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Abstract

From the past two years in mathematical research I gradually realized I kept forgetting stuff and
therefore, I decide to write down what I did before I forget it. I hope this would save my time and memory.
All numbered problems are from Dr. de Branges’ book “Hilbert Spaces of Entire Functions”.

Problem 1

Let f(z) be a function which is analytic and has a nonnegative real part in the upper half-plane. Assume
that <f(z) has a continuous extension to the closed half-plane and that h(z) is a bounded, continuous
function of real x such that 0 6 h(z) 6 <f(x) for all real x. Show that

<f(x+ iy) >
y

π

∫ +∞

−∞

h(t)dt

(t− x)2 + y2

for y > 0.

Remark. This problem, together with problem 2, 3, 4 and some approximation argument yields Herglotz’s
representation theorem: f analytic function with nonnegative real parts on the upper half-plane iff f is a
Poisson transform of a positive regular measure µ, i.e µ ∈ M+

Π(T). Also note that I didn’t assume h(x)
is bounded—I didn’t note this condition until I finished the proof. But never mind, we’ll use this result for
unbounded h(x) in problem 2 anyway.

Proof. Let hn(x) := max(h(x), n) and gn(x) := ehn(x), then gn satisfies condition of Theorem 2, which
gives Fn(z) s.t.

log |Fn(z)| = y

π

∫
R

hn(t)dt

(t− x)2 + y2

|Fn(x)| = gn(x)

Now let φ(z) := Fn(z)

ef(z) . φ(z) is analytic in the upper half-plane, and |φ(z)| = |Fn(z)|
e<f(z) has a continuous

extension to C+ ∪ R. To use Phragmén-Lindelöf principle (Theorem 1), if suffices to check

lim inf
a→∞

1

a

∫ π

0

log+ |φ(aeiθ)| sin θdθ = 0

Since <f(z) > 0 on C+, we have

log+
∣∣Fn(z)

ef(z)

∣∣ = (log |Fn(z)| − <f(z))+

6 log |Fn(z)|

=
y

π

∫
R

hn(t)dt

(t− x)2 + y2
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Hence

1

a

∫ π

0

log+ |φ(aeiθ)| sin θdθ 6
1

a

∫ π

0

y

π

∫
R

hn(t)dt

(t− x)2 + y2
sin θdθ

6
n

π

∫ π

0

sin θ

∫
R

dt

(t− a cos θ)2 + a2 sin2 θ
dθ

=
n

π

∫ π

0

sin θ

∫
R

dt

t2 + a2 sin2 θ
dθ (let t = (a sin θ)s)

=
n

aπ

∫ π

0

∫
R

ds

s2 + 1
dθ

=
nπ

a

lim inf
a→∞

1

a

∫ π

0

log+ |φ(aeiθ)| sin θdθ 6 lim inf
a→∞

nπ

a

= 0

Now by Theorem 1 we have

|φ(z)| =
∣∣Fn(z)

ef(z)

∣∣ 6 1

<f(z) >
y

π

∫
R

hn(t)dt

(t− x)2 + y2

Now use monotone convergence theorem we get:

<f(z) >
y

π

∫
R

h(t)dt

(t− x)2 + y2

Problem 2

Let f(z) be a function which is analytic and has a nonnegative real part in the upper half-plane. If <f(z)
has a continuous extension to the closed half-plane, show that there exists a function g(z), which is analytic
and has a nonnegative real part in the upper half-plane, such that

<f(x+ iy) = <g(x+ iy) +
y

π

∫
R

<f(t)dt

(t− x)2 + y2

for y > 0. Show that <g(z) is continuous in the closed half-plane and that <g(x) = 0 for all real x.

Proof. From problem 1 (for unbounded h(x)), we know

1

π

∫
R

<f(t)dt

t2 + 1
6 <f(i)

then by Theorem 2, there exists φ(z), s.t.

<φ(z) =
y

π

∫
R

<f(t)dt

(t− x)2 + y2

<φ(x) = <f(x)

Let g(z) := f(z)− φ(z), then

<g(z) = <f(z)−<φ(z) = <f(z)− y

π

∫
R

<f(t)dt

(t− x)2 + y2
> 0

and since both <φ(z) and <f(z) have a continuous extension to closed half-plane, so is <g(z), and <g(x) =
<f(x)−<φ(x) = 0 on R.
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Problem 3

Let g(z) be a function which is analytic and has a nonnegative real part in the upper half-plane. Assume that
<g(z) is continuous in the closed half-plane, and that <g(x) = 0 for all real x. Show that <g(x+ iy) = py
where p is a constant.

Proof. By reflection principle we can extend domain of g(z) to C by g(z) := −g#(z) for z ∈ C−. In
particular, <g(z) = −<g(z̄). I’ll first show

<g(z) =
a2 − |z|2

2π

∫ π

0

4ay<g(aeiθ) sin θdθ

|aeiθ − z|2|a−iθ − a|2 (1)

for a > 0, |z| < a and y > 0. Since <g(z) is harmonic, using Poisson’s formula we have

<g(z) =
1

2π

∫ 2π

0

a2 − |z|2

|aeiθ − z|2<g(aeiθ)dθ

=
1

2π

∫ π

0

a2 − |z|2

|aeiθ − z|2<g(aeiθ)dθ

+
1

2π

∫ 2π

π

a2 − |z|2

|aeiθ − z|2<g(aeiθ)dθ

= I + II

Since <g(z) = −<g(z̄), we have

II =
1

2π

∫ 2π

π

a2 − |z|2

|aeiθ − z|2<g(aeiθ)dθ (let θ = θ − 2π, abuse of notation)

=
1

2π

∫ 0

−π

a2 − |z|2

|aeiθ − z|2<g(aeiθ)dθ (let θ = −θ)

=
1

2π

∫ π

0

a2 − |z|2

|ae−iθ − z|2<g(ae−iθ)dθ

= − 1

2π

∫ π

0

a2 − |z|2

|ae−iθ − z|2<g(aeiθ)dθ

Also note that

1

|aeiθ − z|2 −
1

|ae−iθ − a|2 =
2<(zae−iθ − zae−iθ)
|aeiθ − z|2|ae−iθ − a|2

=
4ay sin θ

|aeiθ − z|2|ae−iθ − a|2

and we get (1). Fix a > 0, let z → 0 from C+, we have

lim
z→0

<g(z)

y
=

1

2πa

∫ π

0

4y<g(aeiθ) sin θdθ

exists. Hence RHS is independent of a. Now we have

<g(z)

y
=
a2 − |z|2

2π

∫ π

0

4a<g(aeiθ) sin θdθ

|aeiθ − z|2|a−iθ − a|2

= lim
a→+∞

a2 − |z|2

2π

∫ π

0

4a<g(aeiθ) sin θdθ

|aeiθ − z|2|a−iθ − a|2

= lim
a→+∞

1

2πa

∫ π

0

4y<g(aeiθ) sin θdθ

is a constant, and we’re done.

Problem 4

In problem 2 and 3, show that

p = lim
y→∞

<f(iy)

y
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Proof. According to problem 2 and 3, it suffices to show

lim
y→∞

∫
R

<f(t)dt

t2 + y2
= 0

∀ε > 0, choose N large enough s.t. ∫ −N
−∞

<f(t)dt

t2 + 1
6
ε

3∫ ∞
N

<f(t)dt

t2 + 1
6
ε

3

For y > N2 and t ∈ [−N,N ],
t2 + 1

t2 + y
6
N2 + 1

N2 + y
6

y + 1

y2 + y
=

1

y

Hence ∫ N

−N

<f(t)dt

t2 + y
6

1

y

∫ N

−N

<f(t)dt

t2 + 1

choose even larger y we get ∫
R

<f(t)dt

t2 + y2
6 ε

and since ε is arbitrary we’re done.

Problem 5

ϕ#(z) = −ϕ(z) and

<ϕ(x+ iy) = py +
y

π

∫ +∞

−∞

dµ(t)

(t− x)2 + y2

when y > 0. Show that
ϕ(z)− ϕ(w̄)

πi(w̄ − z) =
p

π
+

1

π2

∫ +∞

−∞

dµ(t)

(t− z)(t− w̄)

when z and w are not real.

Proof. There exists some constant c, such that

ϕ(z) = c+
pz

i
+

1

πi

∫ +∞

−∞

1 + z2

1 + t2
dµ(t)

t− z +
z

π

∫ +∞

−∞

dµ(t)

1 + t2

WLOG we assume both z and w are on the upper half-plane, and by direct calculation we can get what
we want. Similarly for other z and w.

Remark. One important thing to note is, µ is regular. Any µ given by Poisson representation is regular,
just like any dB function given by Nevanlinna matrix is regular.

Problem 6

Show that a polynomial is of Pólya class if it has no zeros in the upper half-plane.

Proof. By definition of Pólya class, we only need to deal with polynomial E = z − λ with degree one,
=λ 6 0. And then it’s trivial.

Problem 7

Show that ∣∣∣∣(1− z) exp

(
z +

z2

2
+ · · ·+ zr

r

)
− 1

∣∣∣∣ 6 exp(|z|r+1)− 1

for all complex z, r = 1, 2, 3, · · · .
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Proof. Let F (z) := (1− z) exp
(
z + z2

2
+ · · ·+ zr

r

)
− 1, then F (0) = 0, and

F ′(z) = (−1 + (1− z)(1 + z + · · ·+ zr−1)) exp

(
z +

z2

2
+ · · ·+ zr

r

)
= −zr exp

(
z +

z2

2
+ · · ·+ zr

r

)
I’ll prove the following inequality first:

x+
x2

2
+ · · ·+ xr

r
6 xr+1 + log(1 + r) (2)

For x 6 1, the inequality is well known:

LHS 6 1 +

r∑
k=2

∫ k

k−1

1

k
ds < 1 +

r∑
k=2

∫ k

k−1

1

s
ds = 1 +

∫ r

1

1

s
ds = 1 + log(r) < 1 + log(1 + r)

For x > 1,

LHS − LHS at 1 =

∫ x

1

(1 + s+ · · ·+ sr−1)ds <

∫ x

1

rsrds <

∫ x

1

(r + 1)srds = RHS −RHS at 1

Now ∣∣∣∣F (z)− F (0)

∣∣∣∣ 6 ∫ |z|
0

∣∣∣∣F ′(t z|z|
)∣∣∣∣ dt

6
∫ |z|

0

tr exp

(
t+ · · ·+ tr

r

)
dt

6
∫ |z|

0

(1 + r)tr exp(tr+1)dt

= exp(|z|r+1)− 1

Problem 8

Show that
1 + |ab− 1| 6 (1 + |a− 1|)(1 + |b− 1|)

for all complex numbers a and b.

Proof. Let a0 := a− 1, b0 := b− 1, and then the inequality becomes

|a0b0 + a0 + b0| 6 |a0b0|+ |a0|+ |b0|

Problem 9

Let (zn) be a sequence of numbers such that yn > 0 for every n and

+∞∑
1

1 + yn
x2
n + y2

n

<∞

Show that the product

E(z) =

∞∏
1

(
1− z

z̄n

)
ehnz

converges uniformly on bounded sets if

hn =
xn

x2
n + y2

n

Show that the limit is an entire function of Pólya class.
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Proof. Note that if f1, · · · , fn are of Pólya class, so is
∏n

1 fi. According to problem 6, 1 − z
z̄n

is of Pólya

class. ehnz is of Pólya class as well since hn ∈ R. Let

Pr(z) =

r∏
n=1

(
1− z

z̄n

)
ehnz

then Pr is of Pólya class, ∀r ∈ N+. We’ll show Pr is uniformly convergent on bounded set so

E(z) = exp

(
i(

+∞∑
n=1

yn
x2
n + y2

n

)

)
lim

r→+∞
Pr(z)

is well-defined and entire. Now I’ll show

|Ps(z)− Pr(z)| 6 exp{
s∑

n=1

|z/z̄n|2} − exp{
r∑

n=1

|z/z̄n|2}

when r < s. First, use problem 7 and 8, let an(z) :=
(

1− z
z̄n

)
ehnz

|Ps/Pr − 1| =
∣∣∣∣ s∏
n=r+1

an − 1

∣∣∣∣
6

s∏
n=r+1

(1 + |an − 1|)− 1

6 exp(

s∑
n=r+1

|z/z̄n|2)− 1

On the other hand,

|an| 6 |an − 1|+ 1 6 exp(|z/z̄n|2)

Pr 6 |an − 1|+ 1 6 exp(

r∑
n=1

|z/z̄n|2)

Hence |Ps(z) − Pr(z)| 6 exp{
∑s
n=1 |z/z̄n|

2} − exp{
∑r
n=1 |z/z̄n|

2}, use condition
∑+∞
n=1

1
x2
n+y2

n
< +∞ we

can see Pr(z) is uniformly convergent on bounded sets, hence E(z) is uniformly convergent on bounded
sets. And obviously Pólya class is closed when taking uniform limit, so E(z) is of Pólya class.

Problem 10

Let E(z) be a polynomial of Pólya class such that E(0) = 1, and let E(z) = A(z)− iB(z) where A(z) and
B(z) are polynomials which are real for real z. Show that

log |E(z)| 6 xA′(0) + yB′(0) +
1

2
[A′(0)2 −A′′(0) +B′(0)]|z|2

for all complex z.

Proof. Since E is of Pólya class and E(0) = 1, we have E(z) =
∏n
i=1

(
1− z

z̄i

)
, where zi = xi + iyi ∈ C+.

First let’s calculate A′(0), A′′(0) and B′(0). Obviously E′(0) = −
∑n
i=1

1
z̄i

, (E#)′(0) = −
∑n
i=1

1
zi

, hence

A′(0) =
1

2
(E′(0) + (E#)′(0)) = −

n∑
i=1

xi
|zi|2

B′(0) =
i

2
(E′(0) + (E#)′(0)) =

n∑
i=1

yi
|zi|2

E′′(0) =
∑
i6=j

1

z̄iz̄j

(E#)′′(0) =
∑
i6=j

1

zizj

A′′(0) =
∑
i6=j

<(zizj)

|zizj |2
=
∑
i6=j

xixj − yiyj
|zizj |2
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Hence

A′(0)2 −A′′(0) +B′(0)2 =

n∑
i=1

1

|zi|2
+ 2

∑
i6=j

yiyj
|zizj |2

>
n∑
i=1

1

|zi|2

Then it suffices to show

log |1− z/z̄i| 6 −
xxi
|zi|2

+
yyi
|zi|2

+
|z|2

2|zi|2

i.e.

log |1− z| 6 −<z +
|z|2

2

(1− x)2 + y2 6 ex
2−2x+y2

(1− x)2 + y2 6 e(x−1)2+y2−1

Now use t 6 et−1 for t > 0 we are done.

Problem 11

If a > 0 is given, find a sequence {Pn(z)} of polynomials, which have only real zeros, such that e−az
2

=
limPn(z) uniformly on bounded sets.

Proof. Let Pn(z) :=
(

1− az2

n

)n
. Obviously Pn(z) goes to f(z) := e−az

2

pointwisely, and only have real

zeros. For the uniform convergence, note that

|Pn(z)− f(z)| 6
n∑
k=2

(
1− (1− k − 1

n
) · · · (1− 1

n
)

)
|z|k

k!
+

+∞∑
k=n+1

|z|k

k!

6
n∑
k=2

(
1− (1− k − 1

n
)k−1

)
|z|k

k!
+

+∞∑
k=n+1

|z|k

k!

6
n∑
k=2

(k − 1)2

n

|z|k

k!
+

+∞∑
k=n+1

|z|k

k!

= I + II

Now for any C > 0 and bounded set {z : |z| 6 C}, choose n big enough s.t. n! > Cn and n > C.

I 6
|z|2

n

(
1

2
1 + |z|+ |z|

2

2
+ · · ·+ |z|n−2

(n− 2)!

)
6
C2(eC + 1

2
)

n

II 6
|z|
n+ 1

+
|z|2

(n+ 1)2
+ · · ·

6
C

n+ 1− C

and now we get uniform convergence.

Remark. Your first thought might be using finite Maclaurin series to approximate e−az
2

, but it’s easy to
see they have either 1 or 0 zero on the real line. Actually, if we don’t use lim(1 + z/n)n = ez, the classical

approach would be using associated Jensen polynomials. That is, for f =
∑
ak

zk

k!
, define

gn(z) =

n∑
k=0

(
n
k

)
akz

k

Jensen proved the following statement:
f is Laguerre-Pólya iff gn only has real zeros and converges to f locally uniformly.
Laguerre-Pólya is a special case of Pólya, with |E| > |E#| on C+ substituted by |E| = |E#| on C+.
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Problem 12

If b is a given number, <b > 0, find a sequence {Pn(z)} of polynomials of Pólya class such that e−ibz =
limPn(z) uniformly on bounded sets.

Proof. Let Pn(z) :=
(
1− ibz

n

)n
, and the only root is z0 = −in

b
.

=z0 = −<n
b

= − n

|b|2<b 6 0

the rest follows from the same argument as problem 11.

Problem 13

If E(z) is a given entire function of Pólya class, show that there exists a sequence {Pn(z)} of polynomials
of Pólya class such that E(z) = limPn(z) uniformly on bounded sets.

Remark. Now we have: f Pólya iff f can be approximated locally uniformly by Pólya polynomials.

Proof. Use Theorem 7 to get factorization of E(z), and use results from problem 9, 11, 12 we’re done.

Problem 14

Let E(z) be an entire function which has no zeros for y > 0, such that |E(x− iy)| 6 |E(x+ iy)| for y > 0.
Show that

|E(x− iy)| < |E(x+ iy)|
for y > 0 unless E(z) and Ē(z̄) are linearly dependent.

Proof. Apply maximum principle to E#

E
on C+.

Remark. This theorem says E is degenerate iff E and E# are linearly dependent.

Problem 15

If E(z) is an entire function of Pólya class, show that |E(x+ iy)| is an increasing function of y > 0 for each
fixed x unless E(z) = E(0)ehz for some real number h.

Proof. Proof by contradiction. By Theorem 7 we have

E(z) = A(z)B(z)C(z)D(z)

where A(z) = E(r)(0) z
r

r!
, B(z) = e−az

2

, C(z) = e−ibz and D(z) =
∏

(1− z
z̄n

)ehnz. For each fixed x, A(z)
is not strictly increasing only if A(z) ≡ E(0), B(z): a = 0, C(z): <b = 0, D(z) : D(z) ≡ 1. Hence E is not
strictly increasing unless

E(z) = E(0)eibz = E(0)ehz

for some real h since b is purely imaginary.

Problem 16

Let E(z) be an entire function of Pólya class such that |E(x − iy)| < |E(x + iy)| for y > 0. Show that
E(z) = A(z)− iB(z) where A(z) and B(z) are entire functions of Pólya class which are real for real z.

Proof. Let A = E+E#

2
, B = E#−E

2i
. Obviously A is real entire. Since |E(z)| > |E#(z)| on C+, A(z) 6= 0

on C+. It suffices to show for fixed x, |A(x + iy)| is nondecreasing for y > 0. From problem 13 we know
there exists Pólya polynomials {Pn(z)} s.t. Pn goes to E locally uniformly. Let Pn = An − iBn s.t. An

and Bn are real entire, then An =
Pn+P#

n
2

is a polynomial as well. If An(z) = 0 for some z ∈ C+, then

|Pn(z)| = |P#
n (z)|, all roots of Pn lie on R. Since |E(z)| > |E#(z)|, ∀z ∈ C+, we can choose a subsequence

of {Pn} s.t. Pn has at least one non-real root. Now An has no zeros in the upper half-plane, by problem 6
An is of Pólya class. Since An goes to A locally uniformly, A is of Pólya class. The same argument applies
to B.

Remark. Actually, the converse is true: E is of Pólya class iff A, B are of Laguerre-Pólya class.
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Problem 17

Let E(z) be an entire function of Pólya class which is not a constant. Show that E′(z) is of Pólya class.

Proof. Let nontrivial Pólya polynomials {Pn} go to E locally uniformly, then P ′n(z) goes to E′(z) locally
uniformly. It suffices to show P ′n(z) is of Pólya class, i.e. P ′n(z) has no zero on C+. This is obvious because

<
(
i
P ′n(z)

Pn(z)

)
=

∂

∂y
log |Pn(z)| > 0

Problem 18

Show that cos z = 1
2
(eiz + e−iz) is of Pólya class. Determine the factorization given by Theorem 7. By

computing the second derivative of cos z at the origin, show that

∞∑
n=1

1

(2n+ 1)2
=
π2

8

Proof. Since e−iz is of Pólya class, by problem 16, cos z is of Pólya class. By Theorem 7,

cos z = e−az
2

e−ibz
+∞∏

n=−∞

(
1− z

nπ + π
2

)
e

z
nπ+π

2

Since cos′(0) = − sin(0) = 0, by simple calculation we can get b = 0. Since cos z is of genus 1, a = 0. So
we get the canonical factorization:

cos z =

+∞∏
n=−∞

(
1− z

nπ + π
2

)
e

z
nπ+π

2

Taking derivatives we get

− sin z =

+∞∑
n=−∞

− z

(nπ + π
2

)2
e

z
nπ+π

2

∏
m 6=n

(
1− z

mπ + π
2

)
e

z
mπ+π

2

:= zG(z)

− cos z = G(z) + zG′(z)

cos 0 = −G(0) =

+∞∑
n=−∞

1

(nπ + π
2

)2
=

+∞∑
n=0

8

π2

1

(2n+ 1)2

Problem 20

Show that a function F (z), which is analytic in the upper half-plane, is of bounded type in the upper
half-plane if its real part is nonnegative in the half-plane.

Proof. Trivial. Consider
F

F + 1

/
1

F + 1

both numerator and denominator are analytic and bounded so by definition F is of bounded type.

Problem 21

Show that the sum and product of two functions which are of bounded type in the upper half-plane are
functions of bounded type in the half-plane.

Proof. Trivial. By definition.
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Problem 22

Show that a polynomial is a function of bounded type in the upper half-plane.

