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Abstract

In this paper block Kalman �lters for Dynamic Stochastic General Equilibrium mod-
els are presented and evaluated. Our approach is based on the simple idea of writing
down the Kalman �lter recursions on block form and appropriately sequencing the
operations of the prediction step of the algorithm. It is argued that block �ltering is
the only viable serial algorithmic approach to signi�cantly reduce Kalman �ltering
time in the context of large DSGE models. For the largest model we evaluate the
block �lter reduces the computation time by roughly a factor 2. Block �ltering com-
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models are nowadays routinely esti-
mated using Bayesian methods. The size of some models, e.g. those developed at various
central banks, is becoming larger and computational time is perceived as a concern [Adolf-
son, Lindé and Villani (2007)], [Azzin, Girardi and Ratto (2007)], [Christo¤el, Coenen and
Warne (2007)]. Bayesian estimation of linearised DSGE models using the Metropolis-
Hastings algorithm and the Kalman �lter for likelihood evaluation typically require at
least, say, 100:000 draws from the posterior. For larger models several days of computing
time may be needed and most of this time is spent on Kalman �ltering.
This motivates the development of e¢ cient Kalman �lter algorithms and implementa-

tions tailored to the particular linear and Gaussian state-space model (LGSS) associated
with a wide-class of linearly approximated DSGE models. Faster Kalman �ltering, if
possible, increases the quality and/or reduces the time of the likelihood-based analysis of
DSGE models.
The purpose of this paper is to present and evaluate block Kalman �lters for DSGE

models which exploit the symmetry of the �lter and the particular DSGE model block
structure and sparse structure of some system matrices. Our DSGE model speci�c ap-
proach, which is straightforward and mainly attempts to reduce the time of the Kalman
�lter prediction step, is integrated with and compared to the general strategy for faster
Kalman �ltering outlined by Koopman and Durbin (2000). Their approach focuses on the
updating step of the �lter, implying that the two approaches are largely complementary.1

The usefulness of the block Kalman �lter approach is illustrated using three well-known
macroeconomic models and particular interest is devoted to the large-scale open-economy
model developed at Sveriges Riksbank [Adolfson, Laséen, Lindé and Villani (2007)]. The
evaluation exercise clari�es the interrelationship between model size, block structure, al-
gorithm, implementation language, compiler, matrix library and Kalman �ltering time
for these three representative models. This exercise, we believe, provides a useful guide
to the researcher who wants to obtain maximal computational e¢ ciency in estimating
linearised DSGE models.
Our main results are, �rst, that block �ltering is the only algorithmic approach that, in

itself, can deliver a signi�cantly lower Kalman �ltering wall-clock time for the large-scale
DSGE model. Second, quicker execution of the updating step can largely be achieved
without resorting to the univariate �ltering approach of Koopman and Durbin (2000).
Third, for smaller models the choice of implementation language appears much more
important than the choice of Kalman �lter algorithm.
The practical perspective of the paper guides the choice of programming language

for implementations of the �lters. The �lters are programmed in Matlab, the dominant
language among economists, and as Fortran Mex functions to be called from Matlab. The

1The terms updating and prediction are explained in section 4 where the Kalman �lter is presented.
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standard implementation of the Kalman �lter is presumably close to the ideal application
for Matlab. However, Matlab is not the ideal language if one wants to maximise the
performance of Kalman �ltering for DSGE models. In contrast, a language like Fortran
(and presumably C) appears better suited for the implementations suggested in this paper.
The Kalman �lter implementations that come with the paper are easy to use. From a

user�s perspective the only requirement is that the state vector of the economic model
is ordered in a particular way. The Kalman �lter interface is uniform across algo-
rithms/implementations such that details of algorithms can largely be hidden from the
user.
The paper proceeds as follows. In section 2 the computational problem is brie�y

described. In section 3 it is shown how to cast the state-space model in the form required
for block �ltering. In section 4 the Kalman �lter is presented in a form suitable for the
presentation of the block �lters in section 5. Three example models and the setup of the
computational experiment are described in section 6, and in section 7 results from tests
of the �lters are presented.

2 The computational kernel

For large DSGE models Kalman �ltering time is dominated by the matrix multiplication
associated with the prediction step of the Kalman �lter

P � = TPT T (1)

where P is an m�m symmetric matrix and T is the m�m state transition matrix. As
an example, the open-economy DSGE model presented in Adolfson, Laséen, Lindé and
Villani (2007) contains m = 65 state variables. For this model, and an e¢ cient Matlab
implementation of the Kalman �lter, on a standard desktop computer more than 60% of
Kalman �ltering time is spent on the above multiplication.
The univariate �ltering approach [Koopman and Durbin (2000)] works on the updating

step of the Kalman �lter and is therefore, in itself, expected to provide only limited time
gains when the state dimension is large relative to the observation dimension, which is
often the case for DSGE models. However, the generality of the approach, its apparent
success in signi�cantly reducing Kalman �lter time for many models and the unavailability
of other approaches to faster Kalman �ltering suggest it as a natural benchmark algorithm.
The block approach, on the other hand, aims mainly to reduce the time of the pre-

diction step by exploiting the structure of the matrices T and P and therefore works
complementary to univariate �ltering. It should be noted that the matrix T is not sparse
but that it has a speci�c block structure for DSGE models, e.g. for the open-economy
model mentioned above 35% of the elements of T are nonzero.
The block �lter performs the above multiplication on blocks of the matrices T and P:

First, the symmetry of P (and P �) is �manually�taken into account. Second, a number
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of multiplications involving zero submatrices are disposed of in the process.

