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My area of research is commutative algebra and algebraic geometry (MSC 13 and 14).
Together with a number of collaborators, I have worked on broad range of problems, often

with a combinatorial or computational flavor. These projects have involved a variety of topics
including secant varieties and Waring rank, multiplier ideals, computational experimentation,
arrangements of points and hyperplanes, and more. I look forward to continuing this work,
as well as pursuing future collaborations in new directions.

1. Waring rank

The Waring rank of a homogeneous form F = F (x1, . . . , xn) of degree d is the least r such
that F = c1`

d
1 + · · ·+ cr`

d
r for some linear forms `i and scalars ci. For example,

xy =
1

4
(x+ y)2 − 1

4
(x− y)2,

so the rank r(xy) ≤ 2; and r(xy) ≥ 2 as xy is not equal to a square of a linear form.
Waring ranks and related questions have been studied since the mid-19th century (for

example [67], see also [35, 43] and discussions of applications in [21, 47, 48]) but the last 5
years have seen explosive activity and rapid advances.

For example, Carlini, Catalisano, and Geramita have determined the Waring rank of a
monomial [20]: r(xa11 · · · xann ) = (a2 + 1) · · · (an + 1), when 0 < a1 ≤ a2 ≤ · · · ≤ an. It is
remarkable that this was determined in 2011, after more than 150 years of study of Waring
ranks. They also show that the Waring rank of a sum of monomials in separate variables
is equal to the sum of the Waring ranks of the separate monomials. It is conjectured that,
in general, r(F (x) + G(y)) = r(F ) + r(G); this remains open after decades of work, but
building on the 2011 result for sums of monomials, progress has been made by Y. Woo [81]
and Carlini–Catalisano–Chiantini [19].

The primary tools for studying Waring rank arise from commutative algebra. For F ∈
S = C[x1, . . . , xn], the dual ring is T = C[∂1, . . . , ∂n], acting on S by having each ∂i act
as ∂/∂xi; this action is the apolarity pairing, giving a perfect pairing Td × Sd → C for
each d (and Ta × Sd → Sd−a for all d, a). Equivalently, the commutative algebra notion of
catalecticant map of a given form F ∈ Sd is the linear map Ca

F : Ta → Sd−a, for 0 ≤ a ≤ d,
sending differential operators to their evaluations on F .

My contributions include the following.

1.1. An upper bound for rank and generalized rank. Let X ⊂ PN be a nondegenerate
projective variety. The X-rank of a point q is the least number of points on X linearly
spanning a space containing q. This includes Waring rank as the case X is a Veronese
variety. It also includes ordinary tensor rank (see for example [47]) as the case X is a Segre
variety. Many other natural notions of rank can be expressed as X-rank for an appropriately
chosen X.
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Grigoriy Blekherman and I have given the following upper bound for X-rank, for any
irreducible nondegenerate variety X over a closed field in any characteristic:

Theorem 1 ([7]). Let rg be the generic rank with respect to X, i.e., the rank of a general
point. Then for all q ∈ PN , the X-rank of q is at most 2rg.

This is a significant improvement for a number of previously studied cases, most notably
Waring rank. A further improvement is shown in the case that X has some higher secant
variety of codimension 1. We also give the following result for real rank.

Theorem 2 ([7]). Let X ⊂ RPN be a real nondegenerate projective variety such that the real
points of X are dense in X. Let r0 be the smallest typical real rank with respect to X and let
rg be the generic rank with respect to the complexification XC = X ⊗ C. Then r0 = rg and
for all q ∈ RPN , the X-rank of q is at most 2r0.

Future work. I will study homogeneous forms and tensors which are believed to have high
rank, in order to narrow down the range of possible values for the maximum rank.

Previous upper bounds for Waring rank are asymptotically not as good as the above, but
they still raise intriguing questions. For example, the papers [5, 44, 2] actually give an upper
bound for “open Waring rank,” which is greater than ordinary Waring rank; I will investigate
the value of open Waring rank for a general form.

1.2. Power sum decompositions of monomials. This is joint work with Weronika Buczyń-
ska and Jaros law Buczyński.

Theorem 3 ([14]). Let F = xa11 · · · xann be a monomial, 0 < a1 ≤ · · · ≤ an, and let r =
r(F ) = (a2 + 1) · · · (an + 1). Let `1, . . . , `r be linear forms and let I ⊂ C[y1, . . . , yn] be the
homogeneous defining ideal of the set of projective points {[`1], . . . , [`r]}. Then F = c1`

d
1+· · ·+

cr`
d
r for some scalars ci if and only if I is a complete intersection of type (a1 + 1, . . . , an + 1),

generated by
ya1+1
1 − φ1y

a0+1
0 , . . . , yan+1

n − φny
a0+1
0

for some forms φi of degree ai − a0.

