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Abstract

In this paper, we introduce the fuzzy Voronoi diagram as an extension of the Voronoi
diagram. We assume Voronoi sites to be fuzzy points and then define the Voronoi
diagram for this kind of sites, then we provide an algorithm for computing this dia-
gram based on Fortune’s algorithm which costs O(n log n) time. Also we introduce
the fuzzy Voronoi diagram for a set of fuzzy circles, rather than fuzzy points, of the
same radius. We prove that the boundary of this diagram is formed by the inter-
section of some hyperbolae, and finally we provide an O(n3 log n)-time algorithm to
compute the boundary.
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1 Introduction

In this paper we work on fuzzy Voronoi diagrams. We extend the definition
of the Voronoi diagram for fuzzy sites. First we define the Voronoi diagram
for a fuzzy subset of R

2 and then we provide an O(n logn)-time algorithm
for computing it. This algorithm adds a post-process to Fortune’s algorithm
[1] which computes the standard Voronoi diagram. Furthermore, we define
the fuzzy Voronoi diagram for a set of fuzzy circles. And finally we provide
a geometrical algorithm to compute the boundary of the diagram. In this
algorithm we use Mathematica [2] software to solve a system of equations.
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2 Preliminaries

Before discussing the main result it is better to have a review of some funda-
mental definitions of the Voronoi diagram and the fuzzy set theory.

Let P be a discrete subset of a metric space X. For each point p in P , the
set of all points x in X whose distance from p is less than (or equal to) their
distance from other points in P is called its Voronoi cell (or Diricle domain)
and is shown by V (p).

V (p) = {x ∈ X |∀q ∈ P [d(p, x) ≤ d(q, x)]} . (1)

Let P be a discrete subset of a metric space X. The Voronoi diagram of P is
the set of all Voronoi cells of its points, which is shown by V (P ). The members
of P are also called the Voronoi sites of the Voronoi diagram of P .

V (P ) = {V (p) |p ∈ P } . (2)

Because of the topological properties of X, we can equivalently define the
Voronoi diagram of P as the set of cell boundaries. In this paper, we work
with this second definition. Also, this boundary could be defined as the points
which possess the property of having maximum distance from the nearest sites.
If we assume R

2 as the space and use Euclidean metric, the boundary of a
Voronoi cell would be made up of some line segments.

Let U be a set. F̃ is called a fuzzy set over U if

• F̃ ⊆ U × (0, 1]
• A partial function f : U −→ (0, 1] exists such that

F̃ = {(x, f(x)) |x ∈ U } . (3)

Let P̃ be a fuzzy set. The non-fuzzy image of P̃ is shown by P , and is defined
as follows:

P =
{
x

∣∣∣∃λ ∈ (0, 1]
[
(x, λ) ∈ P̃

]}
. (4)

Let x̃ = (x, f(x)) be a member of a fuzzy set. The non-fuzzy image of x̃ is its
first coordinate (i.e. its value without its membership degree).

Let F̃ be a fuzzy set over a set U . The characteristic function of F̃ is shown
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by χF̃ and is defined as follows:

χF̃ : U −→ [0, 1]

χF̃ (x) =

⎧⎪⎨
⎪⎩

f(x), (x, f(x)) ∈ F̃

0, otherwise

(5)

A t-norm is a function 	 : [0, 1]× [0, 1] −→ [0, 1] which satisfies the following
properties:

• Commutativity: 	(a, b) = 	(b, a)
• Monotonicity: (a ≤ c ∧ b ≤ d) =⇒ 	(a, b) ≤ 	(c, d)
• Associativity: 	(a,	(b, c)) = 	(	(a, b), c)
• Identity element: 	(a, 1) = a

A t-conorm is a function ⊥ : [0, 1]×[0, 1] −→ [0, 1] which satisfies the following
properties:

• Commutativity: ⊥(a, b) = ⊥(b, a)
• Monotonicity: (a ≤ c ∧ b ≤ d) =⇒ ⊥(a, b) ≤ ⊥(c, d)
• Associativity: ⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c)
• Identity element: ⊥(a, 0) = a

One can see that the t-norm and the t-conorm are duals of each other with
regard to the generalized De Morgan’s law:

⊥(a, b) = 1 −	(1 − a, 1 − b). (6)

In fuzzy logic and the fuzzy set theory, the t-norm (t-conorm) is the extension
of ∧ (∨) in the set theory.

