
ECE459: Programming for Performance Winter 2011

Lecture 12 — February 10, 2011

Patrick Lam version 2

We’ll talk about automatic parallelization today. The vision is to take your standard sequential C
program and convert it into a parallel C program which leverages multiple cores, CPUs, machines,
etc. This was an active area of research in the 1990s, then tapered off in the 2000s (because it’s a
hard problem!); it is enjoying renewed interest now.

Arrays vs. dynamically-allocated data structures. The easiest kind of program to paral-
lelize is the classic Fortran program which performs a computation over a huge array. C is a bit
worse, but still tractable, given enough compiler hints. In this course, we’re only going to talk about
parallelization of array codes. Some production compilers, like the non-free Intel C compiler icc,
the free-as-in-beer Solaris Studio compiler1, and the free GNU C compiler gcc, include support for
parallelization, with different maturity levels.

Following Gove, we’ll parallelize the following code:

1 #include <s t d l i b . h>
2
3 void setup (double ∗vector , int l ength) {
4 int i ;
5 for (i = 0 ; i < l ength ; i++)
6 {
7 vector [i] += 1 . 0 ;
8 }
9 }

10
11 int main ()
12 {
13 double ∗ vector ;
14 vector = (double∗) mal loc (s izeof (double) ∗ 1024 ∗ 1024) ;
15 for (int i = 0 ; i < 1000 ; i++)
16 {
17 setup (vector , 1024∗1024) ;
18 }
19 }

The Solaris Studio compiler yields the following output:

$ cc -O3 -xloopinfo -xautopar omp_vector.c

"omp_vector.c", line 5: PARALLELIZED, and serial version generated

"omp_vector.c", line 15: not parallelized, call may be unsafe

gcc 4.4 can also parallelize loops, but there are a couple of problems: 1) the loop parallelization
doesn’t seem very stable yet; 2) I can’t figure out how to make gcc tell you what it did; and, perhaps
most importantly for performance, 3) gcc doesn’t have any heuristics yet for guessing which loops
are profitable.

One way to inspect the resulting code is by giving gcc the -S option and looking at the resulting
assembly code yourself. This is obviously not practical for production software.

$ gcc -std=c99 omp_vector.c -O2 -ftree-parallelize-loops=2 -S

1http://www.oracle.com/technetwork/documentation/solaris-studio-12-192994.html

1

The resulting .s file contains the following code:

call GOMP_parallel_start

movl %edi, (%esp)

call setup._loopfn.0

call GOMP_parallel_end

Before running the program, you can set the OMP_NUM_THREADS variable to control the number of
threads the program spawns. Here’s some potential output from a parallelized program:

$ export OMP_NUM_THREADS=2

$ time ./a.out

real 0m5.167s

user 0m7.872s

sys 0m0.016s

When you use multiple (virtual) CPUs, CPU usage can increase beyond 100% in top, and real time
can be less than user time in the time output, since user time counts the time used by all CPUs.

Case study: Multiplying a Matrix by a Vector.

Next, we’ll see how automatic parallelization does on a more complicated program. We will pro-
gressively remove barriers to parallelization for this program:

1 void matVec (double ∗∗mat , double ∗vec , double ∗out ,
2 int ∗row , int ∗ co l)
3 {
4 int i , j ;
5 for (i = 0 ; i < ∗row ; i++)
6 {
7 out [i] = 0 ;
8 for (j = 0 ; j < ∗ co l ; j++)
9 {

10 out [i] += mat [i] [j] ∗ vec [j] ;
11 }
12 }
13 }

The Solaris C compiler refuses to parallelize this code:

$ cc -O3 -xloopinfo -xautopar fploop.c

"fploop.c", line 5: not parallelized, not a recognized for loop

"fploop.c", line 8: not parallelized, not a recognized for loop

For definitive documentation about Sun’s automatic parallelization, see Chapter 10 of their Fortran
Programming Guide and do the analogy to C:

http://download.oracle.com/docs/cd/E19205-01/819-5262/index.html

In this case, the loop bounds are not constant, and the write to out might overwrite either row or
col. So, let’s modify the code and make the loop bounds ints rather than int *s.

