
Papers from the SunDragon Project

Papers from the SunDragon Project

A CMOS Low Voltage Swing Transmission Line Transceiver, by Bill
Gunning, Leo Yuan, Trung Nguyen, and Tony Wong.

XDBus: A High-Performance, Consistent, Packet-Switched VLSI Bus, by
Pradeep Sindhu, Jean-Marc Frailong, Jean Gastinel, Michel Cekleov, Leo Yuan, Bill
Gunning, and Don Curry.

The Next-Generation SPARC Multiprocessing System Architecture, by
Jean-Marc Frailong, Michel Cekleov, Pradeep Sindhu, Jean Gastinel, Mike Splain,
Jeff Price, and Ashok Singhal.

SPARCcenter 2000: Multiprocessing for the 90's! by Michel Cekleov, David
Yen, Pradeep Sindhu, Jean-Marc Frailong, jean Castinel, Mike Splain, jeff Price,
Gary Beck, Bjorn Liencres, Fred Cerauskis, Chip Coffin, Dave Bassett, David
Broniarczyk, Steve Fosth, Tim Nguyen, Raymond Ng, Jeff Hoel, Don Curry, Leo
Yuan, Roland Lee, Alex Kwok, Ashok Singhal, Chris Cheng, Greg Dykema, Steve
York, Bill Gunning, Bill jackson, Atsushi Kasuya, Dean Angelico, Marc Levitt, Medhi
Mothashemi, David Lemenski, Lissy Bland, and Tung Pham.

The Years of the Dragon reprinted from "Benchmark" magazine, Spring 1993.

CSL-93-17 December 1993 [93-00139]

~ Copyright 1993 Xerox Corporation. All rights reserved.

CR Categories and Subject Descriptors: B.3.2 [Design Styles]: cache memory,
shared memory; C.1.2 [Multiple Data Stream Architectures]: MIMP processors, C.O
[General]: system architectures; B.4.3 [Interconnection]: VLSI bus interconnect,
backplanes; B.7.1 [Types and Design Styles]: Advanced technologies, input/output
circuits

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

Introduction

From 1988 to 1992 a remarkable cooperation took place between the Computer
Science Lab at Xerox PARC and Sun Microsystems. The CSl "Dragon"
multiprocessor research project moved in with a development team at Sun to
create a series of Sun products based on the Dragon team's inventions in bus and
memory architecture. The business details are beyond the scope of this tech
report -- but now that products are shipping, accountants on both sides seem to
be very happy.

Here are five internal reports on aspects of the SunDragon project, as it came to
be known. All are also scheduled to be published elsewhere, as indicated with
each paper. "A CMOS low Voltage Swing ... " describes the basic logic design,
known as GTl (Gunning-Transistor-logic) for the SunDragon bus. "XDBus: ... "
describes the logic for the bus itself, including its support for cache consistency
and its packet-switched protocol. "The Next Generation ... " describes the fuller
system architecture of the Sparcenter 2000-'s use of the XDBus as the heart of a
commercial scalable multiprocessor. "SPARCenter 2000: ... " briefly describes the
full SPARCenter 2000 system from a user perspective. Finally, "The Year of ... "
offers some commentary and interviews from Sun and Xerox on the process of this
unusual cooperation.

In closing, let me honor and acknowledge Jean Gastinel, leader of the Dragon
project, whose vision saw the opportunity with Sun and whose technical and
managerial leadership made it a success.

Mark Weiser
Head, Computer Science Lab

LUM4 UM; ,# #. ;

A CMOS Low Voltage Swing Transmission Line Transceiver

Paper WP3.7

Authors:

Bill Gunning 415-336-1194 (tel) 415-964-0706 (fax)

XeroxPARC
3333 Coyote Hill Road
Palo Alto, Ca 94304

Leo Yuan 415-336-3841 (tel) 415-964-0706 (fax)

Sun Microsystems MfV 16-10
1501 Salado Drive
Mountain View, Ca 94043

Trung Nguyen 408-433-7546 (tel) 408-434-6457 (fax)

LSI Logic
1551 McCarthy Blvd.
Milpitas, Ca 95035

Tony Wong 408-433-7539 (tel) 408-434-6457 (fax)

LSI Logic
1551 McCarthy Blvd.
Milpitas, Ca 95035

Abstract

CMOS I/O circuits designed for terminated transmission line inter-chip

communication are described. The nominal signal swing (800 m V) and signal

quality are comparable with ECL systems. Typical on-chip power is 15 mW

per I/O. Several ASICs with 160 I/Os have been built.

page 1

waN&iiiiW:rWI¥l,lt,i¥T ",I I

Bill Gunning, Leo Yuan, Trung Nguyen, Tony Wong.

High performance CMOS ASIC designs with over one hundred I/Os on a single
chip are becoming common. Wide (e.g. 72 bit) high-speed signal busses are of
ten used to interconnect VLSI components. Conventional unterminated inter
connects for CMOS level signals usually have poor signal quality with severe
overshoot and ringing, accompanied by EMI and a tendency to trigger latch
up. ECL based high performance systems have used terminated transmission
line interconnect to avoid ringing and reflections. An extensive body of expe
rience has been established in building high performance ECL systems [1].
The disadvantage that is cited most often is the relatively high power dissipa
tion inherent in ECL implementations.

CMOS can also be used in a terminated transmission line environment. Fig. 1
shows a simplified representation of a bidirectional transmission line with I/O
transceiver cells. The dri vers are open drain N -channel devices and the receiv
ers are differential comparators. When all drivers are inactive, the high level
signal (Voh) is established by the terminator supply voltage Vt.

The loaded characteristic impedance of stripline signal traces on a printed cir
cuit board can be about 50 ohms. As shown in Fig. 1, when there is more than
one driver, the transmission line must be terminated at both ends to prevent re
flections. System arbitration allows only one driver access to a line at any
time. The load seen by each driver is about 25 ohms. The power dissipated is
reduced if the signal voltage swing and the Vol level are small. The minimum
voltage swing must be large enough to assure acceptable noise margin.

In this CMOS I/O design, referred to as GTL, the output levels are:

Volmax = 0.4 volts, Vohmin = Vt = 1.2 volts and Vref = 0.8 volts.

The signal amplitude is close to that of ECL. The function of Vref corresponds
to that of Vbb in ECL.

The maximum on-chip power dissipated by an output transistor driving a dou
bly terminated 50 ohms transmission line load is (0.8 / 25) x 0.4 = 12.8 mW.
The typical power for this size active driver is less, because Vol is smaller.
The power dissipated in an inactive driver is essentially zero. Similar drivers
are used for backplane traces with a loaded characteristic impedance of about
35 ohms.

We have designed several large CMOS ASICs each of which has about 160
transmission line I/O cells. Table 1 shows the estimated nominal power dissi
pation using ECL, BTL and GTL technology and logic levels. All drivers are
assumed to be active and use 0 and +5 volt power. BTL refers to a design used
by the proposed IEEE -896 Futurebus [2]. Assumptions are in the appendix.

page 2

Bill Gunning, Leo Yuan, Trung Nguyen, Tony Wong.

Fig. 2 shows a simplified schematic diagram of a driver implemented with
components available in the existing I/O cells of a standard CMOS gate array
technology [3]. When a dri ver pulls low, dam ping is provided by the load re
sistance and the on resistance of the driver. When a driver turns off, an under
damped overshoot caused by package inductance can occur. This driver design
example includes an arrangement to reduce overshoot and the turn off di/dt.

When Yin is low, M4 and M3 are conducting and Ml and M2 are not conduct
ing. When Yin goes from low to high, the turn off transition at the drain of M4
is controlled by the temporary path through M2 and M3 which ties the gate of
M4 to its drain (Ml is weak). This causes M4 to conduct when its Vsd is larger
than the N-channel threshold. Ml will pull the gate of M4 to ground when M3
is turned off. The signal at the gate of M3 is delayed by the two inverters for
about 1 ns. Typical propagation delay from Yin to Out is 1 ns.

The capacitance of an inactive driver is 2.5 pF at the die pad. Low capacitance
is important to reduce refections when a signal generated by another dri ver
passes an inactive driver.

Fig. 3 shows a differential receiver that has also been designed using compo
nents in the standard gate array technology [3]. The DC gain and offset of the
receiver, combined with its input register, guarantee that the register will reset
for Yin - Vref > 50 m V, and the register will set for Vref - Yin > 50 m V over
process, power and junction temperature variations. This small uncertainty
band improves noise margin. Typical propagation delay is 1.5 ns. Typical av
erage power dissipation is 5.5 mW.

The SSO measurements shown in Fig. 4 were made with a 20 GHz bandwidth
oscilloscope using a 1 GHz bandwidth active probe. The chip was programmed
to switch 142 I/O drivers simultaneously. The load is a doubly terminated 50n
stripline.

The measurements show Vol::::: 0.23 volts. The total simultaneous switched
current for 142 drivers is about 142*(1.2 - 0.23)/25 = 5.5 A. The ground
bounce shown by an unswitched driver is about 130 m V. The package is a cus
tom 383 pin PGA using glass BT resin, on-package surface mount bypass ca
pacitors and power and ground planes.

Acknowledgments:

GTL technology was first developed and implemented at Xerox PARe. Thanks
are given to our many colleagues for their support and technical contributions.
The following people were particularly helpful.

page 3

===MbiMiiihg$4"'·,1

Bill Gunning, Leo Yuan, Trung Nguyen, Tony Wong.

David Yen, Christopher Cheng - Sun Microsystems; Dan Wong - LSI Logic;
Richard Bruce, Jean Gastinel, Jeffrey Hoel, Alfred Permuy, Ed Richley - Xe
rox PARC

References:

[1] W. R. Blood, "MECL System design handbook" - Motorola semiconduc
tor products.

[2] National Semiconductor DS3890 octal trapezoidal driver.

[3] LSI Logic LCAI00K.

Appendix:

The MCIOH123 triple bus driver is designed to drive a 25 ohm load in a multi
ple drive point (party line) bus. It uses 56 rnA. Subtract 5 rnA for the shared
bias circuit. Assume that each pre-driver uses (56 - 5) x 5/3 = 85 mW. The out
put driver power is 1.1/25 x 0.9 = 39.6 mW. The total power is 125 mW. 160
drivers ~ 20 watts.

For BTL, the NSC DS3890 octal driver uses 50 rnA typical. Assume that this is
5 x 50/8 = 31.25 mW for each pre-driver. The nominal output stage power
(with Vol = 1 V) is 1/25 x 1 = 40 mW. 160 drivers:::; 11 watts.

A worst case GTL driver Ron is 0.4/(0.8/25) = 12.5 Q. Assume typical Ron is
6.25 Q. Typical driver current is 1.2/(25 + 6.25) = 38.4 rnA. Vol = 0.24 V. Ac
tive driver power = 9.2 mW. 160 drivers:::; 1.5 watts.

page 4

Fig.l

Table 1

Fig.2

Fig.3

Fig.4

Bill Gunning, Leo Yuan, Trung Nguyen, Tony Wong.

Figure captions

Bidirectional transmission line bus with I/O transceivers

Estimated nominal power for 160 active I/O drivers.

CMOS I/O driver with turn-off damping.

CMOS I/O receiver with uncertainty band < 100 mY.

SSO waveforms with142 drivers switching 5.5A in 383 pin PPGA.

page 5

LA G,AtWi4WMiiiM;;Lh # Ii ."'"

Vt

Logic

Vt

Rcvr Rcvr

Logic Logic

Fig.lBidirectional transmission line bus with I/O transceivers

Paper WP3.7 Session: High perfonnance Circuits
Authors: Gunning, Yuan, Nguyen & Wong

page 6

logic level

Eel

BTL

GTl

Power Termination
(watts) (both ends)

20 50 ohms to 3.0 v.
11 50 ohms to 2.0 V.

1.5 50 ohms to 1.2 V.

Table 1 Estimated nominal power for 160 acti ve I/O drivers.

Paper WP3.7 Session: High performance Circuits
Authors: Gunning, Yuan, Nguyen & Wong

page 7

A"nlte ,4700, ';'. ;:SZS:;;&Q

Vdd

Vin

M1

Vt

Out

M2

M4

Vss

Fig.2CMOS I/O driver with turn-off damping.

Paper WP3.7 Session: High perfonnance Circuits
Authors: Gunning, Yuan, Nguyen & Wong

page 8

Vdd

Vref D~-~q Vin

Vss

Fig.3CMOS I/O receiver with uncertainty band < 100 mY.

Paper WP3.7 Session: High perfonnance Circuits
Authors: Gunning, Yuan, Nguyen & Wong

page 9

U&&%;;;;;AAtMlM U hi PiiM MA#¢E ~

1. B'I • •• •• •••• • •••••••••••••••••• a' •••••••••••••••••••••••••••• · . . . · . . . · . . . · . . .
• 0 • .. .
:: : · . . . • •• •• •••• • ••••••••••••••••• t ••••• t ••••••••••••• t a ••••• ' ••••
o

· · · · · · '.' . • •• •• •••• • •••••••• a' •••••••••••••••••••••••• a •••••••••• t ••
o • •
• 0 • · . . · . . · · ·

• ••••••••••••• t •• a ••••••••••• a •• t a •• t ••

o 0 • · . . · . . · . .
• 0 • • •••••••••••••••••• a ••••••• ' •• a ••••••••• · ·

· · · . . • .t ••••••••• t •••••• a' •••• a •• t a' •••••••• · . . · . . · . · . · . · . · -=::!!!~--=--..:.....-=-----=----=---..:..----:.---=-4-1.2V (Vt)

ZllnV :
'd l~· · . · .,- ••••• a' •••••••••••••••••••••••••••••••.•• t •••

~ . driver :::::
· t-----:'--..--_____ ..o.-_______________________ ~ O.SV (Vref)

.
•• • t ••••••••••••••••••••••••••••••• · ·

o • · . · -· : : : : :: V (' l I) · : : : : : :. ~ 0.4 vO max : : E' : : : : : : " · , · · · · ·
; i Ground bounce on unswitched -driver. · . · . - . · · ,

-Z8BnV--~

Fig.4 SSO waveforms with 142 drivers switching 5.5A in 383 pin PPGA.

