
Data-aware connectivity in mobile replicated systems

João Barreto João Garcia Luı́s Veiga Paulo Ferreira
INESC-ID / Technical University of Lisbon

joao.barreto@inesc-id.pt jog@gsd.inesc-id.pt luis.veiga@inesc-id.pt
paulo.ferreira@inesc-id.pt

ABSTRACT
Optimistic replication is a fundamental technique for sup-
porting concurrent work practices in mobile environments.
However, due to sudden and frequent transitions to weakly
connected situations, user experience when accessing repli-
cated data is poor and discourages users from using the repli-
cation service. While most research on optimistic replication
assumes weak connectivity as a fixed imposition of the envi-
ronment, weak connectivity often results from a user option
of disconnecting available connections in order to reduce bat-
tery and/or monetary cost.

This paper argues that such a choice can be considerably
optimized if driven by the system, rather than the user. For
that, we propose to rely on the accurate knowledge the sys-
tem can have about the replicas it stores, along with the
information about the available connections and the corre-
sponding costs. We introduce the notion of data-aware con-
nectivity, where the system regulates which available con-
nections to enable, with the intent of (i) ensuring acceptable
quality of accessed replicated data, (ii) at minimal connec-
tivity cost. We propose a system for data-aware connectiv-
ity, which integrates well with existing operating systems
and replicated data infra-structures.

Keywords
D.4.2 Storage Management, D.4.4 Communications Man-
agement

1. INTRODUCTION
Optimistic replication [19] is a fundamental technique for

supporting concurrent work practices in mobile environments.
As collaboration through these environments becomes pop-
ular (e.g. by using asynchronous groupware applications, or
distributed file or database systems, and, in the future, col-
laborative wikis), the importance of effectively supporting
access to local consistent replicated data grows.

Optimistic replication enables replica access without a
priori synchronization with the remaining distributed sites,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE’09, June 29, 2009, Providence, RI, USA.
Copyright 2009 ACM c© ACM 978-1-60558-712-7/09/06 ...$5.00.

therefore operating anytime and anywhere. However, such
a high availability does not necessarily guarantee acceptable
quality of the data that users access. Whereas, in cases
of strong connectivity, optimistic replication can seamlessly
behave like pessimistic replication, providing access to fresh
data and committing local updates almost immediately to
the remaining remote replicas, the same does not hold in
situations of poor or no connectivity. In the latter case, the
current value of some replicas may be out-of-date or con-
flicting with the values that other distributed replicas hold.

Unfortunately, when one considers a personal mobile de-
vice that travels together along with its owner, the transi-
tion from one connectivity extreme to the other can be very
sudden and frequent. For instance, when the user leaves
his office building to travel to another building where she
will have a work meeting; or when the user disconnects the
UMTS antenna during a train trip in order to save battery.

Not surprisingly, the overall user experience when access-
ing replicated data can be very uncomfortable and discour-
aging. Users accessing replicated data in weakly connected
situations will often face disruptive cases such as later learn-
ing that their work was aborted because it was performed
upon old values (and a more recent, conflicting version had
already committed elsewhere). In reaction, most users will
either: (i) not access the optimistic replicas when they sense
that connectivity is not sufficiently high; or (ii) will spend
considerable battery and/or money (e.g. through expen-
sive public WI-FI hotspots or UMTS connections) to enforce
strong connectivity in longer periods. Nevertheless, none is
a good option. The former discards the inherent high avail-
ability of optimistic replication. While the latter tends to
have a high battery/monetary cost for connectivity that is
often stronger that effectively needed.

To the best of our knowledge, all research on optimistic
replication for weakly connected environments assumes such
situations of weak (or no) connectivity are fixed impositions
of the environment; hence, their goal is to ensure the highest
quality of service, despite such an assumption [19].

However, connectivity in today’s mobile networks is not as
immutable as commonly modeled. Most mobile devices are
capable of networking through a number of network tech-
nologies (such as IrDA, Bluetooth, WiFi or UMTS) to dif-
ferent available networks that may be available at each in-
stant, with distinct ranges and bandwidths, but also differ-
ent costs in terms of battery consumption or access price.
Therefore, most situations of poor or no connectivity are
not inevitable. Rather, they result from an explicit user
choice of disabling better connectivity options for lower bat-

1

Figure 1: System architecture, based on the qmon
and q-regulator daemons.

tery/monetary costs.
In this paper we argue that such a choice can be consid-

erably optimized if taken by the system, rather than by the
user, with the main intent of: (i) ensuring acceptable qual-
ity of accessed replicated data, (ii) at minimal connectivity
cost. We call such a principle data-aware connectivity. This
paper proposes a system for supporting data-aware connec-
tivity. It relies on the accurate knowledge that local replica-
tion managers can provide about their replicas, along with
information about the available connections and the corre-
sponding costs. Furthermore, our system is generic enough
to be applicable to a large class of state-of-the-art replicated
systems; not only optimistic but also pessimistic ones.