Proof. Use problem 21 to reduce to P (z) = z − w. If =w < 0, then

P (z) = 1

/
1

z − w

is of bounded type in the upper half-plane. Otherwise use P (z) = z−w
z−w̄

/
1

z−w̄ .

Problem 23

Let {zn} be a sequence of numbers such that yn > 0 for every n and∑ yn
x2
n + y2

n

<∞

Show that the Blaschke product

B(z) =

∞∏
1

1− z/zn
1− z/z̄n

converges uniformly on every bounded set which lies at a positive distance from the numbers {z̄n}. Show
that B(z) is analytic and bounded by 1 in the upper half-plane and that B(z)B#(z) = 1.

Remark. This problem gives condition of zeros of Blaschke product, and shows it’s entire and bounded by
1 on C+. And the proof is very similar to problem 9 so I’ll skip some details.

Proof. Let an(z) := 1−z/zn
1−z/z̄n , then

1 + |an − 1| = 1 +

∣∣∣∣ 1
z̄n
− 1

zn
1
z
− 1

z̄n

∣∣∣∣
6 1 +

1

ρ(z)

2yn
|zn|2

6 exp

(
2

ρ(z)

yn
x2
n + y2

n

)
Now let Br(z) :=

∏r
n=1 an(z)

|Bs(z)/Br(z)− 1| 6 exp

((
s∑

n=r+1

yn
x2
n + y2

n

)
2

ρ(z)

)
− 1

|Br(z)| 6 1 + |Br(z)− 1|

6 exp

((
r∑

n=1

yn
x2
n + y2

n

)
2

ρ(z)

)

|Bs(z)−Br(z)| 6 exp

((
s∑

n=1

yn
x2
n + y2

n

)
2

ρ(z)

)
− exp

((
r∑

n=1

yn
x2
n + y2

n

)
2

ρ(z)

)

similar to problem 9, B(z) is uniformly convergent on every bounded set where inf ρ(z) > 0. B(z)B#(z) = 1
follows from Br(z)B

#
r (z) = 1.

Problem 24

Let F (z) be a function which is analytic and of bounded type in the upper half-plane. Show that there
exists a function Q(z), which is analytic and bounded by 1 and which has no zeros in the upper half-plane,
such that P (z) = Q(z)F (z) is bounded by 1 in the half-plane.

Remark. Now for any F ∈ N (C+), F = P
Q

, where |P |, |Q| 6 1 and Q(z) 6= 0 on C+.

10



Proof. By Theorem 8,

F (z) = G(z)
∏ 1− z

zn

1− z
z̄n

where G(z) is of bounded type and has no zeros in the half-plane. By definition, G(z) = P (z)
Q(z)

where

|P |, |Q| 6 1 on C+. Suppose {wn} are zeros of Q on C+, note that they are also zeros of P . By similar
argument of proof to Theorem 8,

Q(z) =

(∏ 1− z
wn

1− z
w̄n

)
Q̃(z)

P (z) =

(∏ 1− z
wn

1− z
w̄n

)
P̃ (z)

and |P̃ |, |Q̃| 6 1 and Q̃ doesn’t have any zero on C+. Now

F (z) =
P̃

Q̃

∏ 1− z
zn

1− z
z̄n

Q̃(z)F (z) = P̃ (z)
∏ 1− z

zn

1− z
z̄n

and since |Q̃(z)| 6 1, |P̃ (z)| 6 1,
∣∣∏ 1− z

zn
1− z

z̄n

∣∣ 6 1 we’re done.

Problem 25

Show that

y =
1− |z|2

2π

∫ π

0

4a sin2 θdθ

|eiθ − z|2|e−iθ − z|2

for |z| < 1 and y > 0.

Proof. See the proof to problem 3, with g(z) = −iz, a = 1.

Problem 28

Let F (z) be a function which is analytic and of bounded type in the upper half-plane. Show that the mean
type of F (z − a) is equal to the mean type of F (z) for every real number a.

Proof. By Theorem 9 (Nevanlinna’s factorization),

F (z) = B(z)e−ihzeG(z)

where

<G(x+ iy) =
y

π

∫ +∞

−∞

dµ(t)

(t− x)2 + y2

This factorization is unique (See Theorem 5.5, Garnett’s book). Substitute z with z − a we get

F (z − a) = B(z − a)e−ihzeG(z)+iha

By definition of Blaschke product B(z) =
∏+∞
n=1

1− z
zn

1− z
z̄n

we can see B(z − a) is a Blaschke product as well.

G̃ := G+ iha satisfy the same condition as G so F (z) and F (z − a) have same mean types.

Problem 29

Let F (z) and G(z) be functions which are analytic and of bounded type in the upper half-plane. Show
that the mean type of F (z) + G(z) does not exceed the maximum of the mean types of F (z) and G(z).
Show that the mean type of F (z)G(z) is the sum of the mean types of F (z) and G(z).

Proof. The second part is trivial by Theorem 9 (Nevanlinna’s factorization). The first part is easy using
the fact |F (iy)| 6 ey(p1+ε), |G(iy)| 6 ey(p2+ε) for ε > 0 and large y. So |F (iy) +G(iy)| 6 2ey(max(p1,p2)+ε),
and we’re done.
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Problem 30

Show that a function which is analytic and has a non-negative real part in the upper half-plane has zero
mean type in the half-plane if it does not vanish identically.

Proof. Let g :=
√
f , then <g > 0 and <g 6 |g| 6

√
2<g. By Theorem 4 (Poisson’s representation) we

know:

<g(x+ iy) = py +
y

π

∫ +∞

−∞

dµ(t)

(t− x)2 + y2

g(x+ iy) = −ipz + Sµ+ ib

where p, b > 0, and

Sµ =
1

πi

∫ +∞

−∞

(
1

t− z −
t

1 + t2

)
dµ(t)

is the Schwarz-Herglotz transform of µ ∈ M+∏(R). Actually, if we let p be the point mass at infinity, then
the Schwarz-Herglotz transform of µ̂ := µ⊕ p is:

Sµ̂ = −ipz + Sµ

Now use Theorem 10, i.e. mean type h = lim supy→+∞
log |g(iy)|

y
. WLOG we can assume p = b = 0,∫ +∞

−∞
dµ(t)

1+t2
= 1, and by Jensen’s inequality we have:

exp

(∫ +∞

−∞
log

(
1 + t2

y2 + t2

)
dµ(t)

1 + t2

)
6
∫ +∞

−∞

1 + t2

y2 + t2
dµ(t)

1 + t2∫ +∞

−∞
log

(
1 + t2

y2 + t2

)
dµ(t)

1 + t2
6 log

(∫ +∞

−∞

1 + t2

y2 + t2
dµ(t)

1 + t2

)
= log

(∫ +∞

−∞

dµ(t)

y2 + t2

)
Now

log |g(iy)|
y

>
log<g
y

=
log y − log π

y
+

1

y
log

(∫ +∞

−∞

dµ(t)

y2 + t2

)
>

log y − log π

y
+

∫ +∞

−∞

1

y
log

(
1 + t2

y2 + t2

)
dµ(t)

1 + t2

>
log y − log π

y
−
∫ +∞

−∞

log y2

y

dµ(t)

1 + t2

→ 0

log |g(iy)|
y

6
log 2

2y
+

log<g
y

6
log 2 + 2 log y − 2 log π

2y
+

1

y
log

(∫ +∞

−∞

dµ(t)

y2 + t2

)
6 0

Hence g has mean type 0. Note that log |f(iy)| = 2 log |g(iy)|, hence f has mean type 0 as well, and
f ∈ N+.

Remark. Another elegant approach for D, but I’m not sure if it will work for C+ since I don’t know the
connection between Hp(C+) and Hp(D) when p < 1. Anyway, if we only deal with D, <f > 0 implies f is
outer and f ∈ Hp, ∀0 < p < 1. This is proved by V.Smirnov in 1928 and the proof is quite straightforward,
using mean value property of harmonic function <fp and |f |p 6 cp<fp. For more details see Nikolski’s book,
Theorem 4.2.2. Now use the fact Hp = Lp ∩ N+ we know f ∈ N+, and N+ = {f ∈ N ,mean type 6 0}.
Apply the same argument to 1/f and we’re done.

Problem 31

Show that a nonzero polynomial has zero mean type in the upper half-plane.

Proof. Let P (z) = (z − z1) · · · (z − zn), then use formula h = lim supy→+∞
log |P (iy)|

y
.
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Problem 33

If a function F (z) is analytic and of bounded type in the upper half-plane, if it has no zeros in the half-plane,
and if logF (z) is defined continuously in the half-plane, show that

|z − z̄|| logF (z)|
|z + i|2

is bounded in the half-plane.

Proof. Since F has no zeros in C+, by Theorem 9,

F (z) = e−ihzeU(z)−V (z)

where

<U(x+ iy) =
y

π

∫
R

dσ(t)

(t− x)2 + y2

<V (x+ iy) =
y

π

∫
R

dν(t)

(t− x)2 + y2

and σ, ν ∈M+
Π(R). Obviously, it suffices to prove

|z − z̄||U(z)|
|z + i|2

is bounded in the half-plane.

|U(z)| =
∣∣ib+

1

πi

∫
R

1 + tz

t− z
dσ

1 + t2
∣∣

6 |b|+ 1

π

∫
R

|1 + tz|
|t− z|

dσ

1 + t2

and we only need to deal with the second term. I’ll use the following inequality:∣∣∣∣ t− it− z

∣∣∣∣ 6 |z − i|+ |z + i|
|z − z̄|

and the proof is quite straightforward:

|t− i||z − z̄| = |tz − tz̄ − iz + iz̄|

6 |(tz + iz̄ − |z|2 − it)− (tz̄ + iz − |z|2 − it)|
6 |(t− z̄)(z − i)− (t− z)(z̄ − i)|
= |t− z||z − i|+ |t− z||z + i|
= |t− z|(|z − i|+ |z + i|)

Now

|z − z̄|
|z + i|2

∫
R

|1 + tz|
|t− z|

dσ

1 + t2
6
∫
R

|1 + tz|
|t− i||z + i|

|z − i|+ |z + i|
|z + i|

dσ

1 + t2

6
∫
R

|1 + tz|
|t− i||z + i|

2dσ

1 + t2

It suffices to show |1+tz|
|t−i||z+i| is bounded:

|1 + tz|
|t− i||z + i| 6

|(t− i)(z + i)− it+ iz|
|t− i||z + i|

6 1 +
|t|

|t− i||z + i| +
|z|

|t− i||z + i|
6 3

Remark. The proof could be more straightforward. de Branges gave the inequality∣∣∣∣ t− it− z

∣∣∣∣ 6 |z − i|+ |z + i|
|z − z̄|

in hint and that’s how the proof was made—I’ll also use this to prove Krěın’s theorem (problem 37). The

inequality |z−z̄|| logF (z)|
|z+i|2 gives a nice growth estimate for F ∈ N (C+).
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Problem 34

Let E(z) be an entire function which has no zeros in the upper half-plane and which satisfies the inequality
|E(x− iy)| 6 |E(x+ iy)| for y > 0. Show that E(z) is of Pólya class if there exists an entire function F (z)

of Pólya class such that E(z)
F (z)

is of bounded type in the upper half-plane.

Remark. Let F ≡ 1 we get an important corollary: If E ∈ N (C+) is zero free on C+ and is dB, then E
is of Pólya class. And it seems like I didn’t follow de Branges’ idea—I used Krěın’s theorem (problem 37),
which was proved later. But the proof is independent of this result. This original proof requires F to be
zero free, which is a strong assumption. For complete proof please refer to Michael Kaltenböck and Harald
Woracek’s paper “Pólya class theory for Hermite-Biehler functions of finite order”, which is more general
and applies to generalized Pólya class with k-th order. The main technique is Phragmén-Lindelöf Principle
and Theorem 9, 10, 14.

Proof. One direction is obvious: Let F = E. Now suppose we have F of Pólya class s.t. E
F
∈ N (C+). First

I’ll show E
F

is of exponential type. By Krěın’s theorem, it suffices to show

E

F
,
E#

F#
∈ N (C+)

The first one is given, and
E#

F#
=
E#

E

E

F

/
F#

F
∈ N (C+)

so E
F

is of exponential type, hence it has genus 0 or 1. Let’s suppose genus is 1 first. By canonical
factorization we have

E

F
= eaz+bzr

∏(
1− z

z̄n

)
e
z
z̄n

and
∑

1
|z̄n|2

<∞ since it’s of genus 1,
∑ yn

x2
n+y2

n
<∞ since it’s of bounded type. By Theorem 7,

F (z) = F (s)(0)
zs

s!
e−a1z

2

e−ib1z
∏(

1− z

w̄n

)
ehnz

where hn = =wn
|wn|2

. Put the two formulas together and take (r + s)-th derivative we get

F (s)(0)eb

s!
(r + s)! = E(r+s)(0)

and if we combine zeros and label them {z̄n}

E(z) = E(r+s)(0)
zr+s

(r + s)!
e−a1z

2

e−ib1zeaz
∏(

1− z

z̄n

)
ehnz

|E#(z)|
|E(z)| = e2i(<b1−=a)z

∏ 1− z
z̄n

1− z
z̄n

where hn = yn
x2
n+y2

n
. Since |E#(iy)| 6 |E(iy)|, we get

e−2(<b1−=a)y
∏∣∣∣∣1− iy

z̄n

1− iy
z̄n

∣∣∣∣ 6 1

−2(<b1 −=a)y + log
∏∣∣∣∣1− iy

z̄n

1− iy
z̄n

∣∣∣∣ 6 0

From proof to Theorem 10 we get

lim
y→∞

log
∏∣∣∣∣ 1− iy

z̄n

1− iy
z̄n

∣∣∣∣
y

= 0

so we can conclude =a 6 <b1. Now the representation for E(z) is of the form of Theorem 7, hence it’s of
Pólya class. The case genus is 0 can be treated similarly.
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Problem 35

If E(z) is an entire function of Pólya class such that E#(z) = E(−z), show that

|E(z)| 6 |E(i|z|)|

for all complex z.

Proof. By Theorem 7 we have

E(z) = E(r)(0)
zr

r!
e−az

2

e−ibz
∏(

1− z

z̄n

)
ehnz

Since E#(z) = E(−z), E(z̄n) = 0 implies E(−z̄n), hence all roots come in pair, with only possible exception

on the imaginary axis. Let G(z) :=
∏(

1− z
z̄n

)
ehnz, then

G(z) =
∏(

1 +
z

iyn

)∏(
1− z

z̄n

)(
1 +

z

zn

)
=
∏(

1 +
z

iyn

)∏ x2
n + (yn − iz)2

|zn|2

6 G(i|z|)

And note that G#(z) = G(−z), so is e−az
2

, let H(z) = e−ibz, then

H#(z) = H(−z)

eib̄z = eibz

b̄ = b

Hence b is real and |H(z)| = eby 6 eb|z| = |H(i|z|)|. Finally,

|e−az
2

| = ea(y2−x2) 6 ea|z|
2

we now conclude |E(z)| 6 |E(i|z|)|.

Problem 37

Prove Krěın’s theorem that an entire function F (z) is of exponential type if it is of bounded type in the
upper half-plane and if F#(z) is of bounded type in the upper half-plane. Showt that the exponential type
of F (z) is the maximum of the mean types of F (z) and F#(z) in the upper half-plane.

Remark. Krěın’s theorem states

Cart = N (C+) ∩N (C−) = Exp ∩ {f : log+ |f | ∈ L1
Π}

Proof. Fix any z0, since log |F | is subharmonic, we have

log |F (z0)| .
x

B(z0,1)

log+ |F |dxdy

. (1 + |z0|2)
x

B(z0,1)

log+ |F |
1 + x2

dxdy

. C(1 + |z0|2)

so |F | . eA|z|
2

for A, B. Now I’ll show |F (z)| . eC|z| in any fixed Stolz angle, i.e. {z = x + iy : |z| >
1, y > 0, |x|

y
6 a} for some a > 0. Use Nevanlinna’s factorization (Theorem 9) we can get

|F (z)| 6 ehye
y
π

∫
R

d|µ|
(t−x)2+y2
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By the inequality we proved in problem 33,∫
R

d|µ|
(t− x)2 + y2

6
∫
R

(|z − i|+ |z + i|)2

(t2 + 1)4y2
d|µ|

6
∫
R

|z − i|2 + |z + i|2

(t2 + 1)2y2
d|µ|

6
∫
R

x2 + y2 + 1

(t2 + 1)y2
d|µ|

6
∫
R
(1 + a2 +

1

y
)
d|µ|
t2 + 1

6
∫
R
(1 + a2 +

1√
1 + a2

)
d|µ|
t2 + 1

Hence |F (z)| . eC|z| on any Stolz angle and it’s reflection over R. We can conclude that |F (z)| 6 eC1|z|

on {z = x + iy : y > 1√
1+a2

, x = ay} and |F (z)| 6 eC2|z| on {z = x + iy : y < − 1√
1+a2

, x = ay}. Let

C = max(C1, C2)
√

a2

1+a2 , then |F (z)| . eC|x| on {z : |y| > 1√
1+a2

, x = a|y|}. Since F is bounded in

the unit disk, we can choose C even larger s.t. |F | . eC|x| on {z : x = a|y|}. Now we want to show

|F (z)| . eC|z| in sector {z : x 6 a|y|}. Let a = 1
tan π

6
and G(z) = F (z

1
3 )e−Cz

1
3 , then G is bounded on the

imaginary axis, and for z in {z : <z > 0},

|G(z)| . eC|z|
2
3

By Phragmén-Lindelöf principle |G| is bounded in {z : <z > 0}, and hence |F | is bounded in the sector.
Apply similar argument to the other sector we’re done. Still need to show max of mean types is the
exponential type.

Problem 38

Show that an entire function of zero exponential type is bounded in the complex plane, and hence is a
constant, if it is bounded on the real axis,

Remark. Similarly, we can change the condition into “bounded on imaginary axis”.

Proof. Trivial. By Phragmen-Lindelof principle (version of Theorem 1).

Problem 39

Show that an entire function F (z) is a constant if F (z) and F#(z) are of bounded type in the upper
half-plane and if F (z) is bounded on the imaginary axis.

Proof. By Krěın’s theorem, F is of exponential type. Moreover, since F is bounded on the imaginary axis,
the mean type for F and F# on the upper half-plane is 0, and then F is of zero exponential type. By
problem 38 F is a constant.

Problem 40

If B(E) is a given space, show that

K(w,w) =
B(w)Ā(w)−A(w)B̄(w)

π(w − w̄)

is a continuous function of w.

Proof. Trivial for non-real w. For real w, taking the limit and since A,B,A#,B# are differentiable we’re
done.
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Problem 44

If B(E) is a given space, show that E(z) = S(z)E0(z) where B(E0) exists, E0(z) has no real zeros, and S(z)
is an entire function which is real for real z. Show that F (z)→ S(z)F (z) is an isometric transformation of
B(E0) onto B(E).

Proof. It suffices to prove two spaces are equal as sets, and the isometric part follows trivially. Use the
following definition of dB space:

B(E0) = { F
E0
∈ H2(C+),

F#

E0
∈ H2(C+)}

we can see F (z)→ S(z)F (z) maps B(E0) into B(E). For the onto part, take F ∈ B(E), only need to show
F
S

is entire. If S(z) = 0 for some complex z, then E(z) = 0, F
E
, F

#

E
∈ H2(C+) implies F has a zero with

at least same order as S. Hence F
S

is entire, and the map is onto.

Remark. This can be used to get rid of real zeros of dB function.

Problem 45

Let B(E) be a given space. If w is a nonreal number, show that F (z)
z−w belongs to B(E) whenever F belongs to

B(E) and vanishes at w. Show that the same conclusion holds for a real number w if and only if E(w) 6= 0.

Remark. This implies for any nonreal w, there exists F ∈ B(E) s.t. F (w) 6= 0, otherwise B(E) doesn’t
contain any nonzero element, i.e. B(E) = {0}.

Proof. If w /∈ R, F
z−w is entire and check the definition of dB space we know F

z−w ∈ B(E).

Now assume E(w) 6= 0 for some real w, obviously F̃ := F
z−w is still entire. And it’s easy to check

F̃
E
, F̃

#

E
∈ N+, so it suffices to show F̃

E
∈ L2(R). Now choose ε > 0 s.t. |E| > δ > 0 on (w − ε, w + ε), then∫

R

|F |2

|t− w|2|E|2 dt =

∫ w−ε

−∞
+

∫ w+ε

w−ε
+

∫ +∞

w+ε

|F |2

|t− w|2|E|2 dt

6
2

ε2
‖F‖E +

C

δ2

<∞

On the other hand, let E(w) = 0. Use result from problem 44, WLOG we assume E′(w) 6= 0. Suppose
the statement is true. WLOG we can assume F ′(w) 6= 0, otherwise we can keep taking derivative until
F (n)(w) 6= 0. Anyway, we have

+∞ >

∫ w+ε

w−ε

|F (t)|2

|t− w|2

∼
∫ w+ε

w−ε

1

|t− w|2 dt

= +∞

A contradiction.

Problem 46

If B(E) is a given space, show that there is at most one real number α, module π, such that eiαE(z) −
e−iαE#(z) belongs to B(E).

Remark. eiαE(z)− e−iαE#(z) = uA(z) + vB(z), where ūv = uv̄.

Proof. Trivial since E /∈ B(E).
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Problem 47

Let f(z) be a function which is analytic in the complex plane except for isolated singularities at points
(tn) on the real axis. Suppose that f#(z) = f(z) and that <(−if(z)) > 0 for f > 0. Show that there exist
positive numbers pn and a nonnegative number p such that

f(z)− f̄(w)

z − w̄ = p+
∑ pn

(tn − z)(tn − w̄)

when z and w are not real. Show that

pn = lim
z→tn

(tn − z)f(z)

for every n.

