
Rolling Your Own Mutable ADT

— A Connection between Linear Types and Monads —

Chih-Ping Chen and Paul Hudak

Yale University
Department of Computer Science

New Haven, CT 06520
{chen-chih-ping,hudak}@cs.yale.edu

Abstract

A methodology is described whereby a linear ADT may
be rigorously encapsulated within a state monad. A
CPS-like translation from the original ADT axioms into
monadic ones is also described and proven correct, so
that reasoning can be accomplished at the monadic level
without exposing the state. The ADT axioms are suit-
ably constrained by a linear type system to make this
translation possible. This constraint also allows the
state to be “updated in place,” a notion made precise
via a graph-rewrite operational semantics.

1 Introduction

In recent years, numerous proposals for I/O, destruc-
tive updates to data structures, mutable variables, non-
determinism, and concurrency have been put forth, all
using monads to structure programs in such a way that
details of the computation are effectively hidden and
encapsulated [18, 20]. One of the most important uses
of monads is in dealing with state, resulting in a style of
programming referred to appropriately by Peyton Jones
and Wadler as imperative functional programming [16].
In this style, a state monad is used to encapsulate the
state in an abstract datatype, thus avoiding the “plumb-
ing” usually associated with pure functional programs
that manipulate state. Access to the hidden state is
achieved by abstract operations that are sequenced via
a small set of monadic combinators, typically called bind
and unit. This style of programming has been adopted
wholeheartedly by the Haskell [8] community, and its
utility has been verified through many non-trivial ap-

To appear in the 24th ACM Symposium on Princi-

ples of Programming Langauges, January 1997, Paris,

France.

plications.
Surprisingly, however, little work has been done in

establishing a formal connection between monads and
state. In particular:

• There are few formal connections between mon-
ads and single-threaded state, where the property
of being single-threaded is precisely what is needed
to guarantee safe, “in-place” update. The sever-
ity of this problem is easily demonstrated by an
example: For any state-transformer monad with
type M a = S → (S, a), there is a trivial oper-
ation getState :: M S that will instantly destroy
any hope for single-threadedness:

getState s = (s, s)

• Nor are there many formal connections between
monads and the state-manipulating operations them-
selves. That is, the standard monad operations tell
us how the state-manipulating operations may be
sequenced, but say nothing about what they do,
or how they are derived.

• Finally, although laws for reasoning about several
specific monads exist [18, 15], there is no general
way to derive these laws.

To solve these problems, we outline a methodology
that allows one to begin with a conventional axioma-
tization of a type of interest, rigorously encapsulate it
within a monad, and reason about it abstractly in a
monadic fashion. This is only possible if the axiomati-
zation satisfies a certain linearity condition, established
using linear types [6, 9, 4, 19, 5]. This same condition
allows us to prove that the type of interest (i.e. the
state) may be updated in place.

Our combination of linear types and monads unveils
a connection between two very different methods for

dealing with state in a functional language. It is inter-
esting that a CPS-like conversion, with strong ties to
notions of sequentiality, formalizes this connection.

From a pragmatic perspective, the methodology al-
lows one to use conventional ADT techniques to de-
sign a type of interest and operations on it. The use
of the linear type system is confined just to the ADT
axioms. Once the axioms type-check, the linear type
system never needs to be dealt with again. In other
words, the monad encapsulates not just the ADT, but
its linearity as well.

The methodology is also easily implementable (al-
though we have not yet done so). The graph-rewrite se-
mantics is quite similar to conventional graph reduction,
the basis of many functional language implementations.
Moreover, the monadic axioms can be derived automat-
ically, yielding a source of program transformation rules
for compile-time optimization. These rules may also be
used by semantics-directed compilers and interpreters
that are based on monads [12].

An Example. Consider a simple integer list ADT,
with operations:

nil :: IntList
cons :: Int → IntList → IntList
nth-select :: Int → IntList → Int
nth-update :: (Int, Int) → IntList → IntList

These operations are axiomatized by:

nth-select 0 (cons x xs) ⇒ x
nth-select (i + 1) (cons x xs) ⇒ nth-select i xs
nth-update (0, v) (cons x xs) ⇒ cons v xs
nth-update (i + 1, v) (cons x xs)

⇒ cons x (nth-update (i, v) xs)

This axiomatization is well typed with respect to the
linear type system described in Section 3. Consequently,
a mutable version of this ADT can be derived automat-
ically, with operations encapulated in a monad having
types:

nilM :: M Int → Int
consM :: Int → M ()
nth-selectM :: Int → M Int
nth-updateM :: (Int, Int) → M ()

The following small program which manipulates this
mutable ADT:

nilM
(consM 2 �
consM 1 �
nth-updateM (1, 5) �
nth-selectM 1)

returns the value 5. Furthermore, using the graph-
rewrite semantics of Section 5, nth-updateM will up-
date the list in-place (in contrast with the original ADT,
which must recreate the first n elements). In this exam-
ple the benefits are only constant-factor amortized im-
provements in time and space, but in other examples the
improvements are more dramatic (see Appendix A for
the design of an array ADT, where a linear-factor im-
provement is realized). Even constant-factor improve-
ments may be important in certain situations, for exam-
ple if the improvement can reduce load on the garbage
collector (we will show later that nth-updateM induces
only a constant number of heap or stack allocations).