Figure 1 depicts the overall architecture, which is based
on two central mechanisms. A quality monitor continuously
estimates an indicator of the current quality of each replica
that is accessible in the local device. Such a measure can
guide the user when deciding which task (hence, which work-
ing set to access) to pursue at a given moment, encouraging
the user to carry out the task that, in the current connectiv-
ity level, accesses data with higher quality. Such a measure
takes aspects such as recent update history, data freshness
and accessibility to other replicas into account.

In cases where the user decides to access data with in-
sufficient quality, a connectivity regulator helps her obtain
enough connectivity to push data quality of a given working
set to a desired level. This mechanism relieves the user from
the responsibility of deciding which connections to enable,
and for how long to keep them active. Instead, using knowl-
edge about available potential connections and their cost,
our mechanism tries, at each moment, to keep as few and
as cheap connections as possible while achieving the desired
data quality of the current working set.

2. REPLICA QUALITY
Ideally, when some user accesses a given replica, the in-

volved data should be fresh (meaning the it reflects the most
recent change to any replica of the same object), consistent
with the other replicas (according to some reasonable con-
sistency criterion, such as sequential consistency [16]), and
any writes that the user issues on that replica should rapidly
commit.

Of course, in weakly connected environments, we are not
always able to ensure such requirements. Updates may take
long to propagate to all replicas; hence, replicas that are
poorly connected to replicas issuing updates will not yield
the freshest value of the object. Furthermore, in some cases,
yielding the most recent update does not mean that the
resulting value is consistent system-wide, as other older,
yet conflicting, updates may eventually commit; therefore
causing the latest (freshest) update to abort. Finally, cur-
rent connectivity to other replicas strongly affects a replica’s
ability to commit the tentative updates that its users is-
sue. In situations where a replica has good connectivity to
enough replicas (for instance, a quorum of replicas, in case
of quorum-based protocols), the optimistic replication pro-
tocol will behave very similarly to a pessimistic protocol: an
update will commit almost immediately, after the connected
replicas exchange a small number of messages (assuming the
probable case where no concurrent updates occurred in such
a short period). In contrast, a replica in a remote partition
will only be able to commit updates once connectivity to the
main partition exists, which can take a long time to happen.
Moreover, during such a long period, the probability of con-
flicting updates that commit concurrently with the former
update (hence forcing it to abort) grows.

Therefore, when considering different replicas (of different
objects) that may exist in some site, there is an implicit no-
tion of quality of their data. It is determined by the above
three dimensions: freshness, consistency and possibility of
rapid commitment. Among others, a number of criteria con-
tribute to such dimensions of quality:

1. Time since last synchronization (possibly epidemically)
from every other replica:

A lower value means that the replica reflects more re-
cent updates, hence it is fresher.1

2. Number of local tentative updates:

Since tentative updates are not guaranteed to be con-
sistent, the more tentative updates affect the current
replica value, the higher its divergence with the value
that is currently consistent system-wide.2

3. Commit weight of currently missing from accessible
replicas:

Different commitment protocols rely on different weight
distributions for agreeing on commitment of each new
update (e.g. primary commit [11, 22] assigns full weight
to a differentiated replica, and no weight to the remain-
ing replicas; whereas weighted voting protocols [18, 10]
distribute weight by a larger set of replicas, according
to some coterie [9]). Naturally, the higher the total
weight of the set of currently accessible replicas, the
more probable that an issued update will commit suc-
cessfully and rapidly.

4. Number of known concurrent updates:

Issuing an update and having it committed depends
strongly on the current update contention on the ob-
ject. Evidently, the more tentative updates are known
to be pending for commitment, the less probable it

1This is similar to the staleness criterion in TACT [23].
2Equivalent to TACT’s order error [23].

2

is that a newly issued update that conflicts with the
former will commit (and cause the former to abort).

5. Recent update activity by other replicas to the object:

By the locality principle [6], we know that, if an object
has been updated recently, it is probable that it will
be written again in a close future. Hence, even when a
replica is not aware of other concurrent tentative up-
dates, the later other replicas issued tentative updates
on the object, the more likely concurrent updates are
to exist. Hence, for the same reasons as above, recent
update activity by other replicas means a lower proba-
bility of committing new tentative work that the local
replica may issue.

Each criterion above defines a dimension of the complex
notion of replica quality. In specific contexts, our model can
be transparently enlarged with further criteria (e.g. numer-
ical error [23]).

The above criteria deserve two remarks. Firstly, among
other factors, all the above criteria depend on the avail-
able connectivity to other replicas. If some replica currently
exhibits bad indicators regarding any of the above criteria,
that can be solved by increasing the connectivity of the local
replica to a sufficiently larger set of replicas (and, evidently,
letting the underlying replication protocol disseminate and
commit updates through such connections).

