
Monitoring Business Process Compliance Using
Compliance Rule Graphs

Linh Thao Ly1, Stefanie Rinderle-Ma2, David Knuplesch1, and Peter Dadam1

1 Institute of Databases and Information Systems, Ulm University, Germany
2 Faculty of Computer Science, University of Vienna, Austria

{thao.ly,david.knuplesch,peter.dadam}@uni-ulm.de,
stefanie.rinderle-ma@univie.ac.at

Abstract. Driven by recent trends, effective compliance control has be-
come a crucial success factor for companies nowadays. In this context,
compliance monitoring is considered an important building block to sup-
port business process compliance. Key to the practical application of a
monitoring framework will be its ability to reveal and pinpoint viola-
tions of imposed compliance rules that occur during process execution. In
this context, we propose a compliance monitoring framework that tack-
les three major challenges. As a compliance rule can become activated
multiple times within a process execution, monitoring only its overall
enforcement can be insufficient to assess and deal with compliance vi-
olations. Therefore, our approach enables to monitor each activation of
a compliance rule individually. In case of violations, we are able to de-
rive the particular root cause, which is helpful to apply specific remedy
strategies. Even if a rule activation is not yet violated, the framework
can provide assistance in proactively enforcing compliance by deriving
measures to render the rule activation satisfied.

1 Introduction

In many application domains of information systems, business process compli-
ance is increasingly gaining importance. In healthcare, for example, medical
guidelines and clinical pathways should be followed during patient treatments.
In the financial sector, regulatory packages such as SOX or BASEL III have
been introduced to strengthen customers’ confidence in bank processes. Finally,
collections of quality controls, e.g., Six Sigma or ITIL, are of particular impor-
tance for the internal control of business processes. In this paper we assume an
example scenario that is set in bank accounting, where a variety of rules and
policies exists (e.g., as a result of risk management). A selection of such rules is
listed below:

c1 Conducting a payment run creates a payment list containing multiple items that
must be transferred to the bank. Then, the bank statement must be checked for
payment of the corresponding items. In order to avoid fraud and errors, the pay-
ment list must be transferred to the bank only once.

c2 For payment runs with amount beyond e10,000, the payment list has to be signed
before being transferred to the bank and has to be filed afterwards for later audits.



Example of an observed event trace T:

e1 = (payment run, payment list A, amount = €60,000)
Reporting

Monitoring cockpit Monitoring cockpit

A B

e2 = (transfer to bank, payment list A)

e3 = (check bank statement, payment list A)

e4 = (file payment list, payment list A)

( t fi d it 1)

Monitoring cockpit Monitoring cockpit

C3
Instance 1 of C3

Instance 2 of C3

Instance 3 of C3

Instance 4 of C3

e5 = (payment confirmed, item 1)

e6 = (payment confirmed, item 2)

e7 = (mark as cleared, item 2)

e = (payment confirmed item 3)

Compliance monitoring

e8 = (payment confirmed, item 3)

e9 = (mark as cleared, item 3)

e10 = (put on payment list, item 3)

Event service

Process execution …

Fig. 1. General compliance monitoring architecture and events from the bank account-
ing case

c3 When payment of an open item is confirmed in the bank statement, the item has
to be marked as cleared eventually.

c4 Once marked as cleared, the item must not be put on any payment list.

c5 If an open item is not marked as cleared within 30 days, the bank details may be
faulty. Thus, the bank details have to be (re)checked.

One way to ensure business process compliance is to verify the models of
the affected business processes implemented within process-aware information
systems against such imposed rules in order to achieve compliance by design. For
that purpose, a multitude of approaches for business process model checking has
been proposed in literature. However, design time checks are not quite sufficient
as in many application domains, business process models are rarely documented
or adhered to. To support business process compliance in such scenarios, it must
be possible to monitor whether process executions (regardless whether an explicit
process model exists) comply with imposed rules.

1.1 Challenges for Compliance Monitoring

Fig. 1A depicts a general compliance monitoring architecture. The events ob-
served from process execution provide the basis for compliance monitoring. The
actual low-level execution events may also be aggregated to meaningful events
and then provided to the monitoring tier using event processing frameworks
(e.g., complex event processing [1]). The monitoring tier, in turn, monitors com-
pliance with imposed rules. It provides input to the reporting tier, where the
results are visualized in accordance with the needs of the stakeholders involved.
We assume that events such as the events from the bank accounting case listed
in Fig. 1B can be provided by the event service. Clearly, the information that the
monitoring tier is capable of providing constitutes the basis for presentation and
visualization to stakeholders such as the process supervisor. This raises three
fundamental challenges that we will discuss using the bank accounting case.



Challenge 1: Identification and monitoring of individual activations of
a compliance rule Consider again compliance rule c4. Then, a closer look at
trace T from Fig. 1B reveals that c4 is violated over T as item 2 and item 3
are already marked as cleared but item 3 is still put on a payment list again. In
order to effectively deal with such violations, it is not sufficient for the monitoring
tier just to identify that c4 is violated. Imagine that multiple other items are
also marked as cleared within T . Then, it becomes very difficult to pinpoint the
item(s) causing violations. Hence, the monitoring tier must provide fine-grained
compliance feedback such that it becomes possible to pinpoint the violation.

In this example, two activations of c4 are present in the execution, namely for
item 2 and item 3. We refer to an event pattern that activates a compliance rule
as a rule activation. For example, c4 becomes activated when an item is marked
as cleared. As activities can be carried out multiple times, e.g., for different items,
there can be multiple activations of a compliance rule in a process execution3.
As the example also shows, the activations can be in different compliance states.
For example, the activation for item 3 is violated while the one for item 2 is
not. Therefore, the monitoring tier must be able to identify the rule activations
and to provide information on their individual compliance state as the basis for
effectively assessing and dealing with incompliance.

