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ABSTRACT

Besides attracting a billion dollar economy, Bitcoin revolu-
tionized the field of digital currencies and influenced many
adjacent areas. This also induced significant scientific inter-
est. In this survey, we unroll and structure the manyfold
results and research directions. We start by introducing the
Bitcoin protocol and its building blocks. From there we
continue to explore the design space by discussing existing
contributions and results. In the process, we deduce the fun-
damental structures and insights at the core of the Bitcoin
protocol and its applications. As we show and discuss, many
key ideas are likewise applicable in various other fields, so
that their impact reaches far beyond Bitcoin itself.

1. INTRODUCTION

Over the past decades, the Internet has witnessed the
advent of many bottom-up, grassroots applications which
solve problems in a cooperative, distributed manner. A
number of these community-driven, non-commercial systems
has become well-known and widespread; examples include
anonymous communication [Chaum 1981], PGP [Zimmer-
mann 1995], Hashcash [Back 2002], and BitTorrent [Cohen
2003]. If fact, practically applicable solutions have often be-
come available soon after the idea for a certain application
had first been conceived. Digital money is an exception from
this rule: from the early 1980s the vision of digital money
had been around—but it took more than a quarter of a cen-
tury before a fully distributed solution became reality.

The early attempts to build digital currencies, as de-
scribed in [Chaum 1982, Law et al. 1996], require a central
authority—that is, a bank. Approaches like b-money [Dai
1998], RPOW [Finney 2004], and bit gold [Szabo 2005] later
came up with the idea to interpret the solution to a cryp-
tographic puzzle—a proof of work—as something valuable.
They compared it to a piece of precious metal or a minted
coin. This way everybody could become a “digital gold dig-
ger”, mining money independently from a bank, but still
requiring a central instance to maintain ownership records.

In order to completely eliminate the bank, the ledger
which accounts for the ownership of coins must also be
distributed. However, a fundamental and inherent risk of
digital currencies in general—and a distributed currency in
particular—is the ability to double spend coins. Since dig-
ital copies are trivial, someone could issue two transactions
in parallel, transferring the same coin to different recipients.
In an online and centralized scenario, the bank is able to
detect and prevent the attempt. Accomplishing the same
in a distributed setting is far from trivial. The distribution

of information and the problem of mutual agreement on a
consistent state is a challenge, especially in the presence of
selfish and/or malicious participants. It boils down to the
Byzantine Generals problem [Lamport et al. 1982]. This
insight [Szabo 2003] pushed the idea to employ quorum sys-
tems [Szabo 1998]. Quorum systems, as described in [Malkhi
and Reiter 1998], accept the possibility of faulty information
and the existence of malicious entities in a distributed envi-
ronment. They introduce the concept of voting. As long as
the majority of any chosen subset of peers (quorum) is hon-
est, the correct value is obtained by election. However, the
approach is vulnerable to the Sybil attack [Douceur 2002]:
a malicious entity could set up many peers which subvert
the election and inject faulty information. Furthermore, it
ignores the propagation delays in distributed systems and
leads to temporary inconsistencies.

These difficulties were finally overcome by the Bitcoin
design [Nakamoto 2008a]. In November 2008 it was an-
nounced by Satoshi Nakamoto to the Cryptography mailing
list [Nakamoto 2008b]. After its deployment in 2009, Bitcoin
quickly became viral. Nakamoto remained active until about
2010, before handing over the project. Until now the true
identity of Nakamoto remains unknown and is subject to
speculation, e.g. whether the name is real or a pseudonym,
or if it in fact represents a group of people. That much is cer-
tain: Bitcoin cleverly combines existing contributions from
decades of research [Merkle 1987, Malkhi and Reiter 1998,
Haber and Stornetta 1991, Massias et al. 1999, Back 2002].
Beyond that, however, it also solved fundamental problems
in a highly sophisticated, original and practically viable way:
it uses a proof of work scheme to limit the number of votes
per entity, and thus renders decentralization practical.

Bitcoin miners collect transactions in a block and vary a
nonce until one of them finds the solution to a given puzzle.
The block including the solution and the transactions are
broadcast to all other entities, and the distributed ledger
(the block chain) is updated. The ownership of coins can
be determined by traversing the block chain until the most
recent transaction of the respective coin is found. Forks of
the block chain due to malicious manipulations or propaga-
tion delays are resolved by considering the “longest” fork (in-
cluding most of the work) as consensus. Thus, Sybil and—at
least to some extent—double spending attacks are mitigated
by binding additions to the block chain (votes) to proof-of-
work contributions. The proof of work also induces a con-
tinuous supply of new coins as a reward (and incentive) for
miners. All of this does not require a centralized coordinat-
ing authority, and practically demonstrates the feasibility of
a distributed digital currency.



Early Bitcoin studies gave a preliminary overview of the
system’s strengths and weaknesses [Barber et al. 2012] and
compared them to paper and electronic cash [Drainville
2012]. This survey describes and reflects the state of the art
in the area of fully distributed digital currencies. Today, this
reaches significantly beyond Bitcoin. Yet, Bitcoin is still by
far the most widely known system, and it marks the turning
point which accelerated the entire research area. We there-
fore put Bitcoin at the center of our attention, and arrange
related and alternative concepts around it. We will start
from Bitcoin’s proof-of-work concept, from where we explore
the technical background and discuss the implications of the
central design decisions. Based on a detailed understanding
of these aspects, the research area beyond Bitcoin unfolds,
so that we iteratively take alternative approaches into the
discussion. For instance, this includes alternatives to the
proof-of-work scheme or Bitcoin-like distributed consensus
schemes for other applications. Many of these approaches
result in new currencies, so called “altcoins”, which exist
concurrently to Bitcoin.

In order to gain a full technical understanding of Bitcoin
as it is used today, scientific literature alone is not sufficient.
Many important details can only be found in mailing lists,
forum posts, blogs, wikis, and source code—some of them
dating back until the 1980s. This survey aims to provide
the whole picture. Therefore, we also took these sources
into account, to incorporate also those aspects that have
previously not been described with scientific rigour. In fact,
even though Bitcoin has been recognized controversially and
gained media attention due to being used for criminal pur-
poses, from a technical perspective, we perceive a certain
beauty in the system, which may not necessarily be visible
at a first glance, but which we hope to convey through our
description.

The four goals of this survey are: (i) provide an holis-
tic technical perspective on distributed crypto currencies,
(ii) explore the design space and expose the implications of
certain design decisions, (iii) consolidate and link the broad
body of work while distilling the key algorithmic features,
and (iv) identify the fundamental ideas which remain inde-
pendent from specific implementations or temporary idioms
of usage.

Likely the closest relative to this article—and worth a
pointer in this context—is [Bonneau et al. 2015]. The au-
thors outline the key elements of Bitcoin’s design and the
existing body of work in a condensed form for readers with
substantial prior knowledge in the area. They also motivate
further research in the field and discuss research challenges.
Here, we address a broader audience by including a tutorial-
style introductory part, and we include a more comprehen-
sive selection from the existing literature for a more in-depth
overview.

The remainder of this survey is structured as follows. Sec-
tion 2 introduces the basics of Bitcoin and provides a first
outline of central concepts, including proof of work and dou-
ble spending. In Section 3 we then consider security threads
and implications. Bitcoin’s backbone, the peer-to-peer net-
work, influences virtually every aspect of the currency; we
cover it in Section 4. The subsequent Section 5 discusses the
balance between privacy properties and the system’s inher-
ent transparency; here, we review many approaches to en-
hance privacy. In Section 6 and we revisit the proof-of-work
scheme and related topics, and in particular discuss alter-

native approaches. Finally, before concluding this survey in
Section 8, Section 7 summarizes our key observations.

2. THE BITCOIN PROTOCOL

In this section we will explain the core Bitcoin proto-
col as originally introduced in [Nakamoto 2008a]. This will
pave the ground for more in-depth discussions of specific as-
pects in subsequent sections. We begin with an abstract and
rather simplistic view of a digital currency, which we then
iteratively refine. We also sketch the research context of the
presented ideas, and, where appropriate, follow the early
steps of digital currencies before Bitcoin [Chaum 1982, Law
et al. 1996]. However, our discussions are always directed to-
wards the foundations of the Bitcoin protocol and its main
idea: the use of proof of work to eliminate the bank and to
decentralize and secure the ledger. In particular, this section
will successively introduce the basics on mining, the block
chain, transactions and scripting.

The Bitcoin developer documentation [Bitcoin dev 2014],
the Bitcoin wiki [Bitcoin wiki 2014] and the Bitcoin source
code (github.com/bitcoin/bitcoin) constituted valuable
sources for the aspects discussed in this section. For
a tutorial-like explanation of the Bitcoin basics from a
slightly different angle, we also refer the reader to the blog
post [Nielsen 2013].

2.1 The Starting Point: Centralized Digital
Currencies

Assume Alice intends to transfer a coin to Bob. In order
to do so—in an extremely naive approach—she could gen-
erate a digitally signed contract stating “I transfer one coin
to Bob” and announce it publicly. Following Bitcoin termi-
nology, such a contract may be called transaction (TX). For
the moment, we can consider it as a signed contract, which
is verifiable using Alice’s public key. It is per se not forgery
proof, though, because it can be replayed: if a duplicate copy
of the contract appears, it cannot be decided whether Alice
tries to fool Bob, whether she (perfectly honestly) aims to
transfer a second coin to Bob, or whether Bob performs a
replay attack in order to claim multiple coins from Alice’s
account.

Obviously, to solve such ambiguities, uniquely identifiable
coins are necessary. This could be achieved by introducing
serial numbers—but where do they come from? We need a
trusted source which issues the serials. In a centralized sce-
nario this is what is generically called a bank: the bank is-
sues coins with unique serial numbers and maintains a ledger
including all ownerships, i. e., the mapping between user ac-
counts and serial numbers.

Transferring a coin would then consist of Alice signing and
announcing a transaction of the following form: “I transfer
coin #1210 to Bob”. Bob verifies the ownership of coin
#1210 by consulting the bank. If the transaction is valid and
Bob accepts the transaction, the bank updates its ledger. In
this moment the owner of the coin changes from Alice to
Bob.

This simple, centralized digital currency exemplifies the
basic design of the banking model. In fact, it resembles
the classical baseline of online electronic payment proto-
cols [Chaum 1982, Law et al. 1996] (even though, of course,
they include many clever extensions and additional fea-
tures). An overview of further technologies in this domain
can be found in [Asokan et al. 1997].
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Bitcoin aims for a much more ambitious solution, though:
one which gets rid of the central bank. To this end, mech-
anisms are needed to create coins in a distributed setting,
and to store and manage the ledger in a distributed way.
The key challenge is to achieve consensus on existing coins
and their ownership without a central instance, and without
mutual trust relationships between participants.

2.2 Proof of Work: Decentralizing the Cur-
rency

So, how can we eliminate the central bank? Bitcoin solves
this in a very pragmatic way: in a sense, everyone is the
bank. That is, every participant keeps a copy of the record
which would classically be stored at the central bank. We
can consider it a distributed ledger reflecting all transactions
and ownerships. In Bitcoin, the so-called block chain takes
the role of this distributed ledger.

However, distributed storage of multiple copies of the
block chain opens up new possibilities for Alice to cheat.
In particular, Alice could issue two separate transactions to
two different receivers (say, Bob and Charlie), transferring
the same coin. This is called double spending. If Bob and
Charlie verified and accepted the transactions independently
(based on their respective local copy of the block chain), this
would drive the block chain into an inconsistent state. If Bob
accepts the transaction and tells everyone else about it before
Charlie accepts it, though, Charlie would be able to identify
the transaction as a double spending attempt. Thus, under
the assumption of a synchronous and unjammable broadcast
channel, a simple, synchronized distributed ledger is viable.
This is the essence of the simplified B-Money proposal [Dai
1998]. This assumption does not hold in practice, though.
Therefore, we have to deal with the undesirable period be-
tween issuing a transaction and having everyone informed
about it—a prototypical distributed consensus problem.

Bitcoin addresses this problem by, in a sense, letting the
entire network verify the legitimacy of the transactions, so
that double spending will be noticed by other participants.
If and only if a majority of the participants agrees on the ex-
istence and legitimacy of the transaction, Bob should accept
it. However, this, in turn, raises the question of false iden-
tities: an adversary could mount a Sybil attack [Douceur
2002]. That is, Alice could set up many instances all con-
firming the transaction (thus constituting the “majority”),
even though it is, in fact, a double spend. Bob would be-
lieve them and accept the transaction.

The Bitcoin protocol makes use of proof of work to prevent
Sybil attacks. Before verifying a transaction and spreading
the news about it, participants have to perform some work
to proof they are “real” identities. The work consists of a
cryptographic puzzle, which artificially increases the com-
putational cost to verify transactions. Thereby, the ability
of verification depends on the computing power, and not on
the number of (potentially fake) identities. The underlying
assumption is that it is much harder to control the majority
of the computing power in the system than it is to control
the majority of the identities.

Such proof-of-work schemes have (also before Bitcoin)
been used in other areas, for instance against denial of ser-
vice attacks or spam. Likely one of the best-known examples
is Hashcash [Back 2002].

New Bitcoin transactions are communicated to all partic-
ipants in the network. Given they are valid, these trans-

actions are collected to form a so-called block. The puzzle
used in the proof of work-based distributed validation pro-
cess consists of calculating a hash of the thus formed block
and adjusting a nonce in such a way that the output value
is lower than or equal to a certain target value. Once one
participant has found such a nonce, the block with the re-
spective nonce will be distributed in the network, and par-
ticipants will update their local copy of the block chain.

Solving the puzzle is computationally difficult. Bitcoin
uses the SHA-256 hash function [Eastlake and Hansen 2011].
Unless the (cryptographic) hash function used for calculat-
ing the block hashes is broken, the only fruitful strategy is to
try different nonces until a solution is found. Consequently,
the difficulty of the puzzle depends on the target value.

If, for instance, the target demands that the (binary) hash
begins with 48 zeros, an average of 2% attempts are needed
before the puzzle is solved. The lower the target (i.e., the
more leading zeros are required), the more difficult the puz-
zle becomes. Given that all network participants aim to
solve the puzzle, the chance of being the first to come up
with a solution is proportional to the fraction of the total
computing power. Sometimes the analogy of “raffle tick-
ets” is used: the number of tickets for a given participant is
proportional to her computing power. The total number of
tickets in the raffle wheel is proportional to the total com-
puting power in the system. The more tickets in the raffle
wheel, the lower are my chances of winning. However, I can
increase my chances by buying more raffle tickets, i.e., by
increasing my computing power.

For reasons of stability and reasonable waiting times for
transaction validation, the target value is adjusted every
2,016 blocks. It is then re-chosen to meet a verification
rate of approximately one block every 10 minutes. Thus,
on average, every two weeks (= 2016 - 10 min) the target is
recalculated. The new target T is given by

tactual
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P*Y 2016 - 10 min (1)

where Tprev is the old target value and factual the time span
it actually took to generate the last 2,016 blocks. However,
the target never changes by more than a factor of four. If
2,016 blocks were generated during a time span shorter than
two weeks, this indicates that the overall computing power
has increased, so that the proof of work difficulty should also
be increased.

In Bitcoin, the term difficulty is used in the specific mean-
ing to express how difficult it is to find a hash below a given
target. The ratio of the highest possible target and the cur-
rent target is used as the difficulty measure.

Let us recap this in the context of our example, where Al-
ice still wants to transfer coins to Bob. When Alice broad-
casts her transaction, Bob, Charlie and many others receive
it. They all verify its legitimacy based on their local copy of
the block chain. Subsequently they enqueue it to the pend-
ing transactions they have heard of (that is, they add it to
the current block). If Charlie intends to spread his “opin-
ion” that the collection of pending transactions is valid, he
first needs to solve the puzzle. Let us assume Charlie is the
first participant who solves the puzzle, i.e., the first one to
find a nonce for which the hash value meets the target. He
then broadcasts the block of transactions together with this
nonce. Other participants can verify that the nonce is a valid
solution, and hence add the new block to their block chain.



At this point, it is considered consensus that Alice’s transfer
of the coin to Bob is valid, and Bob is the new owner of the
respective coin.

But, after all: why should anyone solve this puzzle and
waste computation time (thus energy, ergo money) for veri-
fying and certifying other people’s transactions? What does
Charlie gain from doing so? In order to provide an incentive,
the Bitcoin protocol rewards the first participant who pro-
vides the proof of work with coins. There are two sources for
this reward: transaction fees and mining. For now, we con-
centrate on mining and cover transaction fees only briefly.
Later on, we get into more details also on the fees.