As a second remark, most of the criteria are relatively
intuitive to the attentive user. For example, consider a
user sharing some files with other colleagues through a CVS
repository. That user will often tend to work only when the
CVS server is accessible (therefore maximizing criterion 3)
and, from time to time, will commit her updates in order to
minimize criterion 2.

However, the user estimate on replica quality can be very
error-prone for a number of reasons. Firstly, it depends
on events that are not always visible to the human user
(e.g. events such as temporary disconnection of the CVS
server, or other user committing concurrent work on the
CVS server, are not immediately visible to the user). In
contrast, such events are more easily trackable by the un-
derlying replication layer.

Secondly, some criteria of replica quality are too complex
to evaluate by the human user. For instance, in weighted
voting replicated systems, knowing if the currently accessi-
ble network partition has sufficient weight to hold a quorum
is not trivial, as intricate weight distributions may be em-
ployed [9], which can vary dynamically [10]. Thirdly, replica
quality is rarely valuable when evaluated for individual repli-
cas. Most user tasks require accessing sets of replicas, each
of which with possibly different quality indicators. Deter-
mining which is the working set quality regarding a given
user task requires evaluating each object that is expected to
be accessed in the context of the task. A user estimation
of such aggregate quality will frequently amplify errors, or
neglect poor-quality objects whose quality affects the overall
working set quality.

Hence, it should be the underlying replication layer, not
the human user, to quantify replica quality, providing much
more accurate (hence, valuable) estimates to the user. In
the next sections we will discuss how the system can quan-
tify replica quality and make users aware of it.

3. MONITORING REPLICA QUALITY
In order to maintain and expose replica quality in some de-

vice, each device runs a single quality monitor, called qmon.
qmon is responsible for monitoring the quality of the local
replicas. For simplicity, hereafter we focus on the case of
where replicated objects are files.3

A replica can correspond to a regular local file (in other
words, a single-replica file), or to a logical file that is repli-
cated at other sites. Furthermore, each replica that qmon
monitors can be maintained by one of different file systems
(either local or replicated).

Using qmon is simple. When a local file system volume is
mounted, it should notify qmon of the existence of that vol-
ume, identifying it with a locally unique identifier. In result,
qmon replies with a set of pointers to callback functions that
should be called by the local file system running the volume
when certain events occur. Table 2 presents such functions,
which we will describe next.

If this is the first time that a volume registers its pres-
ence to qmon, then it should tell qmon about the replicas
currently stored in the volume by calling registerReplica.
This function receives a globally unique file identifier (which
identifies the logical file, which can be replicated at one or
more replicas) and a replica identifier, which must be unique
among the set of replicas of the logical file. The fact that
qmon identifies replicas in such a location-independent man-
ner allows the replica to freely change its location and/or
name within the volume directory tree, without the need to
notify qmon. Furthermore, a third parameter of register-
Replica includes information about the current set of repli-
cas of the logical file. More precisely, for each such replica,
it includes its identifier along with the network address of
the site that maintains the replica (e.g. its IP address) and
the replica’s weight in the commitment protocol. Such infor-
mation will allow qmon to reason about connectivity among
the replica set when determining the corresponding quality
indicators.

qmon stores the parameters passed to registerReplica per-
sistently, associated to the volume’s identifier. Hence, when
some previously registered volume is unmounted and then
mounted again, qmon can simply recover the replica state
associated with such a volume.

Such a state evolves as each volume creates or discards
replicas (calling registerReplica and unregisterReplica, re-
spectively). Furthermore, when the volume knows of changes
to some replica set, or to changes to the weight distribution
among such a set, it can update such information by calling
updateReplicaInfo.

The volume should also notify qmon of other events that
can affect replica quality. Namely, when some synchro-
nization from remote replicas occurs, hasSynchronized tells
qmon that the local replica is now up-to-date relatively to a
(possibly partial) set of remote replicas. Furthermore, when
the number of tentative updates that the current replica
value reflects changes (e.g. when a new update is issued lo-
cally; when a tentative update is received from other replica
and applied to the local value; or when local tentative up-
dates either commit or abort), function setTentativeLocal-
Updates is called to notify qmon. Finally, when the local

3As it will become clear next, this is without loss of gener-
ality, as the ideas proposed in the following sections can be
transparently applied to other kinds of replicated objects.

3

Function Description
registerReplica(fileId, repId, replicaListInfo) Registers a new local replica of a file.
updateReplicaInfo(fileId, replicaListInfo) Updates replica information list for a given file.
unregisterReplica(fileId, repId) Un-registers a replica.
hasSynchronized(fileId, repId, replicaIdList) Replica has become fresh with regard to a set of remote replicas.
setTentativeLocalUpdates(fileId, repId, numberOfUpdates) Sets number of tentative updates that local replica value reflects.
concurrentUpdatesKnown(fileId, repId, replicaIdList) Other replicas have issued concurrent updates.
qualityQuery(fileId, repId) Returns current replica quality.

