

Midwife: CPU cluster load distribution of Virtual Agent AIs

Ovi Chris Rouly

Department of Computational Social Science

George Mason University

Fairfax, Virginia, USA

e-mail: maelzel@ieee.org

Abstract — This describes a CPU cluster load distribution

algorithm that may be helpful when simulating crowds of

artificially intelligent Virtual Agents. The cluster load

distribution algorithm was instantiated in Java code,

demonstrated successful execution on a small cluster of
inexpensive CPUs, and supported the simulation of Virtual

Agents within a readily available, open source, Virtual World

client-server toolset. The client-server toolset used was the

network-enabled, multi-user virtual environment(s) of

OpenSimulator and OpenMetaverse operating together.
Although these Virtual World tools are well known, this

experiment was unique in that the psycho-socially significant

small-group oriented crowds of Virtual Agents in the

simulation enjoyed interacting, individual, cognitive, affective,

and behavioral Agent controllers executing entirely client-side.
In this Artificial Life experiment, each CPU in a scalable CPU

cluster controlled up to fifteen, individual, C#-based Agent

controllers. This argues for and demonstrates how

disembodied computational Agencies can be executed in distal

computer environments when network-coupled to convenient
Host embodiments in a Virtual World. There are implications

in general here for a paradigm shift in Virtual Agents/Virtual

Worlds modeling and in specific for positive computational

load distribution of artificial intelligence in Virtual Agents
inhabiting complex, emergent, crowd-scene models just by

using more effective tools and modeling methodologies.

Keywords - Vi rtual Agents; Virtual Worlds; mobile agent;

cluster load distribution; multi-agent modeling; Artificial Life;

OpenSimulator; OpenMetaverse; Second Life.

I. INTRODUCTION

In the very broadest sense, the current work extends

research from the domain of distributed artificial intelligence
(consider Huhns, M., [9]; and Weiss, G., [17]). However,

here we are concerned with a more focused application. We
are concerned with a simulat ion and modeling support

methodology that computes multip le, d istributed, artificially

intelligent agents (specifically Virtual Agencies) within a
scalable cluster of networked CPUs and we expect to see

these Virtual Agencies ultimately embodied (Hosted) in
some distal Virtual World. This is an example of “cloud

computed mobile agents” (so eloquently described in Satoh
[14]) and predicted over a decade ago by Luck and Aylett

[10], Thalmann [15], Mendex, et al [13], and long since

implemented by Herrero, et al [8], and others. Each of these
described or used many of the various enabling and

separable components inherent to Virtual World and Virtual

Agent research. Their works make the current work more

understandable.
The problem addressed here exists in the context of

scalable communities of adaptive, social, “large

computational process” Virtual Agents that experience
individual simulated “birth” and “death” within a Virtual

World. The research question is thus: Can an automated
software system be constructed that will: 1) work with

OpenSimulator/OpenMetaverse, 2) be coded in Java and
work effectively with C#, 3) negotiate with a scalable cluster

of CPUs to determine which of them should host the next

Virtual Agent requiring simulated “birth,” and 4) can this
system dynamically task the least “busy” CPU within the

cluster to “birth” (instantiate) the next Agent? Midwife
demonstrated that the answer was yes. Moreover, this work

contributes relative to the state of the art when it is
considered Midwife is the only OpenSimulator /

OpenMetaverse-capable, open-sourced, small cluster load

balancing toolset available for immediate public download.
Many (for example Cao, et al [5]) have offered

computationally “agentized” grid computing load-balancing
systems. Such systems are purposed to balance the

computational load of a generic compute-cluster. In
addition, such load-balancing systems are sometimes reliant

on complicated algorithms (e.g., the Genetic Algorithm in
the case of Cao, et al) for scheduling functionality. The

foregoing features are in contrast with the simplicity of the

Midwife recursive load-balancing proxy auction system and
its explicit purpose to support Virtual Agents. In Midwife,

Virtual Agents are the consumers of computational load
balancing effects. They are not the algorithmic scheduling

components.
The Midwife algorithm (and its Java instantiation) can be

compared to a set of Remote Procedure Calls (RPCs).

Midwife is explicitly described as facilitating the occupation
of a Virtual World by scalably large numbers of artificially

intelligent Virtual Agents. In the current work, one finds a
constructive proof demonstrating that a Virtual Agency can

be usefully separated from its Host embodiment in a Virtual
Environment and it confirms how the mobile agent paradigm

may lend itself favorably to crowd simulations in pursuits as

diverse as science or industry, Computational Social Science,
or entertainment and games. Download Midwife source

code from: http://css.gmu.edu/papers/Midwife_(rev_0.1).zip
or http://www.maelzel.com/source/Midwife_(rev_0.1).zip.

http://css.gmu.edu/papers/Midwife_(rev_0.1).zip
http://www.maelzel.com/source/Midwife_(rev_0.1).zip

II. METHOD

The experimental method involved a familiar problem
motivating a novel technological solution. The need came

from a requirement to support an ongoing computational
social science experiment where mult iple autonomous

Virtual Agents occupied an empirically grounded, non-
determin istic, Virtual World simulation. Created was a

technological solution capable of supporting the simulation

of that virtual world (a bounded virtual habitat) wherein the
simulated carrying capacity of the virtual environment was

sufficient to sustain several dozen anthropomorphic Virtual
Agents over long periods of simulated time.

