
5.2 Instruction Formats 
We know that a machine instruction has an opcode and zero or more operands. Architectures 
are differentiated from one another by the number of bits allowed per instruction (16, 32, and 
64 are the most common), by the number of operands allowed per instruction, and by the 
types of instructions and data each can process. More specifically, instruction sets are 
differentiated by the following features:  

• Operand storage in the CPU (data can be stored in a stack structure or in registers) 
• Number of explicit operands per instruction (zero, one, two, and three being the most 

common) 
• Operand location (instructions can be classified as register-to-register, register-to-

memory or memory-to-memory, which simply refer to the combinations of operands 
allowed per instruction) 

• Operations (including not only types of operations but also which instructions can 
access memory and which cannot) 

• Type and size of operands (operands can be addresses, numbers, or even characters) 

5.2.1 Design Decisions for Instruction Sets 

When a computer architecture is in the design phase, the instruction set format must be 
determined before many other decisions can be made. Selecting this format is often quite 
difficult because the instruction set must match the architecture, and the architecture, if well 
designed, could last for decades. Decisions made during the design phase have long-lasting 
ramifications. 

Instruction set architectures (ISAs) are measured by several different factors, including: (1) 
the amount of space a program requires; (2) the complexity of the instruction set, in terms of 
the amount of decoding necessary to execute an instruction, and the complexity of the tasks 
performed by the instructions; (3) the length of the instructions; and (4) the total number of 
instructions. Things to consider when designing an instruction set include: 

• Short instructions are typically better because they take up less space in memory and 
can be fetched quickly. However, this limits the number of instructions, because there 
must be enough bits in the instruction to specify the number of instructions we need. 
Shorter instructions also have tighter limits on the size and number of operands. 

• Instructions of a fixed length are easier to decode but waste space. 
• Memory organization affects instruction format. If memory has, for example, 16 or 

32-bit words and is not byte-addressable, it is difficult to access a single character. For 
this reason, even machines that have 16-, 32-, or 64-bit words are often byte-
addressable, meaning every byte has a unique address even though words are longer 
than 1 byte. 

• A fixed length instruction does not necessarily imply a fixed number of operands. We 
could design an ISA with fixed overall instruction length, but allow the number of bits 
in the operand field to vary as necessary. (This is called an expanding opcode and is 
covered in more detail in Section 5.2.5.) 

• There are many different types of addressing modes like direct and indirect; however, 
we see in this chapter that a large variety of addressing modes exist. 

• If words consist of multiple bytes, in what order should these bytes be stored on a 
byte-addressable machine? Should the least significant byte be stored at the highest or 



lowest byte address? This little versus big endian debate is discussed in the following 
section. 

• How many registers should the architecture contain and how should these registers be 
organized? How should operands be stored in the CPU? 

The little versus big endian debate, expanding opcodes, and CPU register organization are 
examined further in the following sections. In the process of discussing these topics, we also 
touch on the other design issues listed. 

5.2.2 Little versus Big Endian 

The term endian refers to a computer architecture's "byte order," or the way the computer 
stores the bytes of a multiple-byte data element. Virtually all computer architectures today are 
byte-addressable and must, therefore, have a standard for storing information requiring more 
than a single byte. Some machines store a two-byte integer, for example, with the least 
significant byte first (at the lower address) followed by the most significant byte. Therefore, a 
byte at a lower address has lower significance. These machines are called little endian 
machines. Other machines store this same two-byte integer with its most significant byte first, 
followed by its least significant byte. These are called big endian machines because they store 
the most significant bytes at the lower addresses. Most UNIX machines are big endian, 
whereas most PCs are little endian machines. Most newer RISC architectures are also big 
endian. 

These two terms, little and big endian, are from the book Gulliver's Travels. You may 
remember the story in which the Lilliputians (the tiny people) were divided into two camps: 
those who ate their eggs by opening the "big" end (big endians) and those who ate their eggs 
by opening the "little" end (little endians). CPU manufacturers are also divided into two 
factions. For example, Intel has always done things the "little endian" way whereas Motorola 
has always done things the "big endian" way. (It is also worth noting that some CPUs can 
handle both little and big endian.) 