Figure 2: Quality monitor API.

replica becomes aware of concurrent updates that the for-
mer’s value does not currently reflect (either because they
have not yet been received, or because they are conflicting
with the local tentative value), qmon is also notified (func-
tion concurrentUpdatesKnown).

As long as local volume managers provide the above input
through the API, it is straightforward for qmon to calculate
the quality vectors (along the 5 dimensions that Section 2
describes) for each replica it monitors.

It is out of the scope of this paper to describe how ex-
isting state-of-the-art replicated systems can call the above
API functions to keep qmon up-to-date. Nevertheless, it is
easy to show that the API is generic enough to fit a large
class of replicated systems, both optimistic and pessimistic.
Moreover, files from non-replicated file systems can also be
included into the scope of qmon: such volumes simply need
to register their files as single-replica files, no calls to other
functions in the API are needed in this case.

3.1 Exposing replica quality to users
A 5-dimension notion of replica quality is not user-friendly.

In order to be easily understood by regular users, we lin-
earize the 5-dimension vector to a much more readable rep-
resentation as a scalar value.

Different formulae can be used to linearize the 5-dimension
vector. In the current version, we consider a simple formula
where each dimension is first converted to a binary value.
Value 0 means that the indicator for the given dimension is
above some threshold, pre-defined for that dimension, while
value 1 means the opposite. For instance, regarding the
dimension number of local tentative updates, replicas with
more local tentative updates than a pre-configured thresh-
old (e.g. 3) will have a 0 value on that dimension, or 1
otherwise. Having converted each dimension to a binary
value, we then sum each such component and normalize the
corresponding result in order to obtain a scalar that may
range from 0% (meaning very poor replica quality) to 100%
(meaning excellent replica quality).

Such a scalar value can then be presented to the user
in a graphically intuitive fashion, by converting each value
to a range of colors (e.g. from red, meaning 0%, to green,
meaning 100%), or to other intuitive symbols. Figure 3 illus-
trates a possible way to integrate quality feedback on typical
graphical user interfaces.

For instance, in directory browsers, the icon represent-
ing a given replica in the current directory can be enriched
with a symbol denoting its current quality (Figure 3). The
interested user may then obtain more detailed information
about the causes of such a color value by explicitly solicit-
ing the system for further details (e.g. by asking for a File
Properties window).

The notion of replica quality can also be applied to work-
ing sets, i.e., sets of files logically related, either by belonging
to the same user, being included in a project (e.g., a book),
having been manipulated by the same application (i.e., a
task working set), or simply by location (e.g., a directory).
Naturally, the replica quality of the working set must take
into account the quality of each individual replica. However,
they must be aggregated into a single value that represents
the entire working set.

The user can choose different quality-of-service enforce-
ment to working-set replica quality by deciding how aggre-
gate values are calculated. The most demanding would be
the aggregate quality being the minimum quality of the com-
prising replicas. This has the effect of devaluing an entire
working set because of a single replica with lower quality
and, therefore, the system will be continuingly attempting
to improve the quality of replicas with lowers quality.

A more best-effort approach would be to consider an arith-
metic average of replicas’ quality. This way, a few replicas
with lower quality will not hinder significantly the aggre-
gate quality of, e.g., a directory. An intermediate approach
can be devised by employing geometric average of replicas’
quality as the aggregate working-set quality. This promotes
working-sets comprised of replicas with more evenly bal-
anced individual replica quality.

In task-based systems where the working set of a task
is known (beforehand or based on use) [7, 8], the replica
quality of members of the working set can be aggregated to
represent the replica quality of the whole task.

The example in Figure 3 follows the same approach that
popular graphical clients of remote revision control systems
(e.g. Tortoise CVS [4]) already employ to present some
status about local replicas. In practice, such an approach
is possible in most graphical operating systems by having
qmon intercept operating system events such as when file
opening and closing, and windows focus changes.

We believe that providing users with such a continuously
up-to-date quality feedback can substantially improve their
experience when accessing replicated data. Empirical evi-
dence from collaborative applications shows that users typi-
cally have multiple pending tasks to work on [5]. This means
that, considering a given time period, the working set of a
given user is actually dictated by her (possibly arbitrary)
choice of which tasks she decided to carry out in that pe-
riod.

This way, when facing the choice between two or more
tasks to pursue at a given moment, each of which involving
a distinct set of replicas, possibly with distinct qualities,
such a feedback will encourage the user to select tasks which
will manipulate fresher data and which will most likely have
their work successfully committed.

4

Figure 3: Illustration of qmon integrated with Windows Explorer. The user is encouraged to work on replica
architecture.txt, which currently has excellent quality, and delay its work on other replicas until they recover
an acceptable quality level.