Finally, a new set of axioms for the ADT can be auto-
matically obtained by applying the translation scheme
in Section 4.3 to the original axioms above, yielding:

consM x � nth-selectM 0 � λz → m
⇒ consM x � m[x/z]

consM x � nth-selectM (i + 1) � λz → m
⇒ nth-selectM i � λz → consM x � m

consM x � nth-updateM (0, v)
⇒ consM v

consM x � nth-updateM (i + 1, v)
⇒ nth-updateM (i, v) � consM x

consM x � unit y ⇒ unit y
nilM (unit y) ⇒ y

(� and � are the monadic bind and seq operators,
respectively.) Note that these axioms allow reasoning
about integer lists at the level of monads, without ex-
posing the underlying representation.

2 Preliminaries

Define the language L as the lambda calculus extended
with constants, which include primitive datatypes and
operations on them, such as the unit type (), integers,
booleans, and pairs. Its syntax is given in Figure 1.
In addition, for convenience we will often use a non-
recursive let expression defined by:

let x = e1 in e2 ≡ (λx → e2) e1

The only reduction rules that interest us at this stage
are the conventional β rule:

(λx → e) y ⇒β e[y/x]

and the δ rules that govern the behavior of conditional
expressions, primitive datatypes, and recursion. For the
conditional and pairing, we have:

if True e1 e2 ⇒δ e1

if False e1 e2 ⇒δ e2

fst (e1, e2) ⇒δ e1

snd (e1, e2) ⇒δ e2

2

e ::= x
| k
| e1 e2

| (e1, e2)
| λx → e

x ∈ Var (variables)
k ∈ Con (primitive constants)

Figure 1: Syntax of L

Note that the above rules imply a non-strict semantics.
For recursion, we assume fix ∈ Con with δ rule:

fix f ⇒δ f (fix f)

Define the relation ⇒ as the union of ⇒β and ⇒δ.
We write e1 ⇓CBN e2 to denote the reduction of e1 to
e2 using ⇒ under a call-by-name (leftmost, outermost)
reduction strategy. Evaluation of an expression e is de-
fined as reduction of e to a value v, defined as:1

v ::= k | (v1, v2)

Evaluation is a partial function.

2.1 Abstract Datatypes (ADTs)

Definition 1 Given a type of interest T, a simple ADT
is one in which each operation can be classified as either
a generator of type X1 → T, a modifier of type X2 →
T → T, or a selector of type X3 → T → X4, where the
Xi are arbitrary auxiliary datatypes.

This is a standard classification for ADTs, and most
conventional ADTs such as arrays, lists, stacks, and
queues can be expressed in this way. However, it does
not include tree-shaped ADT’s, since a modifier for such
an ADT would need a type such as X → T → T → T.
This limitation is discussed further in Section 6.

We allow L to be extended with simple ADTs by
extending the base types as necessary and using the
ADT axioms as δ rules in the calculus. We assume that
adding new axioms does not destroy confluence (which
can also be achieved by choosing a determinate order
on the delta rules, as is done in most modern functional
languages). For an ADT A we refer to the extended
language as LA.

Definition 2 Given a simple ADT with a set of gener-
ators G, modifiers M, and selectors S, an axiomatization
distinguishes a set D = S ∪ U, where U ⊆ M. Each
operator d ∈ D has one or more defining axioms whose
syntax is given in Figure 2.

1Evaluation can be generalized to include abstractions as values,

but for simplicity we choose not to here.

This definition subdivides modifiers into two categories:
U is the set of mutators, each having defining axioms;
and the rest (M \U) are called constructors, whose be-
havior is defined implicitly by the axioms. For example,
for the integer list ADT in the introduction, nil is a gen-
erator, cons is a constructor, nth-update is a mutator,
and nth-select is a selector.

Note that the syntax in Figure 2 restricts the axioms
to be first-order.

3 The Linearity Condition

Not every ADT can be converted to monadic form; it
must be “linear,” or “single-threaded,” in some sense.
In this section we describe a linear type system which
constrains the ADT sufficiently to allow the conversion.
It is inspired by the linear type system with read-only
access in [19], which in turn was influenced by the single-
threadedness condition in [17].

A type in our system can be a basic type, a pair of
auxiliary types, a function type, or the type of interest
T. In addition, it could be a linear type of interest,
denoted ¡T. Formally:2

u, v ::= Int | Bool | . . .
| (u, v) | (u → v)
| T | ¡T

Facilitated with this finer-grained type system, we
are able to type each class of ADT operators to better
reflect the intended use of T:

g :: X1 → ¡T
m :: X2 → ¡T → ¡T
s :: X3 → T → X4

Generators and modifiers manipulate ¡T to ensure that
at any time they either create or have the sole pointer
to the type of interest. On the other hand, selectors
take a non-linear T as an argument because they only
read the type of interest and, as a result, the linearity
condition can be relaxed.

2In this work, the linearity of the type of interest is all that we

care about, so it would be a waste of ink if we follow the convention

of linear logic and tag each non-linear type with !. Instead we tag the

linear type of interest with a ¡ as is done in [19]. We pronounce ¡T as

“squirt T ” (gentler than a bang).

3

axiom ::= lhs ⇒ rhs

lhs ::= m x pat | s x pat
pat ::= t | g x | c x pat

rhs ::= g | s | m | c | x | t | k
| (rhs1, rhs2) | rhs1 rhs2
| if rhs1 then rhs2 else rhs3

g ∈ G (generators)
s ∈ S (selectors)
m ∈ U (mutators)
c ∈ M \ U (constructors)
x ∈ Var (identifiers of auxiliary type)
t ∈ Var (identifiers of type of interest)
k ∈ Con (constants)

Figure 2: Axiom Syntax Scheme

An assumption list associates variables and constants
with types:

A ::= x1 : u1, . . . , xn : un

where x1, . . . , x2 are distinct variables or constants. The
base assumption list BA for an ADT A associates all
the operators of A, primitives, and constants with their
types. We write A, B to denote the concatenation of two
assumption lists; an implicit side condition of a concate-
nation is that A and B contain distinct variables.

