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Abstract

Integration of high throughput data with online data resources is critical for data analysis and hypothesis generation.
Relational databases facilitate the data integration, but larger amounts of data and the growth of the online data resources
can slow down the data analysis process. We have developed a proof-of-principle software tool using concepts from the
business intelligence field to enable fast, reliable and reproducible quantitative analysis of mass spectrometry data. The
software allows the user to apply customizable analysis protocols that aggregates the data and stores it in fast and redundant
data structures. The user then interacts with these data structures using web-based viewers to gauge data quality, analyze
global properties of the data set and then explore the underlying raw data, which is stored in a tightly integrated relational
database. To demonstrate the software we designed an experiment to describe the differentiation of a leukemic cell line,
HL-60, to a neutrophil-like phenotype at the molecular level. The concepts described in this paper demonstrates how the
new data model enabled rapid overview of the complete experiment in regard of global statistics, statistical calculations of
expression profiles and integration with online resources providing deep insight into the data within a few hours.
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Introduction

Data-driven systems biology relies on the ability to
generate hypotheses from large amounts of high-content
data. Insights gained from experimental data are integrated
into a knowledge model and further hypotheses are tested
in follow-up experiments. This necessitates a short time
frame from hypothesis generation to comprehensive and
quantitative data collection and fast, consistent analysis
of the collected data. The proteome is a dynamic and
spatially distributed set of proteins carrying out instructions
encoded in the genome, which warrants proteome
measurements as a critical component of molecular
systems biology studies. Mass spectrometry-based
proteomics have recently seen big technological advances
both on the instruments and the data analysis workflows
and is currently capable of generating quantitative digital
representations of proteomes. In mass spectrometry-
based proteomics, tryptic peptides from whole proteome
digests are analyzed by tandem mass spectrometry (MS)
where a subset of the ions detected in the survey scan
(MST1) are selected for fragmentation, for example by
collision induced dissociation (CID), and subsequently
measured, generating MS/MS spectra (MS2). The resulting
data is processed through multi-component workflows,
where the peptides are inferred from the MS2 spectra by

searching them against a protein sequence database [1]
followed by post-search filtering [2,3]. The MS1 spectra
are used to derive relative abundance for the majority of
the identified peptides [4-6].

In a typical data analysis workflow, the raw data files gets
processed through two parallel software workflows, the
identification workflow [7] and the quantitative workflow
[4]. Results from both are then integrated to generate a file
with protein intensities across the liquid chromatography
(LC)/MS experiments. In order to understand the data, it is
desirable to integrate the data with protein information
databases such as the gene ontology (GO) [8], the protein
data bank (PDB) [9], interaction databases and pathway
databases [10] among others. As all the information flows
one-way, the connection between the raw data and the
processed data is lost and it becomes time consuming
and labor intensive to verify any findings in the raw data.
In addition, it can be difficult to capture the process in
enough detail to reproduce it later. These issues can be
addressed using relational databases, where the raw
data is explicitly imported and annotated by tools used
in the file-based workflows [11-14]. The data is stored in
a structured and normalized transactional data model,
i.e. each piece of data is stored only once and that allows
for fast concurrent updates and safeguards against
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data inconsistencies. Comprehensive meta data such as
parameter settings and software/database versions can
easily be captured. The basic data structures are tables
(two dimensional; rows and columns) that are referring to
each other through references or foreign keys and there
might be hundreds of tables each related to the others
in a complex fashion. This setup is sometimes referred to
as on-line transactional processing or OLTP data model.
The OLTP data model solves the problem of connecting
any derived result to the underlying raw data efficiently.
However, with increasing speed and resolution of modern
mass spectrometers and the exponential growth of online
data resources, the amount of data stored in the OLTP
model gets bigger. Certain types of queries (mostly ones
that affect a large number of records) become slower
with size and can become a prohibitive bottleneck when
analyzing medium to large datasets like tens to hundreds
of LC-MS experiments. This becomes an issue when the
data analysis needs to be performed in a repetitive and
interactive fashion where different normalization and data
integration strategies are desired, which often results in
the re-analysis of complete data sets several times.