3 State-space representation

A wide class of linearly approximated DSGE models can be cast in the general linear
state space form

Xt = c+ T (�)Xt�1 +R (�) �t (2)

Yt = d (�) + ZXt + vt (3)

where [2] is the state transition equation and [3] is the observation equation. The state
vector Xt has dimension m, the measurement vector Yt has dimension N and the vector
of fundamental innovations �t has dimension g: The dimensions of the matrices T;R and
Z are m�m; m� g and N �m: The structural and auxiliary parameters of the DSGE
model are collected in the vector �: The distributions of the fundamental innovations �t
and the measurement error vt are N (0; Q) and N (0; H) respectively and �t and vs are
assumed to be independent.
If Kalman �ltering time is a serious concern it can be expected that at least some e¤ort

has been made to reduce the dimension of the state vector, i.e. to remove any variable Xjt

for which the jth column of T and the jth column of Z are zero vectors (static endogenous
variables which are not observed). Keeping these variables in the system obviously is
contradictory to fast �ltering although it could be convenient for other purposes. Since
this reduction of the state dimension is easily performed manually prior to estimation it
will not be considered further here.
It will be assumed that the covariance matrices

Ptjs = E
h
(Xt � E [XtjY1:s]) (Xt � E [XtjY1:s])T jY1:s

i
s = t � 1; t; t + 1 ,t = 1; :::; T; are not necessarily positive de�nite since many DSGE
models are represented as state-space models with singular Ptjs.
The most general state-space model of interest to us here has four blocks. The state

vector is partitioned as
XT =

�
XT
1 X

T
2 X

T
3 X

T
4

�
(4)

with dimensions mj; j = 1; 2; 3; 4; such that g = m1 +m2 +m3 and m = g +m4:
The �rst block contains exogenous AR(1) processes and the second block contains

exogenous VAR(1) processes. Exogenous variables which appear in the observation equa-
tion, i.e. variables for which the corresponding column in Z contain non-zero entries, are
collected in the third block and endogenous variables appear in the fourth block. The

3



block structure of a model is succinctly captured by the vector m4 = (m1;m2;m3;m4).
The four-block structure of the model is described by the matrices

T =

2664
A1 0 0 0
0 A2 0 0
0 0 A3 0

B1A1 B2A2 B3A3 C

3775 (5)

R =

2664
Im1 0 0
0 Im2 0
0 0 Im3

B1 B2 B3

3775 (6)

Q =

24 Q1 0 0
0 Q2 0
0 0 Q3

35 (7)

Z =
�
0 0 Z3 Z4

�
(8)

where the matrices A1 and Q1 are assumed to be diagonal, the matrices Q2 and Q3 are
symmetric and Imi

is themi�mi identity matrix. In the block �lters potential diagonality
of H is not exploited, implying that the presence of correlated measurement errors does
not present any additional issues.
The only requirement for application of the �lters in this paper is that the LGSS model

has the structure described by [5]-[8]. An unordered model, i.e. a model for which the
state vector have not been cast in the form [4], described by the matrices ~T ; ~R; ~Q and ~Z
can be transformed to the required form by de�ning the m�m reordering matrix M:
Assume that the original, unordered, state vector is given by ~X: Let Mij = 1 if the

variable in place i in ~X obtains the new position j in X and Mij = 0 otherwise. The
ordered model is then obtained utilizing the relationships

T =MT ~TM (9)

R =MT ~R ~M (10)

Q = ~MT ~Q ~M (11)

Z = ~ZM (12)

where the g � g matrix ~M is obtained as a submatrix of M through deletion of rows and
columns associated with endogenous variables: It is thus easy to transform the state-space
representation of a DSGE model to the required form.
Faster Kalman �ltering in this context is essentially based on two approaches:
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� Taking into account the symmetries in the �lter, i.e. only calculating the upper (or
lower) triangular part of covariance matrices Ptjs; s = t� 1; t , t = 1; :::T . This can
be performed (i) using special matrix routines for symmetric matrices and/or (ii)
manually, as in the block �lter.

� Exploiting the DSGE model speci�c structure of T and Z: This goes beyond the
symmetric �lter and further motivates the blocked �lters presented below.

Many DSGE models only consist of blocks 1 and 4: Therefore, in section 5.1, we �rst
present the 2-block-�lter which is suitable for models which do not contain an exogenous
VAR block. In section 5.2 the more general 4-block �lter is presented. A 3-block �lter,
which is obtained by merging blocks 3 and 4 of the 4-block �lter into one block is presented
in the Appendix. A notable example of a DSGE model, in addition to [Adolfson, Laséen,
Lindé and Villani (2007)], that consists of more than two blocks is the New Area-Wide
Model (NAWM) developed at the ECB [Christo¤el, Coenen and Warne (2007)].
Before moving on we brie�y comment on two issues. First, the discussion is restricted

to time-invariant (constant coe¢ cient) models. However, it would be straightforward to
extend the �lters to the time-varying case. In fact, if time variation is restricted to certain
blocks of a model this could be an additional argument in favour of block �ltering but
this issue is not discussed further here.
Second, if the covariance matrix P has converged to its steady state solution avoiding

updating it saves a lot of computational e¤ort. For reasons of simplicity and transparency
it will be assumed in our experiments that P has not converged during the time span of
the �lter. This is normally the case for large DSGE models and the relevant sample
lengths. For smaller models convergence is presumably more common and steady state
Kalman �ltering can sometimes save a lot of computational e¤ort.

4 Kalman �lter

4.1 Kalman �lter equations

The Kalman �lter equations are included to make the paper self-contained (see e.g. Harvey
(1989) ch. 3). Let

Xtjs = E [XtjY1:s]
denote the optimal estimator of the state vector Xt based on the observations up to time
s

Y1:s = (Y1; Y2; :::; Ys)

and let
Ptjs = E

h
(Xt � E [XtjY1:s]) (Xt � E [XtjY1:s])T jY1:s

i
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The updating (or contemporaneous �ltering) equations are

Xtjt = Xtjt�1 +KtF
�1
t

�
Yt � ZXtjt�1 � d

�
(13)

and
Ptjt = Ptjt�1 �KtF

�1
t KT

t (14)

where

Ft = V (YtjY1:t�1) = ZKt +H (15)

is assumed to be positive de�nite and

Kt = Ptjt�1Z
T (16)

The prediction equations are

Xt+1jt = TXtjt + c (17)

and
Pt+1jt = TPtjtT

T +RQR (18)

As the state dimension of the LGSS model increases the matrix multiplication in [18]
will dominate computational time, as previously discussed. For DSGE models the selector
matrix Z is typically sparse, i.e. it contains relatively few non-zero entries, such that [15]
and [16] are sparse-dense type of multiplications. This sparseness of Z can sometimes be
exploited for more e¢ cient computing.