In the multi-agent, colony-oriented experiment
motivating this work each Virtual Agent is capable of

demonstrating autonomous, emergent, Artificial Life.

OpenSimulator 0.7.5 (www.opensimulator.org) was used to
construct the Virtual World. The Virtual Agents were

constructed of original C# code built upon C# code libraries
provided by OpenMetaverse 0.9.1 (www .openmetaverse.

org). This ongoing research is attempting to create self-
aware automata embodied as Virtual Agents. Therein

anthropomorphic (proto-human) Virtual Agents are

exp licitly instantiated with a capacity to breed, forage,
mingle, age, die, and all-the-while use embedded artificial

genetic structures to cybernetically steer long-term simulated
biological and cognitive (psycho-social/spatial) existential

results. The need-based requirement for a software like
Midwife emerged after some time when it became apparent

that more effective tools and methods were required if the
experiment was to continue plausibly as the requirements of

colony membership numbers continued to grow.

A. Motivation

In general, this experiment exemplifies one extreme

boundary condition of mult i-agent modeling wherein extant
Virtual Agents must “birth” (or instantiate) entirely new

Virtual Agent “infants” into an operating Virtual World. In
particular, whenever a simulated "mother" Agent within a

colony “gives birth" to an "infant" Agent it is only the spatial
and temporal demands of the respective Agency ("mother" or

"infant") that must be coupled to (or with) one specific,
respective vehicular Host, i.e., an avatar embodiment. There

was no, is no, computational necessity or simulation-value

inferred or added by having the "mother," "infant," or Host
avatar computed on the same CPU. It was only, is only,

necessary that the particulars of spatial and temporal
colocation of the Virtual Agent Agency and the vehicular

Host (avatar) embodiment coincide such that a human
viewer is satisfied with the renderable result. In other words,

as shown in the referenced experiment, even when a

“mother” Virtual Agent “births"(instantiates) a new “infant”
Virtual Agent (instance) it is only the new avatar

embodiment that must emerge in the Virtual World at a time
and place consistent with the constraints of the simulation,

e.g., colocation in simulated time and simulated space. As a
programmatic mechanism, the Midwife algorithm and the

Java code instantiated for this experiment was shown

capable of facilitating the instantiation (or "birthing") of
Virtual Agent Agencies across the physically distal nodes of

a CPU cluster. It did this while allowing the Virtual World

simulation to give a human user (with a rendering viewer)
the visually satisfying sense that social, spatial, and temporal

colocation properties associated with a "mother" and "infant"
pair in an anticipated world environment were taking place.

Typically, although with some exceptions, this sort of client-
side avatar control has been relegated to the pejorative

domain of “test ‘bots” and is not exploited to its full

capacity. Here however, it has been elevated to its fuller
end.

B. Technology

The Midwife Java software was developed on a single-

board, 64-bit Intel Core2Quad microprocessor operating at
2.33 GHz. That CPU was an early model Zotac m-ITX

device equipped with 4GB RAM and board-based Nvidia
(brand) 9300 graphics acceleration. Three operating systems

(OS) were successfully used with Midwife. These included
Microsoft (MS) Windows XP, MS Windows 7, and MS

Windows 8. The MS Windows XP OS is the current CPU

cluster environment due solely to quantity pricing
constraints. Development took place mostly under Windows

8. A Java Integrated Development Environment (IDE) was
provided by jGrasp version 2.0.0_04. The Java compiler

was Oracle (www.oracle.com) 1.7.0_17, verification testing
took place in Java SE Runtime Environment build 1.7.0_02-

b02 with client Virtual Machine (VM) build 23.7-b01, and
native mixed mode support. During development, the Zotac

internal 127.000.000.001 loopback address was targeted.

During cluster operations, system addresses 010.000.000.010
through 010.000.000.016 were routinely targeted.

The current operational hardware environment for
Midwife is a cluster of four Intel m-ITX motherboards

arranged as a stack of Ethernet enabled devices
interconnected by high-speed switch. The network

interconnection star topology speed is switch-selected

100Base-TX. Typical data rates are under 20 Mb/s at the
server. The Intel m-ITX motherboards, each respectively,

have one Intel Core2Quad microprocessor operating at 2.33
GHz. Each motherboard in the cluster runs as an

independent microcomputer system, or CPU. To complete
the multi-user virtual environment (MUVE), the CPU cluster

containing the Virtual Agent agencies was connected across

the LAN and to an Intel 5520 server running an
OpenSimulator Virtual World simulation configured as 16

spatially contiguous, Hypergrid-Standalone, heavy processes
each modeling one square kilometer of d igital terrain data.

This OpenSimulator Virtual World simulation contained the
Virtual Agent host embodiments motivating the current

work. The OpenSimulator Virtual World simu lation was
briefly described above. Most of the properties of that

Virtual Agent experiment are extraneous to the needs and

scope of this paper. The operation of the OpenSimulator
product itself is, of course, described in sufficient detail on

its own website by its own designers (see
www.openSimulator.org).

