Technical Meeting on the Safety of High Temperature Gas Cooled Reactors in the Light of the Fukushima Daiichi Accident

HTR Progress in China

Fu LI

INET, Tsinghua University, China lifu@tsinghua.edu.cn

VIC, Vienna, Austria

April 8-11, 2014

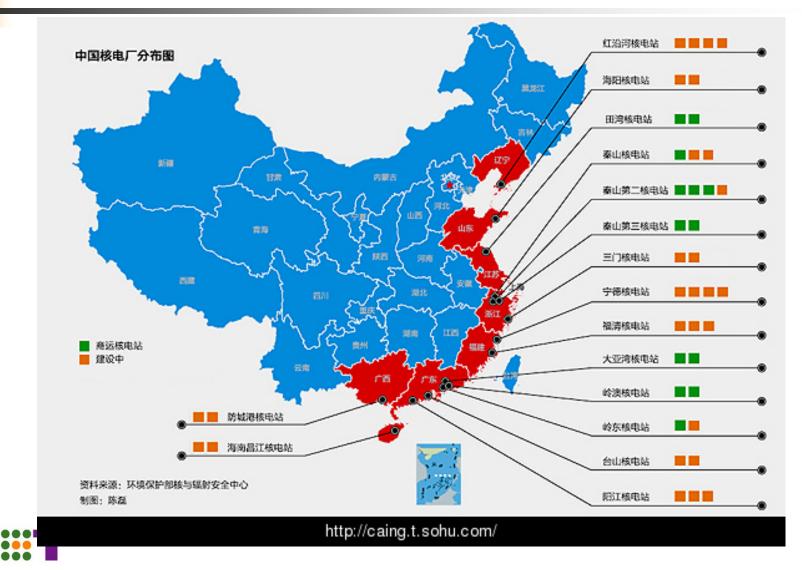
Outline

- 1 China Nuclear Power Plants
- 2 HTGR development in China
- 3 HTR-PM design
- 4 Project Status
 - HTR-10: 10MW high temperature test reactor
 - HTR-PM: High temperature gas cooled reactor pebble-bed module

1 China Nuclear Power Plants

- China re-start new construction of NPPs in later 2012, after Fukushima accident
 - Tianwan 3#,4#: VVER1000
 - Fuqing 4#: CNP 1000
 - Yangjiang 4#,5#,6#: CPR 1000
 - Shidao bay: HTR-PM

1 China Nuclear Power Plants


- Statistics data for all Chinese NPPs:
 - Operating NPPs:
 - 17 units
 - 14.7GWe
 - Under construction:
 - 30 units
 - **32.5GWe**

1 China Nuclear Power Plants

在建机组	厂址 机组 型号		型是		
Units under Construction	Site	Unit	Туре	后续项目 Following up	型号 Type
	红沿河	2~4#	CPR1000	Projects	1
	宁德	2~4#	CPR1000	三门3~4#	AP /CAP 1000
2代+机组23台 23GII+ units	福清	1~4#	M310+	海阳3~4#	
	阳江	2~6#	CPR1000	陆丰1~2#	
	方家山	1~2#	M310+	徐大堡1~2#	
	昌江	1~2#	CNP600		
	防城港	1~2#	CPR1000	CAP 1400	CAP
	田湾	3~4#	VVER-1000/428	示范项目	1400
三代机组6台 6GIII units	三门	1~2#	AP1000	(山东荣成)	
	海阳	1~2#	AP1000		
	台山	1~2#	EPR		
1台四代原型堆 1Prototype Reactor of GIV	石岛湾	1#	HTGR	公能	见度

Map for current NPPs in coast region

6

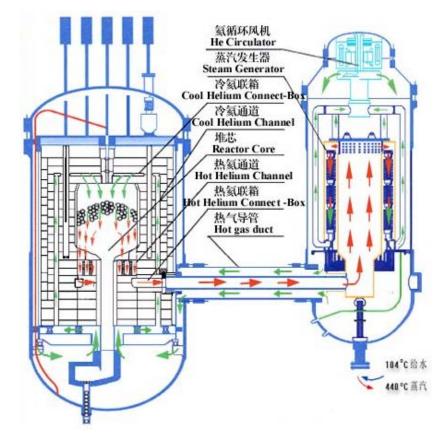
Map for future NPPs

2 HTGR development in China

HTGR Roles in China Development history in China

HTGR Roles in China

- Roles of HTGR in China
 - Supplementary for electricity generation to PWR
 - Suitable for process heat application
 - Suitable for international market
 - SMR is more flexible for developing countries