To address the speed limitations of the OLTP models we
have modified concepts from the business intelligence (Bl)
field and introduced these concepts into mass spectrometry-
based proteomics bioinformatics to increase the analysis
speed. Bl is a term referring to a group of technologies
applied to historical sales data to identify future business
opportunities. Bl makes it possible to analyze billions of
transactions of hundreds of thousands different products
across the globe interactively (<10 seconds to return a high-
level report) and integrate the data with both global and
local events [15-17]. The general strategy in Bl is to aggregate
the data in the transaction model at multiple resolutions
and store the results explicitly in data structures referred to
as a hyper-cube, which can have two or more dimensions.
An example of a cube in the business world could be sales
activities in different geographic regions creating a cube
with one dimension for geographic resolution and another
dimension might be product category. A dimension refers
to the decomposition of some data attributes into various
resolutions (levels) in a tree where each resolution contains
all the information from the directly underlying resolution
in a simple one-to-many relationship. An example of a
dimension in the business world case would be regions
where the highest resolution might be neighborhoods
in a city and stretch up to countries or continents via city,
country and state. The fundamental idea in Bl is hence to
pre-compute a data-set wide hyper-cube where the sides of
the cube corresponds to a dimension and the construction
of the cube is done by summing up sub-categories in
the tree to greater resolutions, an operation referred to
as aggregating. These cubes allow for fast querying and
hence are attractive when analyzing large data sets. This
also allows a dataset to be analyzed interactively where one

can navigate from resolution to resolution interactively (no
view takes more than a few seconds to load). The strategy
of storing each data point as part of multiple aggregate
data points is sometimes referred to as on-line analytical
processing, OLAP. In general, the original data is stored in
the OLTP model and an OLAP model is generated from that
OLTP model at some given time point in order to analyze
it. The OLAP tables are regenerated at desired frequency
to reflect changes in the underlying OLTP model.

In this paper, we developed an OLAP-based strategy
to rapidly analyze data generated by mass spectrometry
based proteomics workflows. We adapted the Bl-concepts
so that the typically non-decomposable mass spectrometry
based proteomics data structures could be efficiently
analyzed. To test the feasibility of our approach we applied
the strategy to differentiation of the well-studied cell line
HL-60. These cells were first purified from a patient with
acute promyelocytic leukemia in 1977 [18]. It was early
demonstrated that HL-60 cells can be differentiated into
a neutrophil-like state by the addition of various inducers;
one of these inducers is all-trans retinoic acid (ATRA) [19].
ATRA induces a neutrophil-like state that displays a similar
phenotype to neutrophils in respect of phagocytosis
and microbial killing [20]. Generally, it takes 3-5 days for
the HL-60 cells to acquire neutrophil characteristics and
behavior. In the present work, we hypothesized that the
phagocytosis gain of function can be described at the
molecular level by quantitative mass spectrometry based
proteomics following a time-course experiment of the
HL-60 differentiation process. We demonstrate how the
data was processed through the automatic workflows
and that the data was stored and processed in the OLTP.
We found that we could create the OLAP model from the
OLTP model in slightly over one wall-clock hour and that
insight into the data could be gained within a few hours,
much faster compared to analysis without the OLAP model.

Materials and methods

Cell culture

HL-60 cells were acquired from the ATCC and were kept in
low passage (<2 months) and then exchanged for freshly
thawed aliquots. In accordance with the protocol of
Breitman et al., [19] seeding of HL-60 cells was performed
in -glutamine-containing RPMI 1640 medium (PAA Labs,
Gothenburg, Sweden), supplemented with 10% fetal bovine
serum (Gibco, Copenhagen, Denmark). The cells were kept
in 5% CO, atmosphere at 37°C. No antibiotics were used.
The viability of the differentiated cells was determined by
trypan blue exclusion. To start differentiation of the cells
1uM all-trans retinoic acid (ATRA, Sigma-Aldrich, Stockholm,
Sweden) was added.

Experiment & lysate preparation
Cells were counted and their viability was determined
before harvesting at each time point. An aliquot of cells
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were withdrawn, centrifuged (5 min, 146 g, swing-out) and
washed three times with sterile PBS. The samples were
resuspended in lysis buffer (8M Urea, 100 mM Tris, Roche
Complete Mini, 0.1U/ul Benzonase, pH 8.0, sterile filtered)
and frozen at -20°C. After all samples were collected, they
were thawed and disrupted with a sonicator (Sonifier
150, Branson) at setting 5 (few bursts at half of maximum
intensity) in 100 pl volume. Finally the samples were stored
at -20°C until analysis.