Proof. I tried residue theorem first, but then I realized the most difficult part is to show the sum of partial
fractions converges. My second approach is to use result from problem 5 directly.
Let ϕ(z) = −if(z), then ϕ#(z) = −ϕ(z) and ϕ(z) has nonnegative real parts on the upper half-plane,
hence by problem 5 we can get

f(z)− f(w̄)

z − w̄ = p+
1

π

∫ +∞

−∞

dµ(t)

(t− z)(t− w̄)

by construction, µ(x) = limε→0 µε(x), ∀x. Moreover,

µε(b)− µε(a) = lim
y↘0

∫ b

a

<ϕ(x+ i(y + ε))dx

Now for any interval [a, b] which doesn’t contain singularities of f , we can see that µ(b) = µ(a), hence µ
only has point masses. Suppose µ(tn) = pn, then

f(z)− f(w̄)

z − w̄ = p+
∑ pn

(tn − z)(tn − w̄)

multiplying both sides by (z − tn) and let z go to tn we can see

pn = lim
z→tn

(tn − z)f(z), ∀n

Problem 48

If E(z) is a given entire function which satisfies the inequality |E(x − iy)| < |E(x + iy)| for y > 0, show
that there exists a continuous function ϕ(x) of real x such that E(x)eiϕ(x) is real for all values of x. If ϕ(x)
is any such function, show that

ϕ′(x) = π
K(x, x)

|E(x)|2 > 0

for all real x. Such a function is said to be a phase function associated with E(z).

Proof. We know between any two consecutive zeros of A, ϕ − arctan B
A
≡ C for some C ∈ R. By taking

derivative we know

ϕ′ =
B′ −BA′()
A2 +B2

=
B′A−BA′

|E|2

On the other hand,

Kx(x) = lim
z→x

A(x)B(z)−A(z)B(x)

π(z − x)
=
B′(x)A(x)−B(x)A′(x)

π

hence ϕ′(x) = πKx(x)

|E(x)|2 > 0 for x ∈ R\Z(A). At zeros of A, since the left derivative is equal to the right

derivative, both of which are positive, we know ϕ is differentiable at x and ϕ′(x) = πKx(x)

|E(x)|2 > 0.

Remark. In the proof we show, if E is non-degenerate dB, then K(x,x)

|E(x)|2 is strictly positive. This proof can

be simplified if we use the fact K(w, z) is entire, and K(w,w) = 0 for some w ∈ C implies K(w, z) has
norm 0 in B(E), hence it’s 0 almost everywhere on R, hence constantly 0 on C, and A(z) and B(z) must
be linearly dependent, and then E is degenerate, a contradiction.
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Problem 55

Let F (z) and G(z) be polynomials which are real for real z and have only real simple zeros. Assume that
there exists a continuous increasing function ψ(x) of real x such that the zeros of G(z) are the points x
where ψ(x) ≡ 0 modulo π and the zeros of F (z) are the points x where ψ(x) ≡ 1

2
π modulo π. Show that

G′(x)F (x)− F ′(x)G(x) is of constant sign on the set where ψ(x) ≡ 0 modulo 1
2
π.

Proof. Let a, b be two consecutive points where ψ(a) ≡ ψ(b) ≡ 0 modulo 1
2
π. WLOG assume ψ(a) ≡ 0

modulo π and ψ(b) ≡ π
2

modulo π, and a < b. Then G(a) = 0 and F (b) = 0. Note that G(b) 6= 0 and
G′(a)
G(b)

> 0, F (a) 6= 0 and F ′(a)
F (a)

< 0. Multiplying by F (a)G(b) we get both G′(a)F (a) and −F ′(a)G(b) are
positive or negative.

Problem 56

If the degree of G(z) does not exceed the degree of F (z) in Problem 55, show there exists a real number h
such that

G(z)

F (z)
= h+

∑
F (t)=0

G(t)

F ′(t)(z − t)

Proof. Let f(z) := G(z)
F (z)

−
∑
F (t)=0

G(t)
F ′(t)(z−t) , then clearly f is an entire function. Let |z| go to +∞, if

degG < degF , then obviously f(z)→ 0. If degG = degF = n, let an, bn be the leading coefficients, resp.

Then G
F

goes to an
bn

. For each t s.t. F (t) = 0, G(t)
F ′(t)(z−t) ∼

an
nbn

. Since F has n zeros (on the real line, by

assumption), then we’re done.

Problem 57

If F (z) and G(z) are not both constants in Problem 55, show that either F (z) − iG(z) or F (z) + iG(z)
satisfies the inequality |E(x− iy)| < |E(x+ iy)| for y > 0.

Proof. WLOG we assume the degree of G(z) does not exceed the degree of F (z) in Problem 55. By Problem
56, we have

G(z)

F (z)
= h+

∑
F (t)=0

G(t)

F ′(t)(z − t)

where h is a real number. Since G(t)
F ′(t) has constant signs on the set {t : F (t) = 0}, then =G(z)

F (z)
> 0 or

< 0 for z ∈ C+, hence F (z) − iG(z) or F (z) + iG(z) satisfies the inequality |E(x − iy)| < |E(x + iy)| for
y > 0.

Problem 58

If s and t are positive numbers such that s < t, show that∣∣∣∣1− z
t

1− z
s

− 1

∣∣∣∣ 6 exp

[
1
s
− 1

t∣∣ 1
s
− 1

z

∣∣
]
− 1

Proof.

LHS =

∣∣∣∣ zs − z
t

1− z
s

∣∣∣∣ =

∣∣∣∣ 1
s
− 1

t
1
z
− 1

s

∣∣∣∣
then use the inequality x ≤ ex − 1 for x > 0.

Problem 59

Let (sn) and (tn) be unbounded, increasing sequences of positive numbers such that

sn < tn < sn+1 < tn+1

for every n. Show that
∞∏
n=1

1− z
tn

1− z
sn

converges if z 6= sn for every n. If ρ(z) = min
∣∣∣ 1− z

tn
1− z

sn

∣∣∣, show that the convergence is uniform in any set on

which ρ(z) is bounded away from zero.
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Proof. This follows directly from Problem 58 and Leibniz Test for alternating series.

Problem 60

Let ψ(x) be a continuous, increasing function of real x which has 0 as a value. Show that there exists a
function f(z) with these properties:

(1) The function is analytic in the complex plane except for isolated singularities on the real axis, f#(z) =
f(z), and <− if(z) > 0 for y > 0.

(2) The zeros of f(z) are real and simple and are the points x where ψ(x) ≡ 0 modulo π.

(3) The zeros of 1/f(z) are real and simple and are the points x where ψ(x) ≡ π
2

modulo π.

Proof. Let {sn}+∞n=−∞, {tn}+∞n=−∞ be the points where ψ(x) ≡ 0 modulo π, ψ(x) ≡ π
2

modulo π resp and
satisfies sn < tn < sn+1 < tn+1 ∀n. First we assume there’re infinitely many such points. Let

fn :=

n∏
k=−n

z − tk
z − sk

Since sk < tk, by plotting z− tk, z− sk as vectors it’s easy to see the argument of fn is less than π, and is
increasing w.r.t. n. Hence =fn(z) > 0 for z ∈ C+, and the convergence is guaranteed by Problem 59 (with
similar result for negative sk and tk), then we’re done. The case where ψ has a largest/smallest sk/tk can
be treated similarly.

Remark. This problem, together with Problem 59, gives one direction of the famous Hermite-Biehler
criterion (See “Distribution of Zeros of Entire Functions” by B.Ja.Levin, page 308, Theorem 1) for real
entire function F (z) s.t. =F (z) > 0 for z ∈ C+. The other direction can be proved by modifying the proof
to Problem 62.

Problem 61

In Problem 60 show that there exists an entire function A(z), which is real for real z and which has only
real simple zeros, and whose zeros are the points x where ψ(x) ≡ π

2
modulo π. Show that B(z) = A(z)f(z)

is an entire function which is real for real z. Show that E(z) = A(z) − iB(z) is an entire function which
has no real zeros and which satisfies the inequality |E(x − iy)| < E(x + iy) for y > 0. Show that there
exists a phase function φ(x) associated with E(z) such that φ(x) = ψ(x) whenever φ(x) ≡ 0 modulo π

2
or

ψ(x) ≡ 0 modulo π
2

.

Proof. Using Weierstrass canonical product we can get such A(z) (we’ll refine this in Problem 64), and
B(z) := A(z)f(z) is a well-defined entire function since all f ’s poles are simple. Since =B

A
= =f(z) > 0 on

C+, we can conclude E := A − iB is a dB function. And the rest is just trivial: φ(x) = 0 iff E is real iff
B = 0 iff f = 0 iff φ = 0 (modulo π).

Problem 62

Let F (z) and G(z) be entire functions which are real for real z and which have only real simple zeros.
Assume that there exists a continuous, increasing function ψ(x) of real x such that the zeros of G(z) are
the points x where ψ(x) ≡ 0 modulo π and the zeros of F (z) are the points x where ψ(x) ≡ π

2
modulo π.

If F (z) or G(z) has a zero and if G(z)/F (z) is of bounded type for y > 0, show that either F (z) − iG(z)
or F (z) + iG(z) satisfies the inequality |E(x− iy)| < |E(x+ iy)| for y > 0.

Proof. By Problem 60 we know there exists a real meromorphic f s.t. f has the same zeros and poles with
G
F

, and since all zeros/poles are simple, it’s easy to see Φ := 1
f
G
F

is real entire, and is of bounded type in
C+. By Problem 34, Φ is of Pólya class. And since it’s zero-free, by factorization of function of Pólya class

(Lemma 2 in Section 7), we have Φ(z) = ce−az
2

e−ibz, where c is a constant, a > 0, <b > 0. Since Φ is of
bounded type (i.e. the mean type is finite), then a = 0. Since Φ# = Φ, c is real and b is purely imaginary.
And since functions in N (C+) satisfy log+ |Φ| ∈ L1

Π (Krěı’s Theorem), b = 0. Hence =G
F
> 0 or < 0 on

C+, depending on the sign of c. Hence F − iG or F + iG is dB. In particular it’s non-degenerate.

Remark. Basically this problem says given real entire F and G with interlacing zeros, if G
F
∈ N (C+),

then one of F ± iG is non-degenerate dB.
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Problem 63

Let E(z) be an entire function of Pólya class which has no real zeros and which satisfies the inequality
|E(x − iy)| < |E(x + iy)| for y > 0. Let φ(x) be a phase function associated with E(z). Show that there
exists a number p > 0 such that

∂

∂y
log |E(x+ iy)| = py +

y

π

∫ +∞

−∞

dφ(t)

(t− x)2 + y2

for y > 0.

Proof. By definition of Pólya class, ∂
∂y

log |E(x+ iy)| > 0 on C+. Here we get strict inequality by Problem

14, since we’re given |E(x− iy)| < |E(x+ iy)| on C+. By Cauchy-Riemann equation, du
dy

= − dv
dx

= <(if)′,

hence i(logE)′ is analytic and has positive real part on C+, by Theorem 4 (Poisson representation) we
have

< logE(x+ iy) = py +
y

π

∫ +∞

−∞

dµ(t)

(t− x)2 + y2

In particular, µ(b)− µ(a) = limy→0+

∫ b
a
< (i(logE(x+ iy))′) dx at points of continuity of µ, then µ and φ

differ by a constant, and the proof is complete.

Problem 64

Show that E(z) in Problem 61 can be chosen of Pólya class if∫ +∞

−∞

dψ(t)

1 + t2
<∞

Proof. Basically we want to get a bound on
∑
n s

2
n and use Problem 9 to get A(z). Suppose sn is defined

s.t. ψ(sn) = nπ + π
2

. First we have ∫ +∞

−∞

dψ(t)

1 + t2
>
∫ +∞

0

dψ(t)

1 + t2

>
+∞∑
n=0

∫ sn+1

sn

dψ(t)

1 + t2

>
+∞∑
n=0

∫ sn+1

sn

dψ(t)

1 + s2
n

=

+∞∑
n=0

π

1 + s2
n

from which we can see sn goes to +∞ pretty fast and
∑+∞
n=0

1
s2n

is convergent. Similar for negative n.

Hence by Problem 9 we can choose A to be in Pólya class, and so is B.

Remark. Problem 58-64 gives a full picture on relation between spectral phase function and dB function.
Actually, given any two interlacing sequences, we can construct a dB function E = A−iB s.t. one sequence
is the zeros of A while another one is the zeros of B. In particular, the two sequences can determine a
phase function ψ, and if ψ is regular, i.e.

∫
R

dψ
1+t2

< ∞, we can choose E to be in Pólya class. Moreover,
Problems 313 describes the relation between A’s zeros and operator norm. Basically Pólya class is related
to Hilbert-Schmidt class operators.

Problem 65

Let f(z) be a function which has an absolutely convergent representation

f(z) =

∫ +∞

−∞

h(t)dµ(t)

t− z

for y > 0, where h(x) is a Borel measurable function of real x and µ(x) is a nondecreasing function of real
x. Show that f(z) is analytic and of bounded type in the upper half-plane and that it has nonpositive
mean type.
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Remark. Basically this problem says Cauchy transfrom of nice function is of bounded type on the half-
plane.

Proof. WLOG we can assume h is real since linear combination of functions of bounded type is still of
bounded type. Let µ = µ1 + µ2, where µ1 remains constant on every interval h is negative and µ2 remains
constant on · · · positive. Now

f = i

∫ +∞

−∞

−ih(t)dµ1(t)

t− z + i

∫ +∞

−∞

−ih(t)dµ2(t)

t− z

We have

<
∫ +∞

−∞

−ih(t)dµ1(t)

t− z =

∫ +∞

−∞

yh(t)dµ1(t)

(t− x)2 + y2

and notice that dµ1 is 0 for h negative hence the real part is nonnegative. By Problem 20 we ’re done.

Problem 67

Let B(E) be a given space and let S(z) = A(z)u+B(z)v where u and v are numbers, not both zero, such
that ūv = uv̄. Show that S ∈ Ass(B(E)) and that the identity

0 = 〈F (t)S(α),
G(t)S(β)− S(t)G(β)

t− β 〉 − 〈F (t)S(α)− S(t)F (α)

t− α ,G(t)S(β)〉

+ (α− β̄)〈F (t)S(α)− S(t)F (α)

t− α ,
G(t)S(β)− S(t)G(β)

t− β 〉

holds for all elements F and G of B(E) and all complex numbers α and β.

Proof. WLOG we assume S(z) = B(z). If B(z) /∈ B(E), then by Theorem 22 B(E) sits isometrically in
L2(dµ0), where µ0(tn) = π

φ′(tn)
1

|E(tn)|2 , where {tn} are zeros of B(z). Then

〈F (t)S(α),
G(t)S(β)− S(t)G(β)

t− β 〉 − 〈F (t)S(α)− S(t)F (α)

t− α ,G(t)S(β)〉

+ (α− β̄)〈F (t)S(α)− S(t)F (α)

t− α ,
G(t)S(β)− S(t)G(β)

t− β 〉

=
∑
n

F (tn)S(α)G(tn)S(β)

tn − β̄
µ0(tn)−

∑
n

F (tn)S(α)G(tn)S(β)

tn − α
µ0(tn)

+ (α− β̄)
∑
n

F (tn)S(α)G(tn)S(β)

(tn − α)(tn − β̄)
µ0(tn)

=0

Now suppose B ∈ B(E), define Bezoutian operator BS,α by

(BS,α F )(z) =
F (z)S(α)− S(z)F (α)

z − α

where S ∈ Ass(B(E)). Now S = B, and by proof to Theorem 22 we know B(E) is spanned by {K(tn, z)}
and B(z), all of which are orthogonal to each other. I’ll show BB,α maps Span{K(tn, z)} to itself and B
to 0:

(BB,αK(tn, ·))(z) =
K(tn, z)B(α)−B(z)K(tn, α)

z − α

=
B(α)

tn − α
B(z)A(tn)

π(z − tn)

=
B(α)

tn − α
K(tn, z)

(BB,αB)(z) = 0
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Now for F,G ∈ B(E), we decompose them into F1 + F2, G1 + G2, where F1, G1 ∈ Span{K(tn, z)} and
F2, G2 ∈ Span{B} (scalar multiplication of B), then

〈F (t)S(α), (BS,β G)(t)〉 − 〈(BS,α F )(t), G(t)S(β)〉
+ (α− β̄)〈(BS,α)(t), (BS,β G)(t)〉

=〈F1(t)S(α) + F2(t)S(α), (BS,αG1)(t)〉+ 〈(BS,α F1)(t), G1(t)S(β) +G2(t)S(β)〉
+ (α− β̄)〈(BS,α F1)(t), (BS,β G)(t)〉

=〈F1(t)S(α), (BS,αG1)(t)〉+ 〈(BS,α F1)(t), G1(t)S(β)〉
+ (α− β̄)〈(BS,α F1)(t), (BS,β G1)(t)〉

Now since F1, G1 ∈ Span{K(tn, z)}, we can calculate the inner products in subspace Span{K(tn, z)} which
is also a Hilbert space, and the equality is proved.

Remark. This problem, together with Problem 68, explains why associate function S(z) = uA(z) + vB(z)
are special. For such associate function S, BS,α is self-adjoint when α ∈ R.

Problem 68

Let B(E) be a given space and let S ∈ Ass(B(E)). Assume that the identity of Problem 67 holds for all
elements F and G of B(E) and all complex numbers α and β. Show that S(z) = A(z)u+ B(z)v for some
numbers u and v such that ūv = uv̄.

Proof. Suppose S satisfies the identity of Problem 67, let t1, t2, x ∈ R, F = Kt1 and G = Kt2 , and
α = β = x, then the identity becomes(

Kt1(t)S(x),
Kt2(t)S(x)− S(t)Kt2(x)

t− x

)
=

(
Kt1(t)S(x)− S(t)Kt1(x)

t− x ,Kt2(t)S(x)

)
S(x)

Kt2(t1)S(x)− S(t1)Kt2(x)

t1 − x
= S(x)

Kt1(t2)S(x)− S(t2)Kt1(x)

t2 − x

Let t1 = t2 where S(t1) 6= 0, then it becomes S(x)S(t1) = S(x)S(t1), which further implies S(z)
S(t1)

is real

entire. WLOG we can assume S(z) is real entire, now let t1, t2 ∈ R be any two real numbers, note that
Kt2(t1) = Kt1(t2), then the equation above becomes

S(x)2Kt2(t1)
t2 − t1

(t1 − x)(t2 − x)
− S(x)S(t1)

Kt2(x)

t1 − x
+ S(x)S(t2)

Kt1(x)

t2 − x
= 0

S(x)Kt2(t1)
t2 − t1

(t1 − x)(t2 − x)
− S(t1)

Kt2(x)

t1 − x
+ S(t2)

Kt1(x)

t2 − x
= 0

Hence

S(x) =
1

πKt2(t1)(t2 − t1)
(S(t1) (B(x)A(t2)−A(x)B(t2))− S(t2) (B(x)A(t1)−A(x)B(t1)))

where RHS is a linear combination of B(x) and A(x). Since S, A, B are entire, the equality holds for any
complex number z. Therefore S(z) = A(z)u+B(z)v for real u and v. In general case u, v may not be real,
but ūv = v̄u.

Problem 69

Let B(E) be a given space and let S(z) be a nonzero entire function such that F (z)S(w)−S(z)F (w)
z−w belongs

to B(E) whenever F (z) belongs to B(E). Assume that there exists a nondecreasing function µ(x) of real x
such that S(x) is µ-equivalent to zero and such that B(E) is contained isometrically in L2(µ). Show that
S(z) = A(z)u + B(z)v for some numbers u and v such that ūv = v̄u. Show that µ(x) is a step function
whose points of increase are zeros of S(z) and that µ(t+) − µ(t−) = 1

K(t,t)
at each such zero. Show that

B(E) fills L2(µ).

Proof. S = Au+Bv follows from Problem 68 directly, as it’s easy to show the identity in Problem 67 holds
using inner product in L2(µ). We know S is µ-equivalent to 0, then µ must be a step functions whose
support is contained in the zeros of S. Using Theorem 22, we know B(E) is spanned by Ktn where tn’s are
zeros of S, and possibly S itself. Since Ktn(tn) 6= 0 and Ktn(tm) = 0 for m 6= n, hence supp(µ) = Z(S),
and it’s the Herglotz measure of S (as given by Theorem 22), and consequently µ(t+) − µ(t−) = 1

Kt(t)
.

Since S is µ-equivalent to 0, S /∈ B(E), and B(E) fills L2(µ) since now it’s just spanned by Ktn ’s.
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Problem 70

Let B(E) be a given space and let S(z) be an entire function such that S(z)
E(z)

and S#(z)
E(z)

are of bounded

type in the upper half-plane. Assume that E(z) has no real zeros and that µ(x) is a given non-decreasing
function of real x such that B(E) is contained isometrically in L2(µ). Assume that there exists a nonzero

entire function Q(z) which is µ-equivalent to zero such that F (z)Q(w)−Q(z)F (w)
z−w belongs to B(E) whenever

F (z) belongs to B(E). If ∫ +∞

−∞

|S(t)|2dµ(t)

1 + t2
<∞

if

lim sup
y→+∞

∣∣∣∣ S(iy)

Q(iy)

∣∣∣∣ <∞
and if

lim sup
y→+∞

∣∣∣∣S(−iy)

Q(iy)

∣∣∣∣ <∞
show that F (z)S(w)−S(z)F (w)

z−w belongs to B(E) whenever F (z) belongs to B(E).

Remark. The conditions are actually necessary as well.

Proof. See my thesis.

Problem 71

Let B(E) be a given space such that B(E) has no real zeros, and let S(z) be an entire function which is

real for real z and has no zeros, such that S(z)
E(z)

is of bounded type in the upper half-plane. Let µ(x) be a

nondecreasing function of real x such that B(E) is contained isometrically in L2(µ). If∫ +∞

−∞

|S(t)|2

1 + t2
dµ(t) <∞

show that E(z)
S(z)

is of Pólya class and that F (z)S(w)−S(z)F (w)
z−w belongs to B(E) whenever F (z) belongs to

B(E).