For example, consider an integer requiring 4 bytes: 

 

On a little endian machine, this is arranged in memory as follows: 

Base Address + 0 = Byte0 

Base Address + 1 = Byte1 
Base Address + 2 = Byte2 
Base Address + 3 = Byte3 

On a big endian machine, this long integer would then be stored as: 

Base Address + 0 = Byte3 
Base Address + 1 = Byte2 
Base Address + 2 = Byte1 
Base Address + 3 = Byte0 



Let's assume that on a byte-addressable machine, the 32-bit hex value 12345678 is stored at 
address 0. Each digit requires a nibble, so one byte holds two digits. This hex value is stored 
in memory as shown in Figure 5.1, where the shaded cells represent the actual contents of 
memory. 

 
Figure 5.1: The Hex Value 12345678 Stored in Both Big and Little Endian Format  

There are advantages and disadvantages to each method, although one method is not 
necessarily better than the other. Big endian is more natural to most people and thus makes it 
easier to read hex dumps. By having the high-order byte come first, you can always test 
whether the number is positive or negative by looking at the byte at offset zero. (Compare this 
to little endian where you must know how long the number is and then must skip over bytes to 
find the one containing the sign information.) Big endian machines store integers and strings 
in the same order and are faster in certain string operations. Most bitmapped graphics are 
mapped with a "most significant bit on the left" scheme, which means working with graphical 
elements larger than one byte can be handled by the architecture itself. This is a performance 
limitation for little endian computers because they must continually reverse the byte order 
when working with large graphical objects. When decoding compressed data encoded with 
such schemes as Huffman and LZW (discussed in Chapter 7), the actual codeword can be 
used as an index into a lookup table if it is stored in big endian (this is also true for encoding). 

However, big endian also has disadvantages. Conversion from a 32-bit integer address to a 
16-bit integer address requires a big endian machine to perform addition. High-precision 
arithmetic on little endian machines is faster and easier. Most architectures using the big 
endian scheme do not allow words to be written on non-word address boundaries (for 
example, if a word is 2 or 4 bytes, it must always begin on an even-numbered byte address). 
This wastes space. Little endian architectures, such as Intel, allow odd address reads and 
writes, which makes programming on these machines much easier. If a programmer writes an 
instruction to read a value of the wrong word size, on a big endian machine it is always read 
as an incorrect value; on a little endian machine, it can sometimes result in the correct data 
being read. (Note that Intel finally has added an instruction to reverse the byte order within 
registers.)  

Computer networks are big endian, which means that when little endian computers are going 
to pass integers over the network (network device addresses, for example), they need to 
convert them to network byte order. Likewise, when they receive integer values over the 
network, they need to convert them back to their own native representation. 

Although you may not be familiar with this little versus big endian debate, it is important to 
many current software applications. Any program that writes data to or reads data from a file 
must be aware of the byte ordering on the particular machine. For example, the Windows 
BMP graphics format was developed on a little endian machine, so to view BMPs on a big 
endian machine, the application used to view them must first reverse the byte order. Software 
designers of popular software are well aware of these byte-ordering issues. For example, 
Adobe Photoshop uses big endian, GIF is little endian, JPEG is big endian, MacPaint is big 
endian, PC Paintbrush is little endian, RTF by Microsoft is little endian, and Sun raster files 
are big endian. Some applications support both formats: Microsoft WAV and AVI files, TIFF 



files, and XWD (X windows Dump) support both, typically by encoding an identifier into the 
file. 

5.2.3 Internal Storage in the CPU - Stacks versus Registers 

Once byte ordering in memory is determined, the hardware designer must make some 
decisions on how the CPU should store data. This is the most basic means to differentiate 
ISAs. There are three choices: 

1. A stack architecture 
2. An accumulator architecture 
3. A general purpose register (GPR) architecture 

Stack architectures use a stack to execute instructions, and the operands are (implicitly) found 
on top of the stack. Even though stack-based machines have good code density and a simple 
model for evaluation of expressions, a stack cannot be accessed randomly, which makes it 
difficult to generate efficient code. Accumulator architectures  with one operand implicitly in 
the accumulator, minimize the internal complexity of the machine and allow for very short 
instructions. But because the accumulator is only temporary storage, memory traffic is very 
high. General purpose register architectures, which use sets of general purpose registers, are 
the most widely accepted models for machine architectures today. These register sets are 
faster than memory, easy for compilers to deal with, and can be used very effectively and 
efficiently. In addition, hardware prices have decreased significantly, making it possible to 
add a large number of registers at a minimal cost. If memory access is fast, a stack-based 
design may be a good idea; if memory is slow, it is often better to use registers. These are the 
reasons why most computers over the past 10 years have been general-register based. 
However, because all operands must be named, using registers results in longer instructions, 
causing longer fetch and decode times. (A very important goal for ISA designers is short 
instructions.) Designers choosing an ISA must decide which will work best in a particular 
environment and examine the tradeoffs carefully.  