4.2 Implementation issues

The usual (1-block) Kalman �lter is implemented exactly as described above. In Matlab
this can be done in essentially one way. Using Fortran the �lter can be implemented using
BLAS routines for symmetric matrices, e.g. symm, syrk and syr2k, calculating only the
upper (or lower) part of the matrices Ptjt�1 and Ptjt: This will be referred to as a sym-
metric �lter implementation. The alternative is to implement the �lter in correspondence
with its implementation in Matlab, i.e. using the standard matrix multiplication, gemm,
everywhere, a non-symmetric �lter implementation.
It should be noted that the block �lter, to some extent, reduces the rationale for apply-

ing symmetric routines since the block �lter approach manually deals with the symmetry
of the covariance matrices Ptjs: The added value of the block �lter is of course that, in
addition, the computations associated with the zero blocks of the state transition matrix,
T , need not be performed.
The perspective of the paper is to take the set of matrix operation routines available

in BLAS, as implemented in MKL or IMSL (or similar and/or overlapping libraries) as
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given building blocks in constructing e¢ cient Fortran implementations of the �lters.2 In
other words there is no ambition to improve upon the design of the basic routines of these
libraries.
Interestingly, the particular operation of main interest for Kalman �ltering [1] has

not yet, to our knowledge, been implemented as a separate routine in any of the men-
tioned libraries. Therefore we compare several ways of performing this operation based
on routines in the matrix libraries, over a range of matrix sizes, in order to obtain a
reasonably e¢ cient implementation. Our symmetric �lter implementations perform the
type of multiplication in [1] via calls to symm and syr2k.

5 Block Kalman �lter

5.1 2-block �lter

In this section the Kalman �lter is written down on 2-block form. The DSGE model is
assumed to consist of m1 exogenous AR(1) shocks (block 1) and m2 endogenous variables
(block 2). Many small and intermediate scale DSGE models have this structure. If the
model contain exogenous VAR processes and/or AR/VAR variables which appear in the
observation equation these are placed in the second block. In this case a simple adjustment
to the �lter is required (see below).
The model is thus assumed to be on the form

T =

�
A 0
BA C

�
(19)

R =

�
Im1

B

�
(20)

Q =

�
Q1 0
0 Q2

�
(21)

Z =
�
Z1 Z2

�
=
�
0 Z2

�
(22)

where A is diagonal.
The mean vectorsX1tjs andX2tjs and the blocks P11tjs; P12tjs and P22tjs of the covariance

matrices

Ptjs =

�
P11tjs P12tjs

P22tjs

�
2The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks

for performing basic vector and matrix operations (see e.g. www.netlib.org). MKL (Intel Math Kernel
Library) is a library of math routines and it includes BLAS routines optimised for Intel processors. IMSL
(International Mathematics and Statistics Library) is a library of routines for numerical analysis, also
containing the BLAS routines.
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are propagated instead of Xtjs and Ptjs, s = t� 1; t and t = 1; :::; T .
Again, the purpose of the block �lter approach is to (i) avoid calculation of P21 = P T12,

(ii) to dispose of a set of unnecessary multiplications, i.e. those involving zero submatrices
(here the upper-right submatrix of T ), (iii) to exploit the special structure of the lower-left
submatrix of T and (iv) to exploit the diagonality of the matrix A. Whether this is useful
of course depends on the sizes m1 and m2: For DSGE models m is typically signi�cantly
larger than N and the shocks of the model constitute a signi�cant part of the state vector.
The equations presented here are obtained by simply assuming the 2-block structure,

[19]-[22], and writing down the Kalman �lter recursions [13]-[18] while appropriately se-
quencing the operations of the prediction step, i.e. to minimise the number of matrix
multiplications performed. Although the �ltering equations are expressed in terms of the
matrices A, B; C and Z2 it is seen above that these are easily extracted from the matrices
T; R and Z such that the input to the Kalman �lter can be kept the same as for the
1-block �lter if desired.

5.1.1 Updating equations

The updating step of the �lter consists of the following set of equations, which are obtained
by writing out the updating equations of the Kalman �lter, [13] and [14], on block form.
The contemporaneous �ltering covariance matrices are obtained as

P11tjt = P11tjt�1 � P12tjt�1ZT2 F�1t Z2P
T
12tjt�1 (23)

P12tjt = P12tjt�1 � P12tjt�1ZT2 F�1t Z2P22tjt�1 (24)

P22tjt = P22tjt�1 � P22tjt�1ZT2 F�1t Z2P22tjt�1 (25)

and the means as

X1tjt = X1tjt�1 + P12tjt�1Z
T
2 F

�1
t

�
Yt � d� Z2X2tjt�1

�
(26)

X2tjt = X2tjt�1 + P22tjt�1Z
T
2 F

�1
t

�
Yt � d� Z2X2tjt�1

�
(27)

where
Ft = ZPtjt�1Z

T +H = Z2P22tjt�1Z
T
2 +H (28)

is assumed to be positive de�nite.
Let

F�1t = ~F Tt ~Ft (29)

and use the matrices
P �12 = P12tjt�1Z

T
2
~F Tt (30)

P �22 = P22tjt�1Z
T
2
~F Tt (31)
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and the vector
v�t =

~Ft
�
Yt � d� Z2X2tjt�1

�
(32)

for the matrix multiplications above and for the computation of the likelihood at time
t (see below). In our implementations the matrix ~Ft is obtained as the inverse of the
Cholesky factor of Ft; i.e. it is not the Cholesky factor of F�1t .

5.1.2 Prediction equations

The prediction step is given by the following set of equations which are obtained by writing
out equations [17] and [18] on block form.
First

P11t+1jt = AP11tjtA
T +Q

which, due to the assumed diagonality of A; is obtained as

P11t+1jt = P11tjt � A11 +Q (33)

where
A11 = diag (A) diag (A)

T

(here � denotes element-by-element multiplication, Hadamard product). Next

P12t+1jt = AP11tjtA
TBT + AP12tjtC

T +QBT =

P11t+1jtB
T + AP12tjtC

T

or
P12t+1jt = P11t+1jtB

T + Lt (34)

where
Lt =

�
P12tjtC

T
�
� A12

and
A12 = diag (A) 1

T
m2

where 1m2 is a (column) vector of dimension m2 containing ones.
The block corresponding to the endogenous variables is obtained as

P22t+1jt = BAP11tjtA
TBT +BAP12tjtC

T +BQBT+

+CP T12tjtA
TBT + CP22tjtC

T =

= BAP11tjtA
TBT +BQBT +Mt +M

T
t + CP22tjtC

T

where
Mt = BLt

9



or
P22t+1jt = BP12t+1jt +M

T
t + CP22tjtC

T (35)

As a computational detail, if we let

Gt = BP12t+1jt +Mt = B
�
P12t+1jt + Lt

�
then

P22t+1jt =
1

2

�
Gt +G

T
t

�
+ CP22tjtC

T

The one-step ahead forecast of the state vector is given by

X1t+1jt = AX1tjt = diag (A)�X1tjt (36)

and
X2t+1jt = BAX1tjt + CX2tjt = BX1t+1jt + CX2tjt (37)