Mining is the process of adding new blocks to the block
chain, because—in addition to securing the ledger—it re-
sults in the generation of new coins. Just like precious metals
and collectibles, the block has an unforgeable scarcity: recall
that parameters are chosen such that there is one success-
ful puzzle solution roughly every ten minutes. This scarcity
creates a value, which is backed up by the real-world (com-
putational) resources required to mint it.

Note that mining also provides a controlled and pre-
dictable supply of coins, which does not involve a central
bank. Bitcoin’s precursors [Dai 1998, Finney 2004, Szabo
2005] already made this fundamental observation and incor-
porated it in their designs.

In Bitcoin, the initial block reward was set to 50 coins
(50 BTC). Every 210,000 blocks, that is approximately once
every four years (= 210,000 - 10min), the reward halves.
This happened the first time by the end of November 2012".
Since then, the reward for a solved proof-of-work puzzle is
25 BTC. The iterative halving will continue until the mining
reward drops below 1078 BTC. This amount is the minimal
unit of Bitcoin, also known as satoshi.

This event is predicted for the year 2140. The minting
of new coins will then stop and all ever existing coins (ap-
proximately 21 - 10°) will be in circulation. However, due
to the transaction fees an incentive to validate new blocks
will still remain. Indeed, since the first halving of the block
reward, transaction fees have increased substantially. This
trend will most likely continue and provide the necessary
incentive. [Kaskaloglu 2014] discusses the relationship of
mining rewards and transaction fees.

2.3 Block Chain

So far, we gave only an abstract explanation of the block
chain and denoted it as the distributed ledger. That still
hits the spot—but there is more. We will now take a closer
look at the structure of the block chain. In particular, we
will turn towards the question how Bitcoin keeps the blocks
in order and comes to a system-wide consistent consensus.

To determine the ownership of each coin, a total order of
blocks (and thus transactions) is desirable. For this reason,
blocks include a pointer to the previously validated block
in the chain. This is illustrated in Figure 1. The pointer
is implemented by including a hash of the preceding block.
Consequently, the block chain has the structure of a linked
list. The so-called block height is the number of blocks from
head to tail. The block proves that a particular transac-
tion must have existed at the time to get into the block.
In this sense, Bitcoin implements a distributed variant of a
timestamp service along the lines of [Haber and Stornetta
1991].

'https://blockexplorer.com/b/210000

Because of the continuous mining, the block chain con-
stantly grows. Due to the popularity of Bitcoin in gen-
eral and gambles such as SatoshiDice (satoshidice.com) in
particular, the number of transactions has increased enor-
mously. For instance, bets on SatoshiDice result in two
transactions: the stake and the payout (which is at least
one satoshi). The winner is determined by a pseudo-random
number, which is derived from hashing a daily changing se-
cret and information extracted from the transaction. Their
transaction volume peaked in June 2012 with about 62,000
daily transactions. As a consequence, this inflates the block
size and results in a non-negligible size of the block chain,
currently in the order of tens of gigabytes. Furthermore,
the high number of transactions increases the effort of the
validation procedure itself. In order to keep the size and
the computational effort low, Bitcoin offers a simplified pay-
ment verification (SPV) [Nakamoto 2008a] based on Merkle
trees [Merkle 1987]. It takes the transactions as leaves and
builds a hash tree on top. The root of this tree is a hash
value including information from all transactions; this root
is included in the block header. The hash tree enables the
verification of transactions without the need for a complete
local copy of all transactions. Since the root is known and
secured through the mining process, branches can be loaded
on demand from untrusted sources. Tampering with any
transaction would result in different hash values and would
thus be detected.

Because block validations are calculated in a distributed
way through mining, forks can occur: independent block
validations can be broadcast almost simultaneously, or while
the distribution of one validated block is stalled due to prop-
agation delays. In case of a fork, there are two (or more)
different versions of the linked list with, potentially, different
sets of included transactions. That is, different participants
in the system will disagree on the structure of the block
chain. Consequently, there might no longer be a consen-
sus on the order of transactions. Hence, ownership is not
settled.

Bitcoin solves this issue by a simple, but effective rule:
mining is continued on the “longest” locally known fork, that
is, the one involving the highest amount of computational
effort so far. At some point, miners of one fork will broad-
cast validations before others. Thus, one of the forks will
“overtake” the other and, once it has been propagated, will
become the longest fork for all participants. Thereby, dis-
tributed consensus is restored.

If, for example, Alice tries to double spend the same coin
with Bob and Charlie and shares the two transactions with
two separate subsets of miners respectively, the block chain
may fork. Eventually, only one fork will survive, that is, the
longer fork will be considered the valid block chain. The
other fork is then called orphaned and the included transac-
tions are nullified. However, valid transactions of one fork
may already be part of the other fork, too, or they will be
added to the next block of transactions. Assuming Alice’s
transaction to Bob made it into the valid block chain, the
transaction to Charlie will not be considered anymore, be-
cause it attempts to double spend coins. Charlie will recog-
nize this situation after the fork is resolved.

Nevertheless, double spending is still possible under cer-
tain circumstances. Suppose Alice buys Charlie’s car and
wants to pay with Bitcoin. Hence she issues and broadcasts
a transaction transferring the agreed amount to Charlie. At
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Figure 1: Simplified block chain.
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Figure 2: Double spending (race attack).

some point the transaction is included in a block and hooked
into the block chain. Eventually the block chain grows, and
additional blocks add up as depicted in Figure 2. In re-
turn, Charlie hands over the keys to his car. With malicious
intentions in mind, Alice creates a conflicting transaction,
transferring the coins to another account (e.g., one of her
own ones). If she controls enough computing power (more
than all honest miners together), she can start a fork and
“catch up” with the block chain until her fork becomes longer
and thus gets accepted by all others. As a result, she gets
her money back. In general, someone who controls more
than half of the total computing power can decide which
blocks ultimately get accepted in the block chain. Of course,
the longer back transactions lie, the more blocks need to be
caught up until a fraudulent chain gets accepted. This limits
adversaries’ possibilities to revise the history of transactions.
As a rule of thumb, transactions are commonly considered
steady after six consecutive block verifications.

2.4 Transactions

Until now we have not exactly stated what “coins” are in
the Bitcoin protocol. In fact, coins as such do not exist:
there are only transactions, which elaborately assign owner-
ship rights. Thus, the closest actual equivalent to a coin we
can think of is the chain of transactions. This will become
clear by having a closer look at Bitcoin transactions and how
they are composed.

Before receiving coins, Bob needs a virtual wallet con-
sisting at least of a public/private key pair. Bob’s Bitcoin
address is derived from his public key, by hashing it with
SHA-256 first and RIPEMD-160 subsequently, prepending a
version number, and appending a checksum for error detec-
tion. Addresses are baseb8-encoded to eliminate ambiguous
characters. The purpose of Bitcoin addresses is to shorten
and obfuscate public keys. In order to receive payments they
are not strictly necessary (one could also use the public key
or a secret), but they provide a secure and convenient way.
It is recommended to avoid key (and thus address) reuse be-
cause it harms security and privacy: in particular, it enables
comparison-based attacks on signatures [Bos et al. 2013] and
tracking of coin flows [Ron and Shamir 2013, Fleder et al.
2013]. Instead, a new key and address should be used for
each transaction.
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Figure 3: Transaction.

Assume Bob sends his Bitcoin address to Alice. Alice uses
her wallet to issue a transaction with Bob’s address as the
destination. Figure 3 schematically depicts a transaction as
it could occur when Alice transfers a coin to Bob.

The key elements of a transaction are a hash value as
the transaction identifier (TXID) and a list of inputs and
outputs. Alice uses the input to reference a so far unused
output of an earlier transaction. More specifically, prevTx
is the hash identifying the previous transaction and index is
the index of the respective output in that transaction. Each
output of a transaction can only be used once as an input in
the whole block chain. Referencing the same output again is
an attempt to spend the same coin twice (double spending)
and thus forbidden. Due to this property, each output of a
transaction can be categorized either as an wunspent trans-
action output (UTXO) if it has not been referenced by a
subsequent transaction so far, or as a spent transaction out-
put (STXO).

In the most basic type of transaction, Alice proves that
she is able to to mandate over the output referenced on the
input side by providing her public key and a signature. For
each output, she needs to specify how many coins are to
be transferred via this output (value) and how to authorize
when spending these coins (scriptKeyPub); the latter might
refer to Bob’s bitcoin address as the destination. The Bit-
coin transaction system is much more powerful and flexible,
though; this will become clear when we cover the concept of
scripting.

It is important to note that the transaction input does not
specify how many coins are spent. Because each output of a
previous transaction can be used only once, inputs necessar-
ily always use all the coins from the referenced output. Since
transactions can have multiple inputs and multiple outputs,
this does not restrict Bitcoin: Alice can use an additional



output of her transaction to assign part of the coins to her
own address, thereby not transferring all the coins from the
inputs to others. In this way, Bitcoin implements the idea
of change.

The sum of all inputs in a standard transaction must be
at least as much as the sum of all the outputs. It need
not be equal, though: if the input sum is greater than the
outputs, implicitly the difference is assigned as transaction
fee to the miner validating the block which contains the
respective transaction.

The fact that transactions are linked leads us to an inher-
ent and important property of Bitcoin: it is possible to trace
transactions back in history. Eventually, doing so will ter-
minate at one out of two possible origins: the genesis block
or a coinbase transaction. Both include special transactions
with outputs only.

The genesis block? is the origin of the block chain and pro-
vides the initial supply of 50 BTC to the system. A coinbase
transaction is the much more common origin of a series of
transactions. It is the transaction which rewards the miner
for validating a block, thereby introducing new coins into the
system. Since block chain forks can occur and some blocks
will eventually become orphaned, coinbase transactions are
locked for at least 100 blocks (i.e., they cannot be spent
before 100 subsequent blocks have been verified).

Since coins as such do not exist in Bitcoin, there are also
no serial numbers of for coins. The transaction hashes and
the reference to the previous transactions take the role of
serial numbers as they are used in other digital cash systems.
This, finally, also eliminates the need for a bank issuing serial
numbers.

2.5 Scripts

As indicated before, Bitcoin transactions provide much
more flexibility than just the simple coin transfers outlined
above. In fact, through scripting there is a certain degree of
programmability what exactly a transaction does. Scripting
is realized by a simple stack-based language. It is intention-
ally designed not to be Turing complete, so that it is easier
to handle and unintended side effects can be avoided.

For the following, bear in mind that a coin is only a
generic term for a balance determined by a chain of trans-
actions. Recall that each input of a Bitcoin transaction con-
nects to a given, previous output. Each output in a Bitcoin
transaction is described by a script. The operations to be
performed, potentially along with constants, constitute the
so-called scriptPubKey. A script expects a number of “ar-
guments”, the scriptSig. An input which connects to an
output must provide the scriptSig for the respective script.
The connection is considered valid when the output’s script
evaluates to true given the scriptSig provided in the con-
necting input.

The probably most essential and most common script
of all is “Pay-to-PubKeyHash” (P2PKH). Semantically, a
transaction employing P2PKH transfers coins from one or
more origin addresses to a destination address. The key idea
is to have a script at the output which checks whether the
connecting input has been signed with the public key “own-
ing” the coins at the output. Script 1 provides the generic
P2PKH script template. Bitcoin scripts are processed from
left to right. In its scriptSig, P2PKH requires a public
key (pubKey) which hashes to the specified Bitcoin address

2https://blockexplorer.com/b/0

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash>
OP_EQUALVERIFY OP_CHECKSIG

scriptSig: <sig> <pubKey>

Script 1: “Pay-to-PubKeyHash” (P2PKH) standard script
template.

(pubKeyHash) and a signature (sig) proving the possession
of the respective private key.

Consider Alice’s transaction to Bob. Alice would sub-
stitute the pubKeyHash token in Script 1 by Bob’s Bitcoin
address. She would then include the resulting script as one
output script in her transaction to Bob, associated with the
value she intends to transfer. If Bob wants to spend the coins
again, he needs to provide his public key and his signature
in the connecting input’s scriptSig.

Table 1 shows the script execution and the state of the
stack step by step. Here, pubKeyBob, pubKeyBobHash and
sigBob denote Bob’s public key, the hash of Bob’s pub-
lic key (i.e., Bob’s address) and Bob’s signature, respec-
tively. First, scriptSig (the “arguments”) from the input
and the scriptPubKey (the “code”) from the output are con-
catenated. The first tokens in the concatenated result are
sigBob and pubKeyBob. These are constants values; con-
stants are simply pushed to the stack when they appear in
a script. OP_DUP duplicates the most recent entry, i. e., pub-
KeyBob, on the stack. OP_HASH160 hashes the most recent
entry twice (SHA-256 and RIPEMD-160) and pushes the
result, in this case pubKeyBobHash. In the next step, pub-
KeyBobHash (as inserted into the script template by Alice)
gets pushed to the stack.

OP_EQUALVERIFY verifies the equality of the two topmost
stack entries and raises an error if they differ. More gen-
erally, the suffix VERIFY as in OP_EQUALVERIFY indicates a
combination of two steps, where the second one is equiv-
alent to OP_VERIFY: OP_VERIFY takes the topmost element
from the stack and marks the transaction invalid if this el-
ement is not true. This step concludes the first important
check: whether the correct public key has been provided.
The last remaining operation, OP_CHECKSIG, then checks the
signature against the public key and pushes true if they
match. If this final check also passes, the script legitimates
Bob to spend the coins: a transaction is valid if nothing fails
and the topmost stack entry upon termination is true.

Output scripts as discussed so far are created by the orig-
inator of the transaction, i.e., the payer. However, it might
be desirable for the payment receiver to specify the output
script, for instance to ensure long-term security. Of course,
after receiving payments, receivers could transfer the coins
to themselves with a customized output script. This is not
really convenient, though, and it incurs additional trans-
action fees. Therefore, “Pay-to-ScriptHash” (P2SH) trans-
actions were created and admitted as a standard transac-
tion [Andresen 2012]. P2SH enables the receiver to specify
a so-called redeem script (redeemScript). The hash of the
redeem script is transformed into a Bitcoin address-like for-
mat [Andresen 2011b] and sent to the originator instead of
the recipient’s Bitcoin address. The hash is included in a
generic output script and can be redeemed as specified in
Script 2. In principle, the redeem script can be any script,
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Stack

Script

sigBob pubKeyBob OP_DUP OP_HASH160 pubKeyBobHash
OP_EQUALVERIFY OP_CHECKSIG

sigBob pubKeyBob

OP_DUP OP_HASH160 pubKeyBobHash OP_EQUALVERIFY
OP_CHECKSIG

sigBob pubKeyBob pubKeyBob

OP_HASH160 pubKeyBobHash OP_EQUALVERIFY OP_CHECKSIG

sigBob pubKeyBob pubKeyBobHash

pubKeyBobHash OP_EQUALVERIFY OP_CHECKSIG

sigBob pubKeyBob pubKeyBobHash pubKeyBobHash

OP_EQUALVERIFY OP_CHECKSIG

sigBob pubKeyBob

OP_CHECKSIG

true

Table 1: P2PKH exemplary execution.

scriptPubKey: OP_HASH160 <redeemScriptHash>
0OP_EQUAL

scriptSig: [<sig> ...] <redeemScript>

scriptPubKey: <m> <pubKey> [<pubkey> ...] <n>

0P_CHECKMULTISIG

scriptSig: 0 [<sig> ...]

Script 2: “Pay-to-ScriptHash” (P2SH) standard script tem-
plate.

but the transaction is considered as a standard transaction
only if the redeem script follows one of the standard “pay-
to-x” scripts, e.g., a P2PKH. P2SH also supports future
development and makes it easier to introduce and roll out
new standard transaction types. The idea of P2SH has been
generalized in [Gerhardt and Hanke 2012].

Scripting in Bitcoin provides a huge variety of ways to
spend coins. For instance, distributed contracts with min-
imal trust become possible. One building block are m-of-
n multi-signature transactions [Andresen 2011a], which re-
quire m valid out of n possible signatures to redeem a trans-
action. They are used for (but not limited to) deposits,
escrow and dispute mediation. Because of their relevance
and to get an impression of Bitcoin’s advanced scripting ca-
pabilities, we take a somewhat closer look here.

