
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with RStudio

John Verzani

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with RStudio
by John Verzani

Copyright © 2011 John Verzani. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Getting Started with RStudio, the image of a ribbonfish, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30903-9

[LSI]

1316092792

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.it-ebooks.info/

Table of Contents

Preface . v

1. Overview, Installation . 1
What is R? 1
What is an IDE? 2
Why RStudio? 3
Using RStudio 4

Desktop Version 4
Server Version 5
Which Workspace? 7
Projects 7
Which R? 7

Layout of the Components 8
Keyboard Shortcuts 8
The Options Dialog 9

Installing RStudio 9
Updating RStudio 11

2. Case Study: Data Cleaning . 13
Using Projects 14
Reading in a Data File 14
Tab Key Completion 16
Workspace Component 18

Using the Right Class to Store Data 19
Data Cleaning 20
Using the Code Editor to Write R Scripts 21
Using Add-On Packages 22
Graphics 23

Command History 24
All Finished, for Now 25

iii

www.it-ebooks.info

http://www.it-ebooks.info/

3. The Console and Related Components . 27
Entering Commands 27

Automatic Insertion of Matching Pairs 29
R Script Files 29

Command-Line Conveniences 31
Tab Completion 31
Keyboard Shortcuts 34
Command History 36

Workspace Browser 38
Editing and Viewing Objects 39
Importing Data Sets 41

The Help Page Viewer 42
The Browser 45

The Plots Browser 46
Interactivity 48
The manipulate Package for RStudio 48

External Programs (Desktop Version) 50

4. Case Study: Creating a Package . 51
Creating Functions from Script Files 52
A Package Skeleton 52
Documenting Functions with roxygen2 56
The devtools Package 57
Package Data 59
Package Examples 60
Adding Tests 60
Building and Installing the Package 60

5. Programming R with RStudio . 63
Source Code Editor 63

Basics 64
R Programming Features 67
Navigation 70
The File Browser 71
Debugging R Code in RStudio 72

Package Maintenance 73
Case Study: Report Generation 75

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

v

www.it-ebooks.info

http://www.it-ebooks.info/

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Getting Started with RStudio by John Ver-
zani (O'Reilly). Copyright 2011 John Verzani, 978-1-449-30903-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

vi | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.it-ebooks.info/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920021278.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | vii

www.it-ebooks.info

http://shop.oreilly.com/product/0636920021278.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Overview, Installation

This book introduces users to the RStudio Integrated Development Environment (IDE)
for using and programming R, the widely used open-source statistical computing en-
vironment. RStudio is a separate open-source project that brings many powerful coding
tools together into an intuitive, easy-to-learn interface. RStudio runs in all major plat-
forms (Windows, Mac, Linux) and through a web browser (using the server installa-
tion). This book should appeal to newer R users, students who want to explore the
interface to get the most out of R, and long-time R users looking for a more modern
development environment.

RStudio is periodically released as a stable version, and has daily releases in between.
This book, as written, describes one of the daily releases—in particular, version
0.95.75; the current stable release is version 0.94.102. Some features described here,
such as the project feature, are not currently available in the stable release.

We will begin with a quick overview of R and IDEs before diving into RStudio.

What is R?
R is an open-source software environment for statistical computing and graphics. R
compiles and runs on Windows, Mac OS X, and numerous UNIX platforms (such as
Linux). For most platforms, R is distributed in binary format for ease of installation.
The R software project was first started by Robert Gentleman and Ross Ihaka. The
language was very much influenced by the S language, which was originally developed
at Bell Laboratories by John Chambers and colleagues. Since then, with the direction
and talents of R’s core development team, R has evolved into the lingua franca for
statistical computations in many disciplines of academia and various industries.

R is much more than just its core language. It has a worldwide repository system, the
Comprehensive R Archive Network (CRAN)—http://cran.r-project.org—for user-
contributed add-on packages to supplement the base distribution. As of 2011, there
were more than 3,000 such packages hosted on CRAN and numerous more on other

1

www.it-ebooks.info

http://cran.r-project.org
http://www.it-ebooks.info/

sites. In total, R currently has functionality to address an enormous range of problems
and still has room to grow.

R is designed around its core scripting language but also allows integration with com-
piled code written in C, C++, Fortran, Java, etc., for computationally intensive tasks
or for leveraging tools provided for other languages.

What is an IDE?
R, like other programming languages, is extended (or developed) through user-written
functions. An integrated development environment (IDE), such as RStudio, is designed
to facilitate such work. In addition, unlike many other statistical software packages in
which a graphical user interface is employed, a typical user interacts with R primarily
through the command line. An IDE for R then must also include a means for issuing
commands interactively. R is not unique in this respect, and IDEs for interactive sci-
entific programming languages have matured to include features such as:

• A console for issuing commands.

• Source-code editor; at its core, development involves the act of programming, and
this task is inevitably done with a source-code editor. Such editors have been
around for some time now, and expectations for editors are now quite demanding.
A typical set of expectations includes:

— A rich set of keyboard shortcuts

— Automatic source-code formatting, assistance with parentheses, keyword
highlighting

— Code folding and easy navigation through a file and among files

— Context-sensitive assistance

— Interfaces for compiling or running of software

— Project-management features

— Debugging assistance

— Integration with report-writing tools

• Object browsers; in interactive use, a user’s workspace includes variables that have
been defined. An object browser allows the user to identify quickly the type and
values for each such variable.

• Object editors; from an object browser, a means to inspect or edit objects is typi-
cally provided.

• Integration with the underlying documentation.

• Plot-management tools.

Some existing IDEs for R are listed in Table 1-1.

2 | Chapter 1: Overview, Installation

www.it-ebooks.info

http://www.it-ebooks.info/

Table 1-1. Some existing IDEs for R

Name Platforms Description

ESS All ESS (http://ess.r-project.org) is a powerful and commonly used interface for
R that integrates the venerable emacs editor with R. There are numerous
conveniences, but some find that it is difficult to learn and has an old-school
feel, which precludes adoption.

Eclipse All The open-source StatET plugin (http://www.walware.de/goto/statet)
turns Eclipse, a Java-based multipurpose IDE, into a full-featured IDE for R.

SciViews All An R API and extension for the Komodo code editor.

JGR All Java-based editor that interfaces with R through the rJava and JRI pack-
ages. The Deducer package adds a suite of data analysis tools.

Tinn-R Windows An extension for the Tinn editor that allows integration with an underlying
R process.

Notepad++ Windows With the NpptoR extension allows the Notepad++ editor to interact with
an R process.

RGui Windows The Windows GUI for R has many of the features of an IDE.

Why RStudio?
The RStudio project currently provides most of the desired features for an IDE in a
novel way, making it easier and more productive to use R. Some highlights are:

• The main components of an IDE are all nicely integrated into a four-panel layout
that includes a console for interactive R sessions, a tabbed source-code editor to
organize a project’s files, and panels with notebooks to organize less central
components.

• The source-code editor is feature-rich and integrated with the built-in console.

• The console and source-code editor are tightly linked to R’s internal help system
through tab completion and the help page viewer component.

• Setting up different projects is a snap, and switching between them is even easier.

• RStudio provides many convenient and easy-to-use administrative tools for man-
aging packages, the workspace, files, and more.

• The IDE is available for the three main operating systems and can be run through
a web browser for remote access.

• RStudio is much easier to learn than Emacs/ESS, easier to configure and install than
Eclipse/StatET, has a much better editor than JGR, is better organized than
Sciviews, and unlike Notepad++ and RGui, is available on more platforms than just
Windows.

Why RStudio? | 3

www.it-ebooks.info

http://ess.r-project.org
http://www.walware.de/goto/statet
http://www.it-ebooks.info/

The RStudio program can be run on the desktop or through a web browser. The desktop
version is available for Windows, Mac OS X, and Linux platforms and behaves similarly
across all platforms, with minor differences for keyboard shortcuts.

To achieve this cross-platformness, RStudio leverages numerous existing web technol-
ogies in its design. For the desktop applications, it cleverly displays them within an
industry standard HTML widget provided by Qt (a cross-platform application and UI
framework) to create a desktop application. Consequently, R users can have a feature-
rich and consistent programming environment for R their way—desktop- or web-
based. Web-based usage is not in the “cloud” (although that service may be forthcom-
ing), but rather can be done through a trusted server within a department or organi-
zation.

RStudio is the brainchild of J. J. Allaire, who, with his brother, previously had tremen-
dous success developing the influential ColdFusion IDE and scripting language for web
development. Allaire is currently joined by the very able Joseph Cheng, Joshua Paulson,
and Paul DiCristina. In the short time that their initial beta has been available, they
have proven to be very responsive to user input. RStudio is under active development.
As such, elements discussed in this book may be changed by the time you are reading
it. Sorry…but you’ll likely be better off with the new feature than my description of the
old one.

Like R, RStudio is an open-source project. Its stated goal—which it is already meeting
—is to develop a powerful tool that supports the practices and techniques required for
creating trustworthy, high-quality analysis. The codebase is released under the AGPLv3
license and is available from GitHub (https://github.com/rstudio/rstudio). RStudio is
built on top of many other open-source projects. Most visible of these are GWT, Goo-
gle’s Web Toolkit; Qt, the graphical toolkit of Nokia; and Ace, the JavaScript code
editor (http://ace.ajax.org). Other leveraged projects are listed in RStudio’s About dialog.
The bulk of the code is written in C++ and Java, the language for working with GWT.

Using RStudio
We will reverse things slightly by beginning with the process of starting RStudio, and
postpone any installation issues for a bit. As RStudio can be used from the desktop or
through a server, there are two ways of starting it.

Desktop Version
For the desktop version, RStudio is started like most other applications. In Fig-
ure 1-1, we see the application running under Mac OS X. There it was started by clicking
on its icon in the Applications folder. For Windows users, the installation process
leaves a menu item. For Linux users, the command rstudio will open the window. It
may also be installed with a menu item, as is done with Ubuntu, where it appears under
Programming.

4 | Chapter 1: Overview, Installation

www.it-ebooks.info

https://github.com/rstudio/rstudio
http://ace.ajax.org
http://www.it-ebooks.info/

In Figure 1-1 we see three main components: the Console, which should look familiar
to any R user; a Workspace browser (with no items, as the initial workspace is empty)
and the History interface. The latter two are part of notebooks that contain other com-
ponents. The Source component, or code editor, is not open in the screenshot, as no
files are open for editing or viewing.

Server Version
Starting the server version requires one to know the appropriate URL for the resource.
We used a local URL for this book, but the real value comes from using RStudio as a
resource on the wider internet. When accessing RStudio, one must first authenticate.
The basic screen to do so looks like Figure 1-2. Authentication depends on the server,
but the default is to authenticate against the user accounts on the machine, so the web
adminstrator should have provided a secure means to access RStudio.

Once authenticated, the layout looks similar to that of the desktop version—compare
Figure 1-1 to Figure 1-3 to see this. One main difference is the location of the menu
bar. In the desktop figure, under Mac OS X, the menu bar is placed following the custom
of that operating system—detached from the application and at the top of the screen
—and is not integrated into the RStudio GUI. For the server version, the menu bar
appears above the application’s main toolbar.

Figure 1-1. RStudio on initial startup; the main interface has four panels (one hidden in this
screenshot), a toolbar, and in some cases, a menu bar

Using RStudio | 5

www.it-ebooks.info

http://www.it-ebooks.info/

When using the server version, only one instance per user may be
opened. If a new session is started—on a different machine, or even if
just in a different tab of the same browser—the old one is disconnected
and a notification issued.

Figure 1-2. Login screen for the server version of RStudio

Figure 1-3. Screenshot of RStudio startup run through a web browser; here, the Source component is
hidden, as no files are currently being edited

6 | Chapter 1: Overview, Installation

www.it-ebooks.info

http://www.it-ebooks.info/

Which Workspace?
When R is started, it follows this process:

• R is started in the working directory.

• If present, the .Rprofile file’s commands are executed.

• If present, the .Rdata file is loaded.

• Other actions described in ?Startup are followed.

When R quits, a user is queried to “Save workspace image?” When the workspace is
saved it writes the contents to an .Rdata file, so that when R is restarted the workspace
can persist between sessions. (One can also initiate this with save.image.)

This process allows R users to place commands they desire to run in every session in
an .Rprofile file, and to have per directory .Rdata files, so that different global work-
spaces can be used for different projects.

Projects
RStudio provides a very useful “project” feature that allows a user to switch quickly
between projects. Each project may have different working directories, workspaces,
and collection of files in the Source component. The current project name is listed on
the far right of the main application toolbar in a combobox that allows one to switch
between open projects, open an existing project, or create a new project.

A new project requires just a name and a working directory. This feature is a natural
fit for RStudio, because when it runs as a web application, there is a need to serialize
and restore sessions due to the nature of web connections. Switching between projects
is as easy as selecting an open project. RStudio just serializes the old one and restores
the newly selected one.

As of writing, the “project” feature is not available in the stable release
(0.94.102) but is in the “daily build” version.