Proof. Let G(z) := E(z)
S(z)

, then G is of bounded type in C+ since it’s given that S(z)
E(z)

is of bounded type in
C+ and S is zero-free on C+. G is dB since S is real entire and E is dB, then by Problem 34 G is of Pólya
class. This part is wrong.
First we assume there’s no Q ∈ Ass(B(E)) s.t. Q = 0 µ-a.e.. By Theorem 26, in order to prove S ∈
Ass(B(E)) it suffices to show

lim sup
y→+∞

∣∣∣∣ S(iy)

E(iy)

∣∣∣∣ <∞
lim sup
y→+∞

∣∣∣∣S(−iy)

E(iy)

∣∣∣∣ <∞
Since G is nonzero and of Pólya class, |G(iy)| is nondecreasing for y > 0, and this proves the first inequality.
Note that ∣∣∣∣S(−iy)

E(iy)

∣∣∣∣ =

∣∣∣∣S(−iy)

S(iy)

S(iy)

E(iy)

∣∣∣∣ =

∣∣∣∣ S(iy)

E(iy)

∣∣∣∣
since S is real entire, hence S ∈ Ass(B(E)).
Now assume there’s Q ∈ Ass(B(E)) which is equal to 0 µ-a.e.. By Problem 69, Q = uA+ vB where ūv is
real. WLOG we can assume Q = eiαE − e−iαE#. Then∣∣∣∣ S(iy)

Q(iy)

∣∣∣∣ =

∣∣∣∣ 1

G(iy)

∣∣∣∣
∣∣∣∣∣∣ 1

eiα − e−iα G#(iy)
G(iy)

∣∣∣∣∣∣
where G = E

S
is of Pólya class. Since G(iy) is nondecreasing for y > 0, the first factor is bounded above.

As for the second factor, by factorization of functions of Pólya class, we have

G#(iy)

G(iy)
= e−2by

∏ zn − iy
z̄n − iy

which has module strictly less than 1 for y > 0, hence the second factor is bounded above as well. By
Problem 70 we can conclude S ∈ Ass(B(E)).

24



Problem 72

Let B(Ea) and B(Eb) be given spaces such that B(Ea) is contained isometrically in B(Eb) and Ea has

no real zeros. Let S(z) be an entire function which has no zeros. If F (z)S(w)−S(z)F (w)
z−w belongs to B(Eb)

whenever F (z) belongs to B(Eb), show that it belongs to B(Ea) whenever F (z) belongs to B(Ea).

Proof. Since BS,w is linear in S, we can decompose S = S1− iS2 where S1, S2 are real entire, hence WLOG
we can just assume S itself is real entire. Since S ∈ Ass(B(Eb)),

S
Eb

is of bounded type on C+. Pick

F ∈ B(Ea), then F
Ea

is of bounded type on C+. Since F is in B(Eb) as well, F
Eb

is of bounded type on

C+ too, hence Eb
Ea
∈ N (C+), and moreover S

Ea
∈ N (C+). By Theorem 25,

∫
R

∣∣∣ S(t)
Eb(t)

∣∣∣2 dt
1+t2

< ∞. Since

B(Ea) v B(Eb) v L2
(

dt
|Eb(t)|2

)
, by Problem 71 S ∈ Ass(B(Ea)).

Remark. This problem says, if B(Ea) v B(Eb) and Ea is strict, then for zero-free S ∈ Ass(B(Eb)), we
have S ∈ Ass(B(Ea)).

Problem 74

Let B(E) be a given space and let α be a real number such that S(z) = eiαE(z)−e−iαE#(z) does not belong

to B(E). Show that F (z) 7→ F (z)S(w)−S(z)F (w)
z−w is an everywhere defined and bounded transformation in

B(E) for every complex number w. For each fixed F (z) in B(E), show that F (z)S(w)−S(z)F (w)
z−w depends

continuously on w in the metric of B(E).

Proof. By Theorem 22,

‖F‖2E =
∑

φ(tn)≡α

π

φ′(tn)

∣∣∣∣F (tn)

E(tn)

∣∣∣∣2
Note that if φ(tn) ≡ α mod π, then S(tn) = 0. Then we have∥∥∥∥F (z)S(w)− S(z)F (w)

z − w

∥∥∥∥2

E

=
∑

φ(tn)≡α

π

φ′(tn)

∣∣∣∣F (tn)

E(tn)

∣∣∣∣2 ∣∣∣∣ S(w)

tn − w

∣∣∣∣2

The last factor
∣∣∣ S(w)
tn−w

∣∣∣2 is bounded on the set {t
∣∣φ(t) ≡ α mod π}, hence the operator is bounded. Let’s

denote the operator by Rw, then for fixed F ∈ B(E),

‖Rw1F −Rw2F‖
2
E =

∑
φ(tn)≡α

π

φ′(tn)

∣∣∣∣F (tn)

E(tn)

∣∣∣∣2 ∣∣∣∣ S(w1)

tn − w1
− S(w2)

tn − w2

∣∣∣∣2
For fixed w1, the last factor goes to 0 as w2 → w1 uniformly.

Remark. Such associated function S plays an important role in dB theory. Check Theorem 22, 29, and
Problem 67, 68, 79, 87 for more information. And this problem says for such S = eiαE − e−iαE#,
BS,w is well-defined and bounded as an operator on B(E). Moreover, for fixed F ∈ B(E), BS,w F depends
continuously on w in B(E).

Problem 76

In Problem 75 show that

0 = 〈F (t)S(α),
G(t)S(β)− S(t)G(β)

t− β 〉 − 〈F (t)S(α)− S(t)F (α)

t− α ,G(t)S(β)〉

+ (α− β̄)〈F (t)S(α)− S(t)F (α)

t− α ,
G(t)S(β)− S(t)G(β)

t− β 〉

whenever F (z) belongs to B(E) and vanishes at α, and G(z) belongs to B(E) and vanishes at β.

Proof. For F s.t. F (α) = 0, and G s.t. G(β) = 0, the RHS becomes

〈F (t)S(α),
G(t)S(β)

t− β 〉 − 〈F (t)S(α)

t− α ,G(t)S(β)〉+ (α− β̄)〈F (t)S(α)

t− α ,
G(t)S(β)

t− β 〉

=

∫
R

(
F (t)S(α)G(t)S(β)

t− β̄
− F (t)S(α)G(t)S(β)

t− α +
(α− β̄)F (t)S(α)G(t)S(β)

(t− α)(t− β̄)

)
dt

|E(t)|2

=0
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Remark. This problem says

〈F (t)S(α), (BS,β G)(t)〉 − 〈(BS,α F )(t), G(t)S(β)〉+ (α− β̄)〈(BS,α F )(t), (BS,β G)(t)〉

for F,G ∈ B(E) s.t. F (α) = G(β) = 0.

Problem 79

If C(z) and D(z) are linearly dependent in Theorem 27, show that S(z) = A(z)u+B(z)v for some numbers
u and v such that ūv = uv̄.

Remark. Basically Theorem 27 says S ∈ Ass(B(E)) iff ∃ real entire C and D, such that MS = 1
S

(
A B
C D

)
is a dB matrix. Note that in standard notation we should take transpose of MS.

Proof. We will use two useful results (easy to prove). First, Lemma 4.2 in Misha’s notes II, for dB matrix

M(z) =

(
α(z) β(z)
γ(z) δ(z)

)
, γ and δ (or α and β) are linearly dependent, i.e. Ẽ degenerate (or E degenerate)

iff

M(z) =

(
1 az
0 1

)
U

where a > 0 and U is a constant J-unitary matrix. The second result, Cor 3.2 in Misha’s notes II, says U
is J-unitary iff U = λU1, where |λ| = 1 and U1 ∈ SL2(R).
Now suppose C and D are linearly dependent, then so is γ(z) and δ(z). This implies

1

S

(
A B
C D

)
= MS = λ

(
1 az
0 1

)
U1

Let U1 =

(
a1 b1
c1 d1

)
, we have

A

S
= λ(a1 + c1az)

B

S
= λ(b1 + d1az)

d1
A

S
− c1

B

S
= λ(a1d1 − b1c1) = λ

S =
d1A

λ
− c1B

λ

Let u = d1
λ

, v = − b1
λ

, then uv̄ = −b1d1 is real, and we’re done.

Problem 83

If B(E) is a given space, show that the hypotheses of Theorem 28 are satisfied with S(z) = E(z), C(z) =

−B(z) and D(z) = A(z). Show that the transformation F (z)→ 1√
2

(
F (z)
iF (z)

)
is an isometry of B(E) onto

BS(M).

Proof. Conditions of Theorem 28 are satisfied by problem 81 and the fact A# = A,B# = B. The isometry
part is by construction.

Problem 85

Show that an element S(z) of a space B(E) is of the form S(z) = A(z)u+B(z)v for some numbers u and
v if and only if

K(w, z)S(w)−K(w,w)S(z)

z − w =
K(w̄, z)S(w̄)−K(w̄, w̄)S(z)

z − w̄ (3)

for all complex z and w. If S(z) is of this form, show that ūv = uv̄.
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Proof. First we assume the equality holds. Rearranging the equality and using the fact (Problem 40)
K(w̄, w̄) = K(w,w) we get:

K(w, z)S(w)

z − w − K(w̄, z)S(w̄)

z − w̄ = K(w,w)S(z)

(
1

z − w −
1

z − w̄

)
(4)

Multiply both sides by (z − w)(z − w̄) and divide by (w − w̄) we can get(
A(w)S(w)−A(w)S(w̄)

K(w,w)(w − w̄)

)
B(z)−

(
B(w)S(w)−B(w)S(w̄)

K(w,w)(w − w̄)

)
A(z) = S(z)

(BS,w B)(w̄)

K(w,w)
A(z)− (BS,w A)(w̄)

K(w,w)
B(z) = S(z)

Hence S(z) is a linear combination of A and B. Let S = uA+ vB. Now by the third axiom of dB space:
S ∈ B(E)⇒ S# ∈ B(E), hence S# = Aū+ Bv̄ ∈ B(E). But E /∈ B(E), A and B can’t be in B(E) at the
same time, which implies

det

(
u v
ū v̄

)
= 0

that is, ūv = uv̄.
Now assume S = uA+ vB. Note that both sides of (4) are linear in S, so WLOG we assume u = 1, v = 0,
i.e. S(z) = A(z), then LHS of (4) becomes

(B(z)|A(w)|2 −B(w)A(w)A(z))− (B(z)|A(w)|2 −B(w)A(w)A(z))

π(z − w̄)(z − w)

=
B(w)A(w)−A(w)B(w)

π(z − w̄)(z − w)
A(z)

=
(w − w̄)K(w,w)

(z − w̄)(z − w)
A(z)

=

(
1

z − w −
1

z − w̄

)
K(w,w)A(z)

which is equal to the RHS of (4).

Remark. Let BS,w denote Bezoutian operator, then this problem says

BS,wKw = BS,w̄Kw̄

if and only if S = uA+ vB where ūv = v̄u.

Problem 86

Show that a space B(Eb) has dimension 1 if and only if

(Ab(z), Bb(z)) = (Aa(z), Ba(z))

(
1− βz αz
−γz 1 + βz

)
where Aa and Ba are linearly dependent entire functions which are real for real z, and where α, β, γ are
real numbers, not all zero, such that α > 0, γ > 0, and αγ = β2. Show that

α = πuū, β = πuv̄ = πvū, γ = πvv̄

for some numbers u and v such that

S(z) = Aa(z)u+Ba(z)v = Ab(z)u+Bb(z)v

is an element of norm 1 in B(Eb).

Remark. This problem, together with problem 87, 88 give a full description of finite dimensional dB spaces.

Proof. “⇒” Since dimB(Eb) = 1, dom(z) must be empty, and by Theorem 29 we know B(Eb) is generated
by S(z) = uAb + vBb. Then by problem 85, ūv = uv̄. Obviously we can choose u, v real and

S = uAb + vBb has norm 1 in B(Eb). Now choose real c, d s.t. V :=

(
u c
v d

)
∈ SL2(R). Let

(Ãb, B̃b) = (Ab, Bb)

(
u c
v d

)
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Then S = Ãb ∈ B(Ẽb) with norm 1. To save time I’ll just write E = Ẽb, A = Ãb, B = B̃b for now.
Note that B(E) = B(Eb) since V ∈ SL2(R). For some real t, K(t, z) ∈ B(E), hence ∃ λ s.t.

K(t, z) =
B(z)A(t)−A(z)B(t)

π(z − t) = λA(z)

Since both sides are real on R, λ is real as well. And also we can see that B
A

= c1z+ c2, and moreover
c1 > 0, c2 ∈ R. Now use the fact A has norm 1 in B(E):∫

R

A2

A2 +B2
dt = 1

using translation we can get c1 = π. Now let Ãa = Ãb, and B̃a = c2Ãb, then

(Ãb, B̃b) = (Ãa, B̃a)

(
1 πz
0 1

)
Now let (Aa, Ba) = (Ãa, B̃a)V −1, then

(Ab, Bb) = (Ãb, B̃b)V
−1

= (Aa, Ba)V

(
1 πz
0 1

)
V −1

= (Aa, Ba)

(
1− βz αz
−γz 1 + βz

)
and obviously Aa and Ba are linearly dependent (by definition B̃a = c2Ãa), real entire. And it’s
trivial to check

α = πuū, β = πuv̄ = πvū, γ = πvv̄

S = uAa + vBa follows by direct calculation using the matrix relation above.

“⇐” Define Ãb, B̃b, Ãa, B̃a as above. WLOG assume Ãa 6= 0, then B̃a = λÃa for some λ ∈ R, and

(Ãb, B̃b) = (Ãa, B̃a)

(
1 πz
0 1

)
Then

Ẽb

Ãa
=
Ãb

Ãa
− i B̃b

Ãa

= 1− i(λ+ πz)

Let E0 := 1− i(λ+ πz), I’m gonna show it’s dB, i.e. λ > 0. = B̃b
Ãb

> 0 on C+ implies =(πz + λ) > 0

on C+, hence λ > 0. Now use the result of problem 44, we get

dim(B(Eb)) = dim(B(Ẽb)) = dim(B(E0)) = dimC = 1

Problem 87

Let B(Eb) be a given space which has dimension greater than 1 and in which multiplication by z is not
densely defined. Show that

(Ab(z), Bb(z)) = (Aa(z), Ba(z))

(
1− βz αz
−γz 1 + βz

)
for some space B(Ea) which is contained isometrically in B(Eb) and for some numbers α, β, γ, not all zero
such that α > 0, γ > 0, and αγ = β2. Show that

α = πuū, β = πuv̄ = πvū, γ = πvv̄

for some numbers u and v such that

S(z) = uAa(z) + vBa(z) = uAb(z) + vBb(z)

is an element of norm 1 in B(Eb) which spans the orthogonal complement of B(Ea).
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Proof. Similar to problem 86, let’s assume u = 0, v = 1 first. That is, we assume Bb ∈ B(Eb) and has
norm 1. The reason we choose Bb rather than Ab is, in Theorem 22, de Branges chooses Bb so we can use
some results directly. According to the proof of Theorem 22, we have (follows from problem 5, 47 in case
you don’t have the book):

Kb(w, z) =
pb
π
Bb(z)B̄b(w) +

∑
Bb(tn)=0

Ab(tn)

πB′b(tn)

Bb(z)

z − tn
B̄b(w)

w̄ − tn
(5)

where pb comes from the Poisson representation of Ab
Bb

:

−=Ab
Bb

= pby +
y

π

∫
R

dµ

(x− t)2 + y2
(6)

By (5), and note that Bb(z)
z−tn = πKb(tn,z)

Ēb(tn)
we have:

Bb(w) = 〈Bb(t),Kb(w, t)〉

= Bb(w)〈Bb(t),
pb
π
B(t)〉

and since we assume Bb has norm 1, pb = π. Now define Aa, Ba as

(Aa, Ba) =

(
1 0
πz 1

)
(Ab, Bb)

Then

−=Aa
Ba

= −=Ab
Bb
− πy =

y

π

∫
R

dµ

(x− t)2 + y2
> 0

hence Ea = Aa − iBa is dB and pa = 0 (defined as in (6)), and since Ba = Bb, we have

Ka(w, z) =
∑

Bb(tn)=0

Ab(tn)

πB′b(tn)

Bb(z)

z − tn
B̄b(w)

w̄ − tn

belongs to B(Ea). In particular, when w = tn, Kb(tn, z) = Ka(tn, z) ∈ B(Ea). Now I’ll show Bb /∈ B(Ea).
Suppose Bb ∈ B(Ea), then

Bb(w) = 〈Bb(t),Ka(w, t)〉

= Bb(w)〈Bb(t),
pa
π
B(t)〉

= 0

a contradiction. The “isometrically” part now comes from Theorem 22 itself directly:

Ea(tn) = Aa(tn) = Ab(tn) + πtnBb(tn) = Ab(tn) = Eb(tn)

φ′a(tn) = π
Ka(tn, tn)

|Ea(tn)|2 = π
Kb(tn, tn)

|Eb(tn)|2 = φ′b(tn)

where the formula for φ′(x) comes from problem 48. For the general case, similar to 86, we still assume
u, v are real. Let

(Ãb, B̃b) = (Ab, Bb)

(
c u
d v

)
where

(
c u
d v

)
∈ SL2(R), hence B(Eb) = B(Ẽb) and

(Ab(z), Bb(z)) = (Ãb, B̃b)

(
v −u
−d c

)
= (Ãa(z), B̃a(z))

(
1 0
−πz 1

)(
v −u
−d c

)
= (Ãa(z), B̃a(z))

(
v −u
−d c

)(
c u
d v

)(
1 0
−πz 1

)(
v −u
−d c

)
= (Aa, Ba)

(
1− βz αz
−γz 1 + βz

)
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Problem 88

Show that multiplication by z is not densely defined in a space B(E) if the space has finite dimension.
Show that a space B(E) has finite dimension r if, and only if, E(z) = S(z)E0(z) where S(z) is an entire
function which is real for real z and E0(z) is a polynomial of degree r which has no real zeros.

Proof. This follows from problem 86, 87 and 44. I’ll use induction but the direct proof wouldn’t be more
difficult. For the base case, by problem 86 we have

(A,B) = (A0(z), B0(z))

(
1− βz αz
−γz 1 + βz

)
where A0 and B0 are linearly dependent, α = πu2, β = πuv, γ = πv2 as usual, and uA0 + vB0 ∈ B(E) with
norm 1. WLOG assume A0 6= 0 and B0 = cA0, c ∈ R. Let S = A0, then S is real entire. Note that

E = S(1, c)

(
1− βz αz
−γz 1 + βz

)(
1
−i

)
and it suffices to show

(1, c)

(
1− βz αz
−γz 1 + βz

)(
1
−i

)
= (P0, Q0)

(
1
−i

)
is a polynomial of degree 1 without real zeros. Suppose it has real zero x0, then P0(x0) = Q0(x0) = 0 and

(1, c)

(
1− βx0 αx0

−γx0 1 + βx0

)
= 0 Since the matrix is invertible (determinant is 1), we get a contradiction.

Now suppose it has degree 0, then by direct calculation and looking at the coefficient of z we get vc+u = 0,
then v 6= 0 and c = −u

v
. By assumption, cA0 − B0 ≡ 0, hence uA0 + vB0 = 0, a contradiction to the fact

it has norm 1.
For the induction step, by problem 87 we have

(A,B) = (Ã(z), B̃(z))

(
1− βz αz
−γz 1 + βz

)
and by induction assumption Ẽ = SẼ0, where S is real entire and Ẽ0 is a polynomial of degree r − 1,
without real zeros. See the remark for the reason why Ẽ0 is dB. Let E0 = P0 − iQ0 where P0 and Q0 are
real entire polynomials, then

E = S(P̃0(z), Q̃0(z))

(
1− βz αz
−γz 1 + βz

)(
1
−i

)
It suffices to show

(P̃0(z), Q̃0(z))

(
1− βz αz
−γz 1 + βz

)(
1
−i

)
= (P0, Q0)

(
1
−i

)
is a polynomial of degree r without real zero. By the same argument as base case we can show it doesn’t
have any real zero. Now assume the coefficient of zr−1 for P̃0, Q̃0 are a, b resp. If P0 − iQ0 has degree less
than r, then degP0 < r,degQ0 < r and by direct calculation we get:

au+ bv = 0

Then uP̃0+vQ̃0 has degree at most r−2, which must belong to B(P̃0−iQ̃0), and uÃ+vB̃ = S(uP̃0+vQ̃0) ∈
B(Ẽ) by problem 44, a contradiction to the result from problem 87:

uÃ+ vB̃ = uA+ vB ∈ B(E), /∈ B(Ẽ)

Remark. Since dim(B(E)) > 0, E is non-degenerate, hence it’s zero free on C+. If E = SE0, where S
is real entire and E0 is a polynomial without real zeros, then since S 6= 0 on C+, S is a degenerate dB
function. E0 has no zero on C+, hence it’s a dB polynomial. To summarize, we get the following result:
If E is dB and dim(B(E)) = r < ∞, then E = SE0, where S is a real entire dB function (means no
zero on C+), and E0 is a dB polynomial of degree r. Moreover, B(E0) is regular since by Theorem 25,
1 ∈ Ass(B(E0)) and S ∈ Ass(B(E)).
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Problem 89

Let B(E) be a given space and let ϕ(x) be a choice of phase function associated with E(z). Show that
there exists a number p = p(α) > 0 for every real number α such that

<e
iαE(z) + e−iαE#(z)

eiαE(z)− e−iαE#(z)
= py +

∑ 1

ϕ′(t)

y

(t− x)2 + y2

for y > 0, where summation is over all real numbers t such that ϕ(t) ≡ α module π. Show that p > 0 if,
and only if, eiαE(z)− e−iαE#(z) belongs to B(E).