5.1.3 Likelihood

The log likelihood at time t is given by

logLt = �N log (2�) + log
���F�1t ����

�1
2

�
Yt � d� Z2X2tjt�1

�T
F�1t

�
Yt � d� Z2X2tjt�1

�
=

= �N log (2�) + 2
NX
i=1

log
�
~Fii;t

�
� v

�T
t v

�
t

2
(38)

where ~Fii;t is element (i; i) of the matrix ~Ft and the log likelihood is obtained as

logL =
TX
t=1

logLt

5.1.4 Theoretical gains from 2-block �ltering

Consider the matrix multiplication [1] in a 2-block context

P � =

�
T11 T12
T21 T22

� �
P11 P12
P21 P22

� �
T T11 T T21
T T12 T T22

�
(39)

Without any assumptions on the matrices P and T , performing the multiplication [39]
naively involves 8 + 8 = 16 ordinary matrix multiplications for the submatrices of the
partitioned matrices. Recognising the symmetry of P and the output matrix P � this is
reduced to 14 matrix multiplications, some of those involving symmetric input or output
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matrices.3 Further assuming that T11 is diagonal and that T12 = 0 the number of multi-
plications is reduced to 2 Hadamard products plus 6 multiplications. Finally, also taking
into account the special structure of T21 (see expression [19]) allows us to perform the
multiplication [39] using 2 Hadamard products and 5 multiplications, as shown above in
writing out the prediction equations for the 2-block Kalman �lter.
For large matrices and m1 � m2 these matrix multiplication counts would provide a

good estimate of the time savings from 2-block �ltering. In practise, e.g. for the DSGE
models considered in the experiments of this paper, we expect the time savings to be
smaller than indicated by the counts. The main value of this exercise is instead that it
helps understanding the contribution of the di¤erent DSGE model speci�c assumptions
in reducing the number of operations of the Kalman �lter prediction step.

5.1.5 Moving exogenous variables

Assume that the DSGE model contain exogenous AR(1) shock processes which appear
in the observation equation, i.e. exogenous variables for which the corresponding column
in Z contain non-zero entries. For example, if the model contain unit root shocks this
situation emerges. Further assume that the exogenous variables have been ordered such
that the k exogenous variables that appear in the observation equation are the k last
variables in the vector X1 such that

Z1 =
�
�Z1 �Z2

�
=
�
0 �Z2

�
where �Z1 has dimension N � ~m1 where ~m1 = m1� k: These k exogenous AR(1) variables
are moved into the vector of endogenous variables forming the new blocks, ~X1 and ~X2

with dimensions ~m1 and ~m2 where ~m2 = m2 + k: The �rst vector thus contain exogenous
variables which do not enter the observation equation and the second vector contain
exogenous variables that appear in the observation equation and endogenous variables.
Let

~Z2 =
�
�Z2 Z2

�
and de�ne ~A ( ~m1 � ~m1) ; ~B ( ~m2 � ~m1) ; ~C ( ~m2 � ~m2) via

T =

�
A 0
BA C

�
=

�
~A 0
~B ~A ~C

�
where ~B is the lower left ~m2 � ~m1 matrix of R:
Further, let ~Q ( ~m1 � ~m1) be the upper-left submatrix of Q: Also, let R�22 denote the

( ~m2 � ~m2) lower-right submatrix of RQRT : The modi�ed 2-block �lter is now obtained

3Clearly there exist more sophisticated schemes which reduce the number of multiplications required,
e.g. the Strassen algorithm for general matrix multiplication which would require 7 + 7 = 14 multipli-
cations if no assumptions are imposed on P and T: However, we believe that the Strassen algorithm, or
related algorithms, are of little practical interest in our context.
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by replacing A;B;C;Q; Pij; Xi and Z2 with ~A; ~B; ~C; ~Q; ~Pij; ~Xi and ~Z2 in the 2-block �lter
presented above and making the adjustment in the prediction step for ~P22

~P22t+1jt = ~B ~A ~P11tjt ~A
T ~BT + ~B ~A ~P12tjt ~C

T +R�22 +
~C ~P T12tjt

~AT ~BT + ~C ~P22tjt ~C
T =

= ~B ~P12t+1jt + ~CP T12tjt ~A
T ~BT + ~C ~P22tjt ~C

T +R�22 � ~B ~Q ~BT (40)

To aid understanding, note that if k = 0

R�22 = ~B ~Q ~BT = BQBT

A similar modi�cation could be applied if the model contain an exogenous VAR block.
The VAR block would be moved into the endogenous variables block independent of
whether the variables appear in the observation equation or not. In practise the modi-
�cation becomes interesting for models which contain at most a few - say one or two -
exogenous variables in the observation equation. If many exogenous variables appear in
the observation equation and/or the model contain many exogenous VAR variables the
more general 4-block �lter presented in the next section should instead be applied.
From a user�s perspective the modi�cation of the �lter is not an issue. All that needs

to be kept in mind is that exogenous variables which appear in the observation equation
are placed in the second block.

5.1.6 2-block �lter with a univariate �ltering step

In this section we show how to use the approach of Koopman and Durbin (2000) with
the two-block �lter. In their univariate approach the observations are introduced one at
a time in the updating step. In this way two matrix multiplications and the inversion of
the matrix Ft can be avoided in the Kalman �lter. For DSGE models the matrix Z is
typically sparse and hence the multiplications in [15] and [16] can be performed e¢ ciently,
perhaps reducing the rationale for univariate �ltering.
De�ne

Xitjt;1 = E [Xit;1jY1:t�1] = Xitjt�1 (41)

Pijtjt;1 = E
��
Xit;1 �Xitjt;1

� �
Xjt;1 �Xjtjt;1

�
jY1:t�1

�
= Pijtjt�1 (42)

Xitjt;k = E [Xit;kjY1:t�1; yt;1; :::; yt;k�1] (43)

Pijtjt;k = E
��
Xit;k �Xitjt;k

� �
Xjt;k �Xjtjt;k

�
jY1:t�1; yt;1; :::; yt;k�1

�
(44)

for i = 1; 2, j = i; 2; k = 1; :::; N and where y:;k denotes the kth element of the observation
vector such that

Xitjt = Xitjt;N+1 (45)

Pijtjt = Pijtjt;N+1 (46)
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The updating equations can then be written as

Pijtjt;k+1 = Pijtjt;k �Kit;kF
�1
t;k K

T
jt;k (47)

Xitjt;k+1 = aitjt;k +Kit;kF
�1
t;k vt;k (48)

where
vt;k = yt;k � Z2;kX2tjt;k (49)

Ft;k = Z2;kK2t;k (50)

K1t;k = P12t;kZ
T
2;k (51)

K2t;k = P22t;kZ
T
2;k (52)

Here Z2;k denotes the kth row of Z2 such that the vectors K1 and K2 have dimensions m1

and m2 respectively and F and v are scalars. The 2-block �lter with univariate �ltering is
thus obtained by replacing [23]-[28] with [45]-[52]. The experiments using the univariate
�ltering approach in this paper only considers the case when the covariance matrix of the
measurement errors, H, is diagonal.