Paper WP3.7 Session: High performance Circuits
Authors: Gunning, Yuan, Nguyen & Wong

page 10

XDBus: A High-Performance, Consistent, Packet-Switched VLSI Bus

Pradeep Sindhu *, Jean-Marc Frailong *, Jean Gastinel*, Michel Cekleov,
Leo Yuan, Bill Gunning*, Don Curry*

Sun Microsystems Computer Corporation
2550 Garcia Avenue
Mountain View, CA 94043-1100

Abstract
The XDBus is a low cost, synchronous, packet-sl·t/itched
VLSI bus designed for use in high performance multipro
cessors. The bus provides an efficient coherency protocol
which guarantees processors a consistent view of memory
ill the presence of caches and 10. Low-voltage swing
(GTL) CMOS drivers connected to balanced transmission
line traces ensure low power as well as high speed for
chip, board, and as backplane applications.

The signalling scheme and coherency protocol work
together to promote a high level of system integratioll,
while permitting a wide variety of configurations to be
realized. These configurations include small single board
systems, multiple bus systems, multiboard backplane sys
tems, and multi-level cache systems. The bus is used in
several commercial systems including Sun Microsystem's
new SPARCcenter 2000 series [5, 6].

1: Introduction

The XDBus is a synchronous, packet-switched bus
designed to address the requirements of low cost, high
bandwidth, cache coherency, and high integration in the
design of an emerging class of powerful, but compact and
cost-effective, general-purpose multiprocessors. While
XDBus was designed as a multiprocessor interconnect,
other applications including multimedia, ATM switches,
and medium to high-end document systems can derive
substantial benefits from using it.

Most of the advantages of XDBus stem from the syn
ergy between an efficient packet-switched protocol lay
ered on top of a fast, low voltage-swing signalling scheme.
Implementations based on XDBus are low cost because a
smaller number of wires switching at lower frequencies is
needed to achieve a given level of performance; the sig
nalling scheme uses ordinary CMOS technology and con
sumes little power, obviating the need for expensive

* Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

cooling or exotic packaging; and finally, high integration
. ensures a small parts count and therefore low cost.

Implementations based on XDBus deliver high speed
because the signalling scheme allows bus cycle time to be
made extremely short, while protocol efficiency ensures
that most of the raw bus bandwidth is delivered as useful
data bandwidth to applications.

XDBus's physical and protocol layers interact to pro
mote a high level of integration. Complex devices, includ
ing memory controllers, cache controllers, high speed
network controllers, and external bus controllers that tradi
tionally required entire boards can be integrated onto a sin
gle chip connected to the XDBus. The result is a high
performance, but compact and cost effective system.

A unique advantage of XDBus is the broad range of
architectural and packaging configurations it can support.
Because of its low power and its ability to be pipelined,
the XDBus can be used at the chip, board, and backplane
levels. Its scalable performance can support systems with
bandwidth needs from a few hundred Mbytes/sec to a few
GBytes/sec through the use of bus pipelining and bus rep
lication. Finally, XDBus also provides support for multi
level caches, which localizes bus traffic and enables many
more processors to be combined into a single system.

XDBus provides an efficient protocol for maintaining
multiprocessor cache coherency. With this protocol, the
hardware ensures that multiple cached copies of data are
kept consistent and that both input and output devices take
cached data into account. The protocol is fundamentally
write update but can emulate the spectrum of algorithms
from write update to write invalidate. This flexibility
enables applications to best utilize precious bus band
width. The coherency scheme also supports multilevel
caches although no existing implementation uses this fea
ture.

The XDBus contains 88 signals, 72 of which are
accounted for by the data path. The remaining are used for
control functions such as arbitration and clocking.

XDBus was conceived and initially implemented in the
Computer Science Laboratory at the Xerox Palo Alto
Research Center. The bus technology is currently in its
third generation of design and several commercial multi
processors, including Sun Microsystem's new SPARC
center 2000 series [5,6], are using it as their main system
interconnect.

2: Physical Characteristics

XDBus uses low voltage-swing GTL [1] transceivers
connected to a terminated transmission-line to achieve
both fast switching speeds and low power consumption.
The speed and power advantages of GTL do not compro
mise noise immunity, however, and noise immunity is as
good as that of ECL which is the industry benchmark.

The figure below illustrates the signalling scheme. It
shows two GTL transceivers connected to a single wire
terminated at both ends at its characteristic impedance.

The terminated transmission line, combined with a
small 800 m V voltage-swing ensures fast switching times.
Furthermore, as shown in the figure, data is transferred
synchronously from a flip-flop in the sender to a flip-flop
in the receiver, so no time is wasted in synchronization and
a complete system clock period is available for data trans
fer. This means that the clock rate is limited essentially
only by signal transition time. Since one bit is transferred
per clock for each wire, this also means that the data rate is
as fast as possible under the given constraints.

A low voltage swing also ensures low power consump
tion because power varies as the square of voltage-swing.
An important aspect of the low power design is the use of
simple open drain drivers. These drivers consume no
power in the off state and very little power when on, so
virtually all the power for the bus is consumed off chip in
termination resistors. This low on chip power consump
tion is mostly what is responsible for the high levels of
integration possible in XDBus based designs.

A final aspect of the signalling scheme is that it can be
pipelined naturally: If the bus settling time is too long, the
bus can be broken up into shorter segments connected via
pipeline registers (which are present anyway for speed

reasons). As shown in the figure below, each of these
shorter segments can switch several times faster than the
original long segment, and so the pipelined bus can be run
much faster.

Non-Plpellned Bus

Switching time= T 1 + T 2+ T 3

Three Segment Plpellned Bus

Switching time- Max(T l' T 2' T 3)

The following section explains how packet switching
allows pipe lining to be used in XDBus based systems with
no loss in available bandwidth.

The figure below shows the chip level XDBus signals.
There are 88 signals, 72 of which constitute a parity pro
tected data/address path, 13 are used for communicating
with the arbiter, and 3 are for clocks and miscellaneous
control. An XDBus interface may be used in bidirectional
mode, or optionally in unidirectional mode for pipelined
bus configurations. In unidirectional mode, the Data Port
is used for sending data and address, while the optional
DataIn and DataParityIn wires are used for receiving data
and address. In bidirectional mode, the Rcv Option port is
not used and may be omitted altogether to save wires.

XDBus Signals <88> ..
Rev Option DataPort<72> Arb Out Arb In Control

" " " " " aI 'i l8 1:';~'ila ~~~ C! C! C!C! C!C:IIID.. (!) : c: la D..
~ ~ ~~ ~ ~ J: i ~~J:1: ()~~
v c: v >- 55 en a: 8.c:~(!) if ~ .~ a: a: 1 ~(!)(!)
iii cD.. 1: CD.. 2i (!) CIS CIS

iii c
c

3: Packet Switching

A fast bus cycle time only provides the potential for
high performance. The bus actually delivers high perfor
mance only if most of the cycles are used to transfer useful
data. The ratio between the number of useful data cycles
and total bus cycles is a measure of bus transport effi
ciency. XDBus uses packet switching to deliver a much
higher transport efficiency than traditional circuit switched
buses.

The figure below explains why this is the case. A cir
cuit switched bus is not available for use in the interval
between a request to memory (RqB) and the reply (RplyB)
from memory. Thus the bus remains idle in this interval.

Circuit Switching: data bandwidth. raw bandwidthl(1+UN) L .. latency in bus cycles
N. #cycles of useful data

i
B

--- ---
E Bus not usable by others ~ ~

PIICIcet Switching: data bandwidth. raw bandwidth/(1-t3JN) N. #cycles of useful data

In a packet switched bus, the request and reply phases
of an operation are broken up into independent request and
reply packets which arbitrate separately for the bus. Other
requesters may use the bus during the request-to-reply
interval to send new requests (RqC, RqD, RqE) or to reply
to earlier requests (RplyA). Thus a higher fraction of raw
bus bandwidth is used to transfer useful data, which trans
lates to higher transport efficiency.

The way in which transport efficiency depends on
memory latency for the two schemes is interesting. As
shown in the figure below, the relative advantage of a
packet switched bus over a circuit switched bus increases
with memory latency. The trend in computer systems in
the last five to ten years has been that system level mem
ory latencies have increased steadily when measured in
number of system clocks. This trend is expected to con
tinue with the advance of technology, which means that
packet switching becomes more and more advantageous
with time.

1.0 -

O.73~,--________ -.:...!Pa~ck~etl..!:S~w.!!::itC::..::hi:..:>L-_

t
Transport
eliciency

Circuit Switching

L (memory latency in bus cycles) ~

Transport Efficiency for Peck8I Switching end Circuit Switching

A related advantage of packet switching is that it works
well with bus pipelining. The extra pipeline stages add to
latency, but do not affect the useful bus bandwidth. In con
trast, if pipelining is used in a circuit switched bus, the
extra pipeline stages not only add to memory latency, but
also subtract from useful bus bandwidth.

Packet switching also has several other desirable
attributes. Since request and reply are completely dissoci
ated, this provides a natural way to support slow devices.
Also, circuit switched buses are prone to deadlock when

configured in a hierarchy; there is no such problem with
packet switched buses.

Packet switching does impose a penalty, however. An
implementation is more costly in chip real estate, mostly
due to the requirement of buffering packets. Also, a design
is somewhat more complex and must face new problems
such as flow control, which are absent in a circuit switched
implementation. Here again, the technology trend is in
favor of packet switching. The added gate count due to a
packet switched implementation is already a fraction of
the total number of gates on a state-of-the-art chip, and
this fraction will only decrease as overall gate counts
increase.

4: Bus Protocol

The XDBus's operation can be understood best in terms
of three layers: cycles, packets, and transactions. These
layers correspond to the electrical, logical, and functional
levels. respectively. A bus cycle is simply one complete
period of the bus clock- it forms the unit of time and
information transfer on the bus (the information is typi
cally address or data). A packet is a contiguous sequence
of cycles and is the mechanism by which one-way logical
information is transferred on the bus. The first cycle of a
packet is called the header. It carries address and control
information, while subsequent cycles carry data. There are
two different packet sizes: 2 cycles and 9 cycles. As
shown in the figure below, a transaction consists of a
request packet followed later by a corresponding reply
packet. Together, the request and reply packets perform
some logical function such as a memory read.

arbitr •. :.:t:.;.~ .. :::::.: ~.: Request packet ~t ;;IJ arbitrr* __ __ ~HL ________________ __

~

Each XDBus has an arbiter that permits the bus to be
multiplexed amongst contending devices, which are iden
tified by a unique DeviceID. Before a transaction can
begin. the requesting device must get bus mastership from
the arbiter. Once it has the bus, the device puts its packet
on the bus once cycle at a time, and then waits for the
reply packet. Packet transmission is uninterruptable in that
no other device can take the bus away during this time,
regardless of its priority. The transaction is completed
when another device gets bus mastership and sends a reply
packet. Request and reply packets may be separated by an
arbitrary number of cycles. As pointed out earlier, the bus
is free to be used in the interval between request and reply.
The arbiter is designed to overlap processing of requests
with transmission of packets such that no cycles are lost

between successive packets. The arbiter also performs
flow control by giving a higher priority to reply packets.

A request packet's header contains the transaction type,
a small number of control bits, the requestor's DevicelD,
and a physical byte address; it may also contain additional
transaction dependent information.

I TransType! Control ! DavieelD I Byte Address

Format of • Requlat Packet

The reply packet's header contains the same transaction
type, the original requestor's DeviceID, the original
address, some control bits, and transaction dependent data.

Original Byte Address

Format of • Reply Packet

This replication of type, DevicelD, and address allows
request and reply packets to be paired unambiguously.
Normally, the protocol ensures a one-to-one correspon
dence between request and reply packets. However,
because of errors, some request packets may not get a
reply. Thus, devices cannot depend on the number of
request and reply packets being equal because this invari
ant will not be maintained in general. The protocol
requires devices to provide a simple, but crucial guarantee:
they must service request packets in arrival order, indepen
dent of packet priority. This guarantee forms the basis for
XDBus's data consistency protocol.

The XDBus defines a complete set of transactions for
data transfer between caches and memory, 10, interrupts,
cache consistency, synchronization, and address mapping:
The ReadBlock transaction reads a block of data from
memory or a cache. WriteBlock writes new data into the
memory system. FlushBlock allows caches to write dirty
data back to memory. NOIlCacheableReadBlock allows
data to be removed from the memory system. KiliBlock
deletes a block of data from all caches. WriteSingleU pdate
and SwapSingleUpdate are short transactions used by
caches to update multiple copies of shared data. WriteSill
gleInvalidate and SwapSingleInvalidate are short transac
tions used by a cache to update its copy but invalidate
others. IOReadSingle, IOWriteSingle, and IOSwapSingle
initiate and check 10 operations, while IOReadBlock and
IOWriteBlock allow block transfer of data between 10
devices. The Interrupt transaction provides the mechanism
for transporting interrupts to processors. The Lock and
Unlock transactions allow arbitrary sequences of atomic
operations to be implemented. Finally, the DemapInitiate
and DemapTerminate transactions provide a way to
remove virtual to physical address translations. There is
room for twelve additional transactions in the encoding
space (one of the transactions codes is used to indicate an
idle bus and signal errors). With the exception of the Swap
transaction, this set is processor independent.

