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Abstract
Integration of high throughput data with online data resources is critical for data analysis and hypothesis generation. 
Relational databases facilitate the data integration, but larger amounts of data and the growth of the online data resources 
can slow down the data analysis process. We have developed a proof-of-principle software tool using concepts from the 
business intelligence field to enable fast, reliable and reproducible quantitative analysis of mass spectrometry data. The 
software allows the user to apply customizable analysis protocols that aggregates the data and stores it in fast and redundant 
data structures. The user then interacts with these data structures using web-based viewers to gauge data quality, analyze 
global properties of the data set and then explore the underlying raw data, which is stored in a tightly integrated relational 
database. To demonstrate the software we designed an experiment to describe the differentiation of a leukemic cell line, 
HL-60, to a neutrophil-like phenotype at the molecular level. The concepts described in this paper demonstrates how the 
new data model enabled rapid overview of the complete experiment in regard of global statistics, statistical calculations of 
expression profiles and integration with online resources providing deep insight into the data within a few hours.
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Introduction
Data-driven systems biology relies on the ability to 
generate hypotheses from large amounts of high-content 
data. Insights gained from experimental data are integrated 
into a knowledge model and further hypotheses are tested 
in follow-up experiments. This necessitates a short time 
frame from hypothesis generation to comprehensive and 
quantitative data collection and fast, consistent analysis 
of the collected data. The proteome is a dynamic and 
spatially distributed set of proteins carrying out instructions 
encoded in the genome, which warrants proteome 
measurements as a critical component of molecular 
systems biology studies. Mass spectrometry-based 
proteomics have recently seen big technological advances 
both on the instruments and the data analysis workflows 
and is currently capable of generating quantitative digital 
representations of proteomes. In mass spectrometry-
based proteomics, tryptic peptides from whole proteome 
digests are analyzed by tandem mass spectrometry (MS) 
where a subset of the ions detected in the survey scan 
(MS1) are selected for fragmentation, for example by 
collision induced dissociation (CID), and subsequently 
measured, generating MS/MS spectra (MS2). The resulting 
data is processed through multi-component workflows, 
where the peptides are inferred from the MS2 spectra by 

searching them against a protein sequence database [1] 
followed by post-search filtering [2,3]. The MS1 spectra 
are used to derive relative abundance for the majority of 
the identified peptides [4-6].

In a typical data analysis workflow, the raw data files gets 
processed through two parallel software workflows, the 
identification workflow [7] and the quantitative workflow 
[4]. Results from both are then integrated to generate a file 
with protein intensities across the liquid chromatography 
(LC)/MS experiments. In order to understand the data, it is 
desirable to integrate the data with protein information 
databases such as the gene ontology (GO) [8], the protein 
data bank (PDB) [9], interaction databases and pathway 
databases [10] among others. As all the information flows 
one-way, the connection between the raw data and the 
processed data is lost and it becomes time consuming 
and labor intensive to verify any findings in the raw data. 
In addition, it can be difficult to capture the process in 
enough detail to reproduce it later. These issues can be 
addressed using relational databases, where the raw 
data is explicitly imported and annotated by tools used 
in the file-based workflows [11-14]. The data is stored in 
a structured and normalized transactional data model, 
i.e. each piece of data is stored only once and that allows 
for fast concurrent updates and safeguards against 
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data inconsistencies. Comprehensive meta data such as 
parameter settings and software/database versions can 
easily be captured. The basic data structures are tables 
(two dimensional; rows and columns) that are referring to 
each other through references or foreign keys and there 
might be hundreds of tables each related to the others 
in a complex fashion. This setup is sometimes referred to 
as on-line transactional processing or OLTP data model. 
The OLTP data model solves the problem of connecting 
any derived result to the underlying raw data efficiently. 
However, with increasing speed and resolution of modern 
mass spectrometers and the exponential growth of online 
data resources, the amount of data stored in the OLTP 
model gets bigger. Certain types of queries (mostly ones 
that affect a large number of records) become slower 
with size and can become a prohibitive bottleneck when 
analyzing medium to large datasets like tens to hundreds 
of LC-MS experiments. This becomes an issue when the 
data analysis needs to be performed in a repetitive and 
interactive fashion where different normalization and data 
integration strategies are desired, which often results in 
the re-analysis of complete data sets several times.