5.2 4-block �lter

Assume that the matrices T , Z;R and Q have the structure [5]-[8] where A1 is a diagonal
m1 � m1 matrix, A2 and A3 have dimensions m2 � m2 and m3 � m3 respectively, the
matrices B1; B2, B3 and C have dimensions m4 � m1;m4 � m2;m4 � m3 and m4 � m4

respectively and Z3 and Z4 have dimensions N �m3 and N �m4.
The block structure of the covariance matrices is described by

Ptjs =

2664
P11tjs P12tjs P13tjs P14tjs

P22tjs P23tjs P24tjs
P33tjs P34tjs

P44tjs

3775
Again, the block �lter is obtained by simply writing out the Kalman �lter recursions
under the assumed state-space structure and appropriately sequencing the operations of
the prediction step.

5.2.1 Updating equations

De�ne
~Pit = ~Pi3tjt�1Z

T
3 + ~Pi4tjt�1Z

T
4 (53)

for i = 1; 2; 3; 4 such that
Ft = Z3 ~P3t + Z4 ~P4t +H (54)
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Note again that if sparseness of Z3 and Z4 is exploited [53] and [54] can be performed
particularly e¢ ciently.
The updating covariance matrix blocks are then obtained as

Pijtjt = Pijtjt�1 � PitP Tjt (55)

for i = 1; 2; 3; 4 and j = i; :::; 4 where

Pit = ~Pit ~F
T
t

and
F�1t = ~F Tt

~Ft

The means are given by
Xitjt = Xitjt�1 + Pitv

�
t (56)

where
v�t = ~Ft

�
Yt � d� Z2X2tjt�1

�
and the likelihood is obtained as described previously for the 2-block �lter.

5.2.2 Prediction equations

First, de�ne
A11 = diag (A1) diag (A1)

T (57)

and
A1i = diag (A1) 1

T
mi

(58)

for i = 2; 3; 4 such that A1i is an m1 �mi matrix.
The prediction covariance matrix blocks are obtained via the following sequence of

steps. The �rst row of blocks, i.e. P11 to P14; is obtained via

P11t+1jt = A11 � P11tjt +Q1 (59)

P12t+1jt = A12 �
�
P12tjtA

T
2

�
(60)

P13t+1jt = A13 �
�
P13tjtA

T
3

�
(61)

P14t+1jt = L1t +
3X
i=1

P1it+1jtB
T
i (62)

where
L1t = A14 �

�
P14tjtC

T
�

The second row of blocks, P22 to P24, is obtained as
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P22t+1jt = A2P22tjtA
T
2 +Q2 (63)

P23t+1jt = A2P23tjtA
T
3 (64)

P24t+1jt = L2t +
3X
i=1

P2it+1jtB
T
i

= L2t + P
T
12t+1jtB

T
1 + P22t+1jtB

T
2 + P23t+1jtB

T
3 (65)

where
L2t = A2P24tjtC

T

The third row of blocks, P33 and P34, is obtained through

P33t+1jt = A3P33tjtA
T
3 +Q3 (66)

P34t+1jt = L3t +
3X
i=1

P3it+1jtB
T
i (67)

where
L3t = A3P34tjtC

T

Finally, let

Mt =
3X
i=1

Bi
�
Pi4t+1jt + Lit

�
Then

P44t+1jt =
1

2

�
Mt +M

T
t

�
+ CP44tjtC

T (68)

The prediction means are obtained as

X1t+1jt = diag (A1)�X1tjt (69)

X2t+1jt = A2X2tjt (70)

X3t+1jt = A3X3tjt (71)

and

X4t+1jt = CX4tjt +
3X
i=1

BiXit+1jt (72)
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5.2.3 Univariate �ltering step: 4-block �lter

The univariate �ltering equations are analogous to the two-block case. The de�nitions
[41]-[46] and the relations [47] and [48] now hold for i = 1; 2; 3; 4, j = i; :::; 4 k = 1; :::; N
where v; F and Ki are instead de�ned as

vt;k = yt;k � Z3;kX3tjt;k � Z4;kX4tjt;k (73)

Ft;k = Z3;kK3t;k + Z4;kK4t;k (74)

Kit;k = Pi3t;kZ
T
3;k + Pi4t;kZ

T
4;k (75)

Although the block �lter and univariate �ltering approaches are largely complementary
in increasing Kalman �ltering speed, as the number of blocks increase it is clear that in
practical implementations the e¢ ciency of univariate �ltering is negatively a¤ected by
working on several smaller arrays.

6 Experimental setup

The computational experiment has two objectives. First, and most importantly, we want
to assess the performance of the block Kalman �lter approach to faster Kalman �ltering.
Second, and more broadly, we want to provide a fuller picture of the many factors that
a¤ect Kalman �ltering performance for DSGE models in practise.
Three DSGE models of di¤erent sizes are used to evaluate the computational perfor-

mance of the �lter implementations, where the large model is of primary interest. For
each model a benchmark problem is constructed which consists of evaluating the likelihood
with the Kalman �lter a number of times.4

The �lters are coded in Matlab, in Fortran and as Fortran Mex functions to be called
from Matlab. The default software setup consists of Matlab R2008a, Intel Visual Fortran
(IVF) compiler 10.1.019 and the BLAS routines available in Matlab (MKL, libmwblas.lib).
The Fortran Mex functions are always compiled with the default mexopts.bat compiler
options provided by the Mathworks.5

Results are presented for two computers: (i) AMD Opteron 275, 2.2 GHz and (ii) Dell
690, with Intel Xeon 5160 3.00 GHz. It can be expected that the block �lter has better
performance for machines with a relatively limited cache memory since it generally works

4Since Kalman �ltering time is independent of the parameter point, �, at which the likelihood is
evaluated, assuming convergence to the steady state solution does not occur, we simply choose an arbitrary
point for evaluation. An alternative would be to use the �lter in the Metropolis-Hastings algorithm.

