 (,Cj,-i,)' i2 ... (Cir-ir

where Cj,-i, are defined as in 3.18), which makes sense since > .
We define ,C by replacing by a-1 in the definition of C; thus,

(3.20) " = 

More frequently, we will denote L by LO and call it the opposite of ,.
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Theorem 321. Let 7 be a gk-2 normal type and C Co the associated
invertible sheaves. To every gk-2 normal right (resp. left) A-module M of
type 7 there corresponds a global section sm of C, (resp. so of C') suchM
that p is a point of M if and only if sm(p = (resp. so (p = 0).M

Proof. Let M be a right A-module presented as in 3.3), and let Np be a
point module. To give a non-zero A-hornomorphism M - Np = AlWpA is
equivalent to giving homogeneous elements of A with deg(G = ik such
that the entries of the row-vector [�][M] are all in the ideal WpA, but not
all Of are in WpA. This is equivalent (Lemma 314) to saying that the
row vector [(k(p)] is a non-trivial solution of the homogeneous equation

(3.22) 141MI(p = 

where a bar denotes the image in B. This equation is same as
r

(3.23) in"i")(p = = 1...,r
k=1

where MM are the entries of [Ml and deg(Mki = it - ik- We now define a
matrix XM (which is different from [M]), the vanishing of whose determinant
will give us a necessary and sufficient condition for the existence of a non-
trivial solution to 3.23). Define

(3.24) (XM)k = f'i E H(E, (Cji-iXiA; 1, k

Recall that the matrix elements Mkj are either zero or have positive degree,
so if fnki 54 then il - ik > and writing C-i, makes sense 3.18). Now
set

(3.25) sm = det(Xm) sgn(-y)(fnj,.,j)'" (77n,,,yrf

-YESr

We claim that all non-zero terms within the summation sign in 3.25) are
global sections of the same invertible sheaf C. Indeed, the term in 3.25)
corresponding to Y E Sr is non-zero onlyifiyk - ik> for an k
As fnalkk,-yk E H(E, (Ci,,_j, to verify the claim, it is sufficient to check
that

('Cj" i ) il (9 ... rjr-ir )air =IC,

if ilk - ik> for a k. This is clear because the left hand side is

Er=,(
- ff'k)

k k
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We have shown that sm E HO(E,,C,). Now, if there exists a non-zero
morphism [�] M -+ Np then [�(p)] forms a non-trivial solution of (3.23).
This implies that sm(p = det(Xm = 0. Conversely, if sm(p = then we
can solve 3.22) locally at p, i.e., we can find a non-trivial solution [ak(P)I,

ak(p) E k(p), of the homogeneous system Tr -0"' (p = (I
1, r). Since the maps from the space of global sections of the invertible
sheaves Li, to k(p) are all surjective, we see that there exists, in fact, a
non-trivial global solution [�], k E Bi,,, of 3.22). This completes the proof
in the case of right modules.

In view of the remarks in 315)), the result for left modules follows,
abstractly, from that for right modules. Let us, however, explicitly write
down the corresponding matrix, denoted by MX or XO for a left moduleM
M, vanishing of whose determinant gives a necessary and sufficient condition
for the existence of a non-zero map from M to a point module. (We win
need this in the proof of the next result.) We claim that X is given byM
(3.26) _0k -1)

(XM)kl = (fnklf E H(E, (Ci,;_jj)-_(j'

and

(3.27) SO = det(XOM M

To see that matrix XO is given by 3.26), let M be presented a in 3.3) ToM
give a non-zero morphism M PN is equivalent to giving a column vector
[�] of homogeneous elements in A with degree(G = ik such that the
entries of the column vector [M][�] are in BWp but not all (k are in BWp.
Recall that deg(Mkl = k - il. As the degree of MICk = E=1 fnkl is
A (k = r), we see, in view of Lemma 3.16), that 01110k E BWp
is equivalent to J:' j(fnk16)(0'_('h_1)P = 0. This is same as

n

(3.28) fnk1('7_Uk_1) P) & &(0'-(i1-1)p = .

Therefore the matrix vanishing of whose determinant gives a necessary and
sufficient condition for the existence of a non-trivial solution of 3.28 is
given by 3.26). 0

Remark 329 As we have defined, the section sm depends on the matrix
[M], e, on the choice of minimal resolution of M. We can show, however,
that sm is independent, up to a scalar, of the choice of minimal resolution
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of M. To see this, let [M] and [M'] = [U][M][VI be matrices representing
the same module of a type = where [U] and [VI
have to be matrices as described in 3-4). Then, assuming the module is a
right module, we get

ik (Uk,),ik & M'�),il 0 (V(XM')ki (Uk,,M,-,V1)0' ,I 6is

rs rs
'k isThus X = UXmV' where Uk = Ukr)o' and V = I)" .Thus U', V'

are again matrices of the form described in 3.4), whose diagonal blocks are
invertible matrices with scalar entries. It follows that the determinants of
U' and V are scalars, and sm = det(Xm,) is a scalar multiple of Sm =
det(Xm). Thus div(sm) is independent of resolution, and we will call it the
divisor of M and denote it simply by div(M). Similarly, for a left module
M we show that s is independent of resolution, up to a scalar; and defineM
div(M = div(s' ).M

Remark 330 As k is algebraically closed, we note that every gk-2 normal
module does have a point. It is not clear, however, whether a gk-2 normal
module has a sur ective map to some point module. In case where all the
generators of M are in degree 0, it is trivial that every non-zero map to a
point module is surjective. In particular this is true for all principal modules
A/OA where is a homogeneous element of A. Note that div(A/OA)
div(O).

(3.31) Let M be a gk-2 Cohen-Macaulay A-module with minimal reso-
lution 3.3). We will denote by cm (or, just if there is no confusion) the
greatest index j, in 32). It has the property that if M is normal then
Mv(-c) is also normal, as we will see below. Now we relate the divisors
div(M) and div(Mv(-c)).

Theorem 332. Let M be a gk-2 normal A-module and as defined above
(3.31). Then Mv(-c) is normal, and

div(Mv(-c) = a("-1)(div(M))

where t is for a right module and 1 for a left module.

Proof. Let M be a right module presented as in 3.3). Taking the cohomol-
ogy of (3.3) we get, with canonical identifications, the short exact sequence

O [M] (3-33) k 1A(ik) + k I A(jk) --+ Mv -- 0.
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Here [Ml is the same matrix as in 3.3), but now the multiplication is on
the right: [v - [v][M], [v] E Er=,A(ik). First we observe that the normalk
shift of Mv is precisely Mv(-c), where = r. Let us denote Mv(-c by
M'. The type of M' is r = (i ...... i'; j,..., j) where i = - jr-k-1 and

1 r 1 r k
A E - ir-k-1. The shift of 3.33) by -c is a resolution of M', and the
corresponding matrix [M' is

(M')kl = M'k = Mr-k-lr-1-1 = M)r-k-1,r-1-1-

Thus, in the notations of 3.26) and 3.24),

-(j, -1) -0-ir-k-1
(Xmo')kl (M'kl)' =(ihr-k-1,r-1-1)'

= ((XM)r-k-1,r-1-1)

It follows that A det(X- (det(Xm))O'_('_1 = sm)"_('_') and henceM M
div(M' = ldiv(M).

Now, if M is a left A-module then the result follows from remarks in
(3.15). 0

We now obtain some results describing the geometry of gk-2 normal
modules in terms of their points (Theorems 336 341 ). For this, and further
applications in the next chapter, we need to compute some Ext groups.

Lemma 334. Let Np, Nq be point modules,, and n E Z. Then

(i) Hom(Nj, Np)n = for all p, q if n < ; and, for n > ,

Hom(Nq, Np)n = 0 qO ,np,
k q = np.

(ii) Ext'(Nq, Np)n = for all p, q if n < - Ext (Nq, Np)_ = k ED k if
q = lp*, and k otherwise; and, for n > ,

k q = np,
Ext (Nq, Np)n k q = ,np*,

0 otherwise.

(iii) EXt 2 Nq, Np)n 0 for all p, q if n < 2; Ext2 (Nq, Np)-2 = k for
all p, q; and, for n > -

t2(Nq, k q= ,np*,
Ex Np)n = 0 otherwise.
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Recall that Hom and Ext are graded, and the subscript n denotes the
degree of homogeneity.

Proof. (i) For a map N. Np(n) (O E Bn) to be non-zero, we must have
0(p) 54 and 0W C Wp. For this we must have anp = q.

(ii) Let N. have a resolution

W2W=
WI

- 1) ED A(- )
A(-2) A( A -* Nq 0.

Applying Hom( Np) gives the complex

0 - Hom(N., Np) - Np _1+ Np(l) E) Np(l) w, Np(2) 0

where the maps w and are now right multiplications. Put K ker(w) I
im(l). We compute the dimensions of Kn, I,,.

The map I is trivially zero in degree n < . In degree n > , the map I
is zero if and only if 11(onp) = = 12 (anp), which is equivalent to anp = q,
because 11, 12 form a basis for Wq. Thus for n < dim(In = 0; for n > ,
dim(In) is if q = anp and otherwise.

On the other hand, the map w is trivially zero in degree n < - In degree
n > 1, the map w is zero if and only if 1(an+1p = = W2 (an+lp), which
is equivalent to Un+1p = pq, because WI, W2 form a basis for Wpq 23).
Thus dim(Kn = for n < 1; and, for n > 1, dim(Kn) is 2 if q = np*
and otherwise.

Knowing the dimensions of Kn and In we get formulas (ii) and (iii). 0

Lemma 335. Let M be a gk-2 normal A-module, and N a point module.
Then

diMkExt (M, N)n = diMkHom(M, N)n n > .

Proof. Let M be presented as in 3.3). Applying Hom( N) we get the long
exact sequence of cohomology

-- Hom(M, N) D'=I N(jk) ED'=, N(ik) --+ Ext (M, N) -* 0.

Since ik, A 0, and dim(Nn = for n > , we have verified the claim. 
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Theorem 336. Let M be a gk-2 normal right A-module and p a point of
0M. The kernel of a non-zero homomorphism M + Np is the shift M'(-m)

of a gk-2 normal module M' with m = or so we have a short exact
sequence

(3-37) 0 - M'(-m) M - (Np)>,, --+ 0

for some n. Let be the set of points of M, and put S = ( - p}) lp'}
Then the points ormq (q E S) are points of M', and, they exhaust the set of
points of M except perhaps that amp could also be a point of M', where the
last possibility definitely occurs if diMkHom(M, Np) > .

Needless to say, replacing a by a-1 p by p-1 we get the corresponding
result for a left module.

Proof. We know that im(O = Np)�:n = Nnp(- n) for some n. Let K
ker(O) so we have a short exact sequence: - K - M - Nnp(-n) -+ 0 It
is clear that gk(K = 2 Considering the long exact sequence of cohomology
of this short exact sequence, and using Eq(M = for q 1, Eq(Nnp = 

for q 2 we get Eq(K = for q 54 1, thus showing that K is a Cohen-
Macaulay module. Let M' = K(m) be the normal shift of K. As M is
normal, diMk(MO) and dimA;Ml 2 Therefore, diMk(KO) and
diMkK > 1. It follows that < m, < .

In view of remarks in 3.12), note first that q is a point of K if and only
if am q is a point of M'. So we show that points of S' are points of K. Now let
Nq be an arbitrary point module. Applying Hom( Nq) to the above short
exact sequence we get the exact sequence
(3.38)

0 Hom(Nnp(-n),Nq) Hom(MNq) Hom(KNq)
Ext (Nnp(-n),Nq) Ext'(MNq) Ext'(KNq)
EXt2 (Nnp(-n), Nq) 0

We look at the sequence 3.38) for different values of q. First, put q = pv,
i.e., q = p. We see from 3.34 iii) that EXt2(Nnp(-n), Npv) j 0. Thus
Extl(K, Npv) 5 0, hence by 3.35), Hom(K, Npv)o 0.

Suppose next that q pv, p. An application of 3.34) to the sequence
(3.38) yields Hom(M, Nq)o Hom(K, Nq)o. Thus q : p, pvv is a point of
M if and only if it is a point of K.

Finally, putting q = p in 3.38), and using Hom(Nnp(- n), Np)o k,
we see that if dimkHom(M, Np)o > then p is also a point of K, or amp a
point of M'. This completes the proof C3
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Theorem 3.36) generalizes the result known for the line modules [Ar,
2.10], as the following example shows. The "incidence relations" 3.37) are
also important in classifying gk-2 normal modules up to gk-1 equivalence
(see 5. 1 0).

Example 339 ["Incidence relation" for line modules].

Let MI, be a line module, and p a point of Ml,. Then Theorem 3.36)
shows that the kernel of the surjective map Ml, --* Np will be the shift, by
-1 of a line module M (the only gk-2 normal modules of multiplicity 
are line modules 3.9)). Thus the incidence relation 3.37) in this case is

(3.40) 0 - M.J-1 - Mj� - Np - 0.

In fact, wl is the same as the one appearing in the equation 11W2 +12W1 = 0

where 12 i chosen such that 11, 12} is a basis for Wp. Indeed, the sequence
(3.40) is same as the sequence

0 - (A/wjA)(-1)-12-A/ljA - A/(Ii,12)A - 0.

Also, we already know 2.3) that,

div(M., = o(div(Mj, - p + p).

Theorem 341 A gk-2 normal module M is not critical if and only if there
exists an exact sequence

(3.42) 0 --* Ml(-Ml) -- M M2(M2) - T - 0

where Ml and M2 are gk-2 normal modules, M2 is critical, T is m-torsion,
and Ml, M2 0. Further, if S, S, S2 denote the set of points of the modules
M, Ml, M2 respectively then

(3.43) = ,-111 SI U OIM2 S2

where % is the parity of the module M.

Proof. The converse of the first statement being trivial, we only have to
show the existence of 3.42) in case M is not critical. In that case, M has

0a gk-2 critical quotient P M + P - 0. The canonical map P 4 Pvv is
infective and coker(p = T is torsion (1.8 v). Considering the cohomology
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we see that E(P = for j 54 12, E2(p = E3(T). Further, P" is critical
(by applying the next Lemma 345 to P - P).

Let K = ker(o). Now, M being pure (1.8v), K is a gk-2 module, and
EO(K = 0 (1.8 vi). The cohomology of the sequence 0 --+ K M +
P --+ 0, shows that EK = for = 23. Thus K is Cohen-Macaulay.
We have an exact sequence 0 --+ K M - P -* T --+ 0. Now letting
Ml = K(ml) and M = PV(-M2) be the normal shifts, we get 3.42). The
fact that Ml, M2 > follows by comparing dimensions: Since Ml' injects into
normal M, it must be a non-positive shift of a normal module Ml. Then M2

must be a non-negative shift of a normal module.
To prove 3.43), we first claim that for a point module N,

(3.44) HOMA(M2, Nq)o - HOTnA(P(-M2), Nq)O-

To check this, we use the fact Ext' (k, Nq = k(l), which will be verified inA
(II.3.1). It follows from this that Exti (T, Nq)o = for a torsion module TA
with T = for n < . Now consider the cohomology by applying Hom( Nq)
to the exact sequence - P(-M2 ` M2 --+ T(-M2) --+ 0. As T(-M2),

being a quotient of the normal module M2 has only positive degree elements,
we have Extl(T(-M2), Nq)o = and hence 3.44).

We prove C -MIS, U aM2 S2. The exact sequence 0 -- K M
P -- 0 shows that if p is a point of M then p is a point of K or a point of
P. In the former case lip will be a point of Ml (Remark 312), and in the
latter case a-IM2 be a point Of P(-M2) and therefore of M2 (by 344).

Conversely, if q is a point of M2 then aM2q is a point of P, thus of M.
So aM2 S2 C S. Finally we prove that a-'ml S, C S. The cohomology of
0 --+ Ml (-ml) --+ M -- P - 0 gives the exact sequence

M'(-0 W(-fl)(M + El 0 _+ C __* 

where Mv(-c) and Mv(-,El) are normal and C is torsion. Now if p is a
point of M, then "'-l)p is a point of Mlv(-cl) (Theorem 332). Then, by
Remark 312, '("-" -1) p is a point of Mv(-cl)(m + l 0�:o, and hence
also of Mv(-c)>, = Mv(-c). Applying Theorem 3.32) again, a-'lip is a
point of M. 