1 void matVec (double ∗∗mat , double ∗vec , double ∗out ,
2 int row , int co l)
3 {
4 int i , j ;
5 for (i = 0 ; i < row ; i++)
6 {
7 out [i] = 0 ;
8 for (j = 0 ; j < co l ; j++)
9 {

10 out [i] += mat [i] [j] ∗ vec [j] ;
11 }
12 }
13 }

2

This changes the error message:

$ cc -O3 -xloopinfo -xautopar fploop1.c

"fploop1.c", line 5: not parallelized, unsafe dependence

"fploop1.c", line 8: not parallelized, unsafe dependence

Now the problem is that out might alias mat or vec; as I’ve mentioned in Lecture 7, parallelizing
in the presence of aliases could change the run-time behaviour.

restrict qualifier. Recall that the restrict qualifier on pointer p tells the compiler2 that it
may assume that, in the scope of p, the program will not use any other pointer q to access the data
at *p.

1 void matVec (double ∗∗mat , double ∗vec , double ∗ r e s t r i c t out ,
2 int row , int co l)
3 {
4 int i , j ;
5 for (i = 0 ; i < row ; i++)
6 {
7 out [i] = 0 ;
8 for (j = 0 ; j < co l ; j++)
9 {

10 out [i] += mat [i] [j] ∗ vec [j] ;
11 }
12 }
13 }

Now cc is happy to parallelize the outer loop:

$ cc -O3 -xloopinfo -xautopar fploop2.c

"fploop2.c", line 5: PARALLELIZED, and serial version generated

"fploop2.c", line 8: not parallelized, unsafe dependence

Note that “serial version generated” means that the compiler generates both the parallel and serial
versions, and chooses between them depending on whether the loop bounds, at runtime, are large
enough to justify spawning threads.

There’s still a dependence in the inner loop. This dependence is because all inner loop iterations
write to the same location, out[i]. We’ll discuss that problem below.

In any case, the outer loop is the one that can actually improve performance, since parallelizing it
imposes much less barrier synchronization cost waiting for all threads to finish. So, even if we tell
the compiler to ignore the reduction issue, it will generally refuse to parallelize inner loops:

$ cc -g -O3 -xloopinfo -xautopar -xreduction fploop2.c

"fploop2.c", line 5: PARALLELIZED, and serial version generated

"fploop2.c", line 8: not parallelized, not profitable

2http://cellperformance.beyond3d.com/articles/2006/05/demystifying-the-restrict-keyword.html

3

Summary of conditions for automatic parallelization. Here’s what I can figure out; you
may also refer to Chapter 3 of the Solaris Studio C User’s Guide, but it doesn’t spell out the exact
conditions either. To parallelize a loop, it must:

• have a recognized loop style, e.g. for loops with bounds that don’t vary per iteration;

• have no dependencies between data accessed in loop bodies for each iteration;

• not conditionally change scalar variables read after the loop terminates, or change any scalar
variable across iterations;

• have enough work in the loop body to make parallelization profitable.

Reductions. The concept behind a reduction (as made “famous” in MapReduce, which we’ll talk
about later) is reducing a set of data to a smaller set which somehow summarizes the data. For us,
reductions are going to reduce arrays to a single value. Consider, for instance, this function, which
calculates the sum of an array of numbers:

1 double sum (double ∗array , int l ength)
2 {
3 double t o t a l = 0 ;
4
5 for (int i = 0 ; i < l ength ; i++)
6 t o t a l += array [i] ;
7 return t o t a l ;
8 }

There are two problems: 1) the value of total depends on what gets computed in previous it-
erations; and 2) addition is actually non-associative for floating-point values. (Why? When is it
appropriate to parallelize non-commutative operations?)

Nevertheless, the Solaris C compiler will explicitly recognize some reductions and can parallelize
them for you:

$ cc -O3 -xautopar -xreduction -xloopinfo sum.c

"sum.c", line 5: PARALLELIZED, reduction, and serial version generated

Dealing with function calls. Generally, function calls can have arbitrary side effects. Produc-
tion compilers will usually avoid parallelizing loops with function calls; research compilers try to
ensure that functions are pure and then parallelize them.

For builtin functions, like sin(), you can promise to the compiler that you didn’t replace them
with your own implementations (-xbuiltin), and then the compiler will parallelize the loop.

Another option is to crank up the optimization level (-xO4), or to explicitly tell the compiler to
inline certain functions (-xinline=), thereby enabling parallelization.

Helping the compiler parallelize. Let’s summarize what we’ve seen. To help the compiler,
we can use the restrict qualifier on pointers (possibly copying a pointer to a restrict-qualified
pointer: int * restrict p = s->p;); or, we can make sure that loop bounds don’t change in
the loop (e.g. by using temporary variables). Some compilers can automatically create different
versions for the alias-free case and the (parallelized) aliased case; at runtime, the program runs the
aliased case if the inputs permit.

4