Proof. First let’s deal with the case α = 0, then

eiαE(z) + e−iαE#(z)

eiαE(z)− e−iαE#(z)
=

2A(z)

−2iB(z)
= i

A

B

Let f(z) = −A(z)
B(z)

, then f is analytic in the complex plane except for isolated singularities at points (tn),

where B(tn) = 0, i.e. ϕ(tn) = 0. And since f = f# and <− if = −=f < 0 as E is non-degenerate dB, by
problem 47 we have

f(z)− f̄(w)

z − w̄ = p+
∑ pn

(tn − z)(tn − w̄)

for non-real z and w. Let w = z, then it becomes

=f
y

= p+
∑ pn
|tn − z|2

then

<iA
B

= −=A
B

= =f = py +
∑ pn
|tn − z|2

note that pn = limz→tn(tn − z)f(z) = A(tn)
B′(tn)

= 1
ϕ′(tn)

by problem 48. p > 0 iff B ∈ B(E), and this can be

seen from proof to Theorem 22, the decomposition of K(w, z).
For general α, define

(Ã, B̃) = (A,B)

(
cosα − sinα
sinα cosα

)
now

<e
iαE(z) + e−iαE#(z)

eiαE(z)− e−iαE#(z)
= <1

i

cosαA+ sinαB

sinαA− cosαB
= <i Ã

B̃

which reduces to the special case α = 0 for Ẽ = Ã − iB̃ =. Since dB space is invariant under SL2(R)
transform of (A,B), it suffices to show ϕ′(tn) = ϕ̃′(tn), where ϕ(tn) = α, i.e. ϕ̃(tn) = 0.

ϕ̃′(tn) =
B̃′(tn)

Ã(tn)
=
− sinαA′(tn) + cosαB′(tn)

cosαA+ sinαB

note that at tn, Eeiα is real, that is, A sinα = B cosα. Since α ∈ (0, π) mod π, sinα 6= 0, and B 6= 0:

ϕ̃′(tn) =
− sinαBA′(tn) + cosαBB′(tn)

cosαAB + sinαB2

=
− sinαBA′(tn) + sinαAB′(tn)

sinαA2 + sinαB2

=
−BA′(tn) +AB′(tn)

A2 +B2

=
πK(x, x)

|E|2

by problem 48, and we’re done.

Remark. This is a special case of Theorem 32, where W = e−2iα is a constant Schur function.

Remark. The second part can be proved by the discussion in the proof to Theorem 27, Page 75.
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Problem 90

Let B(E) be a given space and let µ(x) be a nondecreasing function of real x such that∫ +∞

−∞

∣∣∣∣F (t)

E(t)

∣∣∣∣2dt =

∫ +∞

−∞

∣∣∣∣F (t)

E(t)

∣∣∣∣2dµ(t)

for every F (z) in B(E). Show that there exists a function W (z), analytic and bounded by 1 in the upper
half-plane, such that

<E(z) + E#(z)W (z)

E(z)− E#(z)W (z)
=
y

π

∫ +∞

−∞

dµ(t)

(t− x)2 + y2
(7)

for y > 0. If µ(x) is constant in an interval (a, b), show that W (z) is analytic across (a, b) if defined in the
lower half-plane by W#(z)W (z) = 1.

Remark. This is Alexander-Sarason Theorem, which is a special case of Nevanlinna’s characterization of
spectral measure for general associated function S. The proof would be quite easy using model space KΘ.
This is a partial converse of Theorem 32, and it seems like Theorem 30, 31 are presented because of this

problem. Note that we have the following corollary: B(E) v L2
(

µ
|E|2

)
implies µ is regular.

Proof. The first equation follows directly from Theorem 30 and 31, with S = E,C = −B,D = A. Now
suppose µ(x) is a constant on (a, b), which means dµ = 0. Taking limit x ∈ (a, b), y → 0 then we know W
can be continuously extended to (a, b). Taking the same limit in (7) gives us |W |2 = 1 on (a, b). Then it’s
locally nonzero and we can define, for some neighbourhood of (a, b) in C−, W (z) = 1

W#(z)
.

Remark. 1. I’m not sure if W can be extended to the whole C−, because W may have zeros on the
upper plane. Unless we only require W to be meromorphic?

2. Similarly, if y0 is in the essential support of dµ, every neighborhood of y0 has an arbitrarily large
number of points where E is real.

Problem 91

Let W (z) be a function which is analytic and bounded by 1 in the upper half-plane and which is analytic
across an interval (a, b) of the real axis when defined in the lower half-plane by W#(z)W (z) = 1. Show
that W (z) = exp(2iψ(x)) for a < x < b where ψ(x) is a nondecreasing, differentiable function of x.

Proof. By the construction of W on C−, and the assumption W is bounded by 1 in the upper half-plane,
we know

|W (z̄)| > 1 > |W (z)|

for z ∈ C+. Then d log |W (z)|
dy

6 0 for z ∈ (a, b). Let f = logW , by Cauchy-Riemann equation, f ′ = ux +
ivx = ux − iuy. But here we have ux = 0 since log |W | ≡ 0 and uy 6 0. If we denote W (z) = exp(2iψ(x)),

then f ′

2i
= ψ′(x) > 0. Hence ψ(x) is a nondecreasing, differentiable function of x.

Problem 92

In Problem 90, let φ(x) be a phase function associated with E(z). Show that φ(b)−φ(a) 6 π and that the
inequality is strict unless W (z) is a constant of absolute value 1.

Proof. Now assume µ doesn’t support (a, b), we want to show

φ(b)− φ(a) 6 π

Suppose not, then the increment of the argument of the function f = E#

E
W on (a, b) is bigger than 2π.

This is because E#

E
= exp(2iφ) and in last theorem we proved the argument of W is nondecreasing. |f | = 1

on R so ∃ξ ∈ (a, b) s.t. f(ξ) = 1. Go back to (7) we will have

∞ =
y

π

∫
dµ(t)

(t− x)2 + y2

∣∣∣∣
z=ξ

= 0

A contradiction.
And the inequality is strict, suppose not then by the same argument as above, W ’s argument must be a

constant otherwise there exists ξ ∈ (a, b, ) s.t. f(ξ) = 1. In this case µ is the Clark measure of Θ = E#

E
,

and we know
KΘ = L2(dµ)
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Hence

B(E) = EKΘ = L2(
dµ

|E|2 )

See Problem 89 for more details.

Problem 93

Here I’ll just prove the special case when φ(b, t)− φ(b, s) = π. Choose α = exp(2πφ(b, s)). Then Θb(s) =
Θb(t) = α. Now use sampling formula

‖F‖2B(Eb)
= 2π

∑
Θb(ξ)=α

∣∣∣∣F (ξ)

E(ξ)

∣∣∣∣2 1

|Θ′b|
(8)

which doesn’t use the value of F between s and t, hence µα doesn’t support (s, t).
On the other hand, let µα be the Clark measure associated with (α,Θb), then

KΘb = L2(µα)

We have

B(Ea) < B(Eb)

KΘa < KΘb = L2(µα)

B(Ea) < L2(
µα
|E|2 )

By the result of Problem 92 we get φ(a, t)− φ(a, s) 6 π = φ(b, t)− φ(b, s).

Problem 94

Let f(z) be a function which is analytic and has a nonnegative real part in the upper half-plane. Assume
that

<f(x+ iy) = py +
y

π

∫ +∞

−∞

dµ(t)

(t− x)2 + y2

for y > 0 where p > 0 and µ(x) is a nondecreasing function of real x which is constant in an interval (a, b).
Let z = x+ iy where y > 0 and a < x < b. Show that

<f(x+ iy) 6
(c− x)2 + h2

(c− x)2 + y2

y

h
<f(c+ ih)

for 0 < y < h, where c = a if x 6 a+b
2

and c = b if x > a+b
2

.

Proof. This statement is FALSE without additional condition. For example, let µ be purely point and has
point mass ε at a = −1, and 1 at b = 1. Let p = 0, and by Theorem 3 (Stieljes Inversion Formula) we
know there exists f analytic on C+ and

<f =
y

π

(
ε

(−1− x)2 + y2
+

1

(1− x)2 + y2

)
Now let x = 0 and y = 1, then |c− x| = 1 and the statement becomes(

ε

(−1− x)2 + y2
+

1

(1− x)2 + y2

)
((c− x)2 + y2) 6

(
ε

(−1− a)2 + h2
+

1

(1− a)2 + y2

)
((c− x)2 + h2)(

ε

2
+

1

2

)
2 6

(
ε

h2
+

1

5

)
(1 + h2)

Pick h close to 1 we’ll get a contradiction.
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Problem 100

Let B(E(a)) and B(E(b)) be given spaces such that B(E(a)) is contained isometrically in B(E(b)) and
E(a, z)/E(b, z) has no real zeros. Let B(M1(a, b)) and B(M2(a, b)) be spaces such that

(A(b, z), B(b, z)) = (A(a, z), B(a, z))Mk(a, b, z)

for k = 1, 2. Show that M1(a, b, z) = M2(a, b, z).

Remark. This problem, together with Theorem 33, claims that given Eb and Ea, then the transition
Nevanlinna matrix exists if B(Ea) v B(Eb) and Ea

Eb
has no real zeros, and it is unique. And also note that,

if we take Ea ≡ 1, then (Aa, Ba) = (1, 0), and the result is clearly false by construction of dB space, and
we know the Nevanlinna matrix is unique up to a constant multiple of Eb. So it’s necessary to assume
B(Ea) 6= 0, i.e. Ea is not degenerate. This can also be seen from the proof: we need to pick nonzero
F ∈ B(Ea).

Remark. This part is taken from Misha’s note III.

Proof. Let M(a, z) =

(
Aa Ba
−Ba Aa

)
, we know it’s dB associated with Sa = Ea. Let

Mk(b, z) = M(a, z)Mk(a, b, z)

and Mk(b, z) =

(
Ab Bb
Ck Dk

)
. Since Mk(b, z) is dB, Dk+iCk

Ab−iBb
has nonnegative real part on C+ (see proof to

Theorem 28) and is equal to

<Dk + iCk
Ab − iBb

= pky +
y

π

∫
R

|S/Eb|2dt
(t− x)2 + y2

where S = Ea by definition of Mk(b, z). Let M1(a, b, z) be the one given by Theorem 33, i.e. p1 = 0. Hence
Eb,2 and Eb,1 differs by −ipz + iq, and

M2(b, z) =

(
1 0

−pz + q 1

)
M1(b, z)

where p > 0, q ∈ R. Note that F 7→ 1√
2

(
F
iF

)
maps B(Ea) isometrically onto BS(M(a, z)), and B(Ea)

is contained isometrically into B(Eb), which can be mapped into BS(Mk(b, z)), and onto for BS(M1(b, z))

but not necessarily onto for B(M2(b, z)). Now for

(
F
iF

)
∈ BS(M(a, z)), by construction of BS(M2(a, b)),

∃G ∈ B(Eb) and λ ∈ C, s.t. (
F
iF

)
=

(
1 0

−pz + q 1

)(
G

G̃

)
+ S(z)

(
0
λ

)
The first row reduces to G = F , and calculating norm of LHS in BS(M1(a, b)), and norm of RHS in
BS(M2(a, b)) we get λ = 0, now the second row gives p = q = 0, hence M(a, b) is unique.

Problem 101

If B(M(a, c)) is a given space and if there exists a constant

(
u
v

)
of norm 1 in B(M(a, c)), show that

ūv = uv̄ and that a space B(M(a, b)) exists,

M(a, b, z) =

(
1− 2πuv̄z 2πuūz
−2πvv̄z 1 + 2πuv̄z

)
Show that B(M(a, b)) is contained isometrically in B(M(a, c)), that M(a, c, z) = M(a, b, z)M(b, c, z)

for some space B(M(b, c)), and that

(
F+(z)
F−(z)

)
→ M(a, b, z)

(
F+(z)
F−(z)

)
is an isometric transformation of

B(M(b, c)) onto the orthogonal complement of B(M(a, b)) in B(M(a, c)).

Proof. Obviously we can assume u, v are real. For the special case u = 0, by construction we know,

M(a, c, z) =

(
1 0
−pz 1

)
M1(a, c, z)

:= M(a, b, z)M(b, c, z)

M1(a, c, z) =

(
1 0
pz 1

)
M(a, c, z)
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We can see M(a, b, z) and M−1(a, b, z) is Nevanlinna (you may refer to my notes on Nevanlinna matrix
for definition and basic properties) via direct calculation. Since product of Nevanlinna matrices is still
Nevanlinna, B(M(b, c)) exists. By construction, B(M(a, c)) is the set of

λ

(
0
1

)
+

(
1 0
−pz 1

)(
F+(z)
F−(z)

)

with norm 2π|λ|2
p

+

∥∥∥∥(F+(z)
F−(z)

)∥∥∥∥
B(M(b,c))

Note that

(
0
v

)
has norm 1, p = 2πv2, and we’re done for the

special case. For general case, let U = 1
u2+v2

(
v u
−u v

)
and M̃ = U∗MU , then

(
0
1

)
∈ B(M̃(a, c)), and

the rest follows.

Remark. Check problem 87 for (formally) similar results as well.

Problem 102

Let B(E(a)), B(E(c)), and B(M(a, c)) be given spaces such that

(A(c, z), B(c, z)) = (A(a, z), B(a, z))M(a, c, z)

and B(E(a)) is not contained isometrically in B(E(c)). If M(a, c, z) = M(a, b, z)M(b, c, z) as in problem
101, show that there exists a space B(E(b)) such that

(A(b, z), B(b, z)) = (A(a, z), B(a, z))M(a, b, z)

and B(E(b)) is contained isometrically in B(E(c)).

Proof. B(E(a)) is not contained isometrically in B(E(c)), and by Theorem 34 we know there exists

(
u
v

)
∈

B(M(a, c)) s.t. uAa + vBa ∈ B(Ea). Like we did for problem 86, 87, we assume u, v are real. Choose u, v

s.t.

(
u
v

)
has norm 1 in B(M(a, c)), then by problem 101 we get factorization

M(a, c, z) = M(a, b, z)M((b, c, z)

where M(a, b, z) =

(
1− 2πuv̄z 2πuūz
−2πvv̄z 1 + 2πuv̄z

)
. It’s easy to check

M(a, b, z)

(
u
v

)
=

(
u
v

)
then

uAa + vBa = (Aa, Ba)

(
u
v

)
= (Aa, Ba)M(a, b, z)

(
u
v

)
= (Ab, Bb)

(
u
v

)
= uAb + vBb

By Theorem 34, B(Ea) ⊆ B(Eb), then uAb + vBb ∈ B(Eb). To show B(Eb) v B(Ec), by Theorem 34, it

suffices to show there is no

(
u2

v2

)
∈ B(M(b, c)), s.t. u2Ab + v2Bb ∈ B(Eb). Suppose it exists. Since we

already know uAb + vBb ∈ B(Eb), if there exists such

(
u2

v2

)
, it must be equal to (up to multiplication

by eiθ)

(
u
v

)
By problem 101, M(a, b, z)

(
u
v

)
=

(
u
v

)
is in the orthogonal complement of B(M(a, b)) in

B(M(a, c)). I’ll show (
u
v

)
∈ B(M(a, b))

as well and then we’ll get a contradiction. To simplify notation, let M = M(a, b) =

(
A B
C D

)
, E = A− iB,

Ẽ = C − iD. It’s easy to see 1
y
< i

˜E(iy)
E(iy)

goes to 0 when y goes to +∞. By construction, B(M) is just the

map of Hilbert transform. Obviously constant function f ≡ u ∈ B(E), and it suffices to show the Hilbert
transform of f is v. By Theorem 27,

f̃(w) = 〈f, 1−A(t)D̄(w) +B(t)C̄(w)

π(t− w̄)
〉B(E)
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it’s easy to get 1−A(t)D̄(w)+B(t)C̄(w)
π(t−w̄)

= 2uv, and

‖1‖2B(E) =

∫
R

1

(1− 2πuvx)2 + (2πux)2

=

∫
R

1

4π2u2(u2 + v2)
(
x− v

2πu(u2+v2)

)
+ u2

u2+v2

=
1

2u2

since
∫
R

dx
ax2+b

= π√
ab

for nonnegative a, b. And we’re done.

Remark. The proof also yields an important property of BS(M): if M =

(
1− 2πuv̄z 2π|u|2z
−2π|v|2z 1 + 2πuv̄z

)
for

some complex numbers u, v, then BS(M) is one dimensional, generated by vector
(
u
v

)
, whose norm in

BS(M) is exactly 1.

Problem 110

If B(M) is a given space which has finite dimension r, show that

M(z) =

(
1− β1z α1z
−γ1z 1 + β1z

)
· · ·
(

1− βrz αrz
−γrz 1 + βrz

)
M(0)

where (αk), (βk), (γk) are real numbers such that αk > 0, γk > 0, and αkγk = β2
k for k = 1, · · · , r.

Proof. The proof consists of two parts. First, I’ll show each component of M is a polynomial; Secondly, a
polynomial Nevanlinna matrix has to be of this product form.
First, M has to be a polynomial matrix, i.e. all entries are polynomials. Use real representation of dB
matrix, we have

M =

(
A B
C D

)
By construction, let E = A−iB, then B(E) has finite dimension as well. By problem 88, E = SE0, where S
is real entire and E0 is a strict dB polynomial. From the remark to problem 88 we know S ∈ B(E0)+z B(E0),
so it’s a polynomial as well. The same argument applies to C, D as well.
Now let’s show a polynomial Nevanlinna matrix has to be of this product form. For some reason in the
proof I took conjugation of everything, for more details please refer to my note “Existence Theorem”)

M =

(
P R
Q S

)
The difference between degree of P − iQ, R− iS is at most 1 because Nevanlinna matrix is

unique up to pz + q. Let’s conjugate M by U =

(
v u
−u v

)
(uv̄ = ūv, |u|2 + |v|2 = 1) to get

∼
M = U#MU ,

and the second dB function of
∼
M would be one degree higher than the first dB function. To be more

precise, suppose
∼
M =

(∼
P

∼
R

∼
Q

∼
S

)
, then deg(

∼
R− i

∼
S) > deg(

∼
P − i

∼
Q). Actually deg(

∼
R− i

∼
S) = deg(P − iQ)+1

since the degree difference can not be greater than 1.

Thus we have

(
0
1

)
∈ B(

∼
M) by construction of B(

∼
M), also by construction we know:

∼
M = M1

(
1 −γz
0 1

)
where γ > 0. Choose the maximal positive γ > 0, then deg(R1 − iS1) = deg(P1 − iQ1), and deg(M1) =
deg(M)− 1.

M = UM1

(
1 −γz
0 1

)
U# = UM1U

#

(
1− βrz −γrz
αrz 1 + βrz

)
deg(UM1U

#) = r − 1

Then use induction w.r.t. r.
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Problem 111

Let B(Ma),B(Mb),B(Mc) be spaces such that

Mc = MaM(a, c) and Mc = MbM(b, c)

for some spaces B(M(a, c)) and B(M(b, c)). If B(Mc) has dimension 0 or 1, show that either

Mb = MaM(a, b)

for some space B(M(a, b)) or
Ma = MbM(b, a)

for some space B(M(b, a)).

Proof. The proof seems long. Save for later.

Problem 115

Let B(M) be a finite dimensional space such that M(0) = 1. Show that

iM ′(0)J =

(
α β
β γ

)
> 0

and that

M(z) =

∞∑
n=0

M (n)(0)
zn

n!

where σ(M (n)(0)) 6 (α+ γ)n for every n = 1, 2, 3, · · · .

Proof. By problem 110 we can factorize M into elementary factors:

M(z) = M1(z) · · ·Mr(z),Mj(z) =

(
1− βjz −γjz
αjz 1 + βjz

)
, αj , γj > 0, β2

j = αjγj

Let t(M) := Tr(M ′(0)I), where I =

(
0 −1
1 0

)
, then

tj = t(Mj) = αj + γj , t(M) =

r∑
j=1

tj

Then
M (k)(0) = k!

∑
16j1<j2<···<jk6r

M ′j1(0) · · ·M ′jk (0)

and use ‖A1 · · ·An‖2 6 ‖A1‖2 · · · ‖An‖2, we can get

σ(M (k)(0)) 6 k!
∑

16j1<j2<···<jk6r

σ(M ′j1(0) · · ·M ′jk (0))

6 k!
∑

16j1<j2<···<jk6r

tj1 · · · tjk

6

(
r∑
j=1

tj

)k
= t(M)k
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Problem 116

If B(Eb) is a finite dimensional space and if h > 0, show that there exists a space B(M(a, b)) such that
M(a, b, 0) = 1, B′(a, b, 0)− C′(a, b, 0) = h, and

(Ab, Bb) = (Aa, Ba)M(a, b)

for some entire functions Aa and Ba, which are real for real z, such that

BaĀa −AaB̄a
z − z̄ > 0

for all complex z.

Proof. First we assume Eb is regular. By Theorem 27 we have Cb, Db s.t. Let Mb =

(
Ab Bb
Cb Db

)
is

Nevanlinna, and B(Eb) can be mapped onto B(Mb) isometrically (i.e. limy→ < 1
y
Db(iy)+iCb(iy)

Eb(iy)
= 0). Now

that B(Mb) has finite dimension. By problem 110,

Mb(z) =
∏
k

(
1− βkz αkz
−γkz 1 + βkz

)
Mb(0)

First let’s assume Mb(0) = I, the identity matrix, i.e. Mb is normalized. Let t(Mb) = Tr(M ′b(0)I), if

t(Mb) < h, then let M̃b =

(
1 0

−(h− t(Mb))z 1

)
Mb, and t(M̃b) = h. Let (Aa, Ba) = (1, 0), then

(Ab, Bb) = (Ãb, B̃b) = (1, 0)M̃b = (Aa, Ba)M̃b

and we’re done. If t(Mb) > h, split the factorization into two parts,

Mb(z) = Ma(z)M(a, b, z)

s.t. t(M(a, b)) = h, and since Ma is Nevanlinna, Aa − iBa is dB, might be degenerate though. And
obviously Aa, Ba are real for real z. For the general case, let U = Mb(0), and components of

U−1

(
1− βkz αkz
−γkz βkz

)
U = U−1V U

are still polynomials of degree 1. By direct calculation we know it has the form

Ṽ =

(
1− az bz
cz 1 + dz

)
with b > 0, c 6 0. Note that Tr Ṽ = TrV = 2, hence a = d. det Ṽ = detV = 1 implies bc = a2, so Ṽ has
the same form as V and is Nevanlinna, hence

(Ab, Bb) = (Ãb, B̃b)U

= (Ãa, Ãa)
∏
k

(
1− βkz αkz
−γkz βkz

)
U

= (Ãa, Ãa)U
∏
k

U−1

(
1− βkz αkz
−γkz βkz

)
U

= (Ãa, Ãa)U
∏
k

(
1− β̃kz α̃kz

−γ̃kz β̃kz

)
= (Aa, Ba)M(a, b)

obviously t(M(a, b)) = h and Aa − iBa is dB, and the rest follows.
Now for general E, by problem 88 E = SE0, where S,E0 entire and S = S# (S real entire), E0 is a dB
polynomial without real zeros. By Theorem 25, E0 is regular, then by previous result we have

(A0,b(z), B0,b(z)) = (A0,a(z), B0,a(z))M(a, b, z)

Multiply everything by S(z), we have

(Ab(z), Bb(z)) = (Aa(z), Ba(z))M(a, b, z)

where Aa = SA0,a and Ba = SB0,a. Moreover,

Ba(z)Āa(z)−Aa(z)B̄a(z)

z − z̄ = |S(z)|2B0,a(z)Ā0,a(z)−A0,a(z)B̄0,a(z)

z − z̄ > 0
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Remark. Note that M can be chose as a polynomial dB matrix. This can be generalized to infinite
dimensional space, see Theorem 36. h may be related to the existence of B(Ea), i.e. Aa, Ba linearly
dependent or not.