Lemma 345. Let M' -+ M be a non-zero map from a critical module
M' to a pure module M of equal gk-dimensions, say . Then is necessar-
ily infective and, if the quotient has gk-dimension less than then M is
critical.
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Proof. If ker(O) were non-zero then by criticality of M', M/ker(o) would
have gk-dimension less than m. But this contradicts the purity of M. If
the quotient has gk-dimension less than m, then e(M' = e(M). To prove
that M is critical, suppose, on the contrary, that P is a (necessarily, gk-m)
submodule of M with gk(MIP = m. We claim that n , 54 0, and
m,1 n M, is a gk-m module. This would contradict the criticality of M',
thus proving the result. To see that P n M' 54 0, note that else P ED M' C M,
which is impossible as e(M' = e(M). To see that gk(MIIP n M') = M, note
that we have an exact sequence 0 - M1P n M' � MIP -� MIMI + P -.-+ 0
where gk(MIM'+ P < m. 0

4 The Case of Multiplicity 2
Conics in the Quantum Plane

(4.1) By a quadratic we mean a non-zero element of A2 A right A-
module of the form A/OA, where is a quadratic, will be called a conic
module. More generally, a module of the form M = A/OA where 54 E Ad

will be called a principal module of degree d. For a homogeneous element
E Ad we say that passes through p, or p is a point of , if p is a point

of the corresponding principal module A/OA. This is equivalent to saying
that there is a surjective A-homomorphism A/OA Np, or, that �(p = 
(Lemma 314). Here is the image of -0 in B. Assuming that $ 0 we
have div(A/OA = div(�) and deg(div(�) = 3.deg(O). Let MO denote
the image of the conic module MO in proj -A. By a conic in the quantum
plane we mean an object of the quantum plane proj- A which is isomorphic
to M0 for some quadratic O. It follows from 35) that M,01 Mk if
and only if M0, Mk,. Thus conics in the quantum plane are in bijective
correspondence with conic modules. We say that a conic (in the quantum
plane) passes through a point p (in the quantum plane), or p is a point of
the conic, if p is a point of the corresponding conic module. Recall that we
have already identified points in the quantum plane with points of the cubic
divisor E.

Proposition 42. There exists a homogeneous element E Ad (� 54 
passing through any given n < 3d) points. There exists a homogeneous
element E Ad, unique mod Bd (up to a unit in k), passing through given
3 - distinct points.
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Proof. Let f iffi i = 1,. .. , 3d} be a basis for Bd, so an arbitrary E Bd can
= 1:�dbe written as =, aiui for some a E k. Then 0(p = is equivalent

to the homogeneous equation E�dl aiiffi(p = 0. We get therefore the first
statement of the proposition. Now let and be homogeneous elements
of degree d passing through given 3 - distinct points. Both and are

d-isections of the invertible sheaf Ld = L LI ... OL' therefore, div(�)
div Further, since both divisors are effective of degree 3d and have M -
distinct points common between them, it follows that div(� = div(�) As
k is algebraically closed, = a (a E k*). 

In particular, since A = B2, we have

Corollary 43. In the quantum plane, there exists a conic passing through
any given n < 6 points and a unique conic passing through given distinct
points.

(4.4) As described earlier (Example 310), there are just two types of
gk-2 critical normal modules in multiplicity 2 namely,

0(4-5) 0 --+ A(-2 A A/OA = Ml --+ 0

a b

c d
(4.6) 0 A 1) ff A- ) A E A --+ M2 - 0

where is a quadratic and abcd are linear forms in A. Further, any
other gk-2 normal module will be of the type (0, k; 1, k + 1) for some k > .
Obviously, this is not critical.

The Hilbert functions of these modules are: hm, (n = 2n + 1, n >
0; hm,(n = 2n 2 n > . Since both Ml, M2 have generators in degree
zero, they map surjectively to their point modules. The global sections sm,
and sm, associated to these modules 3.21) are sm = E HO(E, L L)
and s = a d - b E HO(E, L L).

(4.T) Let p be a point of a conic module M. The kernel of the map
M,0 --+ Np -- 0 will be the shift, by - of a gk-2 normal module with
multiplicity 2 3-36). A consideration of the Hilbert function shows that
this normal module is of the type M2 4.6). Thus there is an exact sequence

(4.8) 0 -- + W -1) -- + M0 --+ Np --+ 0.
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We can describe the module M2 in terms of M0 as follows. Let 11, 12} be
a basis of Wp. There exist linear forms b, d such that Ilb + 12 = 0. Also,
there exist linear forms a, c such that Ila + 12c. Then M2 is given by

a b -1 = f��the matrix c d . To see this, we note that the kernel M2( -toy,

and claim that the resolution of 0

a b
d

(4.9) 0 - A(-2) ED A(-2 c----+ A(- 1) A- 1) 0.

Indeed, using the relations lb + 12 = 0, = Ila + 12C, We get the identity

(4.10) 11 12 a b u 0 I = u
I c d v v

where u, v E A. This implies two things: the composite map of 4.9) is zero,
and the first map defined by the square matrix is ifective. Now, comparing
dimensions one sees that the sequence 4.9) is exact.

By Theorem 3.36), we see that p(p) is a point of M2, and, if q $ p
is a point of then aq is a point of M2. Thus, in the generic case, if
(Pl, P2 - - , P6 p) are the six points of a conic then (OT1, T2, - , P(P))
would be the six points of M2. Now suppose we map this M2 to its "sixth
point" (p). The kernel will be a conic module, say, MO = A/01A

(4.11) 0 -+ M,01 --* M2 --+ Np(p) --+ 0.

The points of MO, in the generic case would be (OT1, T2, Or-1P 2(p)).

One can indefinitely continue this process of mapping to point modules and
get the "shifted" conics M0 I M021

Conversely, we show that

Proposition 412. Every critical module M2 (of type 46)) is the kernel
of a map from a conic module to some point module. Such a conic module
is necessarily critical.

Proof. Suppose first that module M2 is given by a matrix [M21 a b
d

where b and d are independent linear forms intersecting on E. Then there
exist linear forms 11, 12 (intersecting on E, say, at p) such that lb + 12 = 
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(3.4). Now if we take the quadratic = Ila + 12C, then following 4.7), it is
clear that M2(-1) would be the kernel of the map A/OA --+ Np --+ 0. Thus
it suffices to show that every critical module M2 of type 5.6) is isomorphic
to one of the same type in which the linear forms in the second column
are linearly independent, intersecting on E. Recall that every X E GL(2, k)
gives an automorphism of A ED A (or, of A- 1) D A(- 1)). So replacing [M21
byX-'[M2]Y forXYEGL(2,k)givesanisomorphicmodule.

a b
Now let M2 be a critical module of type 4.6) given by c d . it

follows from criticality of M2 that the pairs (ab), (cd), (ac), and (bd)
are linearly independent. We further claim that a, b, c, d all can not meet at
the same point p in p2 . For, if they did, c + -ya and d +yb wiR be linearly
dependent for some E k, implying that the module corresponding to the

matrix 1 0 [M2] is not critical, and hence also the module M2 is not
'Y 

critical. Now consider the locus (in p2) of the point of intersection of the
lines aa + b, a + d as a varies over k. As a, b, c, d do not meet at the same
point, this locus would intersect the cubic E for some value of a. Then the

a aa+b a b a
module corresponding to the matrix c ac+d c d 0 1 is

the required module, to which M2 is isomorphic. The last statement follows
from Lemma 345.0

We now give some results about the criticality of a conic module and
factorization of a quadratic. In the classical (commutative) case, one knows
that a conic module A/OA is not critical, if and only if factorizes into
two linear forms, if and only if three points of the conic lie on one line.
This, in turn, is equivalent to the existence of an exact sequence of the form
0 --+ (A/12A)(-l) --+ A/OA A/11A --+ 0. In the quantum case, we have
the following:

Proposition 413 A conic-module M,0 A/OA is not critical if and only
if there exists an exact sequence

(4.14) 0 - M-m - ) - MO Mj,(m) --+ T -- 0

where MI, and MI, are line modules, T is m-torsion, and m, > 0. Fur-
ther, if S, Sl, S2 are the set of points of Mk, Ml,, MI, respectively then 
a-M-1 S1 U aS2-

Proof. This is an immediate consequence of Proposition 341), for, the
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only gk-2 normal modules of multiplicity are line modules. The fact that
the integers Ml, M2 of 3.42)) are related by ml M2 + follows from
a consideration of the Hilbert functions. The Hilbert function of A/OA is
2n + 1 (n > 0) and that of a line module is n + 1 (n > 0). Therefore, for
large n, we must have ((n - ml) 1) + ((n + M2) + 1 = 2n + 1, showing
that ml = M2 + 1 0

Remark 415. It turns out that m in 4.14) can take all non-negative integral
values. See (A.12) in the appendix A for an example. Proposition 4.13)
has following geometric meaning in the generic case where the conic has
six distinct points: If M,0 is not critical then there exist lines 1, f2 and an
m E N such that three points of Mk lie on a-m-11I and the other three
points on am12-

In the followin we will say that factorizations 1112 and 1'1 of
9 2

a quadratic into linear forms are distinct if 11 is linearly independent of
I' and 12 i linearly independent of 1'. As A is a domain, this is equivalent1 2

to linear independence of one of the pairs. Also, we will denote the line
represented by a linear form by the same symbol 1. We use the notations
LE = div(1), O.E = div(O), and (I.E) = -lp(I.E).

Remark 416. Let be a quadratic in A, and D = O.E) its divisor. The
following are equivalent: (i) factorizes into linear forms, (ii) D contains the
divisor LE of a linear form 1, (iii) D contains the divisor div(10' = l(I.E)
for some linear form 1. We need only check that (ii) (resp. (iii)) implies (i).
Indeed, the invertible sheaf (D) -,C 0,CO'. Put L = LE Thus we see that
if (ii) (resp. (iii) ) holds, then (D - L) Co' (resp. (D - a-IL) ).
Hence there exists a divisor L = 1'.E of some linear form 1', such that
D = L + a-IL' (resp. D = a-IL L), so that equals 11' (resp. N, up to
a scalar multiple.

Proposition 4.17). A quadratic can factorize into two linear forms in
at most four distinct ways. If a quadratic factorizes in four distinct ways,
then

(4.18) O.E = LE + (I.E)v

for some linear form .

Proof. For a conic that does not factorize into linear forms the statement
is trivial. So let 11W2 be a fixed factorization of (this unusual notation
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is chosen to conform to the notations in 21), which we use below). Put
Z W2.E n p(11.E).

Now suppose = 12W1 is a factorization distinct from 11W2. As 11W2

12W1 = 0, we see from Lemma 2. 1) that , 12 intersect on E, say at p and
then W1, W2 intersect at p(p), and the linear forms 12, w, are determined, up
to a scalar, by

(4.19) (12. E = a (W2. E - p(p)) + p (wi.E = a(11.E - p) + p(p).

As (P) E Z we have thus defined a map from the set (factorizations of
0 distinct from 11W2 } to Z. In view of 4.19), this map is ijective. Thus
the number of distinct factorizations of is at most # Z} < 4 This
also shows that for four distinct factorizations to exist, Z must have three
distinct points and p(li.E = (W2.E). Thus, O.E = 1.E + al(W2.E)
11.E + c1p(11.E = 11.E + (.E)v. 0

As the condition for multiple factorization is a closed condition in P(A2),

the projective space of quadratics, we note that there exists an open dense
subset in P(A2) in which unique factorization holds. In other words, unique
factorization for quadratics holds generically.

Example 420 [Quadratics factorizing in four different ways].

We give examples where a quadratic in an elliptic algebra factorizes in
four different ways. Suppose I is a linear form with three distinct points
P1, P2, P3 such that PP1, PP2, pp3 are also on a line, say corresponding to a
linear form w. Put = w. Then

O.E (P1 + P2 + P) + aI(PP1 + PP2 + PP3)

(4.21) (PV + P2V + P) a -I aP1 + aP2 + PP3)

(PV + P2 + PV) a -I O'P1 + PP2 + OT3)

(pi + 2V + PD a -I PP1 + aP2 + aM

Here all the parentheses are the divisors of some linear form. Thus factor-
izes in four distinct ways. For a concrete example, where this occurs, con-
sider the Sklyanin algebra with the parameter values a = 1, b = - , c = -
(1.2). This is an elliptic algebra with relations xy - yx = Z2, yZ - Zy

Z Now consider the quadratic zx. Then one checks that

1 [ + ay a 2 ZJ[X - ay a 2Z]
ZX �a2

where a is a cube root of unity.
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5 GK-1 Equivalence

We introduce the notion of gk-1 equivalence. In the next chapter (§II.1),
this will be used to classify injective indecomposable A-modules. Here, we
show how the maps to point modules ("incidence relations" 3.37) ) can be
used to classify finite gk-2 modules up to gk-1 equivalence.

(5.1) Consider the full subcategory GK<1 of gr-A whose objects are
7modules of gk-dimension at most one. This is a thick abelian subcategory;

for, in any exact sequence

0 -+ N' --+ N --+ N" -+ 0

in gr-A, N belongs to GK<1 if and only if N' and N" belong to GK<l. Let
E = EGK<, denote the class of morphisms s of gr- A such that ker(s) and
coker(s) 6elong to GK<l. Then by a general result [PP, Theorem 47.8], the
quotient category ITU-A = gr-A/GK<l is defined.

Definition 52. Let Ml and M2 be finite right A-modules. Ml is said to
be gk-1 equivalent to M2, denoted Ml M2, if the canonical projection of
Ml in the quotient category gr- A/GK<1 is isomorphic to that of M2.

This is obviously an equivalence relation on the objects of gr-A. Similarly
one defines gk-1 equivalence on A gr. Needless to say, if there is a map

0Ml )M2 such that gk(kero) and gk(cokero) 1, then Ml is gk-1
equivalent to M2.

(5.3) Assume that no positive integral power of a fixes the class of [C]
in Pic(E), i.e., the index so of the algebra A ATV2, 7] is infinite. This
hypothesis has the consequences that a gk-1 module is critical if and only if
it is a shifted point module; and, thus every gk-1 module is annihilated by
some power of g [ATV2,§7]. Then the notion of gk-1 equivalence is related to
g-torsion. To make it more precise, let tor-g be the full subcategory of gr-A
consisting of the g-torsion modules. An A-module M is said to be g-torsion
if every element of M is annihilated by some power of g, which is equivalent
to saying that Mgn = for some n, in case M is finite.) Now tor - g is a
thick abelian localizing subcategory, so the quotient category gr-A/tor-g is
defined. The quotient category gr-A/tor-g can also be described as follows.
Let A = A[g-1] be the Z-graded quotient ring obtained by adjoining the
inverse of the normalizing element g, and let T : gr-A --+ gr-A; M -+ M [g - 1 ]
be the canonical (exact) localization functor. Then, by a general result [PP,
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Theorem 47.11], tor-g is the "kernel"of the functor T, and the category
gr-A is equivalent to gr-A/tor-g.

Now since every A-module of gk-dimension < is -torsion, therefore,
by the universal property of the quotient category, the canonical projection
functor P : gr-A --+ gr-A/tor-g factors through gr-A/GK<l and we have
the following commutative diagram

gr-A gr-A/GK<l

P(5.4) AOA

gr - A ---, gr-A/tor-g

Our main purpose now is to show that if the following Hypothesis (5.5)
is true, then the type (0, ... IO; ... 1) of gk-2 normal modules is generic in
the sense that every gk-2 finite critical module is gk-1 equivalent to a shift
of a module of such type.

Hypothesis 5.5. Every gk-2 critical normal module M has a submodule
M'(-m) such that M' is normal of the same type as M and maps surjec-
tively to at least one point module.

This remains unproved, but seems to be valid. A partial result which
supports this hypothesis is the following.

Proposition 56. Every gk-2 critical normal module M has a normal sub-
module M' mapping subjectively to a point module.

Proof. Every gk-2 normal module has a non-zero map to some point module.
Let M --+ Np a non-zero map. If this map is not surjective then the kernel
Ml will be a gk-2 critical normal module (Theorem 336). Thus if the
proposition were false, we will obtain an infinite chain of gk-2 critical normal
modules

(5.7) C Mi+1 C Mi ... C Ml C M

such that the quotients MilMi+l are shifted point modules of the form
N(-m) with m > . Now a consideration of the Hilbert function shows that
(5.7) would contradict the convexity (Theorem 37) of the Hilbert function
of some Mi. 
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Definition 5.8. A module is said to be of A-type if it is a gk-2 normal
module of the type (0, 0; 1 i.e., it has a minimal resolution of the

times r times
form

0 -- A(- 1) - Ar -+ L --+ 0

for some r.

Lemma 59. Let M be a gk-2 normal module with multiplicity e, having a
minimal resolution of the form (3.3). The following are equivalent

(i) M is a module of A-type,
(ii) the Hilbert function of M is hm(n = diMk(Mn = en + e, n > 
(iii) r, the minimal number of generators of M = e.

Proof. We show (i) (ii). Let r be the (minimal) number of generators
of M. Then hm(n) diMk(Mn = r(di1nk(A(-1)n - dilnk(An) = rn +
r (n > ). Thus e r and we get (ii). Now, suppose (ii) holds and let
M be presented as in 3.3). Then e = dilnk(MO = #Iiklik = 0 r As
r < e 3.2), we get (iii). Finally, (iii) =* (i) follows from the conditions
Ek=r=ek=l jk - ik = e and _< ik < A 

Theorem 5.10. [Assume that Hypothesis (5.5) is true, then] Every gk-2
critical module is gk-1 equivalent to a shift of a module of A-type.

Proof. We first claim that for any gk-2 critical normal module M whose
Hilbert function is (MO, Ml, M2, -), there exists a normal module P with
Hilbert function (ml - Mi M2 MO, such that M(jz) P for some
tz .