Development history in China

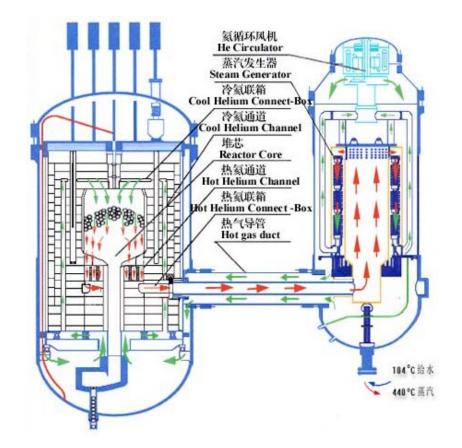
- 1970s: Technology research
- 1986: National Hi-Tech program (863 program), start the design of HTGR
 - Adopted the pebble bed HTR
- 1995: start the construction of HTR-10
- 2000: criticality of HTR-10
- 2001: start the commercial HTGR project
- 2012: start the construction of HTR-PM

HTR-10 main milestones

- March 14,1992: Project approval by Government
- Dec 1992-Dec 1994: PSAR
- Dec 15,1998-Nov.17,2000: FSAR
- July 16,1995-Dec. 2000: Construction
- Dec.1,2000: Physical critical
- Jan 7, 2003: Electricity output to grid
- Jan 29, 2003: Full power operation
- Oct.15,2003: safety demonstration experiments and long-term operation
 - CR withdrawal without Control Rod Drop, helium blower trip without Control Rod Drop, flap close failure without Control Rod Drop
 - Many experiments followed, more will be planned

HTR-10 main parameters

Thermal power	MW	10	
Reactor core diameter	ст	180	
Average core height	ст	197	
Primary helium pressure	MPa	3.0	
Average helium temperature at reactor inlet/outlet	°C	250/700	
Helium mass flow rate at full power	kg/s	4.3	
Average core power density	MW/m ³	2	
Number of control rods in side reflector		10	
Number of absorber ball units in side reflector		7	
Nuclear fuel		UO ₂	
Heavy metal loading per fuel element	g	5	
Enrichment of fresh fuel element	%	17	
Number of fuel elements in core		27,000	
Fuel loading mode		multi-pass	
Max. fuel temperature at normal operation	°C	919	
Average discharge burn-up	GWd/tHM	80	


HTR-10 main parameters

Height of RPV	m	11
Inner diameter of RPV	m	4.2
Helium blower pressure raise	kPa	60
Number of SG units/tubes		30
Heat transfer area of SG	<i>m</i> ²	55
Feed water temperature	٥C	104
Steam pressure	MPa	3.5
Steam temperature	℃	435
Steam flow rate	t/h	12.5
Electric power	MW	2.5

HTR-10 core layout

- Pebble bed
- Helium cooled, graphite moderated
- Modular High-Temperature Gas-Cooled reactor
 - Inherent safety
 - Melt-free
- Steam cycle
- Side by side of RPV & SG

HTR-10 project highlights

- Sphere TRISO fuel technology
- Demonstration on inherent safety characteristics of Modular High-Temperature Gas-cooled Reactor
- Digitalized Instrumentation and Control system
- Test bed for future development

HTR-10 main achievements

- The sign for China to master the Modular HTGR technology
- The platform to demonstrate and verify the HTGR technology
 - visible inherent safety that can be demonstrated to public
 - Only pebble bed HTGR that is operating
- Technical basis for HTR-PM (prototype)