5We have established that for this software setup execution in Fortran and execution of Fortran Mex
�les in Matlab yield similar execution times. Therefore no results from runs using �pure�Fortran are
presented. However, in less up-to-date software and/or hardware environments there sometimes appears
to be quite a signi�cant cost of using Fortran routines via Matlab in comparison to standalone Fortran.
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on smaller matrices. The Dell 690 is a high performance workstation with a large cache
memory (4MB L2 cache) and it is therefore interesting to present results for this machine.
The Kalman �lter implementations are categorized according to four criteria:

1. The block structure, i.e. the number of blocks of the �lter.

2. Symmetric/non-symmetric. This refers to whether the �lter is implemented using
symmetric (dsymm, dsyrk, dsyr2k) or non-symmetric (gemm) BLAS routines.

3. Whether or not sparseness of Z is exploited in computations.

4. Whether or not the univariate �ltering approach of Koopman and Durbin (2000) is
applied.

This yields 4� 2� 2� 2 = 32 possible implementations and a subset of these are con-
sidered in our experiments. On a priori grounds we restrict the number of non-symmetric
implementations considered.
The benchmark Fortran mex �lter, referred to below, is the 1-block �lter which utilizes

symmetric BLAS routines but neither exploits sparseness of Z nor use univariate �ltering.
The benchmark Matlab �lter is the 1-block Matlab implementation of the Kalman �lter.
Concerning the Matlab implementations it should be noted that special routines for

symmetric matrices are unavailable in Matlab and that exploitation of sparseness of Z
and univariate �ltering substantially increase Kalman �ltering time for the three cases
considered here. Therefore, results are presented for Matlab implementations which di¤er
only along the block structure dimension.
Next the three example models are brie�y described. The �rst two models have two

blocks and the last model contains four blocks. If the (m+ 1)�block �lter is applicable
for a model, then the m�block �lter is also applicable. The standard, 1-block, Kalman
�lter is applied to all models.

6.1 A small scale model, An (2005)

The New Keynesian model used by An (2005) features price stickiness via quadratic
adjustment costs in price setting. The block structure of the model is described generally
by m4 = (2; 0; 1; 4) or in the �natural�2-block form as m2 = (2; 5) and N = 3 observed
variables are used to estimate the model. The presence of an exogenous shock in the
observation equation is due to the assumption of a unit root technology shock. The 2-
block Kalman �lter (with the modi�cation described in section 5.1.5) is applied to this
model.
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6.2 An intermediate scale model, Smets and Wouters (2003)

Next the 2-block �lter is applied to a slightly smaller version of the model presented
by Smets and Wouters (2003). The block structure of the model is described by m4 =
(8; 0; 0; 11) orm2 = (8; 11) and N = 5 observed series are used for estimation: The 2-block
�lter is applied to the model.

6.3 A large scale model, Adolfson, Laséen, Lindé and Villani
(2007)

The open economy DSGE model presented in Adolfson, Laséen, Lindé and Villani (2007)
has the block structure m4 = (11; 14; 16; 24) : With two or three blocks the block dimen-
sions are m2 = (11; 54) or m3 = (11; 14; 40). The 2-, 3- and 4-block �lters are applied to
this model.

7 Computational performance

7.1 Small scale model

For the small scale model the benchmark problem consists of evaluating the likelihood
R = 20 000 times on the AMD Opteron machine (using one processor) and 12 variants of
1- and 2-block Kalman �lters, implemented as Matlab or Fortran mex �les, are compared
in the Matlab environment. The results are collected in Table 1 where the best performing
algorithm/implementation has been given the normalized wall-clock time 100.
The best performing �lter is the Fortran mex 1-block �lter with a univariate �ltering

step and which exploits the sparseness of Z. This �lter produces R = 20 000 likelihood
evaluations in 11:5 seconds and it is more than 13 times faster than the benchmark Matlab
�lter and (188� 100) =188 = 47% faster than the benchmark Fortran mex �lter. The �lter
with a univariate �ltering step is (188� 117) =188 = 38% faster than the Fortran mex
benchmark. As anticipated, for a model of this size and block structure the 2-block �lter
does not improve performance.
For small scale models the most important aspect thus appears to be the choice of

implementation language and algorithmic re�nements are of secondary importance. If
Kalman �ltering speed is an issue in the case of a small model, e.g. because of exten-
sive simulation, univariate �ltering appears to be the single most important algorithmic
ingredient in increasing speed.

7.2 Intermediate scale model

For the intermediate scale model the benchmark problem consists of evaluating the likeli-
hood R = 5 000 times on the AMD Opteron (using one processor) and, again, 12 variants
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Table 1 Kalman �ltering time, small model

Language Block Symm. Sparse Z DK Time
Matlab 1 - No No 1369
Matlab 2 - No No 2107
Fortran 1 No No No 151
Fortran 1 Yes No No 188
Fortran 1 Yes Yes No 153
Fortran 1 Yes No Yes 117
Fortran 1 Yes Yes Yes 100
Fortran 2 No Yes No 187
Fortran 2 Yes No No 265
Fortran 2 Yes Yes No 226
Fortran 2 Yes No Yes 179
Fortran 2 Yes Yes Yes 148

AMD Opteron , 2 .2 Ghz, M atlab version 7.6 , R2008a, Intel V isual Fortran 10.1 .019.

.

of the Kalman �lter are compared. To illustrate the sometimes complex interactions be-
tween algorithm, implementation and software two setups are compared using this model:
i) �New�: Matlab R2008a, IVF 10.1, Matlab�s MKL library
ii) �Old�: Matlab 7.0 (R14), Compaq Visual Fortran 6.6, IMSL library
The results are presented in Table 2. Note that the standardised times are not com-

parable across columns.
The results for the �new� setup, which are arguably those of main interest for the

practitioner, are given in column (i) of Table 2. The best performing �lter for this model
and block structure is the 2-block Fortran mex �lter with a univariate �ltering step and
exploitation of sparseness of Z. This �lter implementation performs R = 5 000 Kalman
�lter likelihood evaluations in 11:0 seconds and it is (139�100)=139 = 28% faster than the
benchmark Fortran �lter. The small performance gains come from exploiting sparseness
of Z and univariate �ltering whereas the block �lter approach yields virtually no gain.
The results for the �old�setup, as given in column (ii) of the table, are quite di¤erent.