To prove the claim, put M KO. By hypothesis (5.5), we can find a
normal module MO with the same Hilbert function as KO such that MO C
KO(vo) for some vo 0, and there is a surjective map MO -+ Np to some
point module Np. The kernel Kl of this map has Hilbert function -
1, Ml - 1i i M - If M > 1, then K is normal, and by hypothesis
(5.5) again, there exists a normal module Ml with same Hilbert function
as Kl' such that Ml C Kl(vi) for some > and Ml has a surjective
map to some point module. The kernel K2 of this map has Hilbert function
(m,O-2,ml-2,M2-2 .... . It is clear now that repeating the same process O
times, we can find normal modules Mi, Ki (i = 0,..., MO - 1), and a shifted
normal module Kmo, such that M' C K(vi) for some vi C1, Ki+l C M'
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(in particular, Mi Ki(vi), Ki+1 - Mi) and the Hilbert function of K'0
is (0, Ml - MO, M2 MO, . . ., ). Taking P = Kmo (1) our claim is proved.

Now let M be any gk-2 critical module. In the canonical map M -'4 M",
gk(cokery) 0 (1.8 v). Thus, M is gk-1 equivalent to its Cohen-Macaulay
bidual. So we can assume M to be Cohen-Macaulay, and indeed normal.
Let the Hilbert function of M be hm(n = n. Then n+I > Mn for all n,
and Mn is an arithmetic progression for n > s for some s; Mn = en+ ; (n >
s E Z'

Now apply the claim first to M to find a normal module PO such that
PO M(po) (po 0) and the Hilbert function of PO is (Ml - MO, M -

MO, M - MO, -); then apply the claim to PO to find a normal module PI
such that P PO(pl) (pi 0) and the Hilbert function of PI i (M2 -

Ml M - ml, . .), and so on. We see that after s number of applications of
the claim, we will get a normal module Ps such that the Hilbert function of
Ps i (Ms+l-MsMs+2-M, - and P M(p) where = o+pl+...+ps.
Since Mn en + c for n > s, we see that the Hilbert function of Ps is
(e, 2e, 3e,. so that P is a module of A-type (Lemma 59), and theorem
is proved. 

Remark 5. 11 By results in section 4 we know that the theorem is true in
multiplicity 2 every gk-2 critical module of multiplicity 2 is gk-1 equivalent
to a module of the A-type 0,0;1,1). In multiplicity 2 however, it is also true
that every gk-2 critical module is gk-1 equivalent to a conic module 4.12).

Appendi A Conics 'in the "Weyl Plane"

By the Weyl plane we mean that special case of the quantum plane, in which
the cubic divisor E associated with the regular algebra A is 3PI, the triple
projective line. In this case the relations in A are simply [ATV2, §8]

(A. ) xy-yx=O xz-zx=O yz-zy=x 2

In this section A will always denote this regular algebra only. In this case
= 3 , up to a scalar, and the algebra Ao = A[g-I]O is the Weyl algebra

W (hence the terminology); W = k < p, q > 1(pq - p = 1), where p =
yx-i 7 = zxI [ATV2,§8]. Here we study the conics in the Weyl plane.
Using the automorphisms of the algebra, we will classify the conics up to
gk- 1 equivalence.
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Proposition A.2. The group of (graded) automorphisms of A is the direct
product of k* and the semidirect product SL(2, k) t k2:

Aut(A = k* x (SL(2, k) t k 2).

Explicitly, every automorphism of A is given by a linear transformation
(also denoted by 0) of Al

a, 0 0

(A-3) a2 b2 C2

a3 b3 C3.

2such that Al = 2C - b3C = a,

Proof. First it is clear that any (graded) automorphism of A is given by a
linear transformation E GL(3, k) of Al:

X/- a, b, cl x'

yI = a2 b2 C2 Y

-Z/- a3 b3 C3 Z.

Imposing the commutativity conditions 6.1) we see that Al = 2C - 3C2
b3C = 0, A3 - b2C = 0. The conditions A = = 3

al ,A2 = bjC3 = bjC2

force b = = cl, giving (A.3). Now, any of the form (A-3) is a 0
T X

for some T E k2' X E GL(2, k) a E k* with det (X = a2. We see that it
a 0 1 0

factorizes as T X a a-1T a-1X I where the matrix on the right

hand side is an element of SL(2, k) t k2. Uniqueness of such a factorization
being clear, the proof is complete. 

We now define the canonical forms for a quadratic in A. Throughout this
section, we will write - for two quadratics andO if they are equal up
to a unit in k. A quadratic in A is said to be parabolic resp. hyperbolic) if
there exists an automorphism of A such that O(O) , y2+aZX, a E k* (resp.

2Y + ax a E k). A conic is said to be degenerate if there exists
an automorphism of A such that 0,O) , xi, or, O(O) y2 + aX2' where
I is a linear form and a E k. A conic module MO is said to be prabolic,
hyperbolic or degenerate if the quadratic is of the corresponding form.

Proposition A.4 A quadratic in A is exactly one of the three forms:
parabolic, hyperbolic, or degenerate.

Proof. Let = 2 +bZ2 +CX2 +2gyx+2f zx+2hyz be an arbitrary quadratic.
Suppose first that a = = b. If further h = then = x where is the
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linear form cx +2gy+2f z. If h 5 then 2h[(y+ JX)(Z+ j X) + ch-2fg)X21.
2h7-

So the automorphism x x, y �-4 y + i, Z F-+ + x transforms into the
hyperbolic form.

Suppose now that a 0 or b 54 0. For the sake of definiteness, suppose
a 54 0. Then the automorphism x 4 x, y F-* y + h z + x, z �-* z transformsa a

into the form y2 + YZ2 + 2f'zx + CX2. In this form if 0 f
then is degenerate. If = f then the automorphism X, Y F-*

y, z z + cxl2f' transforms into the parabolic form. If 5 then
the automorphism x 4 x, y �-* y + y z + �'X)' Z �-4 - f + �' x) (where

2 = -Y, 2 = -2,Y) transforms into the hyperbolic form.
We have shown that every quadratic has at least one of the three forms.

To show that the three forms are mutually exclusive, it suffices to show that
there exists no automorphism of A which transfoms one canonical form into
a different one. Having an explicit description of automorphisms of A (A.3),
this is straightforward to verify. 

(A.5) Consider the localization functor: Gr -A Mod-AO M
M[g-']O. Recall that, in the case of Weyl plane, we have g = X3, and AO
W = k <p, q> / (pq - qp = 1), where p = YX 1 q = zx - 1. Thus t he localization
functor in this case is just M -+ M[x-1]0. For a homogeneous element of
A of degree n, define its dehomogenization of as = no. Then,
for a principal module M = A/OA localization just means Mk ^-* Y�
where M = WI�W. By a quadratic in W we mean dehomogenization of
some quadratic in A, i.e., an element of the form ap2 + bq2 + c + fq +
gp + hpq where a, b, c, f, g, h E k. Quadratics in W correspond bijectively
to quadratics in A. We say that a quadratic in W is parabolic (resp.
hyperbolic, resp. degenerate) if the corresponding quadratic in A is of
the same form. It follows from Proposition (A.4) that every quadratic in W
is exactly one of these three forms. The W-module WI�W will be called
parabolic, hyperbolic or degenerate if is of the corresponding form. The
W-modules of the form W11W I = ap + pq +y, will be simply called line
modules over W.

(A.6) Let Aut(W) denote the group of automorphisms of the Weyl alge-
bra. It contains the semidirect product SL(2, k) t k2; because, every linear
transformation p = 2 + b2P + C2q, = 3 + b3P + C3q with b2C - b3C = 

gives an automorphism of W. We therefore have a group-homomorphism:
Aut(A) - Aut(W), 0 �-+ given by the projection of Aut(A) on the fac-
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tor (SL(2, k) t V ); i.e., a 0 �_4 1 0 We will denote
T X a-1T a-IX '

the image of this homomorphism by AutA(W). Note that there are auto-
morphisms of the Weyl algebra, not in AutA(W); see, for example, [Di].
However, as (O = #�) (O a homogeneous element of A), it follows that
we can transform the quadratics in W to canonical forms just by using
an automorphism in AutA(W) only. Equivalently speaking, a quadratic 
in W is parabolic (resp. hyperbolic, resp. degenerate) if there exists an
automorphism # E AUtA(W) such that #� , p2 + aq a E k* (resp.
O(O) pq + a, a E k; resp. #� - ap + Oq + or p2 + a, a, 0,,y E k).
This would allow us to lift the results about quadratic modules over W to
the ones about conic modules over A.

(A.7) Let be an automorphism of A. Two principal modules MO,
and MO, are isomorphic (resp. gk-1 equivalent) if and only if MO(O,) and
MO(102) are. MO is critical if and only if Mo(,k) is. Let E AUtA(W) be an
automorphism of W induced by the automorphism of A. Then Ml�l - M�2

if and only if M#(��) - A�2) and M� is simple if and only if M#(�) is. Also,
in view of 5.4), A-modules MO, and M02 are gk-1 equivalent if and only if
M,�, - M,�2 as W-modules.

The main results about the quadratic W-modules are given by the fol-
lowing theorem.

Theorem A.8. (i A parabolic or a line W-module is simple. Let MO be a
hyperbolic W-module and pq a a canonical form of . Then MO is simple
if and only if a E k - Z.

(ii) For a quadratic in W, WIOW W1(p2 + aq)W, (a E k*) if and
only if _ p2 + aq) .

(iii) For a quadratic in W, WIOW WI(pq + a)W (a E k - Z) if
and only if pq + a + n for some n E Z. Further, WIOW WlpqW if
and only if - pq + n for some n E N and WIOW WlqpW if and only
if , p - n for some n E N.

We will prove this at the end of the section. Using the Theorem and
remarks in (A.7), we get the following corollary.

Corollary A.9. No parabolic W-module is isomorphic to a hyperbolic W-
module. Two parabolic W-modules MO and MO, are isomorphic if and only
if O'. Two hyperbolic W-modules MO and Mk, are isomorphic if and
only if there exist canonical forms pq a of and pq + of O' such that (i)
a, E k - Z, a - E Z; or, (ii) a, E >O; or, (iii) a, E Z<o.

47



Remark (A.10) For every n E N there exists a commutative diagram in
Mod-W with exact rows

W Pn+1 W W
0 _q W (pq+n)W (pq+npn+1 TW- 0

(A. 1) II Cn tqn I I qn

0 W P W W 0
qW pqW _PW

where c, = -l)nn!. The commutativity of the left square follows from
qn pn+1 = _l)nn!p modpqW. The exactness of the first row follows from

q n

the equality (pq + n)w npn+l W = pn+1 qW. In particular, WI(pq + n)W
WlpqW is an isomorphism (as mentioned in Theorem (A.8 iii) ).

There is a corresponding commutative diagram in gr-A with exact rows,
which on localization gives the previous diagram:

0 A(-n-1) yn+1 A A 0
zA Tyz+nx2)A (yz+nx2,y7+-TTA

t CnX 2n jZn IZn

0 A (n - ) Y A (n) A (n) 0
zA yzA yA

It follows that the hyperbolic A-modules A/yzA and A/(yz+nx 2)A are gk-1
equivalent. Also, it follows that there is an exact sequence of A-modules

A Y n+1 A Zn A
(A.12) 0 --+ TA (-n - ) )(yz + nX2)A _ yA (n) --+ T -- 0

where T is a torsion module. This shows that, for a n E N, the conics
defined by yz + nx 2 are not critical. This verifies the claim made in 4.15).

Pn

Similarly, we have an isomorphism WI(qp - n)W --+ WlqpW and a gk- 1
2 ynequivalence A/(zy - nx )A + A/zyA, for all n > . However, WlpqW 9�_

WlqpW (Theorem A.8 iii).

The above results about the quadratic W-modules translate into those
about the conic A-modules as follows.

Theorem A.13. (i A parablic A-module is critical. Let MO be a hyperbolic
A-module, and yz + ax 2 a canonical form of . Then MO is critical if and
only if a Z.

(ii) No parabolic A-module is gk-1 equivalent to a hyperbolic A-module.
Two parabolic A-modules MO and MO, are gk-1 equivalent if and only if
0 - O'. Two hyperbolic A-modules MO and MO, are gk-1 equivalent if and
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only if there exist canonical forms yz + ax2 of and yZ + OX2 of O' such
that (a) ce, E k - Z, c - E Z or, (b) a, E Z >0; or, c ce, E Z <o 

Proof. (i) In view of (A.7), Theorem (A.8) and Remarks in (A.10) it suffices
to show that for a parabolic or hyperbolic , criticality of MO follows from
the simplicity of M�. Suppose Mk is not critical. Then by the 4.13), there
exists an exact sequence

(A. 14) O --+ ml, -M 1) O)MO - Mj,(m) - T - 0

where 1, 12 are linear forms. Localization would give a non-zero submodule
of M�, contradicting the simplicity of M�; unless, 1 - x in which case
localization of Ml, is zero. In case 11 x, we claim that factorizes as

- xl for some linear form 1. This would mean that is degenerate, a
contradiction. Now, to verify the claim, note that we have Px = OO' for
some �,'. As AI(x) is a domain, we see that E (x) or O' E (x). But the
latter can not hold, else, will be a multiple of , implying that the map
multiplication byO in (A.14) is zero. Now (ii) follows from (A.7), Coronary
(A.9) and Remark (A.10). C3

The rest of this section is devoted to the proof of Theorem (A.8).

Since for a quadratic in W and an automorphism # E AutA(W), the
module M� is simple if and only if M#(,O) is simple, therefore, in proving (i)
of (A.8), we are reduced to the canonical forms. In that case the results are
known [MR1 44], [Di] and [Ba 21,2.2].

Here we prove (ii) and (iii) using some of the methods of [MR1] We
denote WIOW by Wk etc. (Hereon, we will drop the bar from a quadratic
in W.) Let 0 be quadratics in W. Applying Hom( WO) to the exact
sequence OW W --+ WO -- 0 we get a commutative diagram with
exact rows

0 - H (WO, WV,) H (W, WV,) - H W, WV,) El (WO, WV,) 0

0 --* kero WV, WV, cokero 0

where H and E denote Hom and Ext respectively, and the map is right
multiplication by a W �-* ao +,OW. In particular, if WO and Wp are
simple modules then

(A. 15) WO WV, �* Hom(Wo, WV,) 0 4* kerO � 0.
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The question whether ker(o) 54 will now be reduced to the question of
existence of polynomial (or, Laurent polynomial, in hyperbolic case) solu-
tions to a certain system of differential equations. Recall that the Weyl
algebra W = k<p, q>l(pq - 1) is the ring of formal differential operators on
the polynomial ring k[q], with p = dldq. An element of W can be written
uniquely as a polynomial in p with coefficients on the right from k[q]. Now
we treat the parabolic and hyperbolic cases separately.

Parabolic case: Proof of (A. ii). Let Ip p2 + cq be a canonical parabolic.
Below we will write = + r where r cq, an element of k[q] of degree
1. W = W10W is a free right k[q]-module of rank 2 having basis elements
I , so an element of Wp can be written uniquely as a + p (, E k[q]).

Now we compute the action of the multiplication map by on this module,
where is an arbitrary quadratic. Write = 2 + pt + S where t and s
are polynomials in q of degrees at most and at most 2 respectively. Put
A = s - ar. Using the relation fp = -f + pf for f E kq], we get, by direct
computation,

(A. 16) (a + p#)O + pq mod a, E k[q]

where

(A. 17a) aa" - tat Aa + 2aro - rt# + ar'o

(A. 17b) 77 = -2aa + ta + ap" - to' AO

and a prime denotes derivative with respect to q. Thus a + po E ker-O if and
only if there exists a polynomial solution (, ) to the system of differential
equations: 0, = 0. We rewrite these equations as

(A. 18a) aal/ tat a = rto - 2aro - ar'O

(A.18b) - 2aa' + ta = to' - ap - AO

Proposition A.19. If deg(r) 1, and (t, A) (0, 0) then there is no non-
trivial polynomial solution (, $ (0, 0) to the system (A. 8).

Proof. We prove this by a degree comparison. First we show that a = 
0. Suppose a = . Then the equations become

rto = 2aro' + ar'O to' - AO = ao
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Let deg, = m > then comparing the degrees of both sides of the first
equation gives

dego + degr + degt = deg(LHS = deg(RHS) dego + degr - .

Hence degt < - which shows that t = 0. Then the second equation forces
A 0. Thus a = 0. By a similar degree-comparison, we see that
,3 0 # a = .

Therefore, for a non-trivial solution, we must have a 54 0,0 �6 0. Let
dega = n, deg = m (n, m > ). Again, we compare the degrees of the two
sides of (A.18). We consider three cases. First, suppose degA > , t 54 .
Then (A.18a) and (A.18b) give respectively

n + deg, = m + degr + degt n + degt = m + degA.

This implies 2 = m + degr = 2m + 1, an impossibility. One similarly
shows that we get absurdities in the cases (degA = 0 A �6 0, t 0) and
(A = , t 54 0). This completes the proof because we are now left with the
option (t, A) = (0, 0). 0

We have shown that ker(o) 0 unless (t, A) = (0, 0). Now the condition
(t, A) = (0, 0) is equivalent to aip. This proves (A.8 ii).

Hyperbolic case: Proof of (A.8 iii). Let = pq + w, (w E k) be a canonical
hyperbolic. Suppose first that Z. Then, W10W is isomorphic to the
right W-module k[q, q-1] where, on f E k[q, q-1], the action of q is just the
multiplication by q, and the action of p is fp = -(f'+wq-1f) [Di]. Hereon,
we identify W1,0W with k[q, q-1].