To address the speed limitations of the OLTP models we 
have modified concepts from the business intelligence (BI) 
field and introduced these concepts into mass spectrometry-
based proteomics bioinformatics to increase the analysis 
speed. BI is a term referring to a group of technologies 
applied to historical sales data to identify future business 
opportunities. BI makes it possible to analyze billions of 
transactions of hundreds of thousands different products 
across the globe interactively (<10 seconds to return a high-
level report) and integrate the data with both global and 
local events [15-17]. The general strategy in BI is to aggregate 
the data in the transaction model at multiple resolutions 
and store the results explicitly in data structures referred to 
as a hyper-cube, which can have two or more dimensions. 
An example of a cube in the business world could be sales 
activities in different geographic regions creating a cube 
with one dimension for geographic resolution and another 
dimension might be product category. A dimension refers 
to the decomposition of some data attributes into various 
resolutions (levels) in a tree where each resolution contains 
all the information from the directly underlying resolution 
in a simple one-to-many relationship. An example of a 
dimension in the business world case would be regions 
where the highest resolution might be neighborhoods 
in a city and stretch up to countries or continents via city, 
country and state. The fundamental idea in BI is hence to 
pre-compute a data-set wide hyper-cube where the sides of 
the cube corresponds to a dimension and the construction 
of the cube is done by summing up sub-categories in 
the tree to greater resolutions, an operation referred to 
as aggregating. These cubes allow for fast querying and 
hence are attractive when analyzing large data sets. This 
also allows a dataset to be analyzed interactively where one 

can navigate from resolution to resolution interactively (no 
view takes more than a few seconds to load). The strategy 
of storing each data point as part of multiple aggregate 
data points is sometimes referred to as on-line analytical 
processing, OLAP. In general, the original data is stored in 
the OLTP model and an OLAP model is generated from that 
OLTP model at some given time point in order to analyze 
it. The OLAP tables are regenerated at desired frequency 
to reflect changes in the underlying OLTP model.

In this paper, we developed an OLAP-based strategy 
to rapidly analyze data generated by mass spectrometry 
based proteomics workflows. We adapted the BI-concepts 
so that the typically non-decomposable mass spectrometry 
based proteomics data structures could be efficiently 
analyzed. To test the feasibility of our approach we applied 
the strategy to differentiation of the well-studied cell line 
HL-60. These cells were first purified from a patient with 
acute promyelocytic leukemia in 1977 [18]. It was early 
demonstrated that HL-60 cells can be differentiated into 
a neutrophil-like state by the addition of various inducers; 
one of these inducers is all-trans retinoic acid (ATRA) [19]. 
ATRA induces a neutrophil-like state that displays a similar 
phenotype to neutrophils in respect of phagocytosis 
and microbial killing [20]. Generally, it takes 3-5 days for 
the HL-60 cells to acquire neutrophil characteristics and 
behavior. In the present work, we hypothesized that the 
phagocytosis gain of function can be described at the 
molecular level by quantitative mass spectrometry based 
proteomics following a time-course experiment of the  
HL-60 differentiation process. We demonstrate how the 
data was processed through the automatic workflows 
and that the data was stored and processed in the OLTP. 
We found that we could create the OLAP model from the 
OLTP model in slightly over one wall-clock hour and that 
insight into the data could be gained within a few hours, 
much faster compared to analysis without the OLAP model. 

Materials and methods
Cell culture
HL-60 cells were acquired from the ATCC and were kept in 
low passage (<2 months) and then exchanged for freshly 
thawed aliquots. In accordance with the protocol of 
Breitman et al., [19] seeding of HL-60 cells was performed 
in l-glutamine-containing RPMI 1640 medium (PAA Labs, 
Gothenburg, Sweden), supplemented with 10% fetal bovine 
serum (Gibco, Copenhagen, Denmark). The cells were kept 
in 5% CO2 atmosphere at 37°C. No antibiotics were used. 
The viability of the differentiated cells was determined by 
trypan blue exclusion. To start differentiation of the cells  
1µM all-trans retinoic acid (ATRA, Sigma-Aldrich, Stockholm, 
Sweden) was added.

Experiment & lysate preparation
Cells were counted and their viability was determined 
before harvesting at each time point. An aliquot of cells 
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were withdrawn, centrifuged (5 min, 146 g, swing-out) and 
washed three times with sterile PBS. The samples were 
resuspended in lysis buffer (8M Urea, 100 mM Tris, Roche 
Complete Mini, 0.1U/ml Benzonase, pH 8.0, sterile filtered) 
and frozen at -20°C. After all samples were collected, they 
were thawed and disrupted with a sonicator (Sonifier 
150, Branson) at setting 5 (few bursts at half of maximum 
intensity) in 100 ml volume. Finally the samples were stored 
at -20°C until analysis.