Sample preparation

50ul of the protein solutions were reduced with 5mM
TCEP, final concentration, for 37°C for 1 hour followed by
incubation of 10 mM lodoacetamide, final concentration,
in room temperature in the dark for 45 minutes. The
protein solution was diluted 5 times using fresh 100 mM
Tris buffer and 15 pg of Trypsin was added to the solution
and incubated over night at 37°C. The resulting peptide
mixtures were concentrated using spin-columns from
Harvard Apparatus using the manufactures’ instructions.
The concentrated peptides were dried in a speedvac and
reconstituted in 50 pl 2% Acetonitrile, 0.2% formic acid.

Mass Spectrometry and data analysis

The hybrid LTQ-FT-ICR mass spectrometer was interfaced to
a nanoelectrospray ion source (both from Thermo Electron,
Bremen, Germany) coupled online to a Tempo 1D-plus
nanolLC (Applied Biosystems/MDS Sciex, Foster City, CA).
Peptides were separated on a RP-LC column (75um x 15
c¢m) packed in-house with C18 resin (Magic C18 AQ 3 um;
Michrom BioResources, Auburn, CA, USA) using a linear
gradient from 98% solvent A (98% water, 2% acetonitrile,
0.15% formic acid) and 2% solvent B (98% acetonitrile, 2%
water, 0.15% formic acid) to 30% solvent B over 90 minutes
at a flow rate of 0.3 pl/min. Three MS/MS spectra were
acquired in the linear ion trap per each FT-MS scan which
was acquired at 100,000 FWHM nominal resolution settings
with an overall cycle time of approximately 1 second. The
specific m/z value of the peptide fragmented by CAD was
excluded from reanalysis for 0.5 min using the dynamic
exclusion option. Charge state screening was employed to
select for ions with at least two charges and rejecting ions
with undetermined charge state. The normalized collision
energy was set to 32%, and one microscan was acquired
for each spectrum.

The RAW files were converted to an mzXML file format
using ReAdW v.4.0.2 using default parameters. The MS2
spectra were searched through the X! Tandem 2008-
05-26 search engine [1] against a concatenated forward
and reversed human protein database (ipi, version 3.59),
consisting of 80128 proteins as well as known contaminants
such as porcine trypsin and human keratins. The search was
performed with semi-tryptic cleavage specificity, 1 missed
cleavages, mass tolerance of 25 ppm for the precursor ions

and 0.5 Da for fragment ions, methionine oxidation as
variable modification and cysteine carbamidomethylation
as fixed modification. The database search results were
further processed using the Peptide- and ProteinProphet
programs [2]. The cutoff value for accepting individual
MS/MS spectra was set to a peptideProphet probability of
0.84. Based on the reversed database sequence strategy
and Peptide- and ProteinProphet this corresponds to a
1% FDR at the peptide level. The proteinProphet cutoff
was .99 which corresponds to a 1% FDR at the protein
level. The peptides matching to multiple members of a
protein family the redundancy was eliminated using the
ProteinProphet programs. MS1-based quantification was
done using SuperHirn [4]. Features were detected using
SuperHirn using a retention time tolerance of 1, MST m/z
tolerance of 10, MS2 PPM m/z tolerance of 30. Only features
with charge 1-5 were included. Any feature for which more
than one peptide could be identified at the 1% FDR, hence
mapping to more than one protein, were discarded.

Software availability

The software is provided as is under the GNU public license
and can be downloaded from sourceforge under the
following url: http:/sourceforge.net/projects/twoddb/

Results

Application of business intelligence in proteomics
The use of relational OLTP database models as the basic
structure for storing large amount of data is beneficial
for connecting any derived results with the underlying
primary data. Figure 1A shows a schematic over the role of
the OLTP model where information from several sources
is imported into the OLTP model as outlined in the top
of the figure. Measured data and sample information are
imported along with publically available databases like
KEGG [21], PDB [9] and STRING [10]. Several analysis tools,
for example TPP [7], then exports and analyze the data
and subsequently store the derived results with explicit
references to the underlying data. The user then access
and analyze the data via a graphical user interface. OLTP
models in general suffer from becoming slower with more
complex data models. Single queries in a data rich OLTP
model takes prohibitively long to execute as the number
of experiments reach thousands and identified proteins
and peptides reach millions. To address the OLTP model
speed limitations, subsets of data from the OLTP model
is used to create faster OLAP models, as indicated by
the red arrows in figure 1A. The OLAP model contains a
subset of the data present in the OLTP model many times,
aggregated in several different ways which allows for fast
querying. Our implementation of the business intelligence
ideas, called Xplor, consists of three components (red
boxes in Figure 1C-E). The first component, the protocols
(Figure 1C), are collections of procedures that extract specific
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Figure 1. Schematic outline of the concepts of BI in MS-based proteomics.
A). Outline of a generic strategy where the OLTP model stores raw data, processed data and integrates a number of online
resources. The OLAP model is highlighted in red.
B). The OLTP model holds all the original data in a normalized fashion allowing for easy updates.
C). The OLAP model (D) is created by the protocols.
E). The user interacts with the viewer tools and can control the execution of any modifying tool, interact with the OLAP
section and interact with the raw data stored in the OLTP model.
. /