Which R?
RStudio does not require a special version of R to run, as long as it is a fairly modern
one. It will work with binary versions from CRAN or user-compiled versions. As such,
when RStudio starts up, it must be able to locate a version of R, which could possibly
reside in many different places. Usually RStudio just finds the right one, but one can
bypass the search process. The document online at http://www.rstudio.org/docs/ad-
vanced/versions_of_r details how to specify which R installation to use. In short, it
depends on the underlying operating system. For Windows desktop users, it can be

Using RStudio | 7

www.it-ebooks.info

http://www.it-ebooks.info/

specified in the Options dialog (“The Options Dialog” on page 9). For Linux and
Mac OS X users, one can set an environment variable, as seen here:

$ export RSTUDIO_WHICH_R=/usr/local/bin/R

Web-based users really don’t have a choice, as this is determined by who configures
the server.

Layout of the Components
The RStudio interface consists of several main components sitting below a top-level
toolbar and menu bar. Although this placement can be adjusted, the default layout
utilizes four main panels or panes in the following positions:

• In the upper left is a Source browser notebook for editing files (see “Source Code
Editor” on page 63) or viewing some data sets. In Figure 1-3 this is not visible,
as that session had no files open.

• In the lower left is a Console for interacting with an R process (Chapter 3).

• In the upper right is a notebook widget to hold a Workspace browser (“Workspace
Browser” on page 38) and History browser (“Command History” on page 36).

• In the lower right is a notebook to hold tabs for interacting with the Files (“The
File Browser” on page 71), Plots (“The Browser” on page 45), Packages
(“Package Maintenance” on page 73), and Help system components (“The Help
Page Viewer” on page 42).

The Console pane is somewhat privileged: it is always visible, and it has a title bar. The
other components utilize notebook widgets, and the page tabs serve as a title bar. These
pages have page-specific toolbars (perhaps more than one)—which in the case of the
Source component are also context-specific.

The user may change the default allocation of space for each of the panes. There is a
sash appearing in the middle of the interface between the left and right sides that allows
the user to adjust the horizontal allocation of space. Furthermore, each side then has
another sash to allocate the vertical space between its two panes. As well, the title bar
of each pane has icons to shade a component, maximize a component vertically, or
share the space.

Keyboard Shortcuts
One can easily switch between components using the mouse. As well, the View menu
bar has subitems for this task. For power users, the keyboard accelerators listed in
Table 1-2 are useful. (A full list of keyboard shortcuts is available through the Help >
Keyboard Shortcuts menu item.)

8 | Chapter 1: Overview, Installation

www.it-ebooks.info

http://www.it-ebooks.info/

Table 1-2. Keyboard shortcuts for navigation between major components

Description Windows & Linux Mac

Move cursor to Source Editor Ctrl+1 Ctrl+1

Move cursor to Console Ctrl+2 Ctrl+2

Show workspace Ctrl+3 Ctrl+3

Show data Ctrl+4 Ctrl+4

Show history Ctrl+5 Ctrl+5

Show files Ctrl+6 Ctrl+6

Show plots Ctrl+7 Ctrl+7

Show packages Ctrl+8 Ctrl+8

Show help Ctrl+9 Ctrl+9

The Options Dialog
RStudio preferences are adjusted through the Options dialog . There are four panels for
this dialog to adjust: general properties, editing properties (Figure 3-4), appearance
properties and pane layout (Figure 1-4).

The pane layout allows the user to determine which panes go in which corners, and,
for the supplemental components (not the Console or Source editor), which compo-
nents are rendered in which notebook. One modifies a placement simply by adjusting
a combobox, or by checking one of the checkboxes. In Figure 1-4, the choices put the
code editor on the right, the console in the lower right, and the file browser on the
upper left. There are many examples of panel placement on http://rstudio.org/screen-
shots/.

The appearance panel of the options dialog allows one to set the default font size and
modify the theme for the editing in the console or source-code editor. This book uses
the default TextMate theme for its screenshots.

Installing RStudio
Installing RStudio is usually a straightforward process.

First, RStudio requires a working, relatively modern R installation. If that is not already
present, then one should consult http://cran.r-project.org to learn how to install R for
the given operating system. For Windows and Mac OS X, one can simply download a
self-installing binary; for Linux, installation varies. For the Debian distribution (in-
cluding Ubuntu), the R system can be installed using the regular package-management
tools. Of course, as R is open source, one can also compile and install it using the source
code.

Installing RStudio | 9

www.it-ebooks.info

http://www.it-ebooks.info/

The RStudio package is available for download from http://www.rstudio.org/down-
load/. There is a choice between a Desktop version and a Server version. The Desktop
version is appropriate for single-user use. The files come in a common format for binary
installation (e.g., exe, dmg, deb, or rpm). One downloads the file and installs it as any
other program.

For those searching out the latest features, follow the link on http://www.rstudio.org/
download/daily to get the binaries for the most recent (but not necessarily stable) build.

Installing a server version requires more work and care. Some directions are given at
http://rstudio.org/docs/.

One can also install RStudio from its source code. A link for the source “tarball” for
the current stable version appears on the appropriate download page. For the adven-
turous, the latest development build files are available from https://github.com/rstudio/
rstudio. Installation details are in the INSTALL file accompanying the source code. The
same source is used to compile both the Desktop and Server version.

Figure 1-4. Pane preference dialog for adjusting component layout

10 | Chapter 1: Overview, Installation

www.it-ebooks.info

http://www.it-ebooks.info/

As RStudio depends on some of the latest features of many moving parts, such as GWT,
there can be issues with compiling from the source. The support forums (http://sup-
port.rstudio.org/) are an excellent place to find specific answers to any issues.

Logging
RStudio creates secret files for itself to store information, including log-
ging information. When there are issues at startup, the log can be con-
sulted for direction as to what is going wrong.

For desktop users, the log directory is either ~/.rstudio-desktop/log for
Mac and Linux users; or for Windows users, %localappdata%\RStudio-
Desktop\log (Windows Vista and 7) or %USERPROFILE%\Local Set-
tings\Application Data\RStudio-Desktop\log for XP.

In the application’s menu bar, the Help > Diagnostics item can be used
to find the log files.

Updating RStudio
Updating RStudio is also straightforward.

To see if an update is available, the Help > Check for Updates menu item will open a
dialog with update information.

If an update is available, one can stop RStudio, install the new version, then restart.
RStudio writes session information to the user’s home directory (e.g., to the file ~/.rstu-
dio-desktop). This will persist between upgrades.

Installing RStudio | 11

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Case Study: Data Cleaning

Now that we know how to start RStudio, let’s dive in. We’ll begin with a blow-by-blow
account of a sample data analysis for which we read in some data, clean it up, then
format it for further study. The point of the exercise is to show how many of RStudio’s
features can be used during the process to speed the task along. We will postpone for
now an example of the “development” aspect of RStudio.

The data set we look at here comes from a colleague, and contains records from a
psychology experiment on a colony of naked mole rats. The experimenter is interested
in both the behavior of each naked mole rat in time and the social aspect of the colony
as a whole.

Each rat wears an RFID chip that allows the researcher to track its motion. The ex-
periment consists of 15 chambers (bubbles) in a linear arrangement separated by 14
tubes. Each tube has a gate with a sensor. When a mole rat passes through the tube,
the time and gate are recorded. Unfortunately, gates can be missed, and the recording
device can erroneously replicate values, so the raw data must be cleaned up.

This data comes to us in rich-text format (rtf). This quasi text-based format is a bit
unusual for data transfer but presumably is used by the recording apparatus. We will
see that this format has some idiosyncrasies that will require us to work a little harder
than we might normally do to read data into an RStudio session, but don’t worry,
RStudio is up to the task.

Our first step is to copy the file into a directory named NMR. We are performing this
analysis using the desktop version, so we simply copy files the usual way after making
a new directory. Had we been working through a server, we could have uploaded the
file into a new directory using first the New Folder toolbar button, then the Upload
toolbar button of the Files component.

13

www.it-ebooks.info

http://www.it-ebooks.info/

Using Projects
To organize our work, we set up a new project. RStudio allows us to compartmentalize
our work into projects that have separate global workspaces and associated files. We
easily navigate between projects using a selector (a combobox) in the main toolbar
located in the upper-right corner. The same selector has an option to create a New
Project..., which we choose. To create a new project, one fills in a project name and
location.

When the project is created, the working directory is set. The title bar of the Console
panel is updated, as are the contents of the Files component, which lists the files and
subdirectories in a given directory. The Files component resides in a notebook, which
by default is placed in the upper-right corner. If it isn’t showing, select its tab. In
Figure 2-1, we see that our working directory contains our data file and a bookkeeping
file that RStudio created.

Figure 2-1. The Files browser shows files added when a new project is created

The Files browser panel is typical of RStudio’s components. In addition to the main
application toolbar, most components come with their own toolbar. In this case, the
toolbar has buttons to add a new folder, delete selected files, etc. In addition, the
Files component adds a second toolbar to facilitate the selection of files and navigation
within directories.

Reading in a Data File
Clicking on the data file name in the file browser opens up a system text editor (Fig-
ure 2-2), allowing us to edit the file. For many text-based files, the file will open in
RStudio’s source-code editor. However, the actual editor employed depends on the
extension and MIME type of the file. For rtf files, the underlying operating system’s
editor is used, which for Mac OS X is textedit. We can see that the data appears to
have one line per record, with the values separated by semicolons. The fields are RFID,

14 | Chapter 2: Case Study: Data Cleaning

www.it-ebooks.info

http://www.it-ebooks.info/

date, time, and gate number. This is basically comma-separated-value (CSV) data with
a nonstandard separator.

However, although we rarely see rtf files, we know the textedit program will likely
render them using the markup for formatting, so perhaps there are some markup com-
mands that needs to be removed. To investigate, we make a copy of the data file, but
store it instead with a txt extension. The Files component makes it easy to perform
basic file operations such as this. To make a copy of a file, one selects the checkbox
next to the file and invokes the More > Copy… menu item, as seen in Figure 2-3.

Figure 2-3. Copying files in the Files browser—the command acts on the checked file

We change the extension to txt and our file list is updated. The displayed contents of
the directory may also be refreshed by clicking the terminus on the path indicated by
the links to the right of the house icon in the secondary toolbar; or the curved arrow
icon on the far right of the component’s main toolbar. Now, clicking on the txt file
opens the file in RStudio’s source-code editor as a text file (Figure 2-4).

Figure 2-2. The rtf file is opened in an editor provided by the system, not by RStudio

Reading in a Data File | 15

www.it-ebooks.info

http://www.it-ebooks.info/

The editor’s status bar shows us the line and position of the cursor and, on the far right,
that we are looking at a text file. We can now see that there is indeed a header (and, if
we scroll down, a footer) wrapping our data. We highlight the header and then use the
Delete key to remove this content from the file. We then scroll to the bottom of the file
and remove a trailing brace. Afterwards, we click the Save toolbar button (the upper-
left toolbar button, which is grayed out in the figure, as no changes have been made).

We now wish to read in the file using read.csv. RStudio provides an Import Dataset
toolbar button under the Workspace component, which provides an interface that will
handle most csv data, such as that exported from a spreadsheet. In this example though,
we have a few idiosyncrasies that prevent its use. (This is a deliberate choice to show
off some of RStudio’s other features.)

So we head on over to the Console component to do the work. With the default panel
arrangement the console is located on the left side, usually in the lower-left panel. In
R, one can’t avoid the console, and RStudio’s should look very familiar.

Tab Key Completion
At the console we create the command to call the function directly. This requires us to
specify a few of its arguments, as we have a different separator, an odd character every
other line, and no header. We will use the tab completion feature to assist us in filling
in these values. This feature provides completion candidates for many different settings,
allowing us in this case to recall quickly the names for lesser-used arguments.

Figure 2-4. RStudio's code editor showing actual contents of our data file; we need to delete the rtf
formatting before reading in

16 | Chapter 2: Case Study: Data Cleaning

www.it-ebooks.info

http://www.it-ebooks.info/

First, we type read.csv in the console. Then we press the Tab key to bring up the tab
completion dialog (Figure 2-5) for this function.

Figure 2-5. Tab-key completion dialog showing small snippet about the read.csv function from the
function’s help page

RStudio’s tab completion dialog for a function nicely displays its arguments and a short
description, gleaned from its help page (when available). In this example we see the
sep argument is what we need to specify a semicolon for a separator, the header argu-
ment to specify a non-default header, and comment.char to skip the lines starting with
a backslash.

The file name is the first argument. For file names (indicated by quotes), tab completion
will fill in the file name, or, if more than one candidate is possible, provide a popup
(Figure 2-6) to fill in the file. Here we type a left parentheses and double quote, and
RStudio provides the matching values.