This theorem, together with some additional reductions, allows the computation of the
dimension of the variety

(1)
{
{[`1], . . . , [`r]} : F = c1`

d
1 + · · ·+ cr`

d
r , some ci

}
.

In particular let (C∗)n act by scaling the variables and let T ⊂ (C∗)n be the subtorus that
fixes F .

Corollary 4 ([14]). The induced action of T on the variety (1) is transitive if and only if
a1 = · · · = an.

Thus the minimum length power sum decomposition of a monomial is unique up to scaling
variables if and only if the monomial is of the form (x1 · · ·xn)k.

Future work. Carlini–Catalisano–Geramita, in addition to determining Waring ranks of
monomials, showed that the Waring rank of a sum of pairwise coprime monomials (equiva-
lently: monomials in independent variables) is equal to the sum of the Waring ranks of the
separate monomials. (This is conjectured to hold for all sums of forms in independent vari-
ables, see [81, 19].) An obvious conjecture is that every Waring decomposition (= minimum
length power sum decomposition) of a sum of pairwise coprime monomials must be given
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by a concatenation of separate Waring decompositions of the separate monomials. This is
open, even for 2-term sums.

I will study the generalization of the above theorem to other forms with complete inter-
section apolar annihilating ideals, such as defining equations of reflection arrangements of
hyperplanes.

1.3. Sub-generality of ranks of monomials. Not many homogeneous forms are known to
have higher than generic rank; it has not even been shown that forms with higher than generic
rank exist in all degrees and numbers of variables (although it would be very surprising to
learn otherwise).

Following the determination by Carlini–Catalisano–Geramita of the ranks of monomials
and sums of pairwise coprime monomials, it is natural to ask if any of them have higher
than generic rank. And indeed, Carlini–Catalisano–Geramita observed that infinitely many
monomials in three variables have higher than generic rank, but at most finitely many in n
variables do so, for each n ≥ 4. But they did not determine how many such monomials there
were, or give any examples.

This was completed in joint work with three undergraduate students Erik Holmes, Paul
Plummer, and Jeremy Siegert.1

Theorem 5 ([42]). Every monomial in 4 or more variables has Waring rank strictly less
than the generic Waring rank. Furthermore, in 4 or more variables, every homogeneous sum
of pairwise coprime monomials has Waring rank strictly less than the generic Waring rank,
with exactly three exceptions: x1x

2
2+x3x

2
4 has Waring rank 6, strictly greater than the generic

Waring rank of forms of degree 3 in 4 variables, which is 5; x1x
2
2 + x33 + x34 has Waring rank

5 and x1x2x3 + x24 has Waring rank 5, equal to the generic Waring rank.

I proved the statement on monomials and conjectured the statement on sums of monomials,
which was then proved by the three undergraduates.

Future work. It is not known what is the maximum Waring rank attained by sums of pairwise
coprime monomials (of a given degree, in a given number of variables); the result above is
shown by giving an upper bound which is less than the generic Waring rank, but the upper
bound is not actually attained. A number of examples found by the three undergraduate
students show that the rank of such a sum is not maximized by making “greedy” choices,
i.e., choosing each term to be the monomial of largest rank possible with the number of
remaining variables.

This is a suitable question for a group of undergraduate students. Small cases should be
amenable to computer exploration. It will be a good opportunity for new researchers to use
a combination of computer programming and exhaustive search, pattern recognition, and
looking for a proof idea.

1.4. A lower bound for ranks of invariant forms. This is joint work with Harm Derksen.
In the following statement, for any polynomial P , let Diff(P ) be the vector spanned by the
derivatives of P of all orders, including P itself (zeroth order derivative):

1Erik Holmes graduated from Boise State in 2014 and began the Ph.D. program at University of Hawaii.
Paul Plummer graduated from Boise State in 2014 as well and is currently applying for Ph.D. programs.
Jeremy Siegert will graduate from Boise State in December 2014 and is also applying for Ph.D. programs.
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Theorem 6 ([25]). Let G be a connected group with an irreducible representation V and let
F be an invariant form on V . Then the Waring rank of F is bounded below by

dim Diff(F )− dim Diff(∂F/∂x)

for any nonzero x ∈ V .

More generally, the main result of our paper gives a lower bound for simultaneous Waring
rank of an invariant linear series of forms, and allows reducible representations (then, roughly
speaking, x ∈ V must simply be chosen not lying in any proper subrepresentations). The
same result is shown to hold for arbitrary forms (or linear series), not necessarily invariant
under any group action, when x ∈ V is general. These bounds are actually lower bounds for
cactus rank, which is the following modification of Waring rank. The cactus rank cr(F ) is
the least r for which there exists a zero-dimensional scheme Z of length r such that F lies in
the linear span of the degree d Veronese re-embedding of Z. Waring rank is the case when
Z is also required to be reduced, Z = {[`1], . . . , [`r]}.