We show that for an arbitrary quadratic , W# Wp implies + m
for some m E Z. As Wp is simple (A.8i), we must have, in view of (A.15),
kero where is multiplication by on W,. Write = 2 + pt + S where
t and s are polynomials in q of degrees at most and at most 2 respectively.
The action of multiplication on an element f E W = k[q, q-1 is

fo = af" + (2awq-1 - t)f + (aw 2q-2 _ awq- 2 _ wq-'t + s)f mod(pq + w).

It follows that f E kero if and only if f satisfies the differential equation

(A.20) a(f" + 2wq-lf + 2q-2f - wq -2f) - t(f'+ wq-1f) + sf = 

(where we have collected together the terms "equidimensional" in q. ) Now
let f = Ek=,,� Ckqk; c. 0, c, 0 0. Considering the coefficients of qm+2 and
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qm+l in (A.20) we see that must reduce to a constant. Writing s = c, and
t = hq + g (c, h, E k), the equation becomes

a(f"+2wq-'f'+w'q-'f -wq-'f)-g(f'+wq-1f)+(cf -hqf'-hwf = .
Equating the coefficient of to zero we get c - mh - wh = 0, i.e., c =
h(m + w). On the other hand equating the coefficient of qn-2 to zero we get
a(w + n)(w + n - = 0. Since we assumed Z a = . Now, equating
the coefficient of qn-1 to zero we get -g(n + w) 0. Again, since Z we
have g = . Thus reduces to = h(pq + m + w), m E Z, as required.

Conversely, we show that the hyperbolic modules corresponding to pq+w
and pq Lo m (w Z, m E Z) are isomorphic. Clearly, it suffices to show

q

this for m = , in which case we have an isomorphism WI(pq + w + 1)

WAP + W)-
The remaining part (case E Z) of the Theorem (A.8 iii) is taken care

of by the following proposition.

Proposition A.21. Let be a quadratic in W. Then (i) W10W WlpqW
if and only if pq + n, n E N. (ii) W10W WlqpW if and only if
. - p - n, n E N.

Proof. We prove (i), the proof of (ii) being similar. It is shown in (A-10)
qn

that WI(pq + n) ---� Wlpq for n E N. Here we show the converse. Write
again = + pt + S where t (resp. s) is a polynomial in q of degree at
most 1 (resp. at most 2. We first claim that a = and deg = .

Suppose a y4- 0, then WOW is a free right k[q]-module of rank 2 Let

WlpqW ---� W10W be an isomorphism. It must be left multiplication by
some element of W10W, say, = a po where a, E k[q]. So we
have (a + p#)pq = mod . Since W10W is q-torsion-free, this means
(a+ pp)p = and the map actually vanishes on the larger ideal pW D pqW,
showing that the map can not be an isomorphism. So we must have a = .
Now, W10W WlpqW also implies that Hom(W/OW, WIpW 5 0, i.e.,
ker(-O: WIpW WIpW) �6 0. As WIpW = k[q], we must have � a E k[q]
such that ao 0 mod p, i.e., a(pt + s = mod p. This means

(A.22) ta = Sa.

By comparison of degrees, it follows that degs = .
Now write t = hq + g, s = (hgc E k) so that p(hq + g) + c We

must have h �6 0, else reduces to a linear form gp + c and WI(gp + c)W
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is not isomorphic to WlpqW [MR1]. So taking h = 1, (A-22) becomes
(q + g)al = ca. Let dega = m > . Consideration of the coefficient of q-
gives rn = c, and the solution: a = ao(q + g)'. To finish the proof we show
that g = . For this, consider the diagram

W PM+I W W
0 (q+g)W (p(q+g)+m)w _PW 0

11 (q+g)'
0 W P W W 0

qW p-q W _PW

where the rows are exact (A.10) and the triangle is commutative. Since
(q + g)mpm+ = mod pW, but (q + )'pm+l mod pqW we see that
there is a non-zero map WI(q + g)W ) WlqW, which shows that = .
(Here, we have used the fact that WI(q + y)W WI(q + v)W for it, v E k
if and only if IL = v [MR1].) 0
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II
INJECTIVE MODULES

OVER ELLIPTIC ALGEBRAS

In this chapter we study injective modules over elliptic algebras. Our main
objective behind studying injective modules over eiptic algebra was to con-
struct a minimal injective resolution residue-cornplex') for eiptic alge-
bras. We have been successful in constructing the resolution only up to a
certain term (§2). In the first section, we give basic results about indecom-
posable injective modules and their gk-dimension. In the second section, we
study injective modules of gk-dimension 2 and construct the injective reso-
lution up to the term corresponding to indecomposable injective modules of
gk-dimension 2 In the third section, we consider the injective hums of point
modules (gk-1 critical modules) and show that their gk-dimension is 1 In
the final section, we prove a Maths-type duality for certain non-commutative
complete local rings. The proof follows [Mal with some 'non-commutative'
modifications.

In sections 13 of this chapter, we denote by A an elliptic algebra, and by
B the algebra AlgA, g being a normalizing element of degree 3 unique up to
a scalar. (When necessary, we will use the symbol R to denote an arbitrary
N-graded connected Noetherian kalgebra.) We assume that the cubic divisor
E associated to A is reduced, so that the algebra is a domain. We also
assume that no positive integral power of a fixes the class of [C] in Pic(E),
i.e., the index so of the algebra A [ATV2, §] is infinite. This hypothesis
has the consequence that a gk-1 module is critical if and only if it is a shifted
point module; and, thus every gk-1 module is annihilated by some power of
g [A T V2, 7.

1 Indecomposable Injective and Critical Modules

In this section, we state the basic results about indecomposable injective
modules (which are injective hulls of critical modules, Lemma 1.2i).

Let R be an N-graded connected Noetherian kalgebra. We will denote
by R' the opposite algebra of R and by Re the algebra R Ok R'. Thus an
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(R, R)-bimodule is a right Re_module. There is a diagram of restriction
functors

ReSIROGr-R' Gr-R'

ReSR Resi,

Gi -R Gr-k
Resk

in which all the functors are exact, and the functors ReSR and ReSRO map
injectives to injectives, and projectives to projectives [Yel 21]. By an R-
module we mean a right or left graded R-module. For an R-module M,
ER(M) denotes its graded infective hull. For bimodules M and E we say
that E is an infective hull of M in Gr - R and in R - Gr if ReSR(E) is an
infective hull of ReSR(M) in Gr-R and ResRo(E) is an infective hull of
ResR.(M) in Gr-RO. Hereon, the restriction functors will be implicit, for
the sake of legibility.

Lemma 12. (i) E is an indecomposable infective R-module if and only if
E = ER(M) for some finite critical R-module M.

(ii A non-zero homomorphism between two critical R-modules of same
gk-dimension is essential infective. In particular, for an elliptic algebra A, if
there exists a non-zero homomorphism between two gk-2 critical A-modules
then they are gk-I equivalent.

Proof. (i) If E is an indecomposable infective R-module, then E is an
infective hull of every one of its non-zero submodule. Since E contains
a finite R-module and hence a finite critical R-module M, E = ER(M)-
Conversely, if M is a finite critical module, then M is uniform. For, every
submodule of M has the same gk-dimension and the same multiplicity as
M has, and therefore M can not contain the direct sum of two non-zero
submodules. M being uniform, ER(M) is indecomposable.

(ii) follows directly from Lemma 1.3.45). 0

We say that an R-module F is a maximal gk-m essential extension of an
R-module M if it is an essential extension of M, has gk-dimension m, and
there is no module of gk-dimension m essentially and properly containing
F. The following lemma will be later used in relating the gk-dimension of
infective hull of a critical module M to that of M. Recall that for an arbitrary
module, not necessarily finitely generated, the gk-dimension is defined as the
supremum of the gk-dimensions of its finitely generated submodules.
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Lemma 13. Let M be a finite R-module of gk-dimension m F a max-
imal gk-m essential extension of M, and E = ER(M). The following are
equivalent

(i) gk(E = m,
(ii E ,
(iii) For every iective map M X, we have a map X F,

extending M --+ , i.e., the diagram below commutes.

M X

F

(iv) Every extension 0 --+ M --+ X P --+ 0 by a finite module P, drops
to an extension of gk-dimension m i.e., for every extension - M - X
P --+ 0, there exists a commutative diagram

0 M X P 0
(1.4) 11 I I

0 M X, P, 0

such that gk(X' = m.

Proof. (i) =�- (ii) and (ii) # (iii) are clear. (iii) =�. (iv) is also clear,
because given an extension 0 -- M X - P - there exists a map
X -- F extending the inclusion map M --+ F. Now take X, in 1.4), to be
the image of X --+ F. To show (iv) # (i), let E be a finite submodule of E.
Then there exists a commutative diagram

0 M E' P 0
11 0 1 1

0 M Y P, 0

with gk(Y = m. Now, = ker(O) n M C E', and E' being an essential
extension of M, ker(O = 0. Thus is infective and gk(E') gk(Y = m. 0

Remark. (1.5). Let F be a maximal gk-m essential extension of an R-
module M. Then Ext'(P, F) 0 for a R-modules P with gk(P) m.
Indeed, let 0 -- F -+ X - P 0 be an extension. Then gk(X = m. Now
X contains a submodule Y such that F D Y is an essential submodule of
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X and F = (FED Y)l Y is an essential submodule of XI Y QGW, 3221) As

gk(XI Y = m, we have F --+ XI Y, Y = P, and X = F ED P.

(1.6) Let Ml and M2 be two critical R-modules of gk-dimensions ml
and M2 respectively. If EA(MI) EA(M2) then, by a general theorem
[GW, 4ZC], there exist (essential) submodules P C Ml and P2 C M2 such
that P P2. Since Ml and M-2 are pure modules, gk(PI = ml and
gk(P2 = M2- It follows that ml = M2. This shows that we can classify
indecomposable infective R-modules into classes Ej such that an indecom-
posable infective module E is of class EJ if and only if E = ER(M) for some
finite critical R-module M of gk-dimension j. It turns out 1.14 310) that
in the case of elliptic algebras, the gk-dimension of an infective indecompos-
able module of class is also j.

(1.7) Now let A be an elliptic algebra. The indecomposable infective
modules will be of classes with j = 0, 1 2 3 Our main motive behind
studying infective modules over elliptic algebra was to construct an infective
resolution

(1-8) 0 A + E3 - E2 --+ El E -- 0

of A where we expect E would be a direct sum, with certain multiplicities,
of indecomposable iective modules of class (infective hulls of finite
critical A-modules of gk-dimension j). This would be an analogue of the
"residue-complex' in the commutative case, and could be called a residue-
complex for quantum planes. In the next section, we construct the complex
up to the E2 term. We have not been able to construct the full complex.

The only critical modules in gk-dimension are the shifts of the simple
module k. It is standard that the (A, A)-bimodule A' = HMk(A, k) is an
infective hull of k in both Gr-A and A-Gr. It is clear that the gk-dimension
of A' is 0. The critical modules of gk-dimension are precisely the shifts of
the point modules. We return to infective hulls of these modules in section 3,
where we show that the gk-dimension of an infective hull of a point module
is 1. Here we show that, the indecomposable infective modules of clas E2

have gk-dimension 2 and can be classified, up to isomorphism, in terms of
the gk-1 equivalence classes. This classification is used in the next section
to construct the "residue-complex" up to the E2 term.

Proposition 19. Let M be a gk-2 finite critical A-module. Then the
following conditions are equivalent
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(i M is gk-1 equivalent to ,
(ii) M is g-torsion, i.e., M[g-1 = ,
(iiii) M has a -torsion element.
Under these conditions, EA(M) EA(B).

Proof. (i) =. (ii) is clear because if M - then, by (I.5.4)), M[g-1 = ;
and, (ii) =:>, (iii) is trivial. We now show (iii) =:>. (i) and EA(M) EA(B).
We prove this for a right A-module. Of course, a similar proof works for left
modules. Let x E M be such that xg = 0. Since g is normalizing, xAg = ,
and thus the (essential) sub-A-module xA of M is a B-module. Being a
submodule of a critical module, xA is a critical A-module, as well as a critical
B-module, of gk-dimension 2 Now xA M (Lemma 12 ii). To complete
the proof, it suffices to show that for any gk-2 finite critical B-module P,
B - P (as A-modules and EA(P) EA(B). Since P = HOMB(B, P) j 0,
there exists a non-zero B- and hence a non-zero A-homomorphism : B --+
P(n) for some n > . By Lemma (1.2ii), P(n - B, or, P - B(-n). Since
multiplication by a homogeneous element of degree n, B(-n) --+ B gives
gk-1 equivalence of B(-n) with B, it follows that P is gk-1 equivalent to B.
Since a monomorphisms considered above are essential, EA(P) EA(B).
0

Corollary 1.10. Let M be a finite critical A-module, not gk-1 equivalent to
B, and E = EA(M). Then E has a natural A-module structure, compatible
with its A-module structure. Further, E EA(M[9-11) as A-modules.

Proof. To prove the first statement, it suffices to show that E is g-torsion-free
and g-divisible [GW 912]. Being an ijective A-module, E is automatically
A-divisible (in the graded sense) and, in particular, g-divisible. To show
that E is g-torsion-free, suppose, on the contrary, that 0 �6 x E E such that
xg = . There exists an a E A such that 0 �6 xa E M. But then xag = ,
because g is normalizing. This is a contradiction since M, being not gk-1
equivalent to B, is g-torsion-free by the Proposition 19. The last statement
is a standard fact [GW, 9.16b]: E being g-torsion-free ijective A-module is
also injective as A-module, and, since the injection M - E factors through
M[g-1], we have E EA(M[g-l]). 0

Proposition1.11. LetM,,,,M,6betwogk-2finitecriticalA-modules. Then
EA(M,,,) EA(M8) (as A-modules) if and only if M,,, is gk-1 equivalent to
M3 

Proof. In case, M,,, MO B, we get, by Proposition 1.9), EA(Ma)
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EA(MO) EA(B). Suppose now that M Mo,� B. By Corollary (1.10),
EA(M.) EA(M.:Jg-1]); EA(MO) EA(Mo[g-1]) as A-modules. But also,
M, - MO implies that M[g-1] Ma[g-1] as A-modules (I.5.4). Thus
EA(M,,,) - EA(M3) as A-modules and hence as A-modules.

Conversely, if EA(M,,,) �-_ EA(MO) then there exist essential submodules
C Mc,,, Ma C Mg such that M M. as A-modules. But as M,, , M""

and MO - M#, (Lemma 12 ii), we have M,, , M6. 

Theorem 112. The indecomposable infective A-modules of cass 2 are
exactly the infective hulls, EA(M,,,), of gk-2 critical Cohen-Macaulay mod-
ules M,,, one from each gk-1 equivalence class.

Proof. In view of 1.2 i) and Proposition (1.11), we only have to show
that within a gk-1 equivalence class, we can restrict to a Cohen-Macaulay
module. For this it suffices to check that for a gk-2 finite critical module M,
its Cohen-Macaulay bidual Mvv is critical and EA(M) EA(Mvv). But
this is immediate from Lemma (I.3.45). 0

(1.13) The description of indecomposable injective modules of class
E3 is trivial. First, note that A is a critical A-module [ATV2, 230 v].
Up to an isomorphism, EA(A) is the only object in class E3. More pre-
cisely, if M is a gk-3 critical A-module then EA(M) EA(A). Indeed,
since M = HOMA(A, M) 0, we see by Lemma 1.2 ii) that there is an
essential monomorphism 0 -- A M(n), and EA(A) EA(M(n)), or,
EA(A(-n)) EA(M) (for some n > 0). But as a multiplication by a homo-
geneous element of degree n gives an essential monomorphism A(-n) -- A,
we have EA(A) EA(M).

Proposition 114. Let M be a gk-2 critical A-module, and E an infective
hull of M. Then gk(E = 2.

Proof. Let F be the maximal gk-2 essential extension of F. To prove the
proposition, we verify that Ext'(P, F) = for a finite modules. As a finite
module has a finite filtration whose successive quotients are critical (I.1.6i),
it suffices to verify this for critical modules P. In view of Remark (1.5),
we can assume that P is gk-3 critical. Then there is exact sequence *
A(-n) -- P P' -- 0 113) where Pis gk-2, thus Ext'(P', F) = (1.5).
Considering the cohomology of this sequence, we see that Ext'(P, F) = .
0
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In .ective Modules of GK-dimension 2

In this section we construct an infective resolution ("residue complex" (1.8))
of A up to the E2 term, i.e., the term corresponding to the indecomposable
infective modules of class E2. Our construction of the E2 term is as a direct
sum of two infective factors: one corresponds to an infective hull of the
critical A-module = Al(g) and the other decomposes as a direct sum
(with certain multiplicities) of infective hulls of gk-2 critical modules not
gk-1 equivalent to B.

Let Q be the Z-graded quotient field of A. This (A, A)-bimodule is an
infective hull of A in Gr- A and in A Gr and corresponds to the E3 term
in (1.8).

To construct the E2 term, we start with the infective hull of the gk-2
critical A-module B. It turns out that the bimodule QIA(g) is an infective
hull of B in Gr-A and A-Gr (Proposition 28). Here A(,) is the localization
of A with respect to the Ore subset

(2.1) = s, homogeneous element of AI s � (g)}.