Figure 2-6. Tab-key completion for strings; a list of files is presented

Tab Key Completion | 17

www.it-ebooks.info

http://www.it-ebooks.info/

We press the Tab key again to select the proposed completion value using our modified
text file, not the original. We then add a comma and again press the Tab key. When
the prompt is in a function body, the tab completion will prompt for function argu-
ments. After entering our values, we have this command to issue (see also Figure 2-7):

> x <- read.csv("CopyOfDegas8_13_2010_12_1AM.txt", sep=";",
+ header=FALSE, comment.char="\\")

Figure 2-7. Command to read the “csv” file holding the data within the RStudio console

The backslash argument for command.char is doubled, thereby escaping
it. Failing to do this, the parser will use the backslash to escape the
matching quote, getting the parser confused, as no matching quote will
be found. Pressing the Escape key will break the command line so that
it can be fixed.

Workspace Component
The Workspace component lists the objects in the project’s global workspace. In the
default panel layout, this component is in the upper-right notebook along with the
Files component. If this panel isn’t raised, we simply click on its tab (or perform a
keyboard shortcut) to do so. After the data is read in, this component is updated to
reflect the new object, in this case one named x (Figure 2-8). The associated icon for
x shows it to be rectangular data. Clicking on x’s row invokes the View function on x—
in this case, opening the data viewer (Figure 2-9).

Figure 2-8. Workspace browser showing a data object x

18 | Chapter 2: Case Study: Data Cleaning

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-9. Data viewer window showing non-editable display of the x data frame

The data viewer shows us that we have an unnecessary fifth column of NA values, and
that our variable names need improvement. Although the data viewer of RStudio does
not yet support editing, R has many ways to manipulate rectangular data at the com-
mand line. For our two tasks we issue the following:

> x <- x[, - 5]
> names(x) <- c("RFID", "date", "time", "gate")

The view of x in the code-editor notebook does not update from changes at the com-
mand line; rather, it is a snapshot. The Workspace component does reflect the current
state of the variable, and reclicking on that will refresh the view.

Using the Right Class to Store Data
The data is time-series data, but the date and time are read in and stored by read.csv
as factors, not times. R has many different classes for working with time-series data. In
this case study we will look at two. The POSIXct class records time by the number of
seconds since the beginning of 1970 and is useful for storing times in a data frame, such
as x. We will use the coercion function as.POSIXct for this task. As this function isn’t
part of our daily repertoire, we call up its help page. Opening a help page can be done
in the standard way: ?as.POSIXct (Figure 2-10).

Help pages are displayed in the Help component, located by default in the lower-right
notebook. RStudio’s help browser also has a search box on the upper right of its main
toolbar to locate a help page, or the page can be opened with tab completion and the
F1 key. Due to its web-technology roots, RStudio easily leverages R’s HTML help sys-
tem. Pages appear in the Help component with active links.

Workspace Component | 19

www.it-ebooks.info

http://www.it-ebooks.info/

After consulting the help page, we see that the format argument is needed. This spec-
ification is described elsewhere, in the help page for the strptime function. Clicking on
the provided link opens that page, allowing us to figure out that the specification needed
to make our function call is:

> x$datetime <- paste(x$date, x$time)
> x$time <- as.POSIXct(x$datetime, format="%m/%d/%Y %H:%M:%S")

Data Cleaning
At this point we have a data frame, x, storing all the information we have about the
colony of mole rats. However, the data set needs to be cleaned up, as there are some
repeated observations. We do this on a per-rat basis. R has several ways to implement
the split-apply-combine idiom, as it is one of the most useful patterns for R users. The
plyr package is widely used, but for this task we use functions from base R. The
split function can be used to divide the data by the grouping variable RFID, returning
a list whose components are the records for the individual mole rats:

> l <- split(x, x$RFID)

The list, l, has a different component for each mole rat. We can check to see if any two
rows for a mole rat are identical, using R’s convenient duplicated method. In addition,
we add a bit of time to to each time value, so that times recorded with the same second
are distinguished. R has several different means to apply a function to pieces of an
object. Below we use lapply to apply a function to each component of the list l, re-
turning a new list l1 with the modified data:

Figure 2-10. Help page for the POSIXct function

20 | Chapter 2: Case Study: Data Cleaning

www.it-ebooks.info

http://www.it-ebooks.info/

> l1 <- lapply(l, function(x) {
+ trimmed <- x[duplicated(x),]
+ nr <- nrow(trimmed)
+ trimmed$time <- trimmed$time + seq_len(nr)/nr*(1/1000)
+ trimmed
+ })

The data is recorded by gate, but the actual item of interest is the bubble (chamber) the
mole rat is in at a given time. This information allows us to consider how social an
animal is by looking at the time shared with others. We need to deduce this information
from the data.

We do so by assuming that if the mole rat is in bubble 5, say, and we record gate 5,
then the mole rat moved to bubble 6. Or, if the recording was gate 4, then the mole rat
moved to bubble 4. (There are 15 bubbles and 14 gates, so gate i is between bubbles i
and i+1.) To create the bubble count, we assume the mole rat moves immediately to
the bubble after crossing a gate. This ignores the possibility of the mole rat changing
its mind and never actually going to the next bubble. We will use a for loop to do this
computation.

Using the Code Editor to Write R Scripts
The actual command we need for this computation is a bit long to type in correctly at
the command line. We will instead use a script file so we can freely edit our commands.
RStudio makes it easy to evaluate lines from a script file in the console. In addition,
with the aid of syntax highlighting and automatic code formatting, we can quickly
identify common errors before evaluation.

The “open a new R Script file” action is proxied in several places: through the leftmost
toolbar button in the application toolbar, through the File > New > R Script menu
item, or through a keyboard shortcut. However invoked, once done, a new untitled file
appears in the code-editor notebook. In this new file we type in our commands, as
shown in Figure 2-11. The figure also shows how the code editor component is used
in many ways: to look at raw data sets, view rectangular data objects from the work-
space, and edit R commands—and even more ways are possible.

With the commands typed in, we are ready to execute them. RStudio allows several
variations on how to send the contents of a file to the console. In this case, we simply
click on the Source toolbar button at the far right of the panel’s toolbar to source in the
active document.

Using the Code Editor to Write R Scripts | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Using Add-On Packages
Each component of the l2 list contains records for a mole rat. The key variables are the
times, stored as POSIXct values and bubble. It will be more convenient to use another
of R’s date-time classes to represent the data, as then many desirable methods will come
along for free. Our data is an irregular time series, as time is marked by mole rat events,
not regular intervals on the clock. The zoo package is designed for such data, as one
needs only ordered observations for the time index.

To convert our data into zoo objects, we first need to load the package. RStudio makes
working with packages easy through the Packages component, which for us appears in
the notebook held in the lower-right panel. Once the component is raised, loading or
unloading a package is as simple as checking the package’s accompanying checkbox
to indicate the desired state (Figure 2-12), where a check indicates the package is loaded.

Our R installation had the zoo package previously installed. Were that not the case, we
could have quickly installed the package from CRAN, along with any dependencies,
using the dialog raised by clicking the leftmost Install Packages toolbar button in the
panel’s toolbar.

Figure 2-11. Using the source-code editor for multiline commands

22 | Chapter 2: Case Study: Data Cleaning

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-12. The Packages component allows you to select packages to load or unload and provides
links to their documentation

To create a zoo object, we call its same-named constructor. The first argument is the
data; the second the value to order by. We then merge the data into one zoo object.
Here, we also use the na.locf function to carry the last bubble forward to replace an
NA when the data is merged:

> l3 <- sapply(l2, function(x) zoo(x$bubble, x$time), simplify=FALSE)
> x <- na.locf(do.call(merge, l3), na.rm=FALSE)

Graphics
One of the reasons we used a zoo object is its convenient plot method. We begin by
making time series plots of the first five mole rats on the same graphic. We forget the
specific arguments, so again let tab completion (Figure 2-13) lead us to the correct help
page. In this case we type plot, and the function completion shows us the various
plot methods available. Scrolling through, we find plot.zoo.

Figure 2-13. Using tab-key completion to find arguments to the plot method of zoo objects

Graphics | 23

www.it-ebooks.info

http://www.it-ebooks.info/

We see the plot.type argument for this plot method but don’t recall the values to specify
the graphic we desire. We use the F1 key to call up additional help in the help browser
and read that the desired argument value is "single".

After we issue the command:

> plot(x[, 1:5], plot.type="single")

the Plots component is raised, showing the plot.

Command History
Noting that the individual paths are hard to distinguish once they’ve crossed, we want
to add colors to the graphic. The col argument is used for this. Rather than retype the
previous command, we can edit it. RStudio keeps a record of previous commands. The
up and down arrow shortcuts can be used to scroll through our command history. For
more complicated usage, we can use the History component, which allows us to browse
the past commands and reissue them. We use the up arrow for this case, then modify
the col argument to a simple value of 1:5, producing Figure 2-14.

Figure 2-14. The Plots component showing a time-series plot of the first five cases

24 | Chapter 2: Case Study: Data Cleaning

www.it-ebooks.info

http://www.it-ebooks.info/

The default plots are on the small side. Often this is all that is needed, but in this case
we wish it to be bigger. The Zoom toolbar button of the Plots component’s toolbar will
open the graph in a larger window.

All Finished, for Now
At this point, with the help of RStudio, we have completed the data preparation needed
for subsequent analysis. We have a zoo object holding all the data (x) and a list of zoo
objects (l3) storing data for individual rats. In the process of this 30-minute analysis,
we took advantage of all of RStudio’s key components: the Files browser, tab com-
pletion, the text editor, the Help browser, the rectangular data viewer, the Console, the
Source code editor, the Packages browser, and the Plots viewer.

All Finished, for Now | 25

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

The Console and Related Components

Interactive use of R is achieved through the command-line interface (CLI) provided by
the Console component—this is where users issue commands for R to evaluate. RStudio
provides a console that behaves very much like most other consoles R users have seen,
such as the one provided by the RGui for Windows. This chapter describes command-
line usage in RStudio, along with some of the components providing direct support for
interactive usage.

Entering Commands
The simplest use of R involves typing one or more commands at the prompt (usually a
> symbol) and then pressing the enter key. Commands can be combined on one line if
separated by a semicolon and can extend over multiple lines. Once entered, the com-
mand is sent back to the R interpreter. If the commands are complete and there are no
errors, R returns the output from the call. Usually, this output is displayed in the
Console. The first command in Figure 3-1 shows how RStudio responds to the com-
mand to add 2 and 2. To distinguish parts of the text, the commands appear in one
color and the output in another (by default). Some calls (e.g., assignment, graphic
commands, function calls returned by invisible) return no printed output. In the
RStudio console, the input and output may be perused by the user and copy-and-pas-
ted, but may not be directly edited.

When a command is not complete, R’s parser will recognize this and allow the user to
type onto the following line. In this case, the prompt turns to the continuation
prompt (typically a +). Multiline commands can be entered in this manner. The last
command in Figure 3-1 shows an example of the continuation prompt.

When a command containing an error is issued, RStudio returns the appropriate error
message generated by R (Figure 3-2). For the experienced user, these error messages
are usually very informative, but for beginning users they may be difficult to interpret.

27

www.it-ebooks.info

http://www.it-ebooks.info/

Many commands involve assignment to a variable. R has two commonly used options
for assignment: = and ← (the latter is preferred by most longtime R users). The arrow
assignment operator has a keyboard shortcut Ctrl+- (Cmd+- in Mac OS X), which
makes it as easy to enter as the equals sign. Using the arrow is recommended—and as
a bonus, extra space is inserted around the assignment operator for clarity.

The Console panel adds very few actions. As such, there is no toolbar. The current
working directory (getwd) appears in the panel’s title, along with an arrow icon to open
the Files browser to display this directory’s contents. The Files browser, by design,
does not track the current working directory—but the title bar does, so this arrow can
be a time saver.

The width option (getOption("width")) is consulted by many of R’s functions in order
to control the number of characters per line used in output. This value is conveniently
updated when a user resizes the horizontal space allocated to the Console. Other options
are also implemented to modify the various prompts, such as prompt and continue.

There are few instances where things can get too long:

Commands with lengthy output
When the output of a command is too lengthy, it will be truncated. The option
max.print will be consulted to make this determination. For server usage, one may
wish to keep this small, as the data must be passed back from the server to be
shown.

Figure 3-1. The first command shows printed output; the second one has a continuation prompt
appear, as the command is syntactically valid but not complete during evaluation

Figure 3-2. The console displays error messages from the R interpreter

28 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

Commands with lengthy run times
Sometimes a command will take a long time to execute. This may be by design,
but it also can be the result of an erroneous request. In the first case, one can inform
the user of the state (e.g., ?txtProgressBar). In the latter case, a user may wish to
interrupt the evaluation. This is done using the Escape key or by clicking on the
Stop icon that appears during a command’s execution in the Console pane’s title
bar (Figure 3-3).

Figure 3-3. An icon to interrupt a command’s evaluation appears during long-running commands

Automatic Insertion of Matching Pairs
In R, many characters come in pairs: parentheses, brackets, braces, and quotes ((, [,
[[, ", and '). Failing to have a matching pair will often result in a parsing error or an
incomplete command, both annoyances. RStudio tries to circumvent this by automat-
ically creating matching pairs when the first one is entered. That is, typing a left pa-
renthesis adds a matching right one. Also, deleting one will can cause the other to be
deleted if no text is entered in between.