The XDBus has a data transport efficiency of 73%
when reading blocks of data and 88% when writing
blocks, the remainder being consumed by protocol over
head such as DevicelD, address, and transaction type.
These numbers derive from the fact that 8 out of 11 cycles
in block read type transactions and 8 out of 9 cycles in
block write type transactions carry data. The efficiency for
short transactions is considerably lower. In practice the
overall bus efficiency is close to 75% because most trans
actions on the bus are used to carry blocks - short transac
tions simply do not occur often when running realistic
applications on a multiprocessor.

5: VLSI Interconnect

The XDBus's signalling scheme as well as its logical
protocol are designed to promote a high level of system
integration. Entire subsystems such as memory control
lers. cache controllers, graphics controllers, interfaces to
standard 10 buses, and high speed network controllers can
be implemented on a single chip that is connected directly
to the XDBus. In traditional buses, this level of integration
is simply not feasible, and so much more board real estate
is needed for separate bus transceiver chips and glue logic.

A key factor in achieving high integration is that on
chip power consumption by bus transceivers is extremely
low. As the table below shows, a single transceiver con
sumes only 9 mW, compared with 71 mW for BTL [4] and
125 m W for ECL (BTL and ECL are alternative trans
ceiver technologies). This low power consumption allows
several hundred transceivers to be integrated onto a single
chip with a power budget of less than two watts. ECL and
BTL require almost 10 times as much power making it
infeasible to reach this level of integration.

OevlcelYPe Power Per Tnlntc:elver Power for 160 TraMceIv

GTL 9mW 1.SW
BTL 71 mW 11W
Eel (10H123) 12SmW 20W

The protocol also contributes to high integration
because it makes efficient use of wires. Close to 75% of
the raw bandwidth of the bus is available for useful data
transfer once all the "overheads" such as address and con
trol have been accounted for. This means that just 64 data
wires are needed for reaching sustained data bandwidths
of over 250MBytes/sec at 40 MHz. With a less efficient
protocol, many more wires would be needed, and it would
be difficult to integrate a complete bus interface on a sin
gle chip even with a low power technology such as GTL.

These advantages make XDBus an ideal VLSI inter
connect. The bus can be used for communication within a
chip, between chips on a board, as well as over a back
plane by simply using drivers sized appropriately for

impedance of the trace being driven. GTL also provides
special drivers with pullup capability for situations where
pullup resistors are impractical, for example within a chip.

XDBus also allows a standard hardware interlace to be
created. much like a VLSI macro. The design of this
macro can then be leveraged across multiple chip imple
mentations, saving design time and avoiding costly errors.

A final advantage of XDBus as a VLSI interconnect is
that its signalling scheme is compatible with the coming
generation of 3.3V, and even lower voltage, technologies.
What makes this possible is that the GTL's signal swing is
fixed by the external pull up voltage and its threshold is set
by a reference voltage. Both of these voltages are indepen
dent of the supply used to power on chip logic.

6: Multiprocessing

The XDBus provides a number of carefully selected
features for multiprocessor support. There is a simple but
efficient hardware coherency protocol to keep cached data
consistent. Support is also provided for maintaining TLB
(Translation Lookaside Buffer) consistency. A dedicated
interrupt transaction removes the need for the usual jumble
of wires to communicate interrupts from devices to pro
cessors. Two schemes are provided for multiprocessor
synchronization: a simple efficient Swap primitive, and a
more general locking mechanism.

The cache coherency protocol is a generalization of the
well known multi-copy write broadcast protocol [2]. The
first generalization is to adapt the algorithm to a packet
switched bus. The main difficulty here is that bus transac
tions are no longer atomic since they are broken up into
request and reply packets. XDBus's scheme resolves this
difficulty by conceptually treating a read as if all the work
was perlormed on the request packet, and a write as if all
the work was performed on the reply packet. Snooping
information that tells whether an address that appears on
the bus is present in one or more caches is collected by the
arbiter and logically OR'd to give a single result. This
result is then returned in a reply packet to the device that
sent the corresponding request.

The second generalization enables the hardware to
effectively emulate any coherency scheme between pure
write update and write invalidate. The basic idea is to
remove a cached copy probabilistically when a foreign
write is done to it. Setting the probability close to 1 yields
a write invalidate scheme, while setting it close to 0 yields
write update. This scheme can be easily implemented
using a free running modulo N counter. a register that con
tains a value between 0 and N-l. and a comparator. The
counter is updated on each clock, so its value is essentially
uncorrelated with the arrival of packets. When a foreign

write arrives, the value of the counter is compared with
that of the register and the update is turned into an invali
date if the counter's value is less than the register's. As
shown in the figure below, setting the register to N-l gives
write invalidate; setting it to 0 gives write update; and set
ting it to intermediate values gives intermediate schemes.
This idea can be implemented cheaply, but has the poten
tial for significantly improving performance when an
application's sharing patterns are known.

Change
Update to
Invalidate

~
Probabilistic Convwalon of Wrlt.Upd to Wrltelnvllildat ..

The third generalization is the support of cache coher
ency in a multi-level hierarchy of caches. Surprisingly, this
adds little complexity to the basic single level algorithm:
just one additional transaction called KillBlock is needed.
Multi-level caches provide localization of data traffic, and
ha ve the potential for supporting hundreds of processors in
a single system.

Most multiprocessor systems provide no hardware sup
port for consistency of address mapping information. This
information is typically kept in main memory tables and
copies are kept in TLB's inside each processor. The copies
must. however, be kept consistent and this is usually done
in software at a substantial cost in system performance.
XDBus supports a single operation called DeMap, which
forces a given address translation to be flushed synchro
nously from all TLB's. Since all new translations must use
main memory tables, the software can safely change an
entry by first locking it and then using DeMap to flush the
TLB entries. This provides a simple and efficient way to
solve the TLB consistency problem.

In traditional bus designs, interrupts are communicated
from 10 devices to processors via dedicated wires. This
scheme has the obvious problem of connectivity when
multiple 10 devices must communicate with multiple pro
cessors. It also has the drawback that the communication
paths are fixed and interprocessor interrupts are not han
dled the same way as 10 interrupts. XDBus provides a sin
gle transaction to transport an interrupt from an 10 device
or a processor to one or more processors. The transaction
either specifies that a particular processor is to be inter
rupted or all processors are to be interrupted. Besides pro
vi~ing a single mechanism for transporting all interrupts,
U:US transaction facilitates dynamic interrupt targetting:
smce the target processor is determined dynamically, an
interrupt can be dispatched to the least loaded processor in
the system.

The synchronization primitive supported directly by
XDBus is Swap. The implementation of Swap is efficient
in that non-local operations are done only in case the target
of the Swap is marked shared. For non-shared locations
Swap is performed local to the cache, and iS,therefore
much faster. Although only Swap is supported directly,
any FetchAndOp type of primitive could be implemented
with equal efficiency.

There is also a set of two transactions Lock and Unlock
that allow any sequence of bus transactions to be made
atomic. Atomicity can be provided with respect to a single
location or any contiguous, self-aligned region in memory
that is a power of two in size.

7: Scalability

The XDBus provides scalability of performance along
three orthogonal dimensions: First, the bus cycle time may
be decreased through the use of pipelining, resulting in a
proportional increase in performance. Second, two or four
buses can be used in parallel to increase the available
bandwidth by the same factor. Third, multi-level caches
may be used to localize traffic, relieving bottlenecks that
may have occurred otherwise, and permitting higher levels
of performance.

r Multiple Buses
-> more data per Clod< ~ Bus Pipellining

-> faster Clod< rates

XDBua provides ~blilty along three orthogonal dlmenalona

A gi. ven system can use one or more of these techniques
independently, or in combination, to tailor bus perfor
mance to application needs. In contrast, traditional buses
confine a system designer to a narrow performance range,
forcing a painful choice between low performance and
migration to a different bus technology.

8: System-Level Performance

Measured performance of the XDBus on a SPARC
Center 2000 system confirms that the bus can be run very
close to 100% utilization, and at this utilization nearly
75% of the raw bus bandwidth is provided to the applica
tion that is running.

Measurement also showed the phenomenon of packet
convoying, in which packets are bunched together in time
rather than being spread out evenly. Convoying occurs

because of the particular flow control method used: reply
packets are systematically given priority over request
packets. A more precise flow control mechanism, where
only request packets directed to the particular queue about
to overflow are stopped, would eliminate convoying.

r
Memory
Latency

Bus Load (%)
.. 80

Dependence of Memory Latency on Bus to ..

XDBus exhibits stable latency behavior with increasing
bus load. As shown in the figure below, memory latency
degrades slowly with increasing bus load up to around
80% bus utilization. At this point latency begins to
increase rapidly until the bus reaches saturation. This slow
dependence of latency on load means that the bus can be
run at heavy loads without individual processors seeing a
noticeable performance degradation.

9: Application Areas

Although XDBus was designed specifically for cost
effective general purpose multiprocessors, it can be used
to advantage in a number of other applications that need
high bandwidth. Key amongst these are multimedia appli
cations where video and voice processing is required; rout
ers and switches for Gigabit networks; and medium to
high end document processing systems.

High end PC's and low end workstations are currently
faced with the dilemma of how to provide the high band
widths needed for multimedia applications. Several pro
posals have suggested separate video buses to solve the
bandwidth problem. This adds significant cost, however,
since the video bus is present in addition to the system bus
connecting processor and memory. XDBus resolves this
by providing a single interconnect that is suitable for both
high bandwidth applications as well as for connecting pro
cessors and 10 to memory.

10: Conclusions

This paper has presented a low cost. high performance,
packet switched bus that is designed for high integration
and wide applicability. The main features of the bus are
fully synchronous operation; a 64 bit, parity protected data
path expandable to 128 and 256 bits; a packet switched

protocol that provides 75% of the raw bandwidth for data
transfer; efficient support for cache coherency and several
other key mechanisms useful in multiprocessor designs;
up to 80 MHz operation with existing technology; 64 byte
block transfers for memory and 10; support for single
word reads and writes with byte enable; data bandwidths
from a few hundred MBytes/sec to 2.5 GBytes/sec; a syn
chronous, pipelined arbitration system; and a transceiver
technology that consumes very little power.

There have been three separate implementations of the
technology to date, and designs have been proven up to 80
MHz operation for compact systems. A standard chipset
that allows a wide variety of systems to be built using
XDBus is also available. It is the intent of Xerox Corpora
tion to license XDBus for widespread use as an open
industry standard. Interested parties should contact the
authors.

Bibliography

[1] Gunning, B., Yuan, L., Nguyen, T., Wong, T., "A
CMOS Low-Voltage-Swing Transmission-Line Trans
ceiver" in Proceedings of the 1992 IEEE International
Solid State Circuits Conference.

[2] McCreight, E.M., "The Dragon Computer System"
in Proceedings of the NATO Advanced Study Institute on
Microarchitecture ofVLSI Computers, Urbino, July 1984.

[3] Goodman, J. R., "Using Cache Memory to Reduce
Processor-Memory Traffic" IEEE Transactions on Com
puters C-27, No 12, December 1978. pp 1112-1118.

[4] National Semiconductor DS3890 octal trapezoidal
driver.

[5] Cekleov, M., et. aI., "SPARCcenter 2000: Multipro
cessing for the 90's," IEEE COMPCON Spring '93, San
Francisco, Feb. 1993.

[6] Frailong, J-M., et. al., "The Next-Generation
SPARC Multiprocessing System Architecture," IEEE
COMPeaN Spring '93, San Francisco, Feb. 1993.

The Next-Generation SPARe Multiprocessing System Architecture

Jean-Marc Frailong*, Michel Cekleov, Pradeep Sindhu *, Jean Gastinel*,
Mike Splain, Jeff Price, Ashok Singhal

Sun Microsystems Computer Corporation
2550 Garcia Avenue
Mountain View, CA 94043-1100

Abstract
The multiprocessor architecture described in this paper

defines a set of functional building blocks that share a
common hardware interface, the XDBus. This modular
approach permits the implementation of multiprocessors
covering a wide range in performance and cost. It allows
the ratio of processing power, memory capacity, and 110
bandwidth to be varied lvithin a given machine while per
mitting system designers to address different points on the
overall performance spectrum. Each functional block
(processor, memor)', 110) consists of a small number of
highly integrated chips.

The architecture provides a number of features to sup
port high performance symmetric multiprocessor soft
ware. These include hardware caches, 110, and TLB
coherency, dynamic interrupt dispatching with source
identification, weak write ordering, block copy hardware,
and hardware performance monitoring

1: Introduction

The SPARCcenter 2000 system is an implementation of
the next generation multiprocessor system architecture
based on the SPARC processor architecture. This architec
ture provides a shared memory model with full hardware
support for cache coherency.

One of the major goals for the architecture was to pro
vide cost-effective scalability of a single implementation
over the largest possible range of systems and configura
tions. To achieve this goal, the architecture is designed as a
set of independent functional units which communicate
over a common hardware interface, XDBus [1]. XDBus is
both a chip-level bus and a backplane bus. The scalability
is achieved in two ways.