III. ALGORITHM

The top-level program (code) in Midwife is a Java Class
of the same name. Actually, Midwife is quite simple. It

uses a multi-Class, object-oriented architectural design that
incorporates discrete methods, procedures, and functions.

The algorithm can be favorably described as a network-
centric machine that counts the instances of Virtual Agent

Agencies within the purview of itself, is aware of the count

of Virtual Agencies within the purview of each similar
machine on the network, and by sharing those count data

with other Midwife machines on the network can act to
balance the total computational load of Virtual Agent

Agencies executing on the network by either decisively
instantiating a new Virtual Agent Agency locally or by

transferring that responsibility to another Midwife machine.

Figure 1 shows a block diagram depiction of the Midwife
algorithm and its relationship to a local area network (LAN).

What follows now is a detailed Design Description
Overview (DDO) of the Java instantiation. Source code from

http://css.gmu.edu/papers/Midwife_(rev_0.1).zip is available
or at http://www.maelzel.com/source/Midwife_(rev_0.1).zip.

A. DDO – Midwife.class

Midwife is the top-level program code (and Class) in the

load-leveling Java instantiation. It is a step-wise iterated
algorithm that establishes three timer-driven (interrupt-

driven) code blocks and several important sub functions
before exiting. Midwife sets the stage for the BirthRoom (a

threaded Class explained below) to operate within the

framework of independently firing timers each acting to
continuously update and share available network and system

information.
At program start the MS OS version is determined.

Then, step one in the process is for the Midwife to identify
the Internet Protocol Address (IPA) of its own host Ethernet

adapter. Th is is done with a call to findLocalIPA. After

doing so, the Class-visible variable myIPA is set. From then
on the Midwife knows where and who it is in the CPU

Figure 1. Information flow as a Midwife communicates with others
over a local area network.

cluster network. Step two involves the Midwife instance

determin ing the IPAs of any other CPUs in the cluster. (It is
naively assumed the private network is closed and that

Midwife is running on any CPU visible in the cluster.) This
is done with a call to findClusterIPAs. After doing so, the

Class-visible Array List ipaSubnet is made ready and this
Midwife knows who, if any, the other active IPAs in the

cluster are. The next step, step three, is intended for user

comfort only, i.e., it is a side effect. This step reports the
hosting CPU cluster subnet (as a human readable list) to a

Graphical User Interface (GUI). Step four involves
instantiating the central code elements of the BirthRoom

class. It is from BirthRoom that a Midwife can provide
“birthing” arbitrage, network load calculations, and support

network interface utilities throughout the several processes
of new Virtual Agent Agency instantiation.

Immediately after creating the BirthRoom thread, the

Midwife assesses the count of active Agencies under its own
local care. Clearly, since at this point this Midwife has only

just begun to operate, there will be no active Agencies to
discover and the current count of zero is reported to the GUI.

The Class-visible variable activeAgents (the count of local
Agencies) is now set.

The final steps involve sequentially starting three

independent timer-driven interrupts. Each timer exists on an
independent thread and will fire persistently and periodically

until the entire Midwife program ends. Figure 2 illustrates by
name and temporally interspersed nature of the timers. The

timers are timerAgentList, timerIPAList, and
timerMWLoads. Respectively, their purposes are:

• timerAgentList (shown in red) causes the

reassessment of, and GUI display of, the current
count of Virtual Agent Agencies under local care,

• timerMWLoads (shown in green) uses the "others"
list (described below in the text) as a basis to

sequentially ask all other Midwives in the hosting
cluster to report their own individual, current, local

Agency loading, and
• timerIPAList (shown in blue) periodically updates

the hosting cluster IPA list (this is held as the Array

List "others" within each Midwife).
As soon as the timers and the BirthRoom Class thread

have been started, the initial Midwife process is free to leave

Figure 2. Asynchronous pattern of timer-driven interrupts in Midwife.

The length of “t” is abbreviated.

http://css.gmu.edu/papers/Midwife_(rev_0.1).zip
http://www.maelzel.com/source/Midwife_(rev_0.1).zip

execution scope. As it leaves focus, it leaves behind the

three timers to continue firing and the BirthRoom thread to
negotiate with the other Midwives within the CPU cluster for

the rights and responsibilities to “birth” (to instantiate) new
Agencies. Clearly, the timers will become more and more

asynchronously aligned in their execution order with respect
to their firing pattern over time since their period(s) are first

established using randomized, real-valued periods and

second they are never re-synchronized after they are started.
This “randomized,” asynchronous effect, is intentional. Its

teleology is to continuously redistribute the computational
load seen by each CPU and the entire CPU network.

B. DDO – Console.class

The Class, Console, produces a side effect: a GUI. This

GUI informs the user about the current working status of the
Midwife program and its processes.