The general-purpose architecture can be broken into three classifications, depending on where 
the operands are located. Memory-memory architectures may have two or three operands in 
memory, allowing an instruction to perform an operation without requiring any operand to be 
in a register. Register-memory architectures require a mix, where at least one operand is in a 
register and one is in memory. Load-store architectures require data to be moved into registers 
before any operations on that data are performed. Intel and Motorola are examples of register-
memory architectures; Digital Equipment's VAX architecture allows memory-memory 
operations; and SPARC, MIPS, ALPHA, and the PowerPC are all load-store machines. 

Given that most architectures today are GPR-based, we now examine two major instruction 
set characteristics that divide general-purpose register architectures. Those two characteristics 
are the number of operands and how the operands are addressed. In Section 5.2.4 we look at 
the instruction length and number of operands an instruction can have. (Two or three operands 
are the most common for GPR architectures, and we compare these to zero and one operand 
architectures.) We then investigate instruction types. Finally, in Section 5.4 we investigate the 
various addressing modes available. 

5.2.4 Number of Operands and Instruction Length 



The traditional method for describing a computer architecture is to specify the maximum 
number of operands, or addresses, contained in each instruction. This has a direct impact on 
the length of the instruction itself. Instructions on current architectures can be formatted in 
two ways: 

• Fixed length-Wastes space but is fast and results in better performance when 
instruction-level pipelining is used, as we see in Section 5.5. 

• Variable length-More complex to decode but saves storage space. 

Typically, the real-life compromise involves using two to three instruction lengths, which 
provides bit patterns that are easily distinguishable and simple to decode. The instruction 
length must also be compared to the word length on the machine. If the instruction length is 
exactly equal to the word length, the instructions align perfectly when stored in main memory. 
Instructions always need to be word aligned for addressing reasons. Therefore, instructions 
that are half, quarter, double, or triple the actual word size can waste space. Variable length 
instructions are clearly not the same size and need to be word aligned, resulting in loss of 
space as well. 

The most common instruction formats include zero, one, two, or three operands. Arithmetic 
and logic operations typically have two operands, but can be executed with one operand, if the 
accumulator is implicit. We can extend this idea to three operands if we consider the final 
destination as a third operand. We can also use a stack that allows us to have zero operand 
instructions. The following are some common instruction formats:  

• OPCODE only (zero addresses) 
• OPCODE + 1 Address (usually a memory address) 
• OPCODE + 2 Addresses (usually registers, or one register and one memory address) 
• OPCODE + 3 Addresses (usually registers, or combinations of registers and memory) 

All architectures have a limit on the maximum number of operands allowed per instruction. 
We mentioned that zero-, one-, two-, and three-operand instructions are the most common. 
One-, two-, and even three-operand instructions are reasonably easy to understand; an entire 
ISA built on zero-operand instructions can, at first, be somewhat confusing. 

Machine instructions that have no operands must use a stack (the last-in, first-out data 
structure, introduced in Chapter 4 and described in detail in Appendix A, where all insertions 
and deletions are made from the top) to perform those operations that logically require one or 
two operands (such as an Add). Instead of using general purpose registers, a stack-based 
architecture stores the operands on the top of the stack, making the top element accessible to 
the CPU. (Note that one of the most important data structures in machine architectures is the 
stack. Not only does this structure provide an efficient means of storing intermediate data 
values during complex calculations, but it also provides an efficient method for passing 
parameters during procedure calls as well as a means to save local block structure and define 
the scope of variables and subroutines.) 