First, a system implementation may use one, two or
four XDBuses in parallel to customize the system band
width for its maximum configuration.

* Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Second, since the functional units are completely inde
pendent, a system implementation may choose how to
package functional units into boards based on entry sys
tem configurations and expansion requirements. The func
tional units currently implemented are the processor unit,
the I/O unit and the memory unit, as well as bus interface
logic and arbitration.

As one example, Sun Microsystem's SPARCcenter
2000 uses 2 XDBus in a backplane configuration and pro
vides two processor units, one memory unit, and one I/O
unit on a single board.

2: Overview

2.1: XDBus main features

XDBus is a 64-bit wide high-performance packet
switched bus which supports memory coherency using a
generalized write-broadcast protocol. It also provides
transactions for non-memory references (programmed II
0), interrupt handling and TLB consistency. The basic
transfer unit sizes are 64 bytes (a block) and 1, 2,4 or 8
bytes. The arbitration interface is fully pipelined and
allows a single requestor to have multiple arbitration
requests pending.

The physical interface uses low-swing GTL drivers [2]
and can be either bidirectional or unidirectional. In the
unidirectional mode, the bus can be segmented and pipe
lined across multiple packaging levels, which allows a sin
gle logical bus to be used both as a backplane bus and as
an on-board bus connecting multiple devices on a single
board.

2.2: XDBus interleaving

When multiple XDBuses are used in a system, they are
interleaved on 256-byte boundaries, based on the physical
address being referenced. Packets which do not carry a

physical address (interrupts and TLB maintenance) always
use the first interleave (interleave 0).

The interleaving size is chosen to allow a cache line
size of up to 256 bytes (see section 3.1).

2.3: Interfacing to multiple XDBus

Supporting multiple interleaved XDBuses requires
most functional units to provide a 'convergence bus' to
connect the unit to the XDBuses.

Functional units which require convergence are split in
two parts, the XDBus interface and the core functional
unit. The XDBus interface contains the logic which needs
to be replicated when multiple XDBus are used, as well as
logic to pass onto the core functional unit only those
XDBus packets that are 'relevant'. The core functional
unit itself does not depend on the exact number of
XDBuses. The XDBus interface logic and the core func
tional units are connected together using a different bus,
the XBus [3], as outlined in the following figure:

XDBusO

XDBus
Interface

XBus

Core
functional

unit

XDBus 0 XDBus 1 XDBus 0 XDBus 1 XDBus 2 XDBus 3

I I
XDBus XDBus

Interface Interface

XBus

Core
functional

unit

XDBus XDBus XDBus XDBus
Interlace Interlace Interface Interface

Core
functional

unit

Single XDBus Dual XDBus QuadXDBus
configuration configuration configuration

XBus connection

The XBus protocol is extremely similar to the XDBus
protocol, but has additional control information which per
mits the exchange of private data between the core func
tional unit and the XDBus interface. For example tag
manipulation information in the CPU unit is passed on the
XBus. The XBus also uses an arbitration mechanism
which respects the order of incoming packets from the
various XDBus in order to guarantee proper serialization
of events, especially for broadcast operations such as
shared write updates. This is achieved by conceptually
timestamping XBus arbitration requests originating from
the XDBus interface.

It is important to note that the XBus implementation
details are slightly different for each functional unit type,
based on private communication requirements between
the core functional unit and the XDBus interface.

2.4: Internal structure of functional units

The packet-switched protocol used by XDBus implies a
strong reliance on queuing mechanisms. A typical XDBus

interface has at least four logical queues, corresponding to
request and reply packets, incoming (XDBus ~ XBus)
and outgoing (XBus ~ XDBus). Additional queues may
be needed for operations which use only one of the buses.
This queue structure may also extend into the core func
tionalunit.

Each functional unit has a set of loadable parameters
that allows it to be configured for a particular system
setup. These parameters include for example the address
ranges to which the unit responds, the minimal arbitration
latency, and the latency for shared and owner information.
Parameters are normally setup by power-on firmware.
This allows a large amount of flexibility in system config
uration, while providing a uniform view of the hardware
architecture to the operating system. Each of the func
tional units can also be 'frozen', i.e. forced into a reset
state under software control. This allows a defective unit
to be configured out of the system.

Functional units perform continuous checking for unre
coverable error conditions, such as a cache coherency fail
ure. When an error is detected, the functional unit issues
an error signal and logs the error in registers which are
accesible via JTAG [9].

3: Functional units

The figure at the top of the next page provides a general
block diagram encompassing the three main types of func
tional units: processor, I/O and memory.

3.1: Processor unit

The processor unit is based on the TI SuperSPARC pro
cessor [4] (TMS390Z50) with a I MB parity-protected
second level cache controlled by a TI SuperSPARC Multi
Cache Controller [5] (CC, TMS390Z55). The XDBus
interface function is performed by the Bus Watcher (BW).

The following table gives the cache configuration.

cache Size/
Type Org. Protocol

! invalidate, Instruction, , 20 KB
1st level : 5-way , invalidate

, Block slze/
Line size

: 32B/64B

Data" 16 KB I write-through, : 32B/32B
1st level 4-way I invalidate
Combined, : 1 MB I write-back, ·64B/256B
2nd level : direct-map I update/invalidate i

The first line in the protocol column refers to the effect
of writes from the processor, while the second refers to the
effect of writes from the XDBus side.

The two first-level caches are entirely internal to the
SuperSPARC processor, which supports external invalida
tion based on physical addressing. Both are interleaved in
such a way that they are indexed by address bits below the

Main Memory
Unit

I I

~------------------- ~-------------------
Processor Unit Processor Unit

._-------------------,
I I

I I
I I

: I

I Main Memory
I Un"

• • •

SPARCcenter2000 logical system architecture

page size (4K byte pages). This allows the cache access to
be done concurrently to the TLB lookup, while removing
the aliasing problems which occur with virtual caches.

The second level cache has a direct-map organization
and is physically indexed. It uses an external SRAM array
for data storage, while the tags are stored internally. The

XDBus

SuperSPARC bus

Processor Unit block diagram

(J
(J

cache directory is replicated between CC and BW. This
dual directory architecture allows BW to snoop the
XDBus traffic and provide shared/owner information to
other caches without disturbing the processor's access to
its second-level cache. It also allows BW to 'filter out'
most XDBus traffic and keep the utilization (and thus the
latency) of the XBus low.

To keep the dual directories synchronized, all modifica
tions to the cache state occur logically from the XDBus
side, and are then propagated to the cache controller. For
example, on a cache read miss, the new line tag is entered
in the BW directory when it detects its own ReadRequest
packet on the XDBus, while it is entered in the CC direc
tory only once the ReadReply packet is forwarded to the
CC via the XBus. This permits the write-back of up to four
blocks on the old line to be performed while the read of
the new block is being done. The write-back is actually
accomplished in two stages, first from cache array to BW,
and then from BW to memory. This allows the read reply
to be forwarded to the processor as early as possible.

In addition to normal processor and cache support fea
tures, the processor unit also provides special hardware for
fast memory to memory copy (block copy), interrupt man
agement and a set of counters/timers.

Up to three read operations may be simultaneously out
standing from the processor side: a cache miss, a cache
prefetch operation and a block copy operation. In addition,
there can be as many as 16 outstanding writes to shared
data. To improve cache miss latency, the XBus arbitration
mechanism provides bus parking for the corresponding

BW while a cache miss is outstanding, providing a faster
return path for the reply.

The processor unit also provides a special path, the
BootBus, for initialization. When the processor is reset, it
starts fetching code from the BootBus, which contains
firmware for power-on self-test. This allows system test
ing to be initiated with a minimum of assumptions on
which parts are functional, providing good fault isolation
at system level.

3.2: Memory unit

A memory unit consists of a memory controller per
XDBus, with one to four memory banks per memory con
troller. Memory banks are implemented with custom
SIMMs.

The memory controller (MQH) includes refresh logic
for the memory banks, error correction (SECDED over 64
bits), and provides programmable timing for the DRAMs
to customize its behavior for each type and speed grade of
memory, including static memory. The ECC code is
arranged in such a way that a single DRAM contributes
only 1 bit per ECC-corrected word, which protects against
the failure of an entire DRAM. In addition to its role as a
memory controller, MQH also acts as the reflection point
for shared writes on XDBus.

Memory Unit block diagram

The range of memory addresses assigned to each bank
is programmable and permits up to four-way memory
interleaving per XDBus. Memory interleaving is on a 64
byte basis. This allows a single cache line to be interleaved
among multiple MQHs, which is especially important
when a cache needs to write back an entire 256 byte line (4
64 byte blocks).

The memory unit perfonns memory operations sequen
tially (Le.memory banks are not interleaved within a mem
ory unit), but has a high degree on internal concurrency.
As a result, a single memory unit comes close to being
able to fill the whole bus bandwidth. In addition, the

latency is decreased by fully overlapping arbitration with
memory access time.

Each memory bank is implemented with four custom
SIMMs. Each memory SIMM provides 18 bits of data per
clock period. It implements a 72-bit data path internally,
using 18 x4 DRAMs, with one word every 4 clocks. The
72 bits are multiplexed on the SIMM using a small custom
multiplexor/demultiplexor chip (CBS) over the 18 bit
interface. This arrangement allows a wide (288 bits) mem
ory access path while maintaining a narrow physical inter
face and minimizing on-board logic.

3.3: I/O unit

The I/O unit provides an SBus [6] with up to four mas
ters. The XDBus interface consists of an I/O Cache (IOC),
while the core functional unit consists of an SBus interface
controller (SBI) and an external SRAM which provides
translation tables for DMA accesses.

In addition to the normal XDBus interface functions,
10C includes a small cache for DMA operations. The 10C
cache replacement algorithm may be LRU or based on the
SBus slot which requires the operation. The cache uses 64
byte lines without subblocking, and has a dual directory
structure to provide snooping without interfering with
SBus accesses. There is a single copy of the shared and
owner flags.

SBI acts as the SBus controller (including translation of
virtual DMA addresses), as an SBus master for pro
grammed I/O operations and as an SBus slave for DMA
operations to and from memory. Address translation is
performed using an external page table (SRAM) which
allows up to 64 MB of mapped virtual DMA space. SBI
also contains the asynchronous boundary between the sys
tem clock domain and the SBus clock domain. SBI pro
vides two major features to improve SBus performance:
streaming buffers and rerun management.

The streaming buffers provide read-ahead and write
behind buffering for DMA operations. Each SBus slot has
its own set of buffers to avoid interference between slots.
The streaming buffers assume a sequential DMA access
pattern. The device driver is responsible for the decision to
use or not to use the streaming buffers for each DMA
transfer. The decision is encoded as a flag bit in the DMA
virtual address translation tables. When a DMA transfer
does not use the streaming buffers, the operation is passed
to the 10C, which either uses its internal cache to satisfy it,
or bypasses the cache altogether for block-sized (64 byte)
transfers.

SBI uses SBus reruns to force an SBus master off the
SBus whenever the expected latency is large, for example
on a streaming buffer miss. When an SBus device is rerun,
its arbitration is blocked until the data it required becomes

XDBus Input
______ ~----~X~D~B~U~S~------~~~

f

I
10
\Q

.. ----1---1-

DMA
i• {~~~:~::~~~~}-...... ~ A~~~ .. .l

: PIO I
:.~~~.~j:~~~~:~~~~~J. ~ ... j

1/0 Unit block diagram

available. As soon as the data is available, the SBus device
gets the highest priority for SBus arbitration, in order to
compensate for the additional latency it incurred.

The I/O unit allows up to three outstanding operations
on XDBus for each SBus master: a stream buffer fetch, a
stream buffer write, and a non-stream read or write opera
tion. This high degree of concurrency provides good SBus
DMA performance.

3.4: Bus interface unit and arbitration

The bus interface unit is not visible to the programmer.
It is used to segment the XDBus across packaging levels,
for example at the boundary between a board and the
backplane. It contains two major components, a bus
driver/receiver (BIC) and a local arbiter (BARB).

BIC provides a bidirectional XDBus on the backplane
side and a unidirectional XDBus on the on-board side,
with a pipeline stage in between. This arrangement allows
the bandwidth of a segmented XDBus to be utilized fully.
If both sides were bidirectional, each packet would require
two clock cycles of turnaround time, resulting in a band
width loss of over 30%.

XDBus arbitration is performed in two tiers to provide
packaging flexibility and good electrical behavior. The
bottom tier is composed of BARB, which arbitrates
between functional units on a board. The top tier is a cen
tral arbiter (CARB) which arbitrates between BARBs.

BARB uses round-robin arbitration. CARB uses a modi
fied round-robin scheme to provide fairness between func
tional units instead of between BARBs.

The arbitration logic is responsible for enforcing flow
control for packets on the XDBus. When a functional unit
detects that one of its incoming XDBus queues (or a queue
indirectly filled by XDBus inputs) has reached a high
water-mark, it notifies the arbitration system to deny
grants at priority levels which could be used to send data
to this queue. Once the queue has reached low water-mark
again, the unit allows the arbiter to grant devices at a lower
priority. To help the flow control mechanism and provide
better latency, the arbitration system uses 4 priority levels,
2 for requests and 2 for replies. All replies are at a higher
priority than requests.

The arbitration system is also responsible for merging
consistency information (shared/owner) from the caches in
the processor and I/O units without wire-oring.