Script 3 depicts the generic script template for an m-of-n
multi-signature transaction. After pushing the constants to
the stack, OP_CHECKMULTISIG takes the integer n first (be-
cause after pushing, it is the topmost entry), then n pubKey
items, subsequently the integer m, and finally m sig items
off the stack. Due to a bug in Bitcoin’s implementation of
OP_CHECKMULTISIG (it pops once too often from the stack),
it is required to provide one extra value in the scriptSig,
which is not used. (Due to the requirement of maintaining
compatibility, this bug cannot be fixed.) Now, in essence,
OP_CHECKMULTISIG iterates over public key / signature pairs
and executes OP_CHECKSIG. Every time a match is found, the
script moves on to the next signature or otherwise tries the
next public key. As a consequence, the provided signatures
in scriptSig must be in the order of the appearance of their
matching signature in scriptPubKey. If the m signatures

Script 3: m-of-n multi-signature transaction script template.

match, the script pushes true to the stack and legitimates
the transaction.

The use cases for m-of-n multi-signature transactions are
manifold. A 2-of-3 multi-signature transaction can, for ex-
ample, be used to realize customer protection via an inde-
pendent mediator. In such a constellation, coins are locked
and neither the buyer nor the seller alone can claim them.
If, however, both agree, the buyer could pass a half-signed
transaction over to the seller, who is now able to complete
the transaction. In case of a dispute, the mediator can side
with one of the participants and clear the situation by pro-
viding her signature. Another use case is to secure online
wallets. If all funds are held in 2-of-2 multi-signature trans-
actions, where one key is not stored in the online wallet, a
thief would not be able to rob a wallet by hacking the online
wallet provider.

m-~of-n scripts can be realized with P2SH scripts and thus
can be specified by the receiver(s). Here, the scriptPubKey
becomes the redeem script. If n < 3, the transaction is
considered a standard transaction.

Even though Bitcoin’s scripting has a limited instruction
set, the possibilities are manifold. The above mentioned ex-
amples can be considered rather limited and small compared
to what is possible. In the remainder of this survey, we will
see some clever protocols [Clark and Essex 2012, Maxwell
2013b] which make heavy use of it. Constantly new de-
veloped applications suggest that there is a large dormant,
unexplored feature space.

As a playground to experiment with the Bitcoin proto-
col and its scripting capabilities, we recommend the Bitcoin
testnet [Bitcoin wiki 2014, /Testnet]. It uses a separate,
distinct block chain, and so-called faucets provide coins for



free. Apart from a few minor parameter alterations, the
testnet runs the same code as Bitcoin peers but provides a
safe harbor for testing.

Beyond Bitcoin, the so-called second generation of cryp-
tocurrencies [Willett 2013], such as Mastercoin (MSC,
mastercoin.org), Counterparty (XCP, counterparty.io),
and Ethereum (Ether, ethereum.org) implement a new
transaction syntax with a fully-fledged (Turing-complete)
scripting language [Wood 2014, Buterin 2014]. They fol-
low the idea of smart contracts [Szabo 1997] and colored
coins [Rosenfeld 2012b], which are understood as digital as-
sets. These assets can be used to realize sophisticated fi-
nancial instruments such as stocks with automatic dividend
payouts or to manage and trade physical properties such as
cars.

Most of these next-generation coins work on top of Bit-
coin’s block chain and are therefore called on-chain curren-
cies. Since they encode their transactions into Bitcoin’s
transactions, they lack the validation of transactions by
miners, because Bitcoin miners do not “understand” the
new transaction types. However, the new protocol layer
can build upon Bitcoin’s strong foundation and its secu-
rity. Furthermore, it will increase Bitcoin’s value from which
both will profit. Sometimes the analogy used to describe
the relation between next-generation currencies and Bit-
coin is that of HT'TP and TCP/IP: HT'TP provides an ver-
satile application-layer protocol to the more fundamental
transport and network layer. Similarly, the scripting lan-
guages are compared to the relation between JavaScript and
HTML.

3. SECURITY

In this section, we discuss security risks and security im-
plications of the Bitcoin protocol and system design. Since
Bitcoin is a digital currency with a notable market value,
motives to exploit weaknesses for profit are ubiquitous. Be-
yond double spending, the attack vectors include key recov-
ery and transaction malleability, for example. However, the
most fundamental fear is the so-called 51% attack, during
the discussion of which we will also have the opportunity to
explore some fundamental system properties of Bitcoin.

3.1 Wallets and Cryptography

In order to use Bitcoin, the first thing a user needs is
a wallet. The wallet holds a public key pair, which is the
best approximation of the user’s account. Thus, obviously,
it is essential to take protective means to secure the wallet
[Bitcoin wiki 2014, /Securing_your_wallet].

Common Bitcoin terminology distinguishes a variety of
wallet types, such as software, hardware, paper, brain and
online wallets. Software wallets are one of the most common
ways to use Bitcoin. For a software wallet, a locally running
Bitcoin instance is necessary. The Bitcoin developer team
release a reference implementation of the Bitcoin protocol
(bitcoin.org). It is a full client which processes the whole
block chain. However, there are many alternative implemen-
tations such as Armory (bitcoinarmory.com) or Electrum
(electrum.org), which offer additional features. Online wal-
lets such as blockchain.info or Coinbase (coinbase.com)
are another popular way to participate. They either man-
age the wallet centrally, or they follow a hybrid approach
where the wallet is stored encrypted and most operations
are performed on the client side in the browser. All software

and online wallets are inherently prone to security problems
because an attacker gaining access to a targeted machine
can also obtain access to the user’s wallet.

The term hardware wallet summarizes a class of ap-
proaches which follow the idea of using a separate device
that usually operates offline. Since the device is not directly
connected to a network, it becomes much harder for an at-
tacker to gain access. For an example see [Bamert et al.
2014]. More advanced and secure ways (at least if done
right) are paper and brain wallets. A paper wallet stores
the keys holding coins offline as a physical document. This
way they are comparable to cash money. A brain wallet
takes it a step further and stores keys in the user’s mind by
memorizing a passphrase. The passphrase is turned into a
private key, from which the public key and the Bitcoin ad-
dress are derived with Bitcoin’s standard hashing and key
derivation algorithms. To avoid dictionary or brute-force at-
tacks, the phrase must be sufficiently long and must have a
very high level of entropy.

We already noted that multi-signature transactions can be
used to increase the security of wallets. For example BitGo
(bitgo.com) offers online wallets with 2-of-3 multi-signature
transactions. In the same manner, threshold signatures can
be used to impede theft and add two-factor security to wal-
lets [Goldfeder et al. 2014]. The idea comes directly from
secret sharing [Shamir 1979]: the secret, in this case the pri-
vate key, is split into shares. Any subset equal to or greater
than a predefined threshold is able to reconstruct the secret,
but any subset that is smaller gains no information about
the secret. The key property of threshold signatures is that
the key is never revealed. Participants directly construct
the signature. This way, very much like multi-signatures,
threshold signatures can be used to require m-of-n shares in
order to sign a transaction. However, threshold signatures
look like regular P2PKH transactions in the block chain, be-
cause they mutually construct a single transaction signature.
They are, consequently, indistinguishable from the majority
of transactions and thus conceal the details of access con-
trol. Multi-signature transactions, on the other hand, can
be signed independently and do not require multiple rounds
of interaction. [Goldfeder et al. 2014] discuss the advan-
tages and disadvantages of both approaches in detail. They
argue that especially corporate environments could profit
from threshold signatures.

In order to secure transactions, the Bitcoin protocol
makes heavy use of elliptic curve cryptography [Miller 1985,
Koblitz 1987]. For transaction signatures, the elliptic curve
digital signature algorithm (ECDSA) as standardized by
NIST [Gallagher and Kerry 2013] is used, parametrized by
the secp256kl curve defined by [SECG 2000]. For exam-
ple, take the standard P2PKH transaction script. The user
needs to provide her public key and her signature to prove
ownership. To provide a signature, the user chooses a per-
signature random value, which must be kept secret and must
not be used for more than one transaction. Otherwise, the
secret key can be computed from the signature. Even par-
tially bit-wise equal random values suffice to derive the pri-
vate key [Howgrave-Graham and Smart 2001]. Thus, it is
essential for the security of ECDSA to use unpredictable
and distinct per-signature randomness for every signature.
[Bos et al. 2013] inspected the block chain for instances of
repeated signature nonces for the same public key. They
found that 158 public keys reused the signature nonce in
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more than one signature, making it possible to derive pri-
vate keys. For all these public keys, the remaining balance is
negligibly small (smaller than the transaction fees needed to
transfer them). However, one single address claimed coins
from 10 of the vulnerable accounts (in sum over 59 BTC)
from March to October 2013. The coins appear to have been
stolen by this address. [Bos et al. 2013] traced the incident
back and found that one cause was the incorrectly seeded
random number generator of blockchain.info’s JavaScript
client.

Thefts due to hacked systems, buggy software or incor-
rect usage are probably the greatest security risk in Bitcoin.
As we will see, there are more examples which confirm this
view. However, the most prominent type of attack is double
spending which we already touched in the previous section,
and which we will now re-consider in more detail.

3.2 Double Spending

In an online scenario with a centralized bank and with
coins that are distinguishable (e..g., by serial numbers), dou-
ble spending as discussed before is trivially detectable. How-
ever, early digital currencies often also considered offline sce-
narios [Law et al. 1996], which made it impossible to contact
the bank to authorize the transaction. This made double
spending a major issue, even if a central authority existed.
Generally, the Bitcoin setting is an online scenario (though
offline transactions have been considered, too [Dmitrienko
et al. 2014]). However, Bitcoin doesn’t have a bank—and
the distributed ledger opens up other possibilities for dou-
ble spending.

The two generally conceivable ways to deal with double
spending are (i) detecting it after the fraud actually hap-
pened and identifying the adversary for prosecution, or (ii)
trying to prevent it. The above mentioned early digital cur-
rency approaches followed the first path: they accepted the
possibility of double spends and required randomized parts
of identifiers in the transactions. In case of double spend-
ing, the bank could assemble these parts afterwards to iden-
tify the adversary. The first approaches to mitigate dou-
ble spends used the help of third parties in witness or quo-
rum mechanisms [Szabo 2005, Osipkov et al. 2007, Hoepman
2007]. These approaches are similar to Bitcoin’s approach,
but still come with the major flaw of being vulnerable to
Sybil attacks.

Bitcoin protects against double spending through the rule
that only previously unspent transaction outputs may be
used in the input of a follow-up transaction, where this rule
is enforced during transaction propagation and mining, and
where the order of transactions is determined by their or-
der in the block chain. This boils down to a distributed
timestamping [Haber and Stornetta 1991] and consensus al-
gorithm [Malkhi and Reiter 1998, Szabo 1998], which in
turn can be understood as the Byzantine Generals prob-
lem [Lamport et al. 1982, Szabo 2003]. To protect from
Sybil attacks [Douceur 2002], Bitcoin couples this to a ran-
dom oracle, i. e., the proof of work. Thus, the capabilities of
an adversary are limited by his computational power.

The authors of [Miller and LaViola Jr 2014] modeled the
Bitcoin protocol along the lines of a Byzantine consensus
algorithm. They showed that it indeed reaches consensus.
In particular, under the assumption of synchronous commu-
nication Bitcoin achieves optimal Byzantine resilience, so-
called 2f + 1 resilience, even in the presence of adversaries.

This means the system is safe as long as the honest nodes
n prevail the adversaries f by the ratio of n > 2f + 1. In
case of Bitcoin, the network is resilient to adversaries con-
trolling less than half of the computational power. In the
next paragraphs we will assess this property in detail and
consider how such an attack manifests in the block chain.

Recalling what has been said before on block chain forks
and re-gaining consensus, an attacker can exploit this mech-
anism to mount a double spend attack along the lines of
the example given in the previous section. A more generic
blueprint for such a double spend includes the following
steps: (i) broadcast a regular transaction (e.g., paying for
a product), (ii) secretly mine on a fork which builds on the
last block and includes a conflicting transaction which uses
the same outputs as in step (1), but pays the attacker in-
stead of the seller, (iii) wait until the seller is confident (i.e.,
receives enough confirmations) and hands the product over,
(iv) as soon as the secret fork is longer than the public chain,
broadcast the respective blocks. Because the secret branch
is longer, the network will consider it as the valid main block
chain. The regular transaction becomes invalid and cannot
(even when broadcast by the seller) be included in a block
anymore. Accordingly, [Courtois 2014] criticizes the longest
chain rule and notes that it actually tries to solve two dis-
tinct problems, namely which blocks and which transactions
should be accepted. He suggest to employ separate rules.

In order to assess the success conditions for this type of
double spend attacks, let us take a look how to model the
race between the benign and the fraudulent block chain. As
in [Nakamoto 2008a, Rosenfeld 2012al], we describe it as a
binomial random walk. Assume that the hash rates and
therefore the difficulty remain constant. Further assume the
probability that an honest node finds the next block is p
and the probability that an attacker finds the next block is
q = 1 —p. We denote the difference in heights between the
fraudulent and the benign block chain by z. Whenever a
block is found, z changes by either +1 for a benign block or
by —1 for a fraudulent block. Thus z is given by

zi+1
Zit1 = . i
zi —1 with probability q.

with probability p

(2)

We are interested in the question whether z will ever be-
come —1, which implies that the attacker surpassed the be-
nign block chain and successfully mounted a double spend.
Figure 4a exemplarily shows the two possible outcomes in
a random walk simulation. We can draw the first conclu-
sion: if ¢ > p, i.e., if the attacker controls more than the
half of the total hash rate, he will succeed in catching up
(for i+ — o). The attacker’s success is independent of the
number of confirmations. This particular double spending
attack is called the > 50% (sometimes also 51%) attack.

The situation is comparable to the Gambler’s Ruin Prob-
lem [Feller 1957], which considers the probability of a player
ending up without money in a coin-flipping game given the
initial credit. For arbitrary probabilities p and q of the pos-
sible outcomes in a single iteration, it can be shown that the
probability q. of experiencing gambler’s ruin having started
with z credits yields

1
== /v

In case of Bitcoin, ¢, is the probability of the attacker ever
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Figure 4: Hash rate-based double spending analysis.

catching up from z blocks behind the benign block chain.
While for z < 0 (the attacker already is ahead of the benign
block chain) and ¢ > p (the attacker controls the majority
of the overall hash rate) the attacker’s success is certain, for
the case z > 0 and ¢ < p the probability of success decreases
exponentially with z.

Now, what is the probability of a successful double spend
while the honest miners are finding new confirmations? As-
sume that the attacker has to wait for n confirmations before
the transaction is accepted by the victim. I.e., the attacker
has to willingly “fall back” by n blocks first in the current
consensus chain. Meanwhile, though, the attacker is able to
produce (not yet published) blocks in the fraudulent fork,
the number of which we denote by m. The original Bitcoin
paper [Nakamoto 2008a] assumes that m follows a Poisson
distribution. More accurately, [Rosenfeld 2012a] models the
probability of m as a negative binomial variable P(m). Fur-
thermore he assumes that the attacker pre-mined a block
before initiating the attack, hence 2 = n —m — 1. It follows
that the probability of a successful double spend equals

r= Z Pim)-q.=(...)

m=0
1 ifg>p
1= (™ (ptg™ —p™Mg")  if g <p.

We visualized the results of equation (4) for various num-
bers of confirmations n in Figure 4b. Clearly, the higher
the number of confirmations, the lower the probability of a
successful double spend. The success probability converges
to one when the attacker’s hash rate approaches the 50%
threshold. As [Rosenfeld 2012a] concludes from the results,
double spending is possible with any hash rate of the at-
tacker, and there is mo number of confirmations that can
reduce the success probability to zero: an attacker with less
than 50% of the total computational power is able to per-
form a double spend by brute force and a bit of luck. A
51% attack will definitely lead to success. In this case, the
attacker is able to claim all block rewards for himself, re-
ject transactions and include only those he likes. This will

likely drive miners off, which in turn increases the attacker’s
share and strengthens his position. Thus, the 51% attack is
considered the worst-case scenario, because it will probably
destroy the Bitcoin network. For this reason it is also called
the Goldfinger attack [Kroll et al. 2013].