Challenge 2: Proactive prevention of violations Generally, each activation
of a compliance rule can be in one of three compliance states in a stage of process
execution: satisfied, violated, or violable. Satisfied and violated are permanent
states. For example, the activation of c4 for item 3 is violated while the activation
of c3 for item 2 is satisfied. A violable activation, however, can become both
violated or satisfied depending on the events observed in the future.

The state violable can have very different semantics depending on the rule
activations. Consider for example the activation of c3 for item 1 (referred to as
ACT1) and the activation of c4 for item 2 (referred to as ACT2). Then, both
are violable as ACT1 can become violated if item 1 is not marked as cleared
in the future and ACT2 can become violated if item 2 is put on a payment list
again. Obviously, different measures are necessary to render ACT1 and ACT2
satisfied. In order to proactively prevent violations, the monitoring tier has to
make the state violable more transparent to process supervisors. In particular,
support with regard to how to render an activation satisfied is desirable. Being
aware that ACT1 can be rendered satisfied by marking item 1 as cleared, a
process supervisor may, for example, schedule this task. To our best knowledge,
challenge 2 has not been addressed yet.

Challenge 3: Root cause identification in case of violations The iden-
tification of violations is only a first step. A rule activation can become vio-
lated, when required events were not observed or prohibited events were observed
within a particular scope. Particularly for more complex rules, a violation can

3 Note that there can also be rules that are only activated once, e.g., cardinality rules.
We consider them as being activated upon the process start.



Reportingp g

Modeling

Compliance monitoring
Compliance 
requirements

g

E t i

Compliance rule
graphs (CRG)

Process execution

Event service

3

Fig. 2. Fundamental architecture of the SeaFlows compliance monitoring framework

have multiple causes, each of which may require different compensation mech-
anisms. Therefore, being able to identify the root cause of a violation would
facilitate the application of adequate compensation.

1.2 Contributions

In this paper, we propose an approach developed in the SeaFlows project4 that
tackles these three challenges. The basic architecture of the framework is de-
picted in Fig. 2. We adopt a graph-based compliance rule language referred to
as Compliance Rule Graphs (CRG) [2]. Our approach enables to “instantiate”
a CRG each time a new activation of it is observed and thus to individually
monitor the activations. As a result, feedback can not only be provided on the
overall enforcement of a compliance rule but also on its activations. Our mon-
itoring approach is based on a pattern matching mechanism that exploits the
structure of CRGs for monitoring and introduces markings to indicate observed
event patterns that are relevant to the compliance rule to be checked. From the
markings, it is possible to derive measures to proactively prevent violations in
case of violable rule activations, for example to derive pending activities. For
violated activations, we can derive the root cause from the markings.

In the following, we first introduce necessary fundamentals on CRGs in
Sect. 2. The monitoring framework is then presented in Sect. 3. Sect. 4 intro-
duces our proof-of-concept implementation. In Sect. 5, we discuss related work.
Sect. 6 summarizes the paper and provides an outlook on future research.

2 Compliance Rule Graph Fundamentals

For our monitoring framework we adopted compliance rule graphs (CRG), a
graph-based compliance rule modeling language [2], as the graph structure has
some advantages that we can exploit for monitoring as we will later show. The
CRG language adopts the typical rule structure (i.e., if some conditions apply,
then some consequence must also apply). As we address compliance rules on
the occurrence, absence, and ordering relations of events, the rule antecedent

4 www.seaflows.de



and rule consequences are constituted by event patterns, respectively. Their ex-
plicit structure makes it easier to comprehend CRGs than for example complex
logic formulas. For brevity reasons, we will focus on compliance rules with only
one consequence event pattern in this paper. Our approach is, however, also
applicable to compliance rules with multiple consequence patterns.

Based on the assumption adopted from graph-based process modeling lan-
guages that a graph is a suitable representation for expressing occurrence and
ordering relations of events, the event patterns associated with the rule an-
tecedent and the rule consequence are modeled by means of directed graphs.
In order to distinguish between the antecedent and the consequence, they are
modeled using designated node types (condition and consequence node types).
Thus, from their looks, CRGs are acyclic directed graphs with different node
types with a graph fragment describing the rule antecedent pattern and a graph
fragment describing the rule consequence pattern.

These event patterns can be modeled using occurrence nodes, i.e., nodes that
represent the occurrence of events of associated type and properties (e.g., data
conditions) and edges constraining their ordering (similar to what we are used to
from process modeling)5. Beside occurrence nodes, absence nodes representing
the absence of certain events can be used to further refine the event patterns.
By combining these modeling primitives, it is possible to model sophisticated
event patterns, which can serve as antecedent or consequence of a CRG. Def. 1
provides a basic definition of CRGs.

Definition 1 (Compliance rule graph). A compliance rule graph is a 7-tuple
R = (NA, NC , EA, EC , EAC , nt, p) where:

– NA is a set of nodes of the antecedent graph of R,
– NC is a set of nodes of the consequence graph of R,
– EA is a set of directed edges connecting nodes of NA,
– EC is a set of directed edges connecting nodes of NC ,
– EAC is a set of directed edges connecting nodes of the antecedent and the

consequence graph of R,
– nt : NA ∪ NC → {AnteOcc, AnteAbs, ConsOcc, ConsAbs} is a function as-

signing a node type to the nodes of R, and
– p is a function assigning a set of properties (e.g., activity type, data condi-

tions) to each node of R.