While very useful, this feature can be hard to get accustomed to, so it can be turned
off. RStudio’s Options dialog (Preferences in Mac OS X) provides a toggle button
(Figure 3-4). Even if this feature is turned off, RStudio still provides assistance with
matching pairs by highlighting the opening parenthesis, bracket, or brace when the
cursor is positioned at the closing one.

R Script Files
The console is excellent for quick interactive commands but not as convenient for
longer, multiline commands. For such tasks, being able to type the commands into a
file to be executed as a block proves very useful. Not only is it easier to see the underlying
logic of the commands and to find any errors, this style also allows one to easily archive
commands for later reference. The RStudio Source editor (described more fully in
“Source Code Editor” on page 63) can be used for writing scripts and executing blocks
of code from them.

Entering Commands | 29

www.it-ebooks.info

http://www.it-ebooks.info/

A new R script file can be opened in the code editor using the leftmost toolbar button
on the application toolbar or from the File > New > R Script menu item. Into this file
a series of commands may be typed. There are different actions available that execute
these commands in part or in total:

Run line or selection
Run the current line or selection. Commands that are run are added to the history
stack (“Command History” on page 36).

Run all lines
Run all the lines in the buffer.

Run from beginning to line or run from line to end
Run lines above or below the current line.

Run function
Have RStudio look for the function enclosing the cursor and run that.

Figure 3-4. The Options dialog has the ability to turn off automatic matching of paired values

30 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

Rerun previous region
This allows one to edit a region and rerun its contents without needing to reselect
it.

Source (or Source with echo)
Call source on the file ("source with echo” will echo back the commands). Sourced
commands do not add to the history stack.

These actions are invoked via the menu bar, keyboard shortcut, or toolbar button. All
appear under the Edit > Run Code menu item and have their corresponding keyboard
shortcut shown (Table 3-2). The toolbar buttons for the editor allow one to run the
line or selection quickly, rerun the previous region, or source the buffer into R.

Command-Line Conveniences
Working with a command line has a long history. Despite the popularity of GUIs,
command lines still have many aficionados, as they are more expressive—and, once
some conveniences are learned—usually much faster to use. For reproducible research
they are great, as they can record the exact commands used. There are drawbacks,
though. Typing can be a chore, proper command syntax is essential, and the user needs
to have intimate knowledge of the function and its arguments. All of these can be huge
obstacles to newcomers to R. Over time, these drawbacks of command-line usage have
been lessened through techniques such as tab completion, keyboard shortcuts, and
history stacks.

We discuss RStudio’s implementation of these next. Becoming well-versed in these
features can help you turn the command line from a distant stranger into a welcome
friend.

Tab Completion
Working at the command line requires users to remember function names and the
names of their arguments. To save keystrokes, many R users rely on tab completion to
complete partially typed commands. The basic idea of tab completion is that when the
user has a partially completed command and the Tab key is pressed, the command will
be completed if there is only one candidate for completion. If there is more than one,
a menu of candidates is given. The implementation of this feature varies across the
different R interfaces, although most implement it—none, perhaps, as intuitively as
RStudio. Here the menu provided for candidate selection is a context-sensitive com-
pletion dialog raised (when needed) by pressing the Tab key and dismissed by making
a selection or by pressing either the Backspace or Escape key.

Command-Line Conveniences | 31

www.it-ebooks.info

http://www.it-ebooks.info/

The completion dialog (see Figure 3-5) has a left pane with options that can be scrolled
through, and usually a right pane providing details on the selection (if available). This
short description is great for jogging memories as to what the value does. The corre-
sponding help page that contains this information can be opened by pressing the F1 key.

A candidate value for completion may be selected with a mouse, but it is typically more
convenient to use the keyboard. Press the up or down arrow to scroll through the list
and use the Enter key (or Tab key again) to select the currently highlighted value for
insertion. Typing a new character will narrow the list of candidates.

The completion window depends on the context of the cursor when the Tab key is
pressed. Here are some scenarios:

Completion of object and function names
When an object or function name is partially typed, the completion candidates will
be objects on the user’s search path whose case-sensitive name begins with the
value. Objects may be in the global workspace of the user or available objects from
the loaded packages (functions, variables, and data sets). In the latter case, the
package name appears next to the value and, when possible, a summary of the
object from its help page (Figure 3-5).

Figure 3-5. Completion for an object in the workspace shows the full name, its package (when
applicable), and a short description if available

Listing of function arguments
If the cursor is inside the matched pair of parentheses enclosing a function’s argu-
ments and the Tab key is pressed, the arguments will populate the completion
candidates (Figure 3-6). The arguments appear with an = appended to their name,
to distinguish them from objects.

32 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-6. The completion window for function arguments shows information from the help
page

Completion within a function’s argument list
Within a populated argument list, the completion code provides arguments and
objects, as both may be desired (Figure 3-7). R can use named arguments or posi-
tional arguments where only the object is specified.

Figure 3-7. Completion with a function from a partial description shows that candidates include
arguments and objects

Completion within strings
Within quotes, the completion code will offer a list of files and subdirectories to
choose from (Figure 3-8). By default, this will list files and directories in the working
directory, but if any part of a path is given (absolute or using the “tilde” expansion)
then files and directories relative to that are presented.

Command-Line Conveniences | 33

www.it-ebooks.info

http://www.it-ebooks.info/

The selection of completion candidates is eventually delegated to a
framework provided by R’s utils package and documented under
rcompgen. That help page has much more detail on how the completion
candidates are figured out. For example, completion can be done after
the extractors $ (for lists and environments) and @ (for S4 objects). In
this case, the completion window has no details pane. Additionally,
completion can be carried out inside namespaces, even when not ex-
ported.

There are a few limitations of the completion mechanism. Completion
of function arguments can be difficult for generic functions, as the ar-
gument list may depend on the specified arguments and these are not
evaluated; and the token for completion is found by considering the
current line, so it doesn’t work well with multiline commands.

Keyboard Shortcuts
Keyboard shortcuts allow the user to quickly invoke common actions by pressing the
appropriate keyboard combination. For example, many people have their fingers
trained for the copy and paste keyboard shortcuts, as using them can be more conven-
ient than using a mouse to initiate these actions. RStudio has numerous keyboard
shortcuts. In keeping with standard GUI design, many of these appear alongside the
menu item associated with the action. Here, we discuss those shortcuts that are im-
plemented for the console and its integration with the source-code editor.

Keyboard shortcuts are usually operating-system dependent, and RStudio’s are no ex-
ception (though, they are not locale specific). Additionally, keybindings may also be
editor-dependent. In particular, the well-established vi and emacs keybindings are
hardwired into many users’ fingers. The RStudio keybindings are a mix of OS-consis-
tent bindings (e.g., copy and paste in Windows is Ctrl+C and Ctrl+V, and in Mac OS
X, Cmd+C and Cmd+V) and Emacs-specific (e.g., Ctrl+K will kill all the text to the
right of the cursor [including the end-of-line character] and Ctrl+Y will yank it back
[paste it in]). Although vi users may feel left out, adding in the Emacs bindings surely

Figure 3-8. A Tab-key completion of strings uses files in the current directory for candidates

34 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

makes many longtime R users happy—it is hard to retrain one’s fingers! Similar short-
cuts have been present for a long time in R’s console through the readline library.

In Table 1-2, we listed shortcuts for navigation between components. Here in Ta-
ble 3-1, we describe shortcuts for working at the console, and in Table 3-2 list the
available shortcuts for sending commands from the source-code editor to the console.
General editing shortcuts for the console and source editor are listed later in Table 5-1.

In RStudio, keybindings are currently not customizable. Keeping con-
sistency across platforms, the web interface, and the Qt desktop is dif-
ficult. Keyboard shortcuts do get updated on occasion. The current list
is found under the menu item Help > Keyboard Shortcuts.

Table 3-1. Console-specific keyboard shortcuts

Description Windows and Linux Mac

Move cursor to console Ctrl+2 Ctrl+2

Clear console Ctrl+L Command+L

Move cursor to beginning of line Home Command+Left

Move cursor to end of line End Command+Right

Navigate command history Up/Down Up/Down

Pop-up command history Ctrl+Up Command+Up

Interrupt currently executing command Esc Esc

Change working directory Ctrl+Shift+D Ctrl+Shift+D

Table 3-2. Keyboard shortcuts for running commands in the Source editor

Description Windows and Linux Mac

Run current line/selection Ctrl+Enter Command+Enter

Run current document Ctrl+Shift+Enter Command+Shift+Enter

Run from document beginning to current line Ctrl+Shift+B Command+Shift+B

Run from current line to document end Ctrl+Shift+E Command+Shift+E

Run the current function definition Ctrl+Shift+F Command+Shift+F

Rerun previous region Ctrl+Shift+P Command+Shift+P

Source a file Ctrl+Shift+O Command+Shift+O

Source the current document Ctrl+Shift+S Command+Shift+S

Command-Line Conveniences | 35

www.it-ebooks.info

http://www.it-ebooks.info/

Command History
Interactive usage often involves repeating a past command or parts of a command.
Perhaps one wishes to change an argument’s value, or perhaps there was a minor error.
Retyping an entire command to make a minor change is tedious at best. A common
instinct is to insert the cursor at the error and edit the previously issued command, but
this is not supported by the RStudio console. One might then be tempted to copy and
paste the command to the prompt and proceed to edit.

The history mechanism speeds up this process. RStudio keeps a stack of past commands
and allows one to scroll through them easily. This can be done using the up and down
arrow keys. As the arrows are pressed, the previous commands are copied to the
prompt, allowing them to be edited. The list of commands can be scrolled through
quickly.

To see more than one previous command at a time, the Ctrl+Up keyboard shortcut
can be typed, and a history window, similar to that for tab completion, will pop up
(Figure 3-9).

Searching the history stack

Searching (as opposed to scrolling) through the past history (Ctrl+R on many R con-
soles) is better for lengthy sessions. RStudio implements searching its own way. Calling
Ctrl+Up when there is text already typed at the prompt will narrow the list shown in
the history pop up to just commands beginning with that text. One can use the arrow
keys or mouse to select a value. Alternatively, one can continue typing, which causes
the pop up to close and reopen with a narrowed list.

Figure 3-9. History pop up opened by Ctrl+Up or, as in this case, Ctrl+R. The latter narrows the
history candidates by searching for previous command completions

36 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

History Browser

In addition to the command-line interaction with a user’s history, RStudio also provides
a History browser (Figure 3-10), allowing the user to scroll through past commands or
use a search box. The past commands are organized in time order, with timestamps
added for extended sessions. By default, this component resides in a tab in the notebook
on the upper right, and may be raised by clicking on the tab or using the shortcut Ctrl
+4.

The basic usage involves double-clicking a line, which sends it to the console to be
edited or reissued (the focus shifts to the console, so just pressing the Enter key will re-
execute the command). Other uses involve first marking a selection. A single click
selects the line, and this selection can be extended by holding the Shift key and using
the up and down arrows. Other selection modifications are also possible. The compo-
nent’s toolbar has three buttons: one sends the selection to the console, one appends
the selection to a file in the source-code editor, and one removes the selection from the
history list (the page icon with the red “x”). If a multiline selection is sent to the console,
no continuation prompt is inserted, allowing one to edit any of the lines.

The toolbar also has icons to save the history to a file, read the history in from a file,
and clear the history in its entirety.

Figure 3-10. The history component shows the session history, which allows commands to be recycled

The General panel of the options dialog has a couple of entries related to the history-
recording mechanism: one to modify how the history is saved and one to toggle the
option to remove duplicate commands.

Command-Line Conveniences | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Workspace Browser
When an R user assigns a value to a variable, the assignment is held in an environ-
ment, R’s way of organizing its objects. The R user has provided them with a global
workspace (.GlobalEnv), which is a top-level environment where names are bound
during interactive use (Figure 3-11). This workspace is typically persistent—that is, a
user is prompted to save it when quitting an R session, and it is loaded on startup or
when a new project is selected (see “Which Workspace?” on page 7). Over time, there
can be many variables, and remembering what they are can become nearly impossible.
R has some functions to list the values in an environment (primarily ls), but RStudio
makes this much easier through its Workspace browser.

The Workspace browser appears by default in the notebook in the upper-right pane of
the GUI. The browser lists the objects in the global workspace, organized by type of
value: Data, Values, Functions.

Figure 3-11. The workspace browser component summarizes objects in the global workspace; objects
can be viewed or edited

The global workspace is not the only environment that R uses. Indeed,
it is just one of many. For example, without extra work, within a func-
tion assignment occurs in the function’s environment and disappears
when the function exits. Such assignments do not appear in the Work
space browser.

38 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

Editing and Viewing Objects
Clicking on a value will initiate an action to edit or view the object. Currently, rectan-
gular objects, such as data frames and matrices, are not editable. For these, RStudio
provides an implementation for View (really dataentry).

For other objects, how the value gets edited depends on the type of object and its length.

For some atomic objects with length 1, the editing occurs within the Workspace browser
(Figure 3-12). Clicking on the object highlights its value, which can then be edited using
the browser as a property editor. The input expression is not evaluated and need not
be of the same class.