R(A) is an assumption list identical to A except that
all the associations of mutators are elided, and those of
generators, constructors, and variables of type ¡T are
“non-linearized.” That is, the ¡’s in their type signa-
tures are removed. Intuitively, R prepares a “read-only”
assumption list for an expression which may do multiple
reads on the type of interest.

The typing rules are listed in Figure 3. The predicate
NL(u) (“non-linear u”) checks that u does not have a
linear type of interest as a component. It is defined by:

NL(u) ⇐⇒ u �= ¡T and
u = (v, w) =⇒ NL(v) and NL(w)

The predicate HY(u) (“hygienic u”) checks that u is not
a function type and does not have any type of interest,
either linear or nonlinear, as a component. It is defined
by:

HY(u) ⇐⇒ u �= v → w and
u �= ¡T and
u �= T and
u = (v, w) =⇒ HY(v) and HY(w)

Note that our system allows (Weakening) on any
variable because the “no discarding” property of a lin-
ear type of interest is not of our concern. This design
in turn enables the use of only one (Identity) rule. On
the other hand, (Contraction) can only be applied to a
variable of non-linear type because the “no duplicate”
property of a linear type of interest is the theme of
the whole type system. There are three application
rules: (¡T-Application) is identical to the application

rules in other linear type system except that here we
constrain the resulting type of the application to be
¡T; (T-Application) allows read-only access in the ar-
gument term whose type is T, and the hygienic condi-
tion ensures that no type of interest can be smuggled
out (a side-effect of this constraint is that the resulting
type can not be a function type); (Application) han-
dles applications whose operands are of hygienic type.
Also note that read-only access is used when typing the
predicate of a conditional expression.

Definition 3 An ADT A is linear if each axiom lhs ⇒ rhs
has the following properties:

• There exists a type u and assumption list A such
that:

– BA, A � lhs : u, and

– If u = ¡T, then BA, A � rhs : u;
otherwise, R (BA, A) � rhs : u.

• Each free variable has exactly one occurrence in
lhs.

As an example of a well-typed linear ADT, consider
the integer list ADT given in the introduction. As an
example of an ADT that would not be well-typed, con-
sider adding the following (contrived) operator to the
integer list ADT:

silly l ⇒ let l′ = nth-update (1, 2) l
in nth-select 1 l′

This is not linear because silly is a selector, but there
is an update to the type of interest on the right-hand
side, which our type system does not allow.

4 Monadic ADTs

To say that an ADT is linear is to say something about
its axioms. But if we naively implement a linear ADT
in a functional language based on a Hindley-Milner type
system, the linear axioms won’t buy us much: we still
will not be able to do in-place updates on the type of

4

(Identity)
x : u � x : u

A, y : u, z : u, B � e : v NL (u)
(Contraction)

A, x : u, B � e[x/y, x/z] : v

A � e : v
(Weakening)

A, x : u � e : v

A, x : u, y : v, B � e : t
(Exchange)

A, y : v, x : u, B � e : t

R (A) � p : Bool A � e1 : u A � e2 : u
(If)

A � if p then e1 else e2 : u

R (A) � e1 : u R (A) � e2 : v HY (u) HY (v)
(Pair)

A � (e1, e2) : (u, v)

A � e1 : ¡T → ¡T B � e : ¡T
(¡T-Application)

A, B � e1 e : ¡T

A � e1 : T → v R (B) � e2 : T HY (v)
(T-Application)

A, B � e1 e2 : v

A � e1 : u → v B � e2 : u HY (u)
(Application)

A, B � e1 e2 : v

Figure 3: Linear Typing Rules

interest because the type system is not strong enough
to guarantee that the argument to an ADT mutator is
unshared. For example, the program:

let l1 = cons 1 (cons 2 nil)
l2 = nth-update (1, 5) l1

in nth-select 1 l2 + nth-select 1 l1

should return 7. But if the update were done destruc-
tively, the result might be 10, which is clearly wrong.

We could, of course, enrich the type system with
linear types throughout the language, in which case the
above program would be ill-typed (at least one func-
tional language, Clean, uses this approach [2]). We
choose instead a different solution: we will encapsulate
the linear ADT in a monad, and use the monadic struc-
ture to enforce linearity of the type of interest through-
out the language.

4.1 Monad Basics

Definition 4 A monad is a triple (M,�, unit) where
M is a type constructor, and � and unit are functions
which satisfy the following three laws:

unit a � λ b → n = n[a/b]
n � unit = n

n1 � (λ a → n2 � λ b → n3) = (n1 � λ a → n2)
� λ b → n3

In the last law, a does not appear free in n3.

Operationally speaking, M a is a computation which
produces an answer of type a when executed; � com-
bines two computations into a larger one which per-
forms the two in sequence; and unit injects a single value
into a computation. Of particular interest to us is the
state monad which abstracts over a type of interest to
be treated as mutable state:

type M a = T → (a,T)
� :: M a → (a → M b) → M b
unit :: a → M a
(n � k) t ⇒ let p = n t in k (fst p) (snd p)
(unit a) t ⇒ (a, t)

It can be easily verified that these definitions satisfy the
three monad laws.