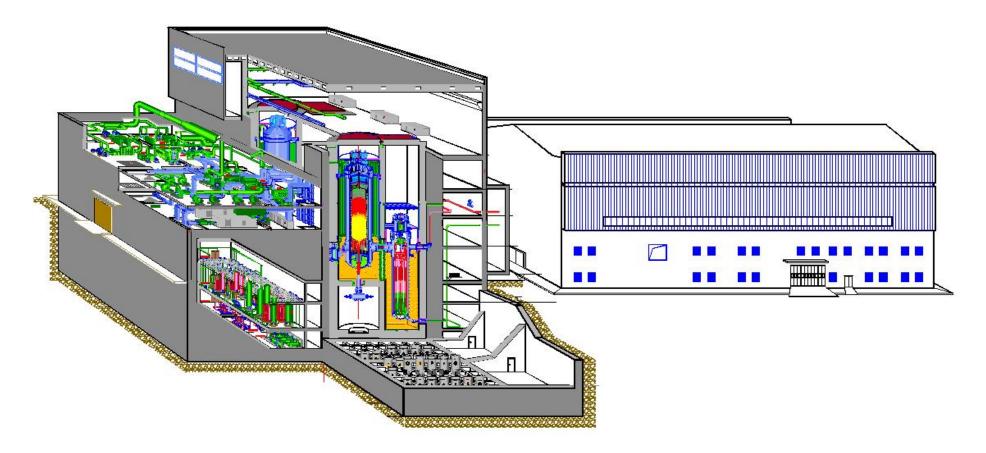
3 HTR-PM design

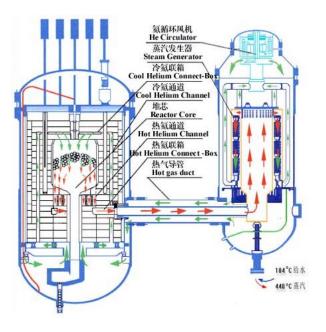
HTR-PM demonstration plant

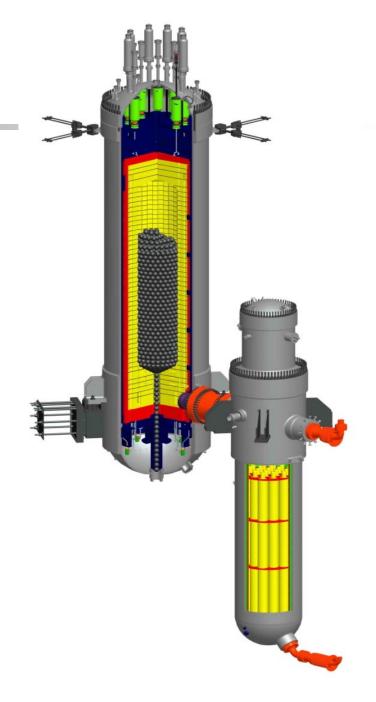
- 2001: feasibility study
 - Choose mature steam cycle from steam cycle, direct gas cycle, indirect gas cycle

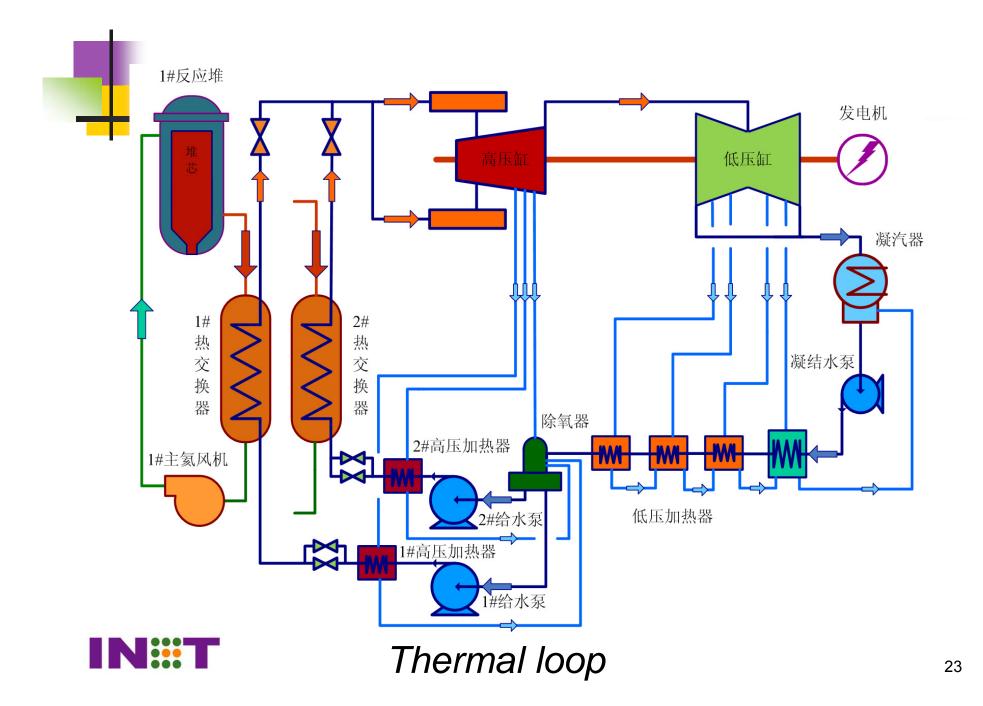
2004: standard design

- 2006: fixed the main parameters: 2×250MWth, 2 reactors with 1 turbine
- 2006: approved as national key technology project
- 2009: finished preliminary design and PSAR
- 2012: FCD