The window constructed by Console is a s mall, non-
resizable box with one display panel and two selection

buttons. All network and ping reactive, i.e., capable of

responding to a port 53 Domain Name Service (DNS) p ing,
Internet Protocol Addresses (IPA) in the host cluster are

displayed in the window in numerically increasing order.
During Midwife controlled operations the buttons are labeled

Freeze Expansion and Terminate or alternately Permit
Expansion and Terminate. The default start condition is

disabled (Frozen) and thus Permit Expansion is shown. The
buttons provide mutually exclusive functions. Figure 3 shows

the Midwife GUI window in operation over a five CPU

cluster. The window in the console can only show four IPAs
at a time.

The button labeled Freeze Expansion stops (or alternately
starts) the ability of this Midwife to create new Agents.

When selected (when Freeze is selected) the label changes to
Permit Expansion. When Permit is selected, the label

changes back to Freeze Expansion. This method allows the

user to freeze (or start) the local Midwife functionality. A
count of the Agents under the active control of this Midwife

Figure 3. Screen capture of a Midwife console window operating over

a system of five machines in a four CPU Midwife cluster.

is displayed next to the status label.

Terminate, the other button, ends this local Midwife
operation but does not halt the Agents on the local CPU.

This important capability is twice verified with the user for
correctness before it terminates the Midwife. If a Midwife is

started on a CPU in a system already in operations -even one
having one or more Agents in existence- it will enter with no

errors and begin operations as just described.

C. DDO – GetLocalIPA.class

The Class, GetLocalIPA, provides a network interface
sub-routine. The sub-routine momentarily establishes a

network socket, determines the default IPA associated with

that socket (effectively the Midwife host CPU network
adapter interface address) then stores the particulars for

external accessor pickup. As soon as the task is completed
and the data stored for accessor pickup, all task-execution

memory used is returned to the OS. Server.class provides
additional networking utilities.

D. DDO – GetLocalIPA.class

The Class, GetSubnetIPAs, provides important functions

to the Midwife network interface. Its purpose is to discover
the active set of IPAs on the CPU subnet. It uses naïve

network connectivity observation to dynamically build a

list. Once built, that list is availab le to external accessor
pickup. Server.class provides additional networking

utilities.
The Class is capable of scouring the 253 subnet network

addresses adjoining the base IPA. By default, the address
range is 1 to 254 on the span xxx.xxx.xxx.001 to

xxx.xxx.xxx.254. It uses an MS OS specific call to
PING.EXE to interrogate the space. This specific "ping"

command checks for an active (and DNS port 53

responsive) IPA. Once “ping” is given to the OS, the OS
returns a text-based response that can be captured and

scoured for certain key feature string values confirming that
the IPA is in use. Currently, the code assumes the OS is MS

versions XP, 7, or 8. This methodology allows the OS
return data to be parsed, and searched for the key string.

The buffered input returned by the OS is passed between

methods in GetSubnetIPAs and will ult imately produce a
Boolean true if the key feature (a known string of

characters) can be found. Else, a Boolean false is registered
and the 1 of n IPAs searched are decided to not contain an

active CPU.
Program startup command line switches /lo=n and or

/hi=m, inclusive, can be used to steer the search somewhat

in the event a known, smaller cluster set is predicted.
Methods are provided to parse the input arguments from the

command line to locate and return the value of the IPA
value arguments. This attempt to recover and then return

the IPA address low range value from the console input
argument string and the IPA address high range value is

clamped by internal defaults to 1 and 254, respectively.

E. DDO – BirthRoom.class

BirthRoom is the core component of Midwife. It
provides new Agency instantiations (“birthing”),

instantiation responsibility auction arbitrage and support,

cluster load and loading calculation and prediction, and
instantiates a private copy of the network Server and

MsgInterface Classes.
The BirthRoom directs its copies of the Server and

MsgInterface Classes to listen to network traffic for requests
to start new Virtual Agent Agencies. Requests for new

Agencies may come from one of three sources. The first is

an external “Nursery” program. This program is (or any
similar program could be) used to instantiate a primary seed

group of Virtual Agents at the beginning of (or perhaps
during) a simulat ion. Another source is the other Midwives

themselves. They are empowered to direct each other to
instantiate new Agencies in order to balance the distributed

network load. The last source is from a local Agency
needing to “birth” (to instantiate) an offspring (an

independent, new) Agency. Figure 4 shows the inter-Midwife

network communications message list.
As described in Midwife.class, a timer-driven interrupt

starts a set of routines that provide the BirthRoom accessor
access to updated copies of the Agency load status of every

other Midwife on the subnet and to a copy of the Array List
variable Midwife “others” (the other proven active IPAs) in

the subnet. These data are provided via double-buffered,

synchronized transfers. BirthRoom will continue to execute
until it is pulled out of memory by the Console component or

an external hardware reset. Agencies, those controllers -of-
the-Hosts in the Virtual World, are called into OS instance

by the Midwife using an external OS executable currently
named “Agent.exe”. Th is executable is variable controlled

and could just as easily be a selection made from a list of

several Agency types needed in the simulation. When the
executable is called it is accompanied by a parameter list of

Virtual Agent in-world requirements like instantiation
location, avatar sex and implicit pedigree (conventions used

in the Artificial Life experiment described earlier),
instantiation with or without prejudice, and a few other

experiment specific, parameter defined items, etc.
Depending on the message received by the Midwife from

the MsgInterface, a proxyAuction for the responsibility to

instantiate new Agencies may be started. This is associated

Figure 4. Direction flow and content of inter-Midwife network

communications messaging.

with an instantiationRequest. Alternatively, a message may

arrive as a demand to instantiate an Agency. This is
associated with an instantiationWithPrejudice. These two

concepts are now described.
The proxy auction within Midwife is a system intended

to evaluate and assign the responsibility to instantiate the
new Agency. The auction method (code) is itself recursive.