The absolute performance of the best performing �lter is now 12:6 seconds. Using this
software setup, exploitation of the model�s block structure is the single most important
factor in increasing Kalman �ltering speed. Moving to the 2-block from the 1-block
�lter decreases �ltering time by (186� 128) =186 = 31% whereas the univariate �ltering
approach, by itself, decreases time by (186� 169) =186 = 9%:
Why is this comparison interesting? To us it shows that the payo¤ from applying a

more complex algorithm is much smaller using an up-to-date Fortran compiler and BLAS
library. In the �new�setup the total gain is (139� 100)=139 = 28% whereas in the �old�
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Table 2 Kalman �ltering time, intermediate scale model
(i) (ii)

Language Block Symm. Sparse Z DK Time Time
Matlab 1 - No No 441 359
Matlab 2 - No No 586 417
Fortran 1 No No No 121 207
Fortran 1 Yes No No 139 186
Fortran 1 Yes Yes No 121 162
Fortran 1 Yes No Yes 120 169
Fortran 1 Yes Yes Yes 105 149
Fortran 2 No Yes No 106 128
Fortran 2 Yes No No 137 128
Fortran 2 Yes Yes No 121 109
Fortran 2 Yes No Yes 118 122
Fortran 2 Yes Yes Yes 100 100

AMD Opteron , 2 .2 Ghz

.

setup it is (186� 100)=186 = 46%:
From a practical point of view, as was the case for the small-scale model, the choice

of implementation language is much more important than the particularities of the al-
gorithm. The non-symmetric Fortran 1-block �lter is 441=121 = 3:6 times faster than
the corresponding Matlab implementation, a language gain. The algorithm gain of 28%
is marginal in comparison. Compared with the small-scale model example the relative
performance of Matlab thus becomes better as the time spent on matrix computations
increases.

7.3 Large scale model

For the large scale model the benchmark problem consists of evaluating the likelihood
R = 1000 times on the AMD Opteron and the Intel Xeon and 20 variants of the Kalman
�lter are compared. Results are presented in Table 3. Note again that the reported
standardised times are not comparable across columns. The inclusion of the result for
the Matlab implementation of the Kalman �lter in Dynare merely serves the purpose of
validating that our benchmark Matlab implementation is su¢ ciently e¢ cient.6

On both computers the best performing �lter is a non-symmetric �lter which exploits
the block structure and sparseness of Z. The time of 1000 likelihood evaluations using
this �lter is 29:3 seconds on the Opteron and 14:8 seconds on the Xeon. Since the relative
performance of the �lter versions are quite similar for the Opteron and Xeon the discussion

6The timing result for Dynare refers to the Kalman �lter implementation Di¤uselikelihoodH1.m.
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is largely restricted to results for the latter computer.7

First we look at the contribution of each algorithmic feature in isolation, using the
1-block symmetric Fortran mex implementation as the point of reference. Exploitation of
sparseness of Z leads to a speed gain of (199�174)=199 = 13%, the gain from univariate �l-
tering is (199�188)=199 = 6% and the gain from block �ltering is (199�128)=199 = 36%.
The corresponding numbers on the Opteron are 12%; 6% and 44%. This shows that the
block �lter approach is the single most important algorithmic ingredient in increasing
Kalman �ltering speed for this model. It can also be noted that the gain from sub-
optimally employing a two-block structure, 17%; is larger than that from univariate �l-
tering or sparse-Z-exploitation.
The best performing �lter yields a total algorithm gain of (184� 100)=100 = 46% on

the Xeon and 52% on the Opteron: This illustrates the complementarity of block �ltering
and the other approaches in increasing speed. Of practical interest is also the language
gain, i.e. the gain from using Fortran instead of Matlab, which is (280� 184)=280 = 34%
on the Xeon and 25% on the Opteron.
Finally, concerning Matlab two things are noted. First, the Matlab block �lter imple-

mentations yield time gains, although limited, when compared to the benchmark 1-block
Matlab implementation. This was not the case for the smaller models considered previ-
ously. Second, using �automatic� parallelisation by enabling multithreading in Matlab
and executing using the four available processors on the Opteron yields an execution time
for the best performing multithreaded implementation which is larger than for the best
performing serial implementation reported here.

7.4 Discussion

The Kalman �lter consists of a series of operations on matrices and is therefore very
suitable for implementation using Matlab. In fact, it is presumably very close to the
ideal application for Matlab. Matrix operations in Matlab are performed using high
performance routines, the MKL implementation of BLAS and LAPACK.8 However, for
small models, and hence operations on small matrices, Fortran performs much better than
Matlab since the relative time spent on matrix operations is smaller.
The key result to emerge from our experiments above is that the block �lter approach is

the only serial algorithmic approach that has the potential to signi�cantly reduce Kalman
�ltering time for large scale DSGE models. Our experiments indicate that block �ltering
pays o¤ exactly when computational time is becoming a concern.
The univariate �ltering approach only yields small time gains for the large model.

Furthermore, simply exploiting the sparseness of Z apparently reduces the rationale for

7Tests have been carried out using other, lower-performing, hardware and the relative performance of
�lter implementations is similar to that reported here for the Opteron and Xeon.

8Previous versions of Matlab use the ATLAS (Automatically Tuned Linear Algebra Software) library.
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Table 3 Kalman �ltering time, large model
Opteron Xeon

Language Block Symm. Sparse Z DK Time Time
Dynare 374
Matlab 1 - No No 279 280
Matlab 2 - No No 257 282
Matlab 3 - No No 233 212
Matlab 4 - No No 233 217
Fortran 1 No No No 210 184
Fortran 1 Yes No No 224 199
Fortran 1 Yes Yes No 198 174
Fortran 1 Yes No Yes 211 188
Fortran 1 Yes Yes Yes 188 164
Fortran 2 No Yes No 158 141
Fortran 2 Yes No No 187 173
Fortran 2 Yes Yes No 165 150
Fortran 2 Yes No Yes 183 169
Fortran 2 Yes Yes Yes 163 146
Fortran 3 Yes No No 148 140
Fortran 3 Yes Yes No 133 126
Fortran 4 No Yes No 100 100
Fortran 4 Yes No No 125 128
Fortran 4 Yes Yes No 109 110
Fortran 4 Yes Yes Yes 119 119

Matlab R2008a, IVF 10.1 , M atlab BLAS library.