and user defined information from the OLTP model to
create or modify the second component, the underlying
OLAP model (Figure 1D). The third component is the viewer
(Figure 1E), which is a set of interactive data visualization
procedures that are operated via a web interface. The
setup of the business intelligence ideas allows extraction
of experiment specific information such as spectra and
quantitative data associated with a set of LC-MS/MS
experiments, which is then merged with parts of the global
information such as gene ontology and other types of
database information of relevance. The extracted data
is aggregated at different resolutions, such as spectra,
peptides and proteins and stored in the OLAP model. The
user can then rapidly select and toggle between different
resolutions without having to re-analyze the data making
the setup fast and user-friendly.

Protocols extract the data from the OLTP model
necessary to create the underlying OLAP model

To provide specific examples and to test the feasibility
of our approach we applied Xplor to explore how a well-

studied cell line, HL-60, obtains phagocytic and microbial
killing properties [20] after exposure to all-trans retinoic
acid (ATRA) [19]. We collected a time-dependent sample set
of 24 independent biological samples to monitor changes
in protein concentration upon exposing HL-60 cells to
ATRA over five days. All samples were analyzed using one-
dimensional liquid chromatography coupled to tandem
mass spectrometry. The LC-MS/MS data was searched
using the X!Tandem followed by post search processing
using the trans-proteomic pipeline (TPP), resulting in the
identification of 8458 peptides/1201 proteins at 1% FDR
and 11302 peptides/1586 proteins at 5% FDR. Using MS2
clustering and MS1 label free quantification signal intensities
for the identified peptides were extracted. The analyzed
data was stored in the OLTP model (Figure 1A, B) along
with downloaded information from the KEGG and Gene
ontology as described previously [11].

In our analysis pipeline, user selected information is
extracted from the OLTP model using protocols to create an
OLAP model. All procedures necessary for data extraction
and the creation and aggregation of the OLAP model are
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listed in table 1. The first part of the protocol extracts the
necessary data to construct the basic OLAP model tables.
In this test case we applied five tools in addition to the
default procedures to create the basic OLAP model (Table 1).
The default procedures, or so-called “create_table”, extract
the spectra, peptide and protein information associated
with the selected LC-MS/MS experiments (tables 1-3 in
Table 2). In this specific case we used five tools to extract
KEGG, and the available quantitative information, functional
information and MS stats (spectra per peptide, sequence

coverage etc.). The five additional tools either append
information to existing tables or create new tables. The
“create_kegg_table” tool creates a “kegg_table” with all
the KEGG pathway information available for the identified
proteins at 1% FDR and the “create_feature_table” tool
creates the “feature_table” (tables 4-5 in Table 2). The
“feature_table” holds the label-free quantification data
in association with the MS2 spectra that annotates the
feature. The execution of the default procedures and the
five additional tools selected in this test example extracts

Table 1. All procedures necessary for data extraction and the creation and aggregation of the OLAP model

tool name description

Tool types

create_table Creates the base tables
proteintable_add_ms_stats

proteintable_add_one_function = Add one function to protein
scantable_add_clustering Adds clustering information
create_feature_table Feature table
create_kegg table Kegg table

create_agg_tables Agg tables

agg table_kmean Agg table k-mean calculation

agg table_pca Agg table pca calculation

agg table_pca_kmean

create_cytoscape_networks Cytoscape table

Add various “ms” columns to the protein table

Agg table pca k-mean calculation

Base tables

Extract data from OLTP model

Extract data from OLTP model

Extract data from OLTP model

Extract data from OLTP model

Extract data from OLTP model

Construct aggregation table

Adding additional dimension resolutions to
aggregation table

Adding additional dimension resolutions to
aggregation table

Adding additional dimension resolutions to
aggregation table

Visualization

Table 2. Overview of all the tables associated with the construction of the OLAP

No _ table table_type search __ protein quantification __sample process normalization _scaling
1 scan spectras