In architectures based on stacks, most instructions consist of opcodes only; however, there are 
special instructions (those that add elements to and remove elements from the stack) that have 
just one operand. Stack architectures need a push instruction and a pop instruction, each of 
which is allowed one operand. Push X places the data value found at memory location X onto 
the stack; Pop X removes the top element in the stack and stores it at location X. Only certain 



instructions are allowed to access memory; all others must use the stack for any operands 
required during execution. 

For operations requiring two operands, the top two elements of the stack are used. For 
example, if we execute an Add instruction, the CPU adds the top two elements of the stack, 
popping them both and then pushing the sum onto the top of the stack. For noncommutative 
operations such as subtraction, the top stack element is subtracted from the next-to-the-top 
element, both are popped, and the result is pushed onto the top of the stack. 

This stack organization is very effective for evaluating long arithmetic expressions written in 
(RPN). This representation places the operator after the operands in what is known as postfix 
notation (as compared to infix notation, which places the operator between operands, and 
prefix notation, which places the operator before the operands). For example: 

X + Y is in infix notation 

+ X Y is in prefix notation 

X Y + is in postfix notation  

All arithmetic expressions can be written using any of these representations. However, postfix 
representation combined with a stack of registers is the most efficient means to evaluate 
arithmetic expressions. In fact, some electronic calculators (such as Hewlett-Packard) require 
the user to enter expressions in postfix notation. With a little practice on these calculators, it is 
possible to rapidly evaluate long expressions containing many nested parentheses without 
ever stopping to think about how terms are grouped. 

Consider the following expression: 

(X + Y) x (W - Z) + 2 

Written in RPN, this becomes: 

XY + WZ - x2+ 

Notice that the need for parentheses to preserve precedence is eliminated when using RPN. 

To illustrate the concepts of zero, one, two, and three operands, let's write a simple program to 
evaluate an arithmetic expression, using each of these formats. 

Example 5.1: 

Suppose we wish to evaluate the following expression: 

Z = (X x Y) + (W x U) 

Typically, when three operands are allowed, at least one operand must be a register, and the 
first operand is normally the destination. Using three-address instructions, the code to 
evaluate the expression for Z is written as follows: 



Mult    R1, X, Y 
Mult    R2, W, U 
Add    Z, R2, R1 

When using two-address instructions, normally one address specifies a register (two-address 
instructions seldom allow for both operands to be memory addresses). The other operand 
could be either a register or a memory address. Using two-address instructions, our code 
becomes: 

Load    R1, X 
Mult    R1, Y 
Load    R2, W 
Mult    R2, U 
Add    R1, R2 
Store    Z, R1 

Note that it is important to know whether the first operand is the source or the destination. In 
the above instructions, we assume it is the destination. (This tends to be a point of confusion 
for those programmers who must switch between Intel assembly language and Motorola 
assembly language-Intel assembly specifies the first operand as the destination, whereas in 
Motorola assembly, the first operand is the source.) 

Using one-address instructions, we must assume a register (normally the accumulator) is 
implied as the destination for the result of the instruction. To evaluate Z, our code now 
becomes: 

Load    X 
Mult    Y 
Store    Temp 
Load    W 
Mult    U 
Add    Temp 
Store    Z 

Note that as we reduce the number of operands allowed per instruction, the number of 
instructions required to execute the desired code increases. This is an example of a typical 
space/time trade-off in architecture design-shorter instructions but longer programs. 

What does this program look like on a stack-based machine with zero-address instructions? 
Stack-based architectures use no operands for instructions such as Add, Subt, Mult, or Divide. 
We need a stack and two operations on that stack: Pop and Push. Operations that 
communicate with the stack must have an address field to specify the operand to be popped or 
pushed onto the stack (all other operations are zero-address). Push places the operand on the 
top of the stack. Pop removes the stack top and places it in the operand. This architecture 
results in the longest program to evaluate our equation. Assuming arithmetic operations use 
the two operands on the stack top, pop them, and push the result of the operation, our code is 
as follows:  

Push    X 
Push    Y 
Mult 
Push    W 
Push    U 
Mult 



Add 
Store    Z 

The instruction length is certainly affected by the opcode length and by the number of 
operands allowed in the instruction. If the opcode length is fixed, decoding is much easier. 
However, to provide for backward compatibility and flexibility, opcodes can have variable 
length. Variable length opcodes present the same problems as variable versus constant length 
instructions. A compromise used by many designers is expanding opcodes.  