For example, the generic n× n determinant detn = det((xi,j)1≤i,j≤n) is an invariant form
under left and right multiplication by SLn and we get r(detn) ≥

(
2n
n

)
−
(
2n−2
n−1

)
. This is the

best currently known lower bound for rank of the determinant.

Future work. I will study apolarity and Waring ranks of forms invariant under finite groups,
such as symmetric polynomials, and also forms invariant under disconnected groups, such as
the generic permanent. The permanent in particular is related to a version of P versus NP
in geometric complexity theory.

I will also study upper bounds for the rank of determinant, building on previous work of
Derksen.

1.5. Reflection multiarrangements. Alex Woo and I determined the Waring rank of
many defining equations of reflection multiarrangements, i.e., fundamental skew invariants
of finite complex reflection groups.

Theorem 7 ([75]). Let G be a finite complex reflection group on Cn with degrees 1 ≤
d1 ≤ · · · ≤ dn. We do not assume G acts essentially. Let fG be the defining equation of
the reflection arrangement of G (equivalently: the fundamental skew invariant of G, or the
Jacobian of the fundamental invariants of G). Then the cactus rank cr(fG) is

cr(fG) =
|G|
dn

= d1 · · · dn−1

and the Waring rank r(fG) is bounded by

|G|
dn
≤ r(fG) ≤ |G|

D
,

where D is the greatest regular number of G. The upper bound for Waring rank is given by
an explicit power sum decomposition.

Note that dn = D is a regular number for many reflection groups of interest, including all
irreducible real reflection groups and many irreducible complex reflection groups. For exam-
ple, the fundamental skew invariant of the symmetric group Sn is the classical Vandermonde
determinant

fSn =
∏
i<j

xj − xi,
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and we obtain r(fSn) = (n− 1)!.

Future work. I will study other complex reflection groups. Perhaps the simplest example
of a complex reflection group whose greatest degree is not a regular number is the group
G = Z/a1Z×· · ·×Z/anZ with not all ai equal. In this case the fundamental skew invariant is
the monomial xa11 · · · xann , whose rank was determined by Carlini–Catalisano–Geramita using
commutative algebra. The same algebraic technique should be tried for other examples.

For instance, one may consider the reducible reflection group given by a product of sym-
metric groups G = Sa1 × · · · × San with not all ai equal. In this case the fundamental skew
invariant is a product of classical Vandermonde determinants in separate variables.

I will work with Stefan Tohaneanu and Alex Woo to describe the apolar annihilating
ideals of general hyperplane arrangements, in particular the Hilbert functions, graded Betti
numbers, and minimal generators of those ideals, and bound or determine the Waring ranks
of such arrangements. It might be possible to also describe the minimal free resolution of
the annihilating ideals but this is more speculative. At this point we are able to produce
candidate generators of the ideal via Proposition 3.3 of [73] which relates apolarity of F to
singularities of the hypersurface V (F ): our candidate generators correspond naturally to the
0-skeleton of the (projectivized) hyperplane arrangement.

1.6. Apolarity and direct sum decompositions. In joint work with Weronika Buczyńska,
Jaros law Buczyński, and Johannes Kleppe, the theory of apolarity is used to study decom-
positions of a form F as a sum of forms depending on linearly independent sets of variables,
possibly after a linear change of coordinates. For example, it is clear that xy 6= G(x)+H(y),
but xy = G(`1) +H(`2), namely,

xy =
1

4
`21 −

1

4
`22

for `1 = x + y, `2 = x − y. In general, for F = F (x1, . . . , xn), we ask whether there is an
expression of the form

F = G(`1, . . . , `k) +H(`k+1, . . . , `n)

with the `i linearly independent linear forms. Such an expression is called a direct sum
decomposition of F . For another example, consider the generic determinant detn =
det((xi,j)1≤i,j≤n). Then det2 = x1,1x2,2 − x1,2x2,1 is visibly decomposed as a sum of forms in
separate variables. It is easy to see that for n > 2, detn 6= G(x1,1, . . . ) + H(. . . , xn,n), but
it is less obvious whether after a linear change of coordinates (in n2 variables!) detn is so
decomposable. We find a negative answer:

Theorem 8 ([13]). Let F ∈ C[x1, . . . , xn] be a homogeneous form of degree d. Let F⊥ ⊂
T = C[∂1, . . . , ∂n] be the homogeneous ideal of differential operators D such that DF = 0.

(1) If F is decomposable as a direct sum then F⊥ has a minimal generator of degree d.
(2) If F⊥ has a minimal generator of degree d then F is a limit of forms which are

decomposable as direct sums.
(3) Suppose that F cannot be written as a form in fewer variables, even after a linear

change of coordinates. Then F is a limit of forms which are decomposable as direct
sums if and only if F⊥ has a minimal generator of degree d.