Site for HTR-PM


Nuclear island & conventional island





Reactor Layout

- Similar layout as HTR-10
 - Single zone, pebble bed
 - Side by side arrangement
 - Super heat steam
 - Modular(Inherent safety)
- Larger size

Main design parameters

Reactor module num	nbers 2
Thermal power/mod	ule 250MW
Lifetime	40a
Core diameter/heigh	nt 3.0/11m
Primary system pres	ssure 7.0 MPa
Helium inlet/outlet te	emperature 250/750°C
Helium mass flow	96 kg/s
Fresh steam temperature/pressu	566 <i>°C</i> /13.2 MPa re
Electric power	210 MW

HTR-PM design features

- Single zone, pebble bed
- Super heat steam turbine
 - Like conventional turbine in fossil plant
- 1 turbine with 2 reactors
 - More reactor are possible in future
- Modular concept: Inherent safety
 - Simplified safety system
- Standard design
 - Duplicable for future

4 HTR-PM project status

- National key technology project
 - Design
 - Manufacturing
 - Licensing
 - Construction
 - Experiment
 - Fuel fabrication
 - Operation

Design

- 2001-2003: HTR-PM concept studies were conducted. The steam turbine was selected.
- 2004-2006: HTR-PM standard design was conducted from May, 2004 to May, 2006. A preliminary decision was made in August of 2004 to design a reactor of 458 MWt thermal power output with reheated steam cycle and annular core. (dynamic annual core and solid annual core)
- 2006.09: A decision to change from 1×458 MWt to 2×250 MWt was made, maintain the plant output on 200 MWe.

Design

• 2008: Finished the basic design.

- submit PSAR
- Start the procurement of key component
- 2009: Assessment of PSAR is finished
 - Start the engineering design
- 2012: start FCD
 - -2017: connect to Grid

4 HTR-PM project status

- Progress for construction and experiment
 - See photos

Conclusion remarks

- China need nuclear power
 - LWR is the main stream
 - HTGR will be supplementary for electricity generation, and can be used for co-generation and process heat application
- China started the research on HTGR since 1970s, started the construction of HTR-10 in 1995
- China adopts the pebble bed HTGR

Conclusion remarks

- HTR-PM will be the first commercial modular HTGR power plant in the world, based on the success of HTR-10
 - The project covers the research, design, manufacturing, construction, experiment, fuel fabrication, licensing, operation
 - One unit of HTR-PM have two reactor modules
 - The project is supported by central government

Conclusion remarks

- Following HTR-PM, commercial deployment of HTR-PM based on batch construction is foreseeing, and unit with more modules and bigger power size is under investigation
- We hope more countries will be interested in HTGR
- International cooperation on HTGR is necessary and inevitable
 - GIF, IAEA, bilateral, ...
 - Academic, technical, business, ...

You are welcomed to HTR-PM site during HTR-2014 conference

2014.10.27-31

Weihai, China

IN::T

CALL FOR PAPER 7th INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY HTR2014 -The pebble bed modular HTR is advancing towards reality-

27-31 October 2014, Weihai, China

Organized by

Institute of Nuclear and New Energy Technology (INET), Tsinghua University International Organizing Chair/Co-chair: ZHANG Zuoyi M. A. FUETTERER Local Organizing Chair/Co-chair: SUN Yuliang DONG Yujie Technical Program Chair/Co-chair: LI Fu SHI Lei **Technical Sessions**

- Trk1 National Research Programs and Industrial Projects
- Trk2 Industrial Applications and Markets
- Trk3 Fuel and Waste
- Trk4 Materials and Components
- Trk5 Reactor Physics Analysis
- Trk6 Thermal-hydraulics and Coupled Code Analyses
- Trk7 Development, Design and Engineering
- Trk8 Safety and Licensing

Important dates

- Abstract due:March 15,2014Draft papers due:May 30,2014Final papers due:September 3,2014
- Abstract Instruction Describe new and significant work Use 200 -300 words in English Electronic submission in PDF or MS Word

Website

- http://www.htr2014.cn/
- **Technical tour**

Visit to HTR-PM site will be arranged during HTR2014

Contact

- E-mail: htr2014@tsinghua.edu.cn
- Telephone: +86 10 6278 2784 (International), +86 10 62792474 (Domestic) Fax: +86 10 6277 1043 (International), +86 10 62792474 (Domestic)

One task for this meeting

- A plenary speech related to this CRP is arranged in HTR-2014
 - A speaker is supposed to be nominated in this meeting