Problem 117

In Theorem 36 show that a space B(Ea) exists, Ea(z) = Aa(z) − iBa(z), if Aa(z) and Ba(z) are linearly
independent.

Proof. Since
Ba(z)Āa(z)−Aa(z)B̄a(z)

z − z̄ > 0

for z ∈ C+, we have =A
B

6 0, i.e. E is a dB function, which might be degenerate though. If Aa and Ba
are linearly independent, then E is not degenerate, hence a space B(Ea) exists.

Problem 118

If Aa(z) and Ba(z) are linearly dependent in Theorem 36, show that Ea(z) = Aa(z)− iBa(z) has only real
zeros and that Eb(z)/Ea(z) is an entire function. Show that

F (z)E(a,w)− E(a, z)F (w)

z − w

belongs to B(Eb) whenever F (z) belongs to B(Eb).

Remark. Usually if B(Ea) v B(Eb), then Ea ∈ Ass(B(Ea)) ⊆ Ass(B(Eb)). But here Ea is degenerate,
and B(Ea) doesn’t exist, i.e. is equal to {0}.

Proof. We have
(Ab, Bb) = (Aa, Ba)M

Now let Cb, Db be real entire s.t.

Mb :=

(
Ab Bb
Cb Db

)
=

(
Aa Ba
−Ba Aa

)
M := MaM

It’s easy to check MaIM̄a = EaIĒa, and since M is Nevanlinna, we have

MbIM̄b − EaIĒa
z − z̄ =

MaMIM̄M̄a − EaIĒa
z − z̄

>
MaIM̄a − EaIĒa

z − z̄
= 0

hence 1
Ea
Mb is a dB matrix, and by Theorem 27 we know Ea ∈ Ass(B(Eb)).

Problem 122

Show that A(a, z) = limAn(a, z), B(a, z) = limBn(a, z), and M(a, b, z) = limMn(a, b, z) as n→∞ in the
proof of Theorem 36.

Proof. See my notes on existence theorems.

Problem 123

If B(M) is a given space and if M(0) = 1, show that there exists a sequance {B(Mn)} of finite dimensional
spaces such that Mn(0) = 1 and B′n(0)−C′n(0) = B′(0)−C′(0) for every n, and such that M(z) = limMn(z)
for all complex z.
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Problem 126

If B(E0) is a given space and if t 6 0, let B(E0) be the unique space such that M(t, 0, 0) = 1,

−M ′(t, 0, 0)I =

(
α(t) β(t)
β(t) γ(t)

)
= m(t)

where α(t) + γ(t) = t, and
(A0(z), B0(z)) = (At(z), Bt(z))M(t, 0, z)

for entire functions At(z) and Bt(z), which are real for real z, such that

Bt(z)Āt(z)−At(z)B̄t(z)
z − z̄ > 0

for all complex z. Show that m(t) is a nondecreasing function of t and that its entries are continuous, real
valued functions of t. Show that At(w) and Bt(w) are continuous functions of t for every w and that

(Ab(w), Bb(w))I − (Aa(w), Ba(w))I = w

∫ b

a

(At(w), Bt(w))dm(t)

whenever −∞ < a < b 6 0. Show that Aa(z) and Ba(z) are linearly dependent if a < b and if Ab(z) and
Bb(z) are linearly dependent. If there exists a value of t such that At(z) and Bt(z) are linearly dependent,
show that there exists a largest value of t with this property, say t = s−. Otherwise define s− = −∞.
Show that a space B(Et) exists when t > s−.

Remark. This problem says, given any dB space, we can find a chain, which may start from empty space
but end with the given dB space.

Proof. The existence is given by Theorem 36: choose h = −t for t < 0, and we have the inequality
Kt(z, z) > 0. For a < b < 0, by problem 112 and the fact t(M(a, 0)) = −a > −b = t(M(b, 0)), we have

(Ab, Bb) = (Aa, Ba)M(a, b)

M(a, 0) = M(a, b)M(b, 0)

The following is similar to the proof to Theorem 37. We know m(b) − m(a) = M ′(a, 0)I −M ′(b, 0)I =
M ′(a, b)I > 0. Since α(t) + γ(t) = t and M ′(a, b) > 0, α, γ are nondecreasing and continuous. Since
(β(b) − β(a))2 6 (α(b) − α(a))2(γ(b) − γ(a))2, β(t) is continuous as well. Similar to Theorem 37, we get
continuity of At and Bt. As for the integral equation, since

(Ab, Bb) = (Aa, Ba)M(a, b)

for a < b 6 0, it suffices to show

M(a, b)I − I = w

∫ b

a

M(a, t)dm(t)

and the proof is the same as the one to Theorem 37. The existence of s− means the supreme can be
reached, and the remained part is trivial.

Problem 128

If B(M) is a given space, show that the functions A(z) − iB(z) and D(z) + iC(z) are of bounded type
in the upper half-plane and have qual mean types in the half-plane. Show that each of the functions
A(z), B(z), C(z), D(z) is of bounded type in the upper half-plane and that it has the same mean type in
the half-plane as A(z)− iB(z) and D(z) + iC(z) unless it vanishes identically. The common mean type of
these functions is taken as the definition of the mean type of M(z).

Proof. By Theorem 28 and 27 we know 1 ∈ Ass(B(E)), where E = A − iB. By Theorem 25 we know
1
E
∈ N (C+), and hence E ∈ N (C+). From proof to Theorem 28 we have (let Ẽ = C − iD):

<i Ẽ
E

> 0

hence i Ẽ
E
∈ N (C+) and

iẼ

E
= −ipz + ib+

1

πi

∫
1 + tz

(t− z)(1 + t2)
dµ
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Since Ẽ doesn’t vanish constantly, RHS is not zero function neither. Use the inequality in problem 33 we
have (for |z| > 1), ∣∣∣∣1 + tz

t− z

∣∣∣∣ 6 |1 + tz|(|z − i|+ |z + i|)
|t− i||z − z̄|

6
|z|(1 + |t|)(|z − i|+ |z + i|)√

1 + t2|z − z̄|

6
√

2
|z|(|z − i|+ |z + i|)

|z − z̄|

(I must have done this for some other problem) we can see the mean type of RHS is 0, hence D + iC has

the same mean type as A − iB. Since A = E+E#

2
, |A| 6 |E|, hA 6 hE , where hA, hE denote mean types

of A,E resp. Also hB 6 hE . On the other hand, by problem 29, hE 6 max{hA, hB}. Suppose hA > hB ,
then A doesn’t vanish constantly, and hA 6=∞, hE = hA. If B doesn’t vanish constantly, then =A

B
6 0 on

C+, B has the same mean type as A as we proved earlier. Same argument applies to C and D.

Remark. By problem 34, a dB function of bounded type is of Pólya class. Using Theorem 27 and 28 we
conclude, if 1 ∈ Ass(B(E)), i.e. E is regular, then E is of Pólya class.

Problem 129

If B(M) is a given space, show that the mean type of M(z) is nonnegative and that it is zero if A(z) and
B(z) are linearly dependent.

Proof. By remark to last problem we know E is of Pólya class, and since detM ≡ 1, E is zero free.
We have the following lemma in the proof to Theorem 7: if E is of Pólya class and has no zeros, then

E(z) = E(0)e−az
2

e−ibz, where a > 0 and <b > 0. By problem 128 and the fact A = A#, B = B#, E is of
bounded type in C+ and C-, by Krěın’s Theorem, E is of exponential type, and this implies a = 0. Now <b
is the mean type of E, and it’s nonnegative. If A and B are linearly dependent, |E| = |E#|. In particular,
take z = iy, then |E(iy)| = |E#(iy)| becomes ey<b = e−y<b, hence mean type <b is 0.

Problem 130

Let µ(x) be a nondecreasing function of real x which has r+1 points of increase, r = 0, 1, 2, · · · . Show that
the polynomials of degree at most r are a Hilbert space which satisfies the axioms (H1), (H2) and (H3) in
the metric of L2(µ). Show that the space is a space B(E) for some polynomial E(z) of degree r + 1 which
has no real zeros. Show that there exist entire functions C(z) and D(z), which are real for real z, such that

A(z)D(z)−B(z)C(z) = 1

<(A(z)D̄(z)−B(z)C̄(z)) > 1

for all complex z, D(z)+iC(z)
E(z)

has no real singularities and

lim
y→+∞

1

y

D(iy) + iC(iy)

E(iy)
= 0

Show that the corresponding space B(M) has dimension r + 1 and that D(z) + iC(z) is a polynomial of
degree r + 1. Show that there exists a number W of absolute value 1 such that

y

π

∫ +∞

−∞

dµ(t)

(t− x)2 + y2
= < (D(z) + iC(z)) + (D(z)− iC(z))W

(A(z)− iB(z))− (A(z) + iB(z))W

for y > 0.

Remark. This problem says, given any such µ, we can find dB B(E) which sits inside L2(µ). The equality
can be used to generalize the result to any regular measure. See problem 137 for more details.

Proof. I’ll prove this statement in a constructive way, using orthogonal polynomials. We know normalized
orthogonal polynomials {pn}rn=0 is a base for L2(µ), and the reproducing kernel is given by

K(w, z) =

r∑
n=0

pn(z)p̄n(w)
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Now suppose µ has jumps at x0, · · · , xr, let pr+1 = a
∏r
k=0(x − xk), where a is the leading coefficient of

pr, then

xpr(x) = pr+1(x) +

r∑
k=0

ckpk(x)

Taking inner products with pj , j 6 n− 2 for both sides we know cj = 0 for j 6 n− 2, and we can write

xpr(x) = pr+1(x) + crpr(x) + cr−1pr−1(x)

cr−1 = an because (xpr, pr−1) = an. For more details see Barry Simon’s book “Orthogonal Polynomials
on the Unit Circle”, part I, Page 12-13. Let br+1 = cr. The three term relation for orthogonal polynomials
are given by

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x)

ypn(y) = an+1pn+1(y) + bn+1pn(y) + anpn−1(y)

multiply first row by pn(y), second row by pn(x) and subtract second row from the first row, summing up
from n = 0 to r, we get

(x− y)

r∑
n=0

pn(x)pn(y) = pr+1(x)pr(y)− pr+1(y)pr(x)

and let x = z, y = w̄ we get

K(w, z) =
pr+1(z)pr(w̄)− pr+1(w̄)pn(z)

z − w̄
which is exactly the reproducing kernel of B(E) for E =

√
π(pr−ipr+1), hence µ is the sampling measure of

B(E) on zero set of B. Here E is a dB function because be definition of pr+1, pr+1 and pr have interlacing
zeros and pr+1 is one degree higher. Suppose at xk, µ has point mass mk, then πA(xn)B′(xn) = mk. Let
A =

√
πpr, B =

√
πpr+1, use Theorem 27 to find suitable C and D. Since B(M) is isometric to B(E),

it has dimension r + 1 and by problem 110 C and D are real polynomials of degree at most r + 1. Since
Ẽ = C − iD is unique up to a real multiple of E, we can let Ẽ be a polynomial of degree r + 1. And now

let’s consider function iD
B

. Since

(
A B
C D

)
is Nevanlinna, B + iD is dB as well, then <iD

B
> 0 on C+,

there exists ν s.t.

<iD(z)

B(z)
= py +

y

π

∫
R

dν(t)

(t− x)2 + y2

p = 0 since

lim
y→+∞

1

y

D(iy) + iC(iy)

E(iy)
= 0

Let y go to zero we can see ν is purely point, and supp(ν) = Z(B). The point mass is π D(xn)
B′(xn)

, and the

rest follows because AD − BC = 1 becomes AD = 1 on Z(B). Note that this corresponds to the special
case W ≡ 1.

Problem 135

Let B(E(a)) be a given space and let W (a, z) be a function which is analytic and bounded by 1 for y > 0.
Assume that W (a, z) is not identically 1 and that

1 +W (a, z)

1−W (a, z)
=

[D(a, b, z) + iC(a, b, z)] + [D(a, b, z)− iC(a, b, z)]W (b, z)

[A(a, b, z)− iB(a, b, z)]− [A(a, b, z) + iB(a, b, z)]W (b, z)
(9)

where B(M(a, b)) exists and W (b, z) is analytic and bounded by 1 for y > 0. If C(a, z) = −B(a, z),
D(a, z) = A(a, z) and

M(b, z) = M(a, z)M(a, b, z)

show that

E(a, z) + E#(a, z)W (a, z)

E(a, z)− E#(a, z)W (a, z)
=

[D(b, z) + iC(b, z)] + [D(b, z)− iC(b, z)]W (b, z)

[A(b, z)− iB(b, z)]− [A(b, z) + iB(b, z)]W (b, z)

for y > 0.
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Proof. For some reason (see Problem 158 for more details) I prefer to assume Wa is not identically −1,
and prove the reciprocal of LHS is equal to the reciprocal of RHS. The RHS can be rewritten as

[Db(z) + iCb(z)] + [Db(z)− iCb(z)]Wb(z)

[Ab(z)− iBb(z)]− [Ab(z) + iBb(z)]Wb(z)
= i

Ẽb − Ẽ#
b Wb

Eb − E#
b Wb

= i
Cb
(
i 1−Wb

1+Wb

)
+Db

Ab
(
i 1−Wb

1+Wb

)
+Bb

(10)

Similarly, (9) can be rewritten as

i
1−Wa

1 +Wa
=
Ea→b − E#

a→bWb

Ẽa→b − Ẽ#
a→bWb

=
Aa→b

(
i 1−Wb

1+Wb

)
+Ba→b

Ca→b

(
i 1−Wb

1+Wb

)
+Da→b

(11)

Since Mb = MaMa→b, we have(
Ab
(
i 1−Wb

1+Wb

)
+Bb

Cb
(
i 1−Wb

1+Wb

)
+Db

)
=

(
Ab Bb
Cb Db

)(
i 1−Wb

1+Wb

1

)

=

(
Aa Ba
Ca Da

)(
Aa→b Ba→b
Ca→b Da→b

)(
i 1−Wb

1+Wb

1

)

=

(
Aa Ba
Ca Da

)(Aa→b

(
i 1−Wb

1+Wb

)
+Ba→b

Ca→b

(
i 1−Wb

1+Wb

)
+Da→b

)

=

(
Aa
{
Aa→b

(
i 1−Wb

1+Wb

)
+Ba→b

}
+Ba

{
Ca→b

(
i 1−Wb

1+Wb

)
+Da→b

}
Ca
{
Aa→b

(
i 1−Wb

1+Wb

)
+Ba→b

}
+Da

{
Ca→b

(
i 1−Wb

1+Wb

)
+Da→b

})
(12)

where Ca = −Ba, Da = Aa. Take the ratio of two rows and apply (11), we have

[Db(z) + iCb(z)] + [Db(z)− iCb(z)]Wb(z)

[Ab(z)− iBb(z)]− [Ab(z) + iBb(z)]Wb(z)

= i
Cb
(
i 1−Wb

1+Wb

)
+Db

Ab
(
i 1−Wb

1+Wb

)
+Bb

(by (10))

= i
Ca
{
Aa→b

(
i 1−Wb

1+Wb

)
+Ba→b

}
+Da

{
Ca→b

(
i 1−Wb

1+Wb

)
+Da→b

}
Aa
{
Aa→b

(
i 1−Wb

1+Wb

)
+Ba→b

}
+Ba

{
Ca→b

(
i 1−Wb

1+Wb

)
+Da→b

} (by (12))

= i
Ca
(
i 1−Wa

1+Wa

)
+Da

Aa
(
i 1−Wa

1+Wa

)
+Ba

(by (11))

= i
Ca(1−Wa)− iDa(1 +Wa)

Aa(1−Wa)− iBa(1 +Wa)

= i
Ẽa − Ẽ#

a Wa

Ea − E#
a Wa

=
Ea + E#

a Wa

Ea − E#
a Wa

where Ẽa = Ca − iDa = −Ba − iAa = (−i)(Aa − iBa) = (−i)Ea, Ẽ#
a = iE#

a .

Problem 137

Let µ(x) be a nondecreasing function of real x, which is not a constant, such that
∫ +∞
−∞

dµ(t)

1+t2
< ∞. Show

that there exists a space B(E) contained isometrically in L2(µ) such that E(z) is of bounded type in the
upper half-plane and has no real zeros.

Remark. In other words, given any regular measure, there exists a strict dB function E of Pólya class,
such that B(E) v L2(µ).

Proof. See my notes on existence theorems.
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Problem 138

Let B(E0) be a given space such that E0(z) has no real zeros and let µ(x) be a nondecreasing function of
real x such that B(E0) is contained isometrically in L2(µ). For each number b > 0 show that there exists
a unique space B(Eb) such that

(Ab(z), Bb(z)) = (A0(z), B0(z))M0→b(z)

for a space B(M0→b) with M0→b(0) = 1,

M ′0→b(0)I =

(
α(b) β(b)
β(b) γ(b)

)
= m(b)

and α(b) + γ(b) = b, and such that there exists a function Wb(z), analytic and bounded by 1 for y > 0,
and a number p(b) > 0 such that

<
Eb(z) + E#

b (z)Wb(z)

Eb(z)− E#
b (z)Wb(z)

= p(b)y +
y

π

∫ +∞

−∞

|Eb(t)|2dµ(t)

(t− x)2 + y2

for y > 0. Show that m(t) is a nondecreasing function of f and that its entries are real valued, continuous
functions of t. Show that Et(w) is a continuous function of t > 0 for every w and that

(Ab(w), Bb(w))I − (Aa(w), Ba(w))I = w

∫ b

a

(At(w), Bt(w))dm(t)

for 0 6 a < b <∞.

Proof. See my notes “Forward Extension of dB Chain”.

Problem 139

Let {B(Et)} be a family of spaces and let

m(t) =

(
α(t) β(t)
β(t) γ(t)

)
be a nondecreasing, matrix valued function of t, both defined in an interval s− < t < s+. Assume that the
entries of m(t) are continuous, real valued function of t, that Et(w) is a continuous function of t for every
w, and that

(Ab(w), Bb(w))I − (Aa(w), Ba(w))I = w

∫ b

a

(At(w), Bt(w))dm(t)

whenever s− < a < b < s+. Show that[
Bb(z)Ab(w)−Ab(z)Bb(w)

]
−
[
Ba(z)Aa(w)−Aa(z)Ba(w)

]
=(z − w̄)

∫ b

a

(At(z), Bt(z))dm(t)

(
At(w)

Bt(w)

)
for all complex z and w.

Proof. Note that

Bb(z)Ab(w)−Ab(z)Bb(w) = (Ab(z), Bb(z))I

(
Ab(w)

Bb(w)

)
= (Ab(z), Bb(z))I

(
Ab(w̄)

Bb(w̄)

)
Then

d

dt

[
Bt(z)At(w)−At(z)Bt(w)

]
= (At(z), Bt(z))

·I

(
At(w̄)

Bt(w̄)

)
+ (At(z), Bt(z))I

(
At(w̄)

Bt(w̄)

)·

= z(At(z), Bt(z))H(t)

(
At(w̄)

Bt(w̄)

)
− w̄(At(z), Bt(z))H(t)

(
At(w̄)

Bt(w̄)

)

= (z − w̄)(At(z), Bt(z))H(t)

(
At(w̄)

Bt(w̄)

)
whose integral form is what we need.
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Problem 140

Let {B(E+,t)} and {B(E−,t)} be families of spaces and let m(t) =

(
α(t) β(t)
β(t) γ(t)

)
be a nondecreasing,

matrix valued function of t, both defined in an interval s− < t < s+. Assume that the entries of m(t) are
continuous, real valued function of t, that E+,t(w) and E−,t(w) are continuous functions of t for every w,
and that

(A+,b(w), B+,b(w))I − (A+,a(w), B+,a(w))I = w

∫ b

a

(A+,t(w), B+,t(w))dm(t)

(A−,b(w), B−,b(w))I − (A−,a(w), B−,a(w))I = w

∫ b

a

(A−,t(w), B−,t(w))dm(t)

whenever s− < t < s+. Show that[
B+,b(z)A−,b(w)−A+,b(z)B−,b(w)

]
−
[
B+,a(z)A−,a(w)−A+,a(z)B−,a(w)

]
=(z − w̄)

∫ b

a

(A+,t(z), B+,t(z))dm(t)

(
A−,t(w)

B−,t(w)

)
(13)

for all complex z and w. If there is some choice of a such that E+,a(z) = E−,a(z) for all complex z, show
that E+,z = E−,z for all t, s− < t < s+, and for all complex z.

Proof. eq. (13) can be proved in the same way as Problem 139. Now let

Ât(z) := A+,t(z)−A−,t
B̂t(z) := B+,t(z)−B−,t

Then Ât(z), B̂t(z) are continuous in t for fixed z, and Âa(z) = B̂a(z) = 0,∀z ∈ C by assumption, and
taking the difference of the two given integral equations we can get

(Âb(z), B̂b(z))I = z

∫ b

a

(Ât(z), B̂t(z))dm(t)

for all b ∈ (s−, s+).