Assuming an existing event model, Fig. 3A depicts the modeling of the CRG
for compliance rule c1 in two steps. Apparently, c1 is activated by the payment
run creating a payment list. This is modeled through the corresponding AnteOcc

node. As c1 requests the payment run to be followed by the event transfer to
bank and the subsequent event check bank statement for the created payment list,
ConsOcc nodes are used to model this consequence pattern. In a second step, the
consequence CRG is refined to capture the condition that the payment list must

5 Note that the antecedent pattern can also be left empty to model for example car-
dinality constraints.



Consequence 
occurrence

Consequenc
e absence

Antecedent 
occurrence

Antecedent
absence

vard

Data context

’’Conducting a payment run creates a payment list, which has to be transferred to the 
bank first. Then, the bank statement has to be checked for corresponding payments.’’

’’Payment run must be transferred to the bank only once.’’

1) Modeling the antecedent CRG and the basic consequence CRG structure

2) Refining the consequence CRG by means of absence constraints

Compliance rule c2

Compliance rule c3

Item 

Payment
confirmed 

Mark as
cleared

Compliance rule c4

Mark as 
cleared

Put on
payment list

Item 

Compliance rule c5

Open item

Mark as cleared

30 days later

Check bank details

Item 

A B

Payment list

Payment run Transfer to bank Check bank 
statement 

Transfer to bankTransfer to bank

Compliance rule c1

Payment list

Payment run Transfer to bank Check bank 
statement 

Payment run
(amount > 10.000 €)

Transfer to 
bank

Sign payment list

Payment list

File payment 
list

Fig. 3. Step by step modeling CRG for c1 (A) and CRGs for c2 - c5 (B)

be transferred to the bank only once. This condition is captured by ConsAbs

nodes signifying the requested absence of additional events of type transfer to
bank. In this manner, we can also model the other compliance rule examples by
means of CRG as depicted in Fig. 3 B. For example, the CRG for compliance
rule c5 expresses that in case an open item event is followed by a time event
representing 30 days later without having recorded mark as cleared, the bank
details have to be checked. Note that we assume an event processing framework
that can deliver such time events.

Intuitively, an event pattern of a CRG (regardless of whether it is an an-
tecedent or a consequence pattern) matches a set of events if the occurrence
nodes and the ordering relations match a set of nodes and the absence constraints
expressed through the absence nodes are satisfied. If the antecedent pattern is
composed from only AnteAbs nodes, then there can be only one match of the an-
tecedent (if the absence constraints apply). Each match of the antecedent event
pattern constitutes an activation of the corresponding CRG. For example, the
sequence of the events e1 (payment run with amount beyond e10,000) and e2
(payment list A is transferred to the bank) from Fig. 1 constitutes a match of
the antecedent of c2. CRGs with empty antecedent pattern are activated upon
the process start.

Definition 2 (Semantics of CRGs). Let R = (NA, NC , . . . ) be a CRG and
σ =< e1, . . . , en > be an execution trace. Then, R is satisfied over σ iff:

– for R with non-empty antecedent pattern holds: for each match of the an-
tecedent pattern of R in σ, there is also a corresponding match of R’s con-
sequence pattern in σ and

– for R with empty antecedent pattern holds: there is also a match of R’s
consequence pattern in σ.

Due to their explicit structure, verbalization, a technique known from busi-
ness rule modeling, can be easily realized for CRGs. While CRG is a compo-



e5 = (payment confirmed, item 1)

End of process executione8 = (payment confirmed, item 3)

e7 = (mark as cleared, item 2)

e9 = (mark as cleared, item 3)

e6 = (payment confirmed, item 2)Compliance rule c3:

Payment 
confirmed

Mark as 
cleared

Item ms1Item 1 ms1Item 1

ms2Item 2 ms3Item 2

ms4Item 3

ms6Item 1ms1Item 1ms1Item 1

ms3Item 2 ms3Item 2

ms5Item 3 ms5Item 3

ms3Item 2

ms1Item 1

Node markings:

NOT_EXECUTED

EXECUTED

NULL

Activation A1

Activation A2

Activation A1

Activation A2

Activation A1

Activation A2

Activation A1

Activation A2

Activation A1

Activation A2

Activation A1

Activation A3 Activation A3 Activation A3

Fig. 4. Observed patterns with regard to CRG c3 when processing events e5 - e9

sitional language, we can also use CRGs to model frequent rule patterns, for
example [3]. Due to space limitations, we abstain from going into further details
on the properties of CRGs (e.g., syntactic correctness, further modeling primi-
tives). Further details can be found in [2]. In this paper, we only focus on a subset
of the CRG language that is sufficient to illustrate our monitoring framework.

3 Compliance Monitoring

Generally, it would be possible to monitor compliance with an imposed CRG
by transforming it into an automaton or by generating event queries (e.g., for
complex event processing [1]) from it. The benefits and drawbacks of these ap-
proaches are discussed in Section 5. For example, addressing challenge 1 is cum-
bersome when employing the automaton approach [4]. The beauty of our ap-
proach is that no transformation of the modeled compliance rules (in the form
of CRGs) into other representations is necessary in order to enable monitoring.
A CRG is instead monitored by exploiting its graph structure. Thus, feedback
can be provided specifically on the basis of the structure of the very CRG leaving
no gap between the modeled rule and the feedback mechanism.

The basic idea behind the approach is illustrated by Fig. 4 using the example
of CRG c3. Fig. 4 depicts event patterns that are relevant to c3 and that become
observable in different stages of process execution when processing the events
of trace T from Fig. 1. Instead of textually describing these patterns, we use
the graph structure of CRGs and node markings that indicate whether or not
an event was observed to capture these observable patterns. New patterns are
marked in grey color.