4. REGULATING CONNECTIVITY
So far, we have seen how the system can improve user

experience by providing it with an estimate of the quality
of the replicas she accesses. The user can then react to such
estimate, in at least two ways. When the user is about to
opt between more than one task, he can filter out those that
currently have unacceptable working set quality estimates.
Perhaps more interestingly, if the user finds that no task
has acceptable working set quality, they she can increase
connectivity (possibly paying a monetary or energy price)
until she obtains the desired quality.

When the second case is system-driven, we call it data-
aware connectivity regulation. An easy way to define data-
aware connectivity regulation is by analogy to a thermostat.
Here, rather than a target temperature, the user sets up a
desired minimum level of quality for a set of replicas of inter-
est. Accordingly, the system automatically tries to contin-
uously satisfy such a request by dynamically enabling only
a set of available connections that ensures the former with
minimal cost.

The following sections start by describing the basic mech-
anism to regulate data-aware connectivity, and then discuss
how to improve it with replica access prediction techniques.

4.1 Basic data-aware connectivity regulation
Data-aware connectivity regulation is handled by a q-regu-

lator daemon process, as illustrated in Figure 1. By in-
teraction with the operating system’s network management
services, this component continuously keeps track of (i) the
network adapters installed on the local device and, for each
adapter that is currently enabled, (ii) the available connec-
tions that are available from that adapter.

Associated with each individual adapter and each connec-
tion, q-regulator maintains a bi-dimensional cost vector. Its
first value denotes the current battery cost of the adapter or
connection, while the second value corresponds to its mon-
etary cost. For each connection, its effective cost vector is

given by the sum of the connection’s cost vector and the
cost vector of the adapter through which the connection is
established. Normally, cost vectors associated with adapters
will have a null monetary cost, and a positive battery cost;
whereas connections will have null battery cost, and null or
positive monetary costs.

As an example, consider the case of a user carrying a lap-
top that enters the range of a paid WIFI hot-spot. The
laptop’s WIFI adapter will, for example, have a cost vec-
tor of 〈10, 0〉, whereas the connection to the hot-spot will
have a cost vector of 〈0, 25〉. Since actually connecting to
the hot-spot requires using the WIFI adapter, hence spend-
ing the corresponding battery power, and paying for each
connection minute, the effective cost vector will be 〈10, 25〉.

Since the operating system does not normally provide (or
even know about) information on cost vectors, q-regulator
relies on the user to explicitly provide such information.
More precisely, the first time q-regulator detects an adapter
or a connection, it allows the user to input the correspond-
ing cost vector. In the absence of information from the use,
q-regulator assumes a conservative default cost vector, con-
figurable by the user.

As a future direction, it would be interesting to devise
means of automatically obtaining cost information. Not
only would this relieve the user from such task, but it could
also allow more accurate values. For instance, most wire-
less adapters consume variable battery power, depending on
variables such as signal range and the transmission error
rate (determined by variable environmental factors such as
noise in the room where the mobile device is). If cost in-
formation was provided by the adapter, rather than by the
user, q-regulator would be able to instantaneously and ac-
curately learn about each fluctuation in battery cost as the
environment changes.

The user controls q-regulator via two parameters. A first
one is target replica quality, a value denoting the minimum
quality value that the user expects from any replica that any

5

Algorithm 1 Two-phase connectivity upgrade algorithm.

1: Let curCost be the effective cost vector of the currently active
connections.

2: /* Connection Phase */
3: for all Installed adapter, adp, such that cost(adp) + curCost <

maxCost do
4: if adp is disabled then
5: Enable adp.
6: curCost = curCost + cost(adp).
7: for all Connection, con, available through adp such that

cost(con) + curCost < maxCost do
8: Connect con.
9: curCost = curCost + cost(con).
10: if quality(file to open)< target replica quality then
11: Break.
12: end if
13: end for
14: end if
15: end for
16: if quality(file to open)< target replica quality then
17: Close opened connections and enabled adapters.
18: Return error.
19: end if
20: /* Disconnection Phase */
21: for all Active connection, actCon, in non-increasing order of

effective cost do
22: Disconnect actCon.
23: if quality(open file set)< target replica quality then
24: Reconnect actCon.
25: else
26: curCost = curCost− cost(actCon).
27: if Adapter, adp, of actCon has no other active connections

then
28: Disable adt.
29: curCost = curCost− cost(adp).
30: end if
31: end if
32: end for

application opens. A second parameter is maximum cost,
the maximum vector cost that the user lets q-regulator spend
to achieve the target replica quality. Essentially, the respon-
sibility of q-regulator is to enable as few connections and
adapters as possible (whose aggregate effective cost must be
lower than the maximum cost parameter) such that, for the
current set of open files of user, their quality is at higher or
equal to the target replica quality.