Traders accepting transactions immediately without any
confirmation are particularly exposed to double spending.
The authors of [Karame et al. 2012] analyzed double spend-
ing attacks for fast payments and demonstrated the feasi-
bility. According to these results, it is possible for clients
who are not miners to cheat. In order to mount a zero-
confirmation attack, the attacker sends a transaction di-
rectly to the seller and broadcasts a double-spend trans-
action in another corner of the network at the same time. If
the attacker is lucky enough, the double spend transaction
will make it into the main block chain which is recognized
by the seller too late.

By secretly pre-mining a block, the attacker can increase
the chances of success. In every block, the attacker includes
a self payment (this will become the double spend transac-
tion). If he solves the proof of work, he suspends broadcast-
ing and initiates a trade referring to the same coins. The
seller (and even the network) will consider the transaction
valid. As soon as the trade is completed, the attacker broad-
casts the prepared block, which includes the double spend
transaction and thus takes precedence over the other one.
This attack was first described by Finney [Finney 2011] and
is hence known as the Finney attack. The general strategy is
also referred to as block withholding attack, which also finds
use beyond double spending [Rosenfeld 2011, Courtois and
Bahack 2014].

The fixes to zero-confirmation attacks are implemented
since the beginning of Bitcoin: “just wait for confirmations”.
However, even when waiting for a confirmation, an attacker
can employ strategies to increase the chances of success.
The Vector76 attack [Vector67 2011] is an example of a
1-confirmation attack. Again, the attacker pre-mines and
withholds a block, but this time includes a deposit transac-
tion to the target (e. g., an exchange service) in this block. If
the block is ready, the attacker waits for a block announce-



ment and quickly sends the pre-mined block directly to the
target. The target and probably some miners will consider
the pre-mined block as the main chain. Thus, the deposit
transaction has one confirmation. In response, the attacker
requests a withdrawal. If the attacker’s fork of the block
chain survives, the withdrawal will settle. If the other fork
survives, however, the deposit is invalidated. If additionally
the withdrawal does not use the same coins as the deposit
(i.e., it does not refer to the outputs from the deposit), then
it will still be valid and now in the possession of the attacker.
The required behavior is not uncommon for exchanges.

The fix—again—consists of waiting for more confirma-
tions. However, sellers (or exchanges) can also take some
other precautions, like not accepting inbound connections,
which we will detail when talking about the Bitcoin peer-to-
peer network and its relay patterns in Section 4. For now,
we conclude that race attacks for double spending cannot be
eliminated entirely. Therefore, each participant of the Bit-
coin network needs to trade off the risk and choose to wait
for an appropriate number of confirmations. On the other
side, there is a trade-off for the attacker, too, who also needs
to consider the costs and benefits: if the attack fails, block
rewards for pre-mined blocks will be lost. To compensate for
the risk, it is therefore necessary to double spend a certain
minimum amount.

Even when successful, the block chain allows to recognize
double spendings and to identify the tainted coins [Gervais
et al. 2014]. The victim will likely keep an eye on these coins
and track their flow. Other traders might not be willing to
accept tainted coins, because they will always be associated
with a fraud. This led to blacklisting and whitelisting con-
siderations. [Moser et al. 2014] provided first thoughts on
quantifying and predicting the risks that are involved.

3.3 Transaction Malleability

Originally, transaction malleability refers to a bug in
the Bitcoin protocol, which makes it possible to change
the TXID without invalidating the transaction. Recall the
anatomy of a transaction: it includes references to previ-
ous transactions (inputs) with a respective redeem script
(scriptSig) and specifies one or multiple destinations (out-
puts). Each transaction can be uniquely identified by its
TXID, which is a hash of the transaction data, including
the redeem script(s).

The signature in a script, however, does not cover the
same data as the hash which forms the TXID. In particular,
it does not cover the redeem script. The rationale behind
this design is that signing the script would imply signing the
signature itself, which is obviously impossible. Instead, dur-
ing signature generation, Bitcoin replaces all redeem scripts
by a dummy script consisting of a single OP_0 (this operation
pushes an empty string on the stack). This substitution is
not applied when calculating the TXID, though. As a con-
sequence, it becomes possible to modify the transaction by
substituting the redeem scipt by another valid (yet different)
one. As a result, the signature remains valid, but the TXID
changes.

For instance, a redeem script can be changed without in-
validating it by pushing additional data to the stack prior to
the data expected by the script of the connected output. In
particular, as [Decker and Wattenhofer 2014] revealed, it was
common practice for exploits to substitute the push opera-
tions by zero-padded alternative push operations, thereby

preserving the semantics, but altering the TXID. But also
the signature itself is vulnerable, because OpenSSL tolerates
variations in the encoding of signatures. A list of known
sources of malleability is provided by [Wuille 2014]. He also
proposes some extra transaction validity rules to tackle most
of the issues.

Transaction malleability is, of course, not desired. How-
ever, per se it does not cause any damage. An attacker
can exploit the behavior, though, and make someone be-
lieve a transaction has failed, even though it later on gets
confirmed. This becomes particularly relevant when target-
ing exchanges. Exchanges let users buy and sell coins for
fiat money or altcoins and hence hold a significant amount
of coins. They act as wallet providers to the effect that users
who wish to trade need to provide a deposit. Exchanges are
a point of failure in an otherwise highly distributed envi-
ronment. Therefore they often employ cloud providers to
protect them from distributed denial of service (DDoS) at-
tacks [Vasek et al. 2014].

A transaction malleability attack against an exchange pro-
ceeds as follows: (i) the attacker withdraws coins from an
exchange and (ii) as soon as the attacker receives the re-
spective withdrawing transaction issued by the exchange,
he rebroadcasts the altered version of this transaction with
a different TXID. One of the two transactions eventually
makes it into the block chain. Due to propagation delays
and precautions the attacker can take, there is a chance that
the modified transaction wins over the original withdrawal.
If the exchange relies on TXIDs only, it will not find the
withdrawal transaction in the block chain and believe the
withdrawal has failed. As consequence, the attacker may
withdraw again (and again).

Considered from this angle, the transaction malleability
attack can be thought of as a variant of a double spend-
ing [Decker and Wattenhofer 2014]. In contrast to a typical
double spend, however, the attacker is the receiving and not
the spending party. The success of the attack depends on a
number of constraints, i.e., the malleable transaction must
be confirmed and the exchange must check for TXIDs only.
[Andrychowicz et al. 2013] give further advice on how to
issue malleability-resistant transactions without modifying
the protocol.

Double spending attempts (including transaction mal-
leability exploits) in general can only be observed while the
colliding transactions are in circulation. Afterwards, only
by parsing the block chain, it is not possible to identify suc-
cessful instances. How exchanges implement the withdrawal
process and whether they are truly vulnerable often remains
unclear. Therefore, [Decker and Wattenhofer 2014] define a
transaction malleability attack as successful if the altered
transaction gets confirmed. The authors observed transac-
tion activities on the Bitcoin network since January 2013
and identified 28,595 incidents of which approximately 20%
were successful. They add up to 64,564 BTC which poten-
tially got stolen.

Bitcoin’s reference implementation is (and was) not af-
fected, because it also tracks the respective UTXOs and
takes them as an indication for a successfully issued trans-
actions. Exchanges such as Mt. Gox—a popular exchange
in the early days of Bitcoin—were apparently vulnerable,
though: Mt. Gox released a statement that they were af-
fected by transaction malleability attacks and that it is the
cause for halting withdrawals and freezing accounts. [Decker



and Wattenhofer 2014] found a strong correlation between
the press releases and the attack rate. However, if Mt. Gox
stopped withdrawals as stated, it cannot be the root cause
of their shutdown, because the majority of attacks occurred
after the announcements: only 421 transactions adding up
to approximately 1,800 BTC were potentially stolen before.
The results rather suggest that the press releases motivated
imitators to exploit the vulnerability elsewhere.

Due to the huge coin volume, exchanges are exposed to
heist either by external attackers—or the operator. Based
on public records including the block chain of 40 Bitcoin
exchanges, [Moore and Christin 2013] model the risk coin
holders face from exchange failures. They find that the
transaction volume is an indicator whether or not the ex-
change is likely to close. They also confirm what might be
intuitively obvious: less popular exchanges are more likely
to close than popular ones, but popular exchanges are more
likely to suffer from security breaches.

3.4 Pooled Mining

As pointed out before, Bitcoin must strive to maintain
a structure in which no entity controls more than half of
the computational power. Most of the time in Bitcoin’s his-
tory, this was the case. However, being the first to suc-
cessfully verify a block (i.e., being the first to find a valid
nonce) happens only with a very small probability. There-
fore, the payoff for solo mining is extremely bursty: a signif-
icant reward—but only very seldom. Miners therefore more
and more group into mining pools. In a mining pool, mul-
tiple miners contribute to the block generation conjointly.
Each participant searches parts of the nonce space for a
valid nonce. In case one of them is successful, the profit
is shared. Therefore, each participant get continuous small
rewards, instead of seldom, large ones. Multiple different
payout functions are used for sharing the profits in mining
pools [Rosenfeld 2011].

From the security perspective, the trend to form mining
pools raised concerns: a mining pool centrally aggregates
computational power of miners who should, according to
the key design idea behind Bitcoin, guarantee a valid dis-
tributed quorum through independent participation. A look
at the block chain reveals that regularly multiple consecutive
blocks are mined by a single mining pool. It already hap-
pened a few times that big mining pools such as GHash.io
approached the critical threshold of 51% of the network’s
hash rate. And even if a single mining pool does not exceed
the critical threshold by itself, coalitions are able to do so.

There are several options to tackle the problem. Actu-
ally, it is in the own interest of each miner to keep the dis-
tributed ecosystem intact. Therefore, the easiest solution is
that miners by themselves switch to other mining pools so as
to reasonably redistribute the power. As it turned out in the
past, this works surprisingly well: calls by the community
to switch mining pools were heard and the pools themselves
started to support this movement [Hajdarbegovic 2014].

An engineering approach to the issue is to decentralize
the mining pool. Even if a decentralized mining pool gains
more than half of the computational power, this power can-
not be exploited due to the lack of a central coordinating
entity. P2Pool (p2pool.in) is a decentralized mining pool
which builds a peer-to-peer network of miners. It creates a
new block chain, called share chain. Indeed, the blocks of
the share chain are valid Bitcoin blocks, but with a lower

difficulty, so that every 30 seconds a new block is gener-
ated. If a P2Pool peer finds such a block, it gets broadcast,
verified by others, and added to the share chain in similar
manner as in Bitcoin itself. This continues until a peer finds
a block that also meets Bitcoin’s mining difficulty. The re-
spective block is broadcast in the Bitcoin network and the
reward is distributed among the P2Pool clients according to
the share chain. Since the share chain blocks are required
to include a coinbase transaction, which reflects the shares
(i.e. the previously found blocks) and pays the miners ac-
cordingly, a successful miner cannot claim the reward for
herself alone. P2Pool has some weaknesses, though, such as
additional complexity and significant resource consumption,
which might be the reason why it is not as attractive as its
centralized counterparts.

Miners (and mining pools) compete with each other: their
chance of winning is proportional to their computational
power. However, rogue miners can achieve an unfairly high
share by attacking the mining process. The typical intent
behind these attacks is to weaken competitors with the aim
to gain higher revenue. For that reason, mining pools are the
second-most popular target of distributed denial of service
attacks in the Bitcoin ecosystem [Vasek et al. 2014]. Ac-
tually, the trade-off between attacking or investing to gain
an advantage can be expressed by rational game-theoretic
models [Johnson et al. 2014, Laszka et al. 2015].

But miners can also exploit the mining process itself to
gain an advantage: Instead of directly announcing mined
blocks, miners keep their discovery private and establish a
private chain. If the public chain approaches the length
of the private chain, the rogue miner broadcasts his chain
to catch up. This way miners intentionally force a block
chain fork and initiate a block race. The key idea is to
let honest miners waste their power by mining on the pub-
lic chain, so as to increase the own chances of winning on
subsequent blocks. The strategy is widely known as selfish
mining [Eyal and Sirer 2014]. It can also be used to gain
an advantage while participating in a mining pool [Rosen-
feld 2011, Eyal 2014]. More generally, the attack vector is
called block withholding attack [Courtois and Bahack 2014]
or block discarding attack [Bahack 2013]. For example, the
previously mentioned Finney attack also falls into this cate-
gory (but with the aim of double spending). The problem of
selfish mining is that it increases transaction approval time
and facilitates double spending.

[Eyal and Sirer 2014] formally analyzed the incentives for
selfish mining and showed that selfish miners obtain a rev-
enue larger than their relative share. The success and prof-
itability heavily depends on the selfish miner’s share g of
hash rate and the fraction of honest miners that choose to
mine on the private chain after broadcasting. The latter is
denoted by « and often depends on network properties (i. e.,
who hears which block first). In particular, [Eyal and Sirer
2014] made the observation that selfish mining is profitable
if
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Since selfish (or adversarial) miners who control more than
half of the hash rate asymptotically always win the race and
are able to catch up with public chains, we are interested in
the case ¢ < 0.5 only. For v & 1, which implies that (almost)
all honest miners favor the private over the public chain,
selfish mining is profitable for virtually all shares ¢q. In the
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other extreme case of v ~ 0, where (almost) all honest min-
ers disregard the private chain, the profitability threshold of
selfish mining equals a share of at least 1/3. That is, miners
with more than one third of the computational power can in-
crease their revenue by following the selfish mining strategy.
Note that, depending on <, the threshold ranges between
0 and 1/3 and thus is substantially lower than the usually
considered critical hashing power of ¢ > 0.5. Solo miners are
unlikely to deliver such a performance nowadays, but mining
pools are very well able to do so. The lower bound given by
the left hand side of (5) can be considered a security metric:
the higher this security threshold, the higher the fraction of
the total computational power that is necessary to exploit
selfish mining.

The true, current value of v (and thus of the security
threshold) is unknown. By mounting eclipse attacks, which
we will discuss soon, an adversary is likely able to push
closer to one and thus to lower the security threshold sig-
nificantly. Therefore, [Eyal and Sirer 2014] propose to relay
all blocks that are received within a certain timespan and to
select the fork to mine on randomly. As a result, half of the
honest miners will choose the private block, which fixes ~ at
0.5. This yields a security threshold of 0.25. [Heilman 2014]
raises the threshold to 0.32 which renders selfish mining in-
effective. Their mitigation is called “freshness preferred”;
it suggests to choose the most recent block (according to
its timestamp). Yet, it assumes unforgeable and accurate
timestamps, which is not easy to achieve [corbixgwelt 2011,
Cohen 2014].

Bitcoin peers maintain a network time, which is the me-
dian of time samples from their neighbors. It is secured from
arbitrary manipulation by allowing at most a deviation of 70
minutes from the system time. For the sake of triple mod-
ular redundancy (“never go to sea with two chronometers;
take one or three.”), the user is asked to double check the
time. Nevertheless, an adversary is able to slow down or to
speed up nodes within a tolerance range of 70 minutes. This
attack is known as timejacking [corbixgwelt 2011]. An ad-
vanced attacker can use timejacking to isolate a miner. By
speeding up the majority of clocks while slowing down the
target’s clock, the attacker can achieve a difference of 140
minutes. Since the network time is used to validate blocks,
the attacker can generate a “poison pill” block with a custom
timestamp, which is accepted by the majority but rejected
by the target. As a result, the target sticks to the previous
chain and continues mining on this part, whereas the ma-
jority of the network has moved on. All newly generated
blocks are immediately rejected by the target. Timejacking
can be considered a form of denial of service attack, but
it also facilitates double spending. Furthermore, it can be
used to influence the mining difficulty calculation [Cohen
2014]. The proposed solutions include to tighten the toler-
ance ranges, to use NTP, or to use trusted peers for time
sampling only [corbixgwelt 2011].

Most of the attacks discussed in this section are possible
because of Bitcoin’s network structure. As we will see next,
significant propagation delays and scalability issues of the
network are often the root causes.

4. NETWORK

In this section, we will take a closer look on how Bitcoin
organizes the distributed network of peers. In particular,
we will consider the Bitcoin protocol, the resulting relay

patterns and their implications on information propagation.
Furthermore, we provide an outlook on Bitcoin-inspired net-
work applications and services, such as alternative domain
name and messaging systems.