This assignment process is at the heart of the load

distribution process that is Midwife. Each Midwife is
capable of holding an entire auction internally and

independently. Effectively, the auction is an absentee
auction process undertaken by the current Midwife where all

eligib le bidders for the responsibility to "birth" a new
Agency, including the current Midwife, participate by proxy.

The proxy token is a number that serves as a surrogate for
the last known Agency loading value held by each remote

Midwife in the cluster, respectively. That is, since the local

Midwife knows what all Midwife Agency loads were 9 - 10
seconds ago (including its own value), the local Midwife can

hold a fair auction (and place bids on the behalf of the other
Midwives and itself) based on the respective local and

surrogate loading values.
The auction is biased in favor of those Midwives having

the least Agency loads. A lesser loaded Midwife is allowed

to bid more aggressively for the opportunity to host a new
Agency. Theoretically, the Midwife with the least Agency

load will always win the right to host the new Agency. Tied
bids are broken by random number selection between

Midwives having the least current load in a recursive runoff
auction. Once an auction begins new data surrogates are

ignored should they arrive during an auction. Only the

latency induced by shared data updates between Midwives
can skew the accuracy of an auction. And, since time delays

between shared data updates is variable selected, these too
can be adjusted to tune the final system. Timer interval

values of 30 to 90 (+5/-0 seconds) for interrupt
timerMWLoads have been tested successfully and shown to

produce usable results.
If the winner of the auction to instantiate the new Agency

is not the current Midwife then a call to instantiate the new

Agency is transmitted to the winning Midwife with an
exp licit command to start the new Agency with prejudice.

When that other Midwife receives the call to instantiate the
new Agency, the message flag signifies resolution by further,

local auction process is not allowed. The message
communicated is instantiateWithPrejudice. Once received,

the other Midwife must instantiate the new Agency

immediately. However, if the local Midwife wins the
auction, then it must instantiate the new Agency on the local

CPU.
Calls to “birth” a new Agency (with

instantiationRequest) from either the “Nursery” or an
existing Agency are passed to the Midwife in a slightly

different manner. Calls from either the “Nursery” or an

existing (and local) Agency are handled without prejudice
and both arrive with a full para meter argument list. These

requests to “give birth” are handled by the proxy auction
process, as just described.

Whenever a Midwife receives a “request” to instantiate

an Agency, the BirthRoom begins to simulate the proxy
auction using the recursive method proxyAuction. If a

Midwife receives a “demand” for instantiation
(instantiateWithPrejudice), the method startAnAgent is

called along with the respective parameter list of Agent
particulars earlier described.

F. DDO – Server.class

Server.Class provides Midwife with several simple

networking utilities. For example, the class has methods
capable of quickly and safely instantiating sockets

(ServerSockets and simple Sockets), testing them, and

evaluating them. It provides execution exception handling
away from the main program execution path and thus "de-

clutters" the readability of the more central elements of the
Midwife source code and its components. The InetAddress

based protocols used by Midwife employ the 32-b it
addressing format.

For convenience, Server also provides methods for

network related variables service. These methods concern
themselves with the manipulation of formatted string

products depicting an IPA with interspersed "dots." For
example, "000.111.222.123," a string depicting 4 terms each

with 3 numeric characters, can be manipulated here to derive
the subnet address of "123." An individual Midwife, in turn,

uses this, as it associates itself with, and to, a Port. For
example, Port=1123 can, and will, be assembled from the

foregoing basic string components. Each Midwife is thus

known by this exact IPA and Port schema.
Also from within server, the MsgInterface is instantiated

as a child process. Although MsgInterface is discussed
separately, it is worth noting that MsgInterface is the final

step in the communications chain between BirthRoom and
all external programs. Finally, Server.Class has a simple

parameter steered millisecond timer for its own private use.

G. DDO – MsgInterface.class

The MsgInterface component transmits and receives
network communications that support inter-Midwife,

Nursery-to-Midwife, and Agency-to-Midwife network

traffic. MsgInterface.Class instantiates two local (and
distinct) IO network streams. The first is used for inter-

midwife Agency load status messaging and a second for
Agency instantiation ("birthing") requests and demands.