Sample preparation
50ml of the protein solutions were reduced with 5mM 
TCEP, final concentration, for 37°C for 1 hour followed by 
incubation of 10 mM Iodoacetamide, final concentration, 
in room temperature in the dark for 45 minutes. The 
protein solution was diluted 5 times using fresh 100 mM 
Tris buffer and 15 mg of Trypsin was added to the solution 
and incubated over night at 37°C. The resulting peptide 
mixtures were concentrated using spin-columns from 
Harvard Apparatus using the manufactures’ instructions. 
The concentrated peptides were dried in a speedvac and 
reconstituted in 50 ml 2% Acetonitrile, 0.2% formic acid.

Mass Spectrometry and data analysis
The hybrid LTQ-FT-ICR mass spectrometer was interfaced to 
a nanoelectrospray ion source (both from Thermo Electron, 
Bremen, Germany) coupled online to a Tempo 1D-plus 
nanoLC (Applied Biosystems/MDS Sciex, Foster City, CA). 
Peptides were separated on a RP-LC column (75μm x 15 
cm) packed in-house with C18 resin (Magic C18 AQ 3 μm; 
Michrom BioResources, Auburn, CA, USA) using a linear 
gradient from 98% solvent A (98% water, 2% acetonitrile, 
0.15% formic acid) and 2% solvent B (98% acetonitrile, 2% 
water, 0.15% formic acid) to 30% solvent B over 90 minutes 
at a flow rate of 0.3 μl/min. Three MS/MS spectra were 
acquired in the linear ion trap per each FT-MS scan which 
was acquired at 100,000 FWHM nominal resolution settings 
with an overall cycle time of approximately 1 second. The 
specific m/z value of the peptide fragmented by CAD was 
excluded from reanalysis for 0.5 min using the dynamic 
exclusion option. Charge state screening was employed to 
select for ions with at least two charges and rejecting ions 
with undetermined charge state. The normalized collision 
energy was set to 32%, and one microscan was acquired 
for each spectrum.

The RAW files were converted to an mzXML file format 
using ReAdW v.4.0.2 using default parameters. The MS2 
spectra were searched through the X! Tandem 2008-
05-26 search engine [1] against a concatenated forward 
and reversed human protein database (ipi, version 3.59), 
consisting of 80128 proteins as well as known contaminants 
such as porcine trypsin and human keratins. The search was 
performed with semi-tryptic cleavage specificity, 1 missed 
cleavages, mass tolerance of 25 ppm for the precursor ions 

and 0.5 Da for fragment ions, methionine oxidation as 
variable modification and cysteine carbamidomethylation 
as fixed modification. The database search results were 
further processed using the Peptide- and ProteinProphet 
programs [2]. The cutoff value for accepting individual 
MS/MS spectra was set to a peptideProphet probability of 
0.84. Based on the reversed database sequence strategy 
and Peptide- and ProteinProphet this corresponds to a 
1% FDR at the peptide level. The proteinProphet cutoff 
was .99 which corresponds to a 1% FDR at the protein 
level. The peptides matching to multiple members of a 
protein family the redundancy was eliminated using the 
ProteinProphet programs. MS1-based quantification was 
done using SuperHirn [4]. Features were detected using 
SuperHirn using a retention time tolerance of 1, MS1 m/z 
tolerance of 10, MS2 PPM m/z tolerance of 30. Only features 
with charge 1-5 were included. Any feature for which more 
than one peptide could be identified at the 1% FDR, hence 
mapping to more than one protein, were discarded. 

Software availability
The software is provided as is under the GNU public license 
and can be downloaded from sourceforge under the 
following url: http://sourceforge.net/projects/twoddb/

Results 
Application of business intelligence in proteomics
The use of relational OLTP database models as the basic 
structure for storing large amount of data is beneficial 
for connecting any derived results with the underlying 
primary data. Figure 1A shows a schematic over the role of 
the OLTP model where information from several sources 
is imported into the OLTP model as outlined in the top 
of the figure. Measured data and sample information are 
imported along with publically available databases like 
KEGG [21], PDB [9] and STRING [10]. Several analysis tools, 
for example TPP [7], then exports and analyze the data 
and subsequently store the derived results with explicit 
references to the underlying data. The user then access 
and analyze the data via a graphical user interface. OLTP 
models in general suffer from becoming slower with more 
complex data models. Single queries in a data rich OLTP 
model takes prohibitively long to execute as the number 
of experiments reach thousands and identified proteins 
and peptides reach millions. To address the OLTP model 
speed limitations, subsets of data from the OLTP model 
is used to create faster OLAP models, as indicated by 
the red arrows in figure 1A. The OLAP model contains a 
subset of the data present in the OLTP model many times, 
aggregated in several different ways which allows for fast 
querying. Our implementation of the business intelligence 
ideas, called Xplor, consists of three components (red 
boxes in Figure 1C-E). The first component, the protocols  
(Figure 1C), are collections of procedures that extract specific 
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and user defined information from the OLTP model to 
create or modify the second component, the underlying 
OLAP model (Figure 1D). The third component is the viewer  
(Figure 1E), which is a set of interactive data visualization 
procedures that are operated via a web interface. The 
setup of the business intelligence ideas allows extraction 
of experiment specific information such as spectra and 
quantitative data associated with a set of LC-MS/MS 
experiments, which is then merged with parts of the global 
information such as gene ontology and other types of 
database information of relevance. The extracted data 
is aggregated at different resolutions, such as spectra, 
peptides and proteins and stored in the OLAP model. The 
user can then rapidly select and toggle between different 
resolutions without having to re-analyze the data making 
the setup fast and user-friendly. 