For convenience, we specialize a version of � which
we write �:

(n1 � n2) t ⇒ n2 (snd (m1 t))

� and � are like Haskell’s >>= and >>, respectively,
and are sometimes called bind and seq.

5

4.2 Monadic Encapsulation of ADT’s

For each modifier m :: X2 → T → T and selector s ::
X3 → T → X4 in an ADT A, we introduce monadic
counterparts mM and sM, respectively, defined in terms
of m and s:

mM :: X2 → M ()
sM :: X3 → M X4

mM x t ⇒ ((), m x t)
sM x t ⇒ (s x t, t)

The typing M () which results from applying mM im-
plies that the modifier only effects the type of interest
and does not return anything interesting.

In addition, for each generator g :: X1 → T in an
ADT A we define a monadic generator gM by:

gM :: X1 → M a → a
gM x m ⇒ fst (m (g x))

This definition reflects the use of gM as the operator
which invokes a computation: it applies the monadic
computation to the type of interest generated by the
original ADT generator and returns the first element
of the resulting pair of the computation while discard-
ing the second element, the (possibly altered) type of
interest.

4.3 Deriving Monadic Axioms

The encapsulation just described leads to a monadic
implementation of a linear ADT, and we will see in a
later section that it allows in-place update of the type
of interest. But it is not an especially good mechanism
for reasoning about a monadic ADT, since it reveals the
details of the encapsulation, and, once the original ADT
is exposed, reverts to reasoning in terms of that ADT. It
would be better if we had monadic axioms, correspond-
ing to the original linear ones, that did not expose the
underlying ADT representation. In this section we de-
scribe a method for deriving such axioms from those in
the original linear ADT.

Our translation scheme resembles, perhaps not sur-
prisingly, a CPS conversion, and is related to call-by-
value monad transformation [13, 18]. But it is also dif-
ferent from these in several ways, the two most impor-
tant being: (1) the conversion is performed on axioms
rather than just terms, and (2) the conversion is done
with respect to a particular value—the type of interest—
and in fact is not even valid for non-linear ADTs.

In the following, we use · · ·� and 〈· · ·〉 to quote and
un-quote, respectively, the text being translated. First
we define a translation function D for expressions that,
given an expression e and a continuation k, returns an

equivalent expression using the monadic ADT:

D s 〈x〉 〈t〉� k = D t (D x λy → sM y � 〈k〉�)
D m 〈x〉 〈t〉� k = D t (D x λy → mM y � 〈k〉�)
D g 〈x〉� k = gM 〈x〉 〈k〉�
D if 〈p〉 then 〈c〉 else 〈a〉� k

= D p λx → if x then 〈D c k〉 else 〈D a k〉�
D (〈e1〉, 〈e2〉)� k

= D e1 λy → 〈D e2 λz → (unit (y, z)) � 〈k〉�〉�
D f 〈e1〉 〈e2〉� k

= D e1 λy → 〈D e2 λz → (unit (f y z)) � 〈k〉�〉�
D t� k = k
D x� (λy → n) = n[x/y]
D c� (λy → n) = n[c/y]

Here s, m, and g represent an arbitrary selector, modi-
fier, and generator, respectively; sM, mM, and gM are
their monadic counterparts; t is an identifier whose type
is the type of interest; x is an identifier having auxil-
iary type; f is a primitive function; and c is a constant
having auxiliary type. We assume suitable α-renaming
to avoid name clashes with y, z, and k.

Given D, we can now define translations S and M for
axioms that define selectors and mutators, respectively.

S s 〈x1〉 〈t〉 ⇒ 〈x2〉�
= 〈D s 〈x1〉 〈t〉� (λy → n)�〉

⇒ 〈D x2 λy → 〈D t n�〉�〉 �
M m 〈x〉 〈t1〉 ⇒ 〈t2〉�

= 〈D m 〈x〉 〈t1〉� k�〉 ⇒ 〈D t2 k�〉 �

Here also we assume suitable α-renaming to avoid name
clashes with y, z, and k. Note that S translates the
right-hand side in the context of the nested type of in-
terest on the left-hand side, whereas M translates both
sides independently. Also note that if an axiom is de-
fined in terms of type of interest identifier t, then the
type of interest disappears during the translation (thus
completing our mission of hiding the state!).

In addition to the axioms derived from the original
ADT axioms, we also need to axiomatize:

• the interactions between generators and unit. For
each generator gM, add the rule:

gM (unit y) ⇒ y

• the interactions between constructors and �. For
each constructor cM, add the rule:

cM x � unit y ⇒ unit y

An example of the overall translation is the monadic
axioms for the integer list ADT given in the introduc-
tion. It is interesting to note in this translation process

6

that mutators and selectors trade roles! This is an ar-
tifact of the CPS-like nature of the translation, which
uncovers a “duality” between constructors and selec-
tors, much like the duality noted by Filinski in [3].

Calling the above translation scheme T , its correct-
ness is captured by its relationship to the monadic en-
capsulation previously defined:

Theorem 1 The monadic encapsulation of a linear ADT
A satisfies the monadic axiomatization derived from A
using translation T .

Proof: By applying the translation scheme to a
generic axiom of each kind, then using equational rea-
soning to unfold the monadic encapsulation on each side
and reduce them to equivalent terms. A proof for one
of the three axioms is given in Appendix B.