Let k be a positive integer. We denote the set of all positive integers smaller
than k + 1 by Nk.

3 Fuzzy Voronoi diagram for fuzzy points

In this section, we define the Voronoi diagram for a fuzzy discrete set of sites.
For this purpose, we first extend the definition of the Voronoi cell to the fuzzy
Voronoi cell. Based on this definition we can define the fuzzy Voronoi diagram.

Definition 1 Let P̃ be a discrete fuzzy subset of R
2 and let p̃ ∈ P̃ . The fuzzy
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Voronoi cell of p̃ is shown by Ṽ (p̃) and is defined as follows:

Ṽ (p̃) =
{
(x, χP̃ (p))

∣∣∣∀q̃ ∈ P̃ [d(x, p) ≤ d(x, q)]
}

. (7)

Definition 2 Let P̃ be a discrete subset of R
2, p̃ ∈ P̃ and (x, α) be a boundary

member of Ṽ (p̃). (x, ϕ) will be a member of the fuzzy Voronoi diagram of P ,
shown by Ṽ (P̃ ), in which

ϕ = 	
(x,α)∈Ṽ (p̃)∧p̃∈P̃

(α). (8)

	 could be any t-norm and is selected based on the application.

Theorem 1 The non-fuzzy image of the fuzzy Voronoi diagram of a fuzzy set
of points is the Voronoi diagram of the non-fuzzy image of the set of points.

Proof: Let x̃ = (x, ϕ) be a member of the fuzzy Voronoi diagram of P̃ (ϕ > 0).
So x̃ is a member of the boundary of at least two Voronoi cells. Let p̃1, · · · , p̃k

be the sequence of all such sites. According to Definition 1:

∀i ∈ Nk ∀q̃ ∈ P̃ [d(x, pi) ≤ d(x, q)]

=⇒ ∀i ∈ Nk ∀q ∈ P [d(x, pi) ≤ d(x, q)]

=⇒ ∀i ∈ Nk [x ∈ V (pi)]

=⇒ x ∈ V (P ).

To prove the reverse, suppose x is a member of V (P ). So there must exist sites
p1, · · · , pk (k ≥ 2) such that x belongs to the boundaries of their Voronoi cells.
By the definition of the Voronoi cell and Definition 1, one can see that, ∀i ∈
Nk

[
(x, χP̃ (pi)) ∈ Ṽ (p̃i)

]
and by Definition 2, (x,	(x,α)∈Ṽ (p̃)∧p̃∈P̃ (α)) ∈ Ṽ (P̃ ).

Also we know

∀i ∈ Nk [χP̃ (pi) > 0]

=⇒	(x,α)∈Ṽ (p̃)∧p̃∈P̃ (α) > 0

=⇒χP̃ (x) > 0.

So ∀x ∈ R
2

[
x ∈ V (P ) ⇐⇒

(
∃α > 0 (x, α) ∈ Ṽ (P̃ )

)]
.

4 Computing the fuzzy Voronoi diagram of a fuzzy set of points

Regarding Theorem 1 we can compute the fuzzy Voronoi diagram of a fuzzy set
of points easily. We can compute the classic Voronoi diagram for the non-fuzzy
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image of the set of sites by Fortune’s algorithm, and then we can compute the
degree of membership for each line segment in O(1). Because each line segment
is a part of the boundary of two Voronoi cells, computing the t-norm will cost
O(1) time. Also for each Voronoi vertex we should compute the t-norm for
three sites (the points are in general position). So the total time cost of the
algorithm would be equal to the time cost of Fortune’s algorithm, which is
O (n log n).

5 Fuzzy Voronoi diagram for fuzzy circles

In Section 4, we introduced an algorithm for computing the fuzzy Voronoi
diagram of a fuzzy set of points. In this section, we extend the definition of
the Voronoi diagram to cover a larger set of objects, not only a set of points.
Suppose the members of the set of sites to be sets. This means that each site is
a set of points which can be any geometric objects, such as circles, rectangles,
etc.