Protocols extract the data from the OLTP model 
necessary to create the underlying OLAP model
To provide specific examples and to test the feasibility 
of our approach we applied Xplor to explore how a well-

studied cell line, HL-60, obtains phagocytic and microbial 
killing properties [20] after exposure to all-trans retinoic 
acid (ATRA) [19]. We collected a time-dependent sample set 
of 24 independent biological samples to monitor changes 
in protein concentration upon exposing HL-60 cells to 
ATRA over five days. All samples were analyzed using one-
dimensional liquid chromatography coupled to tandem 
mass spectrometry. The LC-MS/MS data was searched 
using the X!Tandem followed by post search processing 
using the trans-proteomic pipeline (TPP), resulting in the 
identification of 8458 peptides/1201 proteins at 1% FDR 
and 11302 peptides/1586 proteins at 5% FDR. Using MS2 
clustering and MS1 label free quantification signal intensities 
for the identified peptides were extracted. The analyzed 
data was stored in the OLTP model (Figure 1A, B) along 
with downloaded information from the KEGG and Gene 
ontology as described previously [11]. 

In our analysis pipeline, user selected information is 
extracted from the OLTP model using protocols to create an 
OLAP model. All procedures necessary for data extraction 
and the creation and aggregation of the OLAP model are 

Figure 1. Schematic outline of the concepts of BI in MS-based proteomics.  
A). Outline of a generic strategy where the OLTP model stores raw data, processed data and integrates a number of online 
resources. The OLAP model is highlighted in red.  
B). The OLTP model holds all the original data in a normalized fashion allowing for easy updates.  
C). The OLAP model (D) is created by the protocols.  
E). The user interacts with the viewer tools and can control the execution of any modifying tool, interact with the OLAP  
section and interact with the raw data stored in the OLTP model.
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listed in table 1. The first part of the protocol extracts the 
necessary data to construct the basic OLAP model tables. 
In this test case we applied five tools in addition to the 
default procedures to create the basic OLAP model (Table 1). 
The default procedures, or so-called ”create_table”, extract 
the spectra, peptide and protein information associated 
with the selected LC-MS/MS experiments (tables 1-3 in  
Table 2). In this specific case we used five tools to extract 
KEGG, and the available quantitative information, functional 
information and MS stats (spectra per peptide, sequence 

coverage etc.). The five additional tools either append 
information to existing tables or create new tables. The 

“create_kegg_table” tool creates a “kegg_table” with all 
the KEGG pathway information available for the identified 
proteins at 1% FDR and the “create_feature_table” tool 
creates the “feature_table” (tables 4-5 in Table 2). The 

“feature_table” holds the label-free quantification data 
in association with the MS2 spectra that annotates the 
feature. The execution of the default procedures and the 
five additional tools selected in this test example extracts 

tool name description Tool types
create_table Creates the base tables Base tables
proteintable_add_ms_stats Add various “ms” columns to the protein table Extract data from OLTP model
proteintable_add_one_function Add one function to protein Extract data from OLTP model
scantable_add_clustering Adds clustering information Extract data from OLTP model
create_feature_table Feature table Extract data from OLTP model
create_kegg_table Kegg table Extract data from OLTP model
create_agg_tables Agg tables Construct aggregation table

agg_table_kmean Agg table k-mean calculation Adding additional dimension resolutions to 
aggregation table

agg_table_pca Agg table pca calculation Adding additional dimension resolutions to 
aggregation table

agg_table_pca_kmean Agg table pca k-mean calculation Adding additional dimension resolutions to 
aggregation table