.
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univariate �ltering in the context of DSGE models. However, since the di¤erent ap-
proaches are largely complementary in reducing �ltering time they should be combined
for maximal performance.
The univariate �ltering approach and the sparse Z-exploitation is not suitable for

implementation in Matlab. Although not reported here in detail we have established, for
the examples considered above, that attempts to implement these features using Matlab
signi�cantly increases computational time. The reason, in simple terms, is that the cost of
introducing loops and operating on smaller arrays outweighs any computational savings.
The block �lter approach can be implemented successfully in Matlab, as the experi-

mental results for the large model above show. However, the gains from implementing a
block �lter in Matlab are smaller and, more importantly, the other approaches can not
be implemented successfully.
The practical view adopted in this paper essentially means that we focus on Kalman

�ltering wall-clock time in a practically relevant and easy-to-use software and hardware
environment. Abstract performance measurement, e.g. counting matrix multiplications
saved, may be of limited value if computing time is the ultimate concern.
Some implications of this perspective are the following: First, for relatively small

DSGE models the payo¤ from using a more re�ned Kalman �lter algorithm are small
and simply using the right implementation language appears to be much more important.
Second, to be able to compete with recent Matlab versions in the case of large models an
up-to-date Fortran compiler and high-performing implementation of BLAS must be used.
Third, applying matrix routines for symmetric matrices, as implemented in state-of-the-
art matrix libraries (i.e. Intel MKL), does not payo¤ for models of the sizes considered in
this paper. Non-symmetric implementations based on gemm are both easier to code and
apparently more e¢ cient in practise.9

More generally, the size of the time gains will depend on the model size and block
structure and on software and hardware characteristics. Naturally, the value of the block
�lter approach increases with model size and the extent to which the block structure of
a model is exploitable. Our work is projected on the assumption that DSGE models will
continue to be valuable tools for central banks, as well as other institutions, and that
these models will grow both in size and complexity. Our experiments also indicate that
the gains from using more complex Kalman �lter algorithms becomes smaller in practise
when better performing software (compiler, matrix libraries) and hardware is used.

9Performance of BLAS routines for symmetric matrices is discussed in Goto and van de Geijn (2007).
The empirical results in that paper con�rm our own experiences, suggesting that the application of
symmetric routines becomes interesting for matrix sizes above, say, 200.
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8 Conclusion

The Kalman �lter can be viewed as the key computational kernel in Bayesian estimation of
linearised DSGE models and Kalman �ltering time is becoming a concern in the context of
large-scale DSGE models. This view is reinforced by e¤orts to parallelise the estimation
of DSGE models.[Azzin, Girardi and Ratto (2007)] However, if the parallel computing
avenue is opened it is our perspective that the parallel algorithms should be based on as
close to optimal as possible serial algorithms.
The block Kalman �lter is based on the simple idea of writing down the Kalman �lter

recursion on block form and appropriately sequencing the operations of the prediction
step. The block Kalman �lter presented in this paper appear to be the only viable serial
algorithmic approach to signi�cantly reduce Kalman �ltering time for large-scale DSGE
models. For the large-scale example model Kalman �ltering time decreased by roughly a
factor 2 and most of this time decrease was attributed to block �ltering. The approaches
directed at the updating step of the Kalman �lter, univariate �ltering [Koopman and
Durbin (2000)] and sparse-Z-exploitation, apparently provide more limited gains for large-
scale DSGE models. However, due to complementarities in decreasing Kalman �ltering
time the algorithmic features should be combined for maximal e¢ ciency.
From a practical perspective, and not surprisingly, we note that the choice of imple-

mentation language and matrix library, i.e. the particular implementation of BLAS, are
very important for performance. Our experimental results, using up-to-date software and
optimised implementations, provide a useful guide to what is important for faster Kalman
�ltering for DSGE models in practise.
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9 Appendix

9.1 3-block �lter

The 3-block �lter is obtained by merging blocks 3 and 4 in the 4-block �lter into one
block. The size of this block is then ~m3 = m3 +m4: De�ne the ~m3 �m1 matrix

~B1 =

�
0
B1

�
the ~m3 �m2 matrix

~B2 =

�
0
B2

�
the ~m3 � ~m3 matrix

~C =

�
A3 0
B3A3 C

�
and the N � ~m3 matrix

~Z3 =
�
Z3 Z4

�
and let R3 be the ~m3 � ~m3 lower-right submatrix of RQR: The matrices T and Z then
have the structures

T =

24 A1 0 0
0 A2 0
~B1A1 ~B2A2 ~C

35 (76)

Z =
�
0 0 ~Z3

�
(77)

The block form of the covariance matrix is then given by

Ptjs =

24 P11tjs P12tjs P13tjs
P22tjs P23tjs

P33tjs

35
9.1.1 Filtering equations

Let
~Pit = Pi3tjt�1 ~Z

T
3

such that
Ft = ~Z3 ~P3t +H

and, further, let
Pit = ~Pit ~F

T
t
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where
F�1t = ~F Tt

~Ft

The �ltering covariance matrices are obtained from

Pijtjt = Pijtjt�1 � PitP Tjt (78)

and the �ltered state as

Xitjt = Xitjt�1 + Pitv
�
t (79)

where
v�t = ~Ft

�
Yt � d� Z3X3tjt�1

�
for i = 1; 2; 3 and j = i; 3:

9.1.2 Prediction equations

The �rst row of blocks, P11; P12 and P13 is obtained via

P11t+1jt = P11tjt � A11 +Q1 (80)

P12t+1jt = A12 �
�
P12tjtA

T
2

�
(81)

P13t+1jt = P11t+1jt ~B
T
1 + P12t+1jt ~B

T
2 + ~L1t (82)

where
~L1t = ~A13 �

�
P13tjtC

T
�

and
~A13 = diag (A1) 1

T
~m3

The second row of covariance matrix blocks, P22 and P23; are obtained as

P22t+1jt = A2P22tjtA
T
2 +Q2 (83)

and

P23t+1jt = P
T
12t+1jt

~BT1 + P
T
22t+1jt

~BT2 + ~L2t (84)

where
~L2t = A2P23tjt ~C

T

Finally
P33t+1jt = ~Mt + ~CP33tjt ~C

T + ~R3 (85)
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where
~Mt =

1

2

�
Mt +M

T
t

�
(86)

and
Mt = ~B1

�
P13t+1jt + ~L1t

�
+ ~B2

�
P23t+1jt + ~L2t

�
(87)

and
~R3 = R3 � ~B1Q1 ~B

T
1 � ~B2Q2 ~B

T
2

To aid understanding, note that if the model contains no exogenous variables that appear
in the observation equation and no exogenous VAR processes, then ~R3 = 0: It can also
be mentioned that the dsyr2k BLAS routine performs exactly the computation required
for obtaining the symmetric matrix ~Mt in the symmetric case, i.e. when only the upper
(or lower) part of P33 is calculated. Equations [86] and [87] shows how it is implemented
using non-symmetric routines, e.g. how it is implemented in the Matlab versions of the
�lter.
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