Figure 3-12. Atomic objects of length 1 are edited inline

More typically, clicking on an object invokes an editor in a pop-up window. In Fig-
ure 3-13, we see the editor appearing after clicking on the ch variable, a character vector
of length 12.

One can edit and save, or simply cancel. Similarly, one can edit functions through the
same editor.

Editing an object involves first deparsing the object into a file and then calling the editor
on that file. When editing is finished, the text is parsed and, if there is no error, this
value is assigned (see ?edit for details). Editing of some objects—for instance, S4 objects
—is not possible. Editing of functions preserves the function environment.

For data frames and matrices, there is a data viewer. Clicking on such an object will
open a view of the data in the code-editor notebook similar to Figure 3-14. At the time
of this writing, the view is limited to 100 columns and 1,000 lines. This view is a snap-
shot and is not updated if the underlying object changes. However, reclicking the object
in the Workspace browser will refresh the view.

Workspace Browser | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-14. The data-frame viewer provided by RStudio is rendered in the Source-editor notebook

The Workspace browser has a few other features available through its toolbar for ma-
nipulating the workspace:

• Previously saved workspaces (or the default one) can be loaded through a dialog
invoked by the Load toolbar button.

• The current workspace can be saved either as the default workspace (.RData file)
or to an alternate file.

Figure 3-13. Simple pop-up editor is used to edit data vectors

40 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

• The entire workspace can be cleared through the Clear All toolbar button. To
delete single items, one can use the rm function through the console.

Just around the corner…
The Workspace browser is likely to see many new features as RStudio
matures. For example, a data editor for matrices and data frames, a
workspace filter, and a way to delete individual items could all be added.

Importing Data Sets
Importing data into an R session can be done in numerous ways, as there are many
different data formats. The R Data Import/Export manual provides details for common
cases. For properly formatted text files, RStudio provides the Import Dataset toolbar
button to open a dialog to initiate the process. You select where the file resides (locally,
or as a web resource), then a dialog opens to select the file. Once a file is specified (and
possibly downloaded/uploaded), a dialog appears that allows you to customize how
the data will be imported. Figure 3-15 shows the defaults for reading in the mtcars data
when first written out as a csv file.

Figure 3-15. Dialog for importing a data set from a formatted text file

Workspace Browser | 41

www.it-ebooks.info

http://www.it-ebooks.info/

The dialog has the more commonly used arguments for a call to read.table, but it is
missing a few, such as comment.char.

For server usage, one can upload arbitrary files into the working direc-
tory through the Files browser (see “The File Browser” on page 71).

The Help Page Viewer
As mentioned, R is enhanced by external code organized into packages. Packages are
a structured means for the functions and objects that extend R. Part of this organization
extends to documentation. R has a few ways of documenting itself in a package. For
packages on CRAN, compliance is checked automatically. Each exported function
should be documented in a help page. This page typically contains a description of the
function, a description of its arguments, additional information potentially of use to
the user, and, optionally, some example code. Multiple functions may share the same
documentation file. In addition to examples for a function, a package may contain
demos to illustrate key functionality and vignettes (longer documents describing the
package and what it provides).

R has its own format, Rd format, for marking up its help pages. This format is well
described in Writing R Extensions, one of the manuals that accompanies R. As the Rd
format is structured, functions (in the tools package) have been written to convert the
text to HTML format. R comes with a local web server to display these pages. RStudio
can show them as well, and does so in its Help browser. By default, this component
(Figure 3-16) appears as a page in the notebook in the lower-right corner.

Figure 3-16. The Help browser component shows R’s help pages

42 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

Help pages are invoked by the help function, although the easy-to-type shortcut ? is
typically used. For example, typing ?mean will open the help page for the mean function
from the base package (Figure 3-16).

An advantage of HTML rendering of help pages is that the provided links are active.
For example, in the mean help page, the help page author provides links (Figure 3-17)
to weighted.mean (for computing a mean with weights), mean.POSIXct (an S3 method
for computing the mean of time data), and colMeans.

Figure 3-17. Help pages have active links

The add-on helpr package for R enhances the appearance of the help
pages by applying attractive CSS styling, adding a comment feature, and
providing the ability to execute the examples directly from the Help
browser.

The ? shortcut is the most basic functionality for help. In the Packages component, the
installed packages appear as a link. Clicking a package’s link opens a description page
for the package. This is much more useful than the output of help(package="…"), which
creates a text only display in the source-code editor. This description page gives links
to the documented functions, and in addition (if applicable) provides access to the
DESCRIPTION file, the NEWS file, a list of demos, and any package vignettes.

The ?? shortcut allows quicker access to R’s help.search function. This allows for
searching the help system’s documentation for a match to the specific pattern, searching
within the alias, title, and concept entries. (The help.search function allows a more

The Help Page Viewer | 43

www.it-ebooks.info

http://www.it-ebooks.info/

refined search.) As of R 2.14.0, the results are returned in a search results page in the
Help browser with links to the different matches.

There are two different search boxes provided by the Help browser. The box in the
upper-right corner of the main toolbar (Figure 3-18) lists the available help topics
matching the beginning of the typed expression, using an auto-completion feature. This
serves a similar, but more convenient, role as the apropos function, which can be used
to search for workspace objects matching a pattern. The lower search box in the sec-
ondary toolbar is used to search through the contents of the displayed help page.

Figure 3-18. The upper search box of the Help browser displays possible matches

Searching for text in RStudio is complicated by the presence of the many
different panels. Basic search happens through the source-code editor;
other searches are facilitated by panel-specific search boxes.

In addition to the search box, the Help browser’s main toolbar provides other
functionality:

• The arrows are used to scroll through the history of one’s help-page usage. This
history also appears as the values of a pop-up combobox when a help page is
shown.

• Clicking the “home” toolbar button opens a page providing, among other items,
links to the manuals that accompany R.

44 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

• The show in new window toolbar button will open the page in a web browser.

Searching online resources
R is widely discussed on internet forums and news groups. The RSite
Search command is used to search for key words or phrases from various
sources of help that exist online and in packages, through http://search.r-
project.org. This command opens a browser window containing the re-
sults. The sos package provides an alternative interface.

Other useful places to find information about R or RStudio are the R
mailing lists, the Stack Overflow thread for R at http://stackover-
flow.com/questions/tagged/r, and the RStudio support forum at http://
support.rstudio.org.

The Browser
R, as a computing environment, is well known for its abilities to produce publication-
quality graphics. Indeed, R graphics are often seen on the pages of The New York
Times. To achieve this quality, the graphics engines in R have many levels of customi-
zation. Over the years, R has developed several different engines for producing graphics:

• The base graphics system offers easy-to-use statistics-oriented graphs and under-
lying low-level functions to allow users to design their own.

• The lattice package implements Trellis Graphics (an implementation of ideas in
Visualizing Data, by William S. Cleveland [Hobart Press]) for S and S-Plus. Lattice
graphics are very well suited for displaying multivariate data. Many standard stat-
istical plots are easy to make, but an underlying flexibility allows users to create
their own graphics.

• The ggplot2 package provides a relatively recent third approach. This is an imple-
mentation of ideas in The Grammar of Graphics by L. Wilkinson, et al. (Springer).
It advertises that it combines the advantages of base and lattice graphics—in ad-
dition, it produces very attractive graphics. Again, one can quickly generate stock
graphs, but there is much flexibility to build up a graph step by step.

All three of these systems rely on R’s underlying graphics framework. R uses a paper-
and-pen approach to graphics. A graphic device (the paper) is created or cleared, and
the graphic commands then write (with pen) onto this paper in steps. The point of this
analogy is that one can’t erase the paper. (The cranvas package will provide an alter-
native to this, but that is a different topic.) As such, it is important to plan a graphic
prior to creating it—for example, computing the size of the coordinate space that will
be needed. (Don’t worry, this is usually done for you by the calling function.) The device
(or piece of paper) is quite flexible in general. It can be an interactive device or a device
that writes to a file in a certain format, such as pdf, png, or svg.

The Browser | 45

www.it-ebooks.info

http://www.it-ebooks.info/

Don’t be turned off by the apparent complexity hinted at above. Al-
though both the lattice and ggplot2 packages are documented in book-
length formats, this only reflects their underlying flexibility. All three
graphics approaches provide enough higher-level functions that make
the standard graphics of statistics as simple as remembering the function
name and specifying the data appropriately.

The Plots Browser
RStudio provides its own device for the display of graphics, RStudioGD. By default, the
device’s output is rendered in the Plots browser. Although the graphics are secretly
image files, the RStudioGD device also allows for interactivity. In Figure 3-19 we see a
graph from one of the examples of stat_contour from ggplot2 displayed in the browser.

Figure 3-19. Plots browser showing a graphic produced by R

The image is initially sized to fit the space allocated to the browser. If the browser is
resized, the image will be regenerated to match the new size. This happens in the back-
ground, though there is a button to refresh the current plot on the component’s toolbar.
If one desires an even larger view, the zoom toolbar button will open the graphic in a

46 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

much larger Plot Zoom pop-up window. The zoom window is not an interactive device
but a snapshot of the current graphic.

One benefit of how the device works is that a new graphic is produced each time (unlike
many R devices, which essentially have an erase feature). This makes it easy for the
component to keep a list of the graphics that are produced. One can scroll through old
graphics using the left and right arrows located on the toolbar.

The currently viewed graphic can be exported as an image or .pdf file. RStudio provides
a few dialogs to control this. In Figure 3-20, we see that the save-plot dialog allows one
to easily specify the file type, directory, and file name of the image, as well as adjust the
size of the image in pixels. (When saved as a .pdf file, the size is specified in inches.)

Figure 3-20. Export dialog for producing a graphic file for a plot

In addition, there are toolbar buttons to remove the current plot and to clear all the
plots.

The Browser | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Interactivity
R allows for interaction with a graphic through the locator function, which returns the
position of the point (in the “user coordinate system”) where the (first) mouse button
is pressed; and the identify function, which returns the index of the point nearest to
where the (first) mouse button is pressed. Both functions are implemented for RStu
dioGD.

When the functions are called, the Plots browser is raised (if it wasn’t already). The
two functions are blocking, in that no input into the console is available until after the
selection of coordinates is done. The console shows its stop icon, and the graphic device
displays a message (Figure 3-21) that the locator is active, and instructs the user to press
the Finish button. (For locator, one specifies ahead of time the number of points to
identify, so the block will terminate if that occurs as well.)

Figure 3-21. When identify or locator is blocking input, the graphic window displays an alert

Some devices for R implement more complicated events, through get
GraphicsEvent, but this is not currently the case for the RStudio device.

The manipulate Package for RStudio
Through the tcltk package (and others), an R programmer can create graphics that
can have associated GUI controls to manipulate the display. Through the manipulate
package, RStudio users can too. This package is provided with RStudio and delivers a
set of simple-to-define controls that provide values to an expression used for plotting.
These controls include a slider, a picker, and a checkbox.

The basic usage is:

• One defines an expression that, when evaluated, produces the desired plot.

• This expression includes parameters labeled with the names given to the controls.

• When a control is updated, the expression is reevaluated and the graphic updated.

To illustrate, Figure 3-22 shows the code that implements the tkdensity demo from
the tcltk package (there are 103 lines in the original, but just 16 here).

48 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-22. R code for using the manipulate package for interactive graphics

When the commands are executed, RStudio produces a plot based on the initial values
of the control and also pops up a window with the controls as shown in Figure 3-23).
Manipulating these controls will update the graphic (but not add to the history of
graphics). The control frame’s visibility is toggled through the double arrow icon in the
control bar and the gear icon in the plot window.

Figure 3-23. The manipulate function creates a control panel for setting parameter values in a plot

The Browser | 49

www.it-ebooks.info

http://www.it-ebooks.info/

This example shows all three control types. A slider appears with both its own label,
another label indicating the value, and a slider widget to adjust that value. The pickers
are rendered using comboboxes, and the checkbox is displayed with its accompanying
label.

External Programs (Desktop Version)
R has several packages that provide interfaces to external programs and systems. For
the desktop version of RStudio, one can call these to extend the interface. For example,
the tcltk package interfaces R with the Tk libraries for creating graphical user interfaces.
The widely used Rcmdr package, which provides a set of graphical interfaces to numer-
ous R functions, can be run in this manner. One can also use the interfaces provided
by RGtk2 and qtbase.

In addition, the desktop user can take advantage of R’s internal help server. The goo
gleVis package uses this to take advantage of Google’s visualization tools, and the
Rack package provides an API for R users to write web applications that take advantage
of this same server.

50 | Chapter 3: The Console and Related Components

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Case Study: Creating a Package

Before describing more systematically the components that RStudio provides for de-
velopment work in R (most importantly the source-code editor), we will pick up where
we left off on our case study of analyzing the group behavior and individual movements
of a colony of naked mole rats. Here, our goal is to illustrate one way to do package
development with RStudio.