Because these two IO streams are local to MsgInterface, the
MsgInterface object also has local control to flush (and

close) data in its network buffers associated with the streams,

respectively.
MsgInterface is a singular child process of the

Server.Class method and it maintains accessor methods for
inter-Midwife message retrieval and transmission. Among

those accessor support methods is a tool, getArguments that
finds and returns the string arguments embedded in the

parameter list describing new avatar location, avatar sex, and

implicit pedigree requirements of the experiment in progress.
During load-balancing, it is imperative that each Midwife

knows the loading status of each of the other Midwives in
the CPU cluster. A method named getLoadingStatus takes

care of this function. It communicates with the Midwives on

the subnet and directs a request to each Midwife (including
itself) to reveal the current, respective, Agency loading

status. IP addresses on the subnet that have returned a
positive response to a ping but that are not hosting a Midwife

are excluded from further interrogation during load-
balancing. These data too are accessor visible.

The MsgInterface main execution thread (in a method

named Main) responds to incoming (inter-Midwife) traffic
requests and demands to instantiate ("birth") new Agencies.

Main reads the network through a method named
receiveBuffer and attempts to identify the data. A helper

method, readBufferConversion, is used to identify the data
received as being composed of type String or StringBuilder.

Then, Main guarantees conversion of the data received to
type String and execution continues using a CONSTANT

matching conditional tree.

Each section of the tree corresponds to one valid inter-
Midwife messaging transaction pair. Figure 4 depicts the

messaging schema. Contingent upon which branch of the
conditional tree fires, the associated helper methods and

accessor variables are activated or loaded, respectively.
This ends the DDO – Design Description Overview.

IV. RESULTS

The system under test had four cluster-dedicated CPUs.

More nodes are possible. Three other machines were also on
the network and were either setup explicitly for code

development purposes or, because of graphics capabilities,

were operated as Virtual Agent-Virtual World observers .
During the test, Virtual Agent instantiations occurred at a

rate of approximately a one “birth” per minute for a period of
just over one hour. Virtual Agent loads, plus one Midwife

per board, demonstrated continuous (individual)
microprocessor loading of 65%-75% as a maximum under

full Agent accommodation, i.e., all 60 in the simulation.

Midwife execution accounted for around one percent of the
load per CPU. Each 32-bit (4GB RAM) CPU showed

roughly +2GB of RAM usage under full agent
accommodation. During early tests Midwife d istributed 60

agent loads as 15, 14, 16, and 15 over the four CPUs. It was
believed load-recognition and balance-lag trouble was the

reason for the +/- 1 agent loading split. Lag was adjusted by

parameter, the test restarted, and a 15 agent per CPU
balanced resulted. The cost of improving balance was 1-2%

additional network traffic for inter-Midwife interrogations
activities. Overall, network loads typically lay beneath

20Mbs. “Migration of running agents” (between nodes) is
not practical for this research due to accumulated “state

memory” within each agent and the design of the AIs.
Limit testing involved an attempt to execute 80 Virtual

Agents in our OpenSimulator Virtual World. The size of the

agent control codes (AIs per cluster CPU) limited the
number of agents under test. More agents with smaller code

footprints would have allowed for a larger test cohort on the
same system. Thus, results here describe a smaller test of 60

Virtual Agents. Identical agent control algorithms were used
for the test. Each agent executed simultaneously and

independently on one of the CPUs in the four board cluster.

V. DISCUSSION

In 2001, Adobbati, et al [1] described a game engine
based Virtual Environment wherein human controlled agent-

avatars and non-player character (NPC) avatars could
interact in real-time. Their toolset grew out of the game

engine Unreal Tournament. This MUVE, Unreal
Tournament, was designed to allow mixed client-side

controllers to enter a Virtual World simulation from

anywhere a network socket connection could be generated.
As an early adopter of this distributed type of Virtual World

interface and its respective (IPA) protocols, game engines
like Unreal Tournament laid the foundation for many of the

MUVEs that followed. Then too, it implicitly created a need
for some type of simplified mobile agent support for Virtual

Agency load distribution (especially in the case of

behaviorally rich AIs) and a need for Virtual Environment
interface and protocol standardization.

The Midwife program is a Java-coded, multi-agent
model, CPU cluster, load distribution software for Virtual

Agents that enjoys the mobile agent paradigm. Th is paper
advocates a paradigm shift in Virtual Agents/Virtual Worlds

modeling towards the mobile agent paradigm and a modest

change towards positive computational load distribution of
artificial intelligence in Virtual Agents inhabiting complex,

emergent, crowd-scene models. Midwife does not offer any
new Virtual Environment interface and protocol

standardization. That was offered in 1996 by the
introduction of the IEEE Foundation for Intelligent Physical

Agents (FIPA) standard.
Although, it was developed to support a MUVE

simulation within an OpenSimulator/OpenMetaverse

framework, the basis algorithm of Midwife should be
extensible to any similar MUVE. The algorithm is premised

on the concept that Virtual Agents are disembodied
computational Agencies coupled to convenient Host

embodiments or representations where, in many cases, the
Host may be an anthropomorphic avatar. In fact, in a system

where avatars explicit ly serve as the vehicular Hosts to such

Agencies, this symbiotic relationship need not place
demands of computational colocation on either the Agencies

or the Host representations. Amo, et al [2] implied as much
when they observed that, “the Agency is proposed as an

entity that controls the agents' life cycle and the interactions
among agents” (p. 109). The Agency need not be

inseparable from its vehicular Host. The requirement of

computational colocation of Virtual Agent Agency with its
Host is artificial or worse, toolset-artifactual. The Host and

the Agency of a Virtual Agent do not have to reside on the
same CPU unless the virtual modeling environment is

extensibility challenged.
In 2007, Barella, et al [4] recommended a prototype

software solution that dealt with an extensible and scalable

differentiation of Agent control and was well within the
domain of the mobile agent topic. Their proposal dealt with,