4: Software and performance tuning features

4.1: Cache behavior tuning

The processor's second-level cache supports update as
well as invalidate mode for writes to shared data, includ
ing atomic operations. The choice is under software con
trol and is made by the processor unit which issues the
shared write. In addition, the processor unit provides a sta
tistical invalid/update feature, which transforms write
updates into write-invalidates with a programmable proba
bility. Given the large cache sizes, there may be a large
proportion of data which is artificially shared (i.e. the data
resides in multiple caches, but is in the active set of only
one processor). The randomized invalidate/update allows
in effect a user-tunable 'cache laundering' mechanism.

4.2: Processor write ordering

In the presence of store buffers, multiple paths to target
devices (multiple XDBuses) and multiple memory con
trollers, strong ordering cannot be implemented efficiently.

For processor accesses, the architecture supports the
TSOIPSO memory models described in the SPARC V8
architecture [7]. Software can switch dynamically, for
example on a per-process basis, between TSO and PSO
mode for each processor. Note that a single-thread process
cannot perceive the difference between TSO and PSO
modes and can thus always run in the weaker model for
higher performance. In addition, accesses from processors
to I/O devices (programmed I/O) always follow the TSO
model to ease the task of writing device drivers.

DMA accesses which do not use streaming buffers fol
low the TSO model, which allows easy implementation of

'smart' DMA devices that share main memory control and
status blocks with the driver. DMA accesses which use
streaming buffers have no guaranteed write ordering. Soft
ware must explicitly drain the read or write buffers at the
start or end, respectively, of a DMA transfer. This opera
tion is provided as part of the interface between the operat
ing system and device drivers in a way that is not machine
specific. Other architectures require a similar resynchroni
zation step at the boundary of DMA transfers, for example
to flush a processor's virtual cache. It is important to note
that this difference in ordering models does not affect
cache coherency, but only the exact order in which writes
are perceived. As such, there is never any need to flush
any cache; in fact, there is no hardware support for cache
flushing.

4.3: TLB coherency

The processor unit provides hardware support for mul
tiprocessor TLB coherency. This is an extension to the
SPARC Reference MMU (SRMMU) described in [7].

When a processor requires a TLB flush for a range of
entries, the flush command is broadcast to all other proces
sors and the issuing processor is stalled until the other pro
cessors have completed the operation.

This mechanism is much more efficient than software
schemes that use inter-CPU interrupts to implement TLB
coherency.

4.4: Interrupt management

XDBus provides a generic interrupt transport mecha
nism which indicates a target unit for the interrupt (possi
bly broadcast), an interrupt level and an interrupt source
identification.

When a processor unit receives an interrupt packet, it
sets the corresponding interrupt source bit and interrupt
level in internal registers. This source identification allows
the amount of interrupt polling performed by the processor
to be reduced.

Individual processors can issue arbitrary interrupt pack
ets, providing a general mechanism for interprocessor
interrupts.

The I/O unit transforms the level-sensitive interrupt
scheme of SBus to the packet-oriented transport provided
by XDBus. It also provides a mutual exclusion mechanism
which prevent interrupt service race conditions by multi
ple processors and identify exactly which SBus device
asserted a given interrupt level. This mechanism further
reduces the amount of SBus device polling.

I/O units can be individually programmed at any time
to direct interrupts to a specific processor. This allows
static or dynamic interrupt load balancing by the kernel.

4.5: Performance measurement tools

Most of the system components provide event counters
to measure various aspects of system activity. They
include count of bus transactions, by type of transaction,
global or from/to a specific functional unit, second-level
cache miss rate and miss latency, instruction counters.

In addition to the counter/timer used for normal kernel
activities ('tick timer'), each processor has a high resolu
tion (1 JlS) timer which can be used for kernel profiling.

5: Conclusion

The modularity of this architecture has been important
in the implementation of the SPARCcenter 2000. It has
allowed us to make modifications to the system-level
design late in the project, and has served as the basis for
multiple system designs.

Another interesting feature in that the architecture lends
itself well to the definition of new functional units for
more specialized purposes, such as high-speed network
interfaces and graphics operators.

6: Acknowledgments

This project was the result of a joint development
between Sun Microsystems, Inc. and Xerox Corp. It is the
outcome of the Dragon research project conducted at the
Xerox Palo Alto Research Center (PARC). The authors
want to thank both companies for their support during the
research and the development phases of this project.

7: References

[1] P. Sindhu, et al.,"The XDBus: A High Performance, Consis
tent, Packet Switched Bus," IEEE COMPCON Spring '93,
San Francisco, Feb. 1993.

[2] B. Gunning, et aI., "A CMOS Low-Voltage-Swing Trans
mission-Line Transceiver," ISSCC DIGEST OF TECHNI
CAL PAPERS, pp. 58-9, Feb. 1992.

[3] ''The XBus Specification," Texas Instruments, 1992.
[4] F. Abu-Nofal, et aI., "A Three-Million-Transistor Micropro

cessor," ISSCC DIGEST OF TECHNICAL PAPERS, pp.
108-9, Feb. 1992.

[5] B. Joshi, et al., "A BiCMOS 50MHz Cache Controller for a
Superscalar Microprocessor," ISSCC DIGEST OF TECH
NICAL PAPERS, pp. 110-111, Feb. 1992.

[6] "SBus Specification B.O", Sun Microsystems #800-5922-
10, December 1990

[7] "The SPARC Architecture Manual (version 8)", Prentice
Hall,1992.

[8] M. Cekleov, et al., "SPARCcenter 2000: Multiprocessing
for the 90's," IEEE COMPCON Spring '93, San Francisco,
Feb. 1993.

[9] "IEEE Standard Test Access Port and Boundary-Scan
Architecture, P1149.1," IEEE Computer Society Test Tech
nology Technical Committee, New York, Jan. 1989.

SPARCcenter 2000: Multiprocessing for the 90's!

Michel Cekleov. David Yen. Pradeep Sindhu*. Jean-Marc Frailong*. Jean Gastinel*. Mike Splain. Jeff Price. Gary Beck. Bjorn Liencres. Fred Cerauskis. Chip
Coffin. Dave Bassett. David Broniarczyk. Steve Fosth. Tim Nguyen. Raymond Ng. Jeff Hoel*. Don Curry*. Leo Yuan. Roland Lee. Alex Kwok. Ashok Sin
ghal. Chris Cheng. Greg Dykema. Steve York. Bill Gunning*. Bill Jackson*. Atsushi Kasuya*. Dean Angelico. Marc Levitt. Medhi Mothashemi. David
Lemenski. Lissy Bland*. Tung Pham *.

Sun Microsystems Computer Corporation
2550 Garcia Avenue
Mountain View. CA 94043-1100

Abstract
The SPARCcenter 2000 is the first implementation of a

new generation of symmetric high-perfonnance, highly
configurable SPARC multiprocessor systems. With up to
20 processors, extensive main memory. expansibility and
large 10 capacity, the SPARCcenter 2000 is designed to
meet the computing needs of most corporate data centers.
A high throughput system interconnect, composed of two
interleaved XDBuses, combined with multiprocessor scal
ability. make the SPARCcenter 2000 the right platfonn for
compute intensive tasks. Reliability and availability fea
tures, full SPARC binary compatibility, 10 scalability and
Solaris 2.X MP capability also make the SPARCcenter
2000 the ideal rightsizing platfonn for commercial and
RDBMS applications.

Introduction
The SPARCcenter 2000 defines a new breed of shared

memory multiprocessor computers designed to accommo
date the needs of most organizations, from large depart
ment to medium-scale enterprises. It uses a modular
architecture composed of three types of units: the Proces
sor Unit, the Memory Unit and the I/O Unit. All these units
are interconnected through two XDBuses. The XDBus is a
high-speed consistent packet-switched bus [1].

The SPARCcenter 2000 provides unparalleled expan
sion capability in combination with excellent scalability in
three dimensions: compute power, main memory capacity
and I/O bandwidth. The XDBus is flexible enough and fast
enough to deliver outstanding perfonnance and maintain
scalability to levels which are unheard-of in today's mar
ketplace.

This paper describes the implementation of the SPARC
center 2000. It begins with an overview of the system
architecture, followed by a description of the implementa
tion of the System Board, and its various components: the
Processor Unit, the Memory Unit, the I/O Unit, the Boot
Bus. These sections focus on the salient details of the
implementation. For a description of the architecture the

* Xerox Palo Alto Research Center
333 Coyote Hill Road
Palo Alto. CA 94304

reader can refer to [2]. The following sections describe the
implementation of the Control board, the Arbitration, and
the support of the ITAG scanning logic. Finally the paper
closes by discussing some less visible but potentially
important features of the SPARCcenter 2000: reliability,
availability, and serviceability. A few perfonnance num
bers are quoted in the conclusion.

System Overview
System Architecture

The system architecture of the SPARCcenter 2000 is
depicted by the following picture:

I , , ,
1 __________ I 1 _________ .J

Processor Processor
Unit Unit

I/O Unit

Memory
Unit

I/O Unit

SPARCcenter 2000 system Architecture

The heart of the SPARCcenter 2000 is a high-speed
packet-switched bus complex which provides a very high
data bandwidth. The backplane consists of two XDBuses
each providing 320 MB/s of data throughput with at a 40
Mhz clock rate. The XDBuses operate in parallel and the
system can be rebooted with a single XDBus in case of a
petmanent failure of one of them. The system's functional
units are connected to both XDBuses. Memory banks are
attached to individual XDBuses and a memory unit is com
posed of two interleaved memory banks.

The SPARCcenter 2000 can use up to 20 SuperSPARC
processors [3]. The SPARCcenter 2000 uses processor
modules compatible with the SPARCserver 600MP and

SPARCstation 10 systems.
The main memory is configured in multiple Memory

Units. All these units have the same access time from every
processor and I/O device regardless of their physicalloca
tions in the system. Physical memory addresses are inter
leaved between the two XDBuses on a 256-byte boundary
and memory banks attached to the same bus can also be
interleaved to avoid bottlenecks. A Memory Unit can have
a memory capacity between 64 MB with 4 Mbit DRAM
chips and 512 MB with 16 Mbit DRAM chips. A fully con
figured system can support 5 GB of main memory.

The SPARCcenter 2000 offers incrementally expand
able I/O with up to 10 SBuses. Each SBus supports 4 SBus
slots for a maximum configuration of 40 SBus peripheral
boards. Each SBus is connected to the XDBuses through
an I/O Unit. Like memory, all SBuses are accessed with the
same latency from every processor. Each SBus delivers 50
MB/s of sustainable data throughput. A SPARCcenter 2000
can be configured with up to 18 2.1 GB OSCSI-2 disks in
the system rack for a maximum of 38 GB internal capacity.
Expansion racks with 48 drives for a capacity of 100 GB
are also available. The SPARCcenter 2000 can also be con
figured with a multitude of independent network interfaces.
This exceptional I/O capacity and configurability makes
the SPARCcenter 2000 suitable for very large applications.

Although the architecture of the SPARCcenter 2000 is
similar to other large-scale symmetric multiprocessing sys
tems, the expansion capability, the overall system balance
with commensurate memory bus bandwidth makes this
system unique in the industry.

Packaging and Power
The SPARCcenter 2000 consists of 10 System Boards

configured in a 10 slot XDBus backplane and a Control
Board mounted on the other side of the backplane. The
SPARCcenter 2000 uses a 9U fonnat for the System Board.
The basic system is packaged in the standard 56" SunRack
with up to 18 5.25" disk drives, a COROM, 1/4" tape and
up to three 8mm 5 GB tape drives for backup.

The power requirements do not exceed 180 W per slot,
including 10 W per SBus slot. Most power is drawn from
the +5V supply. There is also a + 1.2V supply for XDBus
tennination and a +/-12V for the SBus boards. The power
supply is resistant to most kind of power fluctuations. The
system can continue functioning during a brownout of 160
VAC for at least 15 minutes. It can also tolerate complete
AC brownout if they are limited to a single cycle.

System Board
The System Board is the primary component in the

implementation. A system may contain up to 10 System
Boards. Each board contains a backplane interface connec
tion to dual XDBuses, two sockets for the SPARCmodules,
sockets for 16 SIMMs, an SBus with four slots, the local

~ I 8mm Tape II 8mm Tape I~

I 1l4" Ta12e II 8 mm Tape I~ CD-ROM

1 1 T 1 1 1 T 1 -rl r ~
~ [I~ ...11

SP ARCcenter 2000 ~ CARD CAGE UPPL

I I I , I I I I I I

~ ~ ~ ~ I'

~ 5.25" 5.25' 5.25' 5.25' 5.25' 5.25' ~
~ Disk Disk Disk Disk Disk Disk
[I

~1~25" 5.25'
~ Disk Disk

5.25' 5.25' 5.25' 5.25;1
Disk Disk Disk Disk ACBOX

[I

~ 5.25" 5.25' 5.25' 5.25' 5.25' 5.25' ~
~ Disk Disk Disk Disk Disk Disk [I
~ ~

SPARCcenter 2000 system cabinet configuration

XDBus segments and a JTAG interface for diagnostics and
configuration. Each System Board contains two Processor
Units, a Memory Unit and an I/O Unit.