Imagine after a short time using RStudio for interactive use, that we are pretty happy
using the command line for short commands, but have learned to really enjoy writing
scripts in the Code editor. Even 2- or 3-line commands are much easier to debug when
done in the editor. The directness of typing at the command line isn’t lost, as our fingers
are now trained to hit Ctrl+Enter to send the current line or selection to the R interpreter
—or even Ctrl+Shift+Enter to send the entire buffer. We never need to leave the key-
board unless we choose to.

Along the way, we have been able to create a large script file that we now want to share
with a colleague.

How do we do this? We could just send along the entire script. In some cases, this might
be the best thing to do, as then our colleague can do exactly what we have been doing.
However, there are many situations where this isn’t so great. For example, perhaps this
colleague doesn’t know R too well and she just wants to have some functions to use.
Plus, she may want to have some documentation on how to actually use the functions.
Besides, we might want to share our work much more widely. At times like this, R users
start to think about packages.

Packages are how R users extend R. CRAN houses over 3,000 of them, and many more
are scattered widely throughout the internet at R-specific repositories like those hosted
by the Bioconductor project or on r-forge. Packages also appear on code-hosting sites
such as http://github.com or http://code.google.com. However, we don’t need to get
packages from a website. We can start by creating our own local packages to share with
colleagues. Let’s see how, taking advantage of the features of the code-editor compo-
nent of RStudio.

51

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Functions from Script Files
Currently, our script is one long set of commands that processes the data files and then
makes a plot. We first want to turn some of the commands into functions. Functions
make code reuse much more feasible. A basic pattern in R is to write functions for
simple small tasks and then chain these tasks together using function composition. This
is similar to the composition concept from mathematics, where we take the output
from one function and use this as the input for another.

RStudio’s integrated Source code editor—where we wrote our script—makes working
with functions quite easy. We’ll illustrate some of the features here.

For our task, we have a script that does four things to process the data:

1. It reads in the data and does some data cleaning.

2. It creates zoo objects for each mole rat.

3. It merges these into one large zoo object.

4. It makes a plot.

This naturally lends itself to four functions. Keeping our functions small and focused
on a single task makes them easier to test and debug. It can also help later on in the
development of a package, when we may think about combining similar tasks into more
general functions, although we won’t see that here.

RStudio provides a convenient action for turning a series of commands into a function.
The magic wand toolbar button in the code editor has the Extract Function action.
We simply highlight the text we want and then wave the magic wand—tada! In Figures
4-1 and 4-2, we illustrate the changes introduced by the magic wand. Our first function
will be the one that reads the data into a data frame where the time column is using
one of R’s date classes.

We then source this function into our interpreter for later use (using Ctrl+Enter).

We don’t try to automate the process of converting the rtf file into a txt file, as that isn’t
so easy. We will put together the commands to process the data frame and create a list
of zoo objects (one for each mole rat) and the commands to create a multivariate zoo
object. This will be done with the magic wand in a similar manner as above.

A Package Skeleton
Packages must have a special structure, detailed in the Writing R Extensions manual
that accompanies a standard R installation. We can consult that for detailed reference,
but for now all we need to know is that the function package.skeleton will set up this
structure for us. (The ProjectTemplate package can be used to provide even more detail
to this process.)

52 | Chapter 4: Case Study: Creating a Package

www.it-ebooks.info

http://www.it-ebooks.info/

This function needs, at a minimum, just two things: where and what. As in, where are
we going to write our package files and what will we initially populate them with? We
choose the directory ~/NMRpackage, and will start with one of the functions from our
script:

Figure 4-1. Highlighting of the commands to be “wanded” into a function

Figure 4-2. A function generated by the magic wand

A Package Skeleton | 53

www.it-ebooks.info

http://www.it-ebooks.info/

> setwd("~")
> package.skeleton("NMRpackage", c("readNMRData"))
Creating directories ...
Creating DESCRIPTION ...
Creating Read-and-delete-me ...
Saving functions and data ...
Making help files ...
Done.
Further steps are described in '/~NMRpackage/Read-and-delete-me'.

We now want to inform RStudio that we are working on a new project, allowing us to
compartmentalize our session data and accompanying functions. We use the directory
just created by package.skeleton.

After creating a new project, we refresh the Files browser to show us which files were
created (Figure 4-3).

Figure 4-3. Directory structure after package.skeleton call

We see two unexpected files in the base directory and two subdirectories. We first
investigate what is in the Read-and-delete-me by clicking on the link and reading. For
now, nothing we need. It says to delete the file, so we oblige by selecting the file’s
checkbox and clicking the Delete toolbar button.

The DESCRIPTION file is used by R to organize its packages. Ours needs to be updated
to reflect our package. Clicking the link opens the file in the code editor. Here we edit
the Title: field and some others. Since our package will rely on the zoo and ggplot2
packages, we add those to the Depends field. This file is in dcf format with a keyword
(the name before the colon) and value on one line. If you need more lines for the value,
just give any additional lines some indented space, as was done for the “Description:”
line (see Figure 4-4).

The R directory is where all the programming is done. In this directory we have the files
containing our function definitions. We change our working directory (Ctrl+Shift+D),
and the file browser updates to show this directory.

54 | Chapter 4: Case Study: Creating a Package

www.it-ebooks.info

http://www.it-ebooks.info/

We see that the call to package.skeleton created a file named readNMRData.R, con-
taining the definition of the one function we gave it. We could have one file per function,
but that will quickly get unwieldy. We could also put all our functions into one file—
but again that gets bulky. A better strategy is to group similar functions together into
a file. For now, we will create a file to hold our data-processing functions (process.R),
and another file for our still-to-be-written visualization functions (visualize.R).

To rename our file through the Files browser, we select its checkbox and then click
the Rename toolbar button. A dialog prompts us for the new name. We open this file for
editing by clicking on its link. We then open our script file (which isn’t in our new
project) by using the Open File toolbar button on the application’s toolbar. We then
proceed to use the magic wand to create functions createZooObjects and createState
Matrix. These are then copy-and-pasted into the appropriate file in the R directory.

RStudio has some facilities for navigating through a file full of functions. In the lower-
right corner of the code-editor component sits a label (Figure 4-5) that contains the line
and column number, and next to that, a combobox that can be popped up to select a
function to jump to.

Figure 4-5. The function pop up allows you to quickly navigate to a function in a file containing many
functions

Figure 4-4. Editing the stock DESCRIPTION file template to match our package

A Package Skeleton | 55

www.it-ebooks.info

http://www.it-ebooks.info/

We next open a new R Script (Shift+Ctrl+N or through the File menu) for holding
any functions for visualization and add a function to use ggplot2 to make a graphic.
We save the file and update our Files menu through its Refresh button.

Documenting Functions with roxygen2
The package.skeleton command makes the man subdirectory. In R, all exported func-
tions must be documented in some file. Such files are written using R’s Rd markup
language. Looking at the man directory, we see that two files were made: read-
NMRData.Rd (a stub for our function), and NMRpackage-package.Rd (a stub for doc-
umenting the entire package). We open up the latter and make the required changes
—at a minimum, the lines that have paired double tildes are edited to match our idea
of the package.

We could go on to edit the readNMRData.Rd template, but instead we will use the
roxygen2 package to document our package’s functions. Although R is organized
around a workflow where one writes the function then documents it separately (pre-
sumably after the function is done), many other programming languages have facilities
for writing in a literate programming style using inline documentation. Some R pro-
grammers are used to this functionality (it simplifies iterative function writing and
documenting) and the roxygen2 package makes this feasible. For the modest demands
of this package, it is an excellent choice.

Rd format has a number of required sections, and using roxygen2 does not eliminate the
need for following that structure. All directives appear in comments (we use ##'). Key-
words are prefaced with an at symbol (@). The main sections that are usually defined
are a title (taken from the first line), an optional description (taken from the first para-
graph), the function’s arguments (defined through the @param tags), a description of the
return value (@return), whether the function will be exported (@export), and, optionally
some examples. R has tools to check that the right format is followed. In particular, it
will catch if you have failed to document all the arguments or if you misname a section
tag.

The Rd markup is fairly straightforward and is described in the Writing R Extensions
manual. An example of a documented function is shown in Figure 4-6.

We can also create a NEWS file to keep track of changes between versions of the package.
This may not be useful for this package, but if the package proves popular with our
colleagues, a NEWS file will help them see what has happened with our package (Fig-
ure 4-7). The NEWS file is a plain-text file with a simple structure. We open it through
the File menu, but this time select Text File. The code editor will present a different
toolbar in this case, as it makes no sense to be able to source R code from this file.

56 | Chapter 4: Case Study: Creating a Package

www.it-ebooks.info

http://www.it-ebooks.info/

The devtools Package
Testing a package can involve loading the package, testing it, making desired changes,
then reloading the package. This workflow can get tedious—it can even involve closing
and restarting R to flush residual changes. The devtools package is designed to make
this task easier.

If it isn’t installed, we can install it from CRAN using the Packages component (Fig-
ure 4-8). Click the Install Packages toolbar button and then type the desired package
name into the dialog. (An auto-complete feature makes this easy.) Leaving the Install
dependencies option checked will also install roxygen2 and the testthat package, if
needed.

Figure 4-6. Illustration of using roxygen2 to document a function

Figure 4-7. Editing a text file in the Source code editor shows that the toolbar is file-type dependent

The devtools Package | 57

www.it-ebooks.info

http://www.it-ebooks.info/

The devtools package provides the load_all function to reload the package without
having to restart R. To use it we define a package variable (pkg) pointing to the directory,
then load the code (Figure 4-9). The new functions do not appear in the Workspace
browser, as they are stored in an environment just below the global workspace, but
they do show up through RStudio’s code-completion functionality.

Figure 4-9. The commands to use devtools for package development

Figure 4-8. The Install Packages dialog for installing the devtools package

58 | Chapter 4: Case Study: Creating a Package

www.it-ebooks.info

http://www.it-ebooks.info/

We can try it out. In doing so, we realize that our definition of readNMRData returns just
the time vector and not the data frame. We forgot to adjust the return value when we
converted our script into a function. No problem. We make the adjustment in the code
editor, save the file, then reissue the command load_all(pkg).

For working with documentation, the devtools package has the document function (as
in document(pkg)) to call roxygen2 to create the corresponding Rd files and show_news to
view the NEWS file.

Package Data
We can add our testing commands in an example, but we will need to have some data
to use when we distribute our package. We wrote readNMRData to accept any data file
in the same format, as we imagine our colleagues using it with other data sets generated
by the experiment. However, we can combine the data we have into the package for
testing and example purposes. R has the data directory for including data in a package.
This data should be in a format R can easily read in—ours isn’t (it has a different
separator and we need to skip every other line). So instead, we use the inst directory
to create our own data directory. We call this sampledata (not data, as this would in-
terfere with the data directory that R processes automatically). We create the needed
directories with the New Folder toolbar button in the Files browser.

How you get the package data file into this folder depends on how you are using RStu-
dio. If you are using the desktop version, you simply copy the file over using your usual
method (e.g., Finder, command line, Windows Explorer). If you are using the server
version, then this won’t work. In that case, the Files component has an additional
Upload toolbar button to allow you to upload your file. This button summons a dialog
that allows you to browse for a file or a zip archive of many files (Figure 4-10).

Figure 4-10. Dialog for uploading a file to the server (server usage only)

Package Data | 59

www.it-ebooks.info

http://www.it-ebooks.info/

Package Examples
R documentation files have the option of an “examples” section, where one would
usually see documentation of example usage of the function(s). This is a very good idea,
as it gives the user a sample template to build on. In Figure 4-11, we see sample code
added to our readNMRData function’s documentation.

Figure 4-11. Adding an example to a function’s documentation with roxygen2

For an installed package, examples can be run by the user through the example function.
During development with devtools, the programmer can use the run_examples
function.

Adding Tests
Although examples will typically be run during package development, it is a good
practice to include tests of the package’s core functions as well. Tests serve a different
purpose than examples. Well-designed tests can help find bugs introduced by changes
to functions—a not uncommon event. The devtools package can run tests (through
testthat) that appear in the inst/tests subdirectory of the package.

Building and Installing the Package
RStudio does not have any features for building a package. This is typically done from
a command line outside of the R process. For UNIX or Mac OS X users, this can be
done through system call. For example:

> system("cd ~; R CMD build NMRpackage")

60 | Chapter 4: Case Study: Creating a Package

www.it-ebooks.info

http://www.it-ebooks.info/

We could replace build with CHECK to check our package for consistency with R’s ex-
pectations. The devtools package provides the build function, though this isn’t re-
quired for sharing a package with colleagues, but a package distributed on CRAN
should pass the check phase cleanly. Checking is a good thing in any case.

For Windows users, the WinBuilder project (http://win-builder.R-project.org) is a web
service that can be used to create packages. Otherwise, building R packages under
Windows is made easier using the Rtools bundle provided by D. Murdoch.

Finally, installing a local package can be done through the Install Packages toolbar
button of the Packages tab. Instead of selecting a CRAN mirror, one selects an archive file
from which to install the package.