create_cytoscape_networks Cytoscape table Visualization

No table table_type search protein quantification sample_process normalization scaling
1 scan spectras
2 peptide peptides
3 protein proteins
4 kegg kegg pathways
5 feature quantitative ms data
6 agg_1 aggregation table  tpp sequence  shms1 treat time  tic  sum1
7 agg_2 aggregation table  tpp sequence  shms1 ink time  tax  none
8 agg_3 aggregation table  tpp sequence  shms1 ink time  tax  sum1 
9 agg_4 aggregation table  tpp sequence  shms1 ink time  none  none
10 agg_5 aggregation table  tpp sequence  shms1 ink time  none  sum1 
11 agg_6 aggregation table  tpp sequence  shms1 ink time  tic  none
12 agg_7 aggregation table  tpp sequence  shms1 ink time  tic  sum1
13 agg_8 aggregation table  tpp sequence  shms1 title  tax  none
14 agg_9 aggregation table  tpp sequence  shms1 title  tax  sum1 
15 agg_10 aggregation table  tpp sequence  shms1 title  none  none
16 agg_11 aggregation table  tpp sequence  shms1 title  none  sum1 
17 agg_12 aggregation table  tpp sequence  shms1 title  tic  none
18 agg_13 aggregation table  tpp sequence  shms1 title  tic  sum1
19 agg_14 aggregation table  tpp sequence  shms1 replicate  tax  none
20 agg_15 aggregation table  tpp sequence  shms1 replicate  tax  sum1 
21 agg_16 aggregation table  tpp sequence  shms1 replicate  none  none
22 agg_17 aggregation table  tpp sequence  shms1 replicate  none  sum1 
23 agg_18 aggregation table  tpp sequence  shms1 replicate  tic  none
24 agg_19 aggregation table  tpp Sequence  shms1 replicate  tic  sum1
25 agg_20 aggregation table  tpp sequence  shms1 treatment  tax  none
26 agg_21 aggregation table  tpp sequence  shms1 treatment  tax  sum1 
27 agg_22 aggregation table  tpp sequence  shms1 treatment  none  none
28 agg_23 aggregation table  tpp sequence  shms1 treatment  none  sum1 
29 agg_24 aggregation table  tpp sequence  shms1 treatment  tic  none
30 agg_25 aggregation table  tpp sequence  shms1 treatment  tic  sum1
31 agg_26 aggregation table  tpp sequence  shms1 treat time  tax  none
32 agg_27 aggregation table  tpp sequence  shms1 treat time  tax  sum1 
33 agg_28 aggregation table  tpp sequence  shms1 treat time  none  none
34 agg_29 aggregation table  tpp sequence  shms1 treat time  none  sum1 
35 agg_30 aggregation table  tpp sequence  shms1 treat time  tic  none
36 cytoscape xgmml protein network files

Table 1. All procedures necessary for data extraction and the creation and aggregation of the OLAP model

Table 2. Overview of all the tables associated with the construction of the OLAP
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the information necessary from the OLTP model to create 
the basic OLAP model.  Each data record in the OLTP model 
is stored several times in the OLAP model to facilitate the 
aggregation of the data using the aggregation tools. 

The OLAP model and implementation of a novel 
aggregation strategy for biological applications
The extract tools uses data, such as gene ontology or 
pathway information, stored in the OLTP model and 
integrate this data with the OLAP model. The extracted 
information is used both to create and extend the tables 
in the OLAP model. In the next step, the arguably most 
important tool, “create_agg_tables”, creates a hyper-cube. 
In practice, the hyper-cube contains of a large number of 
row-column tables, in this case 30 aggregation tables (table 
6-35 in Table 2). The basic metric in these 30 aggregation 
tables is the label-free quantitative information that is 
extracted from the “feature_table”. These tables collectively 
make up the hyper-cube, the fundamental data structure 
of the OLAP model (Figure 2A). Each dimension or factor 
in the model is represented as a dimension in the hyper-

cube in that the first dimension is the x-axis, second 
dimension the y-axis and the third dimension the z-axis 
and so on. Additional dimensions cannot be visualized, but 
mathematically, they are equivalent. A simple example of 
data aggregation is demonstrated in figure 2. In total 2 
different conditions were used in this experiment (Control 
and ATRA) at different time points (0, 1, 3 and 5 days) in 
three biological replicates (Figure 2B). By aggregating 
the data into “Treatment”, “Days” and “Treatment & Time” 
dimension resolutions the very same data can be visualized 
in three different ways, depending on the questions asked  
(Figure 2C-E). As the data was pre-computed the time to 
toggle between the different views is low. In addition 
the data was normalized using no normalization or TIC 
normalization. Lastly, different scaling functions were 
applied to down-weight high-abundant proteins or  
up-weight low-abundant proteins as used in figure 2C-E. 
The 30 aggregation tables represents slices of the virtual 
hyper-cube and each hold a specific aggregation state 
and in this case, this is the result of five conditions, three 
normalization strategies and two different scaling strategies 

Figure 2. Example of data aggregation and dimension reduction.  
A). Schematic outline of the OLAP model displayed as a three-dimensional cube. In the example case used here OLAP 
model is in reality a virtual hypercube with 30 dimensions.  
B). Data is aggregated using sample treatment information as an example. Two treatments with three biological replicates 
over five days results in 24 samples. The data is aggregated into C) two groups at the treatment level, D) four groups at 
the time level and E) eight groups at the treatment and time level represented as graphical box-plot representations. Each 
level contains all the data.
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(5*2*3 = 30). In this particular case, data aggregation is 
straightforward as the dimensions are decomposable into 
smaller units as the information used for aggregation was 
user defined.