2 peptide peptides

3 protein proteins

4 kegg kegg pathways

5 feature quantitative ms data

6 agg 1 aggregation table tpp sequence shms1 treat time tic suml
7 agg 2 aggregation table tpp sequence  shmsl ink time tax none
8 agg 3 aggregation table tpp sequence  shmsl ink time tax suml
9 agg 4 aggregation table tpp sequence shms1 ink time none none
10 agg 5 aggregation table tpp sequence  shmsl ink time none suml
11 agg 6 aggregation table tpp sequence  shmsl ink time tic none
12 agg 7 aggregation table tpp sequence  shmsl ink time tic suml
13 agg 8 aggregation table tpp sequence  shmsl title tax none
14 agg 9 aggregation table tpp sequence  shmsl title tax suml
15 agg 10 aggregation table tpp sequence  shmsl title none none
16  agg 11 aggregation table tpp sequence  shmsl title none suml
17 agg 12 aggregation table tpp sequence  shmsl title tic none
18  agg 13 aggregation table tpp sequence  shmsl title tic suml
19  agg 14 aggregation table tpp sequence  shmsl replicate tax none
20 agg 15 aggregation table tpp sequence  shmsl replicate tax suml
21 agg_16 aggregation table tpp sequence shms1 replicate none none
22 agg 17 aggregation table tpp sequence  shmsl replicate none suml
23 agg 18 aggregation table tpp sequence  shmsl replicate tic none
24 agg 19 aggregation table tpp Sequence  shmsl replicate tic suml
25 agg 20 aggregation table tpp sequence shmsl treatment tax none
26 agg 21 aggregation table tpp sequence  shmsl treatment tax suml
27 agg 22 aggregation table tpp sequence shms1 treatment none none
28 agg 23 aggregation table tpp sequence shmsl treatment none suml
29  agg 24 aggregation table tpp sequence  shmsl treatment tic none
30 agg_25 aggregation table tpp sequence shms1 treatment tic suml
31 agg 26 aggregation table tpp sequence  shmsl treat time tax none
32 agg 27 aggregation table tpp sequence  shmsl treat time tax suml
33 agg_ 28 aggregation table tpp sequence shms1 treat time none none
34 agg 29 aggregation table tpp sequence shmsl treat time none suml
35  agg 30 aggregation table tpp sequence  shmsl treat time tic none
36 cytoscape  xgmml protein network files
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Figure 2. Example of data aggregation and dimension reduction.
A). Schematic outline of the OLAP model displayed as a three-dimensional cube. In the example case used here OLAP
model is in reality a virtual hypercube with 30 dimensions.
B). Data is aggregated using sample treatment information as an example. Two treatments with three biological replicates
over five days results in 24 samples. The data is aggregated into C) two groups at the treatment level, D) four groups at
the time level and E) eight groups at the treatment and time level represented as graphical box-plot representations. Each
\_ level contains all the data. J

the information necessary from the OLTP model to create
the basic OLAP model. Each data record in the OLTP model
is stored several times in the OLAP model to facilitate the
aggregation of the data using the aggregation tools.

The OLAP model and implementation of a novel
aggregation strategy for biological applications

The extract tools uses data, such as gene ontology or
pathway information, stored in the OLTP model and
integrate this data with the OLAP model. The extracted
information is used both to create and extend the tables
in the OLAP model. In the next step, the arguably most
important tool, “create_agg_tables”, creates a hyper-cube.
In practice, the hyper-cube contains of a large number of
row-column tables, in this case 30 aggregation tables (table
6-35 in Table 2). The basic metric in these 30 aggregation
tables is the label-free quantitative information that is
extracted from the “feature_table”. These tables collectively
make up the hyper-cube, the fundamental data structure
of the OLAP model (Figure 2A). Each dimension or factor
in the model is represented as a dimension in the hyper-

cube in that the first dimension is the x-axis, second
dimension the y-axis and the third dimension the z-axis
and so on. Additional dimensions cannot be visualized, but
mathematically, they are equivalent. A simple example of
data aggregation is demonstrated in figure 2. In total 2
different conditions were used in this experiment (Control
and ATRA) at different time points (0, 1, 3 and 5 days) in
three biological replicates (Figure 2B). By aggregating
the data into “Treatment”, “Days” and “Treatment & Time”
dimension resolutions the very same data can be visualized
in three different ways, depending on the questions asked
(Figure 2C-E). As the data was pre-computed the time to
toggle between the different views is low. In addition
the data was normalized using no normalization or TIC
normalization. Lastly, different scaling functions were
applied to down-weight high-abundant proteins or
up-weight low-abundant proteins as used in figure 2C-E.
The 30 aggregation tables represents slices of the virtual
hyper-cube and each hold a specific aggregation state
and in this case, this is the result of five conditions, three
normalization strategies and two different scaling strategies
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(5*2*3 = 30). In this particular case, data aggregation is
straightforward as the dimensions are decomposable into
smaller units as the information used for aggregation was
user defined.