5 GRS Operational Semantics

In [7] we informally defined:

Definition 5 A mutable ADT, or MADT, is any ADT
whose operational semantics permits in-place update (i.e.
destructive reuse) of the type of interest, while still re-
taining confluence.

We will now make this definition more precise. To do so,
we need an operational semantics that captures sharing
and identifies all relevant costs of execution. The eval-
uation function ⇓CBN is not suitable for this purpose
since it is essentially a term-rewriting system. Instead,
we choose a graph-rewriting system (GRS) to capture
operational semantics. Although other approaches to
operational semantics abound—such as recent efforts at
modeling lazy evaluation [10, 1, 14]—we find a GRS as
particularly clear (a picture is worth a thousand words),
abstract (no heap, for example), expressive (capturing
notions of sharing, updating, and sequencing), and in-
tuitive (resembling conventional graph reduction).

Figure 4 defines a function lift which maps terms
of L into their corresponding graphs (called L-graphs).
For each CBN δ rule, a corresponding GRS rule can be
obtained by lifting both sides of the rule. For example,
Figure 5 shows the GRS rules for fst and snd. The GRS
rule corresponding to the CBN β rule is also shown in
Figure 5, where the notation e{y/x} denotes the result
of redirecting the edges which point to the bound vari-
able x in the subgraph e to the subgraph y; thus y is
shared (also, as in [21], we assume that a fresh copy of
the function body e is created before the subsitution is
made).

We write e1 ⇓GRS e2 to denote the reduction of e1

to e2 using the GRS-lifted reduction ⇒ under a call-
by-name (leftmost, outermost) reduction strategy. The

evaluation function ⇓GRS can be seen as the call-by-need
equivalent of the call-by-name evaluator ⇓CBN .

Theorem 2 For every term e in L,

e ⇓CBN v ⇐⇒ lift(e) ⇓GRS v

where v is a value.

Proof: See [21].

5.1 Lifting of ADT’s

The lifting operation can also be extended to an ADT
by lifting each side of each axiom. For example, the
GRS rules for the two nth-update axioms given in the
introduction are shown in Figure 6.

When implementing GRS rules—for example using
conventional graph reduction techniques—all of the re-
ductions are assumed to be “pure.” That is, other than
the top vertex on each of the left- and right-hand sides,
no vertices are assumed to be shared. For example, in
the first nth-update rule of Figure 6, the top vertex on
the left is assumed to be the same as the top vertex
on the right, but the vertices that comprise the cons
operation on the right are assumed to be “fresh” ver-
tices, distinct from those on the left. This is necessary,
of course, to preserve confluence, as we have discussed
earlier. But this is also exactly where we would like
to do better: if some vertices on the left are discarded
as a result of applying the rule, there is no reason why
they can’t be immediately re-used on the right, thus
achieving “in-place update.” In those cases where we
abandon the “pure” reduction strategy in a rule, we will
annotate the vertices with names to indicate which are
being reused, and how.

5.2 GRS Rules for Encapsulated ADT

The monad laws can also be lifted into the GRS, as
shown in Figure 7, where t denotes the subgraphs rep-
resenting state. Note in the rule for unit that the state
t is single-threaded; i.e. t is reachable from the root of
each side of the rule in exactly one way. On the other
hand, the rule for � is not single-threaded, at least
not in this simplistic way: in reality it depends on the
behavior of k and n. This observation hints that if:

• a linear ADT operator is only used “monadically,”
i.e. having type M a and only combined with other
monadic computations via �, and

• a fresh (unshared) copy of the type of interest is
passed into a monadic computation when it is in-
voked,

7

lift(e1 e2) =

lift(x) = x lift(k) = k lift(λx -> e) =
λx

lift(e)

lift(e1)
lift((e1,e2)) =

Pair
lift(e2)

lift(e1)
lift(e2)

Figure 4: Lifting Terms to Graphs

 e

e{y/x} fst

Pair

snd

Pair

λx y

a

a

a

b

bb

Figure 5: GRS Rules for Application and Pair Selections

nth-update
cons

cons
x

v

xs
xs(0,v)

nth-update
cons x

xs(i+1,v)
cons

nth-update
x xs

(i,v)

Figure 6: GRS Rules for nth-update

n

k

t

k

fst
snd

>> n1

n2

t n2

n t

unit a

t

Pair a

t

n1 t

snd
>>

Figure 7: GRS Rules for Monadic Combinators

sM x

s x

mM x

1

Pair ()
m x

t

t

t

t gM x

m fstA

g

m

x

Pair

Figure 8: GRS Rules for Monadic ADT Operators

nth-update
cons

cons
x

v

xs
xs(0,v)

l2

l1

l1

l2

nth-update
cons x

xs(i+1,v)
cons

nth-update
x xs

(i,v)

l1 l1

l2l2 l3l3

l4l4

Figure 9: GRS Rules for nth-update Reusing Vertices

8

then the single-threadedness of the type of interest can
be guaranteed throughout the entire computation.

We can achieve this effect by first lifting the encap-
sulation strategy of Section 4.2 into the GRS, as shown
in Figure 8. However, the GRS rule for mM will have
one important twist: the mutator m that it exposes will
be allowed to reuse the type of interest; i.e. in-place up-
date is allowed. To see this concretely, Figure 9 shows
the rules for nth-update, using the convention of vertex
reuse described earlier. It is interesting to note that
the second rule implies that no vertices are needed to
realize the recursive call structure of nth-update; that
is, it is fully tail-recursive, or iterative. Thus, in our
operational semantics, an application of nth-updateM
requires allocation of exactly two vertices, regardless of
the length of the list.