Bitcoin uses an unstructured peer-to-peer network based
on persistent TCP connections as its foundational communi-
cation structure. In general, unstructured overlays are eas-
ily constructed and robust against high churn (change-and-
turn) rates, i. e., against frequently joining and leaving peers.
From existing research, it is known that unstructured over-
lays like, for instance, Gnutella [Gnutella v0.4 2003] do not
scale well [Lv et al. 2002, Chawathe et al. 2003]. Searching
for files in unstructured file sharing overlays, for instance,
requires flooding requests in the network, so that each peer
receiving and forwarding a query can check against the lo-
cally known data items. This causes significant overhead
due to the massive number of copies of each query, and be-
cause of the need to maintain state information about seen
messages for duplicate suppression. The load on each peer
grows linearly with the system size. In order to reduce the
amount of relaying, the scope of queries is often limited to a
certain number of hops in peer-to-peer file sharing systems—
at the cost of imperfect coverage: not every query reaches
every peer.

The Bitcoin network has aims which differ from those of
peer-to-peer file sharing systems. In Bitcoin, the aim is not
to find specific files or data items, but to distribute infor-
mation as fast as possible to reach consensus on the block
chain. Limiting the scope of message propagation is there-
fore not an option. Clearly, this raises concerns regarding
Bitcoin’s ability to scale to higher transaction rates while
still processing transactions rapidly.

4.1 Joining and Maintaining the Network

Every peer in the Bitcoin network actively tries to main-
tain a minimum of eight connections in the overlay. That is,
the peer tries to establish additional connections if this num-
ber is underrun. The number of eight connections can be sig-
nificantly exceeded if incoming connections are accepted by a
Bitcoin peer; usually a network participant does not handle
more than 125 connections at a time (maxconnections). By
default, peers listen on port 8333 for inbound connections.
When peers establish a new connection, they perform an ap-
plication layer handshake, consisting of version and verack
messages. The messages include a timestamp for time syn-
chronization, IP addresses, and the protocol version. Since
Bitcoin version 0.7, IPv6 is supported.

In order to detect when peers have left, Bitcoin uses a
soft-state approach. If 30 minutes have been passed since
messages were last exchanged between neighbors, peers will
transmit a heartbeat message to keep the connection alive.
If 90 minutes have passed without any incoming message,
the client will assume that its counterpart is offline. Bit-
coin peers also keep track of not directly connected peers in
the network. They maintain a list of recently active peers,
including their IP address and a timestamp. Every peer
broadcasts its own IP address in an addr message every 24
hours through the overlay. The absence of the message from
a certain peer is interpreted as a sign that the respective
peer is now offline. Exchanging addr messages (during boot-
strapping and later on) is the common way to explore the
network.



Besides unsolicited reception of addr messages, peers can
ask neighbors for additional peers by sending a getaddr mes-
sage. The response (addr) contains a random selection of
23% (but not more than 1,000) peers from the responder’s
list of recently active peers. (It seems that there are no par-
ticular reasons for the choice of these numbers.) Note that
this list does not only include peers directly connected to
the originator of the list, but also peers it heard of recently.
Thus, retrieving addr messages does not reveal the struc-
ture of the network without additional effort. In fact, it is
a design goal of the Bitcoin network implementation to ob-
fuscate the topology and to make sure that (local) attackers
cannot fill up a peer’s neighbor table with compromised IP
addresses. Otherwise it would facilitate eclipse attacks (in
the context of Bitcoin also often called a netsplit), where an
attacker monopolizes or at least dominates the environment
of a node, therefore controlling the message flow between
this node and the remainder of the network. An attacker
can exploit this to generate an independent, inconsistent
view of the network (and the block chain) at the attacked
node. This enables double spends with more than one con-
firmation. Nevertheless, since peers get regular updates and
maintain all received participant information, every peer has
a relatively broad overview of the peers in the network.

Whenever receiving an addr message, peers consider re-
laying address information for messages with a maximum
of ten addresses only. If the timestamp associated with the
information about a peer is not older than 10 minutes, the
peer decides to relay the respective address. Depending on
the reachability of a peer, i. e., whether the advertised IP lies
within a reachable network, the address is either forwarded
to two neighbors or one. This promotes peers with publicly
IP addresses more than peers with private addresses behind
a NAT, based on the conjecture that peers with public IPs
are more likely to accept incoming connections. The deci-
sion which neighbors will receive the address information is
determined by deterministic randomness (i. e., a pseudoran-
dom decision based on a fixed seed). Peers maintain state
of already advertised IP addresses to avoid repeated adver-
tisements. The seed changes every 24 hours. Addresses des-
ignated for the same neighbor are collected in a new addr
message and relayed in a batch. About every 100ms, a
neighbor is randomly selected (the so-called “trickle node”)
and the queued addresses are flushed. This mechanism in-
duces an additional random delay per hop during address
propagation.

Bitcoin peers use three methods of finding neighbors dur-
ing bootstrapping: DNS, IRC, and asking neighbors. Since
Bitcoin version 0.6, DNS is the default bootstrapping mech-
anism. The software is shipped with built-in hostnames of
seed nodes, the IP addresses of which are resolved via DNS.
The DNS servers are run by volunteers and return a set of
recently active peers. The usage of IRC, where IP addresses
are encoded in the nicknames, is replaced by DNS boot-
strapping. Besides, the client asks its neighbors for a list of
available peers as introduced above.

In a study from November 2013 to January 2014, the au-
thors of [Donet et al. 2014] asked a set of initial peers for
information about other peers they know (i.e., by sending
a getaddr to these peers). For every previously unknown
peer thus discovered, they repeated the procedure and asked
them for peers too. In the first round they already discovered
111,475 IP addresses. After 37 rounds during the 37 days of

the study, they discovered 872,648 IP addresses in sum. Ge-
olocation lookups revealed that they are spread all over the
world. Most of these peers are located in the US (22%) and
China (14%). However, considering the number of Internet
users in the respective countries, the Netherlands and Nor-
way show the highest adoption rates. The discovered peers
in each round show a significant overlap. However, most of
them were gone after five days and only 5,769 were online
throughout the whole period. Note that some of the peers
have dynamic IP addresses and therefore may appear to be
more unstable than they really are. [Feld et al. 2014] pro-
vides statistics on the AS level. The online service Bitnodes
(getaddr.bitnodes.io) maps the global Bitcoin node distri-
bution on a regular basis. All reveal the dimension of the
Bitcoin network.

4.2 Transaction and Block Propagation

Based on the unstructured overlay as discussed so far, in-
formation about new transactions and blocks is spread to
the peers in order to form the distributed consensus. The
mechanism is simple: messages are flooded through the net-
work. Let us revisit our example where Alice wants to issue
a transaction. Where we focused on the semantics and the
transaction and block chain structure before, we now take
a closer look on the exchanged messages. The message flow
is illustrated in Figure 5. Assume Alice constructed a valid
transaction. Before broadcasting the actual transaction data
including all details of inputs and outputs, she sends an in-
ventory (inv) message stating “I know about new transac-
tions” to all of her neighbors. This message contains a list of
transaction hashes (TXIDs), but not the actual transaction
data.

Alice’s neighbors will request data from specific transac-
tions in a separate getdata message, if these transactions
are so far unknown to them. This pull-based communica-
tion mechanism reduces the load on the network by avoiding
unnecessary, redundant transmissions of transaction records.
In response to a getdata message, Alice sends the respec-
tive transaction record. After Alice’s neighbors verified the
transaction, they will make it available to all their neigh-
bors in the same manner as Alice did, starting with an inv
message.

Messages in general are flushed periodically about every
100 ms. However, transaction relaying takes place by “trick-
ling” messages out. Bitcoin randomly selects with a proba-
bility of 1/4 the transactions for an inv message and stalls
the remaining transactions. Every neighbor gets a different
set of randomly chosen transactions (about 1/4 of the cur-
rently available set). Only the randomly selected “trickling
node” (cf. addr message relaying) gets all transactions im-
mediately. The other neighbors either get it later or already
got it from another neighbor. Trickling reduces the overhead
and at the same time makes traffic analysis more difficult, in
a similar manner as mixes do in mix networks [Chaum 1981].
It also helps to conceal the originator of a transaction. How-
ever, since every 100 ms a random batch is flushed, an ad-
ditional delay in the order of some hundreds of milliseconds
is induced to the propagation of transactions. Therefore,
trickling in Bitcoin is, in fact, counterproductive to the aim
of propagating information as fast as possible. It trades off
overhead and privacy against fast transaction propagation.

Peers keep track of the transactions that they have al-
ready seen, but “forget” them after a while if they do not
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Figure 5: Transaction propagation.

make it into the block chain. Alice, as the originator of her
transaction, is responsible for its distribution. She might
hence need to re-broadcast it if the transaction did not get
into the block chain, to make sure it gets considered in the
next block.

By observing the forwarded messages from a highly con-
nected peer, [Koshy et al. 2014] revealed three distinct relay
patterns. With about 91% of all observed instances, the
most common relay pattern involves lots of peers relaying a
transaction only once. Since clients keep track of seen trans-
actions and relay only new ones, this is exactly what one
would expect. The second relay pattern involves a trans-
action received once or multiple times from a single peer.
This is not very common (3%); it occurs when invalid trans-
actions are broadcast and hence not relayed. The third relay
pattern involves a transaction relayed by multiple peers and
re-relayed by at least one of them (6%). The reason behind
the occurrence of this pattern is that transaction origina-
tors are responsible for their transactions and might need to
re-broadcast if they get forgotten.

The insights into transaction propagation also help to in-
crease the resilience to fraudulent users paying with Bitcoin.
For example, assume Alice wants to buy a snack and pay
with Bitcoin. Further assume that Alice is very hungry and
wants the snack asap, without waiting for the commonly ex-
pected six confirmations (about 1 hour). On the other hand,
the merchant wants to make sure that it is safe to hand over
the product without fearing the risk of double spending (we
discussed the risk of double spending in such fast payment
scenarios before [Karame et al. 2012]). With this storyline
in mind, the authors of [Bamert et al. 2013] developed prop-
agation strategies for merchants to realize fast payments.
From the merchant’s perspective, the key observation is that
Alice should not be the only source of information for this
transaction. Quite in contrast: the merchant should not ac-
cept incoming connections and connect to a preferably large
sample of peers. In this case, Alice is forced to broadcast
the transaction; she cannot directly send transactions to the
merchant. In order to avoid isolation and timing attacks,
the merchant should not relay transactions. As soon as he
is connected to at least one honest peer, he will receive po-
tentially fraudulent transactions and is able to recognize the
double spending.

Another (not implemented) proposal is to use Bitcoin’s
alert messages, which are aggressively flooded, to signal
a double spending attempt [Karame et al. 2012]. The in-

tuition is that even when the attacker is able to fool the
merchant, some (honest) peers will see the colliding trans-
actions. They can then broadcast alerts immediately. Thus,
by considering these strategies and waiting for a small lis-
tening period, the merchant makes sure that the majority
of the Bitcoin network has received the transaction. Addi-
tionally he probably received Alice’s transaction more than
once from his neighbors. If there is no attempt to double
spend, the risk of fraud has been reduced. Nevertheless, a
cost-benefit trade-off remains.

The propagation of validated blocks is analogous to the
propagation of transactions. A miner who has successfully
solved the proof-of-work broadcasts an inventory message to
all neighbors first. The full block is transferred upon request
only. Peers receiving a new (unseen) block will relay it in
the same manner. The period from receiving an inventory
message for a new block until forwarding the announcement
to all other neighbors induces a propagation delay, which
consists of the time it takes to announce, request, transmit
and validate the block (or transaction). In case of blocks,
the validation includes the validation of each transaction
and hence access to the block chain. In order to reduce the
propagation delay, trickling is not used for blocks. Never-
theless, the induced propagation delay has implications on
the Bitcoin protocol.

In [Decker and Wattenhofer 2013], the authors analyzed
the information propagation in the Bitcoin network. They
connected to a large sample of nodes in the network as ob-
server, i.e., without actively relaying messages. They regis-
tered the arrival times of block hashes in inv messages from
these nodes. The probability density function of times since
the first block was received shows an exponential distribu-
tion, with a median of about of 6.5 seconds and a mean of
12.6 seconds. The distribution shows a long-tail behavior
with 5% of the nodes still not having received the block af-
ter 40 seconds. The authors also discuss the relationship
between the propagation delay and the probability of block
chain forks. Obviously, due to the significant propagation
delay, forks in the block chain become more likely. Thus,
they conclude that if the amount of transactions and/or the
network size increases, propagation delays will raise and,
consequently, the rate of block chain forks will increase, too.
This has an important impact on the resilience of Bitcoin
against malicious nodes [Garay et al. 2014]. In order to mit-
igate the threat, [Decker and Wattenhofer 2013] propose a
modified message exchange behavior. It aims to reduce the
propagation delay by pipelining the block propagation, and
by splitting the validation into checking for a valid nonce
first and validating all transactions later on. However, this
introduces new attack vectors, allowing adversaries (or ev-
erybody else) to flood inv messages through the whole net-
work without providing a valid block or transaction.

In summary, the key determinant for information prop-
agation in the Bitcoin network is the unstructured overlay
network and its characteristics. As the network grows, its
diameter will increase respectively. Thus, [Decker and Wat-
tenhofer 2013] minimized the distance to mitigate the issues
by deploying a highly connected peer (approximately 3,500
neighbors) in the live Bitcoin network. Their client actively
tried to connect to every peer from the address list, reduc-
ing the distance between any two nodes to, ideally, two hops
only. As a consequence, the block chain fork rate dropped
from 1.69% to 0.78%—but at the cost of bandwidth require-



ments peaking at around 100 MB/s. This reveals a pressing
issue of the Bitcoin network today: its scalability.

4.3 Scalability

The main objective of the peer-to-peer network in Bitcoin
is to quickly distribute the information into every part of the
network. Variations in the propagation mechanisms directly
affect the formation of the distributed consensus and thus
the security of Bitcoin. In general, inconsistent states, i.e.,
block chain forks, are undesirable, because they facilitate
double spending. However, the Bitcoin network is faced with
scalability issues. Especially network bandwidth, network
size and storage requirements pose challenges.

Bitcoin’s wiki states that the protocol is capable of much
more than the current transaction rate [Bitcoin wiki 2014,
/Scalability] and thus able to scale to higher demands. Cur-
rently, Bitcoin has an artificial maximum block size of 1 MiB,
which limits the number of transactions per block and there-
fore also the growth rate of the block chain. This limit is
enforced to prevent from ballooning the block chain before
the protocol is prepared. The smallest standard transaction
(which is not unspendable or spendable by anyone), is a
single-input, single-output “pay-to-PubKey” (P2PK) trans-
action, which has a size of 166 bytes. A back-of-the-envelope
calculation results in a theoretical upper bound of approxi-
mately 10 transactions per second (tps). A more conserva-
tive and realistic assumption would be to consider P2PKH
transactions with at least two inputs (to merge previous out-
puts) and two outputs (for change). Accordingly, Bitcoin is
capable of a transaction rate of approximately 4 tps. Alter-
natively, the block generation interval could be shortened,
which implies that the proof-of-work difficulty would have
to be adjusted accordingly. As discussed before, though,
close-to-simultaneous block validations by different miners
lead to block chain forks. Therefore, shorter block creation
intervals come at the price of a higher chance of block chain
forks.

Either way, scaling to higher transaction rates will even-
tually consume more resources. For example, to handle a
rate of 2,000tps, a block size of more than half a giga-
byte and an Internet connection of approximately 1MiB/s
is required. As [Kaminsky 2011] states, a higher transac-
tion rate (which is inevitable if Bitcoin really poses an al-
ternative to the banking model) will eventually demand a
super peer-based overlay structure (as in later versions of
Gnutella [Klingberg and Manfredi 2002]) in order to handle
the load. We can observe some evidence of this trend—
and the emergence of super peers in the Bitcoin network.
For instance, the study of [Donet et al. 2014] found that
from 1,300 connected peers, 20 forwarded more than 70% of
both transactions and blocks first. Therefore, [Reed 2014]
suggests to explicitly introduce a hierarchical network struc-
ture, which consists of super peers (i.e., miners), full nodes
(e.g., exchanges) and wallet nodes (e.g., online wallets or
thin clients).

Full nodes (or full chain clients) download and verify all
blocks starting from the genesis block. This is the most
secure mode of operation. Even though not strictly nec-
essary for a client, full nodes participate in the P2P net-
work and help to propagate information. Alternatively,
thin clients which use the simplified payment verification
(SPV) [Nakamoto 2008a] can be used. A thin client needs
the block headers only and requests transactions on demand.