Ne Current patterns represented by
Apply compliance notions to update 
feedback on rule activations and

New 
observed

event

p p y
marking structures

(start of monitoring: empty pattern, 
where all nodes are assigned NULL)

compliance state

For violable activations:
 Derive preventive measures from

node markings

Application of rules to derive updated patterns For violated activations:
 Derive root cause from node

markings

Updated 
patterns

Fig. 5. Updating compliance feedback when a new event is observed

Example 1 Consider Fig. 4 and c3. Then, after observing e1-e5, the pattern
“payment confirmed for item 1 without subsequent mark as cleared yet” becomes
observable in the execution trace. This pattern is captured by ms1 using the node
state Executed to indicate that payment confirmed was already observed. When
observing e6, a similar pattern can be formed for item 2. Obviously, ms1 and ms2
each constitutes an activation of c3. When observing e7, ms2 is no longer current
but instead, the situation can be represented by ms1 and ms3, where ms3 reflects
the pattern “payment confirmed for item 2 with subsequent mark as cleared”.
Thus, ms3 constitutes a satisfied activation of c3. Observation of e8 yields a
new pattern for item 3 represented by ms4. This pattern is replaced by ms5
after item 3 is marked as cleared (event e9). If the process execution would be
terminated, ms1 would be no longer current for activation A1 as item 1 will not
be marked as cleared. Thus, ms1 is updated to ms6. Altogether, after execution
of e1-e9 and the termination of the process execution, the compliance with c3 is
reflected by the patterns ms6, ms3, and ms5, where each of this represents an
activation of c3. While the activations A2 and A3 are satisfied as the required
events were observed, activation A1 for item 1 is violated as it was not marked
as cleared as indicated by the ConsOcc node marked with NotExecuted.

In the example, we built the observable patterns manually. Inspired by pat-
tern matching, our monitoring framework automatically identifies all activations
of a CRG to be checked and further tries to identify a match of the consequence
pattern in the execution trace. For that purpose, it builds such patterns based
on the graph structure of the CRG to be checked that become observable in the
partial execution trace as illustrated in the example. However, in the monitoring
framework, these patterns are not built from scratch each time a new event is
observed. Instead, new observable patterns are derived from existing patterns
by applying defined rules when observing a new event. Fig. 5 summarizes the
overall procedure when a new event is observed.

Each relevant observable pattern represented by marking the CRG as illus-
trated in the example is stored in a data structure called marking structure (in
brief MS). From the node semantics and the node markings, it can be derived
whether a MS represents a rule activation. Also the individual compliance state
of the rule activation can be determined this way (challenge 1). For a violable
rule activation, measures can be derived from the node markings to proactively
enforce the satisfaction, for example, the pending activities can be identified



(challenge 2). In case of violation, the node markings further enable root cause
analysis without additional cost (challenge 3).

In the following, we first formalize the MSs and introduce formal notions to
assess them with regard to compliance in Section 3.1. In Section 3.2, we introduce
the algorithm for deriving updated observed patterns from old patterns when a
new execution event is observed. Finally, we further show how the challenges 2
and 3 can be dealt with in Section 3.3.

3.1 CRG Markings and Compliance Notions

In Fig. 4, we already introduced the node markings that are used to indicate
whether or not an event was observed: A CRG node n marked with Null signifies
that no matching event is observed yet. Regardless of the node type, a CRG node
n in a pattern marked with Executed means that a matching event has been
observed. A CRG node n marked with NotExecuted means that the associated
event has not been and will not be observed (e.g., when the window for an event
to occur has elapsed). Using the node markings, we can use the specific CRG
structure to express relevant patterns that become observable in the execution
trace. During compliance monitoring for a CRG, each such pattern is captured in
a data structure called marking structure (MS), e.g., ms1 in Fig. 4. In particular,
a MS captures a (potential) activation of a CRG observable from the trace. It
contains a marking for each antecedent node of the CRG and multiple markings
for the CRG’s consequence pattern6. Def. 3 formalizes the notion of MSs.

Definition 3 (CRG MS). Let R = (NA, NC , . . . ) be a CRG and NodeStates :=
{Null, Executed, NotExecuted} be the set of execution states of CRG nodes.
Then, a CRG MS of R is defined as a 3-tuple
ms := (nsA, evA, {(ns1C , ev1C), . . . , (nskC , ev

k
C)}) where

– nsA : NA → NodeStates is a function assigning an execution state to each
node of A.

– evA is a function assigning an observed execution event (or a dummy event
in case nsA(n) ∈ {Null, NotExecuted}) to each node of A. We denote
(nsA,evA) as AnteMark of R.

– nsiC : NC → NodeStates is a function assigning an execution state to each
node of C.

6 The rationale behind this is that depending on the particular CRG, the pattern
matching procedure may has to try different options to form a match of the con-
sequence pattern out of the events contained in the execution trace. Consider for
example the rule “After A, there has to a B that is not followed by a C”. Then,
assuming that an A is present in the trace, the first subsequent B may not lead
to a match of the consequence as it can still be followed by a C. In this case, it
becomes necessary to also explore other options, which results in multiple markings
for the consequence pattern. This only becomes necessary for the particular case
of ConsOcc nodes with direct ConsAbs successors and is taken into account by our
pattern matching mechanism (cf. Section 3.2).



– eviC is a function assigning an observed execution event (or a dummy event
in case nsiC(n) ∈ {Null, NotExecuted}) to each node of C. We denote
(nsiC ,eviC)as ConsMark of R.

Example 2 Consider ms1 from Fig. 4:

– ms1 = (nsA, evA, {(nsC , evC)}) with
– nsA(payment confirmed) = Executed, evA(payment confirmed) = e5,
– nsC(mark as cleared) = Null, and evC(mark as cleared) = no event.