Hence, besides information about the available adapters
and connections (and corresponding cost vectors) and the
above parameters, q-regulator keeps track of the set of open
files of the current user. q-regulator monitors such a set
by intercepting openFile and closeFile calls to the local file
systems’ API. When q-regulator learns of a newly opened
replica (i.e. when it intercepts a call to some openFile func-
tion), it queries qmon for information about such a replica.
If qmon has a registered entry about the replica and its cur-
rent quality value satisfies the target replica quality param-
eter, then q-regulator lets the intercepted call to openFile
complete normally.

If otherwise, q-regulator determines that the file to open
has insufficient quality, it triggers an algorithm that tries
to upgrade connectivity until the desired quality is reached.
A possible solution is to follow the two-phase approach in
Algorithm 1.

The two-phase connectivity upgrade algorithm starts by
eagerly opening inactive connections (and, if necessary, en-
abling the corresponding adapter), one by one, until it ob-
tains enough connectivity to ensures the intended quality
value for the replica being opened (lines 3 to 15).

Of course, when opening every available connection is not

sufficient to ensure the algorithm’s goal, it returns to the
original connectivity state and returns an error (line 18.
q-regulator redirects such an error to the application that
called the openFile whose interception triggered the con-
nectivity upgrade algorithm, thus not allowing the replica
to be opened.

The user can react to such an error in two ways. The user
can increase the maximum cost parameter and retry open-
ing the replica, hoping that the system will now be able
to obtain enough connectivity to satisfy target replica qual-
ity. If, otherwise, the user cannot afford a higher maximum
cost, it can simply disable q-regulator (either for that replica
only or globally), therefore intentionally assuming the risk
of accessing a poor quality replica.

If, otherwise, one or more connections that the first phase
opened accomplished the target replica quality, the second
phase tries to close superfluous connections (lines 21 to 32).
This includes connections that were opened but do not ac-
tually contribute to improve replica quality of the current
set of open replicas. The above algorithm follows a simple
trial-and-error approach, which disconnects each connection
and checks whether the aggregate quality of open replicas
has decreased below the target value. If so, it reconnects
the former.

Since different combinations of connections can attain sim-
ilar aggregate quality values, the algorithm tries to end up
with the combination that yields the lowest overall effective
cost. It tries to accomplish that goal in phase 2, by heuris-
tically disconnecting the most costly connections first (line
21).

Both phases can incur considerable delays, as well as bat-
tery and monetary overheads, since their trial-and-error na-
ture may imply connecting and disconnecting frequently. As
a direction for future work is to study alternatives to such
an approach. A possibility is to devise intelligent estimates
of the attainable changes in replica quality that result from
connecting or disconnecting a given connection, without ac-
tually having to perform such operations. Such estimates
can be based on past experience with such a connection.

Of course, q-regulator ’s action is not exclusive to the mo-
ment where the user opens new replicas. When replicas are
closed, q-regulator runs phase 2 of Algorithm 1, trying to
alleviate the device from the cost of connections that are no
longer necessary to ensure quality of the smaller, remaining
set of open replicas.

Furthermore, even in periods when the set of open repli-
cas remains constant, their quality may fluctuate. Recalling
Section 2, this can, for instance, occur when some remote
replicas become inaccessible, or when the local device learns
of updates issued by inaccessible remote users. q-regulator
keeps track of such dynamic changes to the quality of open
replicas by passing qmon a reference to a callback function
that qmon should call when the quality of any open replica
happens to change considerably. When such a situation oc-
curs, q-regulator reruns Algorithm 1.

4.2 Predictive connectivity regulation
The concept of replica quality can be used not just for

a posteriori decisions as discussed up to now, where users
decide whether to use data based on data quality achieved
beforehand. Replica quality can also be used to a priori to
guide replication updates, if integrated with some mecha-
nism that predicts the user’s working set.

6

More precisely, existing techniques for automated hoard-
ing [21, 15, 14, 11] can continuously supply predictions of the
expected near-future working set of the user to q-regulator.
In turn, q-regulator can then run its connectivity upgrade
algorithm in order to ensure the target replica quality, not
just concerning the currently open replica set, but also the
predicted future working set. This way, in the cases where
the prediction is correct, the delay of the connectivity up-
grade algorithm is hidden by running it ahead of time.

A further step is to integrate our mechanisms with cal-
endar information. Calendar information feeds useful in-
formation into connection prediction. q-regulator can label
locations that their calendars regularly refer with their con-
nectivity properties. Once a reasonably large set of charac-
terized locations is stored, q-regulator can infer future con-
nectivity properties from the locations of future calendar
appointments. Furthermore, for sparsely populated periods
of future calendars, this mechanism can be enhanced by ex-
trapolating past periodic user behavior to the future.

q-regulator takes a configurable amount of past calen-
dar history, and for each future calendar slot calculates the
most likely event based on past periodic occurrences (daily,
weekly, monthly), thereby creating a tentative map of future
activity.