In other examples, data aggregation is more difficult
in particular when dealing with biological and/or mass
spectrometry data, as the dimensions are not fully
decomposable. For example one of the dimensions
referred to as “protein group” (Figure 2A) allows aggregation
from measured spectra to peptide to protein and finally
collections of proteins, for example as defined by the Gene
Ontology, by protein complexes or by any other type of
groupings. These types of dimensions are non-trivial to
aggregate since a spectrum can be matched to several
peptides (due to co-fragmentation) and also, a peptide can
be inferred from multiple spectra. A peptide can in turn be
part of many proteins and proteins in general have multiple
inferred peptides. Multi-function proteins have more than
one GO function assigned. Our implementation allows for
three different ways of dealing with non-decomposable
dimensions where the first is to filter out anything that
cannot be unambiguously grouped from the higher
resolution. The second way is to double-count each object
that maps to two or more groups at the lower resolution
(common for qualitative groups) and the third is to split
the signal among the groups and here one can do this
uniformly or weighted by the size of the groups (common
for quantitative groups). In Xplor, the developer can select
the most appropriate aggregation strategy depending on
dimension type. For example when a peptide sequence
is shared between several proteins the developer can
decide to split peptide quantification between the protein
sequences equally, weighted or exclude the peptides all
together. In the experiment described in this manuscript
we decided to exclude peptide sequence matching to
more than one protein. The difficult aggregation situations
common in mass spectrometry based proteomics can in
this way be circumvented using the three aggregation
strategies and thus allows us to fully utilize the speed and
flexibility of traditional business intelligence approaches
when analyzing the data. It also allows the user to easily
introduce new types of groupings and then decide how
to aggregate these groups.

Adding additional dimension resolutions using
pathway and statistical analysis
The construction of the OLAP model and resulting data
aggregation is beneficial to view the data in different
ways. However, to increase the interpretability of the
complex data it is advantageous to group sets of proteins
according to co-regulation or pathway information. The
outlined Bl strategy test case described was extended
to facilitate this. The following tools, “agg_table_kmean”,
“agg_table_pca” and “agg_table_pca_kmean” (Table 1),
performs a dimension reduction on each dimension of the

cube using principle component analysis and clusters the

expression profiles using k-mean clustering. We reduced

the dimensionality of the data using principle component
analysis (PCA) and observed that extended culture of HL-60

cells introduces a clear difference in protein concentrations

compared to the early incubation times with or without the

presence of ATRA (Figure 3A). Extended exposure to ATRA
introduced clear differences to the other axis indicating that
the ATRA drives the differentiation process at a different
direction. Using K-mean clustering of the three first principle

components (PCs) results in three clusters containing the

distinguishing proteins as shown in figure 3B-D. To allow

accurate clustering of the data we only included proteins

observed in 75% of the conditions leaving a total of 612

proteins. The clusters were projected back to the measured

data and the respective protein descriptions are found in

Table S1. Figure 3B contains the signature protein for ATRA
introduced differentiation, figure 3C indicates proteins

that increase in amount after extended culture condition

and figure 3D shows the proteins that do not change in

concentration. The red line indicates the average protein

profiles for the respective protein cluster. The black lines

are colored after increasing ion intensities where the lighter
colored lines are the more intense giving the impression

that there is a white stroke around the averaged red line.
Information from several online resources was integrated

with the protein expression data. Gene Ontology functions

were added to all the proteins (using the tool “proteintable_
add_one_function” (Table 1)) and the enrichment of specific

gene ontology classes was calculated. Table 3 displays the

gene ontology terms with a Z-score based on re-sampling

the data. Proteins with a Z-score higher than two represents

over-represented protein functions in the ATRA increased

protein cluster (Figure 3B). Two groups of molecular function

associated terms (intramolecular oxidoreductase and cation

binding) and two biological processes terms (defense

response and cell motility) were enriched in this cluster.
Expression profiles of all the proteins associated with the

enriched gene ontology terms are plotted in Figure 3E-H.
In particular the proteins involved in defense response

(Figure 3E) are induced after ATRA-exposure indicating

putative key proteins involved in the gain of phagocytosis

and microbial killing functions. In summary the aggregation

strategy described above, along with information from

several online resources allows clustering of the data and

the identification of enriched gene ontology functions of
relevance. Two big advantages using this strategy is that all

data processing is carried out before analysis ensuring that

the data is analyzed is in a consistent state and secondly

that each step in the data processing workflow is explicitly

documented allowing the exact data processing to be re-
applied to other datasets.