In particular, due to Shafiei’s proof of my conjecture that (detn)⊥ is generated in degree
2 [61], while detn has degree n, it follows that detn is indecomposable as a direct sum for
n > 2. Shafiei’s further results regarding permanents, pfaffians, symmetric determinants,
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symmetric permanents, etc., have similar implications for indecomposability of those forms
[61, 60].

Many more results are given in [13], such as a lower bound on the greatest degree of a
minimal generator of F⊥.

Theorem 9 ([13]). Let F be a form of degree d in n variables and suppose that F⊥ is
generated in degrees less than or equal to δ. Then d ≤ (δ − 1)n.

Future work. I will study generalizations to local rings (such as formal power series) in place
of polynomial rings. I will also study forms that make the lower bound sharp, d = (δ − 1)n.

1.7. A lower bound for Waring rank. This is joint work with J.M. Landsberg. We give
a geometric lower bound for Waring rank, specifically a lower bound for r(F ) in terms of the
singularities of the hypersurface defined by F .

Theorem 10 ([49]). Let F be a form of degree d. Fix an integer 0 < a < d. Let Ca
F be the

ath catalecticant map of F . Suppose F cannot be written as a form in fewer variables, even
after a linear change of coordinates (this is equivalent to the easily checked condition that
C1

F be injective). Let Σa(F ) be the projective variety defined by the vanishing of the forms
in the image of Ca

F , i.e., the set of a-th derivatives of F , so Σa(F ) is the variety of points at
which F vanishes with multiplicity at least a+ 1. Then r(F ) > rankCa

F + dim Σa(F ).

This is notable for being the only currently known lower bound for Waring rank which is
not actually a lower bound for cactus rank.

Future work. Examples in [49] suggest approaches to search for improvements to the above
bound, by incorporating more information about the singularities, beyond just the dimension
of the singular locus.

1.8. Geometric lower bounds for generalized rank. I have generalized the lower bound
for Waring rank (and cactus rank) discovered by Ranestad and Schreyer [58], and the lower
bound for Waring rank discovered by Landsberg and myself [49], to lower bounds for ranks
of linear series (simultaneous Waring rank), ranks of multihomogeneous forms, and ranks
with respect to nondegenerate projective varieties X [73]. As a simple example, it is shown
that there are linear forms `i and mi, and scalars ci, such that

x1 · · ·xay1 · · · yb =
r∑

i=1

ci`i(x)ami(y)b

if and only if r ≥ 2a+b−2.

Future work. The generalizations to X-rank are incomplete; a number of questions are posed
in [73]. For example, for a form F in n variables and any 1 ≤ k ≤ n let rk(F ) be the least
number of terms in an expression for F as a sum of forms each depending on k or fewer
variables (possibly after a linear change of coordinates; i.e., the extension of a form on a
k-dimensional subspace), see [17, 18]. Waring rank is the case k = 1. If 0 < d1 ≤ · · · ≤ dn,
then

(d1 + 1) · · · (dn−k + 1) ≤ rk(xd11 · · · xdnn ) ≤ (d2 + 1) · · · (dn−k+1 + 1)

and the right hand inequality is conjectured to be equality, see [73, Conjecture 5.18].



RESEARCH STATEMENT 7

I will study and hopefully determine rk of a monomial. This is very close to the determi-
nation of classical Waring rank of a monomial. The commutative algebra techniques used
by Carlini–Catalisano–Geramita for that problem should be applicable here.

Many, many more questions are suggested in [73], including a number of questions that
would be good projects for students.

1.9. Interlude. The power sum decomposition xy = 1
4
(x+ y)2− 1

4
(x− y)2 can be rewritten

as (x + y)2 = 4xy + (x − y)2, and indeed, for x > y > 0, four x × y rectangles and an
(x− y)× (x− y) square can be fitted together to form an (x+ y)× (x+ y) square:

Now r(xyz) = 4 and a power sum decomposition of length 4 is given by

xyz =
1

24

(
(x+ y + z)3 − (x+ y − z)3 − (x− y + z)3 − (−x+ y + z)3

)
,

which can be rearranged to

(x+ y + z)3 = 24xyz + (x+ y − z)3 + (x− y + z)3 + (−x+ y + z)3.

So it is natural to ask: if x, y, z > 0 are the sides of a triangle, then can 24 x×y×z “bricks”,
plus three cubes as indicated, fit together to form a cube of side x+ y + z?