“… in a separated way the visualization and intelligence
modules …” (p. 532) that exchanged the control signals of,

and in, a Virtual Environment. They recognized the clear
value of taking a “distributed approach” to the control of

Agencies and embodied Hosts (or objects) in a Virtual

World. In fact, they took steps to develop prototype software
demonstrating their solution. Coincidentally, their solution

recommended adherence to an IEEE standardization effort
exp licitly intended for the control of Virtual Agents. The

standard, called FIPA (mentioned earlier) was begun in 1996
in Switzerland. It remains to be seen if the Barella software

called “JGOMAS” will find wide appeal.

In contrast, Midwife does not deal with the control or
generation of behavior signaling passing between Agency

and Host in the Virtual Environment. Midwife is only
responsible for starting a Virtual Agency. Moreover,

Midwife has been shown to operate over the well-known
OpenSimulator and OpenMetaverse framework and not just

a semi-custom Virtual Environment.
In 2010, Aversa, et al [3] recommended a system

consistent with the mobile agent paradigm. Their system

intends to improve the computational diversification of
Agency control and thus facilitate improvements in other

simulation and rendering tasks. They exp licitly advocate the
distribution of Virtual Agency computations across a

compute-cluster (or cloud) using a “cloud-on-GRID”
algorithm, they call “Cloud Agency.” The mechanism

claims to increase the efficiency of Agency computations by

distributing them to any platform on a network with spare
clock-cycles. It likely would. However, the Aversa proposal

also takes research control of Agency distribution out of the
hands of the Virtual Agent researcher and puts it into the

hands of the corporate cloud service vendor. In contrast, the
Midwife algorithm always starts by leaving control in the

hands of the researcher. Depending on the nature of the

experiment and the data the experiment produces, the
tradeoffs “Cloud Agency” requires may become too costly

for reasons not involving money.
Clearly the concept of controlling client-side Agencies

having rich behaviors is not new (consider Grimaldo [7]; and
Ullrich [16]). However, even while they did not elevate the

issue of computational load distribution into their discussions
nor did they raise the issues associable with large-scale

simulations as did NPSNET in the Macedonia Ph.D.

dissertation from 1995 [11]. Both of these subjects, rich
client-side NPC behavior and large-scale simulations could

profit from the mobile agent paradigm and a process for
CPU cluster load distribution of Virtual Agent AIs.

Indeed, there may not be occasions where it is possible
for an Agency and its Host to be collocated on the same

processor due to properties of the experiment or model. An

example of this might involve a crowd scene wherein NPC
Virtual Agents are expected to interact with human

controlled agent-avatars in a riot or disaster relief simulation
involving tens or even hundreds of artificially intelligent

NPCs and human controlled agent-avatars. This realization
frees us to suggest that if more than one processor, or CPU,

is available in a compute-cluster, or perhaps cloud

computing environment, then some form of load distribution
and Agency-identifier message passing system would be

helpful in maintaining an efficient use of the computational
resources during a Virtual World simulation in terms of the

number of simulated Virtual Agents.

For example, if it were required that 1,000 or 10,000

mixed human and NPC avatars inhabit a real-time, non-
determin istically developing MUVE then, a mechanism to

distribute the computational loading presented by the
Agencies would clearly be useful. Durupinar [6] might be a

case in point where the research was concerned with
modeling crowds (“Audiences to mobs”) of psychologically

motivated Virtual Agents. Midwife was created to provide

just such a mechanism albeit demonstrated here on a
quantitatively smaller, s mall-group scale. Midwife is a CPU

cluster, load distribution mechanism intended for use with
Virtual Agents inhabiting a Virtual World. It was explicit ly

developed for its utility and to demonstrate its effectiveness
as an extensible prototype. It is an application of the mobile

agent paradigm in Virtual Agent research.

VI. SUMMARY

This paper disclosed a detailed Design Description
Overview of the methods and components that are the Java

instantiation of the Midwife algorithm. The basis algorithm

of Midwife was said to involve a network-centric machine
that counts the instances of Virtual Agent Agencies within

the purview of itself, is aware of the count of Virtual
Agencies within the purview of each similar machine on the

network, and by sharing those count data with other Midwife
machines on the network can act to balance the total

computational load of Virtual Agent Agencies executing on
the network by either decisively instantiating a new Virtual

Agent Agency locally or by transferring that responsibility to

another Midwife machine. Historical and existing works
related to, or similar to, the Midwife mechanism were

discussed. The most relevant of these works must be
identified clearly as the Aversa, et al [3] “Cloud Agency”

where an eloquent description of cloud computed mobile
agents was provided by Satoh [14] and circumscribed the

general area of performance.