As illustrated by Fig. 4, in each stage of process execution, the compliance
with an imposed CRG can be reflected by a set of MSs. To assess these MSs, we
can benefit from the node semantics and the node markings. Generally, for a
CRG’s antecedent or consequence pattern composed from occurrence and ab-
sence nodes, a match in the execution trace is found if all events associated with
occurrence nodes are observed (i.e., marked as Executed) and for all absence
nodes, no matching events were observed (i.e., marked as NotExecuted). If the
antecedent is marked accordingly, the corresponding MS constitutes an activation
of the CRG. Recall that a rule activation is satisfied if a match of the CRG’s
consequence can also be found in the execution trace. Thus, the activation is
satisfied if the MS also contains a ConsMark that is marked as described. Def. 4
formalizes this intuition:

Definition 4 (Compliance Notions for MSs). Let R = (NA, NC , . . . ) be a
CRG and ms = (nsA, evA, {(ns1C , ev1C), . . . , (nskC , ev

k
C)}) be a MS of R. Then,

– we will say ms is activated if the following holds:

• ∀n ∈ NA : nt(n) = AnteOcc⇒ nsA(n) = Executed ∧
∀n ∈ NA : nt(n) = AnteAbs⇒ nsA(n) = NotExecuted

For an activated ms, we further distinguish between the following states:

– ms is satisfied if the following holds:

• ∃nsiC , i ∈ {1, . . . , k} :
(∀n ∈ NC : nt(n) = ConsOcc⇒ nsiC(n) = Executed)∧
(∀n ∈ NC : nt(n) = ConsAbs⇒ nsiC(n) = NotExecuted)

– ms is violated if the following holds:

• ∀nsiC , i ∈ {1, . . . , k} :
(∃n ∈ NC : nt(n) = ConsOcc⇒ nsiC(n) = NotExecuted)∨
(∃n ∈ NC : nt(n) = ConsAbs⇒ nsiC(n) = Executed)

– Otherwise, ms is considered violable.

Example 3 Consider again Fig. 4. Then,

– ms1, ms3, and ms6 are all activated, i.e., they constitute activations of c3.
– ms1 is violable, ms3 is satisfied, while ms6 is violated.



Def. 4 enables us to assess obtained MSs. Altogether, this enables the process
supervisor to get an overview on rule activations in the process execution and
provides basic information on their compliance state. In Section 3.3, we will fur-
ther discuss how the monitoring framework can be used to assist the process
supervisor in identifying the root cause for violations and even in preventing
violations. Before that, we first introduce the pattern matching mechanism op-
erating on MSs behind our framework in Section 3.2.

3.2 The Pattern Matching Mechanism

As mentioned, each MS represents a (potential) activation of the CRG. As indi-
cated in Fig. 5, the monitoring of a CRG starts with a MS where all nodes are
assigned Null (i.e., no events observed yet). How to derive updated MSs from
existing MSs when a new event is observed? The pattern matching mechanism of
the framework is based on three considerations:

1: The objective is to identify all rule activations present in the execution
trace. For that purpose, it becomes necessary to explore different options to form
a match of the CRG’s antecedent pattern out of the events in the trace in the
pattern matching process.

2: For each MS, the objective is further to identify a match of the consequence
CRG (cf. Def. 2). For that purpose, we try to explore only one option if possible
to increase the efficiency. Alternative options are only explored if necessary.

3: Exploit the ordering of nodes for pattern matching: A node can only
match an event, if the node and event specification match and the node is
not yet assigned to another event. Additionally, also matching events for rel-
evant predecessors must have already been found. In particular, for AnteOcc

and AnteAbs nodes, AnteOcc predecessors must be already marked as Executed.
For ConsOcc and ConsAbs nodes, AnteOcc and ConsOcc predecessors must be
marked as Executed.

Based on these considerations, algorithm 1 derives updated patterns from
a MS when an event is observed. The outer loop implements consideration 1.
The inner loop in line 19 updates the observable patterns with regard to the
consequence CRG (represented by the ConsMarks). It further implements con-
sideration 2, as only for particular nodes, namely ConsOcc nodes with direct
ConsAbs successors, alternative options have to be explored.

Example 4 Fig. 6A applies algorithm 1 to c2 over the events < e1, e2, e4 >
7.

New MSs are highlighted. The monitoring starts with ms1. When e1 is observed,
application of algorithm 1 yields both ms1 and ms2. Here, ms1 enables the
recognition of future activations of c2, while ms2 explores whether e1 leads to
a rule activation8. So far, no activation of c2 is observed yet. When observing

7 e3 is irrelevant to c2.
8 Note that when manually conducting pattern matching (cf. Fig. 4), we would typ-

ically not identify ms1. However, such not yet matching patterns are important to
enable automatically deriving updated patterns from existing patterns.