In other examples, data aggregation is more difficult 
in particular when dealing with biological and/or mass 
spectrometry data, as the dimensions are not fully 
decomposable. For example one of the dimensions 
referred to as “protein group” (Figure 2A) allows aggregation 
from measured spectra to peptide to protein and finally 
collections of proteins, for example as defined by the Gene 
Ontology, by protein complexes or by any other type of 
groupings. These types of dimensions are non-trivial to 
aggregate since a spectrum can be matched to several 
peptides (due to co-fragmentation) and also, a peptide can 
be inferred from multiple spectra. A peptide can in turn be 
part of many proteins and proteins in general have multiple 
inferred peptides. Multi-function proteins have more than 
one GO function assigned. Our implementation allows for 
three different ways of dealing with non-decomposable 
dimensions where the first is to filter out anything that 
cannot be unambiguously grouped from the higher 
resolution. The second way is to double-count each object 
that maps to two or more groups at the lower resolution 
(common for qualitative groups) and the third is to split 
the signal among the groups and here one can do this 
uniformly or weighted by the size of the groups (common 
for quantitative groups). In Xplor, the developer can select 
the most appropriate aggregation strategy depending on 
dimension type. For example when a peptide sequence 
is shared between several proteins the developer can 
decide to split peptide quantification between the protein 
sequences equally, weighted or exclude the peptides all 
together. In the experiment described in this manuscript 
we decided to exclude peptide sequence matching to 
more than one protein. The difficult aggregation situations 
common in mass spectrometry based proteomics can in 
this way be circumvented using the three aggregation 
strategies and thus allows us to fully utilize the speed and 
flexibility of traditional business intelligence approaches 
when analyzing the data. It also allows the user to easily 
introduce new types of groupings and then decide how 
to aggregate these groups.

Adding additional dimension resolutions using 
pathway and statistical analysis
The construction of the OLAP model and resulting data 
aggregation is beneficial to view the data in different 
ways. However, to increase the interpretability of the 
complex data it is advantageous to group sets of proteins 
according to co-regulation or pathway information. The 
outlined BI strategy test case described was extended 
to facilitate this. The following tools, “agg_table_kmean”, 

“agg_table_pca” and “agg_table_pca_kmean” (Table 1), 
performs a dimension reduction on each dimension of the 

cube using principle component analysis and clusters the 
expression profiles using k-mean clustering. We reduced 
the dimensionality of the data using principle component 
analysis (PCA) and observed that extended culture of HL-60 
cells introduces a clear difference in protein concentrations 
compared to the early incubation times with or without the 
presence of ATRA (Figure 3A). Extended exposure to ATRA 
introduced clear differences to the other axis indicating that 
the ATRA drives the differentiation process at a different 
direction. Using K-mean clustering of the three first principle 
components (PCs) results in three clusters containing the 
distinguishing proteins as shown in figure 3B-D. To allow 
accurate clustering of the data we only included proteins 
observed in 75% of the conditions leaving a total of 612 
proteins. The clusters were projected back to the measured 
data and the respective protein descriptions are found in 
Table S1. Figure 3B contains the signature protein for ATRA 
introduced differentiation, figure 3C indicates proteins 
that increase in amount after extended culture condition 
and figure 3D shows the proteins that do not change in 
concentration. The red line indicates the average protein 
profiles for the respective protein cluster. The black lines 
are colored after increasing ion intensities where the lighter 
colored lines are the more intense giving the impression 
that there is a white stroke around the averaged red line. 
Information from several online resources was integrated 
with the protein expression data. Gene Ontology functions 
were added to all the proteins (using the tool “proteintable_
add_one_function” (Table 1)) and the enrichment of specific 
gene ontology classes was calculated. Table 3 displays the 
gene ontology terms with a Z-score based on re-sampling 
the data.  Proteins with a Z-score higher than two represents 
over-represented protein functions in the ATRA increased 
protein cluster (Figure 3B). Two groups of molecular function 
associated terms (intramolecular oxidoreductase and cation 
binding) and two biological processes terms (defense 
response and cell motility) were enriched in this cluster. 
Expression profiles of all the proteins associated with the 
enriched gene ontology terms are plotted in Figure 3E-H. 
In particular the proteins involved in defense response  
(Figure 3E) are induced after ATRA-exposure indicating 
putative key proteins involved in the gain of phagocytosis 
and microbial killing functions. In summary the aggregation 
strategy described above, along with information from 
several online resources allows clustering of the data and 
the identification of enriched gene ontology functions of 
relevance. Two big advantages using this strategy is that all 
data processing is carried out before analysis ensuring that 
the data is analyzed is in a consistent state and secondly 
that each step in the data processing workflow is explicitly 
documented allowing the exact data processing to be re-
applied to other datasets.