To show E+(z) = E−(z), it suffices to show Âb(z) = B̂b(z) = 0, ∀b ∈ (s−, s+). First WLOG we fix z ∈ C
and b > a. Since Ât(z), B̂t(z) are continuous in t, let C be a uniform upper bound of Ât(z), B̂t(z) for
t ∈ [a, b]. Since m(t) is continuous, we can choose a partition of [a, b], say {t0, · · · , tn} s.t.

α(tk)− α(tk−1) <
ε

2|z|

β(tk)− β(tk−1) <
ε

2|z|

γ(tk)− γ(tk−1) <
ε

2|z|

Then for any s ∈ [a, t1],

|B̂s(z)| =

∣∣∣∣∣z
∫ s

a

(Ât(z), B̂t(z))

(
dα(t)

dβ(t)

)∣∣∣∣∣
6 |z|

∫ s

a

C(dα(t) + dβ(t))

6 |z|
∫ t1

a

C(dα(t) + dβ(t))

6 Cε

which is a smaller upper bound for B̂s(z) for s ∈ [a, t1]. The same estimate holds for Âs(z), and then doing
this recursively we can get upper bound Cεk for any k ∈ N, then Âs(z) = B̂s(z) = 0 for s ∈ [a, t1]. Doing
this inductively we can conclude Âs(z) = B̂s(z) = 0 for s ∈ [a, b]. The proof for b < a is similar.

Remark. Basically this problem says if we have two families of dB functions, which are associated with the
same Hamiltonian. Suppose they’re equal for some index a ∈ (s−, s+), then they are equal ∀t ∈ (s−, s+).
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Problem 141

In Problem 139 let M(a, t, w) be the unique, continuous, matrix valued function of t, s− < a 6 t < s+,
such that

M(a, b, w)I − I = w

∫ b

a

M(a, b, w)dm(t)

for a 6 b < s+. By Theorem 38 the entries of M(a, b, z) are entire functions of z for any fixed a and b, and
a space B(M(a, b)) exists. Show that

(Ab(z), Bb(z)) = (Aa(z), Ba(z))M(a, b, z)

whenever s− < a 6 b < s+.

Proof. This follows directly from Problem 140.

Problem 148

In Theorem 40 show that B(Ea) is not contained isometrically in L2(µ) when the index a is singular with
respect to m(t).

Proof. Suppose a is singular w.r.t. m(t) and B(Ea) ⊆ L2(µ). Let b be the right endpoint of the singular
interval containing a, then b is regular, and by Theorem 40 B(Eb) ⊆ L2(µ), so B(Ea) ⊆ B(Eb). It’s easy
to calculate Ma→b given the fact (a, b) is singular:

Ma→b =

(
1− luvz lu2z
−lv2z 1 + luvz

)
where l = Tr(m(b)) − Tr(m(a)) and u, v ∈ R and u2 + v2 = 1. By the remark to Problem 102 we know(
u
v

)
∈ B(Ma→b), then by Theorem 33, uAa + vBa lies in the orthogonal complement of B(Ea) in B(Eb).

On the other hand, let c be the left endpoint of the singular interval, then

(Aa, Ba) = (Ac, Bc)Mc→a

and by Theorem 34, uAc + vBc ∈ B(Ea). By the proof to Problem 102, uAc + vBc = uAa + vBa, and then
we have a contradiction. Hence B(Ea) can’t sit in L2(µ) isometrically if a is singular w.r.t. m(t).

Problem 149

In Theorem 40 let b be a regular point which is not the left end point of an interval of singular points.
Show that B(Eb) is the intersection of the spaces B(Ec) such that c is regular and b < c.

Proof. It’s easy to see the intersectionM := ∩
c>b regular B(Ec) satisfies (H1), (H2) and (H3) so it’s a dB

space, and moreover we have B(Eb) v M v B(Eb), ∀c > b regular. Let F ∈ M be orthogonal to B(Eb),
then

(F,Kb,w) = 0, ∀w ∈ C
By continuity of Et,

F (w) = (F,Kc,w), ∀c > b regular

F (w) = lim
c↘b

(F,Kc,w)

= (F,Kb,w)

= 0

then F ≡ 0, hence B(Eb) =M.

Problem 150

In Theorem 40 let b be a regular point which is not the right end point of an interval of singular points.
Show that B(Eb) is the closed span of the spaces B(Ea) such that a is regular and a < b.

Proof. Similar to the proof to Problem 149.
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Problem 151

If the regular points have an upper bound in Theorem 40, show that there is a largest regular point b and
that B(Eb) fills L2(µ).

Proof. For any c ∈ (b, s+), since B(Ec) is not contained in L2(µ) isometrically, by Problem 138 and Theorem
32, multiplication by z is not densely defined in B(Ec). By Theorem 87, there exists a < c s.t.

(Ac, Bc) = (Aa, Ba)

(
1− πucvc πu2

cz
−πv2

cz 1 + πucvcz

)
and by the second half of Problem 87 we know B(Ea) v L2(µ),and by Problem 148 a must be a regular
point, then a 6 b (by Problem 126 we know B(Ea) is in the dB chain). If a < b, then it’s easy to show b is
contained in the singular interval, hence a = b. Since we know two adjacent singular intervals must have
the same ratio u

v
, and α(c) + γ(c) = c, then it’s easy to show

Mb→c(z) =

(
1− uv(c− b)z u2z
−πv2z 1 + πuvz

)
where u, v ∈ R and u2+v2 = 1. The rest depends on the construction of forward extension. By construction
we can show Wb is a constant, and it’s easy to see µ is a sampling measure of B(Eb), so L2(µ) is filled by
B(Eb).

Problem 155

Let B(Ma), B(Ma→b), and B(Mb) be spaces such that Mb(z) = Ma(z)Ma→b(z) and such that Aa(z) and
Ba(z) are linearly independent. Show that when z is in the upper half-plane,

w → [Dc(z) + iCc(z)] + [Dc(z)− iCc(z)]w
[Ac(z)− iBc(z)]− [Ac(z) + iBc(z)]w

(14)

is a mapping of the unit disk |w| < 1 onto the disk Dc(z) of center

Dc(z)Āc(z)− Cc(z)B̄c(z)
iAc(z)B̄c(z)− iBc(z)Āc(z)

and radius
1

iAc(z)B̄c(z)− iBc(z)Āc(z)
for c = a and c = b, and show that Da(z) contains Db(z).

Proof. For simplicity let’s denote Ac by A, so is B,C,D and D(z). Note that the maps w → i 1−w
1+w

maps
the open unit disk onto upper half-plane conformally, and (14) becomes

w → i
1− w
1 + w

→ i
C
(
i 1−w

1+w

)
+D

A
(
i 1−w

1+w

)
+B

so it suffices to show the map

u→ i
Cu+D

Au+B
= i

(
C

A
+

(
D − BC

A

)
1

Au+B

)
(15)

maps C+ to the disk D(z). The map is a linear fractional transformation, which maps generalized circles to
generalized circles. Note that the map v → 1

v
only takes lines which pass through the origin to lines (other

lines will be mapped to circles), and line Ax+ B for x ∈ R can’t pass through the origin, so the image of
R under map (15) must be a circle. Since linear fractional transformation maps a pair of symmetric points
to a pair of symmetric points (See Ahlfors’ complex analysis textbook), the center is given by

i
C −B̄

Ā
+D

A−B̄
Ā

+B
= i

B̄C − ĀD
AB̄ − ĀB

=
ĀD − B̄C
i(AB̄ − ĀB)

Since the image of ∞, which is iC
A

is on the circle, the radius is given by∣∣∣∣i B̄C − ĀDAB̄ − ĀB
− iC

A

∣∣∣∣ =

∣∣∣∣AD −BCAB̄ − ĀB

∣∣∣∣
=

1

i(AB̄ − ĀB)
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here AD −BC = 1 since by default M is a Nevanlinna matrix. Now it suffices to show Db ⊆ Da. WLOG
we can apply map w → i

w
after map (15), and denote the image of D by D̃. Then

D̃b = τMb(C+) = τMaτMa→b(C+) ⊆ τMa(C+) = D̃a

hence Db ⊆ Da.

Remark. This problem describes the chain of Weyl disks (for regular dB chain).

Problem 158

Let m(t) =

(
α(t) β(t)
β(t) γ(t)

)
be a nondecreasing, matrix valued function whose entries are continuous, real

valued function of t in some interval (s−, s+). Assume that there exists a family {E(t, z)} of entire functions,
which have no real zeros, such that E(t, w) is a continuous function of t for every w and

(A(b, w), B(b, w))I − (A(a,w), B(a,w))I = w

∫ b

a

(A(t, w), B(t, w))dm(t)

whenever s− < a < b < s+. If a space B(E(a)) exists for every a, s− < a < s+, show that there exists a
family {W (a, z)} of functions, analytic and bounded by 1 for y > 0, such that

1 +W (a, z)

1−W (a, z)
=

[D(a, b, z) + iC(a, b, z)] + [D(a, b, z)− iC(a, b, z)]W (b, z)

[A(a, b, z)− iB(a, b, z)]− [A(a, b, z) + iB(a, b, z)]W (b, z)

when s− < a < b < s+. (If W (a, z) is identically 1, the formula is meaningless as written but has an
obvious interpretation on solving for W (a, z).) Show that there exists a nondecreasing function µ(x) of
real x such that

<E(a, z) + E#(a, z)W (a, z)

E(a, z)− E#(a, z)W (a, z)
= p(a)y +

y

π

∫ +∞

−∞

|E(a, t)|2dµ(t)

(t− x)2 + y2

for y > 0 and all indices a, where p(a) is a nonnegative constant which depends only on a.

Proof. First we show the existence of Wa, ∀a ∈ (s−, s+). Since Ma→b is J-expansive, =Aa→b(z)i+Ba→b(z)
Ca→b(z)i+Da→b(z)

>

0 for z ∈ C+, i.e. =Ea→b

Ẽa→b
> 0 for z ∈ C+. Let’s define

wa,b =
Ea→b

Ẽa→b

(
= i

1−Wa,b

1 +Wa,b

)

Wa,b =
i− wa,b
i+ wa,b

=
i− Ea→b

Ẽa→b

i+ Ea→b

Ẽa→b

then Wa,b is analytic and bounded by 1 on C+. Since Ma→c = Ma→bMb→c, we have(
Aa→c Ba→c

Ca→c Da→c

)
=

(
Aa→b Ba→b

Ca→b Da→b

)(
Ab→c Bb→c

Cb→c Db→c

)
(
Ea→c

Ẽa→c

)
=

(
Aa→b Ba→b

Ca→b Da→b

)(
Eb→c

Ẽb→c

)
wa,c =

Aa→bwb,c +Ba→b

Ca→bwb,c +Da→b

=

Ea→b+E
#
a→b

2
wb,c + i

Ea→b−E
#
a→b

2

Ẽa→b+Ẽ
#
a→b

2
wb,c + i

Ẽa→b−Ẽ
#
a→b

2

=
Ea→b(i+ wb,c)− E#

a→b(i− wb,c)
Ẽa→b(i+ wb,c)− Ẽ#

a→b(i− wb,c)

=
Ea→b − E#

a→bWb,c

Ẽa→b − Ẽ#
a→bWb,c

The last one can be rewritten as

i
1−Wa,c

1 +Wa,c
=
Ea→b − E#

a→bWb,c

Ẽa→b − Ẽ#
a→bWb,c

(16)
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Since Wa,b are bounded by 1, we can choose a sequence bn s.t. Wa,bn goes to Wa locally uniformly on C+.
Taking limit in (16) we can get

i
1−Wa

1 +Wa
=
Ea→b − E#

a→bWb

Ẽa→b − Ẽ#
a→bWb

As for the second part, by Theorem 32, for each b ∈ (s−, s+), there exists a µb s.t.

<
Eb + E#

b Wb

Eb − E#
b Wb

= pby +
y

π

∫
R

dµb(t)

(t− x)2 + y2
(17)

for y > 0. Now we’ll show
∣∣∣EaEb ∣∣∣2 dµb = dµa. Let’s define

Ma(z) : =

(
Aa(z) Ba(z)
Ca(z) Da(z)

)
Mb(z) : = Ma(z)Ma→b(z) :=

(
Ab(z) Bb(z)
Cb(z) Db(z)

)
where Ca = −Ba, Da = Aa, then it’s easy to check both Ma,Mb are dB matrices with associated function
S = Ea. By Problem 135 we know

Ea + E#
a Wa

Ea − E#
a Wa

= i
Ẽb − Ẽ#

b Wb

Eb − E#
b Wb

(18)

We know for given dB function Eb and associated function S, the dB pair function is unique up to a Eb

multiplied by a linear function in z. In particular, by Theorem 27 we can choose Ê s.t. limy→+∞
Êb(iy)
iyEb(iy)

=

0. Note that such Ê is unique up to a real multiple of E. Now by Theorem 32, we have

<i
Êb − Ê#

b Wb

Eb − E#
b Wb

= p(Ea, Ea)y +
y

π

∫
R

1

(t− x)2 + y2

∣∣∣∣EaEb
∣∣∣∣2 dµb(t) (19)

Let p = − limy→+∞
Ẽb(iy)
iyEb(iy)

> 0, since both − Êb
Eb

and − Ẽb+pzEb
Eb

has nonnegative imaginary part on
C+, same limit on the positive imaginary axis, can be continuously extended to R and have the same
imaginary parts on R, they differ by a real number. Now we can choose Êb s.t. the real number is 0, then
Êb = Ẽb + pzEb. Plug this in (19), we get:

<i
Ẽb − Ẽ#

b Wb

Eb − E#
b Wb

− py = p(Ea, Ea)y +
y

π

∫
R

1

(t− x)2 + y2

∣∣∣∣EaEb
∣∣∣∣2 dµb(t) (20)

Combine this with (18) we get:

<Ea + E#
a Wa

Ea − E#
a Wa

= (p(Ea, Ea) + p)y +
y

π

∫
R

1

(t− x)2 + y2

∣∣∣∣EaEb
∣∣∣∣2 dµb(t) (21)

On the other hand, by our definition of µa (see (17)), we have

<Ea + E#
a Wa

Ea − E#
a Wa

= pay +
y

π

∫
R

dµa(t)

(t− x)2 + y2

and since such representation is unique, we can conclude pa = p(Ea, Ea) + p and dµa =
∣∣∣EaEb ∣∣∣2 dµb. Let

dµ = dµb
|Eb|2

, then (17) becomes

<
Eb + E#

b Wb

Eb − E#
b Wb

= pby +
y

π

∫
R

|Eb|2dµ(t)

(t− x)2 + y2

and then the proof is complete.

Remark. This problem claims any dB chain has at least one spectral measure.
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Problem 164

Let m(t) =

(
α(t) β(t)
β(t) γ(t)

)
be a nondecreasing, matrix valued function of t > 0 whose entries are continuous,

real valued functions of t. Assume that α(t) > 0 for t > 0 and that limα(t) = 0 as t ↘ 0. Assume that
{E+,t(z)} and {E−,t(z)} are given families of entire functions, which have no real zeros and which have
value 1 at the origin, such that spaces B(E+,t) and B(E−,t) exist for every t > 0, E+,t(w) and E−,t(w) are
continuous functions of t for every w, and

(A+,b(w), B+,b(w))I − (A+,a(w), B+,a(w))I = w

∫ b

a

(A+,t(w), B+,t(w))dm(t)

(A−,b(w), B−,b(w))I − (A−,a(w), B−,a(w))I = w

∫ b

a

(A−,t(w), B−,t(w))dm(t)

for 0 < a < b <∞, and such that πK+,a(0, 0) = α(a) = πK−,a(0, 0) for a > 0. If

Pt(z) =

(
A+,t(z) B+,t(z)
A−,t(z) B−,t(z)

)
show that

Pb(z)IP
∗
b (w)− Pa(z)IP ∗a (w) = (z − w̄)

∫ b

a

Pt(z)dm(t)P ∗t (w) (22)

whenever 0 < a < b <∞ and that

lim
t↘0

Pt(z)IP
∗
t (w) = T+(z)IT ∗−(w)

for some entire functions T+(z) and T−(z) which are real for real z. Show that T+(z)T−(z) vanishes at
the origin, and use this fact to show that it vanishes identically. Show that there exists an entire function
S(z), which is real for real z and which has no zeros, such that E−,t(z) = S(z)E+,t(z) for all t > 0.

Proof. See my notes “Several Remarks on Uniqueness”.

Problem 174

Let B(E1) and B(E2) be spaces which are isometrically equal. Show that E1(z) = E2(z) if E∗k(z) = Ek(−z)
and if Ek(0) = 1 for k = 1, 2.

Proof. Since B(E1) = B(E2), there exists P ∈ SL(2,R) s.t. (A1(z), B1(z)) = (A2(z), B2(z))P , ∀z ∈ C.
Plug in z = 1 we can see that the first row of P must be (1, 0). Since detP = 1, the lower right component
of P must be 1. So P must be like (

1 0
c 1

)
for some real number c, so A1(z) = A2(z) + cB2(z). Change z into −z and use the fact that A1, A2 are
even and B2 is odd we can get c = 0. So E1(z) = E2(z).

Remark. This problem says any symmetric dB space is associated with a unique normailized symmetric
dB function.

Problem 175

Let B(E) be a given space such that E(z) has no real zeros and E#(−z)
E(z)

is of bounded type in the upper

half-plane. Let µ(x) be a nondecreasing function of real x such that B(E) is contained isometrically in
L2(µ). If µ(x) is an odd function of x, show that B(E) is symmetric about the origin.

Proof. Let E2(z) := E#(−z). It’s not hard to see E2 is a strict dB function. First I’ll show if F (z) ∈ B(E2),
then F (−z) ∈ B(E). Note that

K2(z, z) =
|E2(z)|2 − |E#

2 (z)|2

4πy
=
|E#(−z)|2 − |E(−z)|2

4πy
= K(−z,−z)

So by Theorem 20 we have F (−z) ∈ B(E). Similarly we can show if F (z) ∈ B(E), then F (−z) ∈ B(E2).
Now we prove B(E2) v L2(µ). Let F ∈ B(E2), then

‖F‖2B(E2) =

∫
R

∣∣∣∣ F (t)

E(−t)

∣∣∣∣2 dt = ‖F (−z)‖2B(E) = ‖F (−z)‖L2(µ) = ‖F‖L2µ
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the last equality comes from the assumption that µ is odd.
Since E2

E
∈ N (C+), by Theorem 35 (ordering theorem), either B(E2) v B(E) or B(E) v B(E2). For the

first case, ∀F ∈ B(E), F (−z) ∈ B(E2) v B(E). For the second case, ∀F ∈ B(E) v B(E2), we already
proved F (−z) ∈ B(E). So in either case, if F (z) ∈ B(E), then F (−z) ∈ B(E). So B(E) is symmetric.

Remark. This problem says under some technical conditions (E strict dB, E#(−z)
E(z)

∈ N (C+)), if B(E) v
L2(µ) for some odd µ, then B(E) itself is symmetric.

Problem 176

Let B(Ea) and B(Eb) be given spaces such that B(Ea) is contained isometrically in B(Eb) and such that
Ea(z) and Eb(z) have no zeros. Show that B(Ea) is symmetric about the origin if B(Eb) is symmetric
about the origin.

Proof. Similar to problem 175 we know E#
a (−z) is dB as well and using the property that ∀F ∈ B(E#

a (−z)),
F (−z) ∈ B(Ea) v B(Eb) and hence F (z) ⊂ B(Eb), we get B(E#

a (−z)) v B(Eb). Pick any nonzero F ∈
B(Ea) v B(Eb), since F

Ea
and F

Eb
are in N (C+), we have Ea

Eb
∈ N (C+). Similarly we get

E#
a (−z)
Eb(z)

∈ N (C+),

hence
E#
a (−z)
Ea(z)

∈ N (C+). Now by similar argument as in proving last problem we know that B(Ea) is

symmetric about the origin. In particular, B(Ea(z)) = B(E#
a (−z)).

Remark. This problem says, under some technical conditions (Ea, Eb strict), a subspace of symmetric dB
space is still symmetric.

Problem 177

Let B(Ea) and B(Eb) be given spaces such that

(Ab(z), Bb(z)) = (Aa, Ba)Ma→b(z)

for some space B(Ma→b) such that Ma→b(0) = 1. Let

A1,a(z) = Aa(−z), B1,a(z) = −Ba(z)

A1,a→b(z) = Aa→b(−z), B1,a→b(z) = −Ba→b(−z)
C1,a→b(z) = −Ca→b(−z), D1,a→b(z) = Da→b(−z)

If E#
b (z) = Eb(−z), show that spaces B(E1,a) and B(M1,a→b) exist and that

(Ab(z), Bb(z)) = (A1,a(z), B1,a(z))M1,a→b(z)

Show that E1,a(z) = E#
a (−z) = Ea(z) and that M1,a→b(z) = Ma→b(z).