Algorithm 1 Deriving updated patterns from a MS over an event

1: R = (A,C, . . . , . . . ) is a CRG; e is an observed event; MSRes = ∅;
2: ms = (nsA, evA, {(ns1C , ev

1
C), . . . , (nskC , ev

k
C)}) is a MS of R;

{CRG nodes that match e (cf. consideration 3):}
3: NAnteOcc is the set of AnteOcc, NAnteAbs is the set of AnteAbs nodes matching e ;
4: N i

ConsOcc, i = 1, . . . , k; is the set of ConsOcc nodes matching e of (nsiC , ev
i
C);

5: N i
ConsAbs, i = 1, . . . , k; is the set of ConsAbs nodes matching e of (nsiC , ev

i
C);

6: for all Q ∈ P(NAnteOcc) do
7: create a copy ms′ of ms;
8: for all n ∈ Q do
9: ns′A(n) = Executed; ev′A(n) = e;

10: mark all AnteAbs predecessors of n with ns′A(n) = Null as NotExecuted;
11: for all ConsMarks (nsiC , ev

i
C) of ms′ do

12: mark all ConsOcc predecessors of n with nsiC(n) = Null as NotExecuted;
13: mark all ConsAbs predecessors of n with nsiC(n) = Null as NotExecuted;
14: end for
15: end for
16: for all n with n ∈ NAnteAbs ∧ ns′A(n) = Null do
17: ns′A(n) = Executed; ev′A(n) = e;
18: end for
19: CM = ∅;
20: for all ConsMarks cm = (nsiC , ev

i
C) of ms′ do

21: N = N i
ConsOcc\{n ∈ NC | nt(n) = ConsOcc ∧ nsiC(n) = NotExecuted};

22: D = {n ∈ N | n has no direct ConsAbs successor };
23: I = N\D;
24: for all Q = D ∪ T, T ∈ P(I) do
25: create a copy cm′ = (ns′iC ,ev′iC) of cm;
26: for all n ∈ Q do
27: ns′iC(n) = Executed; ev′iC(n) = e;
28: mark all ConsAbs predecessors of n with ns′iC(n) = Null as NotExecuted;
29: end for
30: for all n with n ∈ N i

ConsAbs ∧ ns′iC(n) = Null do
31: ns′iC(n) = Executed; ev′iC(n) = e;
32: end for
33: CM = CM ∪ {cm′};
34: end for
35: end for
36: set ConsMarks of ms′=CM ;
37: MSres = MSres ∪ {ms′};
38: end for
39: return MSres;

e2, ms1 remains unaffected. However, ms2 results in ms2 and ms3. Here, ms2
enables the recognition of possible future rule activations in combination with e1.
The compliance notions (cf. Def. 4) reveal that ms3 constitutes an activation of
c2, A1, that is already violated as the payment list was not signed before being
transferred to the bank. In this case, the process supervisor can be notified. If
in practice the activity transfer to bank can be put on hold, the system could
even suspend its execution being aware that the activity leads to incompliance.
Despite the violation, the monitoring of A1 can still be continued. Thus, when
observing e4, ms3 yields ms4. Activation A1 is still violated, but nevetheless due
to one but not two causes as we will later discuss in Section 3.3.

Example 5 Fig. 6B applies algorithm 1 to c4 over the events < e7, e9, e10 >.
As mark as cleared occurs twice the execution (as e7 for item 2 and as e9 for



 

File 

payment list

e4 = (file payment list, payment list A)e2 = (transfer to bank, payment list A)

Compliance rule c2:

 NOT_EXECUTED EXECUTED NULL

PR TB

SL

FL

Payment list ms1

PR TB

SL

FL

Payment list ms1

PR TB

SL

FL

Payment list A ms3

PR TB

SL

FL

Payment list A ms2

PR TB

SL

FL

Payment list ms1

PR TB

SL

FL

Payment list A ms4

PR TB

SL

FL

Payment list A ms2

- ACTIVATED 

- VIOLATED

Monitoring of activation for payment list 

A can still be continued

Activation A1 Activation A1

- ACTIVATED 

- VIOLATED

e10 = (put on payment list, item 3)

A

e1 = (payment run, payment list A, amount = €60,000)

PR TB

SL

FL

Payment list ms1

PR TB

SL

FL

Payment list A ms2

 

Payment run

(amount > 10.000 €)

 

Transfer to 

bank

 

Sign payment 

list

Payment list

Initial empty pattern:

Node markings:

Monitoring compliance rule c2:

Monitoring compliance rule c4:

Compliance rule 

c4

 

Mark as 

cleared

Put on

payment list

 

Item 

M P

Item ms1

M P

Item 3 ms4

M P

Item ms1

M P

Item 2 ms2

- ACTIVATED 

- VIOLABLE

- ACTIVATED 

- VIOLATED

Activation A2

Activation A1

e9 = (mark as cleared, item 3)

M P

Item 3 ms3

M P

Item ms1

M P

Item 2 ms2

- ACTIVATED 

- VIOLABLE

- ACTIVATED 

- VIOLABLE

Activation A1

Activation A2

e7 = (mark as cleared, item 2)

M P

Item ms1

M P

Item 2 ms2

Initial empty pattern:

B Monitoring:

e10 = (put on payment list, item 3)

Fig. 6. Monitoring c2 over < e1, e2, e4 > (A) and c4 over < e7, e9, e10 > (B)

item 3 ), compliance monitoring reveals two activations of c4, namely A1 and
A2, after observing e7 and e9. At that stage, both activations are violable.
However, item 3 is later put on a payment list again (indicated by e10). As a
result, activation A2 becomes violated as the absence constraint is violated.

3.3 Prevention of Violations and Root Cause Analysis

Prevention of violations A violable rule activation can become both satisfied

or violated depending on future events. Due to its graph notation, such a MS can
be presented to the process supervisor if required in order to identify measures
to prevent a violation. Additionally, the system can assists in preventing viola-
tions by deriving concrete actions in order to render the activation satisfied.
Based of Def. 4, the rule activation becomes satisfied when a match of the
consequence is found. Thus, from a ConsMark (nsC , evC) that can still lead to



a match of the consequence, we can derive actions to satisfy the corresponding
activation as follows:

– Each ConsOcc node n with nsC(n) = Null represents a still pending ac-
tivity.
Possible action: Schedule the pending activity9.
Example: Consider ms1 from Fig. 4. Then, ConsOcc node mark as cleared
is pending as it is still marked as Null. To satify this activation, the corre-
sponding activity can be scheduled, for example, by putting it into an agent’s
worklist.