Following Igor Pak’s suggestion, I obtained 24 bricks and 3 cubes of appropriate sizes
created using a 3D printer, and engaged in experimental mathematics. I was able to show
that the answer is no — for general x, y, z there is no such stacking. A simple counterexample
is given by (x, y, z) = (11, 13, 17). (For these values, I showed that each face of the big cube
can only be covered by having exactly one small cube touching it, and the small cube must
be centered on the face of the big cube; but there are 6 faces and only 3 small cubes, so it
is impossible.)

2. Multiplier ideals

Multiplier ideals have been applied to a number of problems in algebraic geometry in
recent years, most spectacularly in recent major advances in the minimal model program
[37, 6] that built on earlier work showing the deformation invariance of plurigenera [63].
Other applications include several results on singularities and linear series [50], [31], a bound
for symbolic powers [30], and applications to algebraic statistics [80], [82], [26, Chapter 5].
New applications of multiplier ideals continue to emerge in topics such as Chow stability
[51] and singularities in generic liaison [57]. With broad and growing interest in multiplier
ideals, it is increasingly valuable to compute examples.

For a thorough introduction to multiplier ideals see [50]. There are a number of equivalent
characterizations of multiplier ideals, in terms of jet spaces [29], D-modules [16], test ideals
for tight closure [64], and local integrability [45, 46, 55]. Here is a definition of multiplier
ideals in terms of resolution of singularities. Suppose X is a smooth variety over a field
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k (we may assume X is affine, or even just kn, since we are primarily interested in local
issues), I ⊂ OX is a nonzero ideal sheaf, and µ : Y → X is a log resolution of I, so that the
total transform IOY defines a divisor F with simple normal crossings support, F =

∑
aiEi,

where the Ei are distinct reduced components of F . Then for each real number c ≥ 0, the
c’th multiplier ideal is defined by J (Ic) = µ∗OY (KY/X − bc ·F c) where KY/X is the relative
canonical divisor of Y over X, defined locally by the vanishing of the determinant of the
Jacobian dµ, and bc ·F c denotes the component-wise round-down of the R-divisor c ·F , given
by bc · F c =

∑
bcaicEi.

My contributions include the following.

2.1. Multiplier ideals of hyperplane arrangements. Mustat, ă computed multiplier ideals
of hyperplane arrangements using jet schemes [54]. I then gave a proof via resolution of sin-
gularities [69], using the De Concini–Procesi notion of wonderful models [23]. This argument
allows one to simplify the formula for the multiplier ideals by eliminating a large number
of redundant terms. My argument also remains in a finite-dimensional setting (unlike jet
schemes, which are infinite-dimensional) and allows one to treat hyperplane arrangements
with multiplicities.

Theorem 11 ([69]). Let A be a hyperplane arrangement with nonnegative multiplicities in a
vector space V and let L(A) be the set of subspaces obtained as intersections of hyperplanes
in A. For each W ∈ L(A) let r(A) be the codimension of W and let s(W ) be the sum of
multiplicities of hyperplanes of A containing W . Let G ⊂ L(A) be any building set. Then
the multiplier ideals of I = I(A) are given by, for any c ≥ 0,

J (Ic) =
⋂
W∈G

I
bc·s(W )c−r(W )+1
W ,

where IW is the ideal of W .

Mustat, ă’s result is the case G = L(A) \ {V }, but smaller building sets exist, and simplify
the formula by reducing the number of ideals being intersected. For example, for the braid
arrangement Bn on Cn, |L(Bn)| is the number of set partitions of {1, . . . , n}, which is super-
exponential; while Bn admits a building set (corresponding to so-called modular partitions)
of size 2n − n− 1, i.e., exponential.

Future work. It remains unknown whether every member of a minimal building set is nec-
essarily irredundant in the above formula, or whether a further reduction is possible.

2.2. Multiplier ideals of line arrangements. I computed the multiplier ideals of reduced
unions of lines through the origin in C3 under certain hypotheses [76]. This is notable
for being essentially the only computation of multiplier ideals carried out without special
combinatorial or representation-theoretic structure. The computation was carried out using
resolution of singularities. Thus, for example, for the ideal I1 of three non-coplanar lines
through the origin, J (Ic1) = (1) for 0 ≤ c < 3/2, while for the ideal I2 of three coplanar lines
through the origin, J (Ic2) = (1) for 0 ≤ c < 5/3. With my results, similar comparisons can
be given in other examples: for instance, between 6 general lines through the origin and 6
lines through the origin lying on a quadratic cone.