The block header incorporates a Merkle root [Merkle 1987],
which secures the transactions of that particular block by
constructing a hash tree over the TXIDs: transaction hashes
are paired and hashed. Hashes without a partner are hashed
by themselves. This is hierarchically repeated until a single
hash remains, the Merkle root. It allows clients to verify
that a transaction is part of a block by starting at the re-
spective leaf and traversing the branches up to the root. If
the final hash equals the Merkle root, the transactions must
be part of the block. For the verification, thin clients re-
quest a list of (some) intermediary hashes from full nodes,
but they do not need the complete block with all trans-
action data. Since the block headers including the Merkle
root are secured, valid intermediate hashes cannot be faked
easily. Thus, the approach can reliably verify the existence
of transactions. Their absence, however, can be faked by
answering with invalid hashes.

Clients can reduce the risk by sampling from multiple
nodes. Yet, eclipse attacks are of course possible. In addi-
tion to security issues, requesting specific transactions from
full nodes has important privacy implications: from the re-
quested transaction, a full node might infer the owner of
the coins. To limit the information leak, Bitcoin employs
a Bloom filter [Bloom 1970] (a probabilistic data structure)
to obfuscate requests [Hearn and Corallo 2012]. Clients ex-
press their request as a Bloom filter and send it to the full
node. All transactions which match the pattern given by the
Bloom filter are sent to the thin client. The inherent false
positive rate of Bloom filters is used to adjust the desired
level of privacy at the expense of some additional overhead.

Thin clients mitigate some of Bitcoin’s scalability issues by
relying on the data provisioned by full nodes. Even though
they employ techniques to limit the necessary trust in others,
thin clients subvert Bitcoin’s core intent of rigorous decen-
tralization. In a sense, the resulting structure resembles the
banking model [Kaminsky 2011]. Thus, let us take look at
other approaches which tackle the root cause of Bitcoin’s
scalability issues.

A fundamental bottleneck is the sheer size of the block
chain. Since Bitcoin version 0.8, transactions and block in-
dices are stored with LevelDB instead of the previously used
Berkeley DB. This improvement increased the performance
of synchronization and block verification, which used to be
a bottleneck before. Nevertheless, the storage issues remain.

When considering thin clients anyway, a consequent step
is to separately store the raw transaction data, and to in-
clude transaction hashes in blocks only. Indeed some alt-
coins such as Dogecoin (DOGE, dogecoin.com) follow this
approach. The approach still required the distinction be-
tween thin clients and full nodes. In particular, full nodes
still need to store all data. The author of [Bruce 2014] takes
it one step further and disassembles the block chain into its
components. He isolates three key components. First, the
block chain manages ownership records and thus implicitly
account balances. Second, it helps the network coordinat-
ing transactions. Third, the linked blocks and the proof
of work secure the ledger. For each function, he suggests
a data structure which takes the responsibility of the re-
spective function, with the overall aim of substituting and
slimming down the block chain. The account balances are
tracked in a so-called account tree. It combines a binary
radix tree and Merkle hashing with UTXOs as leafs. The
roots of the radix tree and the Merkle tree become part of
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the block header. This ensures integrity of the ownerships
and supports quick address lookups. In order to periodically
group transactions and update the ledger, a component anal-
ogous to the block chain is necessary. However, due to the
account tree it becomes possible to discard old blocks. Thus,
the proposed solution is to keep a few hundreds of blocks in
a so-called mini block chain only. Therefore, inputs and
outputs of transactions do not point to other transactions
anymore. Instead, they point to addresses in the account
tree and are thus implicitly linked. Simply discarding old
blocks weakens the security, though. The solution is sim-
ilar to the thin clients’ strategy: a proof chain with block
headers only. All three data structures together use less
space but provide the same functionality. The design is not
meant to substitute the live Bitcoin system: migrating the
complete block chain seems impossible. An alternative cur-
rency, named Cryptonite (XCN, cryptonite.info), employs
the proposed mini block chain scheme.

Even if we assume Bitcoin to be able to adapt to higher
loads, there are additional limitations on the transaction
rates [Sompolinsky and Zohar 2013]. Especially delayed
block propagation and Bitcoin’s security assumptions re-
strict transaction rates more than the limits imposed by, for
example, bandwidth requirements. A fact noted by [Decker
and Wattenhofer 2013] and [Sompolinsky and Zohar 2013]
is that attempting to increase either the block creation time
or the block size not only increases the bandwidth require-
ments, but also adversely affects the protocol. If the block
that has been verified is not propagated rapidly, the prob-
ability of a fork increases. Bitcoin may be able to resolve
forks, but frequent conflicts still waste valuable resources.
Obviously, larger blocks imply longer propagation times and
thus increase the risk of forks. [Sompolinsky and Zohar 2013]
used the data set of [Decker and Wattenhofer 2013] and re-
vealed a linear dependency between the block size and the
propagation delays in the Bitcoin network. By extrapolat-
ing from the data set, they found that it takes 0.066 s/KiB
to reach half of the nodes in the network.

Higher block generation rates will likewise result in more
frequent conflicting blocks. The authors of [Sompolinsky
and Zohar 2013] provide estimates of transaction rates as a
function of the block size and the block propagation delay
with regard to delays and security guarantees. Bitcoin’s se-
curity heavily depends on the assumption that the time it
takes to propagate blocks is significantly shorter than the
block generation time. Thus, with an increasing transaction
rate it becomes more and more likely that attacks are pos-
sible for an attacker controlling less than 50% of the overall
hash rate. In an (optimistic) estimate, [Sompolinsky and
Zohar 2013] assumed an unlimited block size, a transaction
size of 0.5 KiB, and an adversary controlling 40% of the net-
work’s hash rate. Furthermore, they used the propagation
delay factor of 0.066 s/KiB from above. The resulting upper
bound on the transaction rate is approximately 40 tps.

As an optimization, [Sompolinsky and Zohar 2013] suggest
to alter the mechanism to resolve block chain forks. The ba-
sic observation is that orphaned forks include valid blocks,
which can contribute to the block chain’s irreversibility. In
particular, instead of the longest block chain, the fork with
the heaviest subtree should be taken as a metric to resolve
conflicts. It exploits the work that was already invested and
enhances the security of their ancestor. It is thus possible to
increase the transaction rate under the same security con-
straints.

We can conclude that the general scalability issues of un-
structured overlays combined with the issues induced by the
Bitcoin protocol itself remain. Some practical, pragmatic
solutions appear able to keep Bitcoin in a working state for
the foreseeable future. However, many of the results suggest
that scalability remains an open problem. A summary of the
most prevalent issues is provided by [Courtois et al. 2014a].
The considerations also raise the question whether Bitcoin
is (and can remain) a decentralized currency [Laurie 2011,
Gervais et al. 2014, Kroll et al. 2013].

4.4 Deanonymization

Tracking message flows does not only help to understand
the network, it also discloses user information. [Kaminsky
2011] noted that by controlling a hub connected to all peers,
it is possible to learn the IP address of any transaction orig-
inator: assuming that the transaction is not forwarded by
an online wallet provider, the originator is likely also the
issuer of the transaction. This breaks the pseudonymity of
transactions. The relay patterns identified by [Koshy et al.
2014] confirm the expected behavior. Inspired by [Kaminsky
2011], the authors used their insights and developed heuris-
tics to match transactions to IP addresses, even if the ob-
serving hub is not fully connected. During their study of
five months, they were able to link 1,162 bitcoin addresses
to IP addresses while being connected to a median of 2,678
peers.

Internet anonymity services like Tor [Dingledine et al.
2004] provide a solution to this privacy issue by concealing
the originating IP. Tor decouples sender and receiver infor-
mation by employing the onion routing protocol [Goldschlag
et al. 1996] along a circuit of relays nodes. The IP address
of the source node is thereby hidden, the destination of the
connection sees only the address of the last Tor node along
the circuit (the exit node). Therefore the Bitcoin client is
able to tunnel the traffic through Tor via the SOCKS inter-
face.

However, [Biryukov et al. 2014] point out that it is possible
for an attacker to trigger a ban of Tor connections to the Bit-
coin network. They exploit Bitcoin’s denial-of-service pro-
tection, which blacklists misbehaving nodes under certain
circumstances. Whenever a Bitcoin peer receives malformed
messages, it increases a penalty score for the respective 1P
address. If the score hits a threshold, the IP is banned from
connecting to this Bitcoin peer for 24 hours. One possibility
for a simple, small message which is malformed in the sense
of this mechanism is to send blocks with an empty transac-
tion list. An attacker could use a Tor circuit for each pair
of Tor exit node and Bitcoin peer, and mount a straightfor-
ward denial-of-service attack by getting the Bitcoin peers to
blacklist all Tor exit IP addresses. In a similar way, other
proxies can be banned from the Bitcoin network. Such an at-
tack involves many connections and large amounts of traffic,
but nevertheless seems feasible. Bitcoin over Tor in general
and mounting the mentioned denial-of-service attack in par-
ticular introduces additional attack vectors, such as eclipse
attacks by banning Tor from benign Bitcoin peers only or
man-in-the-middle attacks by blacklisting benign exit nodes
from Bitcoin peers [Biryukov and Pustogarov 2014a].

But even when using anonymized connections, it is possi-
ble to map the originator of transactions. [Biryukov et al.
2014] made the observation that a peer’s set of neighbors can
serve as a fingerprint. Recall that clients usually connect to
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eight peers and advertise their addresses in the network by
broadcasting it to all neighbors. The authors call the eight
peers (which apparently accept incoming connections) the
client’s entry modes. Clients maintain connections to entry
nodes as long as they remain reachable. Thus, it can be
assumed that the fingerprint is stable. If an adversary is al-
ready connected to the network, he will receive the address
announcement, too. An adversary can exploit this fact and
create a fingerprint for an IP address by connecting (ide-
ally) to all Bitcoin servers and logging the set of peers that
forward the IP address. These peers are likely the entry
nodes for the respective IP. Due to the “trickling” of addr
messages, an adversary will see a fraction of the entry nodes
only. This and timing effects can result in false positives,
though. In the next step, the attacker is able to map trans-
actions to entry nodes and thus also to the originator of the
transaction. If the transaction is relayed by a subset of the
entry nodes, it can be linked to the respective client. In de-
tail, this is tricky because of network latency and trickling,
but as the authors show in their experimental results, the
attack still has a significant success rate (about 11% of all
transaction could be disclosed).

The proposed mitigation strategy from [Biryukov et al.
2014] suggests to rotate outbound connections, for instance
after every transaction, so as to blur the fingerprint. This
proposal started a discussion [Lists 2014b] that resembles
many arguments also used in a very different context,
namely the entry selection policy for the Tor anonymity net-
work [@verlier and Syverson 2006, Elahi et al. 2012, Dingle-
dine et al. 2014]. The arguments include that rotating entry
nodes periodically will lead to a higher probability of select-
ing a malicious entry node. Sticking to a stable set of entry
nodes reduces this risk. Eventually, as for Tor, it will be
necessary to differentiate with respect to assumed adversary
capabilities, to clearly state the attacker model, and to trade
off the implications of any defense.

4.5 Botnets

Botnets are a distributed formation of processes connected
to a network. Illegal botnets run on systems without the
knowledge of their operator. They have access to local files,
network resources, and are able to run arbitrary programs.
In most cases they communicate with a botmaster over a so-
called command and control (C&C) channel. The botmaster
uses it to seed new instructions to and to collect information
from the bots. There are several approaches, such as IRC,
Tor, or distributed hash tables (DHT), to realize the C&C
channel. [Ali et al. 2015] shows how to use Bitcoin as a C&C
infrastructure by encoding instructions in the transaction
scripts. The approach benefits from Bitcoin’s resilience.

Botnets are often used with the purpose of making money,
including phishing and sending spam emails, but also dis-
tributed denial of service attacks. Thus, it was only a matter
of time until botmasters would discover crypto currencies as
an additional source of income. The authors of [Plohmann
and Gerhards-Padilla 2012] perform a case study on an early
adopter, the Miner Botnet (first activities date back to De-
cember 2010). Technically, the botnet is not state of the
art, but at this early time it was distinguished by its mining
capabilities. In particular, worker bots perform benchmarks
on the compromised system and retrieve detailed informa-
tion on graphic cards to initialize the mining software. The
worker bots connect to proxy bots who collect the results of

their work. The proxy bots run the standard Bitcoin client
software and connect to a randomly selected mining pool
from a hard-coded list. Every 20 minutes, proxy bots post
their wallet holding the minted coins to the C&C server.
The geographical distribution of the Miner botnet clusters
around the countries Ukraine, Russia, Poland, Romania,
and Belarus, which is likely due to the spreading strategy
adopted by the Botnet owner.

The authors of [Huang et al. 2014] termed the above
mentioned approach prozied pool mining. By investigating
several other botnets, they identified additional strategies,
which they called direct pool mining and dark pool mining.
As the name implies, with direct pool mining, boneed to
rets do not need a proxy and directly connect to a mining
pool. The approach is very simple and does not require
a separate proxy infrastructure, but it also has some dis-
advantages. Mining pools can easily detect botnet mining,
because of the large number of miners with small hash rates,
all sharing the same account. Proxied pool mining can be
detected, too, but masks the worker bots and has the flexi-
bility to quickly switch to a new proxy if banned. With dark
pool mining, the botnet hosts its own mining pool to which
workers connect. The mining pool server consequentially
connects to the Bitcoin network. The earnings for direct
and proxied pool mining flow constantly due to the public
mining pools. Dark pool mining will result in bursts of earn-
ings. [Huang et al. 2014] analyzed the profitability of mining
botnets and concludes that throughout most of 2012 and the
first quarter of 2013 it was absolutely profitable, even con-
sidering the prices charged (in dark corners of the Internet)
for hiring a botnet. [Heusser 2013, Dev 2014] propose tech-
niques to accelerate mining with non-custom hardware, i. e.,
CPUs and GPUs, of which Botnets can make use.

Since botnet mining exploits mostly unused resources and
hence does not interfere with most other typical botnet ac-
tivities, it can be expected that mining remains profitable
for large botnets. But why break into other people’s systems
if we can use free resources? [Ragan and Salazar 2014] asked
this question and used free trials and freemium accounts of
cloud services to develop a cloud-based mining botnet. The
main challenge was to automate the process, especially gen-
erating “credible” email addresses, to acquire a significant
amount of bots, i.e., free accounts. In their tests, they were
able to aggregate computing power worth thousands of dol-
lars per week.

4.6 Bitcoin-inspired Network Applications

Apart from revolutionizing the area of digital currencies,
Bitcoin also inspired other applications, most notably many
network applications. Examples include but are not limited
to a decentralized domain name system [vinced 2011], abuse
prevention of cloud services [Szefer and Lee 2013], decentral-
ized cloud storage [Wilkinson et al. 2014], or anonymous and
distributed messaging [Warren 2012]. In the following, we
will highlight two examples which build upon a fundamental
insight into the role and properties of the block chain.

Since the early days of computer networks, naming ser-
vices played an important role. Generally speaking, naming
services map keys to values. DNS, which translates domain
names to [P addresses, is probably the most well-known one.

Zooko Wilcox-O’Hearn conjectured [Wilcox-O’Hearn
2010] that when designing a naming service, one can choose
only two out of the three properties “distributed”, “secure”,



and “human-meaningful”. Examples include OpenPGP pub-
lic key fingerprints, which are secure and decentralized, but
not human meaningful. Domain names, in contrast, are
meaningful and can be considered secure, but are managed
centrally. The conjecture that building a system incorpo-
rating all three properties is infeasible became known as
Zooko’s triangle.

Bitcoin breathed new life into the feasibility discussion.
The late Aaron Schwartz described a naming service based
on Bitcoin’s protocol [Schwartz 2011], which defies Zooko’s
triangle. He leverages the decentralized block chain as a
key-value storage. Instead of assigning coins to addresses,
he proposes to translate meaningful names to addresses. In
his design, the proof-of-work scheme secures the mapping
stored in the block chain in the very same way in which Bit-
coin secures the transactions. Roughly at the same time, a
Bitcoin-based naming service was discussed in [kiba 2010],
and only a few months later Namecoin [vinced 2011] was
announced. The authors of [Barok 2011] also provide addi-
tional background information on the development history.