– Each ConsAbs node n with nsC(n) = Null that does not have any ConsOcc

predecessors still in state Null represents an active absence constraint. The
absence of the corresponding event is necessary in order for this ConsMark

to constitute a match of the consequence CRG.
Possible action: Deactivate the corresponding activity until n is marked
as NotExecuted (e.g., when the window of n elapsed).
Example: Consider ms2 from Fig. 6B. Then, ConsAbs node put on pay-
ment list represents an active absence constraint. As no ConsOcc nodes are
pending, immediate end of process execution would render this activation
satisfied. To enforce compliance, the activity put on payment list can be
deactivated for item 2.

As the pattern matching mechanism employs a rather greedy strategy to iden-
tify a match of the consequence, the thus derivied action chains constitute the
“shortest” ways to enforce compliance.

Root cause identification In a similar manner to violation prevention, the root
cause of a violated rule activation can be easily derived from a ConsMarks.
Generally, an activation can become violated if required events do not occur
or / and prohibited events occur during process execution. These causes are also
reflected in the MS. For a ConsMark (nsC , evC) of a violated MS, we can identify
why it does not constitute a match of the consequence CRG:

– Each ConsOcc node n with nsC(n) = NotExecuted represents a required
activity missing in the pattern.
Example: Consider ms4 from Fig. 6A. Then, the missing event sign payment
list before transferring payment list A to the bank can be precisely identified
as the root cause for the violation of rule activation A1.

– Each ConsAbs node n with nsC(n) = Executed represents an prohibited
activity observed in the pattern.
Example: Consider ms4 from Fig. 6B. Then, the prohibited event put on
payment list for item 3 is identified as the root cause for the violation.

9 Since CRGs are acyclic, we can further derive a process to be scheduled by adopting
the ordering relations of the occurrence nodes in case multiple activities are pending.



Fig. 7. Execution of c2 over < e1, e2, e4 > and ms4 as one of the resulting MSs

4 Implementation

We impemented our monitoring approach in the SeaFlows Toolset [5] that com-
prises a variety of tools for supporting compliance throughout the process lifecy-
cle. The SeaFlows Compliance Monitor is integrated into the AristaFlow BPM
Suite that is based on ADEPT [6]. CRGs are modeled using a graphical editor
and stored as XML files. For convenient compliance rule modeling, the SeaFlows
Compliance Rule Editor allows for modeling parametrized compliance rules pat-
terns that can be reused whenever a rule with a similar structure is required.
Fig. 7 shows the rule activation captured by MS ms4 (cf. Fig. 6A) obtained when
observing the event sequence < e1, e2, e4 > from Fig. 1. The root cause of the
violation is visualized directly in the CRG by using the node markings and the
color highlighting. This enables process supervisors to easily pinpoint violations
and to apply root cause specific remedies, for example initiate an audit activity
as the transferred payment list was not signed before being transferred to the
bank.

5 State-of-the-art

Most work addressing process monitoring focus on data consistency or process
performance (e.g., KPI monitoring or business activity monitoring). Several ap-
proaches address root cause analysis in the context of design time verification [7,
8, 5]. Generally, for a predefined set of rule patterns, possible types of violations



can be anticipated, which can be used for root cause analysis. However, runtime
monitoring of complex rules on the occurrence, absence, and ordering of particu-
lar events necessitates more advanced strategies. We distinguished three classes
of monitoring approaches addressing constraints on the behavior of events. In
addition, compliance monitoring is also related to conformance checking.

Automaton-based monitoring One approach to monitor compliance with imposed
rules is to use an automaton that reaches an accepting state if the rule to be
checked is satisfied. As compliance rules are typically not modeled as automaton,
they first have to be modeled using a formalism, such as linear temporal logic
(LTL), from which an automaton can be generated. To hide the complexity of
LTL from the modeler, graph notations for frequently used constraint patterns
based on the work of Dwyer and Corbett [3], such as ConDec [9], were suggested.
Maggi et al. [10] suggest a monitoring approach based on LTL and colored au-
tomata. It includes information about the accepting states of the automata of
the individual constraints in a global automaton representing the conjunction of
all imposed constraints. The latter is important to identify whether constraints
are conflicting. In case a violation occurs, the monitoring can still be continued.
Generally, challenge 1, the support of individual rule activations, is cumbersome
to tackle using automaton-based approaches as this would require an additional
instantiation mechanism. In addition, it is a non-trivial task to derive meaning-
ful information from a non-accepting state of a generated automaton in case of
violations (e.g., root cause).

Logic-based monitoring Some approaches employ logic formalisms to conduct
monitoring. In [4], Montali et al. introduce an event calculus formalization for
ConDec [9] constraints, which supports the identification of constraint activa-
tions. While this approach can also deal with temporal scopes, the formalization
was done for existence, absence, and response constraints. Alberti et al. [11] re-
port on monitoring contracts expressed as rules using the notion of happened
and expected events. At runtime, events are aggregated in a knowledge base and
reasoning is employed to identify violations. It seems that proactive prevention
of violations and root cause analysis were not addressed by these approaches.

Violation pattern based monitoring Incompliance with rules on the occurrence,
absence, and ordering of events can also be detected by querying the (partial)
execution trace for violation patterns. To conduct the querying, existing frame-
works and technologies such as complex event processing (CEP) [1] are appli-
cable. In [8], Awad et al. introduce anti-patterns for basic rule patterns such
as precedence. While this approach addresses design time verification of process
models, the anti-patterns can also be applied to query the execution trace. For
simple compliance rules or basic relations (as for example introduced in [12]),
all violation patterns can be anticipated. However, for more complex compliance
rules on the occurrence, absence, and ordering of events that can be violated
in multiple ways, automatic computation of violation patterns to identify all
posssible violations becomes a real challenge. This has not been addressed yet.