Consideration of these line arrangements is motivated by the following example of Ein–
Lazarsfeld–Smith [30]: If Z ⊂ P2 is a finite set of points, I is the homogeneous defining ideal
of Z, m > 0 is a positive integer, and F is a homogeneous form vanishing to order at least
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2m at each point of Z, then F ∈ Im. That is, the symbolic power I(2m) is contained in the
ordinary power: I(2m) ⊆ Im. Despite the elementary nature of the statement, the only known
proof is the one given by Ein–Lazarsfeld–Smith, using the asymptotic multiplier ideals of the
line arrangement corresponding to the points Z. So computing the multiplier ideals of line
arrangements is a natural first step toward a deeper understanding of such containments of
symbolic powers. See for example [10, 9] where these are studied intensively and elementary
proofs are given for the case that Z is a general set of points; these Ein–Lazarsfeld–Smith
and Bocci–Harbourne papers sparked a great deal of (ongoing!) activity, see for example
[39, 27, 28, 36, 8].

Future work. For arrangements of lines satisfying a certain hypothesis, a key part of the work
in [76] is to show that certain exceptional divisors arising in the resolution of singularities are
redundant. Compare [65, 78] where this phenomenon is studied for singularities of curves on
a surface. I will study multiplier ideals of arbitrary line arrangements with an eye toward
determining which exceptional divisors are redundant or irredundant.

2.3. Software for computing multiplier ideals. In theory it is algorithmic to compute
multiplier ideals by computing a resolution of singularities of I followed by a sheaf pushfor-
ward. In practice it is more difficult, see [33].

Shibuta’s algorithm for computing Bernstein-Sato polynomials and multiplier ideals via
Gröbner basis methods in Weyl algebras [62] (implemented by Shibuta in Risa/Asir) was
refined and implemented in the Dmodules library for Macaulay2 by Berkesch and Leykin
[4]. The Dmodules library can compute multiplier ideals and jumping numbers of arbi-
trary ideals, but due to the difficulty of the computations, can only handle modestly sized
examples.

I have developed a new software package named MultiplierIdeals, see [71], that com-
putes multiplier ideals of special ideals including monomial ideals, ideals of monomial curves,
generic determinantal ideals, and hyperplane arrangements via combinatorial methods, using
the Normaliz software and interface to Macaulay2 by Bruns, et al [11, 12]. The combi-
natorial methods allow computations of somewhat larger examples than can be handled by
general methods.

The MultiplierIdeals package also computes jumping numbers, those values of c at
which J (Ic) changes, and the log canonical threshold lct(I), the smallest positive jumping
number.

The MultiplierIdeals package is available from my web site at http://math.boisestate.
edu/~zteitler/math/MultiplierIdealsSoftware.php. It has been submitted to the Jour-
nal of Software for Algebra and Geometry; upon acceptance it will be distributed as part of
Macaulay2.

Future work. I will continue to add to the software as more algorithms for multiplier ideals
are developed. I will also work on applications of this software to statistical computations
and other applications, as described in [80].

2.4. Monodromy of hyperplane arrangements. In joint work with Nero Budur and
Mircea Mustat, ă [15], we show that the Monodromy Conjecture holds for hyperplane ar-
rangements and reduce a stronger version of the conjecture to a conjecture on Bernstein-
Sato polynomials of hyperplane arrangements. We prove the latter conjecture for a class
of hyperplane arrangements including generic arrangements and, using multiplier ideals, for

http://math.boisestate.edu/~zteitler/math/MultiplierIdealsSoftware.php
http://math.boisestate.edu/~zteitler/math/MultiplierIdealsSoftware.php
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arrangements of “moderate type” (a certain monotonicity condition on multiplicities in the
intersection lattice of the arrangement).

2.5. Asymptotic multiplier ideals of monomial ideals. The note [70], originally writ-
ten as an appendix for lecture notes of Brian Harbourne [38], provides an exposition of as-
ymptotic multiplier ideals and their application to the uniform bounds for symbolic powers
developed by Ein–Lazarsfeld–Smith [30]. I show that a certain improvement of the Ein–
Lazarsfeld–Smith bound found by Takagi–Yoshida [68] using characteristic p methods can
also be obtained by the Ein–Lazarsfeld–Smith approach using asymptotic multiplier ideals:

Theorem 12 ([68]). Let R be a regular local ring of equal characteristic 0, I ⊆ R a reduced
ideal, e be the greatest height of an associated prime of I, and ` an integer, 0 ≤ ` < lct(I(•))
where lct(I(•)) is the log canonical threshold of the graded system of symbolic powers of I.
Then I(m) ⊆ Ir whenever m ≥ er − `. More generally, for any k ≥ 0, I(m) ⊆ (I(k+1))r

whenever m ≥ er + kr − `.

In addition I elaborate on an idea of Mustat, ă [53] to compute asymptotic multiplier
ideals of several families of graded sequences of monomial ideals, including in particular the
sequence of symbolic powers of a reduced (squarefree) monomial ideal. These are among the
very few nontrivial examples of asymptotic multiplier ideals of symbolic powers that have
been computed to date. I also compute asymptotic multiplier ideals of graded systems of
hyperplane arrangements.