5.2.5 Expanding Opcodes 

Expanding opcodes represent a compromise between the need for a rich set of opcodes and 
the desire to have short opcodes, and thus short instructions. The idea is to make some 
opcodes short, but have a means to provide longer ones when needed. When the opcode is 
short, a lot of bits are left to hold operands (which means we could have two or three operands 
per instruction). When you don't need any space for operands (for an instruction such as Halt 
or because the machine uses a stack), all the bits can be used for the opcode, which allows for 
many unique instructions. In between, there are longer opcodes with fewer operands as well 
as shorter opcodes with more operands. 

Consider a machine with 16-bit instructions and 16 registers. Because we now have a register 
set instead of one simple accumulator, we need to use 4 bits to specify a unique register. We 
could encode 16 instructions, each with 3 register operands (which implies any data to be 
operated on must first be loaded into a register), or use 4 bits for the opcode and 12 bits for a 
memory address (assuming a memory of size 4K). Any memory reference requires 12 bits, 
leaving only 4 bits for other purposes. However, if all data in memory is first loaded into a 
register in this register set, the instruction can select that particular data element using only 4 
bits (assuming 16 registers). These two choices are illustrated in Figure 5.2. 

 
Figure 5.2: Two Possibilities for a 16-Bit Instruction Format  

Suppose we wish to encode the following instructions: 

• 15 instructions with 3 addresses 
• 14 instructions with 2 addresses 
• 31 instructions with 1 address 
• 16 instructions with 0 addresses 



Can we encode this instruction set in 16 bits? The answer is yes, as long as we use expanding 
opcodes. The encoding is as follows: 

 

This expanding opcode scheme makes the decoding more complex. Instead of simply looking 
at a bit pattern and deciding which instruction it is, we need to decode the instruction 
something like this: 

if (leftmost four bits != 1111 ) { 
  Execute appropriate three-address instruction} 
else if (leftmost seven bits != 1111 111 ) { 
  Execute appropriate two-address instruction} 
else if (leftmost twelve bits != 1111 1111 1111 ) { 
  Execute appropriate one-address instruction } 
else { 
  Execute appropriate zero-address instruction 
} 

At each stage, one spare code is used to indicate that we should now look at more bits. This is 
another example of the types of trade-offs hardware designers continually face: Here, we 
trade opcode space for operand space. 

5.3 Instruction Types 
Most computer instructions operate on data; however, there are some that do not. Computer 
manufacturers regularly group instructions into the following categories: 

• Data movement 
• Arithmetic 
• Boolean 
• Bit manipulation (shift and rotate) 
• I/O 
• Transfer of control 
• Special purpose 



Data movement instructions are the most frequently used instructions. Data is moved from 
memory into registers, from registers to registers, and from registers to memory, and many 
machines provide different instructions depending on the source and destination. For example, 
there may be a MOVER instruction that always requires two register operands, whereas a 
MOVE instruction allows one register and one memory operand. Some architectures, such as 
RISC, limit the instructions that can move data to and from memory in an attempt to speed up 
execution. Many machines have variations of load, store, and move instructions to handle data 
of different sizes. For example, there may be a LOADB instruction for dealing with bytes and 
a LOADW instruction for handling words. 

Arithmetic operations include those instructions that use integers and floating point numbers. 
Many instruction sets provide different arithmetic instructions for various data sizes. As with 
the data movement instructions, there are sometimes different instructions for providing 
various combinations of register and memory accesses in different addressing modes. 

Boolean logic instructions perform Boolean operations, much in the same way that arithmetic 
operations work. There are typically instructions for performing AND, NOT, and often OR 
and XOR operations. 

Bit manipulation instructions are used for setting and resetting individual bits (or sometimes 
groups of bits) within a given data word. These include both arithmetic and logical shift 
instructions and rotate instructions, both to the left and to the right. Logical shift instructions 
simply shift bits to either the left or the right by a specified amount, shifting in zeros from the 
opposite end. Arithmetic shift instructions, commonly used to multiply or divide by 2, do not 
shift the leftmost bit, because this represents the sign of the number. On a right arithmetic 
shift, the sign bit is replicated into the bit position to its right. On a left arithmetic shift, values 
are shifted left, zeros are shifted in, but the sign bit is never moved. Rotate instructions are 
simply shift instructions that shift in the bits that are shifted out. For example, on a rotate left 
1 bit, the leftmost bit is shifted out and rotated around to become the rightmost bit.  