Visualization of the data from OLAP using flexible
viewers and protocols
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Figure 3. Time dependent quantitative protein profiles from ATRA induced HL-60 cells from 0-5 days.

A). biplot of the two first principle components (PCs) B) ATRA induced proteins C) proteins induced by extended culture of
HL-60 cells D) proteins that to not change in protein concentration upon ATRA stimulation or extended culture. Gene ontology
annotations with a Z score higher than two within the ATRA induced proteins were extracted and plotted individually for E)
Defense response, F) Cell motility, G) intramolecular oxidoreductase activity and H) Cation binding. A = ATRA stimulated,

/

Table 3: Over representation of gene ontology categories among the ATRA induced proteins

GO | GO AccNo Description No in sample. Total BG_mean BG_STD Z-score
MF | GO:0016860 Iol)l(tlgaonr];’éffc‘t‘iz activity 5 1.37 0.59 2.7
MEF GO:0043169  Cation binding 8 27 3.93 1.74 2.3
BP GO:0006952  Defense response 5 11 1.97 0.95 32
BP GO0:0006928  Cell motility 6 8 1.59 0.77 5.8

The third and last part of Xplor is the viewers. A viewer is
a collection of procedures to visualize or compute simple
summary statistics from the underlying hyper-cube
(Figure 1E). Each procedure is designed to provide specific

types of requested information to answer specific questions.

Since the hyper-cube is designed to minimize the processing
needed for the visualization, each tool is fast loading within
a few seconds even for large data sets. Most of the graphic
is generated on the fly using R and each procedure consists
of a data retrieval part, a graph or table generation part and
a simple controller part. In general these procedures are
less than 10-15 lines of code (see the supplement material
for examples). As there are multiple tools and they only
can be applied when the underlying hyper-cube has the

correct format, the Xplor software determines which tools
can be used given the current status of the OLAP model
and organize the tools in logical categories. The main
categories are experiment, protein, peptide and spectra. In
broad terms, visualization and global data quality tools are
organized under experiment; protein is the most commonly
used category for biological questions and the two last
categories are mostly used to determine the quality of
the experiment.

Discussion

The rapid growing size and complexity of quantitative
mass spectrometry based proteomics data and the need of
integrating the data with online resources creates significant
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challenges, especially if there is a desire to maintain the
relationship between raw and processed data. In this paper
we have conceptually described the increasing problem
of slow transaction models can be solved by borrowing
concepts from the business intelligence field. Researchers
in this field have dealt with the challenges of analyzing
enormous data sets for decades. As a consequence strategies
have been developed allowing rapid analysis of these
datasets collectively referred to as business intelligence.
While Bl does not provide anything that cannot be obtained
through other means, the strategy enables fast and
consistent data analysis. The basic data structure in OLAP
is referred to as cubes and contains the data in multiple
forms as part of various aggregates. This pre-computing
and de-normalization of the data in several levels omits
the need to access the data in full every time a query is
executed. Instead, the strategy is based on computing
summary data at one level above the lowest level, then
compute summary statistics of the summary statistics at
an even higher level. This is called to aggregate the data
over a dimension. The result of aggregating over multiple
dimensions creates a lot of data, but this data is in a form
that is almost ready to consume, hence the large speedup.
Xplor was implemented as a complement to a previously
published OLTP model, as the transaction model got
significantly slower as more data was processed through
it. The majority of the software was written in perl and R
and the cubes and tables are exclusively stored in MySQL
5.5.The code is tightly organized around two main concepts,
where the first is to process and manage the data and the
other deals with the consumption of the data in the form of
tables, graphs and more sophisticated visualizations such
a genome views and network views. The largest challenge
in regarding a biological business intelligence system is
that the aggregate strategy necessary needs to reflect the
underlying reality. Biology is difficult because it spans over
large spatial and temporal dimensions and it is difficult to
measure. There is also a functional degeneration where any
given component might have multiple roles and functions.
We adapted Bl to biology by building a knowledge-based
system to base the aggregations on. Doing these we observe
several advantages, where the main advantage is speed.
Speed is vital since it is difficult to keep important concepts
in focus if the time between different data views exceeds
ten seconds. The other advantage is that the system scales
linearly which is very unusual in relational databases where
query speeds not uncommonly scales quadratically. One
of the drawbacks however is that is difficult to keep an
OLAP model update since each measurement is part of
multiple aggregates. Re-creating the OLAP anew to reflect
changes in the OLTP model solves this. While building the
OLAP model takes longer the more data that is analyzed,
the viewer’s scales linearly in most cases. This ensures that
the OLAP model will stay fast even for very large data sets.
Other solutions like Biomart prove that these strategies