3. Experiments at the frontiers of reality in Schubert calculus

I am a member of a team led by Frank Sottile to test a number of conjectures on reality
in Schubert calculus by means of massive computational experiments.

Schubert calculus concerns the number of linear subspaces of Cn having intersections of
specified dimensions with some given flags (sequences of nested subspaces). For example,
given 4 general planes in C4, one finds that there are exactly 2 planes having at least 1-
dimensional intersection with each — correspondingly, given 4 general lines in P3, there are
exactly 2 lines meeting each given line. When the given flags are real, the solution subspaces
are real or conjugate pairs. “Reality in Schubert calculus” refers to the phenomenon that,
for any given list of intersection conditions (called Schubert conditions), there exists some
configuration of real flags for which the solution subspaces are all real. This was shown by
Vakil [79] building on earlier work by Sottile [66]. Boris and Michael Shapiro conjectured,
astonishingly, that an exceedingly simple recipe would produce flag configurations giving
real solutions to all Schubert problems: namely, configurations of osculating flags to a fixed
real moment curve. Interest in this conjecture, leading eventually to its proof by Mukhin–
Tarasov–Varchenko [52], was spurred by massive computational experiments by Sottile and
others, see for example [59].

I joined Sottile’s team which consisted of postdocs and graduate students working with
Sottile. As a postdoc on the team, I mentored graduate students. We developed software
to test variations of the Shapiro–Shapiro conjecture (Mukhin–Tarasov–Varchenko theorem),
notably the Secant Conjecture which replaced osculating flags with secant flags spanned
by points along the moment curve in disjoint intervals; the Monotone Conjecture which
generalized the Shapiro–Shapiro conjecture to the setting of flag manifolds instead of Grass-
mannians; and the Monotone Secant Conjecture. These all remain open. In addition to
providing overwhelming evidence for all three conjectures, our experiments explored new



RESEARCH STATEMENT 11

territory and uncovered new phenomena by including computations of secant flags along
non-disjoint intervals, and non-monotone configurations.

The results of our experiments are reported in [34, 40]. The running of the experiments is
described in [41]. All the data generated by the experiments is publicly accessible through
the project web site, http://www.math.tamu.edu/~secant/.

The computations were carried out primarily using Singular and Maple, as well as
Macaulay2, CoCoA, and Sage. We used Perl and batch scheduling software to au-
tomate the computation of billions of examples. Results were stored in a database using
MySQL and displayed on dynamically created web pages using PHP. I was involved in the
development of every part of the codebase.

4. Arrangement, combinatorial, and determinantal problems

My study of multiplier ideals of line arrangements led me to look into arrangements of
points, hyperplanes, and more generally arrangements of linear subspaces. As points in the
plane are defined by the maximal minors of a Hilbert–Burch matrix, I also became interested
in certain questions about determinantal ideals. My activities in these areas include the
following.

4.1. Hilbert functions of fat point schemes in the plane. This is joint work with
Susan Cooper and Brian Harbourne [22]. Let A be a fat point scheme in the plane, A =
m1P1 + · · ·+mnPn, and suppose we are given certain subsets S1, . . . , Sk ⊆ {P1, . . . , Pn} such
that for each i, there exists a line Li containing the points in Si and no other points of A;
but we do not assume knowledge of the lines Li, the positions of the points along each Li,
actual coordinates of the Pj, etc. We also do not assume that the given list of Si is complete,
i.e., there may be additional subsets of collinear points, but we are limited to just the given
Si.

From this limited information we describe a simple recursive reduction procedure as fol-
lows: at each step, choose a subset Si, record the total of multiplicities of points in Si, then
decrease each of those multiplicities by 1, discarding any point whose multiplicity reaches
zero. The output is a vector of nonnegative integers, the totals of multiplicities recorded at
each step. This is called a reduction vector.

Also for any vector d of nonnegative integers we define functions fd, Fd : Z→ Z, and show:

Theorem 13 ([22]). If d is a reduction vector of A then the Hilbert function hA satisfies
fd ≤ hA ≤ Fd. Furthermore, if d contains no zero entries and is non-increasing, then
fd = Fd, unless d contains a subsequence of the form (. . . , a, a, a, . . . ) or (. . . , a, a, a+ 1, a+
2, . . . , a+ k− 1, a+ k, a+ k, . . . ), that is, three equal entries, or consecutive entries with the
first and last repeated.

Conversely if fd = Fd then d satisfies the condition, i.e., avoids the indicated subsequences.
Both fd and Fd are defined recursively but are also given explicit combinatorial descriptions.
Interestingly, “greedy” choices (i.e., choosing at each step a subset Si to have the largest
possible sum of multiplicities) do not necessarily result in the best possible bounds, as we
show by example.