In their work, Giblin et al. [13] developed the REALM rule model. For REALM
patterns, such as “y must occur within time t after x”, they provide transforma-
tions into ACT correlation rules, which can be used for detecting relevant event
patterns. Event processing techonologies are further used by numerous compli-
ance monitoring frameworks to detect violations, e.g., in the COMPAS project
[14, 15]. How the event queries are generated from complex compliance rules is
not the focus of these approaches.

Conformance checking Conformance checking investigates whether a process
model and process logs are conform to each other. Generally, the conformance
can be tested for example by replaying the log over the process model. To tackle
this, several approaches were proposed [16, 17] that introduce techniques and
notions such as fitness and appropriateness to also quantify conformance. Im-
plementations of these approaches (e.g., the Conformance Checker) are available
in the process mining framework ProM [18]. Conformance checking and compli-
ance rule monitoring exhibit major differences that require different techniques.
For example, compliance rules are typically declarative while process models
are mostly procedural. In addition, most of the work on conformance checking
operates a posteriori. However, these approaches provide good inspiration, for
example to develop metrics for quantifying compliance. Weidlich et al. show in
[12] how to derive event queries for monitoring process conformance from a pro-
cess model. They employ a behavioral profile that serves as an abstraction of
the process model. The profile captures three relations among the activities of a
process model (e.g., strict order relation). For these relations, event monitoring
queries can be generated (cf. discussion on violation pattern based monitoring).

6 Summary and Outlook

In this paper, we addressed three major challenges in the context of monitoring
the compliance with imposed rules. Our framework enables the identification of
all activations of a compliance rule. In case of a compliance rule is violated, it
becomes possible to pinpoint the rule activations involved. In addition, as our
framework does not require any transformations into other representations in
order to conduct the monitoring, feedback and diagnosis can be given specifically
based on the corresponding rule structure. In particular, we can derive the root
cause for a violation from the node markings of the particular rule. Even for
rule activations that are not yet permanently violated, we can derive actions
(in particular pending activities and active absence constraints) that can be
helpful to process supervisors to proactively prevent violations. The validity of
the approach was shown based on our proof-of-concept implementation. Our
monitoring approach is not restricted to CRGs but can also be adapted to deal
with other graph-based rule languages. We also conducted research to further
increase the efficiency of our approach, for example by pruning paths to be
explored using domination rules. In future work, we will further address the
interplay of CRGs, for example conflicting rules.



References

1. Jacobsen, H.A., Muthusamy, V., Li, G.: The PADRES event processing network:
Uniform querying of past and future events. it - Information Technology (2009)
250–261

2. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable com-
pliance rule graphs in process-aware information systems. In: Int’l Conf. on Ad-
vanced Information Systems Engineering. (2010) 9–23

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proc. ICSE’99. (1999) 411 – 420

4. Montali, M., Maggi, F., Chesani, F., Mello, P., van der Aalst, W.: Monitoring
business constraints with the event calculus. Technical report, Universita degli
Studi di Bologna (2011)

5. Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M.,
Dadam, P.: Seaflows toolset - compliance verication made easy for process-aware
information systems. In: Proc. CAiSE’10 Forum. Volume 72 of LNBIP., Springer
(2010) 76–91

6. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

7. Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.: On the formal
specification of regulatory compliance: A comparative analysis. In: Proc. ICSOC’10
Workshops. (2010)

8. Awad, A., Weske, M.: Visualization of compliance violation in business process
models. In: Proc. BPI’09. (2009)

9. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business pro-
cesses management. In Eder, J., Dustdar, S., eds.: Business Process Management
Workshops. Volume 4103 of LNCS., Springer (2006) 169–180

10. Maggi, F., Montali, M., Westergaard, M., van der Aalst, W.: Monitoring business
constraints with linear temporal logic: An approach based on colored automata.
In: Proc. BPM 2011. (2011)

11. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., Torroni,
P.: Expressing and verifying business contracts with abductive logic. In: Normative
Multi-agent Systems. Number 07122 in Dagstuhl Seminar Proceedings (2007)

12. Weidlich, M., Ziekow, H., Mendling, J., Günter, O., Weske, M., Desai, N.: Event-
based monitoring of process execution violations. In: Proc. CAISE 2011. (2011)

13. Giblin, C., Müller, S., Pfitzmann, B.: From regulatory policies to event monitoring
rules: Towards model-driven compliance automation. Technical Report Research
Report RZ-3662, IBM Research GmbH (2006)

14. Holmes, T., Mulo, E., Zdun, U., Dustdar, S.: Model-aware monitoring of soas
for compliance. In Dustdar, S., Li, F., eds.: Service Engineering. Springer (2011)
117–136

15. Birukou, A., D’Andrea, V., Leymann, F., Serafinski, J., Silveira, P., Strauch, S.,
Tluczek, M.: An integrated solution for runtime compliance governance in SOA.
In: Proc. ICSOC’10. (2010)

16. van der Aalst, W.M.P., de Medeiros, A.K.A.: Process mining and security: De-
tecting anomalous process executions and checking process conformance. Electr.
Notes Theor. Comput. Sci. 121 (2005) 3–21

17. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33 (2008) 64–95

18. van der Aalst, W., et al.: ProM 4.0: Comprehensive support for real process anal-
ysis. In: Proc. ICATPN 2007. Volume 4546 of LNCS., Springer (2007) 484–494