That such localizations exist would follow from the fact that the ideal (g)
satisfies the Artin-Rees property.

Proposition 22. The following conditions on a (two-sided) ideal J of a
right Noetherian ring R are equivalent

(i) If I is a right ideal of R then I n jn C IJ for some n,
(ii) If M is a finitely generated right R-module and N is an essential

submodule of M with NJ = then Mjn = for some n,
(iii) If M is a finitely generated right R-module and N a submodule of

M with NJ = , then N n Mjn = for some n.

This is standard [MR2, Theorem 42.2].

A (two-sided) ideal J of a right Noetherian ring R is said to have the right
Artin-Rees property if it satisfies the equivalent conditions of Proposition
(2.2). One can similarly define the left Artin-Rees property.

Proposition 23. Let R be a right Noetherian ring and J an ideal generated
by normalizing elements. Then J has the right Artin-Rees property.

This is also standard [MR2, Proposition 42.6].

In particular, we see that in an eiptic algebra A, the ideal J = g)
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has the Artin-Rees property. This has the following consequence for the
infective hull of over A.

Proposition 24. Let E = EA(B) be an infective hull of in Gr -A.
Then E is g-torsion: E = U E,, where E = Ix E EXgn = 0 Further,n=
E = EAIqn(B).

Of course, a similar statement holds for an infective hull of in A-Gr.

Proof. Given x E E we show that gn = for some n. Let M = xA,
N = MnB. Now E being a uniform module, : N is an essential submodule
of M. Clearly, Ng = 0. Now apply Proposition 1.2) to conclude that xAgn =
0. The last statement follows from a standard result [GW, 4E]: if I is a
two-sided ideal in a ring A, M a right A/I-module, E = EA(M), then
annE(I = EAII(M). Here we take M = and I = g)n. 

We now turn to localization of A. Let be defined as in 2.1). Since (g)
is a completely prime ideal i.e., = Al(g) is a domain), we see that is
a multiplicative subset. In standard notations,

S = CA ) s homogeneous element of A I s is regular in A (g)}.

Lemma 25. no, 1g)n = . Consequently, any homogeneous element a En=
A can be written as a = gnS with a unique n E N and a unique s E S.

Proof. The first assertion follows simply by noting that g)n C A>3n and
nnA3 = . For a given homogeneous element a E A, choose the largest
integer n E N such that a E g)n. Then a = gns for some E S. Uniqueness
of this representation is evident, as A is a domain. 

We now show that S is a (left and right) denominator subset of A. We
first prove that the image of S in A/(g)n is an Ore subset, and then lift this
to A, using the Artin-Rees property of J = g). We denote the image of S
in A/gn by S itself, if there is no confusion.

Proposition 26. S is a (left and right) Ore subset in A.

Proof. We check the right Ore condition. We first show, by induction over
n, that for all n, the homomorphic image of S in A/(g)n satisfies the right
Ore condition. The image of S in = Al(g i CB = b E Blb 0}.
Since is a Noetherian domain, this is an Ore subset. Thus the statement
is true for n = To complete the induction, one has to show that for
arbitrary homogeneous elements a E As E S, if there exist homogeneous
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elements a,, E A, sn E such that as,, - san E gn then there exist
homogeneous elements an+1 E A, sn+l E such that asn+1 - san+1 E
(g)n+l. Let asn - san = gnr, r E A. Let s* be a homogeneous element such
that sgn = gns*. By 2.5), s* E S. Now there exist homogeneous elements
r' E A, s' E S such that rs - s*r' E (g). Then asns - s(ans' + gnr' =
gnrs' -- sgnr = gn (rst s*r') E g)n+l. Thus we can take sn+1 = Sns/ E S
and an+1 = ans' + gnr', to complete the induction.

We now prove that S satisfies the right Ore condition in A. Let a E A,
s E S be homogeneous elements. Since J = g) satisfies the right Artin-Rees
property, therefore, for some n,

(aA + sA) n g)n C (aA + sA).(g = (ag) + (sg).

The right Ore condition for S in A/(g)n gives homogeneous elements a' E A
and s' E S such that a- sa' E g)n. Thus, as' - sa' E (ag) + (sg). Therefore,
one has homogeneous elements b, E (g) such that as' - sa = ab + se. Then
a(s - b = s(a' + c), and s - b E S. This completes the proof. 

(2.7) Note that asSAM = la E Alas = for some S E S} = 0. Thus, S
is a denominator subset. We denote by A(,) the Z-graded localization of A
with respect to S. The canonical map A -+ Ag) is infective and A(,) is a do-
main with the quotient field Q. Further, (g)A(g) is a two-sided principal ideal
which we will denote simply by (g), if there is no possibility of confusion.
It defines an exhaustive filtration on Ag), which we simply call the g-adic

filtration. We will consider the g-adic completion A(,) and a Matfis-type

duality for Ag)-modules in the last section.
The g-adic filtration is separated:

nOO (g)n-A(g = .n=

Hence, every non-zero element of Ag) can be written as gn(uV-1) for a
unique n E N where U, v E A - g). Every non-zero element of Q can be
written as gn(uv-') for a unique n E Z such that u, E A - (g). This defines
a discrete valuation on Q. The ring Ag) is the valuation ring of Q for this
valuation, (g)A(g) is the (unique) maximal ideal of Ag), and Ag)l(g)A(g),
the residue field of the valuation, is isomorphic to KB, the Z-graded field of
fractions of B. It follows that the global dimension of A(g) is .

Proposition 28. The (A, A)-bimodule QIA(g) is an ijective hull of B in
Gr-A and in A-Gr.
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Proof. As the global dimension of A(,) is 1, the exact sequence

(2-9) 0 --* Ag) -- Q --* QIA(.q - 0

shows that QIA(,) is an infective module in Gr-A(,) and in A)-Gr, and
therefore, an infective module in Gr-A and in A-Gr. Now fix a homogeneous
element t E of degree 3 Then the right (resp. left) A-homomorphism
A - Q mapping the generator to tg-1 (resp. g1t defines an essential
monomorphism = Alg --+ QIA(g) in Gr-A (resp. A-Gr).0

We now look at the contribution to the E2 term from other gk-2 critical
modules, i.e., ones not gk-1 equivalent to B. In the notation of 1.12) we
write the indecomposable iective modules of class E2 as ifective hulls
EA(M,) where M,,'s are critical gk-2 Cohen-Macaulay modules, one from
each gk-1 equivalence class a. We denote the gk-1 equivalence class of B
by . We now show that there is an (A, A)-bimodule which decomposes as
direct sums (with certain multiplicities) of the infective hulls EA(M,,,) with
a 54 . Recall that A = A[g-1] is the Z-graded localization of A with respect
to the Ore subset IgnIn > 0.

Theorem2.10. The(AA)-bimoduleQlAisag-torsion-freeinjectivemod-
ule in Gr-A and in A-Gr. Further, Q/A decomposes as

(2.11) Q/A = E.:0,6p.EA(M.)

in Gr-A (resp. A-Gr), where the direct sum runs over gk-1 equivalence
classes different from (that of B), and p, > .

Proof. As the global dimension of A is 1 [ATV2, 7], the exact sequence

0 -- A -+ Q -* Q/A - 0

shows that Q/A is an ifective module in Gr-A and in A-Gr, and therefore
an infective module in Gr-A and in A-Gr. It is clear that Q/A is g-torsion-
free.

To complete the proof, it is sufficient to show that there is a non-zero A-
homomorphism from every gk-2 critical Cohen-Macaulay module M (a
,3) to Q/A. Indeed, if 0: M - Q/A is a non-zero homomorphism then
is necessarily ifective else, one would have a gk-1 submodule M/ker of
Q/A which would give g-torsion to Q/A. Finally, the decomposition would
be direct because EA(M,,,) and EA(Mal) can not intersect within Q/A for
a �6 a'.
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Let us therefore exhibit a non-zero A-homomorphism from such M to
Q /A. We show this in Gr - A, similar argument can be used in A - Gr. Let
M have the minimal resolution as in (Chapter 1 33)

0 M (Dr(Dr=jA(-jk)'-1 =1 A(-ik) -* M --+ 0-k k

To give a non-zero morphism from M to Q/A is equivalent to giving a row-
vector [q] E Qr Ar such that [q][M] E Ar. Now M having gk-dimension
< 3 M OA Q 0 ([ATV2, Proposition 230 v]). Thus the matrix [M is
invertible in EndQ(Qr). In particular, there exists a row-vector [q] E Qr
such that

r(2.12) [q][M = [1, 1, 1] E A

We claim that this [q] has the required property, i.e., [q] � Ar. Suppose, on
the contrary, that [q] E A . Write qj = (gmi) -'ai, (Mi > 0), ai (g). Take
m = maxf Mi I i = 1, . - -, r} = mio, say. Multiplying the equation (2-12) on
the left by gm we get

m m(2.13) [b][M] [g , 9 ,...,gm]

where [b] E Ar, and bio = ajo (g). This, however, means that there is
a non-zero A-homomorphism from M to B = Alg. But M and B being
critical, this would imply that M is gk-1 equivalent to B (Proposition 1.9),
contrary to hypothesis. 0

(2-14) Now the sequence of Z-graded (A, A)-bimodules

0 -+ A --* Q - Q/A ED QIA(g) - ..

is exact. Indeed, AnA(, = A inside Q. It is also clear that the map
QIA , Q/A ED QIA(g) is essential. This, therefore, gives a minimal infective
resolution up to the E2 term.

3 In .ective Hulls of Point Modules.i
In this section, we study the indecomposable infective modules of class 1,
Le, infective hulls of point modules (gk-1 finite critical modules). Using
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the computations of certain Ext groups, we describe the possible essential
extensions of a point module. It turns out, as in the case of "commutative
projective plane", that an injective hull of a point module has gk-dimension
1; in other words, there are no essential gk-2 extensions of a point module.

Proposition 31. Let Np be a point module. Then Extl(k, Np = k(l),

Ext2 (k, Np = k(2) ED k(2), EXt3 (k, Np = k(3).

Proof. Applying Horn( Np) to the resolution of kA (which would be trans-
pose of the sequence (Chapter I, 11) ), we get the complex
(3.2)

X

y
[XVZ1

0 --+ N Np(1)EDNp(1)EDNp(1) _M_+ Np(2)EDNp(2)EDNp(2) -- ) Np(3) - 0.

Here M is the transpose of the matrix M in (I,1.1). Denote the three maps
in 3.2) by 1, 02, 3 respectively. First note that the matrix M has rank 2
at every point p AM, 1]. Thus the dimension of the k-space (ker(02),,)

is for n > 1 and otherwise; that Of (iM(02)n) is 2 for n > 1 and 
otherwise. The maps 1 and 3 are non-zero in degrees n > 0, and n > 2
respectively. Thus the dimension Of 0*00n) is for n > and otherwise;
that of (ker(03)n) is 2 for n > 2 and otherwise. Knowing the dimensions
of the kernels and images of the maps, we now get the proposition. 

In fact, the non-split extension of Np by k(l), corresponding to Ext (k, Np)
k(l), is given by

(3.3) 0 -� Np -+ N_ip(l - k(l) - 0

as we already know (Chapter 1 21). An essential extension of a point mod-
ule by a finite-dimensional (gk-0) module is realized by successive extensions
of the form 3.3). We have a direct system Np -- Nip(l) -- N-2p(2)

.... We denote this direct system by N, and the direct limit by NOO:

(3.4) NP' = lim Np = lim N np(n).

Note that we have NOO(k) Nkp for k E Z.

Lemma 35. Let (Mi) be a direct system of A-modules, X a finite A-
module. There is a natural isomorphism

(3.6) lim Ext'(X, Mi) ___+ Ext'(X, lim Mi) ( > 0).
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Proof. Indeed, the category of finite A-modules has enough projectives, and
both sides in 3.6) are Munctors on that category, coeffaceable for i > .
As the natural homomorphism

lim Hom(X, Mj) --+ Hom(X, lim Mj)

is an isomorphism for a finite (-ly presented) module X, the lemma is proved.
0

In view of 3. 1), we conclude from 3.5) that Exti(k, NOO = for all
i > 0. In fact,

(3.7) Ext'(T, NP- = (i > )

for all torsion modules T, because T is a direct limit of finite torsion modules
T,,,, and Exti(lim- T,,, NOO) = lim, Ext'(T,,,, NOO = .

Thus, the module NOO is the maximal gk-0 essential extension of Np. Now
let 0 --* NOO -- X -- P be an essential extension of NOO by a pure (i.e.,
torsion-free) gk-1 module P. As P has a filtration whose successive quotients
are shifted point modules, we see that the essential extension of NOO by P
is realized by successive extensions of Npw by shifted point modules. The
following result shows what are such possible essential extensions of NOO.
Recall that p = p-io,(p) (Chapter 1 213).

Lemma 38. Ext'(NqOo, NP-) - Ext'(Nq, NP-) for i > 0. Hence

Hom(Nq', Np')o = k q=p,
0 q 5 p.

Ext'(Nq-, NP-)o = k q=p orq=p*,
0 otherwise.

Ext'(N,-, NP-)o = k q = p*,
0 otherwise.

Proof. Applying Hom( N00) to the sequence 0 --+ N - N --* T
0, and using 37), we verify the first claim. Now, Exti(NqOONOO)o
Ext'(N9, N.-)o = lim, EWA, N,-.p(n))o 36). Thus, the formulas
follow from the computations (Chapter I, 334). C1

This lemma gives us the possible gk-1 essential extensions of NOO. Let

(3.9) 0 --+ N0 --+ Tp --+ N, - 0 0 --+ N0 --+ p -* N� -- 0
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be the "first" essential extensions corresponding to the non-vanishing Ext'
in 38). One can check that Extl(N,-, Tp = unless q = p or p*, and
Ext'(NqlFp = unless q is one of pp*,p**. ( These claims follow by
applying Hom (Nq-, to the sequences 3-9), and using 3.7) and 3.8)
repeatedly.) We see that there is a two-parameter family of essential gk-1
extensions of NOO, starting with 3.9). Geometrically, the injective hul of
a point looks like a 'thickening' of the point along the tangential direction,
and a 'thickening' along the *-orbit of the point.

Let E denote the maximal gk-1 essential extension of Np. Our main
purpose now is to show that there are no gk-2 essential extensions of Np
(or of E), so that E is actually an injective hull of Np. In other words, the
gk-dimension of an injective hull of a point module is 1. This is similar to
the case in the commutative projective plane, where the result is quickly
implied by the Artin-Rees property of the maximal ideal corresponding to
the given point. In the quantum case, we use the Artin-Rees property of the
(two-sided) ideal (g) 23); but, this is not sufficient to conclude the result
and we need some more computations as the following proof shows.

Proposition 310. The gk-dimension of an injective hull of a point module
is 1.

Proof. We verify the equivalent condition (iv) of Lemma 13. Let Np be
a point module, and let E denote a maximal gk-1 essential extension of
Np. Let 0 --+ Np )X -- P be an extension of Np by a finite module
P. Since the ideal (g) satisfies the Artin-Rees property 2.3), there exists
an integer n > such that Xgn n Np = . Thus we have a commutative
diagram with exact rows:

0 Np X P 0

11 I I
0 Np XlXgn p, 0

where p n = so that P', being a A/gn_module, has gk-dimension 2 We
are reduced to verifying the condition (iv) of Lemma 1.3,for a gk-2 g-torsion
module P, where we can further assume P to be critical. Being a gk-2 critical
g-torsion module, P is gk-1 equivalent to = AlgA (Proposition 19) In
fact, we have an exact sequence (see the proof of 19)

0 --+ B(-n) - P -� S - 0,

for some n > , and some gk- 1 module S. Now let 0 --+ Np -- X - P - be
a given extension. To verify 1.3iv we show equivalently (see 1.3iii) that there
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is a map X - E extending the map Np - E. Consider the commutative
diagram with exact rows

0 Np Y B(-n) 0

11 I I
0 Np X P 0

where the square on the right is artesian (a pullback of X --+ P, B(-n)
P). As XI Y has gk-dimension 1, and Extl (S, E) = (1.5), it suffices
to show that there is a map Y - E, extending the map Np --+ E. This is
shown by the following Lemma. 

Lemma 311 Let -+ Np --+ X --+ B(-n) - 0 (n 0) be a non-split
extension. There exists a commutative diagram

0 Np X B(-n) 0

11 I I
0 Np Y Nnp-(-n) 0

and therefore a map X --+ E, extending the map Np -- E.

Proof. Consider the surjective map - Nnp. --+ 0, and let K be the
kernel. The cohomology of the exact sequence 0 --+ K -- B + N, n p. -- 0

gives

(3.12) 0 Hom(B, Np(n))o Hom(K, Np(n))o
Ext1(Nnp.,Np(n))o Ext'(BNp(n))o

We used the fact that Hom(Nnp., Np(n) = 0 1,3.34). As the dimensions
of the first, third and fourth terms in 312) are a 1 (I.3.34, I.3.35) to
complete the proof of the lemma it is suffices to show that the dimension of
the second term in 3.12) is also 1. We do this by an explicit computation.