In the case d avoids the indicated subsequences, so that fd = Fd and hA is uniquely
determined, we also give upper and lower bounds for the graded Betti numbers of the ideal
IA, and we show that those bounds coincide precisely when the reduction vector d is strictly
decreasing.

http://www.math.tamu.edu/~secant/
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We compute the Hilbert functions and graded Betti numbers for a number of interesting
examples, such as star configurations with multiplicities.

4.2. Complete bipartite subspace arrangements. This is joint work with Douglas A.
Torrance [74]. We consider arrangements of codimension 2 subspaces about which one has
only the following partial information: the simple graph with one vertex for each subspace
and links whenever the subspaces have codimension 3 intersection. This graph does not
typically determine the Castelnuovo–Mumford regularity of the (ideal of the) arrangement,
or whether the arrangement is arithmetically Cohen–Macaulay. However we show that in
case the graph is a complete bipartite graph of type (a, b) with a ≤ b ≤ 2 or 2 ≤ a ≤ b ≤ 3 or
3 ≤ a ≤ b, the regularity of the ideal is uniquely determined, in fact equal to max(a+ 1, b);
and the arrangement A is arithmetically Cohen–Macaulay if and only if b = a or b = a+ 1.

4.3. Decompositions of ideals of minors meeting a submatrix. This is joint work
with Kent M. Neuerburg [56]. We give primary decompositions of certain ideals generated
by subsets of minors or Pfaffians of a generic matrix. First, let X = (xi,j) be a generic
matrix. It is well known that the ideal It(X) of t-minors of X is prime. Now consider the
ideal generated by those t-minors that involve at least ti columns in the first ci columns of X,
for each i, for some given values ti, ci; and one can similarly impose row conditions. These
ideals arise when, for example, one considers replacement of the xi,j by homogeneous forms
of degree bj−ai; then the low-degree part of the resulting determinantal ideal is described by
these sorts of row and column conditions. We give an explicit primary decomposition of these
determinantal ideals, using the theory of algebras with straightening law. This generalizes
one of the results of [1] concering the ideal generated by minors that contain a submatrix,
i.e., involve all ci of the first ci columns of X (and all the rows).

We find similar results for minors in a generic symmetric matrix and Pfaffians in a generic
skew-symmetric matrix.

5. Other

Not discussed here are my papers on the following:

• on nef cone volumes of generalized Del Pezzo surfaces (joint work with Ulrich Der-
enthal and Michael Joyce) [24];
• a report on recent developments and open problems in linear series [3] (I contributed

a section on bounds for symbolic powers);
• on arithmetic forms of toric varieties, i.e., with nonstandard structures over nonclosed

fields (joint work with Javier Elizondo, Paulo Lima-Filho, and Frank Sottile) [32];
• generalizing Chris Hammond’s topological criterion for schlichtness of the domain of

holomorphy of a function [72];
• on intersections of curves through a set of points in the plane [77].

Research Impact: Two problems or conjectures that I suggested have led to papers by
other researchers.

• A problem which I suggested to Dan Erman was used as the basis for a successful
research program by a group of graduate students at the MSRI Summer Graduate
Workshop in Commutative Algebra in summer 2011. The problem was to find the
Boij-Söderberg decomposition for the Betti table of a complete intersection. The
group of graduate students under Dan’s direction found partial results toward this
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problem, leading to the recent paper Non-simplicial decompositions of Betti diagrams
of complete intersections by Courtney Gibbons, Jack Jeffries, Sarah Mayes, Claudiu
Raicu, Branden Stone, and Bryan White (arXiv:1301.3441 [math.AC]) (to appear in
Journal of Commutative Algebra). Understanding this (very) special case is a first
step toward understanding more interesting cases, and suggests more questions for
future investigation.
• A conjecture which I shared with A. Iarrobino was solved by his recent gradu-

ate student Masoumeh (Sepideh) Shafiei, who determined the apolar annihilating
ideals of the generic determinant, permanent, Pfaffian, Hafnian, symmetric deter-
minant, and more. These results were the basis of her Ph.D. dissertation and led
to her recent papers Apolarity for determinants and permanents of generic matri-
ces (arXiv:1212.0515) (to appear in Journal of Commutative Algebra) and Apolarity
for determinants and permanents of generic symmetric matrices (arXiv:1303.1860).
They have already found application in my ongoing research.

Other problems. I am interested in studying the sequences of regularities that occur for
exact sequences of graded modules, and the “Betti tensor” obtained by stacking the Betti
tables of graded modules in an exact sequence, generalizing Boij-Söderberg theory.

I will study jet schemes of monomial ideals and subspace arrangements, building on work
of Mustat, ă, Goward–Smith, and C. Yuen.

I would like to extend Jeremy Marin’s slope varieties and picture varieties to higher di-
mension and codimension and other settings such as tropical geometry.
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