There is one problem, however: the right-hand side
of the rule for sM introduces sharing in t, but using CBN
reduction there is no guarantee that the lifted graph of
(s x t) on the right-hand side is reduced before some
subsequent mutation to t. We can fix this problem by
making fst and snd hyper-strict in the first component
of their arguments. This is the only sensible way to
ensure that there are no dangling references to the type
of interest, and is similar to the use of a hyper-strict let
expression in [19]. Thus we define new versions of the
pair selectors, fstA and sndA:

fstA (v, e) ⇒δ v
sndA (v, e) ⇒δ e

where v is a value. We then use these to redefine �
and �:

(m � k) t ⇒ let p = m t in k (fstA p) (sndA p)
(m � n) t ⇒ n (sndA (m t))

The GRS versions of these rules are exactly the same
as those in Figure 7 except that fst is replaced by fstA
and snd by sndA.

We can see that using hyper-strict pair selectors re-
stores single-threadedness by reasoning as follows:

• If fstA (sM x t) is reduced before sndA (sM x t),
then t becomes unshared because fstA forces (s x t)
to be fully evaluated.

• Similarly, if sndA (sM x t) is reduced first, sndA
likewise forces (s x t) to be fully evaluated, so t
becomes unshared before it is further used.

The GRS system was necessarily made more strict in
order to achieve single-threadedness. Thus it is possible
that some computations which do not contribute to the
evaluation of the final answer are evaluated (and may

not terminate). For example:

gM c1

(sM c2 � λx →
sM c3 � λy →
unit y)

where x does not appear in c3. The GRS would evaluate
the subgraph representing (s c2 (g c1)), whose value is
obviously irrelevant to the final answer. Nevertheless,
GRS still offers the beauty of lazy evaluation in many
cases. For example:

gM c1

(mM c2 � λx →
mM c3 � λy →
unit 1)

Here the GRS returns 1 without creating even the initial
copy of the type of interest, let alone performing the two
mutations.

5.3 Correctness of In-place Update

Using our somewhat stricter notion of GRS evaluation,
we can prove a correctness result for in-place update.
Define LM as the language L extended with any monad-
ically encapulated, linear ADT M.

Theorem 3 For every term e in LM,

e ⇓CBN v ⇐⇒ lift(e) ⇓GRS v

where v is a value.

Proof: See Apendix C.

6 Discussion

In this section we discuss limitations and possible ex-
tensions of our methodology.

Although we believe that the added strictness intro-
duced in Section 5.2 is minimal, and that some added
strictness is inherent in any single-threaded reduction
system, we are investigating ways to improve this, such
as dynamically tagging closures having no references to
the type of interest. But it is not clear that such a small
improvement is worthwhile.

Polymorphism should be easy to handle, at the ex-
pense of carrying around more type information. For
example, the integer list ADT could be turned into a
polymorphic list, but the monad type would have to be
extended to something like M a b, where a is the type
returned from the computation, and b is the type of the
list elements.

9

The linear type system proposed in Section 3 is lim-
ited to first-order values, so that, for example, a selector
cannot return a function as its result. We believe, how-
ever, that the type system can be extended to handle
abstractions, and we have worked out the preliminary
ideas of such an extension.

A more serious limitation of the current system is
that it does not handle more than one mutable ADT.
One possible solution to this is to introduce references,
so that individual objects can be named and manipu-
lated, and use the extension to the Hindley-Milner type
system proposed in [11] to prevent the escape of refer-
ences from the monadic computation.

Related to this issue is the inability to handle tree-
like structures, ruled out by our definition of a simple
ADT. Rather than using references, we have been work-
ing on a different solution to this problem, based on the
following idea.

Suppose we are designing a database-like ADT, whose
axiomatization is given by:

new :: DB
insert :: Int → DB → DB
remove :: Int → DB → DB

remove a new = new
remove a (insert b x) = if a = b then x

else insert b (remove a x)

This is clearly linear, so our methodology can be ap-
plied, yielding a mutable ADT with monadic axioms,
etc. However, it is not very efficient. So, as in a tradi-
tional ADT design, we may wish to implement the ADT
using binary search trees. The implementation details
should be hidden, of course, and we do so below using
Haskell module syntax:

module DB (DB, new, insert, find, remove) where

data DB = Leaf | Branch Int Tree Tree

new = Leaf

insert a Leaf = Branch a Leaf Leaf

insert a (Branch b lt rt) =

if a<=b then Branch b (insert a lt) rt

else Branch b lt (insert a rt)

remove a Leaf = Leaf

remove a (Branch b lt rt) =

if a==b

then if lt==Leaf then rt else

if rt==Leaf then lt else

let pred = largest lt

lt’ = remove pred lt

in Branch pred lt’ rt

else if a<=b then Branch b (remove a lt) rt

else Branch b lt (remove a rt)

where largest (Branch x l r) =

if r==Leaf then x else largest r

The interesting thing about this solution is that the
tree is used linearly in the implementation viewed as

a set of axioms, only our type system is currently not
strong enough to determine this. If it could be suit-
ably strengthened, then this encapsulation of the ax-
ioms should allow in-place update of the tree.