Visualization of the data from OLAP using flexible 
viewers and protocols

http://dx.doi.org/10.7243/2050-2273-1-5
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The third and last part of Xplor is the viewers. A viewer is 
a collection of procedures to visualize or compute simple 
summary statistics from the underlying hyper-cube  
(Figure 1E). Each procedure is designed to provide specific 
types of requested information to answer specific questions. 
Since the hyper-cube is designed to minimize the processing 
needed for the visualization, each tool is fast loading within 
a few seconds even for large data sets. Most of the graphic 
is generated on the fly using R and each procedure consists 
of a data retrieval part, a graph or table generation part and 
a simple controller part. In general these procedures are 
less than 10-15 lines of code (see the supplement material 
for examples). As there are multiple tools and they only 
can be applied when the underlying hyper-cube has the 

correct format, the Xplor software determines which tools 
can be used given the current status of the OLAP model 
and organize the tools in logical categories. The main 
categories are experiment, protein, peptide and spectra. In 
broad terms, visualization and global data quality tools are 
organized under experiment; protein is the most commonly 
used category for biological questions and the two last 
categories are mostly used to determine the quality of 
the experiment. 

Discussion 
The rapid growing size and complexity of quantitative 
mass spectrometry based proteomics data and the need of 
integrating the data with online resources creates significant 
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Figure 3. Time dependent quantitative protein profiles from ATRA induced HL-60 cells from 0-5 days.  
A). biplot of the two first principle components (PCs) B) ATRA induced proteins C) proteins induced by extended culture of 
HL-60 cells D) proteins that to not change in protein concentration upon ATRA stimulation or extended culture. Gene ontology 
annotations with a Z score higher than two within the ATRA induced proteins were extracted and plotted individually for E) 
Defense response, F) Cell motility, G) intramolecular oxidoreductase activity and H) Cation binding. A = ATRA stimulated,  
H = Control

GO GO Acc No Description No in sample. Total BG_mean BG_STD Z-score

MF GO:0016860 Intramolecular 
oxidoreductase activity 3 5 1.37 0.59 2.7

MF GO:0043169 Cation binding 8 27 3.93 1.74 2.3

BP GO:0006952 Defense response 5 11 1.97 0.95 3.2

BP GO:0006928 Cell motility 6 8 1.59 0.77 5.8

Table 3: Over representation of gene ontology categories among the ATRA induced proteins
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challenges, especially if there is a desire to maintain the 
relationship between raw and processed data. In this paper 
we have conceptually described the increasing problem 
of slow transaction models can be solved by borrowing 
concepts from the business intelligence field. Researchers 
in this field have dealt with the challenges of analyzing 
enormous data sets for decades. As a consequence strategies 
have been developed allowing rapid analysis of these 
datasets collectively referred to as business intelligence. 
While BI does not provide anything that cannot be obtained 
through other means, the strategy enables fast and 
consistent data analysis. The basic data structure in OLAP 
is referred to as cubes and contains the data in multiple 
forms as part of various aggregates. This pre-computing 
and de-normalization of the data in several levels omits 
the need to access the data in full every time a query is 
executed. Instead, the strategy is based on computing 
summary data at one level above the lowest level, then 
compute summary statistics of the summary statistics at 
an even higher level. This is called to aggregate the data 
over a dimension. The result of aggregating over multiple 
dimensions creates a lot of data, but this data is in a form 
that is almost ready to consume, hence the large speedup.
Xplor was implemented as a complement to a previously 
published OLTP model, as the transaction model got 
significantly slower as more data was processed through 
it. The majority of the software was written in perl and R 
and the cubes and tables are exclusively stored in MySQL 
5.5. The code is tightly organized around two main concepts, 
where the first is to process and manage the data and the 
other deals with the consumption of the data in the form of 
tables, graphs and more sophisticated visualizations such 
a genome views and network views. The largest challenge 
in regarding a biological business intelligence system is 
that the aggregate strategy necessary needs to reflect the 
underlying reality. Biology is difficult because it spans over 
large spatial and temporal dimensions and it is difficult to 
measure. There is also a functional degeneration where any 
given component might have multiple roles and functions. 
We adapted BI to biology by building a knowledge-based 
system to base the aggregations on. Doing these we observe 
several advantages, where the main advantage is speed. 
Speed is vital since it is difficult to keep important concepts 
in focus if the time between different data views exceeds 
ten seconds. The other advantage is that the system scales 
linearly which is very unusual in relational databases where 
query speeds not uncommonly scales quadratically. One 
of the drawbacks however is that is difficult to keep an 
OLAP model update since each measurement is part of 
multiple aggregates. Re-creating the OLAP anew to reflect 
changes in the OLTP model solves this. While building the 
OLAP model takes longer the more data that is analyzed, 
the viewer’s scales linearly in most cases. This ensures that 
the OLAP model will stay fast even for very large data sets. 
Other solutions like Biomart prove that these strategies 