I/O instructions vary greatly from architecture to architecture. The basic schemes for handling 
I/O are programmed I/O, interrupt-driven I/O, and DMA devices. These are covered in more 
detail in Chapter 7. 

Control instructions include branches, skips, and procedure calls. Branching can be 
unconditional or conditional. Skip instructions are basically branch instructions with implied 
addresses. Because no operand is required, skip instructions often use bits of the address field 
to specify different situations. Procedure calls are special branch instructions that 
automatically save the return address. Different machines use different methods to save this 
address. Some store the address at a specific location in memory, others store it in a register, 
while still others push the return address on a stack. We have already seen that stacks can be 
used for other purposes. 

Special purpose instructions include those used for string processing, high-level language 
support, protection, flag control, and cache management. Most architectures provide 
instructions for string processing, including string manipulation and searching. 

5.4 Addressing 



Although addressing is an instruction design issue and is technically part of the instruction 
format, there are so many issues involved with addressing that it merits its own section. We 
now present the two most important of these addressing issues: the types of data that can be 
addressed and the various addressing modes. We cover only the fundamental addressing 
modes; more specialized modes are built using the basic modes in this section. 

5.4.1 Data Types 

Before we look at how data is addressed, we will briefly mention the various types of data an 
instruction can access. There must be hardware support for a particular data type if the 
instruction is to reference that type. In Chapter 2 we discussed data types, including numbers 
and characters. Numeric data consists of integers and floating point values. Integers can be 
signed or unsigned and can be declared in various lengths. For example, in C++ integers can 
be short (16 bits), int (the word size of the given architecture), or long (32 bits). Floating point 
numbers have lengths of 32, 64, or 128 bits. It is not uncommon for ISAs to have special 
instructions to deal with numeric data of varying lengths, as we have seen earlier. For 
example, there might be a MOVE for 16-bit integers and a different MOVE for 32-bit 
integers. 

Nonnumeric data types consist of strings, Booleans, and pointers. String instructions typically 
include operations such as copy, move, search, or modify. Boolean operations include AND, 
OR, XOR, and NOT. Pointers are actually addresses in memory. Even though they are, in 
reality, numeric in nature, pointers are treated differently than integers and floating point 
numbers. The operands in the instructions using this mode are actually pointers. In an 
instruction using a pointer, the operand is essentially an address and must be treated as such. 

5.4.2 Address Modes 

We saw in Chapter 4 that the 12 bits in the operand field of an instruction can be interpreted 
in two different ways: the 12 bits represent either the memory address of the operand or a 
pointer to a physical memory address. These 12 bits can be interpreted in many other ways, 
thus providing us with several different addressing modes. Addressing modes allow us to 
specify where the instruction operands are located. An addressing mode can specify a 
constant, a register, or a location in memory. Certain modes allow shorter addresses and some 
allow us to determine the location of the actual operand, often called the effective address of 
the operand, dynamically. We now investigate the most basic addressing modes. 

Immediate Addressing 

Immediate addressing is so-named because the value to be referenced immediately follows 
the operation code in the instruction. That is to say, the data to be operated on is part of the 
instruction. For example, if the addressing mode of the operand is immediate and the 
instruction is Load 008, the numeric value 8 is loaded into the AC. The 12 bits of the operand 
field do not specify an address-they specify the actual operand the instruction requires. 
Immediate addressing is very fast because the value to be loaded is included in the instruction. 
However, because the value to be loaded is fixed at compile time it is not very flexible. 



Direct Addressing 

Direct addressing is so-named because the value to be referenced is obtained by specifying its 
memory address directly in the instruction. For example, if the addressing mode of the 
operand is direct and the instruction is Load 008, the data value found at memory address 008 
is loaded into the AC. Direct addressing is typically quite fast because, although the value to 
be loaded is not included in the instruction, it is quickly accessible. It is also much more 
flexible than immediate addressing because the value to be loaded is whatever is found at the 
given address, which may be variable. 