System Board Logic Diagram
The actual implementation is highly integrated: the Sys

tem Board consists primarily of nine large lOOK gate
CMOS ASICs: four Bus Watchers (BW), two Memory

Queue Handlers (MQH), an SBI Interface (SBI) and two 1/
o Caches (IOC) and ten smaller ASICs: two Board Bus
Arbiters (BARB) and eight bit-slice pipeline registers to
connect the on-board XDBus segments to the backplane
(BIC). The System Board also supports two SPARCmod
ules consisting of a 3 Million transistor SuperSPARC pro
cessor and a 1MB direct-map cache memory. The cache
memory is composed of a 2 Million transistor Cache Con
troller (CC) and the SRAM array. The SPARC modules are
not actually part of the System Board. Instead, the SPARC
modules are mounted on the System Board through dedi
cated connectors. Similarly, the memory DRAM memory
chips are not on the System Board but on SIMMs whicb
plug vertically.

The following block diagram shows the location of the
major components.

SPARCcenter 2000 System Board Layout

This highly integrated design is key to system reliabil
ity. It also simplifies design without compromising perfor
mance and configuration flexibility.

The System Board has fourteen layers, eight for signals
and six for power and ground.

XDBus Backplane
Pipelined Implementation

The backplane connects up to 10 System Boards. It con
sists of two bidirectional segments of the XDBuses.The
System Board supports unidirectional segments for each of
the XDBuses. The figure below shows the architecture of
the XDBus complex.

The on-board XDBuses are each composed of the unidi-

XDBusOIn<71 :0>

XDBuslIn<71 :0>

System Board

Bidirectional Backplane XDBuses
and Unidirectional on-board XDBuses

rectional segments XDBusIn and XDBusOut. Each of
these segments consists of 64 bits for address and data and
8 bits for parity. The Bus Interface chips (BIC) separate the
unidirectional on-board XDBuses and the bidirectional
backplane XDBuses. The BIC is composed of two pipeline
registers, one between the outbound on-board segment and
the backplane segment and the other between the back
plane segment and the inbound on-board segment. Each
BIC has an 18 bit wide data path including 16 bits of datal
address and 2 bits of parity. Four BICs are necessary to
provide the interface between the on-board and backplane
segments of a single XDBus.

Packet-Switched Protocol
The XDBus uses a packet-switched protocol (also

known as a split transaction protocol) to transfer data
between clients. A packet-switched protocol offers a larger
overall throughput than the more conventional circuit
switched protocol. In a packet-switched protocol, the
requestor arbitrates for the control of the bus and as soon as
it is granted it sends a request packet and immediately
releases the bus. The bus is free to be used by other clients
while the request is being processed. When the requested
data is available a reply packet is issued. Reply packets are
tagged so that they can be matched with the corresponding
request. A packet-switched protocol permits an optimal
utilization of the raw bandwidth.

Low-Power Electrical Power Implementation
The XDBus runs at 40 MHz and uses low voltage-swing

technology called GTL (Gunning Transceiver Logic) [4].
GTL uses a 0.8V voltage swing between 0.4 and 1.2V. This
technology is specially designed for high-speed, high den
sity CMOS gate arrays. GTL permits CMOS to be used in
a terminated transmission line environment. Because the
power dissipation is very low, a wide bus like the XDBus
can be driven directly from an ASIC without having to use
costly external drivers.

Configuration
The backplane also provides identifiers (BoardIDs) to

uniquely identify each System Board. A System Board can

be plugged in any slot of the cardcage and the BoardID can
be accessed at system configuration time through a pseudo
register. There are no jumper or switch settings required for
any configuration. This avoids the likelihood of installation
errors.

A minimum system consists of at least one System
Board with a single processor and one Memory Unit.
Because all units are equally accessible, the specific loca
tions of the memory, processors, and I/O devices are not
fixed. If an application requires only 4 processors but 3 GB
of memory, the system can be configured with 6 System
Boards with fully populated Memory Units but only two
SPARCmodules. The boards may be plugged in any slot.

Processor Unit
The Processor Unit consists of a SuperSPARC proces

sor, an external cache and system support devices con
nected to the BootBus. The figure below illustrates the
main components of the Processor Unit and their intercon
nections:

XDBus 1
XDBusO

BootBus BootBus Po
... ~ Interface

PortB

Controller

SuperSPARC
Processor

SuperSPARC module

Processor Unit

The external cache includes the Cache Controller and
two Bus Watcher ASICs and 1 MB of parity protected
SRAM. The SuperSPARC processor, the Cache Controller
and the SRAM are located on the SuperSPARC module.
The module is a small daughter card which plugs through a
100 pin connector onto the System Board. The Bus Watch
ers are located directly on the System Board.

The SuperSPARC processor is a highly integrated chip
which includes two integer units, a floating point unit, a
branch processor, a SPARe reference MMU and a 36 KB
on-chip set-associative cache [3]. This processor is capable
of executing up to 3 instructions per cycle if they are
fetched from the internal cache and scheduled properly.
The processor is a 3 Million transistor custom BiCMOS
chip.

The Cache Controller controls I MB of combined
instruction and data external cache. The cache is physically
accessed and is managed as a write-back cache. The cur
rent SRAM technology limits the size to I MB but the

Cache Controller can support up to 2 MB of cache. The
Cache Controller is a 2.2 Million transistor BiCMOS chip
[5].

The Cache Controller and the two Bus Watchers imple
ment the cache consistency protocol. The Bus Watcher
chips contain a copy of the cache tags to mjnimjze conten
tion between the processor and the XDBus accesses. The
cache consistency protocol relies on snooping the XDBus
traffic. The Bus Watcher basically filters out almost all bus
transactions leaving the processor free to access the cache
most of the time. When sharing is detected, the Bus
Watcher updates some state bits or retrieves the requested
data from the cache. Each Bus Watcher contains half of the
duplicated tags and are interleaved on a 256 byte boundary.

The Bus Watchers and the Cache Controller are inter
connected by a local packet-switched bus known as the
XBus. The XBus is very similar to the XDBus. Transac
tions supported by the XBus are similar to XDBus transac
tions. The difference is in the use of dedicated commands
to maintain the two copies of cache tags consistently. The
use of a packet-switched protocol on the XBus is also key
to the perfOlmance of the processor in a multiprocessor
environment. Although the external cache handles only a
single miss at a time, multiple requests may be outstanding.
For instance multiple requests for block invalidation or
update can be issued from the same Processor Unit. This
guarantees that the processor does not stall even when
there is lots of data sharing with other processors.

The XBus is also uses GTL transceivers which allow a
direct pin to pin connection between the Cache Controller
and the Bus Watcher. The XBus is also clocked at 40 MHz.

Although the first generation of the SPARCcenter 2000
utilizes 40 MHz SuperSPARC processors, faster Super
SPARC processor modules can be used to upgrade existing
SPARCcenter 2000 systems. Most of the Cache Controller
operates synchronously to the processor clock. The XBus
interface operates synchronously to the system clock and
there is an asynchronous boundary inside the Cache Con
troller.

The Cache Controller is also connected to a local bus
called the BootBus. Support devices like a time-of-day
clock, UART, scratch-pad memory, EPROM are attached
to the BootBus. The BootBus is shared by the two proces
sors on the same System Board.

Memory Unit
Overview

The SPARCcenter 2000 Memory Unit consists of two
memory banks, one per XDBus. A memory bank is defined
as a memory array controlled by a Memory Queue Handler
(MQH) ASIC. The MQH interfaces directly to the XDBus
and controls the memory array. The MQH supports read
and write operations on 64-byte blocks only (unit of block

System Board

XDBusO --.. -----... --.. ~
XDBusl~~------------4I~

Main Memory Unit

transfer on the XDBus). The MQH does not support writes
on smaller quantities and the main memory in the SPARC
center 2000 is always cached.

A memory bank is the unit of interleaving. A memory
bank consists of one or two groups of 4 custom SIMMs.
These are the two possible configurations (in addition, of
course, to the case where the bank is not populated at all).

The MQH can handle DRAM densities from 1 Mbit to
256 Mbit. The first generation of SPARCcenter 2000 uses 4
Mbit and 16 Mbit DRAMs.

The MQH is connected to the SIMM through a Memory
Bus. This is a 72 bit wide TTL bus also clocked at 40 MHz.
However. the timing access to the SIMM is fully program
mable allowing DRAM with different timing to be used.

The memory is protected by an Error Correcting code
which detects and corrects single-bit errors and detects all
double-bit errors. It can also detect triple and quadruple-bit
errors if the erroneous bits are in the same nibble.

The MQH is implemented as a lOOK CMOS gate array.

Interleaving
Because of XDBus interleaving, for each memory group

on a given XDBus there must be an identical group on the
other XDBus. The memory size increment is the memory
capacity of two groups of 4 SIMMs.

The physical memory address space is entirely pro
grammable and each memory group is controlled by a dis
tinct address decode register. The memory bank on the
same XDBus can be configured for no interleave, 2-way
interleave or 4-way interleave by programming the address
decoding registers of the MQHs.

In a shared-memory symmetric multiprocessor system
the motivation for an interleaved main memory is to allow
multiple independent accesses. With the XDBus packet
switched protocol, multiple memory transactions issued by

different processors and I/O devices can be pending at the
same time. In large configurations, memory bank interleav
ing reduces the probability of having "hot spots" develop
ing on a given MQH.

SIMM
The SPARCcenter 2000 uses custom SiMMs. The

SIMM is composed of Crossbar ASIC and memory chips
on a small board. Each SIMM is organized as 18 bits wide
(16 bits of data and 2 bits for ECC), so 4 SIMMs operating
in parallel are necessary to interface to the memory bus.

Each SIMM contains 18 x4 DRAM chips and four
crossbar ASICs. Since the DRAM access time is nominally
four system clock cycles, the DRAM data path on the
SIMM was designed to be four times the memory bus
width. The Crossbar's function is to time multiplex the
data and transform a single DRAM access into four dou
ble-word transfers on the memory bus. Since the memory
is always accessed in 64 byte blocks, two sequential
accesses using page mode are made on the memory bus.

With 16 Mbit DRAM chips a SIMM has a capacity of
32 MB, and a memory group a capacity of 128 MB. The
minimum memory configuration for the SPARCcenter
2000 is 256 MB. A fully populated backplane SPARC
center 2000 system with 10 System Boards provides a
maximum main memory size of 5 GB.

NVRAM
The SPARCcenter 2000 also supports a battery-backed

non-volative RAM (NVRAM). The main purpose of using
non-volatile memory is to accelerate synchronous disk
writes. Write accesses to disk can take place in two phases.
First the data is copied into non volatile memory and the
write is acknowledged. Later, in a second phase the actual
write to the disk takes place when a scheduling algorithm
determines it is time to do so. The data stored in the
NVRAM has the same property as data stored on disk
drives, it can survive system crashes and power failures.

Synchronous disk writes can be done much faster
because accessing the NVRAM is much faster than access
ing current technology disks. In the SPARCcenter 2000,
the NVRAM bandwidth is comparable to the regular main
memory bandwidth.

Applications like NFS and DBMS, where data integrity
is crucial, can easily take advantage of NVRAM and pro
vide a better response time.

The NVRAM is implemented with non-volatile SIMMs
(NVSIMM). The NVSIMM is composed of SRAM chips,
Crossbar ASICs and a small lithium coin battery. Each
NVSIMM has a capacity of 1 MB and the minimum con
figuration is two group of 4 NVSIMM, i.e. 8 MB.

1/0 Unit
Overview

The SPARCcenter 2000 System Board supports a com
plete SBus which is used as I/O bus. Each SBus has four
slots and is clocked at 20 MHz. All peripheral devices are
connected to the SBus.

The I/O Unit provides the bridge between the SBus and
the XDBus complex. The I/O Unit is composed of two I/O
Cache chip (IOC), an SBus Interface chip and an External
Page Table (XPT). The 10Cs and the SBI are intercon
nected with an XBus. The following figure depicts the
architecture of the I/O Unit.

I/O Unit

I/O Model
The I/O Unit provides three different I/O models:
- Programmed I/O where the processor directly reads

and writes the I/O devices.
- Consistent DVMA I/O. DVMA stands for Direct Vir

tual Memory Access. In this mode, the data is moved
directly between the SBus and the XDBus complex and the
SBus address is translated into a physical XDBus address
by the XPT. This mode is called consistent because the
data is moved into the "Shared Memory Image" in the I/O
Cache. In this mode, there can be only one pending trans
action between an SBus board and the memory system.

- Stream Mode DVMA. As for the previous mode, SBus
addresses are translated by the XPT but the data is not
moved directly between the SBus and the memory system.
Instead it go through pairs of buffers. These double buffers
are not part of the shared memory image and are not kept
consistent until they are flushed or invalidated by software.

Implementation
The IOC contains a small fully associative write-back

cache which is kept consistent. Data is read from this cache
or written into this cache when I/O transfers are done in
consistent DVMA mode. The IOC also provides simulta-

neous I/O accesses to XDBus for each SBus slot. Even if
an SBus board has an XDBus transaction pending, the
other SBus boards can still access the XDBus. The 10C
provides the interface between XDBus and the local XBus.

The SBI contains the read and write buffers used in
Stream Mode DVMA. Each SBus slot has its own pair of
double buffers and they are managed under software. The
Stream Mode is the most efficient of the two DVMA
modes. In stream mode, each SBus can sustain 50 MB/s
when using 64-byte bursts and 30 MB/s when using 16-
byte bursts The peak bandwidth is 80 MB/s. The transfer
mode is selected on a slot basis.

The External Page Table implements a single-level page
table through a set of SRAM chips. It can map up to 64 MB
of DVMA address space. Each entry maps a 4 KB page.
The XPT is controlled by the SBI and is maintained consis
tent by the kernel.