Namecoin (NMC, namecoin.info) is an alternative ap-
proach to DNS, coordinating .bit domains. It shares the
codebase with Bitcoin and inherits its properties. The min-
ing process is therefore identical to Bitcoin, but starts with
a fresh genesis block and consequently creates on its own
block chain. For the most part, Namecoin extends the Bit-
coin protocol to handle additional information (such as do-
main names) and introduces three new types of transac-
tions: name_new, name_firstupdate and name_update. As-
sume Alice wants to register example.bit. First, she needs to
broadcast a special pre-order transaction of type name_new.
It consist of a sufficiently high network fee (currently 0.01
namecoins) as input and a name_new output script which
includes the encrypted domain name. Please note: at this
point the domain is not yet owned by Alice or anyone else.
Thus, it is still possible to issue another name_new transac-
tion with the same domain name, for example when loos-
ing the necessary key to successfully connect to the output
script. After a mandatory waiting period of 12 blocks, Alice
broadcasts the actual registration in a name_firstupdate
transaction. It publicly announces the domain name in
plaintext and assigns the ownership. Updates need to be
performed every 36,000 blocks (approx. 250 days) at the
latest by issuing a name_update transaction, otherwise the
domain expires.

The initial pre-ordering prevents others from quickly reg-
istering the same domain name when seeing the registration.
The 12 blocks waiting period provides time to broadcast the
registration and to anchor it in the block chain. The net-
work fee’s purpose is to prevent from massive pre-ordering.
Once used in a pre-order, the fee gets destroyed and can-
not be used for normal payments anymore. Thus, domain
names are, in a sense, attached to “special” coins, which
can, however, still be exchanged and traded through up-
dates. Indeed, updates are basically normal transactions
referring to the previous update. They enable, for instance,
IP address updates and domain transfers. In Namecoin, ev-
ery user can become her own domain registrar. However,
the system is not strictly limited to domains. For example
CertCoin [Fromknecht et al. 2014] proposes a authentication
system based on Namecoin.

In principle, any type of data can be registered (also in
Bitcoin), as long as it follows the protocol specification. So-

scriptPubKey: OP_RETURN <data>

Script 4: Null data standard transaction script template.

called Null Data transactions (cf. Script 4) allow to encode
small, arbitrary data into the block chain. Interestingly, [Bos
et al. 2013] found values which do not appear to correspond
to valid cryptographic key pairs; they seem to encode ASCII
characters.

Bitmessage [Warren 2012] takes the idea a step further
and implements an anonymous, distributed, and encrypted
messaging protocol. The protocol specification is quite dif-
ferent from Bitcoin (and Namecoin), but the source of in-
spiration is clearly visible. First of all, there is no block
chain, because it is not a design goal to store all messages
forever. Instead, Bitmessage is considered a best-effort ser-
vice, which asks peers to save messages for two days only. In
order to be sure that messages are successfully received, an
acknowledgment mechanism is implemented. If an acknowl-
edgment is missing, the sender re-broadcasts the message
with exponential backoff intervals. Before broadcasting a
message, the sender needs to provide a valid proof of work
with the message. This is very similar to Hashcash [Back
2002] and limits spam and DoS attacks. The difficulty is ad-
justed according to the message size. Like transactions and
blocks, messages are flooded through an unstructured over-
lay network. This mixes all circulating messages of all users,
making it difficult to link sender and receiver. In addition,
messages are encrypted with the recipient’s public key and
have no visible addresses attached. Therefore, every peer
needs to decrypt every received message to check if it is the
intended recipient.

5. PRIVACY

The original Bitcoin paper briefly describes privacy con-
siderations: in contrast to traditional banking—that is,
trusted third party models which limit the accessible trad-
ing information—Bitcoin’s block chain publicly reveals all
transaction data. The public addresses in the block chain,
though, intend to provide pseudonymity, so that this open-
ness of the transaction history does not automatically imply
identifiability. To support this feature, a new key pair (and
thus a new address) should be used for each transaction.
In this sense, Bitcoin clients use so called change addresses
(sometimes also called shadow addresses) by default, which
are generated for each transaction and receive the change of
the transaction on the output side.

However, as [Nakamoto 2008a] already points out
and as we know from privacy and social network re-
search [Narayanan and Shmatikov 2009, Backstrom et al.
2007, Narayanan and Shmatikov 2008], even when hiding be-
hind multiple pseudonyms, these can be linked and often re-
veal identifying information. Along these lines, there is a sig-
nificant body of research on the analysis of Bitcoin’s publicly
available block chain [Ron and Shamir 2013, Reid and Har-
rigan 2013, Androulaki et al. 2012, Meiklejohn et al. 2013,
Ober et al. 2013, Baumann et al. 2014, Ron and Shamir
2014, Vasek and Moore 2015].

In the following, we will outline the methodology most
block chain analysis approaches follow (Sec. 5.1), before
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we then summarize interesting results obtained thereby
(Sec. 5.2). Subsequently, we describe current practices and
research insights when it comes to increase Bitcoin’s level of
privacy (Sec. 5.3).

5.1 Methodology of Block Chain Analyses

The reader might have noticed from previous sections that
in Bitcoin there is no such thing like a “from” attribute in a
transaction. A single, isolated transaction does not state an
originator. Transactions refer to previous outputs only. By
following this reference, we may infer something from their
destination and consider it as originator. Consider transac-
tion t3 from Figure 6a for example, which sends coins to the
address a¢ (assume ag is the change address). From the des-
tination address a4 of transaction t; we may say that 3 is
“from” a4. Thus, even though block explorers often display a
“from” attribute as if it was encoded in the transaction they
truly infer it from the “last sent-to” address. Since trans-
actions can have numerous inputs and outputs (as it is the
case for t3), it is, strictly speaking, not even a single “last
sent-to” address but rather it should be termed “all last sent-
to” addresses. Therefore, in order to conduct an analysis of
the block chain, pre-processing steps are necessary, includ-
ing the construction of several graphs, namely transaction,
address and entity graphs. Let us take a closer look at these
steps (which are illustrated in Figure 6) and the possibilities
to link Bitcoin users.

Transaction Graph.

The most straightforward step is to construct a transac-
tion graph T (T,L), where T is the set of transactions in the
block chain and L is the set of directed assignments (i.e.,
transaction output-input relations) between these transac-
tions. Each assignment | € L carries a number of coins Cj.
Inherently, transactions have a total order defined by the
block chain, so, as [Reid and Harrigan 2013] noted, there
cannot be any loops in T .

Address Graph.

From the assignments in the transaction graph, we can in-
fer an origin-destination pair of Bitcoin addresses. This will
be possible at least for most standard transactions such as
P2PKH. Based on these relations, we can derive an address
graph A(A,L'), where A is the set of all Bitcoin addresses
and L' is the set of directed assignments, but this time con-
necting addresses rather than transactions. Optionally, we
can make A a multigraph and add a timestamp as an at-
tribute to each I € L’ so as to distinguish between multiple
assignments between the same pair of addresses. Please note
that some assignments will not yield an origin-destination
pair. For example, coinbase blocks have no origin address
(i-e., no input) and point to one destination address (i.e.,
one output) only.

Entity Graph.

The next step aims at grouping addresses which probably
belong to the same user. Based on a number of heuristics,
which are either directly derived from the Bitcoin protocol
or reflect common practices, a so-called entity graph can be
constructed. The entity graph £(F,L") consists of a set F
of entities, where each e € F is a disjoint subset of addresses
A. Like [Ron and Shamir 2013], we use the neutral term en-
tity here to express the possibility of errors and the missing
ground-truth knowledge about real ownerships.

The widely most accepted heuristic is to assume that all
input addresses of a given transaction belong to the same
entity. Based on this heuristic, we can cluster the transi-
tive closure of this property over all transactions. If, for
example, ai,a2 € A are the inputs of one transaction t; € T'
and az,a3 € A of another transaction t2 € T, then we may
conjecture that ai,a2,a3 all belong to the same entity.

In [Androulaki et al. 2012], a second heuristic is intro-
duced, which also clusters completely new addresses on the
output side to the input entity, assuming that such an ad-
dress is the change address. In particular, consider two out-
put addresses aj,a; € A where a; is an address which never
before appeared in the block chain and will never be re-used
to receive payments, and a; is an address which was part
of at least one previous transaction. In this case, a; is as-
sumed to be the change address and belongs to the same
entity as the input addresses. The authors of [Meiklejohn
et al. 2013] argue that due to mining pools or gambling sites,
it is common to issue transactions to multiple different users
with probably more than one new address. Hence they re-
fined the heuristic, adding the condition that it should only
be applied if there is only one single new address a; in the
transaction. Furthermore, they also excluded self-changes
and coinbase transactions from the clustering.

In general, these and other heuristics take advantage of
typical idioms of use and thus are prone to errors in case
of unconventional Bitcoin applications. False positives in
the clustering process can join addresses into huge entities
which actually do not belong together. This has been ob-
served in [Meiklejohn et al. 2013|, leading the authors to
further refinements. Mostly by manual inspection they iden-
tified usage patterns involving services such as SatoshiDice.
SatoshiDice sends payouts back to the same address. If a
user spent coins from a change address in a gamble, the
address would receive another input which invalidates the
one-time receive property of a change address. They used
this observation to clean up their heuristic from false posi-
tives.

Independent from this particular case, idioms of use con-
stantly change. For example, the community recommends
not only to use a fresh address as the change address, but
also a fresh receiving address. The rule of thumb is: use a
fresh address whenever possible. However, there is also an
approach with the opposite intention, i. e., enriching transac-
tions with a so-called marker address (a.k.a. green address)
to link the transaction to an entity [Vornberger 2012]. This
and related proposals [Vandervort 2014] can be used to lever-
age from existing trust relationships so as to accept transac-
tions quicker, for example. In addition, new techniques such
as CoinJoin [Maxwell 2013a], where different users join in a
single transaction, alter the usage patterns. Thus, heuristics
must consider these changes, i.e., they must constantly be
refined and adapted. Some heuristics might even hold true
for a segment of the block chain only, while a certain usage
pattern was common.

Ownership.

Mapping addresses and thus entities to identities finally
requires side channels. Some addresses, e.g., from Wik-
iLeaks or Silk Road, are publicly known. Many services,
like online stores or exchanges, expect the user to identify
before using the service. Others can be detected by using
web crawlers searching social networks (like, for instance,
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Figure 6: Block chain analysis.

bitcointalk.org) for Bitcoin addresses (in the users’ post sig-
natures, for example) as it was done in [Reid and Harrigan
2013, Fleder et al. 2013]. The software Bitlodine [Spagn-
uolo et al. 2014] offers an automated analysis framework.
Using similar means as described above, it parses the block
chain, constructs the respective graphs, uses heuristics for
clustering, and links addresses to users by adding side chan-
nel information.

Another approach is to match IP addresses. [Reid and
Harrigan 2013] used publicly available data sets from Bit-
coin faucets, which give out coins for free. These services
save and publish the IP address of the recipients to prevent
abuse. A more rigorous way is to exploit the information
that can be revealed by observing the network. In partic-
ular, as explained in Section 4, it is possible to correlate
transaction originators to IP addresses. Based on the tech-
niques presented in this section, transaction can be linked
with the Bitcoin address and thus also with the IP address.
If the linked Bitcoin address is part of an entity cluster, the
whole cluster with all involved transactions is deanonymized.

5.2 Block Chain Analysis Results

Based on the methods described above, a number of in-
teresting and useful insights on the use of Bitcoin and the
flow of transactions can be gained. In this section we will
give a brief summary.

[Reid and Harrigan 2013] and [Fleder et al. 2013] identi-
fied transactions and entities of interest and illustrated their
relationships. [Fleder et al. 2013] used the PageRank algo-
rithm [Page et al. 1999] to find “important” entities: entities
with more “references” (i.e., a higher number of incoming
transactions) are ranked higher, as well as entities referenced
by entities with a high rank. With this method, [Fleder et al.
2013] identified the addresses of SatoshiDice and the FBI as
particularly interesting. [Reid and Harrigan 2013] started
from known addresses such as WikiLeaks and visualized its
neighborhood. This way they (directly or indirectly) linked
entities to their donations and revealed that donations were
forwarded to other addresses.

The graphs allow to track Bitcoins along a sequence of
transactions and to reveal patterns. Popular strategies to
divert large amounts of Bitcoins (e.g., from thefts) are to
create long chains of transactions with branches and (re-
)collections [Ron and Shamir 2013, Reid and Harrigan 2013,
Meiklejohn et al. 2013]. Such a practice can be used to
obscure Bitcoin flows. Noteworthy is a pattern termed peel-
ing chain [Meiklejohn et al. 2013], which was observed in
multiple studies: a single address starts with a large bitcoin

amount. In a transaction, a small fraction is “peeled off” and
transferred to a change address. This procedure is repeated,
potentially hundreds of times. The peeled-off amounts often
reside in saving accounts and often have never since been
moved [Ron and Shamir 2013]. Sometimes, small amounts
are aggregated to a large amount, forming the starting point
for another peeling chain. Through careful analysis, it was
possible to expose the meaningful recipient of the Bitcoin
transactions. In a similar maneuver from a theft in 2011,
[Reid and Harrigan 2013] revealed the attempt to lay a false
trail. After the theft, Bitcoins were transferred to an address
which is associated with the hacker group LulzSec. The thief
most probably tried to draw the attention to somebody else;
the analysis did not reveal evidence for any other relation-
ship between LulzSec and the thief. More types of scams
and their prevalence are investigated by [Vasek and Moore
2015].

Bitcoins residing in saving accounts are often called dor-
mant coins [Ron and Shamir 2013, Ober et al. 2013]. They
are moved only occasionally, if at all. One famous example
is the wealth of Dread Pirate Roberts (DPR), the operator
of Silk Road, the biggest online marketplace for drugs and
much more (sometimes also “amazon.com of illegal drugs”)
The FBI was able to seize only a small fraction of his coins;
the rest still resides in saving accounts [Ron and Shamir
2014].

In general, the degree of anonymity of an entity can be
expressed through a set of entities within which it is indis-
tinguishable. The bigger this so-called anonymity set, the
stronger the anonymity. [Ober et al. 2013] assume that dor-
mant entities, which are currently not active, do not increase
the anonymity set. Thus, when taking a certain point in
time into consideration the number of active entities are a
better estimate.

Their analysis reveals a scale-free distribution (power law)
of active days (i.e., days with cash flow) for the entities.
Consequently, there is a large number of entities active for
one day only, but also many single entities active for long
periods. According to the findings, in order to blend into
a large anonymity set, the aim is to create an entity as
“small” as possible (i.e., with a small number of associated
addresses), and to be active for a short time only.

The consensus of all aforementioned contributions is that
there exist means to link information in Bitcoin’s block
chain. This makes Bitcoin not as private as it is often as-
sumed. Quite in contrast: it is probably the most trans-
parent trading system ever built. The block chain is a huge
record, which enables everybody to evaluate all transactions.



5.3 Enabling Privacy

Even though privacy is not an inherent property of Bit-
coin, it is strongly associated with it. Hence, it is often
used for purposes where sender and/or receiver intend to re-
main anonymous. Dread Pirate Roberts, the operator of Silk
Road, is cited in an interview after his arrest with the state-
ment that Silk Road would not have been possible without
Bitcoin [Greenberg 2013]. Besides, there is a strong desire
to create an anonymous digital currency. In this section we
discuss some of the best-practice techniques and proposals,
which enable (more) privacy either within Bitcoin or in re-
lated digital currency systems.

In order to prevent block chain analysis techniques from
succeeding, decoupling of information about the sender and
the receiver is required. In analogy to mix networks for
network anonymity like Tor (which, as discussed above in
Sec. 4.4, decouple sender and receiver addresses in commu-
nication), mixing services for Bitcoin transactions—money
laundry services—can be constructed. Indeed, there are
many parallels between these fields.

The easiest way for gaining anonymity in Bitcoin
is a third-party approach, comparable to a single-hop
anonymization proxy in anonymous communication: a
trusted third party gets the bitcoins (including a tip), with
the request to transfer the coins to a given destination ad-
dress. Due to the extremely large trading volume, the pop-
ular dice gamble SatoshiDice could leave the impression of
being a good way to obscure transactions and to launder
bitcoins (even when losing every now and then). As noted
by [Meiklejohn et al. 2013], the winnings are tied to the wa-
ger transaction, though. Thus, a block chain analysis would
be able to follow the flow. In order to avoid this, the coins
need to be juggled around by the third party in such a way
that incoming and outgoing transactions cannot be linked.