Register Addressing 

In register addressing, a register, instead of memory, is used to specify the operand. This is 
very similar to direct addressing, except that instead of a memory address, the address field 
contains a register reference. The contents of that register are used as the operand. 

Indirect Addressing 

Indirect addressing is a very powerful addressing mode that provides an exceptional level of 
flexibility. In this mode, the bits in the address field specify a memory address that is to be 
used as a pointer. The effective address of the operand is found by going to this memory 
address. For example, if the addressing mode of the operand is indirect and the instruction is 
Load 008, the data value found at memory address 008 is actually the effective address of the 
desired operand. Suppose we find the value 2A0 stored in location 008. 2A0 is the "real" 
address of the value we want. The value found at location 2A0 is then loaded into the AC. 

In a variation on this scheme, the operand bits specify a register instead of a memory address. 
This mode, known as register indirect addressing, works exactly the same way as indirect 
addressing mode, except it uses a register instead of a memory address to point to the data. 
For example, if the instruction is Load R1 and we are using register indirect addressing mode, 
we would find the effective address of the desired operand in R1. 

Indexed and Based Addressing 

In indexed addressing mode, an index register (either explicitly or implicitly designated) is 
used to store an offset (or displacement), which is added to the operand, resulting in the 
effective address of the data. For example, if the operand X of the instruction Load X is to be 
addressed using indexed addressing, assuming R1 is the index register and holds the value 1, 
the effective address of the operand is actually X + 1. Based addressing mode is similar, 
except a base address register, rather than an index register, is used. In theory, the difference 
between these two modes is in how they are used, not how the operands are computed. An 
index register holds an index that is used as an offset, relative to the address given in the 
address field of the instruction. A base register holds a base address, where the address field 
represents a displacement from this base. These two addressing modes are quite useful for 
accessing array elements as well as characters in strings. In fact, most assembly languages 
provide special index registers that are implied in many string operations. Depending on the 
instruction-set design, general-purpose registers may also be used in this mode. 



Stack Addressing 

If stack addressing mode is used, the operand is assumed to be on the stack. We have already 
seen how this works in Section 5.2.4. 

Additional Addressing Modes 

Many variations on the above schemes exist. For example, some machines have indirect 
indexed addressing, which uses both indirect and indexed addressing at the same time. There 
is also base/offset addressing, which adds an offset to a specific base register and then adds 
this to the specified operand, resulting in the effective address of the actual operand to be used 
in the instruction. There are also auto-increment and auto-decrement modes. These modes 
automatically increment or decrement the register used, thus reducing the code size, which 
can be extremely important in applications such as embedded systems. Self-relative 
addressing computes the address of the operand as an offset from the current instruction. 
Additional modes exist; however, familiarity with immediate, direct, register, indirect, 
indexed, and stack addressing modes goes a long way in understanding any addressing mode 
you may encounter.  

Let's look at an example to illustrate these various modes. Suppose we have the instruction 
Load 800, and the memory and register R1 shown in Figure 5.3. 

 
Figure 5.3: Contents of Memory When Load 800 Is Executed  

Applying the various addressing modes to the operand field containing the 800, and assuming 
R1 is implied in the indexed addressing mode, the value actually loaded into AC is seen in 
Table 5.1. 

Table 5.1: Results of Using Various Addressing Modes on Memory in Figure 5.2  
Mode Value Loaded into AC 
Immediate 800 
Direct 900 
Indirect 1000 
Indexed 700 



The instruction Load R1, using register addressing mode, loads an 800 into the accumulator, 
and using register indirect addressing mode, loads a 900 into the accumulator. 

We summarize the addressing modes in Table 5.2. 

Table 5.2: A Summary of the Basic Addressing Modes  
Addressing Mode To Find Operand 
Immediate Operand value present in the instruction 
Direct Effective address of operand in address field 
Register Operand value located in register 
Indirect Address field points to address of the actual operand 
Register Indirect Register contains address of actual operand 
Indexed or Based Effective address of operand generated by adding value in address 

field to contents of a register 
Stack Operand located on stack 

The various addressing modes allow us to specify a much larger range of locations than if we 
were limited to using one or two modes. As always, there are trade-offs. We sacrifice 
simplicity in address calculation and limited memory references for flexibility and increased 
address range. 
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