work in large settings with orders of magnitude more data
and multiple labs [22]. Xplor has a different focus in that it
is more designed around a data analysis concepts where a
set of measurements are put into context using information
from previous experiments and from the public domain.

We selected a suitable model system to test the
implementation of the Bl strategies. Although the test
experiment only represents a medium size experiment
that can be analyzed in fully using conventional tools the
experiment outline provides means of how to conceptually
demonstrate the use Bl when analyze MS-based proteomics
data. HL-60 is a leukemic cell line typically used to study
the function of white blood cells and it was shown that
by exposing HL-60 cells to ATRA the cells acquire specific
phagocytic and microbial killing like properties [20]. To
capture the molecular details behind this gain of function
we collected a time-series sample set of HL-60 cells with
and without the presence of ATRA; over a five day period
the ATRA-treated cells gradually acquire the ability to
phagocytize and kill bacteria, mirroring results from mature
human neutrophils. The new model provided us with three
major improvements compared to the OLTP. Firstly, the
analysis of whole data sets, including assessment of data
quality, analysis of protein quantities and the integration of
various online resources, could be accomplished within a
couple of hours. Thereby the bottleneck from data collection
to hypothesis generation was removed. Secondly, dubious
MS2 identifications and visual overview of the features
from the LC-MS1 maps were at all time accessible. Thisis a
significant at advance as scrutinizing protein identification
and quantification will allow more confidence in the data.
Thirdly, the ease at which new tools can be developed
and the integration of additional databases provides the
researchers with the possibility of obtaining a very detailed
view of the data as support for the hypothesis generation. In
this particular case we developed a number of different tools
ranging from quality assessment such as visual overview
of the data and FDR estimation to statistical calculations
regarding enriched functional groups. On the negative
side, the increased complexity of the system makes it
less suitable for small or isolated experiments not part of
larger studies because of the overhead of maintaining and
adapting the system.

Although the neutrophil-like properties of ATRA-
differentiated HL-60 cells have been described, there is
currently only a limited understanding of the molecular
pathways behind the acquisitions of these properties.
Using Xplor we were not only able to verify that several
hypothesized protein classes critical for the gain of function
are in fact induced but we were also able to provide a
more detailed molecular description of which proteins are
actually involved from the various functional classes. By
reducing the data dimensionality using PCA followed by
K-mean clustering expression profiles enriched in putative
candidates could be visualized. For example, all proteins
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present in cluster 1 (Figure 3B) are specifically induced by
ATRA and are thus likely to play a role in the gain of function.
As hypothesized several proteins involved in cell motility,
likely to be involved in the hunting down of the prey, are
induced. We also observe that several proteins involved
in defense response that normally play a role in microbial
killing are induced. Although we observe the induction of
several proteins involved in membrane trafficking and fusion
these functional classes as a whole were not statistically
enriched. There are a couple of explanations for this; 1) the
functional GO classes encompasses several other proteins
that are not induced 2) these types of proteins are under-
represented in our data set or 3) these protein classes are
not in fact enriched but rather change in localization.

Conclusion

In summary, the use of the OLAP model have enabled us
to analyze data sets of MS spectra fast enough to enable
interactive web interface. This has several advantages where
one obvious is that the data can reside in data centers
where the storage capacity is higher, security is better and
hardware is cheaper. At the same time, the data is accessible
from any computer connected to the Internet and is hence
easily shared. This approach combines the strength of
storing the data in a normalized fashion and still enabling
fast analysis. The development of new tools and the use of
the transaction model is however not limited to this data set,
but can be extended to any other data set. It is expected
that the concepts described here can be implemented in
several other system providing these system with equal
increase in analysis speed and flexibility.
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