In summary, it is believed that in the context of similar
Artificial Life or large scale Computational Social Science

experiments involving “virtual human societies” (consider
Thalmann [15]); those where emotionally, cognitively, and

motor-effector behaviorally rich simulat ions involving large
numbers of mixed human controlled and NPC controlled

avatars must inhabit a real-time, non-deterministically

developing MUVE then, a scalable CPU cluster load
distribution mechanism would be useful.

Midwife was created to provide just such a mechanism
albeit demonstrated here on a quantitatively smaller, s mall-

group scale. Midwife is a CPU cluster, load distribution
system intended for use with Virtual Agents inhabiting a

Virtual World. It was explicit ly developed for its utility and
to demonstrate its effectiveness as an extensible prototype. It

is an application of the mobile agent paradigm in Virtual

Agent research.

ACKNOWLEDGMENT

Thanks to the folks at OpenSimulator, OpenMetaverse,
and Linden Research – Second Life (Trade Mark).

REFERENCES

[1] Adobbati, R., Marshall, A. N., Scholer, A., Tejada, S., Kaminka, G.,
Schaffer, S., and Sollitto, C. 2001. "Gamebots: A 3d virtual world
test-bed for multi-agent research." Proceedings of the Second
International Workshop on Infrastructure for Agents, MAS, and
Scalable MAS. Vol. 5. Montreal, Canada. Amo, F. Alonso, et al.
2001. "Intelligent virtual agent societies on the internet." Intelligent
Virtual Agents. Springer Berlin Heidelberg.

[2] Amo, F. A., Velasco, F. F, Gomez, G. L., Jimenez, J. P. R., and
Camino, F. J. S. 2001. "Intelligent virtual agent societies on the
internet." In Proceedings of the 3rd International Workshop on
Intelligent Virtual Agents (IVA). Lecture Notes in Artificial
Intelligence, vol. 2190. Springer-Verlag, 100-111.

[3] Aversa, R., Di Martino, B., Rak, M., and Venticinque, S. 2010.
"Cloud agency: A mobile agent based cloud system." Complex,
Intelligent and Software Intensive Systems (CISIS), IEEE
International Conference on Complex, Intelligent and Software
Intensive Systems. 132-137.

[4] Barella, A., Carlos C., and Botti, V. 2007. "Agent architectures for
intelligent virtual environments." Proceedings of the 2007
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology. IEEE Computer Society. 532-535.

[5] Cao, J., Spooner, D. P., Jarvis, S. A., and Nudd, G. R. 2005. "Grid
load balancing using intelligent agents." Future generation computer
systems 21.1: 135-149.

[6] Durupinar, F. 2010. From audiences to mobs: Crowd simulation with
psychological factors. Ph.D. Dissertation. Bilkent University. Ankara,
Turkey. July.

[7] Grimaldo, F., Lozano, M., Barber, F., and Vigueras, G. 2004.
"Simulating socially intelligent agents in semantic virtual
environments." Knowledge Engineering Review 23.4: 369-388.

[8] Herrero, P., Bosque, J. L., and Perez, M. S. 2007. "An agents-based
cooperative awareness model to cover load balancing delivery in grid
environments." On the Move to Meaningful Internet Systems 2007:
OTM 2007 Workshops. Springer, Berlin Heidelberg. 64-74.

[9] Huhns, M. N. 1987. Distributed artificial intelligence. Morgan
Kaufmann.

[10] Luck, M. and Aylett , R. 2000. "Applying artificial intelligence to
virtual reality: Intelligent virtual environments." Applied Artificial
Intelligence 14.1: 3-32.

[11] Macedonia, M. R. 1995. A Network Software Architecture for Large
Scale Virtual Environments. Ph.D. Dissertation. Naval Postgraduate
School. Monterey, California. June.

[12] Maher, M.-L. and Gero, J. S. 2002. "Agent Models of 3D Virtual
Worlds." ACADIA 2002: Thresholds. California State Polytechnic
University, Pamona, California. 127-138.

[13] Mendez, G., Perez, P., and de Antonio, A. 2001. "An overview of the
use of mobile agents in virtual environments." In Proceedings of the
3rd International Workshop on Intelligent Virtual Agents (IVA).
Lecture Notes in Artificial Intelligence, vol. 2190. Springer-Verlag,
126-136.

[14] Satoh, Ichiro. 2010. "Mobile Agents." Handbook of Ambient
Intelligence and Smart Environments. Springer Science+Business
Media, United States. 771-791.

[15] Thalmann, Daniel. 2001. "The foundations to build a virtual human
society." In Proceedings of the 3rd International Workshop on
Intelligent Virtual Agents (IVA). Lecture Notes in Artificial
Intelligence, vol. 2190. Springer-Verlag, 1–14.

[16] Ullrich, S., Bruegmann, K., Prendiger, H., and Ishizuka, M. 2008.
"Extending mpml3d to second life." In Proceedings of the 8th
International Workshop on Intelligent Virtual Agents (IVA). Lecture
Notes in Artificial Intelligence, vol. 5208. Springer-Verlag, 281–288.

[17] Weiss, G. (Ed.). 1999. Multiagent systems: a modern approach to
distributed artificial intelligence. The MIT press.