Proof. First let’s prove B(E1,a) and B(M1,a→b) exist. From proof to problem 175 we know E1,a is a non-
degenerate strict dB function and ∀F ∈ B(E), so B(E1,a) exists. To show B(M1,a→b) exists, it suffices to
show the existence of entire function S1 s.t. (use M1 to denote M1,a→b)

detM1(z) = S1(z)S#
1 (z),

M1(z)IM̄1(z)− S1(z)IS̄1(w)

z − z̄ > 0, ∀z ∈ C (23)

Since B(Ma→b) exists, there exists entire function S s.t.

detM(z) = S(z)S#(z),
M(z)IM̄(z)− S(z)IS̄(w)

z − z̄ > 0, ∀z ∈ C (24)

Note that M1(z) =

(
1 0
0 −1

)
M(−z)

(
1 0
0 −1

)
. Note that for a 2× 2 matrix N ,

N > 0⇐⇒
(

1 0
0 −1

)
N

(
1 0
0 −1

)
> 0

Let S1(z) := S(−z), change z into −z in equation (24) and use the equation(
1 0
0 −1

)
I

(
1 0
0 −1

)
= −I
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we can get (23).
Since Eb is symmetric, Ab(z) = Ab(−z) and Bb(z) = −Bb(−z),

(Ab(z), Bb(z)) = (Ab(−z),−Bb(−z))

= (Ab(−z), Bb(−z))
(

1 0
0 −1

)
= (Aa(−z), Ba(−z))Ma→b(−z)

(
1 0
0 −1

)
= (A1,a(z),−B1,a(z))Ma→b(−z)

(
1 0
0 −1

)
= (A1,a(z), B1,a(a))

(
1 0
0 −1

)
Ma→b(−z)

(
1 0
0 −1

)
= (A1,a(z), B1,a(z))M1,a→b(z)

By problem 176, B(Ea) is symmetric and B(Ea) = B(E#
a (−z)), hence there exists P ∈ SL(2,R) s.t.

(Aa(z), Ba(z)) = (Aa(−z),−Ba(−z))P

Plug in z = 0 and use the fact (Aa(0), Ba(0)) = (Ab(0), Bb(0)) = (Ab(0), 0), it’s easy to see P must be(
1 0
c 1

)
for some c ∈ R, hence Ba(z) = −Ba(−z) and Aa(z) = Aa(−z) + cBa(z).

Now it suffices to show c = 0. Let z = iy, then cBa(iy) = Aa(iy)−Aa(−iy) = Aa(iy)−Aaiy = 2<A(iy) ∈ R.

On the other hand, B(iy) = −B(−iy) = −B(−iy) = −B(iy) implies B(iy) is purely imaginary, so c = 0.
Hence E1,a(z) = E#

a (−z) = Ea(z). The equality M1,a→b(z) = Ma→b(z) follows from problem 100.

Remark. This problem says if (Ab, Bb) = (Aa, Ba)Ma→b and Eb is symmetric, B(Ea),B(Eb) and B(Ma→b)
exist, then Ea is symmetric.

Remark. Note that we also proved the following proposition: if B(E) is symmetric and B(0) = 0, then E
is symmetric.

Problem 178

If E#(z) = E(−z) and if µ(x) = −µ(−x) in Theorem 40, show that β(t) is a constant and that E#
a (z) =

Ea(−z) for all indices a.

Proof. First we’ll show E#
a (z) = Ea(−z) for all a ∈ (s−, s+). From the proof to Theorem 40 we can see

that
(Ab, Bb) = (Aa, Ba)Ma→b (25)

when s− < a 6 b. By Theorem 40, E(z) = Ec(z). If a < c, then by problem 177 we have Ea is symmetric.
Now for a > c, there’re two cases.

Case 1. There’s no largest regular point. So for any a > c, we can always find b > a which is regular, and
therefore B(Eb) v L2(µ). Let F ∈ B(Ec), then F (−z)

F (z)
∈ N (C+). And since F (−z)

E
#
b

(−z)
, F (z)
Eb(z)

∈ N (C+)

as well, then
E

#
b

(−z)
Eb(z)

∈ N (C+), and by problem 175 we know Eb is symmetric. Change a into c in

equation (25), we can see that Bb(0) = 0, so by the proposition in the second remark to problem 177,
Eb must be symmetric. And then by problem 177, Ea is symmetric.

Case 2. There’s one largest regular point b. For any c 6 b, by previous argument we know Ec is symmetric.
For c > b, from the proof to Problem 151 we can see

(Ac, Bc) = (Ab, Bb)

(
1− uvz u2z
−v2z 1 + uvz

)
for some u, v ∈ R, and uAb+vBb ∈ B(Ec). The rest depends on the construction of forward extension.
By construction, v = 0, so it’s easy to see Ec is symmetric.

The statement β(t) is a constant comes from differentiating Ma→b(z) and use the results of Problem
177.

Remark. This problem says if a dB chain has a symmetric(odd) spectral measure, and if one dB function
is symmetric, then all dB functions in the chain are symmetric.
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Problem 305

Let ρ be a nonnegative integer. An entire function F (z) is said to belong to the ρ-th Laguerre class if it is
real for real z, has only real zeros, and has value one at the origin, and if

<
(
iz−2ρF

′(z)

F (z)

)
> 0

for y > 0. Show that the function

(1− hz) exp

(
hz +

h2z2

2
+ · · ·+ h2ρ+1z2ρ+1

2ρ+ 1

)
belongs to the ρ-th Laguerre class if h is real. Show that a finite product of functions which belong to the
ρ-th Laguerre class. Show that a limit of functions which belong to the ρ-th Laguerre class is a function
which belongs to the ρ-th Laguerre class if convergence is uniform on bounded sets. If {hn} is a sequence
of real numbers such that

∞∑
n=1

h2ρ+2
n <∞

show that the product

P (z) =

∞∏
n=1

(1− hnz) exp

(
hnz +

h2
nz

2

2
+ · · ·+ h2ρ+1

n z2ρ+1

2ρ+ 1

)
converges uniformly on bounded sets and represents an entire function which belongs to the ρ-th Laguerre
class. Show that it satisfies the estimate

log(1 + |P (z)− 1|) 6

(
∞∑
n=1

h2ρ+2
n

)
|z|2ρ+2

for all complex z. Show that the function e−az
2ρ+2

belongs to the ρ-th Laguerre class if a > 0.

Proof. Let

F (z) := (1− hz) exp

(
hz +

h2z2

2
+ · · ·+ h2ρ+1z2ρ+1

2ρ+ 1

)
then

F ′(z) = (−h+ (1− hz)(h+ · · ·+ h2ρ+1z2ρ)) exp

(
hz +

h2z2

2
+ · · ·+ h2ρ+1z2ρ+1

2ρ+ 1

)
=

(
−h+ (1− hz)h1− (hz)2ρ+1

1− hz

)
exp

(
hz +

h2z2

2
+ · · ·+ h2ρ+1z2ρ+1

2ρ+ 1

)
= −h(hz)2ρ+1 exp

(
hz +

h2z2

2
+ · · ·+ h2ρ+1z2ρ+1

2ρ+ 1

)
<
(
i
F ′(z)

z2ρF (z)

)
= <−ih

2ρ+2z

1− hz

=
h2ρ+2

|1− hz|2=z

> 0

Use definition it’s easy to check finite product, and uniform limit of Laguerre functions is of Laguerre class.
Now let’s show P (z) belongs to ρ-th Laguerre class. Let

an(z) := (1− hnz) exp

(
hnz +

h2
nz

2

2
+ · · ·+ h2ρ+1

n z2ρ+1

2ρ+ 1

)
Pr(z) :=

r∏
n=1

an(z)

This is analogous to Problem 9 for Pólya class. We’ll show

|Ps(z)− Pr(z)| 6 exp

((
s∑

n=1

h2ρ+2
n

)
|z|2
)
− exp

((
r∑

n=1

h2ρ+2
n

)
|z|2
)
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Use problem 7 and 8, ∣∣∣∣Ps(z)Pr(z)
− 1

∣∣∣∣ = |ar+1 · · · as − 1|

6 (1 + |ar+1 − 1|) · · · (1 + |as − 1|)− 1

6 eh
2ρ+2
r+1 |z|

2ρ+2

· · · eh
2ρ+2
s |z|2ρ+2

− 1

6 e(
∑s
n=r+1 h

2ρ+2
n )|z|2ρ+2

− 1

|Pr(z)| 6 1 + |Pr(z)− 1|

6 e(
∑r
n=1 h

2ρ+2
n )|z|2ρ+2

|Ps(z)− Pr(z)| 6 e(
∑s
n=1 h

2ρ+2
n )|z|2ρ+2

− e(
∑r
n=1 h

2ρ+2
n )|z|2ρ+2

and then use the same argument as problem 9, we get local uniform convergence.

Now let F (z) := e−az
2ρ+2

, a > 0,

F ′(z) = −a(2ρ+ 2)z2ρ+1e−az
2ρ+2

<i F ′

z2ρF
= a(2ρ+ 2)= (1− az̄)z

|1− az|2

> 0

for z ∈ C+.

Remark. We probably need to add limz→0
F ′(z)
z2ρ+1 exists for F to be in ρ-th Laguerre class. From now on

we’ll use the following definition: F belongs to the ρ-th Laguerre class if:

(1) F is real entire, has only real zeros;

(2) F (0) = 1;

(3) <
(
i F ′(z)
z2ρF (z)

)
> 0;

(4) limz→0
F ′(z)
z2ρ+1 exists.

If we don’t include (4), then F (z) = ez
2ρ+1

satisfies (1), (2) and (3):

<
(
i
F ′(z)

z2ρF (z)

)
= <(i(2ρ+ 1)) = 0

and this contradicts Problem 307.

Problem 306

If an entire function F (z) belongs to the ρ-th Laguerre class and has a zero w, show that

F (z) = G(z)(1− hz) exp

(
hz +

h2z2

2
+ · · ·+ h2ρ+1z2ρ+1

2ρ+ 1

)
where G(z) is an entire function which belongs to the ρ-th Laguerre class and h = 1/w.

Proof. Let Hw(z) := (1 − hz) exp
(
hz + h2z2

2
+ · · ·+ h2ρ+1z2ρ+1

2ρ+1

)
(where w = 1

h
), then H belongs to ρ-

th Laguerre class by Problem 305, and it’s easy to check G is real entire, G(0) = 1 and limz→0
G′(z)
z2ρ+1

exists since F ′ = G′Hh + GH ′h. Now it suffices to check <
(
i 1
z2ρ

F ′

F

)
> 0. Since <

(
i 1
z2ρ

F ′

F

)
> 0, by

Poisson representation there exists p and µ s.t. <
(
i 1
z2ρ

F ′

F

)
= py + Pµ. Let {tk} be zeros of F , with

multiplicity nk. Let F̃ (z) := i 1
z2ρ

F ′

F
. Since <F̃ = 0 on the real line, µ is discrete (since µ(b) − µ(a) =

limy→0+

∫ b
a
<F̃ (x+ iy)dx). Now let’s calculate jump of µ at each tn. Let F = G0H

nk
tk

, then

<F̃ = <G̃+ nk<H̃tk
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where <G̃ goes to 0 as y goes to 0. It’s easy to calculate <H̃tk . Let wk = 1
tk

, then

H̃wk =
i

z2ρ

H ′wk (z)

Hwk (z)

= −i
t2ρ+2
k z

1− tkz
<H̃wk = t2ρ+2

k = z

1− tkz
= t2ρk

y

|z − wk|2

µ(wk + ε)− µ(wk − ε) = nkt
2ρ
k lim
y→0+

∫ wk+ε

wk−ε

y

(x− wk)2 + y2
dy

= πt2ρk

Hence <F̃ (z) = py +
∑
k nkt

2ρ
k

y
|z−wk|2

. Moreover, find j s.t. w = wj , then h = 1
wj

, and

<G̃(z) = <F̃ (z)−<H̃wk
= py +

∑
k 6=j

nkt
2ρ
k

y

|z − wk|2
+ (nj − 1)t2ρj

y

|z − wj |2

> 0

Remark. For 0-th Laguerre class, please refer to Čebotarev’s theorem (“Distribution of Zeros of Entire
functions”, page 310).

Problem 307

If an entire function F (z) belongs to the ρ-th Laguerre class and has no zeros, show that

F (z) = exp(−az2ρ+2)

where a > 0.

Proof. Let F̃ (z) = i F ′(z)
z2ρF (z)

. Since F is zero-free and limz→0
F ′(z)
z2ρ = 0 exists, F̃ is entire, and <F > 0 on

C+, = 0 on R and 6 0 on C-. By Problem 2-4 we know F̃ (z) = −ia0z + b, where a0 > 0. Since F̃ (0) = 0,

b = 0. Hence F̃ (z) = −ia0z, i.e. logF (z) = −a0
z2ρ+2

2ρ+2
:= −az2ρ+2, F (z) = exp(−az2ρ+2).

Problem 308

If an entire function F (z) belongs to the ρ-th Laguerre class, show that F (z) is equal to

exp(−az2ρ+2)
∏

(1− hnz) exp

(
hnz +

h2
nz

2

2
+ · · ·+ h2ρ+1

n z2ρ+1

2ρ+ 1

)
where a > 0 and {hn} is a sequence of real numbers such that

∑
h2ρ+2
n <∞.

Proof. Let {wk} ⊆ R be the zeros of F , hk := 1
wk

, then by Problem 305-307 it suffices to show
∑+∞
k=1 h

2ρ+2
k <

∞. First we have F (z) = Gn(z)
∏n
k=1 Hwk (z), where Gn and

∏n
k=1 Hwk are of ρ-th Laguerre class. Note

that

<F̃ (z) >
n∑
k=1

<H̃wk (z)

=

n∑
k=1

y

|z − wk|2
h2ρ
k
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Since limz→0
F ′(z)

z2ρ+1F (z)
exists, let G = F ′(z)

z2ρ+1F (z)
, then G(z) is analytic in a neighborhood of 0. In particular,

<F̃ (z) = <(izG). Let z = iy for small y, then

<(−yG(iy)) >
n∑
k=1

y

|iy − wk|2
h2ρ
k

<(−G(iy)) >
n∑
k=1

1

y2 + w2
k

h2ρ
k

<(−G(0)) >
n∑
k=1

h2ρ+2
k

Hence
∑+∞
k=1 h

2ρ+2
k 6 <(−G(0)) <∞, and by Problem 305-307 we’re done.

Problem 309

If an entire function F (z) belongs to the ρ-th Laguerre class, show that

lim
z→0

F ′(z)

z2ρ+1
= −(2ρ+ 2)δ

where δ > 0 and
log(1 + |F (z)− 1|) 6 δ|z|2ρ+2

for all complex z.

Proof. This statement is wrong. A counterexample is F (z) = (1−z)ez, then F ′(z) = −zez and limz→0
F ′(z)
z

=
−1, hence δ = 1

2
. F (1) = 0, hence log(1 + |F (z)−1|) = log 2 ≈ 0.69. However, RHS is 0.5 which is smaller.

The statement is true if we define δ = − limz→0
F ′(z)
z2ρ+1 .

Problem 310

Let F (z) be a function which is real for real z, has only real zeros, and has value one at the origin. Define
logF (z) continuously in the upper half-plane so as to have limit zero at the origin. Show that F (z) belongs
to the ρ-th Laguerre class if, and only if,

<
(
i
logF (z)

z2ρ+1

)
> 0

for y > 0.

Remark. The statement and proof is analogous to Theorem 14. And we need additional assumption that

limz→0
F ′(z)
z2ρ+1 exists, as mentioned in the remark to Problem 305.

Proof. First we assume F belongs to the ρ-th Laguerre class. By Problem 308, there’re only two cases:

F = exp(−az2ρ+2) and F = (1− hz) exp(hz + · · ·+ (hz)2ρ+1

2ρ+1
). The first case is trivial. For the second one,

∂

∂h
<
(
i
logF (z)

z2ρ+1

)
= <

(
i

2ρ+ 1

∂

∂h

(
log(1− hz) + hz + · · ·+ (hz)2ρ+1

2ρ+ 1

))
= <

(
i

2ρ+ 1

(
−z

1− hz + z + · · ·+ z(hz)2ρ

))
= <

(
−ih2ρ+1z

|1− hz|2

)
= h2ρ+1 y

|1− hz|2

is positive (negative) for h > 0 (h < 0). For h = 0, <
(
i logF (z)

z2ρ+1

)
= 0, hence <

(
i logF (z)

z2ρ+1

)
> 0 for all h,

when y > 0.

Now assumes <
(
i logF (z)

z2ρ+1

)
> 0. If F is zero-free, i logF

z2ρ+1 is entire by our additional assumption. Now use

Problem 2-4 we can get

i
logF

z2ρ+1
= −iaz + b

where a > 0. Plug in z = 0 we have b = 0, then F = exp(−az2ρ+2).
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Now assume F has zero w1, let h1 = 1
w1

and the associated canonical factor be P1(z). We want to show

F1 = F
P1

still satisfies the same inequality. This can be proved using Poisson representation like we did

for Problem 308. Define -̃transform as F̃ (z) = i logF (z)

z2ρ+1 , then what we showed is F̃ (z) = F̃1 + P̃1, and

<F̃ ,<F̃1,<P̃1 > 0 on C+. It’s easy to prove Fn := F∏n
k=1

Pk
satisfies <F̃ > <F̃n > 0 on C+.

Now it suffices to show
∑+∞
k=1 h

2ρ+2
k <∞. Let Qn(z) :=

∏n
k=1 Pk(z), since <F̃ − <Q̃n = <F̃n > 0 on C+,

= 0 on R, 6 0 on C-, we have
∂

∂y

(
<F̃ −<Q̃n

) ∣∣∣∣
z=0

> 0

The first term is just −=F̃ ′(0), which is a fixed nonnegative number. Note that Q̃n =
∑n
k=1 P̃k, and by

L’Hôpital’s rule we have

P̃ ′k(0) = i
(logPk)′z2ρ+1 − (logPk)(2ρ+ 1)z2ρ

z4ρ+2

∣∣∣∣
z=0

= i

(
P ′k

Pkz2ρ+1
− (2ρ+ 1)

logPk
z2ρ+2

) ∣∣∣∣
z=0

= i

(
P ′k

Pkz2ρ+1
− 2ρ+ 1

2ρ+ 2

P ′k
Pkz2ρ+1

) ∣∣∣∣
z=0

= −i 1

2ρ+ 2
h2ρ+2
k

Hence

∂

∂y
<Q̃n

∣∣∣∣
z=0

= −=(Q̃n)′(0)

=
1

2ρ+ 2

n∑
k=1

h2ρ+2
k

Now we have
∑n
k=1 h

2ρ+2
k 6 −=F̃ ′(0), ∀n, and we can reduce to the case where F is zero-free, and the

proof is complete.

Problem 313

Let B(E) be a given space such that E(z) has no real zeros and A(0) = 1. Show that the transformation

F (z) 7→ F (z)−A(z)F (0)
z

is self-adjoint in the space. Show that the space admits an orthogonal basis consisting
of eigenfunctions of the transformation. Show that the nonzero eigenvalues of the transformations are the
numbers { 1

tn
} where {tn} are the zeros of A(z).

Proof. In Problem 67, let α = β = 0, u = 1, then

〈F (t), (BA,0 G)(t)〉 = 〈(BA,0 F )(t), G(t)〉

hence BA,0 is self-adjoint. Furthermore, we know {K(tn, z)} or {K(tn, z)} ∪ {A(z)} forms an orthogonal
basis, depending on if A ∈ B(E) or not. From the proof to Problem 67 we can see the nonzero eigenvalues

are A(0)
tn−0

= 1
tn

, where {tn} are the zeros of A(z).

Problem 314

A bounded transformation T of a Hilbert space into itself is said to be of Schmidt class if

σ(T )2 =
∑
‖Tfn‖2 <∞

for some orthonormal basis {fn} of the space. Show that the sum does not depend on the choice of
orthonormal basis.

Proof. The independence over choice of orthonormal basis is a well-known fact in operator theory.
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Problem 315

Let B(E) be a given space such that E(z) has no real zeros and A(0) = 1. Let T be the transformation

F (z) 7→ F (z)−A(z)F (0)

z

in the space. Show that T 1+ρ is of Schmidt class if A(z) belongs to the ρ-th Laguerre class. Show that
σ(T 1+ρ)2 6 δ where

−(2ρ+ 2)δ = lim
z→0

A′(z)

z2ρ+1

Show that equality holds if

lim
y→+∞

log |A(iy)|
y2ρ+2

= 0

Proof. Let {tn} be the zeros of A, then T 1+ρK(tn, z) = 1

t
1+ρ
n

K(tn, z) and T 1+ρA = 0, then by Problem 314

we have σ(T 1+ρ)2 =
∑
n

1
|tn|2ρ+2 . Since A belongs to ρ-th Laguerre class, by Problem 308

∑
n

1
|tn|2ρ+2 <∞.

Hence T 1+ρ is of Schmidt class if A(z) belongs to the ρ-th Laguerre class.
From the proof to Problem 310 we can see

∑
n

1
|tn|2ρ+2 6 −=Ã′(0). Similar to the calculation of P̃ ′k(0), we

can get Ã′(0) = i 1
2ρ+2

limz→0
A′

Az2ρ+1 = −iδ, hence

σ(T 1+ρ)2 =
∑
n

1

|tn|2ρ+2
6 −=Ã′(0) = δ

Now suppose limy→+∞
log |A(iy)|
y2ρ+2 = 0. Let A(z) = e−az

2ρ+2 ∏+∞
k=1 Pk(z) be the usual factorization. Let

Qn(z) :=
∏n
k=1 Pk(z), it’s easy to check log |A(iy)|

y2ρ+2 goes to 0 as y goes to +∞, and the convergence is

uniform in n. Hence the condition limy→+∞
log |A(iy)|
y2ρ+2 = 0 implies a = 0, i.e. A(z) is just the product of

canonical factors, then by the proof to Problem 310 we can see the equality holds.

Problem 316

Let B(E) be a given space such that E(z) has no real zeros and A(0) = 1. Let T be the transformation

F (z) 7→ F (z)−A(z)F (0)

z

in the space. If T 1+ρ is of Schmidt class, show that E(z) = S(z)E0(z) where S(z) is an entire function
which is real for real z and has no zeros and B(E0) is a space such that A0(z) belongs to the ρ-th Laguerre
class. Show that A0(z) can be chosen so that

lim
y→+∞

log |A0(iy)|
y2ρ+2

= 0

Proof. By Problem 313 and 314, let {tn} be the zeros of A, then
∑+∞
n=1

1

t
2ρ+2
n

< ∞. Let A0(z) :=∏+∞
k=1 Pk(z), then A0 belongs to ρ-th Laguerre class and limy→+∞

log |A0(iy)|
y2ρ+2 = 0. Let S = A

A0
, it’s

real entire and zero-free by definition of A0. Let E0 = E
S

, then E0 is strict, non-degenerate dB, as E is
strict and non-degenerate.

58