In the rest of this proof, E will denote the cubic divisor associated with
A (and not the ifective hull !). Let 11, 12} be a basis for the space of linear
forms vanishing at anp*, where we choose 11 such that 11. E = np + np* + q,
for some q E E. Let W1, W2 be linear forms such that 11W2 +12W1 = 0 (I.2-6),
so that W1, W2 pass through panp* = an+lp, and wl.E = 2,,n+lp + aq
(1.2.3) Pt = 02 1201 for 1, 2 E A2. Then we have exact sequences

0 - K = 11, 12)/(g - Al(g) - A/(11, 12) -- 0,

wl 01

W 2 (12111
0 , A(-2) D A(-3) A(- 1) D A- 1) ) (11,12)/(g - -
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To give a non-zero map K --+ Np(n) is equivalent to giving a row vector
[6, 61, such that E A+,, [� (p), �2(p)] � [0, 0], and

(1) 61ffl + 6W2)(P) = 0, (2) (,� + �2q�2)(p = 

where a bar denotes the image in B. As W1, W2 intersect at an+lp, equation
(1) is trivially satisfied. Now we claim that �, (,,n+lp = , $2(,,n+lp) 0 0,

so that 2) implies t2(p = 0, and hence the dimension of Hom(K, Np(n))o
will be .

To check the claim, note that g = 1102 1201 means [1� = -121�1 so we
have

(3-13) 11.E + o1(02.E) = 12.E + ,-'(O,.E)

where Ii.E = np + anp* + q. As 12 is independent of 11, anp, q 12.E, so we
have ,np + q C a- (BE), or n+lp + aq C 01.E. Thus q�l (,n+lp = 0. Now
if q�2(an+lp = 0, then the left hand side of 3.13) would contain 2anp. But
as an P 12.E, we would get 2rnp+oq C 01.E. But as 2anp+aq = w.E, this
means that 1 factorizes 1,4.16) as 1 w, I for some linear form 1 implying
that g itself factorizes: = 1102 1201 1102 +12W11 = 11(02 - W21). This is
a contradiction because we assumed that the cubic divisor E was reduced,
i.e., B was a domain. 

4 Matlis Duality for some Non-commutative Rings

In this section, we prove a Matlis-type duality for the ring A(,), the g-
adic completion of the local ring A(,). It turns out that the duality holds
under more general condition: we do not require A to be as special as a
regular algebra. The proof closely follows that in the commutative case [Ma],
with some non-trivial modifications. The key ingredient is Proposition 411,
which also seems to follow from some more general results of [LM]. Here we
use a direct method based on [Ma].

Hypothesis and Notation 4.1) We assume that A is a non-commutative
N-graded connected Noetherin domain over a field k. Let J = g) be a com-
pletely prime ideal of A generated by a homogeneous normalizing element
g. Thus, B = Al(g) is a graded Noetherian domain. We denote by Q (resp.
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K) the Z-graded quotient field of A (resp. B). Regard K as an (A, A-
bimodule by restricting its (B, B)-birnodule structure. Assume that there
is an (A, A)-bimodule E, containing K as a sub-(A, A)-bimodule, such that
E is an infective hull of in Gr-A and in A-Gr.

(4.2) By Proposition 2.3) J has left and right Artin-Rees property.
Denote by the multiplicative subset consisting of the homogeneous ele-
ments of A - g). It is easily seen that 2.4 - 2.6) hold in this case (we
did not use any hypothesis on A, other than that mentioned in 2.1) above,
while proving 2.4 - 2.6) ). Thus, A is localizable at the prime ideal J.
We denote by Ag) the Z-graded quotient ring AS-' = S-1A. Then Ag is
a local ring with the maximal ideal (g)A(g). In fact, the discussion in 2.7)
shows that Ag) is a discrete valuation ring of Q with residue field K and
(g)A(g) is a principal prime ideal which we will simply denote by J = g),
if no confusion occurs. This defines an exhaustive filtration (simply called
g-adic filtration) on Ag). We denote by A(,) the g-adic completion of Ag):

A
A = m,.- gnq A(g)'

The g-adic filtration is separated:

nO 1g)nA(g = .n=

Therefore [B1, II,§3.9], the canonical map Ag) --* Ag) is infective (with a

dense image). We denote by i the g-adic completion of J. Then i = WA(g);
and it is a prime principal ideal in A. We denote the image of g in Ag)
by �. There is a canonical isomorphism of rings [B2, III,§2.12, Proposition
15]

(4-3) A(g)IJ Ag)lj

Both these rings are isomorphic to K, the quotient field of B.

(4.4) It can be proved as in 2.4) that

(4.5) E = U En U00 Eln= n= n

where

(4-6) En = Ix E Ejn = }, En = Ix E EjjnX = }.

As g is a normalizing element, En and E are sub-bimodules of E, and
En = EGr-(A/jn)(B); En = E(AIJ-)-Gr(B). It is clear that K C E, K C
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E'. Since K = EB(B) in Gr-B and B-Gr, it follows that El = K = El1 11
We now show, by induction over n, that El = El implies that En = El1 n

for all n. Indeed, suppose x E En is a homogeneous element. Then jn-l

is a right submodule of E such that Xjn-1 C El = E Thus jxjn-1 = ,1
showing that Jx C En-1. By induction hypothesis, En-l = E_J, hencen

= Jn-lj = jnX, thus completing the induction. Also note that E being
a uniform module, En are essential submodules in Gr-A and in A-Gr.

Lemma 47. E is S-torsion-free and S-divisible as left and right A-module.
In other words, the maps x 4 xs and x i-+ sx, where x E E and s E S, are
bijective.

Proof. E being an infective module in Gr-A and in A-Gr is certainly A-
divisible, hence S-divisible. Now we use induction over n to show that En
is S-torsion-free. If x E El such that xs 0, then x = , because El = K
is S-torsion-free. Now suppose x E En, x En-, such that xs = for some
s E S. Then 0 gn-1 E El, and, = gn-1 = Xgn-1 S' for some s E S,
showing (by induction hypothesis) that Xgn-l = 0 a contradiction. 

This lemma shows that E has a natural structure of A(g), Ag))-bimodule,
and as such it is an ifective hull of Ag)l(g)A(g) in Gr-A(g) and in Ag)-
Gr [GW, 916]. Also, En are sub-(A(g), Ag))-bimodules of E and K
A(g) l(g)A(,) as (A(g), Ag))-bimodules.

In the following, we will write R for the ringA(g).
Proposition 48. E is, in a natural way, an infective R, R)-bimodule,
and as such it is an infective hull Rlj in Gr - R and in R - Gr. Letf
t = x E jn = } resp. k = Ix E tljnx = }). Then t = En

n
(resp. En)-

Proof. Let a E R then there exists a Cauchy sequence an} in Ag) such
that an a. Let x E E then E Ek for some k > 0. There exists an
integer N such that an - a E Jk for some n > m > N. Now if we define
xa = xaN (here xaN is defined from the module-structure of E over Ag)),
then xan = xan for n > m, > N. It is easily seen that this definition makes
E a right R-module. One similarly defines a left R-module structure on
E. It is clear that the two structures are compatible. It is also clear that
with this definition, En are sub-(R, R)-bimodules of E, and K Rl as
(R, R)-bimodules.

Let t be an infective hull of E in Gr -R. As El = K - E
is an essential monomorphism in Gr- A, and hence in Gr- R, is also an
infective huR of K = Rlj in Gr-R. We show that = E. First note that 
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is indecomposable as an R-module. Since E is infective in Gr-A(g),.k would
split as E = EeC in Gr-A(,). We now show that C is actually an R-module,
hence by indecomposability of as an R-module C = and = E. Now,
one sees as in 2.4) that UOO 1t, where t, fx E _klXjn = 0 n=
are sub-bimodules of k Suppose x E C. Then x E Ek for some k. If a E R,
then there exists a' E A such that a = a' (mod jk). Thus xa = xa E C,
showing that C is an R-module, as claimed.

Similarly, one shows that E is an infective hull of Rlj in R-Gr. Now,
it is easy to check that 4 = fx E Elxjn = = fx E Ejxgn = 0 = En-O

Lemma 49. Let E En, x En-,, then .ann(x = r.ann(x = jn. Thus,
1. annE,, = r. annEn = jn, and E is a faithful module in Gr-R and in R-Gr.

Proof. 'By Theorem 2.8), jn C Lann(x), jn cr.ann(x). Now suppose a E R
such that xa = . Let a = k.b where is the image of g in R and b j.
Then E being torsion-free for R - , it follows that Xk = 0. Thus, by
hypothesis on x, k > n, and a E jn. We have shown that r.ann(x = jn.

'k = jnSimilarly one gets the left version. Now, r.ann(E,, = nn Finally,k=1 J
r.ann(E = nxEE r.ann(x = n, ljn = .n=

Lemma 410. Let R be a graded ring, M a right R-module C an injec-
tive right R-module. Let E C, x E M be homogeneous elements. Then
r.ann(x C r.ann(y) if and only if there exists an f E HOMR(M, C) such
that y = f(x).

This is [M, Proposition 28] A similar result holds for the left-modules.

In the following, we use the notations:

HOMRA N) enHOMGR(M, N(n)),

HOMR (M, N) EDn HOMR-GrA N (n)).

We put
H = HOMR(E, E) H = HOMR (E, E).

H and H' are graded rings. Since E is faithful as a right or left R-module
(Lemma 49), we can identify R as a subring of H (resp. H) consisting of
left (resp. right) multiplications by elements of R. We now show that

Proposition 411. Every right (resp. left) R-homomorphism of E into
itself can be realized by left (resp. right) multiplication by exactly one element
of R.
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Proof. Define Hi = h E Hlh(Ei = 0 and H = h E Hlh(Ei = 0 ThenS
nHi = = nHi'. Since f(Ei) c E for f in H or in H it follows that
Hi (resp. Hf) is a two-sided graded ideal of H (resp H. There is a linearI
topology on H resp H defined by the filtration Hi} (resp. H?). Since
jn C Hn (resp. jn C Hn), the topology induced on R by this topology on
H (resp H is the same as the g-adic topology on R.

We will. show by induction over i that if f E H resp. E H then there
exist elements pi E R resp. q E R) such that f = pi mod Hi (resp. g = i
mod Hi'). Here pi (resp. qi) means left (resp. right) multiplication. Now,
this is evident for i = 1, for then E = E = R1j. Suppose that we have
gotten pi and qi with the above property for i = 1, k. If f -Pk)(X = for
all. x E Ek+l then we simply take Pk+l = Pk. Else, choose xo E Ek+l, XO Ek

so that (f - Pk)(XO) 34 0. Note that .ann(xo = jk+l (Lemma 49). Now
Xog E Ek, and therefore = f - Pk)(XO9), showing that (f - Pk)xo E El.
Put = f - Pk E Hk, thus xo) E El.

Now E being a uniform (left) R-module, there exist rl, r2 E R such that
rixo = r2(f - Pk)X0 5 0. As (f - Pk)xo E El, r2 � j, so r2 is invertible, and
r = r-irl satisfies2

rxo U - Pk)XO = OXO

Now let x be an arbitrary element of Ek+l. As Lann(x) D jk+l = Lann
(xo), therefore, there exists fo E H such that fo(xo = x (Lemma 410).
By induction hypothesis, fo = mod H for some s E R, say, fo = s + ho fork
some ho E H Since gxo E Ek, gho(xo = ho(gxo) 0. Thus ho(xo) E Elk
and ho(xo) = 0. This implies that

,O(x = 0f0(x0) = 0(x0s + ho(xo) = xos) O(xo)s rxos.

On the other hand, since ho E H and'0(Xo E El, therefore, ho(o(xo))k
ho(rxo = rho(xo). Thus

rx = r(fo(xo) = rxos + rho(xo = rxos.

We have shown that x = rx for all x E Ek+l. Thus, f = Pk + r modHk+,,
and the induction is complete.

We have associated with f E H a sequence fPk} of elements of R such
that f = Pk mod Hk- If n < m then Pn - Pm = Pn - f) + (f - pm) E
H, + Hm = Hn. Hence (Pn - pn)E, = 0. By Lemma 4.9), Pn - pm E j.
Thus Pk} is a Cauchy sequence in R, and there exists a E R such that
Pk --+ a. As jn C Hn, Pk --+ a in H. But k --+ f in H, therefore f = a E R.
One similarly completes the proof for the left-version. 
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Let Rn (resp. En ) denote the direct sum of n copies of the bimodule R
(resp. E). Let be a right submodule of R', B a left submodule of En.

We define

(4.12) S' J(xi) E Enj Xr, 0, V(ri) E S}

(4.13) B' I ri) E Rn I X, r, 0, V(xi) E B .

Note that S' is a left submodule of En and is a right submodule of Rn.

Theorem 414. Let be a right submodule of Rn, B a left submodule of
En. Then

(i) S - HOMR(Rn/SE) as left R-modules, En/SI -_ HOMR(SE as
left R-modules, and S = as right R-modules.

(ii) B -_ HOMR (En/B, E) as right R-modules, Rn 1B' -_ HOMRO (B, E)
as right R-modules, and B = as left R-modules.

Corollary 415 [Matlis Duality]. Let M be a finite right R-module N a
left submodule or factor module of En, then

(4.16) HOMR (HOMR(M, E), E) M

(4.17) HOMR(HOMRO (N, E), E N.

Proof. We prove the theorem, the corollary being immediate from the the-
orem.

(i): It is clear that S' HOMR(Rn/S, E) as left R-modules. Now from
the exact sequence

0 S --+ Rn --* Rn/S _ 

we get the commutative diagram

0 HOMR(Rn/SE) --+ HOMR(RnE) HOMR(SE) 0

1 1 11
0 St __+ En En/St 0

The top row is exact because E is infective. The vertical maps are isomor-
phisms. Thus, HOMR(S, E) En/SI.

Now it is clear that C S" C Rn. Suppose that (si) E S", (si) � S. Let
(uj) be the generators for Rn/S as right R-module. Then 0 �- 1: uisi = y E
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R-IS. s J) is the maximal ideal of R, we have r.ann(y) C j. There exists,
by Lemma 4.10) a map h E HOMR(Rn/S, E) such that h(y) � 0. But as
(h(ui) E S', and (si) E S", we get h(y = h(E uisi = E hui)si = 0, which
is a contradiction. Hence, = .

(ii) The map 4D : B - HOMR (En/ B, E) defined as P (ri) yi ri,
(ri) E B,(Yi E En is a well-defined right R-finear map. This is infective
for, if 1: yiri = for all i) E En then Er = for a i, and therefore
by Lemma 4.9) ri = 0. Now, let f E HOMR (En/ B, E) be given. Denote

by Ei the ith component of En. The composite left R-linear map E 2'
Ei --+ En En/B f)E must be a right multiplication by some element
ri E R (Proposition 41 1). Thus, if i) E En, then f f(g) = 1: yiri. Now
for (xi) E BO = : xiri = f[(;Fi) = 0, thus (ri) E B. As D(ri) this
shows that 4� is surjective, and HOMR (En/b, E) �_ B.

From the exact sequence

0 --+ B --* En--+ En1B -- 0

one derives the commutative diagram

0 B' Rn __+ Rn/B' 0

1 1 1 1

0 -+ HOMR-(En/B, E) HOMR (En, E) --� HOMR-(B, E) 0

The bottom row is exact because E is ifective. The vertical maps are
isomorphisms. It follows that Rn/B' -_ HOMR (B, E).

Again it is clear that C B" C En. Suppose that (xi) E B" but
(xi) B. Since Lann((fi)) C j, there exists a map f E HOMR (En/B, E)
such that f((fi)) (Lemma 410). But f = �(ri) for some (ri) E B' 
thus, f((fi) = t(ri)(gi = Exiri = 0, since (xi) E B". This contradiction
completes the proof. 
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Since a fixes the class C] of C = Ox (1) in Pic(X), there is an equivariance

e : a*,C _-_ L which gives a k-linear isomorphism

(1-3) ea* HO(X,,C) "')HO(X,,C') )H0(X,,C)-

Note that, by 1.2) we have

(1.4) div(ea*(O) = a-ldiv(O), E HO(XL).

More generally, for every m E Z, we have an equivariance e0` = (*)' (e)
0,M+1 -IC _+ 'CO", induced by the pull-back of the morphism e by the functor

(,*)m. Following the notation of [Yell, we put el+, = en. For arbitraryM
n+,n : Con+m 'Connm E Z let en be the equivariance such that the recur-
n n n+m 0sive relation en+,n+l = en+m o en+m+l is satisfied. In this notation, e = ell

(1.5) In this section only, we denote by A the commutative coordinate
ring of the projective space, A = E)n>0H0(X,,C0n) X = pn and Lk
Ox (1)). Thus A is a polynomial ring in n + variables with the usual
grading. For a (graded) automorphism of A, we define a twisted graded
k-algebra Ar as follows. We put (Ar)n = An as underlying k-vector spaces,
and define the multiplication in Ar by

(1-6) 0.0 = 0 &,rno 0 E Ar,0 E A'n M

where 9 will denote the multiplication in A. In particular, if a is an auto-
morphism of X then the isomorphism ea* (1.3) on Al = HO(X,,C) induces a
graded automorphism of the algebra A which we denote by r,. This defines
the twisted ring Ar,�,. Note that in this notation

(1.7) div((-r,)n0) = a-ndiv(O), 0 E A--.