7 Conclusions

Using state monads to achieve safe destructive reuse of
the state is by no means an innovation; several earlier
efforts have already demonstrated its suitability. What
have been missing in these previous efforts are a sys-
tematic way to recognize when monads work and when
they don’t, an operational semantics to formally reason
about the correctness of in-place updates, a method for
designing efficient state monads, and a way to reason
about them abstractly. Our contributions take positive
steps toward resolving these deficiencies.

8 Acknowledgements

Thanks to Phil Wadler and the anonymous referees for
their helpful comments on previous versions of this pa-
per. This research was supported in part by NSF under
Grant CCR-9404786.

References

[1] Z. Ariola, M. Felleisen, J. Maraist, M. Odersky,
and P. Wadler. A call-by-need lambda calculus. In
Proc. 22nd ACM Symposium on Principles of Pro-
gramming Languages, pages 233–241, New York,
January 1995. ACM Press.

[2] E. Barendsen and S. Smetsers. Conventional and
uniqueness typing in graph rewrite systems (ex-
tended abstract). In Proc. 13th Conference on the
Foundations of Software Technology & Theoretical
Computer Science, Bombay, India, 1993.

[3] A. Filinski. Declarative continuations: An investi-
gation of duality in programming language seman-
tics. In D. H. Pitt, editor, Category Theory and
Computer Science, pages 224–249. Springer-Verlag,
Berlin, 1989. (Lect. Notes in Comp. Science Vol.
389).

[4] J. Guzmán and P. Hudak. Single-threaded poly-
morphic lambda calculus. In Proc. Symposium on
Logic in Computer Science, pages 333–343. IEEE,
June 1990.

[5] J.C. Guzman. On Expressiong the Mutation of
State in a Functional Programming Language. PhD
thesis, Yale University, 1993.

10

[6] S. Holmstrom. A linear functional language. In
Proc. the Workshop on the Implementation of Lazy
Functional Languages, PMG Report 53, pages 13–
32, 1988.

[7] P. Hudak. Mutable abstract datatypes – or – how
to have your state and munge it too. Research Re-
port YALEU/DCS/RR-914, Yale University, De-
partment of Computer Science, December 1992.

[8] P. Hudak, S. Peyton Jones, and P. Wadler (ed-
itors). Report on the Programming Language
Haskell, A Non-strict Purely Functional Language
(Version 1.2). ACM SIGPLAN Notices, 27(5), May
1992.

[9] Y. Lafont. The linear abstract machine. Theoretical
Computer Science, 59:157–180, 1988.

[10] J. Launchbury. A natural semantics for lazy eval-
uation. In Proc. 20th ACM Symposium on Prin-
ciples of Programming Languages, pages 144–154,
New York, January 1993. ACM Press.

[11] J. Launchbury and S. Peyton Jones. Lazy func-
tional state threads. In Proc. Symposium on Pro-
gramming Language Design and Implementation
’94, Orlando, June 1994. ACM.

[12] S. Liang and P. Hudak. Modular denotational se-
mantics for compiler construction. In European
Symposium on Programming ’96, Linkoping, Swe-
den, April 1996.

[13] E. Moggi. Computational lambda-calculus and
monads. In Proceedings of Symposium on Logic
in Computer Science. IEEE, June 1989.

[14] G. Morriset, M. Felleisen, and R. Harper. Abstract
models of memory management. In Proc. Confer-
ence on Functional Programming Languages and
Computer Architecture, pages 66–77, New York,
June 1995. ACM/IFIP, ACM Press.

[15] M. Odersky, D. Rabin, and P. Hudak. Call-by-
name, assignment, and the lambda-calculus. In
Proc. 20th ACM Symposium on Principles of Pro-
gramming Languages, Charleston, South Carolina,
January 1993.

[16] S. Peyton Jones and P. Wadler. Imperative func-
tional programming. In Proc. 20th Symposium on
Principles of Programming Languages. ACM, Jan-
uary 1993. (to appear).

[17] D. A. Schmidt. Detecting global variables in deno-
tational specification. ACM Transactions on Pro-
gramming Languages and Systems, 7(2):299–310,
1985.

[18] P. Wadler. Comprehending monads. In Proc.
Symposium on Lisp and Functional Programming,
pages 61–78, Nice, France, June 1990. ACM.

[19] P. Wadler. Linear types can change the world! In
IFIP TC 2 Working Conference on Programming
Concepts and Methods, Sea of Galilee, Isreal, April
1990. IFIP.

[20] P. Wadler. The essence of functional program-
ming. In Proc. 19th Symposium on Principles of
Programming Languages, pages 1–14. ACM, Jan-
uary 1992.

[21] C.P. Wadsworth. Semantics and Pragmatics of the
Lambda Calculus. PhD thesis, Oxford University,
1971.

A A Complete Example: Array ADT

Consider a very simple, fixed-size integer array ADT,
with operations:

newArr :: (Int, . . . , Int) → Array
update :: (Ix, Int) → Array → Array
select :: Ix → Array → Int

whose array axiomatization is given by:

select i (newArr (x1, . . . , xi, . . . , xn)) ⇒ xi

update (i, y) (newArr (x1, . . . , xi, . . . , xn))
⇒ newArr (x1, . . . , y, . . . , xn)

Intuitively, newArr xs, where xs is an n-tuple, creates
an array of size n, each of whose elements is initialized
to its corresponding component in xs; update (i, v) a
returns an array identical to a except that the value of
the ith element is v; and select i a returns the value of
the ith element of a.