5. RELATED WORK
Replication has been employed in distributed systems nu-

merous times to increase availability, resorting both to pes-
simisticas well as optimistic approaches [19]. Pessimistic
approaches based on locking has been traditionally used in
distributed file systems and database transaction processing.
Optimistic approaches have been applied originally to file
systems and cooperative work applications in mobile scenar-
ios. They aim essentially at providing increased availability
during disconnection periods.

A relevant class of optimistic approaches that includes our
proposed mechanisms are those that try to enforce some
kind of guarantees on replica quality and therefore on user-
experience for application operation (i.e., ensure a minimum
of consistency or bound inconsistency or divergence) be-
yond plain eventual consistency such as offered, e.g., by
Bayou [22], which are discussed next. Such inconsistency
bounding approaches have been employed in web replica-
tion, database transaction processing, and distributed games
in order to increase availability and reduce network band-
width usage. When these bounds are about to be exceeded
regarding a given replica, further updates on the replica are
forbidden or delayed until the replica is made consistent.

The amount of time an object replica is allowed to remain
stale, and still be accessed without it being required to be
refreshed, can be bound by a maximum value in [1], therefore
specifying a real-time guarantee on replica quality. A similar
bound on the number of uncommitted updates allowed to be
applied to a replica is used in order bounding [12], so that
a transaction may be executed faster while being allowed to
dismiss the effects of a bounded number of other preceding
transactions.

TACT [23] integrates the two previous notions with an
additional criteria concerning numeric error, i.e., by bound-
ing the maximum value difference that may be produced
on each replica by applying updates to it, in essence, allot-
ting an update quota to each replica. Numeric error can
be traced back to escrow techniques [13] employed in mo-

bile databases during disconnection periods to ensure later
transaction commitment on reconnection with servers. The
three criteria are combined in the first multidimensional con-
sistency enforcement model described in the literature.

In distributed gaming scenarios, while the strict consis-
tency offered by pessimistic approaches is desirable, the com-
munication costs make it a prohibitive option. To enforce
this on large game scenarios, with dozens/hundreds of servers
and several thousands players would simply bring the whole
system to a halt or, at the very least, hinder game-play
severely. Therefore, many distributed games employ vari-
ants of pessimistic approaches combined with information
regarding players’ position within the game scenario. The
interest management [17] (or locality-awareness) hypothe-
sis states that players are more interested (and are more
subject to influence from) in what takes place on a limited
radius around their current position. This simplification,
somewhat artificially, limits the radius of players’ interac-
tion with others and is taken into account in game design,
rules, scenario, and message routing protocols.

In vector-field consistency [20], optimistic replication, di-
vergence bounding and locality-awareness have been com-
bined not to overcome disconnection (as full connectivity
among servers is mostly implied) but to provide better scal-
ing and game experience. Hence, VFC enables greater (es-
sentially unlimited) interaction radius, while reducing net-
work bandwidth usage. VFC allows game developers or ad-
ministrators to specify for each relevant game entity (player,
enemy, inventory object, team flag, etc.) an approximation
of a vector-field (by analogy with an electrical or gravita-
tional field) that maps a consistency vector (containing con-
sistency degrees) to each position (e.g., a 3D vector) in space
(i.e., game scenario). The consistency field specifies bound
values on time, sequence, and value, inspired partially on
TACT and previous work. Bounds on time and sequence
refer to replica staleness and missing updates, while bounds
value refer to the magnitude (in percentage) of replica diver-
gence produced by earlier updates and/or difference (in per-
centage) to game-related values (game winning score, kills
left, distance to team flag, having a specific object in one’s
inventory, etc.). The vector-field is approximated by con-
centric circular (or rectangular for faster implementation)
consistency zones or regions of increasing radius (or side
size), and also increasing bounds defined in the consistency
degrees. VFC provides graceful degradation in data consis-
tency perceived by each replica as the distance from player’s
position increases, instead of the all-or-nothing approach of
enforcing strict consistency to a limited radius employed in
other game middleware [3, 2]. It provides a multidimen-
sional consistency model inspired by TACT while embody-
ing notions of (spatial) locality-awareness relevant in gaming
scenarios.

Discussing our proposed mechanisms with the related work
presented, both TACT and VFC aim at capturing a notion
of replica quality, albeit indirectly and with different goals.
Existing work ensures replica quality by essentially forbid-
ding access to replicas once the divergence bounds have been
exceeded and until they are obeyed again. In our work,
we have a stronger goal: when replica quality is below the
bounds defined, we attempt to regulate available connectiv-
ity in order to enforce those bounds. Once all connections
are explored and this goal still unattained, only then we for-
bid replica access. Moreover, neither TACT nor VFC try to

7

estimate replica quality in a user-perceivable manner, nor
they include the notion of replica quality applied to working
sets or tasks.