Building and Installing the Package | 61

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Programming R with RStudio

Programming R involves the writing, editing, debugging, and documenting of func-
tions; working with function files; and packaging functions for wider distribution. In
this chapter we look at some components of RStudio that simplify these and other tasks.

Source Code Editor
Recall that RStudio leverages numerous web technologies. A major one is the Ace code
editor (ace.ajax.org) for editing functions and files. Ace is written in JavaScript, which
allows all necessary computations to be done in the client, thereby avoiding numerous
calls to the server. This is important, as an editor for an IDE must do many things well
and quickly, such as:

• File-type specific syntax highlighting

• Automatic code indentation

• Parenthesis matching

• Working with many documents simultaneously

• Working with large documents

• Working with different languages

While not as feature-rich as some editors—say, the emacs editor that powers ESS—the
Ace editor in the RStudio framework is still quite able and easy to work with. The
component uses a notebook to organize the files and provides toolbars and other means
to issue common commands quickly.

63

www.it-ebooks.info

http://www.it-ebooks.info/

Basics
The action to open a new file in the Source code editor is presented in many different
ways: under the File > New menu item, the leftmost toolbar button in the application-
wide toolbar pops up the choices, and the keyboard shortcut opens an R file. The code
editor can open text files of various types. The menu items include an R Script, a Text
File, an Sweave Document, and a TeX Document. In Figure 5-1, we show how the com-
ponent’s toolbar adjusts to provide file-type specific actions.

Similarly, existing files can be opened through a menu item, a toolbar button or a
keyboard shortcut. In addition, active links in the Files browser can be used to open
a file. A selection of recently opened files is available through the application toolbar
and the menu.

Figure 5-1. The edit pane toolbar is file-type sensitive. Here we see scripts, Sweave files, and text files

Files that have changes are marked with an asterisk next to their name in the notebook
tab label. For such files, the standard Save and Save as… actions are also accessed
through the menu bar, the application-wide toolbar, or keyboard shortcuts. In addi-
tion, the Save with Encoding… menu item can be used to specify an encoding for the
file when saving. As a convenience, the Save All action is available through the menu
bar or application-wide toolbar.

A file can be closed by clicking on the close icon in the notebook’s tab for a file, through
a menu item, or through the appropriate keyboard shortcut, Ctrl+W or Cmd+W. (Ex-
cept for the Chrome browser under Mac OS X, where Ctrl+Shift+L is used, as the other
shortcut is used to close the browser window.) If there are unsaved changes, you will
be asked whether you want to save the work.

64 | Chapter 5: Programming R with RStudio

www.it-ebooks.info

http://www.it-ebooks.info/

The notebook container allows one to have many different files open at once. When a
moderate-sized number of files are open, one navigates between them by clicking on
the appropriate tab. There are shortcuts for cycling through the tabs (Next, Previous,
First, Last). As well, the widget provides a means to select a tab to jump to. This is
especially useful if there are so many tabs that their labels don’t fit in the allocated width
(Figure 5-2). This widget provides a pop-down menu and a search box.

Figure 5-2. RStudio provides a convenient means to switch files when there are many open

The Find and Replace menu item implements a search through the currently opened
file. When run through a web browser, the browser’s search function may search
through the entire page. There is no such feature in the desktop version. (Therefore,
each component has its own search bar.)

Instead of a search dialog, the Ace editor produces an unobtrusive pop-down bar in
the code editor (Figure 5-3) that allows a user to find (and replace) strings of text.
Checkboxes allow one to restrict the search by case-matching or widen it using regular
expressions (see ?regex). The Find button marches through the document moving to
each new match, wrapping at the end of the document. The Replace and All buttons
control how to replace the found text with an alternative.

Figure 5-3. The panel that appears when searching in the code editor

Source Code Editor | 65

www.it-ebooks.info

http://www.it-ebooks.info/

The Editing pane of the Options dialog (Figure 3-4) has options for adjusting the be-
havior of the editor. In that screenshot, you can see we have turned off the automatic
insertion of matching parentheses and quotes, but otherwise the defaults are to our
particular taste.

There is also an option to toggle line numbering. When this option is on, line numbers
appear along the left margin. In either case, down in the lower left corner of the code-
editor window is a label (Figure 5-5) listing the current line number and position of the
cursor.

File synchronization
When a file is opened in the editor, it is not locked and may be modified
through some other process, such as being altered by your favorite ed-
itor. RStudio will monitor changes in the underlying file and propagate
them back.

Keyboard shortcuts

In Table 5-1, we list several keyboard shortcuts provided by RStudio for basic editing
needs. There are the standard operating system shortcuts for things like cut, copy, and
paste; undo and redo, etc. In addition, some, such as the “yank” commands, come from
the emacs world.

Table 5-1. Selected keyboard shortcuts for console and source usage

Action Windows and Linux Mac OS X

Undo Ctrl+Z Command+Z

Redo Ctrl+Shift+Z Command+Shift+Z

Cut Ctrl+X Command+X

Copy Ctrl+C Command+C

Paste Ctrl+V Command+V

Select All Ctrl+A Command+A

Jump to Word Ctrl+Left/Right Option+Left/Right

Jump to Start/End Ctrl+Home/End or Ctrl+Up/Down Command+Home/End or Command+Up/Down

Delete Line Ctrl+D Command+D

Select Shift+[Arrow] Shift+[Arrow]

Select Word Ctrl+Shift+Left/Right Option+Shift+Left/Right

Select to Line Start Shift+Home Command+Shift+Left or Shift+Home

Select to Line End Shift+End Command+Shift+Right or Shift+End

Select Page Up/Down Shift+PageUp/PageDown Shift+PageUp/Down

Select to Start/End Ctrl+Shift+Home/End or Shift+Alt+Up/Down Command+Shift+Up/Down

66 | Chapter 5: Programming R with RStudio

www.it-ebooks.info

http://www.it-ebooks.info/

Action Windows and Linux Mac OS X

Delete Word Left Ctrl+Backspace Option+Backspace or Ctrl+Option+Backspace

Delete Word Right n/a Option+Delete

Delete to Line End n/a Ctrl+K

Delete to Line Start n/a Option+Backspace

Indent Tab (at beginning of line) Tab (at beginning of line)

Outdent Shift+Tab Shift+Tab

Yank line up to cursor Ctrl+U Ctrl+U

Yank line after cursor Ctrl+K Ctrl+K

Insert currently
yanked text

Ctrl+Y Ctrl+Y

Insert assignment
operator

Alt+- Option+-

R Programming Features
RStudio augments the Ace editor with some R-specific conveniences.

Syntax highlighting

Syntax highlighting is implemented by RStudio for files related to R development
(Figure 5-4). Highlighting provides separate colors for keywords, functions, and other
objects, so they are readily identified. There isn’t much for the R programmer to do
here except enjoy the benefits.

Figure 5-4. Illustration of syntax highlighting (function keyword in blue, “ANY” string in green),
automatic indenting of block expressions (inside {}, say), and parenthesis matching (the cursor is at
last }, and the matching { is highlighted).

Source Code Editor | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Having comments in a different color from the text makes them much more readable
and at the same time unobtrusive. Working with comments in R involves simply placing
a pound (#) symbol somewhere on a line, so that the text to the right is ignored by the
interpreter. (There are no emacs-like comment conventions for repeated pound sym-
bols.) Comments can be added to an entire block of text through the Comment/Uncomment
Lines menu item (under the magic wand). Simply select the text, and this action will
toggle the comment state.

Bracket matching

The R syntax requires several matching delimiters, such as matching square brackets
for vector extraction, matching parentheses for functions, matching braces for blocks
of commands, and matching quotes for strings. RStudio has two means to assist the
bookkeeping required for this demand. It can be done either automatically through the
insertion of a matching bracket when the opening one is given—or if this is turned off,
through highlighting. A setting in the Options dialog controls is used to adjust the
behavior.

Automatic indenting

Within code blocks delimited by curly braces, it can be useful to have indenting to
quickly identify the level of nesting. This is quite common—for instance, a simple
for loop within a function body has this nesting. RStudio automatically indents the
next line after the Enter key is pressed. In addition, pressing the Tab key when the
cursor is at the start of a line will indent that line.

For indenting the current line or formatting a selected region, the magic wand has the
action “Reindent Lines” (also Ctrl+I).

Compare Readability without Indenting and Spacing
To see the advantage of improved readability, compare these two coding styles—the
latter uses some typical R programming conventions (the arrow over the equals sign,
space around operators and after commas, and indenting to indicate nesting):

mlp=function(theta,data)
{
n=length(data)
mu=theta[,1]; sigma=exp(theta[,2])
val=0*mu
for (i in 1:n)
{
val=val+dnorm(data[i], mean=mu,sd=sigma,log=TRUE)
}
val=val+dnorm(mu, mean=10, sd=20,log=TRUE)
return(val)
}

68 | Chapter 5: Programming R with RStudio

www.it-ebooks.info

http://www.it-ebooks.info/

and:

mlp <- function(theta, data) {
 n <- length(data)
 mu <- theta[, 1]
 sigma <- exp(theta[, 2])
 val <- 0*mu
 for (i in 1:n) {
 val <- val + dnorm(data[i], mean=mu, sd=sigma, log=TRUE)
 }
 val <- val + dnorm(mu, mean=10, sd=20, log=TRUE)
 return(val)
}

Code completion and usage information

The Tab key completion features of the console (see “Tab Completion” on page 31)
are also present when working with the code editor. To review, the text between the
cursor and the beginning of the line define a token. When the Tab key is pressed, the
completions for this token and its context are analyzed:

Object Completion
When the token is a partially typed object name, the candidates for completion
include objects available in the global workspace. If possible, the completion pro-
vides a summary for each candidate from R’s help mechanism.

Argument Completion
When the token is the opening of a function, the candidates include a list and a
description of the function’s arguments from the function’s help page.

Argument or object completion
When the token is at a function argument and a start is given, the completion
includes matching argument names and matching objects, as either could be given.

String completion
Candidates for string completion are the filenames in the current working direc-
tory.

Extract Function

In our case study, we took on the task of converting a script of commands into a pack-
age, creating several functions in the process. The Extract Function feature (the magic
wand toolbar button) helps facilitate this, trying to create a function from the currently
selected lines in an R script. To use this feature, highlight the commands that you want
to include in the definition of the function, then invoke the magic wand. A dialog
gathers a function name, then the selected commands are parsed to make a guess as to
what the argument to the function should be.

Source Code Editor | 69

www.it-ebooks.info

http://www.it-ebooks.info/

Run or source commands

We mentioned in “R Script Files” on page 29 that one can select parts of an R script in
the code editor and send the commands to the R interpreter. The Ctrl+Enter and Ctrl
+Shift+Enter shortcuts make this process very convenient (the full list was provided in
Table 3-2).

Navigation
As projects grow, it is typical to have multiple files, each containing many functions
grouped in some manner. Being able to navigate quickly within a file and among files
becomes a welcome convenience.

Jump to function

In addition to searching through a file, RStudio has features for navigating among the
functions in an R script file. The “Jump to function” action is invoked through a menu
item, a keyboard shortcut, or a pop up located in the bottom status bar of the code
editor window (Figure 5-5). Selecting a function moves the cursor to the beginning of
the function’s definition.

Figure 5-5. Illustration of the function pop up feature to jump to function’s definition

Go to file/function

To quickly navigate between files and functions within a project, RStudio provides the
Go to File/Function action with the shortcut Ctrl+. . The application tool bar always
shows this, and the shortcut summons a floating window (Figure 5-6). This action
provides a text entry box where a user can type either a function name or file name.
Automatic completion candidates are given from both, so one can quickly jump around

70 | Chapter 5: Programming R with RStudio

www.it-ebooks.info

http://www.it-ebooks.info/

within a project. The files and functions that make up a project are monitored for
changes, so even changes external to RStudio can be tracked.

Generic Functions in R
As mentioned, user-written functions are how R is extended. With over 3,000 packages
and countless other uses, there needs to be some means of bringing order to this. R has
a notion of a generic function that allows the same function name to be used in different
contexts. The role of the generic function is to consult the arguments it is given and
dispatch (or call) the appropriate function—in this context, called a method. This al-
lows the user to use just one name for many different—yet similar—tasks. A prime
example is the plot function, where many different types of plots are produced, de-
pending on the class of the first argument.

The plot function is an S3 generic function. Such functions dispatch on the class of the
first argument, and methods can be written using the naming convention generic.class
name. (In Figure 3-5 we see several methods for the mean function listed.)

There are also S4 generics that dispatch, possibly, on the class of each argument given,
not just the first. These are registered (rather than just named appropriately) through
the setMethod function.

S3 and S4 methods do not show up in the list of files presented by the “Jump to Func-
tion” feature but do appear in the “Go To File/Function” list.