The SPARCcenter 2000 supports the Revision B.O of
SBus. All SBus transfer sizes (2,4, 8, 16, 32 and 64 bytes)
are supported in both DVMA I/O modes. All SPARC
addressable quantities are supported in programmed I/O
mode. Each slot supports the full 28-bit address space. The
SBus clock is independent of the system clock. An asyn
chronous boundary is implemented inside the SBI. An
important feature of the SPARCcenter 2000 implementa
tion of SBus is the parity extension support for data integ
rity. Parity can be enabled on a slot basis, so that devices
which are not supporting parity can still be used.

Peripherals
The principal advantage of using a standard bus is the

wealth of available peripheral boards. This is specially true
for SBus since a large number of systems use it as an I/O
bus and there is a large market for independent board man
ufacturers.

The following common interfaces are available: FODI,
Token Ring, HSI (4 synchronous lines), DSBE (Differen
tial SCSI with buffered Ethernet controller), ISDN, OX
frame buffer.

BootBus
Each SPARCcenter 2000 System Board also supports an

8-bit local bus called the BootBus. This bus is shared by
the two Processor Units and is used to access system sup
port devices. The BootBus is controlled by the BootBus
Controller chip (BBC). The Cache Controllers are con
nected to the BBC through a 12 signals interface.

There are two types of devices connected to the Boot
Bus: fast and slow devices. The SuperSPARC processors
can access the fast devices simultaneously. However, the
slow bus can only be accessed by one processor at a time.
The following figure illustrates the connection between the
Processor Units and the BootBus devices.

The devices connected to the fast bus are: 512 KB of

XDBusO

BootBus

EPROM, 16 KB of SRAM, three Status registers, two
Semaphore registers, the System Software Reset register
and the System Board version register. The EPROM con
tains the boot code and the SRAM is used as a scratch pad
and for the stack.

The devices located on the slow bus are: the LED diag
nostic register, a Control register, a UART which provides
two RS232 ports, a UART for a keyboard/mouse interface,
the JTAG Master Interface register and a Time-Of-Day/
Non Volatile RAM chip.

The slow devices are shared using one of the semaphore
register.

Control Board
The Control Board provides the System Clock Genera

tion, Central Arbitration, Power-on reset generation and
the JTAG port for a Service Processor connection. It also
has some LEOs to indicate the status of power and some
system signals.

The figure below details the major functional units of
the Control Board.

Control Board
Connector

Control Board

SVP
Connector

The Control Board supports the clock generation logic.

The 40 MHz system clock is generated as a PECL signal.
All clock traces on the distribution path have the same
length and an equal number of loads to minimize the skew.
The clock received by the Central Arbiters (CARB) has the
same clock path as the XDBus client chips on the System
Board.

The reset logic generates a general system reset signal
which is forwarded to all System Boards. A reset is gener
ated when either the reset switch on the front panel is acti
vated, a power-on condition is detected, the optional
Service Processor requests a system reset, a fatal error is
detected in the system or one of the processor requests a
reset by setting a bit in one of the BootBus register.

The Control Board also includes a JTAG PROM which
contains the system ID and the Ethernet address.

Arbitration
The SPARCcenter 2000 uses a two level arbitration

scheme to grant access to the XDBus. Because the two
XDBuses operate in parallel, the arbitration logic is dupli
cated for each of them. The arbitration is implemented with
two types of ASIC: the Board Arbiter (BARB) and the
Central Arbiter (CARB). Arbitration requests generated by
XDBus client devices are collected by BARBs and for
warded to the CARB. The CARB then selects a client
device as XDBus master by issuing a grant signal to that
client's BARB. This selection is made according to specific
requirements of priority and fairness. Finally the BARB
forwards the grant signal to the device. The architecture of
this hierarchical arbitration scheme is depicted below.

Control Board

Port 0

CARB

Two Level Arbitration Architecture

The BARB and the CARB also participate in the data
consistency protocol by merging the "Shared" and
"Owner" signals issued by the BWs when they respectively
detect that a block is present in the cache and modified.

The arbitration algorithm uses multiple level of priori
ties to provide an implicit flow control mechanism. It also

_Mum;

supports an explicit flow control mechanism which is acti
vated when one of the XDBus client detects that one of its
incoming queue is becoming congested.

JTAG
JTAG (acronym for Joint Test Action Group) is a

boundary-scan test standard adopted by IEEE [6]. In the
SPARCcenter 2000, JTAG is implemented on the System
Board, Control Board, backplane and all the ASICs. There
is a JTAG control port accessible from each processor on
the BootBus. An optional Service Processor may also be
connected to the Control Board. In this case, the System
Board JTAG ports are overridden.

JTAG provides a serial path to shift data and commands
from the JTAG control port to a particular chip in the sys
tem. Rather than a single long serial path on the System
Board, JTAG provides a way for branching to a particular
scan path which contains a limited number of ASICs.
There are six such paths per System Board which are called
scan rings. It is also possible from a processor to scan
devices on another System Board through the backplane
JTAGs scan bus.

Within each ASIC there are also multiple scan paths.
Dedicated component ID, status and control registers as
well as all the flip-flops in the chip can be accessed through
JTAG. This is a very important feature of the SPARCcenter
2000 which has multiple applications.

During self-test and debugging it is possible to read and
write all registers inside a chip through full scan. This
allows testing of all the logic in the ASICs by using Auto
matic Test Pattern Generation. In all the SPARCcenter
2000 ASICs the test coverage is more than 95%.

A second important use of JTAG is to test board con
nectivity. A data pattern is scanned in the output register of
one of the chips and then the contents of the input register
of another chip, connected to the former one, is read and
checked.

The SPARCcenter 2000 ASICs also provides Shadow
scan chains which can be read without perturbing the
chip's behavior. This may be used to monitor hardware sta
tistics and check for errors while the system is running.

JTAG is also used to initialize and configure the
SPARCcenter 2000 after a power-on reset. By reading the
identifier of the ASICs, the current system physical config
uration can be easily determined. The configuration soft
ware then loads in various control registers basic
information necessary to uniquely identify each device in
the system.

Automatic System Configuration
The SPARCcenter 2000 uses an extensive set of diag

nostics to determine which devices are fully functional.
These diagnostics are part of the Power-On Self Test

(POST) firmware which is stored in the BootBus EPROM.
POST runs before the kernel is booted and configures auto
matically the system. POST also runs before each reboot
and when recovering from fatal errors.

POST runs in several phases. First each processor tests
itself and then the rest of the Processor Unit (CC and BWs)
is also tested using JTAG. At that time the System Board
are in loopback mode and the access to the backplane seg
ment of the XDBuses is disabled. The other devices are
also tested while the System Board is in loopback mode.
The processors then elect one of them as master processor
through JTAG. Next, all XDBus interface are checked and
the master processor configures the system, including map
ping the memory banks.

In case of failure there are multiple alternatives. A series
of heuristics are used to decide which configuration to be
used. There is often more than one way to reconfigure the
system and it is generally a tradeoff between performance
and functionality. This is discussed in the next section.

Reliability, Availability and Serviceability
The SPARCcenter 2000 incorporates many features that

improve the reliability, availability and serviceability of the
system.

Reliability
By using a very high level of integration and a conser

vative design methodology the probability of errors is
greatly reduced. The extensive diagnostics performed by
POST also ensure that only fully functional devices are
enabled so that errors cannot occur because of failing com
ponents.

The SPARCcenter 2000 can also tolerate and recover
from some errors like memory errors. The SIMM imple
mentation guarantees that a Memory Unit will continue to
operate even in case of the permanent failure of a DRAM
chip. The failing memory group can then be deconfigured.

All data paths are parity protected in the SPARCcenter
2000 to ensure data integrity. XDBus, XBus, SBus, the
arbitration signals and the SuperSPARC processor bus are
parity protected. The external cache is also parity pro
tected. There is also extensive checking of the XDBus
transactions consistency by all the client devices.

The SPARCcenter 2000 is equipped with a number of
environmental sensors to protect the system from hazard
ous conditions. A sensor checks the temperature and
another one detects a failure from the fan. Abnormal AC or
DC conditions are also detected.

Availability
The SPARCcenter 2000 is not a fault tolerant system in

the sense of being capable of "non-stop" operation. How
ever, it has extensive capabilities to detect and identify
errors and the system can be reconfigured automatically
without human intervention.

When a fatal error is detected while the system is run
ning, it is logged and the system automatically resets.
POST is invoked and tests all the hardware resources to
determine if the error is permanent or transient. POST will
then make the judgment on the resulting configuration.

In case of an XDBus failure, the system can be rebooted
with a single bus without losing any functionality but the
overall performance will be less as half the memory band
width is lost.

In the event of a processor failure, the failed Processor
Unit is isolated from the rest of the system. This does not
affect functionality as long as there are other processors in
the system.

If an MQH fails, the Memory Unit is disabled. When a
DRAM chip fails the corresponding memory group can be
disabled and the Memory Unit remains functional if the
second group is also populated.

Failure in the I/O subsystem are more difficult to handle
as in general it is important to avoid loss of connectivity to
I/O resources. If an IOC fails, POST will reconfigure the
system with a single XDBus if no alternate path exists to
critical I/O devices.

Serviceability
The SPARCcenter has numerous features designed to

enhance the serviceability of the system.
There is an extensive failure/error logging and reporting

logic in all the ASICs.
There are no jumpers for configuration, no slot depen

dency in the backplane and all connectors are keyed which
makes installation less prone to human errors.

There is a very small number of FRUs which contrib
utes to a very low maintenance cost.

The front panel, the System Board and the Control
Board all have status/error lights.

Solaris
The SPARCcenter 2000 is compatible with all other

SPARC platforms and runs the Solaris 2.X software envi
ronment. Solaris offers the largest Unix application base in
the industry.

The latest version of Solaris 2.X offers several new fea
tures to improve performance and makes system manage
ment and security easy and cost-effective.

Solaris 2.X has full symmetric multiprocessing and
multithreading capabilities to improve the perlormance of
both commercial and technical applications.

It features installation tools to configure and upgrade
systems over the network.

System administration is made easy through: automatic
backup over the network, graphical tools to set-up new
accounts and print servers, a tool to configure client sys
tems and an icon based tool to install third-party software.

All these new features make the SPARCcenter 2000/

Solaris combination the ideal rightsizing solution.

Conclusion
With 20 SuperSPARC processor at 40 MHz, the

SPARCcenter 2000 delivers 2.19 GIPS and 269
MFLOPS 1• In an 8 way configuration, the system delivers
8,047 SPECrate_int92 and 10,600 SPECrate_fp922.

The entry price with two SuperSPARC processors is
below $100,000 which gives an unprecedented price per
formance ratio for this type of system.

The combination of large scale multiprocessing, exten
sive main memory and I/O capacity, reliability and avail
ability and a very attractive price/performance make the
SPARCcenter 2000 unique.

The multidimensional scalability and the ability to
accommodate future processor upgrades will protect cus
tomers' investment and make the SPARCcenter 2000 the
computing platform of the 90s.

References
[1] "XDBus: A High-Performance, Consistent, Packet-Switched
Bus". Pradeep Sindhu, Jean-Marc Frailong, Jean-Gastinel, Michel
Cekleov, Leo Yuan, Bill Gunning and Don Curry. Proceedings
COMPCON 1993.
[2] "The Next-generation SPARC Multiprocessing System Archi
tecture". Jean-Marc Frailong, Michel Cekleov, Pradeep Sindhu,
Jean gastinel, Mike Splain, Jeff Price and Ashok Singhal. Pro
ceedings COMPCON 1993.
[3] "A Three-Million-Transistor Microprocessor". Fuad Abu
Nofal, Rick Avra, Kanti Bhabuthmal, Rom Bhamidipaty, Greg
Blanck, Andy Charnas, Peter DelVecchio, Joe Grass, Joel Grin
berg, Norm Hayes, George Haber, Jim Hunt, Govind Kizhepat,
Adam Malamy, Al Marston, Kaushal Mehta, Sunil Nanda, Hoa
Van Nguyen, Rajiv Patel, Andy Ray, Jim Reaves, Alan Rogers,
Stefan Rusu, Tom Shay, Irwan Sidharta, Terry Tham, Peter Tong,
Richard Trauben, Anthony Wong, David Yee, Naeem Maan, Don
Steiss, Lynn Youngs. Proceedings IEEE International Solid-State
Circuits Conference 1992.
[4] "A CMOS Low';Voltage Swing Transmission-Line Receiver".
Bill Gunning, Leo Yuan, Trung Nguyen, Tony Wong, Proceed
imgs IEEE International Solid-State Circuits Conference, 1992.
[5] "A BiCMOS 50 MHz Cache Controller for a SuperScalar
Microprocessor". Balakrishna Joshi, R. K. Anand, Curt Berg,
Jorge Cruz-Rios, Ashok Krishnamurthi, Nyles Nettleton, Sophie
Nguyen, Jim Reaves, John Reed, Alan Rogers, Stefan Rusu,
Chuck Tucker, Chung Wang, Ming Wong, David Yee, Jung
Herng Chang. Proceedings IEEE International Solid-State Cir
cuits Conference 1992.
[6] "IEEE Standard Test Access Port and Boundary-Scn Architec
ture, P1149.1". IEEE Computer Society, Test technology techni
cal Committee, January 1989.

1. With the Apogee 0.82 compiler and the SUN Fortran com
piler 3.0a respectively
2. With the SUN C and Fortran compilers 3.Oa

as: =nM\ll\JUUii4# .,g. ;

Reprinted with permission from Spring 1993 issue of "Benchmark."