It can be verified that these axioms satisfy our linear-
ity condition. The GRS rules for this ADT are given in
Figure 10. Monadically encapsulating newArr, update,
and select, we get:

type M a = Array → (a,Array)
newArrM :: (Int, . . . , Int) → M a → a
updateM :: (Ix, Int) → M ()
selectM :: Ix → M Int

Their GRS rules are shown in Figure 11; and a pro-
gramming example in this MADT is given in Figure 12.
The correctness of destrutively reusing the array follows
from Theorem 3.

11

update (i,v) newArr
newArr

select i newArr

xi

(x1,
 x2,
....
xi,
...
xn)

(x1,
 x2,
....
v,
...
xn)

(x1,
 x2,
....
xi,
...
xn)

Figure 10: GRS Rules for Array ADT

updateM (i,v)selectM inewArrM x

m fstA
m

xnewArr

tt

t

Pair

selectM i

1

Pair () t

updateM (i,v)

Figure 11: GRS Rules for Monadic Array MADT

Finally, we apply the axiom translation scheme to
obtain the following monadic MADT axiomatization:

newArrM (. . . xi . . .) (selectM i � g)
⇒ newArrM (. . . xi . . .) (g xi)

newArrM (. . . xi . . .) (updateM (i, y) � d)
⇒ newArrM (. . . y . . .) d

newArrM (. . . xi . . .) (unit b) ⇒ b

B The Proof of Theorem 1

The proof is a tedious proof-by-cases on the formation
of both sides of a linear axiom. In some cases, an induc-
tion argument is necessary. We illustrate the main idea
by going through one sample case. Consider a selector
axiom s x1 t = x2. To omit the uninteresting details, let
us assume x1 and x2 are two identifiers of proper aux-
iliary types. By inspecting the typing rules in Figure 3
and the definition of simple ADTs, we know that t can
either be an identifier of type of interest, an application
of some constructor (this case is proved inductively), or
an application of some generator. If it is the last case,
the axiom looks like

s x1 (g x3) ⇒ x2.

Applying S to this axiom, we get

gM x2 (sM x1 � λy → n) ⇒ gM x2 n[x2/y].

Unfolding gM, sM, and � on the left-hand side of the
axiom:

gM x3 (sM x1 � λy → n)
⇒gM fst (sM x1 � λy → n) (g x3)
⇒� fst ((λp → (λy → n) (fst (sM x1 p))

(snd (sM x1 p))) (g x3))
⇒β fst ((λy → n) (fst (sM x1 (g x3)))

(snd (sM x1 (g x3))))
⇒β fst (n[fst (sM x1 (g x3))/y]

(snd (sM x1 (g x3))))
⇒sM fst (n[fst (s x1 (g x3), (g x3))/y]

(snd (sM x1 (g x3))))
⇒s fst (n[x2/y] (snd (sM x1 (g x3))))
⇒sM fst (n[x2/y] (snd (s x1 (g x3), (g x3))))
⇒sM fst (n[x2/y] (g x3))

Unfolding gM on the right-hand side:

gM x2 n[x2/y]
⇒gM fst (n[x2/y] (g x3))

This term is identical to the unfolding of the left-hand
side and we are done. �

C The Proof of Theorem 3

Following the development in [5], it can be shown that
for any term e in LM:

e ⇓CBN v ⇐⇒ lift(e) ⇓GRS v

where the monadic mutators in GRS do updates non-
destructively.

So if we can prove that it is always safe to do in-
place updates in GRS as an “optimization,” it follows
that for a LM term e, its CBN evaluation yields the
same result as its in-place update GRS evaluation.

12

newArrM (0, ..., 0) - - allocate new array and invoke a computation
(updateM (1, 1) � - - set 1st element to 1
selectM 1 � λx → - - read first element and bind it to x
selectM 1 � λy → - - read first element and bind it to y
unit (x + y)) - - return the sum of x+y (the value 2)

Figure 12: A Simple Program Using Array MADT

In order to prove that in-place update on a type of
interest is safe, it is sufficient to show that a mutator
can only update an unshared type of interest. More
precisely, we want to prove that for a monadic term:

gM e1 (n1 � n2 ... ni ... � nk)

the type of interest after reduction of sndA (n t) at any
step i, where n is the composition of computations n1

through ni, is unshared.
Base case: i = 0: the type of interest is supplied by

the rule for gM, which by definition is always unshared.
Induction hypothesis: the type of interest after re-

duction of sndA (n t) at step i is unshared.
Induction step: prove that the type of interest is

unshared after reduction of sndA (n t) at step i+1. We
proceed by case analysis of the operation at step i + 1:

• unit: The rule for unit shows that it simply passes
on the type of interest without adding any point-
ers. So by the induction hypothesis, it is still un-
shared.

• mM: The rule for mM shows that it applies m to
the unshared type of interest and passes the result
on. But our linearity condition guarantees that m
handles the type of interest single-threadedly. So
the type of interest is still unshared.

• sM: The rule for sM adds a pointer to t in the first
component of the pair; i.e. the reference to t in
s x t. But the reduction rule for sndA reduces this
value to normal form, and since it is also linear, it
cannot have any dangling reference to t. sM also
simply passes the type of interest on, but this is
now the only reference, so the type of interest is
still unshared.

Thus by induction, the type of interest is always un-
shared just after the reduction of sndA (n t). It follows
that mM is always handed an unshared copy of the type
of interest, and mM can safely perform an in-place up-
date. This further implies that:

e ⇓CBN v ⇐⇒ lift(e) ⇓GRS v

where v is a value and GRS employs rules doing in-place
update on the type of interest. �

13