6. CONCLUSIONS
We introduce the concept of data-aware connectivity to

relieve users of having to pay high networking costs or of
having to manually manage network connections in mobile
settings in order to adjust the quality of replicated data.

As discussed, network data quality can be monitored and
adjusted automatically via network connection management
while complying with declarative networking cost restric-
tions. The qmon/q-regulator architecture integrates well
with existing operating systems and replicated data infra-
structures since it only monitors data access operations (qmon)
and executes simple on/off operations on network connec-
tions (q-regulator). This leads to acceptable quality of ac-
cessed replicated data at minimal connectivity cost.

As future work, we plan to implement a prototype of the
mechanisms introduced in the paper, and to use them in
personal devices running relevant replicated systems. Such
a prototype will enable measuring the overheads of this ad-
ditional layer, regarding performance, network consumption
and memory requirements.

7. REFERENCES
[1] R. Alonso, D. Barbara, and H. Garcia-Molina. Data

caching issues in an information retrieval system.
ACM Transactions on Database Systems (TODS),
15(3):359–384, 1990.

[2] R. Balan, M. Ebling, P. Castro, and A. Misra. Matrix:
Adaptive middleware for distributed multiplayer
games. ACM/IFIP Middleware Conference, 2005.

[3] J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and
C. Amza. Locality aware dynamic load management
for massively multiplayer games. Proceedings of the
tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 289–300, 2005.

[4] T. CVS. Tortoisecvs. http://www.tortoisecvs.org/,
2009.

[5] M. Czerwinski, E. Horvitz, and S. Wilhite. A diary
study of task switching and interruptions. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 175–182. ACM
New York, NY, USA, 2004.

[6] P. J. Denning. The locality principle. Commun. ACM,
48(7):19–24, 2005.

[7] A. Dragunov, T. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, and J. Herlocker. TaskTracer: a
desktop environment to support multi-tasking
knowledge workers. In Proceedings of the 10th
international conference on Intelligent user interfaces,
pages 75–82. ACM New York, NY, USA, 2005.

[8] J. Garcia and P. Ferreira. Operating system support
for task-aware applications. In Conference on Mobile
and Ubiquitous Systems, June 2006.

[9] F. P. Junqueira and K. Marzullo. Coterie availability
in sites. In DISC, pages 3–17, 2005.

[10] P. Keleher. Decentralized replicated-object protocols.
In Proc. of the 18th Annual ACM Symp. on Principles
of Distributed Computing (PODC’99), 1999.

[11] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. In Proceedings of
13th ACM Symposium on Operating Systems
Principles, pages 213–25. ACM SIGOPS, Oct. 1991.

[12] N. Krishnakumar and A. Bernstein. Bounded
ignorance: a technique for increasing concurrency in a
replicated system. ACM Transactions on Database
Systems (TODS), 19(4):586–625, 1994.

[13] N. Krishnakumar and R. Jain. Escrow techniques for
mobile sales and inventory applications. Wireless
Networks, 3(3):235–246, 1997.

[14] G. H. Kuenning, W. Ma, P. Reiher, and G. J. Popek.
Simplifying automated hoarding methods. In MSWiM
’02: Proceedings of the 5th ACM international
workshop on Modeling analysis and simulation of
wireless and mobile systems, pages 15–21, New York,
NY, USA, 2002. ACM.

[15] G. H. Kuenning and G. J. Popek. Automated
hoarding for mobile computers. In Proceedings of the
16th Symposium on Operating Systems Principles,
pages 264–275, St. Malo, France, Oct. 1997. ACM.

[16] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28:690–691, September
1979.

[17] K. Morse et al. Interest Management in Large-scale
Distributed Simulations. Information and Computer
Science, University of California, Irvine, 1996.

[18] D. Peleg and A. Wool. The availability of quorum
systems. Information and Computation,
123(2):210–223, 1995.

[19] Y. Saito and M. Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1):42–81, 2005.

[20] N. Santos, L. Veiga, and P. Ferreira. Vector-field
consistency for ad-hoc gaming. In ACM/IFIP/Usenix
International Middleware Conference (Middleware
2007), Lecture Notes in Computer Science. Springer,
September 2007.

[21] C. D. Tait, H. Lei, S. Acharya, and H. Chang.
Intelligent file hoarding for mobile computers. In
Mobile Computing and Networking, pages 119–125,
1995.

[22] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in Bayou, a weakly connected
replicated storage system. In Proceedings of the
fifteenth ACM Symposium on Operating Systems
Principles, pages 172–182. ACM Press, 1995.

[23] H. Yu and A. Vahdat. Design and evaluation of a
continuous consistency model for replicated services.
In Proceedings of Operating Systems Design and
Implementation, pages 305–318, 2000.

8