THE YEARS OF THE DRAGON

A new technology platform that was jointly developed by Xerox Corporation
and Sun Microsystems will give new speed, power and efficiency to many
types of computing devices. The successful collaboration that made this
possible is described here.

When Xerox Corporation and Sun Microsystems teamed up in 1988 to co
develop a new technology, they did so without the fanfare that often
accompanies announcements of high-tech partnerships. Yet members of the
so called "Dragon" team achieved tne ultimate goal of a Silicon Valley project:
They came up with a new way to harness more computing power, more
quickly and less expensively. The technology platform they designed
condenses the electronics of an entire board onto a single chip, harnesses the
power of multiprocessors and offers unprecedented expansion capability in
three dimensions--memory, processing and input/output (see Dragon
Technology section at end of this article).

The first products to use the Dragon technology platform were announced by
Sun last November. The occasion gave those crose to the project pause for
reflection on what Wayne Rosing, president of Sun Labs, calls "one of the
most successful collaborations I've seen."

Adds John Seely Brown, director of the Xerox Palo Alto Research Center
(PARC), 'What we have here is a quiet, very successful strategic technological
alliance that was a total win-win situation."

The project began in 1986, when a team of researchers in PARC's Computer
Science Lab (CSL) began working on a shared-memory multiprocessor
architecture that could be used to drive a range of Xerox imaging products.
Ron Rider, vice president, Corporate Architecture, recalls the project: 'We
wanted to build a very powerful computer system that depended on multiple
processors cooperating with each other and working in parallel. We knew it
was a technology that was going to be vital to Xerox in the future."

But developing the technology would require a major investment of tools and
people. ''You'd have to amortize that cost over the Xerox product family
alone, and it basically wasn't affordable," says Brown.

Leveraging the World

Besides, Xerox senior managers had realized they couldn't do it all by
themselves, Brown adds. 'We wanted to connect to the world, to leverage
the world. We decided to do those things that we could do best and try to
build partnerships for those things others could do as well as or better than
we could."

Adds Rider, 'We wanted to take advantage of the technology both so that
Xerox could get some financial benefit ana so that we could·· have access to
using it."

In 1987, Rosing, then Sun's vice president of Advanced Development, went to
PARe "fishing" for interesting technologies.

"I had heard about this great bus technology for multiprocessors," he recalls.
''They gave me a briefing on it and it was evident to me that PARe had solved
a problem that Sun hadn't even grokked the magnitude of--how to build a
multiprocessor with a small number of pieces of silicon that could be
replicated cheaply. They were dozens of person-years ahead of where we
were at the time."

Rosing made an on-the-spot decision to use the technology as the basis of
Sun's multiprocessor product line. The next several months were spent
hammering out an agreement that would distribute the cost of development
between the two companies.

"It was to be a three-year development project to build a multiprocessor
server that would be the highest performance server in the world in its class,"
says Rider.

The technology alliance was a departure for both partners,according to Jean
Gastinel, head of the PARe Dragon team. "Until now, Sun had never
imported technology from the outside--they had done everything themselves.
And PARe had a reputation for doing research and not doing products," he
explains.

Another departure was the war the team was organized. Beginning in
September, 1988, 10 members 0 the PARe Dragon team began reporting for
work at Sun Microsystems instead of at Xerox.

A Virtual Corporation

"It was kind of rough for the first six months, but once people got used to
the idea, they worl<ed as a single team," says Rider. ''They weren't Xerox,
they weren't Sun--they were working on this project."

''You almost have to create the concept of a virtual corporation for a project
like this," adds Rosing. "Ron and I never had to sit down privately and
resolve any issues. Whatever face-saving happened, happened within the
team because the people felt the project was more important than their
individual issues."

Rosing attributes the teams cohesiveness to "the secret of staffing," which
begins, he says, with a recognition that the NIH (not invented here) syndrome
exists. ''The desire for an engineer to build and create new things is almost
untamable, and for engineers to be willing to subordinate their egos and their
creativity to the common good is not a natural thing," he says.

-2-

"On the management level, too, there are egos involved. It's important not
to inflame the situation through incorrect staffing.

"For example," Rosing continues, "the PARe people were the 'theologians' of
the bus technology. If you had two engineers of fundamentally different
theological persuasions on the same team, there will be a religious war--so I
made sure we didn't have any. Sun bus theologians on the team."

Another important ingredient for success, according to Rosing, is common
objectives. "I think the biggest single reason why so many partnerships fail is
that the two companies don't have an aligned and shared goal," he says.

Castinel points to the egalitarian nature of the team as another important
difference. 'We had co-ownership of the results, so our management
structure was that of equals," he explains. He also cites the availability of
technology and equipment as another factor that helped the team succeed.
"Sun was incredibly good about giving us whatever we needed," he says.

The Computer Farm

'Whatever they needed" turned out to be a roomful of processors and
workstations, nicknamed the computer farm. The engineers jury-rigged the
30 machines together to create 1,000 MIPS (million instructions per second)
of computing power--the amount they need to run an unprecedented volume
of simulations. Their innovative use of simulations enabled them to design a
set of chips that "ran on first silicon," working perfectly the first time they
were manufactured--an unusual feat in Silicon Valley.

''They showed that b)' using massive amounts of simulation it is possible to
simulate degrees and levels of complexity previously unthinkable," says
Brown.

Gastinel and his team pioneered the use of distributed simulation, inventing a
new methodology for design and testing. 'We simulated the design in a
variety of different ways," ne says. "For example, we would test a chip in
isolation, connected to a subsystem, with all subsystems connected together,
with a processor, without a processor and so on.

"In a lot of projects, bugs are considered bad, but we took the opposite
attitude. We wanted to find all the bugs we could during the simulation
phase. For six months, we had about 20 people trying to break the machine."

Gastinel estimates that the use of simulations to design and validate the
system saved the team a year--the time that might have been required to
redesign and reproduce faulty chips.

He and his team, now back at Xerox, will duplicate their intensive use of
simulations in their next project, which will require 10 times the number of
MIPS that were needed to design Dragon. Fortunately, instead of a 300-
machine computer farm, it will take only five Dragon-based servers to
generate the 10,000 MIPS.

-3-

'What has come out of this project is a new way of doing design and a new
set of tools," says Rider. "Dragon has provided the keys that wilf enable us to
build things that are much smaller and much larger than we ever thought this
technology would allow."

Rosing points to products in the Sun pipeline that "just dropped out" of the
Dragon effort. '1"here has been a lot of mileage out of this investment, and I
feel that both parties will continue to get benefits from it."

One way they will benefit is by jointly licensing the technology to any
company that wants to use it. Both partners will get royalties for know-how
and the use of the Dragon chips. Xerox will additionally receive royalties for
intellectual property--from licensees as well as from Sun.

At Sun, the company that has "always done evel)'thing themselves," paying
royalties may not sit well with everyone. Rosing defends the arrangement:
'1"he royalties will never add up to what it would have cost us to do it on our
own. If you only consider the profits that would have been lost if the
machine had come out a year later-- there's no comparison.

DRAGON TECHNOLOGY: A CLOSER LOOK

-Debra
Feinstein

The Sun SPARCcenter 2000 is the first implementation of Dragon technology
to reach the market. Announced in November 1992, the 2000 is an open,
multiprocessor system powerful enough to run mainframe-class applications.
Thanks to its superb cost/performance ratio, Sun believes the 2000 is poised
to displace mini- and mainframe computers in many settings. An entry-level
system costs under $100,OOO--less than one-tenth the price of a typical
mainframe.

Yet the 2000 has tremendous growth potential. A fully expanded version
could interface with 1,000 or more users and provide backbone computing
support for an entire enterprise.

Sun describes its system as the first affordable, high-performance Unix server
specifically designed for client-server computing. Client-server refers to the
relationship between a host computer and desktop workstations. In
mainframe environments, the host-desktop relationship is master-slave.

Client-server computing assumes greater host-workstation cooperation in
executing programs and sharing ana moving data. This strategy harnesses
desktop power but puts heavy input-output (I/O) demand on the host.

The speed of the 2000--a 20-processor model can handle 2 billion instructions
per second--makes it ideal for demanding applications like the kind of
computer simulations used in electronics and automotive design. Sun has

-4-

made a concerted effort to help database vendors tune their packages to take
advantage of the 2000's multiple processors and of an architecture that uses
high-speed "cache"memory to good advantage.

How does Dragon technology contribute to the 2000's performance and cost
advantages? Wnat building 510cks does Dragon provide for future products?

BENCHMARK asked Dragon team member Jean Gastinel of Xerox PARC and
David Yen of Sun Microsystems to explain.

Would you describe the system architecture? What makes it unique?

The architecture features a Unix operating system and follows industry
network standards to ensure connectivity in an open systems environment.
The Dragon architecture dovetails with Xerox' embrace of open systems and
its corporate strategy of using architectural building blocks.

Modularity is the system's hallmark. Plug-in modules make it easy to expand.
The strategy also allows for backup of key components to improve reliability.

A shared-memory, multiprocessor machine poses many design challenges.
Dragon architecture relies on a state-of-the-art cache coherence scheme to
solve one of them. To speed operation, each processor has its own reserve
(or cache) of IIfast" memory to store data.

However, when multiple processors are teamed, problems can arise if the
system stores different data in various caches. To make sure the right data is
selected for processing, Dragon architecture relies on a unique and extremely
flexible algorithm. This lets the system operate at high speed and eliminates
the possibility that data can be corrupted.

What's so special about the Dragon bus?

A bus is a highway for moving data. Bus limitations create traffic
bottlenecks--especially in multiprocessor systems. Ordinary buses don't have
the bandwidth to move huge amounts of data quicklr and smoothly. The
Dragon bus solves this problem with physical and logica protocol advances.

On the physical side, the news is GTL--Gunning Transceiver Logic, named for
team member Bill Gunning. Most system voltage levels require at least a 3-
volt swing to transmit data. With GTL, that drops to 0.8 volts. GTL payoffs
include faster transmission and less noise and interference.

This low-power characteristic lets designers build bus interfaces into high
density, application-specific integrated cnips (ASICs) instead of creating more
costly and bulky external alternatives.

One of the most complicated aspects of computer design relates to low
voltage signals. The GTL approach permits lines to be inexpensively
terminated in a manner that lets chip-to-chip data transmission occur at the
speed of light.

A very efficient packet-switching protocol is used to send bursts of data to
memory devices on the bus. Packet-switching can move two to four times

-5-

1MM.1i

more data than traditional circuit-switching. The Dragon bus' transaction sets
can sUPR0rt a large number of multiprocessors, too. This overall design
expands bandwidtn to 640 megabytes per second and provides tremendous
lID capacity to support processors and peripherals. The 2000 system's twin
buses are configurea to handle up to 20 processors without any performance
loss.

How much is power consumption reduced? Why is that important?

An entry-level 2000 system uses less than half the power of a comparable
minicomputer. Less (lower means less heat, and heat dissipation has long
been a system design headache. When semiconductors overheat, they don't
work properly and performance degrades. Less power consumption reduces
the need for cooling hardware and boosts reliability--and of course, less
energy is consumed.

What technology factors translate into cost savings?

The system's modular architecture delivers major cost savings. The system is
partitioned to require a small number of highly integrated building blocks.
The system costs less because there are fewer components. The compact
design extends to the housing, too, since only a small cooling system and
power supply are needed.

One integration secret is the use of high-density CMOS gate arrays to
encapsulate all control logic. If you were to compare a 2000 board with
boaras from a competitive machine, you would see that the 2000 board has
consolidated its logic into relatively large chunks of silicon, while the
competitive boards are dotted with smaller packages of random logic.

Does the Dragon technology give the 2000 a reliability edge?

Definitely. In the movie, "Terminator II," Arnold Schwarzenegger repeatedly
fails to kill his robotic rival because the villain can restructure himself and
repair any damage it sustains. Shotgun shells may slow it, but they don't kill
it.

The 2000 has similar resilience. While it can't repair itself, it can reconfigure
itself to bypass faulty parts. There are very few single points of failure on
this machine. Redundancy is built into crucial areas like the backplane bus,
the processor, and the lID and memory subsystems. Even if there are
multiple hardware problems, the system can reconfigure itself without human
intervention. A failure prompts an E-mail message and activates a yellow LED
to alert operators that service is needed and should be scheduled.

You say the system is scalable in three dimensions. What does that mean?

System requirements tend to grow in three areas--number of processors,
amount of available memory and lID capacity. While added memory
requirements are relatively easy to address, many systems bump up against
processor or lID expansion ceilings.

Dragon technology makes it easy to scale systems in all three dimensions.
For instance, the 2000 system can be expanded to include up to 20

-6-

Rrocessors and up to 10 liD buses. What's more, the expanded unit will
deliver incremental performance on a par with the added resources. In some
expanded s~stems, performance deteriorates when resources are forced to
compete with each other. The 2000's memory-sharing architecture eliminates
this problem. This scalability permits a true "Ray as you grow" approach to
computer power acquisition. Users are no longer forced to project and
budget today for the system they will need three years from now.

What future Dragon implementations in Xerox products are in store?

Currently, 10 boards are needed to hold the electronics for a Xerox DocuTech
Publishing System. Dragon technology could reduce that board count to one.
The Potential reduction in cost and improvement in performance has put
DocuTech high on the Xerox list for Dragon implementation.

Dragon technology, in fact, is destined to influence the design of many new
products. As an example, Dragon's ability to connect multiple processors and
access wider bandwidths could push development of a number of interesting
new image processing applications.

-Linda Lovely

-7-