Of course, Ar- depends on the choice of equivariance.

(1.8) Let B = B(X, a,,C) be the twisted homogeneous coordinate ring of
X = pn, obtained by twisting the invertible sheaf C by the automorphismk
a [AV]. Thus, by definition, B = �n>oBn, where Bn = HO(X, Ln); Cn

,n-1)C () 'CO, ... D IC For E Bn, E Bm the multiplication is given by
,,n00 = 0010 .We show now that, using equivariance, we can identify the

twisted coordinate ring B(X, a,,C) with the twist Ar,�,.

(1.9) Choose an equivariance e :LO' ---+ L, which gives isomorphisms eon
'con ___+ C. There is a k-linear isomorphism, sometimes called an "untwisting"
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III
RESIDUE COMPLEX FOR
REGULAR ALGEBRAS OF

DIMENSION 2

Our final objective in this chapter is to construct a "residue-complex" (a
minimal injective resolution) for a regular algebra of dimension 2 It is
well-known that regular algebras of dimension 2 are twisted homogeneous
coordinate rings of the projective line P1 3.1). Residue-complexes for gen-k
eral twisted coordinate rings have previously been constructed in [Yel] by
geometric methods. Here the method is rather algebraic, using a unique
factorization result in twisted coordinate rings of the projective spaces, and
(non-commutative) localizations of the algebra at orbits of points. We also
look at the complex in the category Proj-B', where we use a Grothendieck-
Serre-type duality for regular algebras.

1 A Unique Factorization 'in
Twisted Coordinate Rings

In this section, we prove a unique factorization theorem for twisted homo-
geneous coordinate rings of the projective spaces pnk

(1.1) Througout this section, k will be an algebraically closedfield, X the
projective schem' pn, and C the invertible sheaf Ox(l). For an invertiblee k
sheaf M and an automorphism a of X, we denote by MO' the pullback
invertible sheaf a*M. There is a natural k-linear isomorphism

(1.1) HO(X, M) O' H(X, M').

For a global section E HO(X, M) we denote by 0' its canonical image
under the above isomorphism. We denote by div(0) the divisor of zeros of
0. We have the relation

(1.2) div(o') = a-ldiv(o).
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map [Ye2, 3]:

id(ge01 ... Oeon I O(X,,Con)Un: Bn = HX,,C ... ,Co' ) I H = An = A')n-

Summing over all n , we get a k-linear map u : B --+ Ar-T. Note that ul is
just identity. One can verify [Ye2 33.21 that, for E Bn, E Bn

=U(,O) 0 (,r,')nu(,0)' in A

=u(0).u(0), in A-7.

Thus u : B __+ Ar,,- is an isomorphism of graded kalgebras.
Hereon, we will write = Ala'. Since Bn = Ar = An, a homogeneousn

element" will mean a homogeneous element of A or B. We will denote the
multiplication in B = Ar-, simply by 00 and that in A by 0. Further, we
introduce the notation

(1.12) 01(,O) = 7,,)-1(0) 0 homogeneous.

This simplifies the formulas 1.6 17 as

(1.13) 0, = 0 0 -n 0, div(a'o = odiv(o),

where are homogeneous elements, with deg(o = n. Thus

(1.14) div(00 = div(0) + -n div(0).

Lemma 1.15. Let E Bn and - E Bm, then
(i) 01 =

(ii) a(0,O = (aio)(aio) for all i E Z.

Proof. Indeed, 0 = or-no = -n 10 0 -M.m = 0,-no)(amo). And,
04(00 = ai(o or-no) 040 & ,-n,,i = 0

Definition 116 A homogeneous element r of positive degree is said to
be irreducible in A (resp. in B) if it can not be written as a product of
two (homogeneous) elements of (strictly lower) positive degrees; i.e., =
01 02 (resp. 7 = 01 02) implies deg,01 = or degO = 0 A homogeneous
element of positive degree is said to be reducible if it is not irreducible. Two
homogeneous elements 1 and -02 are said to be associates if 1 = U2 where
u is a unit in k.

We write 1 2 if 1 and 02 are associates.
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Proposition 117. Let be a homogeneous element. Then the following
are equivalent: (i) is irreducible in B, (ii) is irreducible in A, (iii) div(0)
is a prime divisor in X.

Proof. Equivalence of (ii) and (iii) is well-known. We prove (i) * (ii).
Clearly, if = 102 is reducible in B, then = & a-njo.2 is reducible
in A, where nj =degol. Conversely, if = 0 2 is reducible in A, then
. = 01 0 0,-n, ,ni (0.2 = 01 0,nj 02) is reducible in B, where n = degol. 0

Corollary 1.18. If r is an irreducible element of B then amr is irreducible
for all m E Z.

In view of Proposition 117, irreducible elements in can be identified
with irreducible elements in A. Thus we can cal a homogeneous element
irreducible without referring whether in A or in B. However, Lemma 1.15
shows that unique factorization theorem for A does not carry over to B; for,
letting be an irreducible element of degree r, we have 7r7r = ,,-r 7r )(,,r 7r )
in B, and cr -r ir, ,r 7r are in general not equal to 7r. Our main purpose now
is to show that we still have a "uniqueness" statement about factorization
in B, in terms of the orbits.

(1.19) We generally use to denote an irreducible element. Let be an
irreducible element of degree r. We denote the product arr) ... 0,(n-1)r7r)

in B by [r]', which has degree nr. Note that [7r] = ron where 7r on denotes
the n times product of 7r in A. We have the relations div([7rln) = ndiv(r),
and ai([7r]n = [0,i7r]n 1.15ii).

(1.20) The cyclic group < a > acts on the set of prime divisors of X.
By an orbit w we mean an orbit of this group action. Sometimes we win
use the (informal) notation 7r E W (7r an irreducible element, w an orbit) to
mean div(r) E w, and the notation w, to mean the orbit w such that 7r E w.
(The map 0 �-4 div(0) is a bisection between the set of irreducible elements,
up to associates, and the set of prime divisors of X.) Thus we say that two
irreducible elements are in the same orbit if their divisors are in the same
orbit. For an orbit w and n E N we define a "valuation" map

(1.21) v,n : Bn - Z, vn(O = 1: multy(div(O)).
YEw

It is clear that for E Bn, E Bn one has

Vm+n = "n'(0) + Vm(,O).
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We will drop the superscript on v if there is no confusion. For a homoge-
neous element we define the orbit-support of its divisor div(0) as the set
JwJv,,(O) 54 0. This will be denoted by supper A homogeneous element
whose orbit-support consists of a single orbit will be called uni-orbital A
uni-orbital element whose orbit-support is w} will generally be denoted by
a symbol of the form H,,.

(1.22) As is noetherian, any homogeneous element of B can be written
as a product of irreducible elements. A uni-orbital element I,, will be a
product of irreducible elements of the same orbit so it can be written in the
form

(1.23) =[a" 7r]" [ai2 7r ]12 . . . ai,�: r]lk

= (am' T)Oni (aM27r )On2 ... (aMk 7r ),Dnk

for some irreducible element 7r, and m, = i, nj)r, r being the
degree of ir. Further, m,, r in 1.23) can be chosen to be distinct irreducible
elements in the orbit w,. In case a is of infinite order, H can be written
uniquely as in 1.23) with i, in strictly increasing order.

Theorem 1.24[Unique Factorization for Twisted Rings]. Let be a
homogeneous element of B. Then can be written in the form

(1.25) = i"I IIUJ2 ... HWn.

where Hi are uni-orbital elements, and wi j w for i j. Further, if

H", HWI ... HWI
1 2 M

is another factorization of this form then m = n, there is a permutation
r E Sn such that w = i) (1 i < n), and

H Oliw,(dWi

for some Si E Z.

Proof. Choose a factorization of into irreducible elements. Using Lemma
(1.15 i) repeatedly, one can collect a the irreducible factors of the same
orbit and thus write as a product of uni-orbital elements as in (1.25).

We now show the uniqueness part. Since suppe = WI, W2, - , Wn}

1W 'WI, ... I W } and wi ww� 0 wi for i 5 j, we have n = m and a per-1 2 m Z
mutation r E Sn such that w = w,(i). Now let us just write for H, andS
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M for Let ri (resp. r be the degree of an irreducible element in the
j Wj I

orbit wi (resp. w�), and let deg(Hi = kiri, deg(M = kY. We havet I I t

div(o = div(Hi) + a- kirldiv(II2 + + 0(kjrj+k2r2+...kn-jr__j )div(Il,)
div(H') + a I 'div(II ) + + ,-(k'rll+...k' -Ir' -I)div(II'1 2 n

Since the divisors of Hi (resp. W are supported on a single orbit Wi (resp.
LU�), it follows that

kjr kir0, j=1 J� div (W) j=1 jdiv(H,(i))I

thus proving that - 3iH,(i), where si k -r + 0S j

2 Partial Fraction Decomposition

In this section we obtain a partial fraction decomposition for non-negative
degree elements of the graded quotient field of the twisted coordinate ring

= B(X, a,,C) where X = P1. This is done by using a isomorphism be-k
tween the degree zero components of the graded quotient fields of the twisted
and commutative coordinate rings (Proposition 21). This isomorphism it-
self holds for the general case = B(pn, a,,C), so,

k we keep the discussion
general until we get to the proof of the decomposition theorem. As in §1,
we denote by A the commutative coordinate ring, and identify with the
algebra Aa 1.9). The homogeneous elements of A and will be identified,
as before. Let KAand KBdenote the Z-graded quotient fields of A and 
respectively.

Proposition 21. The map

(2.2) v : (KB)o - (KA)o fg-1 f 0 g,

is an isomorphism of fields.

Proof. First we check that this is well-defined. Suppose fgl- = f292_1

in (KB)o and let n be the degree of fl, m that of f2. Then by definition
of equality in the Ore quotient ring, there exist homogeneous elements h,
and h2 such that f h = f2h2 and g, h = 2h2 0. Then, by (1. 13),
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f, 0 o--h = f2 a--h2 and g, 0 0,-nhi = 92 9 a-mh2- But this then
shows that f g-l = f2 9 g-1 in (KA)o-

Using the algebra of fractions in an Ore quotient ring, one can verify that
the map defined above is a homomorphism of fields. It is clearly bijective.
11

Finally, we define the divisor of a homogeneous element of KB. This win
be used. in the next section.

Definition 23. Let fg-1 be a homogeneous element of KB of degree n.
The divisor of fg-1, denoted by div(fg-1) is div(f - a-ndiv(g).

This is well-defined. For, let fig-1 = f2g-1 in KB be homogeneous of1 2

degree n. Then there exist homogeneous elements hl, h2 in such that
f1h, = f2h2 and glhl = 2h2 0. Let ml be the degree of g, and M2 that
Of 92. Then we have

div(fl) + 0(-,+n)div(hi = div(f2) + 0(-2+n)div(h2)
div(gl) + a-ml div(hl = div(92) + a-M2div(h2)

It follows that div(fl - a-ndiv(gl = div(f2 - a-ndiv(92), thus verifying
the claim.

It is straight-forward to verify the following Lemma.

Lemma 24. (i) Let fig-1 and f2g-1 be homogeneous elements of KB Of1 2
degrees n and m, respectively. Then

div((fjg-l)(f2,g-l) = div(fig-1) + -n div(f2g-1).1 2 1 2

(ii) Let fg-1 be a homogeneous element of degree n then div((fg-l)-l)
-andiv(fg-,).

(iii) Let fig-1 and f2g-1 be homogeneous elements of the same degree1 2
n. If div(fig-1 = div(f2g-1) then fig-1 = f2g-1 (up to a unit in k.)1 2 1 2

Now we specialize to = B(PlaL), and, of course, identify it withk
A'r�, where A is the commutative polynomial ring in two variables. Since
k is algebraically closed, the only irreducible elements are the linear forms

6 E B = Al and the only prime divisors are the points E X = Plk'
Thus, in view of 1.22) a uni-orbital element H can be written as

(2.5) = [ail 11 n, [ai2 ]n2 ... [,,ik 1]nk

=(,,Il)oni & (.121),&n2 ... (g ,,mk lygn,.
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for a linear form in the orbit w, such that m, = i - �-' nj, and am-1 are
distinct linear forms. We will. call. 2.5 a canonical form of II, if am-I are
distinct. Recall 1.19) that

(2.6) Ill n = (ol)(0,21). .. ,,n-1 1) = I & 1 I = in,

n times

where we will simply write In for the n times product 12)1 ... 2)1 in A. In the
following, we will sometimes put for fg-1 (in KB), just for convenience
in writing. 9

Theorem 2.T [Partial Fraction Decomposition]. (i) Let fg-1 be a
homogeneous element of KB of degree r > 0. Then fg-1 can be decomposed
in KB as

(2.8) fg-1 = h + f,,,I1.-1
orbits w

where h and are homogeneous elements (of B), H are uni-orbital ele-
ments 1.20) and = for all except finitely many w.

(ii) Further, if II,, = ni .... [Oikl]nk is in a canonicalform, 2.5)

then, in KB,

(2.9) f _= bo + + + + bk
IIW [,,Ml I]n, [,IM2 I]n2 lormi'll ni,

where m, = i, - E'�-' nj, and bi are some homogeneous elements (of B).
(iii) Finally, a fraction of degree zero of the form h can be decomposed

in KB as 7

h w 2 [W]n
(2.10) + C [WY + + Cn [I]nPT = co + cl T [1]2

for some ci E k and a linear form w not in the orbit of .

Proof. We prove (i). Let w be a linear form corresponding to a point which
is not in the orbits of the zeroes of f and g. Consider the degree zero element
fg-1Qw]')-1 in KB- Its image in (KA)o via the isomorphism v(2.1) has a
decomposition, in KA as

v(fg-'([w]')-' = h & (Wr)-l + at 9
IEA1,196w
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where v1) is a positive integer, h and al are homogeneous elements and
al = for a but finitely many 1. Apply v-1 to get

fg-'([w]')- = h)Qw]')-1 + 1: (a1)Q1]"1'1)_1.
1EB1,1:$w

Now multiply on the right by [w]' to get

fg- = h + E (a1)Q1]"1'1)_ [W]r = h + E al(a ,(1)[W1r)(0,r[1]vY))-1.

1EB1,1:Aw IEB1,10-w

Now the sum on the right hand side can be written as bi(or [1]1/(I)

(where bl = al(o,"M[W]r)) and the inner summmation could be performed in
KB to get fH,-' as required.

(ii): Let the degree of f H,, -1 be r. Again let w be a linear form corre-
sponding to a point which is not in the orbits of the zeroes of f and H".
Consider the degree zero element f[Wlrll(,)-l f11"_1([W]r)-I in KB- Its

image in (KA) is

V(f([W]rIJ.)-1) =f ([W],][I.)- = f & (W, 0,-rlj,,)-l

=f (Wr)-l 1,,-r+m, 1n, ... (g ,,-r+m 1n,,

where m = i - nj, and om-l are distinct linear forms. This has a
decomposition, in (KA)O as

ao 0 (Wr)- + a, 0 ((,,-r+m11)ni)-1 +...ak 0 (,,-r+mjl)nA,

Now applying the inverse v-1 and multiplying on the right by ]r we get
(2.9) with bo = aob = a0,nj[W]r)'j = 1,...k.

(iii): Choose w not in the orbit of 1. Now, v(h([l]n)-I = h 1n)-I,
and, by classical result, the latter decomposes in (KA)o as

CO + Cl(W 0 11) + C2 (W2 0 12)-i .. + Cn (Wn & qn)-1.

Applying the inverse v-1 we get 2.10). 

3 Residue Complex

It is well-known that regular algebras of dimension 2 are exactly the twisted
coordinate rings of the projective line PI. A sketch of the proof follows.k
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Proposition 31. Regular algebras of global dimension 2 are exactly the
twisted coordinate rings of the projective line.

Proof. Let R be a regular algebra of dimension 2 and let

(3.2) 0 __* PI2 M R" (- 1) -_ R --+ Rk -* 0

be a minimal resolution of the left module Rk, where x denotes the row
vector of generators for the algebra, and pr2 denotes a free module of rank
r2. Note that r = dimkTorR(kR, Rk). Using the Gorenstein condition, we

J
have a resolution of the right module kR(C) for some c,

Mt pr2 r, 1)(3-3) 0 �- kR (C) _ +- R +- R - .

Now 3.3) shows two things: first, since the Tor-dimensions are symmetric
with respect to left and right, we get r = 1. Put r = r. Second, as MI
also generates the radical, therefore Mt = x for some automorphism 7 E
GL(r, k). Thus degrees of the entries of M are a 1, and the resolution 3.2)
actually looks

0 --+ R(-2) (rx))t Rr(_l) xR --+ Rk --+ 0.

A Hilbert-series computation shows that for polynomial growth, r must be 2.
Thus we see that R is the algebra k< xO, xi> I(xo(7x,) - xi 7xo)), for some
7 E PGL(2, k). Now let A" (see 1.5) be the algebra, which is the twist
of the commutative polynomial ring A = k[xo, xi] by the automorphism
7-1 defined by the matrix 71. As xo(rxl - xl(7xo = also in Ar-'
(1.15i), we see that Ar-' is a quotient of R. Since the Hilbert functions of
all these algebras R, A, A'r-' are the same, we get R = Ar- The latter
being identified with the twisted coordinate ring = B(Pl, 7, C) (See 19),k
the proof is complete. 