This extension of the Voronoi diagram to non-fuzzy objects is studied in many
researches, e.g. [3] and [4]. But all these works provide the non-fuzzy (stan-
dard) Voronoi diagram. The Voronoi diagram of a set of fuzzy objects is not
much similar to its non-fuzzy version. To clarify the difference, consider the
following example. Assume that we have only two sites both of which are cir-
cles with equal radii. Also, both have continuous characteristic functions which
converge to zero at the boundary of the circles. Let us check what the non-
fuzzy Voronoi diagram for the non-fuzzy image of these sites would be like.
It is clear that the diagram would be the bisector of the line segment joining
their centers. But if we want to convert it to the fuzzy version, like previous
sections, we will see that the degree of membership of this line’s points in the
diagram would be zero because their membership degree is computed from
points whose membership degree is lower than any ε > 0 (according to the
continuity assumption of the membership functions).Therefore, the line is not
part of the diagram!

The problem occurs because the Voronoi diagram of fuzzy objects has been
created only using the boundaries, while it must be created using all points of
sites and according to their degree of membership. If we consider all points and
their membership degrees, as we will show later the fuzzy Voronoi diagram of
two such fuzzy circles is similar to Figure 1.

Definition 3 Let P be a finite family of fuzzy subsets of R
2 and let x ∈ R

2.
We define NP (x) as the set of the nearest neighbors of x in P .

NP (x) = {p̃ ∈ P |∀q̃ ∈ P ∃ỹ ∈ q̃ ∃ỹ′ ∈ p̃ [d(x, y) ≥ d(x, y′)]} . (9)
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Definition 4 Let P be a finite family of fuzzy subsets of R
2 and let x ∈ R

2. x
is a member of the fuzzy Voronoi diagram of P , shown by Ṽ (P ), if |NP (x)| > 1.
In other words, x is in the diagram if and only if it has at least two nearest
neighbors in P . The degree of membership of x in Ṽ (P ) is defined as follows:

χṼ (P )(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥
p̃,q̃∈NP (x)

p̃ �=q̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sup
ỹ∈p̃,ỹ′∈q̃

d(x,y)=d(x,y′)

	 (χp̃(y), χq̃(y
′))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |NP (x)| > 1

0 , |NP (x)| = 1

(10)

Definition 5 A fuzzy circle is a fuzzy subset of R
2, say C̃, if there exists a

disk D ⊂ R
2 which satisfies the following properties:

• D contains all points of C (C ⊆ D).
• In any open neighborhood of a boundary point of D, there exists at least one

point of C.

∀x ∈ ∂D ∀ε > 0 ∃p ∈ C [d(x, p) < ε] . (11)

Also we define the center of this fuzzy circle as the center of D (D is the
closure of C and so it is unique).

Note that if we remove the second condition from Definition 5, any bounded
fuzzy subset of R

2 becomes a fuzzy circle. Because any bounded subset of R
2

can be covered by a disk.

Let us see which points of R
2 can form the boundary of this kind of Voronoi

diagram. In this paper we assume that all circles have the same radius (denoted
by r) and the distance between any two circles is greater than their diameter.
In the first step we check only two sites, then we extend it to a finite family
of sites. Consider P =

{
Ã, B̃

}
in which Ã and B̃ are two fuzzy circles with

centers a = (ax, ay) and b = (bx, by), respectively. Let p be a point in R
2. p is

in V (P ), with some membership degree, if and only if there exist points a′ ∈ A
and b′ ∈ B such that p is on the bisector of the line going through them. In

Fig. 1. Fuzzy Voronoi diagram of two fuzzy circles.
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other words, p is in V (P ), with some membership degree, if and only if there
exists a circle C with center p such that it intersects both A and B. So the
boundary of V (P ) is formed by the centers of circles that intersect both A and
B only at one point such that one lies inside and the other one lies outside
the circle. So

p ∈ ∂V (P )

⇐⇒ [d(p, a) + r = d(p, b) − r] ∨ [d(p, a) − r = d(p, b) + r]

⇐⇒|d(p, a) − d(p, b)| = 2r

Therefore, the boundary of this diagram would be a hyperbola. If we use
symbols α, β and c for (ax + bx)/2, (ay + by)/2 and d(a, b)/2, respectively, and
assume a and b to be on a horizontal line, with some simple computation one
can see that the formula of the hyperbola is:

(x − α)2

r2
− (y − β)2

c2 − r2
= 1. (12)

Moreover, we can conclude that the Voronoi cell of Ã is the interior of the
branch of hyperbola whose focus is a (denoted by VB(A)). Generally, if P =
{C̃1, . . . , C̃n}, for each site C̃i ∈ P we have:

V (C̃i) =
⋂

j∈Nn\{i}
VCj

(Ci) (13)

Let C̃i ∈ P be a fuzzy circle. We denote by Hi,j that branch of the hyperbola
formed by Ci and Cj whose focus is the center of Ci. Also we denote HCi

=
{Hi,j}j∈Nn\{i}. With these symbols we can see that V (C̃i) is equal to the
intersection of the interiors of the members of HCi

. An example is shown in
Figure 2. Note that if |P | = 2, obviously the boundary of the diagram is
H1,2 ∪ H2,1. So, from now on, we address the cases of more than two sites.

Each hyperbola whose one branch is Hi,j can be parameterized with a single
variable t (using cosh and sinh functions) in a way that when t increases, its

Fig. 2. A site and its Voronoi cell
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corresponding point on Hi,j moves round Ci clockwise. For each Hi,j ∈ HCi

we put its intersections with other members of HCi
into a list Li,j, which is

sorted in ascending order with respect to parameter t. Also, by L∗
i,j denote

Li,j with −∞ and +∞ added to the beginning and the end, respectively. We
refer to the members of L∗

i,j as event points.

6 Algorithm for computing the boundary of the fuzzy Voronoi di-
agram of fuzzy circles

For each site C̃i ∈ P , we compute its boundary, which is denoted by Bi. First,
we compute L∗

i,j for all i �= j ∈ Nn. We have used the following Mathematica
command to find the intersection points:

simplify[Solve[{x^2/a^2-y^2/b^2 == 1,

c*x^2+d*x*y+e*y^2+f*x+g*y+h == 0}, {x, y}]]

We start with the nearest point p0 in
⋃

j∈Nn
Li,j and set Bi =< p0 >. Then

we start a loop. In each iteration we choose the last point p in the sequence
of Bi. Consider T = {Hi,j|p ∈ Hi,j}. Then we select the Hi,j ∈ T that is the
nearest one to the center of Ci in the interval between p and its next event
point in L∗

i,j (p is in L∗
i,j). Let Hi,j be the selected hyperbola branch. We add

Hi,j and the next event point for p in L∗
i,j into Bi. We repeat this procedure

until we reach p0 or +∞. If we reach p0, Bi will be the boundary of Ci. If we
reach +∞, it is sufficient to follow the same procedure starting at p0 but in
counterclockwise direction until we reach −∞ and join the two sequences.

7 Time complexity of the algorithm

The total running time of the algorithm is O(n3 log n) as described below.
For a set of n sites, the preprocess step computes L∗

i,j for all i �= j ∈ Nn. It
computes n(n − 1) lists, each one in O(n) time and then sorts them (which
totally costs O(n3 log n) ). Then for each site:

• Find the nearest intersection, p0, to Ci (costs O(n2)).
• Set Bi =< p0 >
• Until p0 or +∞ is reached (O(n) times)
· Find the next hyperbola branch and the next point (costs O(n)).
· Add both to the end of Bi.

• If Bi ends with +∞, until −∞ is reached (O(n) times)
· Find the previous hyperbola branch and the previous point (costs O(n)).
· Insert both into the beginning of Bi.

8



8 Conclusion

In this paper, we introduced the fuzzy Voronoi diagram and studied it for
point and circle sites and showed that these diagrams can be computed in
O(n log(n)) and O(n3 log(n)) time, respectively. Some other works can still be
done on this diagram and related topics, some of which are:

• Computing the degree of membership of interior points for the fuzzy Voronoi
diagram of circles

• Studying the dual of this diagram which may lead to the extension of Delony
triangulation

• Studying the fuzzy Voronoi diagram for other shapes
• Studying the fuzzy Voronoi diagram with other metrics or in higher dimen-

sions
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