The File Browser
The Files browser (Figure 5-7) displays the files and subdirectories of a given directory.
The refresh toolbar button will refresh this display, if clicked. There are just a few
actions. Clicking on a subdirectory will load the contents of that directory into the file
browser. Clicking on a file will open an editor or viewer for that file. For text files with
certain extensions, this will be the source-code editor. Otherwise, this will be a system
program if the source-code editor is not appropriate. For example, a .pdf file will open

Figure 5-6. Floating “Go To File/Function…” textbox positioned under the main toolbar’s textbox,
to quickly navigate among files and functions

Source Code Editor | 71

www.it-ebooks.info

http://www.it-ebooks.info/

in a PDF viewer on the desktop; or from the browser (server version), in a new window;
whereas a .doc file will open in Microsoft Word (or the associated program for the
MIME type) on the desktop, but will be downloaded when run from the browser.

By selecting one or more files through the checkboxes on the left, one can initiate actions
to delete, rename, copy, or move the file(s) through actions available from the toolbar
buttons. One can create new folders through the New Folder toolbar button. If these
actions are not sufficient, in the desktop version, the More > Show Folder In New Win
dow toolbar item will invoke the system file manager for the directory.

File upload

For server usage, there is a toolbar button to initiate a file upload. This is similar to
attaching a file to an email, a reasonable analogy, as you may also be restricted from
uploading files that are too large.

Debugging R Code in RStudio
R provides some useful tools for debugging R code, summarized online at http://
www.stats.uwo.ca/faculty/murdoch/software/debuggingR/debug.shtml. These tools al-
low R users to investigate errors, step through functions, insert debugging code, etc.
Although RStudio currently doesn’t have additional integration with R’s debugging
tools, the RStudio console does work with these functions, as well as with any R
console.

Figure 5-7. The Files browser showing a directory listing from a package with a mix of files and
sub-directories

72 | Chapter 5: Programming R with RStudio

www.it-ebooks.info

http://www.it-ebooks.info/

Just around the corner…
Several desirable features for R development with RStudio are in the
development or design phase:

• Integration with version control repositories such as GIT and SVN.

• Integration of debugging tools with the code editor.

• Integration with package development tools.

Package Maintenance
R uses packages to extend itself and RStudio provides the Packages browser to make it
effortless to load, install, update, and/or delete packages in the library of packages.

In Figure 5-8 we show a screenshot. Each installed package is shown with a description
derived from the package’s DESCRIPTION file. In addition, for each package there is:

• A checkbox to load (require) or unload (detach) the package

• An active link to open the help page index of the package

• A delete icon to uninstall the package from the library

Figure 5-8. Screenshot of the Packages component, used for loading a package and the installing,
deleting, and updating of the library of packages

Package Maintenance | 73

www.it-ebooks.info

http://www.it-ebooks.info/

The Packages browser toolbar has a Check for Updates button, which is used to see if
any packages have pending updates. The dialog this opens is similar to Figure 5-9,
where those packages with possible updates on a system are listed. One simply selects
the packages to update and then presses the Install Updates button. From there,
RStudio calls install.packages to download the new packages from a repository to
install.

Figure 5-9. Dialog showing packages that have available updates

Installing new packages is done through the dialog opened when the
Install Packages toolbar button is pressed (Figure 5-10). In the figure, the “Install
dependencies” checkbox is selected, instructing install.packages to also download
and install any packages that the desired ones depend on. In addition, several other
things must be specified:

Which package
Which package (or packages) to install is specified in the middle text entry box
titled “Packages”. There are over 3,000 packages, so presenting them all in a list is
a poor interface. Rather than browsing through the available choices, the text entry
box has an auto-completion feature that shows available packages matching the
currently typed text token.

74 | Chapter 5: Programming R with RStudio

www.it-ebooks.info

http://www.it-ebooks.info/

Which repository
Packages are hosted on CRAN and elsewhere. CRAN is a system of repositories that
mirror a central repository in Austria. One must choose a specific one from which
to download the files. RStudio will keep track of this choice. If this has not been
done, a dialog to choose a CRAN mirror will appear before the Install Packages
dialog. One may also choose to install from a local “Package Archive File.” The
help-page link for “Configuring Repositories” shows the manual page for setRepo
sitories, which spells out how one specifies non-CRAN repositories, such as those
for the BioConductor project.

Which directory
R will look for installed packages in several places (e.g., system-wide locations and
user-specific locations) but won’t scan the entire hard drive. When installing a
package, one must specify which places will be checked. The dialog provides a
combobox to select a Library directory. The available choices are determined by
consulting the .libPaths function. This function both returns the places where
packages are looked for and allows one to append to this search list. The server
version allows a choice of a directory in the user’s home directory, as otherwise
certain permissions would be required. For the desktop version, if a local,
user-only spot is desired, one can call the .libPaths function from the console to
provide the desired location.

Case Study: Report Generation
In two previous case studies, we saw how RStudio can be used in an interactive manner,
and how RStudio can be used to write the functions that compose a package. In this
example, we look at how RStudio can be used to write reports where we automatically

Figure 5-10. Dialog to install a package; you must specify what, from where, and to where

Case Study: Report Generation | 75

www.it-ebooks.info

http://www.it-ebooks.info/

mix R output into the report. If our data changes, we just rerun it. This allows us to
keep all our numbers and references in sync. It allows us to create reproducible research,
as the document contains all the code needed to produce it. The main tool is Sweave,
a literate programming tool for R that can “weave” R commands into a document,
formatted with marked-up text. (Typically, but not necessarily, this is LaTeX, which
we illustrate here—but there are other implementations for Open Office, asciidoc, etc.)

A vignette is a longer form of documentation for R packages and is usually written using
Sweave. For our naked mole rat package, we have provided our colleagues with func-
tions and documented them using roxygen2. Now we see how to write a vignette, al-
lowing us to mix in our observations and insights along with use cases and detail about
the functionality we have provided.

Vignettes can simply be a Sweave file saved in the inst/doc subdirectory of the package.
When a package is “checked”, the vignette’s code is executed; when a package is
“built”, a pdf file is created for distribution with the package. There is some control
over this—for more, see the section Writing Package Vignettes in the Writing R Exten-
sions manual.

To begin, we open a file nmr.Rnw after creating the doc directory through the Files
browser. RStudio’s code-editor File > New menu has an option for a new Sweave
Document, which we select. The code-editor toolbar and status bar are specific to the
document type. For an Sweave document, which mixes R code and LaTex markup, it
makes sense to allow the user to run commands in the console, so that option is still
present. There is also a new Compile PDF button, which, when clicked, initiates the
process of calling Sweave to replace the R commands with their output in a new file (the
“weaving”) and then calls R’s texi2dvi function to create a pdf file. (This all assumes
a working LaTeX is installed on your machine. If LaTeX is installed but a warning
appears, its path may need to be specified.)

Figure 5-11 shows the code editor opened to a vignette. The lower-right corner indicates
that it is editing an Sweave Document, and syntax highlighting is present both for the R
code and the LaTeX text.

Figure 5-11. RStudio’s code editor editing an Sweave file, as indicated in the lower-right corner

76 | Chapter 5: Programming R with RStudio

www.it-ebooks.info

http://www.it-ebooks.info/

LaTeX is a markup language (the lingua franca of mathematicians) too complicated to
describe here, but certainly not impossible to learn. It really helps to start with a basic
template, such as this (LaTeX uses the percent sign for a comment character):

\documentclass[12pt]{article} %% A declaration of type
\usepackage{geometry} %% A LaTeX package
%
%\VignetteIndexEntry{Using the NMRpackage} %% Meta data lines
%\VignettePackage{NMRpackage}
%\VignetteDepends{zoo}
%
\title{NMRpackage} %% A LaTeX macro call
\author{John Verzani}
%
\begin{document} %% Latex is between begin/end document
\maketitle %% Call a macro to make title
%
% ... Insert text here ...
%
\end{document} %% End the document

The template shows how LaTeX calls commands (\maketitle) and uses begin/end en-
vironment pairs to mark larger sections of text.

The integration of R with LaTeX is done in two ways:

Code chunks
Code chunks are one or more commands to be executed, wrapped within tags
beginning with <<>>= and ending with @. Within the <<>>, one can place directives
to adjust what happens:

• With no directives, the code is echoed back with the output interspersed

• To name a block of code, the first directive should be a name (other arguments
are in the form key=value). This output can then be referred to through <<name>>.

• To suppress the code being echoed back, use echo=FALSE.

• To suppress the code being evaluated, use eval=FALSE.

• To suppress the results being included, use results=hide.

• To include a figure in the code, use fig=TRUE. For lattice graphics, one also
needs to call print on the graph object.

• To have LaTeX process the output (as opposed to having it included verbatim),
use results=tex.

Inline code
An R session inline; the expression can refer to variables defined in previous
chunks.

Case Study: Report Generation | 77

www.it-ebooks.info

http://www.it-ebooks.info/

For example, the following text would create a new section and a graphic:

\section{Making a plot}
The package provides the \texttt{nmrTsPlot} function to make a time series
graph using the \texttt{ggplot2} package. For example,
<<nmrTsPlot, fig=TRUE>>=
f <- system.file("sampledata","degas.txt", package="NMRpackage")
a <- readNMRData(f)
b <- createZooObjects(a)
m <- createStateMatrix(b)
out <- nmrTsPlot(m[, 1:4])
print(out)
@

Tables are straightforward, but can be tedious to typeset in LaTeX. Conveniently, one
can use R to convert a rectangular object (matrix or data frame) to a table, using the
add-on xtable package.

In the following we make a matrix, d, that holds the number of times that mole i is in
the same chamber as mole j, by looping over the rows of the state matrix using apply.
Then we use xtable to create the table. The echo=FALSE argument suppresses the R code,
and results=tex is used to indicate that this output should be processed as LaTeX code:

<<makeTable, echo=FALSE>>=
n <- 8
d <- matrix(integer(n^2), nrow=n)
ind <- combn(1:n, 2)
f <- function(r) {
 apply(ind, 2, function(ij) {
 i <- ij[1]; j <- ij[2]
 x <- r[i] == r[j]
 if(!is.na(x))
 d[j,i] <<- d[i,j] <<- d[i, j] + as.numeric(x)
 })
}

out <- apply(m[, 1:n], 1, f)
diag(d) <- "-"
@

<<echo=FALSE, results=tex>>=
require(xtable)
out <- xtable(d, caption="Number of events mole rat i is in same chamber as mole rat
j")
print(out)
@

To create a pdf file from our vignette, we click the Compile PDF toolbar button. This
calls the compilePdf function provided by RStudio (which delegates to texi2dvi from
the tools package). RStudio can also process plain LaTeX files; the process is identical.
If the file extension matches one of the common extensions for weaving (Rnw, Snw,
nw), Sweave is called first, then texidvi.

78 | Chapter 5: Programming R with RStudio

www.it-ebooks.info

http://www.it-ebooks.info/

When an Rnw file is compiled, R first produces a tex file with the R commands inter-
spersed, then LaTeX is run on this file. Doing so creates a number of files including a
pdf file containing the output (if successful), a log file listing warnings and errors (if
present), and perhaps others (e.g., an aux file). Most of these may be safely deleted, as
they will be regenerated if needed.

If successful, the pdf file can be opened in a native viewer, or one can click on its link
in the Files browser. If unsuccessful, one must peruse the console output or the log
file—currently, this information is not parsed by RStudio.

Case Study: Report Generation | 79

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
John Verzani is a longtime R user and author of Using R for Introductory Statistics (CRC,
2004) and with Michael Lawrence, Programming GUIs in R (CRC, forthcoming). He
is a Professor and Chair in the Department of Mathematics at CUNY’s College of Staten
Island.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Overview, Installation
	What is R?
	What is an IDE?
	Why RStudio?
	Using RStudio
	Desktop Version
	Server Version
	Which Workspace?
	Projects
	Which R?

	Layout of the Components
	Keyboard Shortcuts
	The Options Dialog

	Installing RStudio
	Updating RStudio

	Chapter 2. Case Study: Data Cleaning
	Using Projects
	Reading in a Data File
	Tab Key Completion
	Workspace Component
	Using the Right Class to Store Data

	Data Cleaning
	Using the Code Editor to Write R Scripts
	Using Add-On Packages
	Graphics
	Command History

	All Finished, for Now

	Chapter 3. The Console and Related Components
	Entering Commands
	Automatic Insertion of Matching Pairs
	R Script Files

	Command-Line Conveniences
	Tab Completion
	Keyboard Shortcuts
	Command History
	Searching the history stack
	History Browser

	Workspace Browser
	Editing and Viewing Objects
	Importing Data Sets

	The Help Page Viewer
	The Browser
	The Plots Browser
	Interactivity
	The manipulate Package for RStudio

	External Programs (Desktop Version)

	Chapter 4. Case Study: Creating a Package
	Creating Functions from Script Files
	A Package Skeleton
	Documenting Functions with roxygen2
	The devtools Package
	Package Data
	Package Examples
	Adding Tests
	Building and Installing the Package

	Chapter 5. Programming R with RStudio
	Source Code Editor
	Basics
	Keyboard shortcuts

	R Programming Features
	Syntax highlighting
	Bracket matching
	Automatic indenting
	Code completion and usage information
	Extract Function
	Run or source commands

	Navigation
	Jump to function
	Go to file/function

	The File Browser
	File upload

	Debugging R Code in RStudio

	Package Maintenance
	Case Study: Report Generation