Note that Ext2 (k, B = k(2).B
Let = B(PI, a,,C) be a regular algebra of (global) dimension 2 sok

we identify B = A7-1 . Note that the gk-dimension of B is also 2 By a B-
module we will mean a right or left B-module. For a B-module M, we denote
by EB(M) the graded infective hull of M. An indecomposable infective B-
module is said to be of class Ci if it is an infective hull of a critical B-module
of gk-dimension i. Here we construct an infective resolution for B,

(3.4) 0 --+ B --+ E 2--+ El -- E --+ 0
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where Ei is a B, B)-bimodule which decomposes in Gr - B (resp. - Gr)
as a direct sum of indecomposable injective right (resp. left) B-modules of
class C. This would be an analogue of the commutative "residue-complex"
(for A), and could be called a 'residue-complex for the quantum projective
line' (intuitively, we think of a quantum projective line as the twist of the
commutative projective line by the automorphism a, and as the coordinate
ring of the quantum projective line).

The only critical B-modules in gk-dimension are shifts of the simple
module k. The (B, B)-bimodule B = HMk(B, k) is an injective hull of k
in Gr - and in - Gr. Note that is completely m-torsion, where m
is the augmentation ideal B>,. Also note that HOMB(k B) k. The -
module is critical [ATV2 230 v] of gk-dimension 2 Let K = KB be
the Z-graded quotient field of B. Then K is a (B, B)-bimodule and it is an
injective hull of B in Gr - B and in B - Gr. Up to isomorphism, this is the
only indecomposable injective module of class E2.

We now consider the injective hulls of critical B- modules of gk-dimension
1. The only critical (right) B-modules of gk-dimension are the (right)
point-modules Np, i.e., modules of the form B11pB where 1p E B, is a linear
form vanishing at E X = PI. Thus, the point modules are in bijectivek
correspondence with the points of X. Since Np is just a right B-module,
one can not expect the injective hull EB(Np) to carry a natural bimodule
structure. However, if we take the direct sum N of the point modules over
an orbit then, as we see below, N is a (B, B)-bimodule and there is a
(B, B)-bimodule which is an injective hull of N in Gr - B and in B - Gr.
So, define N as

(3-5) N1 = DPEIINP-

Then has a left B-module structure, compatible with the usual right
module structure. This is defined as follows. Let a = trip E N, where c�p
denotes the component of a in Np, ap E B. For E B, we define Oa E N,
such that its component in Np is

(3-6) (0a)p = Oaonp

where the multiplication under the bar sign is in B. This is well-defined,
since if (ap)(p = for a E w, then

(Oaanp)(p = O(p) 9 (aanp (,,np) = .

Since the right B-module structure on N is given by (do)p = apo, we see
that the two module structures are compatible and N is a (B, B)-bimodule.
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We will see 3.1 1) that the bimodule KI B, is an infective hull of N, in Gr-B
and in B-Gr, where is the "localization of B at the orbit w" to be defined
now.

For an orbit w, define the set

(3.7) S, = homogeneous element of I p) 0, VP E

We will write wp for the orbit of p and Sp for P.

Proposition 38. S is a left and right Ore denominator subset of B.

Proof. It is clear that is a multiplicative subset. Now satisfies the
right Ore condition; for, if E B,,O E S with deg(O = r, deg(o = s, then
by (1. 15),

and arP E S. Finally, we need to check

ass(S,,) 4ffb E Bibs = for some s E S = .

As B is a domain, this is trivial. One similarly verifies the left version of
the result. 

Definition 39. The Z-graded localization of B at an orbit is B,,
BS,�1.

Note that since is both a left and a right denominator subset of B,
B,, as defined above is also the left quotient of B with respect to . Since
ass(S,, = 0, the canonical map B B,, is infective and the Z-graded
quotient field of B,, is same as KB.

In the following Lemma, div(fg-1) is as defined in 2.3).

Lemma 310. Let w be an orbit and let fg-1 be a homogeneous element of
KB. Then fg-1 E B,, if and only if multp(div(fg-1)) for all E W.

Proof. Suppose fg-1 E B, then fg-1 = fg-1 in KB for some homo-1
geneous elements fgl such that 1 E S. As multp(div(gi) = for
all E w, multp(div(fg-1)) for all E w Conversely, suppose that
multp(div(fg-1) > for all E w, and write div(fg-1 = D - 2

where D and D2 are effective divisors without a common point. Thus
multp(D2 = for all E w. Let fl, g, be homogeneous elements in B such
that Di = div(fl) and D = div(gl). It follows that multp(div(gi) = for
all E w. Thus 1 E S and fg = fg-1 up to a unit in k 24 iii). 01
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Theorem 31 1. The (B, B)-bimodule KIB,, is an injective hull of N, in
Gr-B and in B-Gr.

Proof. First we note that the global dimension of is 1. To see this, just
recall that has global dimension 2 and the only graded-simple module
kB of of projective dimension 2 is annihilated by the localization functor,
kB ft Bw = 0-

Now, the exact sequence

0 --+ B, -- K --+ KIB,, --+ 0

shows that KIB, is an injective B-module in Gr - B,, and in - Gr
therefore, an injective module in Gr - B and in - Gr.

We now show that there is an essential monomorphism Nf, -+ KIB,,
in Gr -B. In the following, for a point E X, we will denote by p itself
a (chosen) linear form vanishing at p. Fix a linear form r not in the orbit
w. Now, for an arbitrary q E w, define a right B-linear homomorphism of
degree zero Nq --* KIB,, by mapping the generator of Nq to rq-1 mod B,,.
This is a well-defined injective map, since, for b E B one has rq-lb E B,,,
if and only if b E qB Lemma 310 ). Summing over a q E w, we get a
B-homomorphism N --+ KIB, mapping a E N t EqE11 q!:.aq, where aq is

the component of a in X. We claim that this is an essential monomorphism.
First, we check the injectivity. Let p be a fixed point in the orbit W, so that
every q E is amp for some m E Z. Now, showing the injectivity is the same
as showing that if for some homogeneous elements ak E B k = n)
and some indice A k n), with kp ailp for k 54 1, one has

r r r
(3.12) a, -. :--a2 + + ----- an E B,,,a3lp a32p OrInp

then ak(ajkp = for all k.
By the definition of summation in the quotient ring, the sum in 3.12 is

f = rs-'(sial + S2a2 + + snan)

where s and Sk are given by

= a l-(n-1) P.ah-(n-2) p ... ainp S Sk-a jkp.

Thus we have
n

(3.13) div(s) = -(n-1) 1 akp) div(Sk) aj' -(n-1)p

k=1 1:Ak
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Now, using Lemma 2.4 i),

n n
div(f = r - 1 akp + (n- ')div(l: Skak)-

k=1 k=1

Since f E B, multq(div(f)) 0, Vq E w It follows that for all 1, o lp E
(Ena(n-I)div k=1 Skak) SO

nE Skak )(,,it-(n-1)p = VI.
k=1

In conjunction with 3.13), we get (s1a1)(aj1-(n-1)p = for all 1. Noting
that deg(sl = n - 1, we have al(ailp = 0, as required.

We now show that the map is essential. This means to show that for
every non-zero homogeneous element fg-1 E KIBL,, there exists an ele-
ment b E B, such that fg-lb E N. For this it suffices to show that,
for every non-zero homogeneous element f9-1 E K - ,,, there exist non-
zero homogeneous elements ab E such that fg-l.b = rq-l.a for some
q E w. (Here, r is the fixed linear form used in the definition of the map
N, - KIB,,.) Write div(fg-1 = Di - D2 where D and D2 are effective
divisors without a common point. Since fg-1 B, there exists q E such
that multq(D2) >_ 1. Then (D2 - q + r) is an effective divisor. Let ab-1
be a homogeneous element in K such that div(ab-1 = Di - D2 - q + r).
It follows that div(fg-1 = div(rq-1ab-1). Thus fg-1 = rq-lab-1, and
fg-'b = rq-1a, up to a unit in k 24 iii).

As for the left B-module structure on N, we define a left B-linear map
N,, --+ KIB,, as follows. Choose a fixed linear form r not in the orbit W.
Let a (,Tp) be a homogeneous element of N, of degree n. Define the map
by a EPE,, a,-.p.' mod B. One can check as above that this map is

P
well-defined, left B-linear, and essential injective. 0

Theorem 314. The sequence

(3-15) 0 - B --* K --+ ED,K - B(2) , 0,
B,,

where the first map is the canonical injection and the second is the direct
sum of canonical projections, is a minimal injective resolution of in Gr-B
and B-Gr.
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Proof. First, all the modules in the above sequence are injective both in
Gr-B and B-Gr. The exactness of the sequence at the first three terms is
clear; for, nB, = (inside K).

Next, the map K --+ ED,,KIB,, is surjective in all non-negative degrees.
This follows from the partial fraction decomposition in (K)" for n > 
(Theorem 27). Indeed, let (a,,b-1) be a homogeneous element of non-
negative degree in ewKIBLa, where ab-1 is its component in KIB,,. Then
by 2.7 i), there exist homogeneous elements fg,,-l of K such that g,
is uni-orbital, and ab-1 = fg,:Tl in KIB,. Then the element fg-1W
EW fg-1 in K maps to (a,,b-1) in e,K1B,,. Let us denote this map by r
for the moment. Because of surjectivity of the map ir in all non-negative
degrees, coker(ir) is m-torsion. Since the global dimension of is 2 it
follows that coker(7r) is an injective module (both in Gr-B and in B-Gr).
The only such m-torsion infective module is EDiB'(1i) for certain shifts li.
Thus we have the exact sequence

(3-16) 0 - B --+ K -). ED,,KIB,, r)coker(7r = EiB'(1i) -- 0.

Now if we compute EXt2 (k, B) using the injective resolution 3.16) of B weB
get E Xt2 (k, B) = (Di k(li). Since we already know that Ext2 (k, B = k(2),B B
it follows that coker(7r = B(2), and this completes the proof.

The minimality of the resolution is clear, as the maps -+ K, and
KIB ED,,K/BL, are essential injections. 

(3.1T) The map ED,,K/BL, --+ B(2) in 3.15) can be described as follows,
by considering the ("sheafified") version of the exact sequence 3-15) in the
category Proj- B. Since B(2) is m-torsion, its image in Proj- B vanishes.
Thus, we get an exact sequence in Proj -B:

(3-18) 0 --+ 5 --+ IC - ED,, /C --* 0.K
This should be compared with the commutative case

0 --+ 0 --+ / --+ /C/o --+ 

where is the structure sheaf on P, ICIO = Di. K ), i : p} --+ X beingk up-
the inclusion.]
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Taking cohomology in Proj-B we get the exact sequence 3.15) back:
(3.19)

0 HO(B) ffo(IC) ff�((D. C HI(B) 0

0 B K eu) K B'(2) 07F.

where the isomorphism H(6) ---+ B(2) comes from the Serre duality (B. 5).

Appendix B Serre Duality for Regular Algebras

A non-commutative analogue of dualizing complexes was introduced for
graded algebras over a field in [Yel]. Reinterpreting some of the results in
[Yel], we deduce Grothendieck-Serre-type duality for the non-commutative
projective scheme proj-A where A is a Noetherian regular algebra. This
result was obtained jointly with J.J. Zhang.

(B.1) Let us review the notations first. For generalities and basic re-
sults about the non-commutative projective schemes see [AZ]. Let A be an
N-graded algebra over a field k. Recall that Gr - A (resp. gr - A) is the
category of all graded right A-modules (resp. Noetherian graded right A-
modules) with morphisms being graded homomorphisms of degree zero, and
Tor - A (resp. tor - A) is the full subcategory of Gr - A (resp. gr - A)
consisting of all m-torsion modules (resp. Noetherian m-torsion modules).
Then the quotient category Gr - A/Tor - A (resp. gr - A/tor - A) exists
and is denoted by Proj -A. The global section functor HO is defined by
HO(M = Homp,..�.A (A, M), and the derived functors of HO are denoted by
H'. We also define H"(M) = EDnHi(M(n)). As usual, HOMA(M, N) denotes
the graded group of homomorphisms and HomGA(M, N) its degree-zero
component; similarly for Ext. The cohomological dimension of proj -A is
defined to be maxJnJ Hn(M $ for some object M in proj- A}.

Definition B.2. Let proj-A be the non-commutative projective scheme of
a graded algebra A. Suppose that proj-A has finite cohomological dimension
p. A dualizing sheaf for proj-A is an object WA in proj-A, together with a
trace isomorphism t : H(WA) --+ k, such that for all objects M of proj(A),
the natural pairing

(B-3) Homproj-A(M, WA) x HP(M) - HP(WA) -- k
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gives an isomorphism

00: Homproj-A(M, LOA) ___+ (HP(M))*

where * denotes the dual space.

Clearly, if a dualizing sheaf for proj -A exists, then it is unique up to
a unique isomorphism, i.e., if (WA, t) and (w' , t') are two dualizing sheavesA

for proj -A then there is a unique isomorphism LOA W' such thatA
t = t' o HP(O). This follows from the fact that (WA, t) represents the functor
M - (HP(M))*.

Denote by AO the agebra opposite to A, and by Ae the agebra A k Al.
Let Abe the Ae-module HMk(A, k). For an A-module M and an AO-module
N, there are natural isomorphisms

(B.4) HOMA(M, A') ___+ HMk(M, k) HOMA (N, A') _- HMk(N, k)

Recall [AZ] that for an object M of gr - A, whose projection in proj - A is
denoted by M, we have

(B.5) H'(M = lim Ext'+'(A/A>,, M) ( > 0).
n--+oo A

(B.6) Let A be a Noetherian regular agebra of finite global dimension.

Thus if the global dimension of A is d then Ext:4(k, A) ---+ k(l)[-d] for some
integer 1. Here (1) denotes the degree shift while [d] denotes the shift of the
complex. Therefore, there is an isomorphism

(B-8) t:H d-1 (A(-I)) --- k.

Further, For any object M in gr -A, one has a natural isomorphism

(B.9) Homg,- A M, A) Homp,.�_A (M, A).'

To see this, we just check that HOMA(M�:n, A) ---+ HOMA(M, A). Now this
follows by applying HOMA(,A) to the sequence 0 -- Mn M -+ T 0
(where T is a torsion module), and noting that Exti (T, A) 0 for i = 0, 1.A

Theorem B.10 [Serre duality for regular algebras]. Let A be a Noethe-
rian regular algebra of dimension d > 2 Then the cohomological dimension
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of proj -A is p = d - 1, and the pair (A(-I), t) is a dualizing sheaf for
proj - A. Thus

W for every M in proj -A, the natural pairing

(B. 1) Homproi-A(MA(-I) x Hd-I(M - H d-1 (A(-l)) k

is a perfect pairing of finite-dimensional vector spaces over k.
(ii) for each i > 0, there is a natural functorial isomorphism

(B. 12) Exti jA(M, A(-I)) _-_+ Hd-l-i(M)*pro

which for i = is the one induced by the pairing (B. 1).

Proof. By [Yel, Proposition 417, with R = A-I)[d] ], we have a natural
isomorphism

(B.13) lim Ext' (A/A>,,, M) ---+ HOMA (Extd-i (M, A(-1)), A')n-oo A A

and, therefore, by (B.4):

d(B.14) lim Ext' (A/A>n, M) Ext -(M, A(-I))n--+00 A - A

The left hand side is just H-'(M). Now if i > d, then Ext d-i (M, A(-I))A
0, and, by (B. 14), we have H'- (M = 0. Thus, the cohomological. dimension
of proj-A is at most d- 1. But since H d- (A) k (1) (B. 7), t he cohomological
dimension is d - .

Now setting i = d in (B.14) we see that

Homgr-A(M, A(-I)) Hd-l(M)*.

As HomgA(MA(-I)) Homp,.j__A(MA(-I)), the pair (A(-I),t) repre-
sents the functor M -,-+ Hd-l(M)*. This proves (i).

The proof of (ii) is a standard cohomological argument. There is a
natural transformation from Exti Both sides

PrO.�.A(-,A(-I)) to Hd

are contravariant 6-functors indexed by i > 0. For i = 0, there is an iso-
morphism by (B.14). Thus to prove that the two are isomorphic, it is
sufficient to show that both the functors are coeffaceable for i > 0. Re-
call that a functor F is coeffaceable if for each object M, there is an epi-
morphism f IV --+ M such that F(f = 0. Now given an object M
of proj-A, M is a quotient of P = DjA(-rj) for some rj << 0. Then
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Ext, To�-A(PA(-1) = ejH'(A(-l + rj) = for i > 0, by (B.14). Also,
Hd-t-'(P) = Hd-i-i 0 for i > 0, again by (B.14). Thus
the two functors are coeffaceable for i > 0, hence isomorphic. 0

Corollary B.15. H d-I (A) A'(1).

Proof. We use the duality (B.11) for M = A(-n) for n E Z, to conclude
that Hd-l(A(-n) = HMk(An, k(l)), and thus H d-I (A) A'(1). 0
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