work in large settings with orders of magnitude more data 
and multiple labs [22]. Xplor has a different focus in that it 
is more designed around a data analysis concepts where a 
set of measurements are put into context using information 
from previous experiments and from the public domain.

We selected a suitable model system to test the 
implementation of the BI strategies. Although the test 
experiment only represents a medium size experiment 
that can be analyzed in fully using conventional tools the 
experiment outline provides means of how to conceptually 
demonstrate the use BI when analyze MS-based proteomics 
data. HL-60 is a leukemic cell line typically used to study 
the function of white blood cells and it was shown that 
by exposing HL-60 cells to ATRA the cells acquire specific 
phagocytic and microbial killing like properties [20]. To 
capture the molecular details behind this gain of function 
we collected a time-series sample set of HL-60 cells with 
and without the presence of ATRA; over a five day period 
the ATRA-treated cells gradually acquire the ability to 
phagocytize and kill bacteria, mirroring results from mature 
human neutrophils. The new model provided us with three 
major improvements compared to the OLTP. Firstly, the 
analysis of whole data sets, including assessment of data 
quality, analysis of protein quantities and the integration of 
various online resources, could be accomplished within a 
couple of hours. Thereby the bottleneck from data collection 
to hypothesis generation was removed. Secondly, dubious 
MS2 identifications and visual overview of the features 
from the LC-MS1 maps were at all time accessible. This is a 
significant at advance as scrutinizing protein identification 
and quantification will allow more confidence in the data. 
Thirdly, the ease at which new tools can be developed 
and the integration of additional databases provides the 
researchers with the possibility of obtaining a very detailed 
view of the data as support for the hypothesis generation. In 
this particular case we developed a number of different tools 
ranging from quality assessment such as visual overview 
of the data and FDR estimation to statistical calculations 
regarding enriched functional groups. On the negative 
side, the increased complexity of the system makes it 
less suitable for small or isolated experiments not part of 
larger studies because of the overhead of maintaining and 
adapting the system.

Although the neutrophil-like properties of ATRA-
differentiated HL-60 cells have been described, there is 
currently only a limited understanding of the molecular 
pathways behind the acquisitions of these properties. 
Using Xplor we were not only able to verify that several 
hypothesized protein classes critical for the gain of function 
are in fact induced but we were also able to provide a 
more detailed molecular description of which proteins are 
actually involved from the various functional classes. By 
reducing the data dimensionality using PCA followed by 
K-mean clustering expression profiles enriched in putative 
candidates could be visualized. For example, all proteins 
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present in cluster 1 (Figure 3B) are specifically induced by 
ATRA and are thus likely to play a role in the gain of function. 
As hypothesized several proteins involved in cell motility, 
likely to be involved in the hunting down of the prey, are 
induced. We also observe that several proteins involved 
in defense response that normally play a role in microbial 
killing are induced. Although we observe the induction of 
several proteins involved in membrane trafficking and fusion 
these functional classes as a whole were not statistically 
enriched. There are a couple of explanations for this; 1) the 
functional GO classes encompasses several other proteins 
that are not induced 2) these types of proteins are under-
represented in our data set or 3) these protein classes are 
not in fact enriched but rather change in localization.

Conclusion
In summary, the use of the OLAP model have enabled us 
to analyze data sets of MS spectra fast enough to enable 
interactive web interface. This has several advantages where 
one obvious is that the data can reside in data centers 
where the storage capacity is higher, security is better and 
hardware is cheaper. At the same time, the data is accessible 
from any computer connected to the Internet and is hence 
easily shared. This approach combines the strength of 
storing the data in a normalized fashion and still enabling 
fast analysis. The development of new tools and the use of 
the transaction model is however not limited to this data set, 
but can be extended to any other data set. It is expected 
that the concepts described here can be implemented in 
several other system providing these system with equal 
increase in analysis speed and flexibility.
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