Indeed such services exist. They all follow similar prin-
ciples: transactions are routed through a shared wallet, so
as to break the chain of trackable transactions. Assume Al-
ice wants to send a bitcoin to Bob. Alice sends the bitcoin
to a new bitcoin address generated by the mixing service.
The mixing service aggregates bitcoins received from all its
users to re-distribute them again. Some services use ran-
domness, i.e., they split the amount into smaller random
chunks and transfer them after random intervals. The user
can schedule the transactions and provide time constraints.
This way, as indicated in Figure 7, rather than receiving the
bitcoin directly from Alice, Bob will receive it from others,
which ideally will not reveal a relationship between Alice
and Bob. [Méser et al. 2013] experimentally analyzed three
services, namely Bitcoin Fog (bitcoinfog.com), BitLaundry
(bitlaundry.com) and Send Shared by blockchain.info®.
They confirmed that most of them indeed obscure the trans-
action, but they still have issues and leak links. The most
important reason is the sometimes low usage volume and, in
consequence, the small anonymity set. If this happens and
no reserve assets exist in the mixing services’ pool, it will
likely use the just-received bitcoins next.

Sometimes a taint analysis as provided by
blockchain.info* is used to evaluate the anonymity
provided by a mixing service. It describes which fraction

3The mixing service Send Shared was dropped by blockchain.info.
Their new service Shared Coin follows a different strategy, which we
will cover later in this section.
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Figure 7: The principle of Bitcoin mixing services.

of coins received by a Bitcoin address can be traced back
to another address. The more “tainted” the chain of trans-
actions is, the stronger the linkage between the involved
addresses remains. The only untainted coins are freshly
minted coins from the coinbase transaction. However, taint
analyses are not widely accepted, because they do not
provide much information about the anonymity of a mixing
service. Due to the lack of a good measure, [in Bitcoin 2015]
define the so called taint resistance. They use the Matthews
correlation coefficient (MCC) to express the accuracy an
adversary obtains by linking inputs and outputs of a single
transaction.

The discussion reminds of the early years of anonymous
communication [Chaum 1981] and the subsequent research
on mixing services [Danezis et al. 2003, Moller et al. 2003,
Serjantov et al. 2002, Diaz and Serjantov 2003]. Aspects and
techniques such as trust, observability, timing correlation,
batching, dummy traffic and many more play a central role
in this field just as in bitcoin mixing services. However, the
case of Bitcoin reveals two significant differences: a major
trust problem and a predominant global adversary. Both
characteristics will be discussed in the next paragraphs.

With respect to trusting a single mix, the same holds for
network anonymity and bitcoin mixing: the mix is always
able to resolve the mapping between sender and receiver.
But as long as the service is trustworthy and nobody else
has access to their servers, plausible deniability remains.
So, what to do if the mixing service is not trustworthy? The
standard answer is: concatenate multiple mixes in a cascade.
Even if individual mixes are compromised, as long as there is
at least one honest mix, anonymity can be expected. (In the-
ory at least: there exist attacks where it is sufficient to con-
trol a subset of mixes [Raymond 2000, Serjantov et al. 2002,
Syverson et al. 2000].) However, the trust problem in Bitcoin
has a dimension that does not exist in network anonymity:
since Bitcoin deals with monetary values, trust also means
to put stock in somebody else’s hands. This is, of course
not entirely different from data forwarding: data also has a
value, especially when it includes passwords or personal in-
formation. Thus, data is typically secured by cryptographic
means before handing them over to a mix. An adversary
“running away with the encrypted data” can be considered
acceptable, as long as the cryptography is strong enough:
the encrypted data is worthless for an untrustworthy mix.
From Bitcoin’s perspective, transferring coins means chang-
ing the ownership in a irreversible way. At this point, the
mix (who might be malicious) is—by the protocol—the le-
gitimate owner of the coins. Thus, he could spend them for
whatever he likes. This monetary aspect should not be un-
derestimated, as it amplifies the trust problem with mixing
services.

An adversary with a global view of the network has long
been considered unlikely in the field of network anonymity.
Even though it is now no longer considered that unlikely by
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all [Johnson et al. 2013], such an adversary remains a very
strong assumption. Bitcoin, in contrast, inherently does
have such global observers: the block chain is publicly avail-
able. In both network anonymity and Bitcoin anonymity we
can distinguish between passive (honest but curious) and
active adversaries, but the adversary models are different.

[Bonneau et al. 2014] proposes a mixing service design
named Mixcoin®. The design is not entirely different from
the previously deployed mixing services, but pays particular
attention to the implications of parameter choices such as
mixing and transaction fees in the face of different adver-
sary models. If not considered carefully, fees add a “tag”
(in a sense) to the transaction and help tracking the path.
Mixcoin also includes a reputation-based approach for ac-
countability, which is expected to reduce the probability of
thefts. The authors of [Blindcoin Blinded 2015] extend the
Mixcoin protocol by applying blind signatures [Chaum 1982]
to prevent the mix from learning input-output mappings:
users provide inputs and cryptographically blinded outputs.
The mix signs the blinded outputs in return. Now, users can
anonymously reconnect and reveal their “unblinded” output
to the mix, which can verify that the outputs were signed in
advance.

CoinJoin [Maxwell 2013a] is an approach which tries to go
further in the sense that it aims to securely prevent theft,
while at the same time providing privacy and being fully
compatible with the Bitcoin protocol. It exploits the fact
that multiple inputs of a transaction are independent from
each other. For transaction verification, every input needs
a valid signature, where the signatures do not necessarily
need to stem from the same user. Thus, it is possible that
users agree on a set of inputs and outputs and independently
sign the transaction without the risk of theft. In order to
blend in, all outputs in a CoinJoin transaction need to send
the same amount of coins. The anonymity in a single trans-
action is limited by the number outputs, though, but can
be significantly improved by concatenating CoinJoin trans-
actions. Even relaxing the conditions and simply joining
casually in transactions (i.e., without caring for the output
volumes) impedes block chain analyses. In fact it breaks the
fundamental heuristic from Section 5.1 (inputs of a transac-
tion belong to the same entity). As another side effect, per-
user transaction fees are reduced, making joint transactions
cheap. However, the devil is in the detail: unless very care-
fully implemented, it is possible to link inputs and outputs
easily [Atlas 2014, S. 2014, in Bitcoin 2015].

Besides, CoinJoin has two major weaknesses: (i) it needs
to manage the collection of signatures, which involves the
risk of additional privacy leaks, and (ii) participants can
mount a denial-of-service attack by stalling joint transac-
tions.

Regarding (i), users need to negotiate all transaction de-
tails in advance, construct the transaction, collect the re-
spective signatures and finally broadcast the transaction in
the bitcoin network. The negotiation could be done in-
formally—on IRC, for example—or in a more structured
way using a specialized distributed protocol. The easiest
way, of course is to employ a central entity, i.e., a server,
which takes control. This basic idea of CoinJoin is imple-
mented and offered as an online service named Shared Coin

5Please note that Mixcoin here refers to the respective work by Bon-
neau et al. and not to the identically named altcoin Mixcoin (MIX,
mixcoin.co)

(sharedcoin.com) where blockchain.info takes the role of
the central instance. There is also a decentralized implemen-
tation for Bitcoin named Coinmux (coinmux.com). Darkcoin
(DRK, darkcoin.io) is an altcoin which offers CoinJoin-like
transactions natively [Duffield and Hagan 2014].

Independent from using a centralized vs. decentralized or
a formal vs. informal way of negotiation, some instances will
invariably learn the mapping of input and output addresses.
In the decentralized case, all participants will know the map-
ping of their allies. In the centralized case, the server will
know the mapping of all participants. As [Maxwell 2013a]
sketched, blind signatures can help to solve this issue. First
approaches in these directions can be found in [Ladd 2013].

CoinShuffle [Ruffing et al. 2014] is a decentralized ap-
proach which tackles the problem by forming a chain of
participants and using layered cryptography in a similar
manner as in mix networks [Chaum 1981]. CoinShuffle par-
ticipants send their transaction destination—encrypted in
layers—along the chain of participants. In each intermedi-
ate step, the respective participant removes a layer of en-
cryption. Additionally, each participant adds his designated
destination, likewise encrypted in layers. The last partici-
pant of the chain receives the full list of destinations from
its predecessor, removes the final encryption layer from all
of them, and finally adds his own destination. The transac-
tion can now be constructed and signed as proposed by the
CoinJoin protocol. Note that the last peer of the chain of
participants cannot link individual destinations. Likewise,
intermediate peers cannot link destinations because they are
encrypted.

With respect to (ii) above, a user committing her intention
to participate in a joint transaction, but later on not sign-
ing it, can stall the successful conclusion of the transaction.
Blacklisting users deemed malicious may help, but comes
with the bitter taste of false positives. However, ideas pre-
sented by [Saxena et al. 2014] might mitigate the problem:
the authors develop a primitive called composite signatures,
which is based on aggregate signatures [Boneh et al. 2003].
Initially composed of a masking key, it allows to incremen-
tally add new signatures to the composite signature. The
advantage over CoinJoin is that input and output addresses
need not be known in advance. The composite signature
can rather be passed around, making it more robust against
DoS. Since the aggregation process is irreversible—that is,
it is hard to compute individual signatures based on the
composite signature—the approach provides plausible deni-
ability. This requires modifications to the Bitcoin protocol,
though. I.e., it changes the way signatures and references
are computed and verified.

Approaches such as the fair exchange protocol by [Bar-
ber et al. 2012] and CoinSwap by [Maxwell 2013b] con-
tinue to reduce the necessary mutual trust and thus also
enable anonymous peer-to-peer mixing. They make use of
Bitcoin’s scripting features, i.e., multi-signature and hash-
locked transactions. A number of related Bitcoin-based com-
mitment protocols can be found in [Andrychowicz et al.
2014a, Bentov and Kumaresan 2014]. The authors of [Bis-
sias et al. 2014] support this trend and present a discovery
mechanism by publishing “ads” in the block chain, which
thwarts Sybil and DoS attacks.

The general idea of CoinSwap [Maxwell 2013b], for ex-
ample, is that Alice and the mixing service build a 2-of-2
multi-signature transaction with Alice’s coins. The mixing
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service and Bob build another 2-of-2 multi-signature trans-
action with the mixing service’s coins. These transactions
are announced publicly. The respective refund transactions
are time-locked and held back for safety, in case one party
vanishes. Next, Alice and the mixing service as well as Bob
and the mixing service each construct and exchange redeem
transactions for the multi-signature transactions. Both re-
deem transactions are additionally hash-locked by the same
secret (which comes from Bob). Thus, both of them can
be redeemed by the respective participants as soon as the
secret is known. This ensures that if Bob gets paid, the mix-
ing service gets paid, too. Once the mixing service becomes
confident that it gets paid, it can release the multi-signature.
The same applies to Alice. In the end, successful CoinSwap
transactions are not distinguishable from standard multi-
signature transactions.

The anonymity set of CoinSwap consists of all 2-of-2
multi-signature transaction published at roughly the same
time. Since Alice could also play the role of Bob in the pro-
tocol, CoinSwaps can be chained. Every CoinSwap requires
four transaction and rather complex staged phases. As men-
tioned, it can also be used to exchange (or mix) coins in a
peer-to-peer fashion. CoinJoin, in comparison, is less com-
plex, but also has a limited anonymity set, namely the num-
ber of participants in a single transaction. However, both
approaches seem to have a place: CoinJoin could be used
(opportunistically) to increase overall privacy for everyone,
and CoinSwap could achieve stronger anonymity when de-
sired, at the cost of additional transactions.

Instead of developing means of usage which increase the
privacy, there are also approaches which extend the Bitcoin
protocol or propose altcoins with native untraceable trans-
action support. The aforementioned Darkcoin [Duffield and
Hagan 2014] is one example. Another approach builds upon
non-interactive zero-knowledge proofs [Blum et al. 1988].
Zerocoin [Miers et al. 2013] is a protocol extension to Bitcoin
by which Alice can prove to others that she owns a bitcoin
and is thus eligible to spend any other bitcoin. First she
produces a secure commitment, i.e., the zerocoin, which is
recorded in the block chain so that others can validate it. In
order to spend a bitcoin, she broadcasts a zero-knowledge
proof for the respective zerocoin, together with a transac-
tion. The zero-knowledge proof protects Alice from link-
ing the zerocoin to her. Still, the other participants can
verify the transaction and the proof. Instead of a linked
list of Bitcoin transactions, Zerocoin introduces intermediate
steps. Unfortunately, even though Zerocoin’s properties may
seem appealing, it is computationally complex, bloats the
block chain and requires protocol modifications. However,
it demonstrates an alternative, privacy-aware approach.

An extension of Zerocoin is presented by [Androulaki and
Karame 2014]. The authors developed additional means
to also hide the coin volume of transactions and Bitcoin
addresses. A fully-fledged altcoin design named Zerocash
with strong privacy guarantees was presented in [Ben-Sasson
et al. 2014]. It takes the zero knowledge approach from Ze-
rocoin, but improves it both in terms of functionality and
efficiency.

Another altcoin approach is CryptoNote [van Saber-
hagen 2013], which denotes a protocol and technology
framework. An actual implementation is Bytecoin (BCN,
bytecoin.org). CryptoNote aims for the same two major
privacy features as Zerocoin and its extensions: unlinkable

transactions and untraceable payments. Unlinkable trans-
actions help hiding the balance of a Bitcoin address. In
Bitcoin, users are able to prevent this by always using a
fresh address. However, as the existing results based on
block chain analyses underline, if the public address is know
(as with WikiLeaks or Silk Road, for example), the account
balance can be determined. CryptoNote utilizes the basic
idea of the Diffie-Hellman exchange protocol [Diffie and Hell-
man 1976] to derive one-time key pairs for each transaction.
These key pairs are generated on demand by the respec-
tive parties, without previous interaction. In particular, the
sender uses the recipient’s public address and generates a
one-time public key to which the coins are sent. In addi-
tion, the sender adds half of the Diffie-Hellman handshake
to the transaction. The receiver can use this half and its
original private key to compute the private key required to
redeem the transaction.

In order to further increase the difficulty of tracing
payments and coin flows, CryptoNote uses ring signa-
tures [Rivest et al. 2001]. Ring signatures secure a mes-
sage like any digital signature, but can be produced by any
member of a group. Unlike group signatures, ring signa-
tures make it infeasible to determine which member of the
group signed the message. Every member can compute a
ring signature on a message using their own private key and
the group’s public keys. For CryptoNote this means: when
signing a transaction, in addition to the output he owns, the
sender selects multiple other outputs of foreign transactions
with the same amount (i. e., outputs she does not necessarily
own). She then joins them as a single input. From the public
keys of all outputs and her own private key, the sender cre-
ates the respective ring signature for the input. The validity
of the transaction only implies that one of the group mem-
bers has signed the transaction and spends a coin, but not
which coin exactly. This is significantly different from Bit-
coin, because only one of the selected outputs can actually
be spent, not all of them. It increases the resistance against
analysis of the block chain by providing multiple plausible
paths to follow. Every consecutive transaction amplifies the
effect by adding additional cash flow options.

However, such a scheme raises questions regarding dou-
ble spending. In particular, if it is not possible to deter-
mine which coin has been spent, how can attempts of double
spending be detected? CryptoNote tackles this issue by em-
ploying traceable ring signatures [Fujisaki and Suzuki 2007]:
if somebody uses a private key more than once to create
a signature, this can be detected, because every transaction
also holds a so-called key image. If the same key image reap-
pears, it means the one-time private key has been used more
than once. This indicates double spending. Therefore, every
peer keeps track of the previously seen key images. As with
Zercoin, though, the increased privacy level comes at the
price of a bloated block chain and more complex operations.

6. PROOF-OF-X (POX) SCHEMES

For attempts to paraphrase the Bitcoin protocol and to
give a generalized description of its purpose, probably no-
tions such as “consensus”, “distributed” and “verification”
come to mind. All of these are closely related to the role
of proof of work in the Bitcoin design. In the following,
we will dig deeper into this aspect. This exposes challenges
which are sometimes much more subtle than the ones we
saw before (like double spending and scalability issues), but
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which likewise are of substantial importance. In response
to these additional challenges, many alternative protocols
have been proposed, forking from the Bitcoin protocol and
implementing their own currency. We already mentioned
examples such as Dogecoin, Darkcoin, and Bytecoin. But
there are many more altcoins, and we will highlight a few in
this section.

6.1 Reaching Consensus — The Byzantine
Generals Problem

From a general perspective, Bitcoin works towards a con-
sensus in a distributed manner and replicates the state net-
work-wide. In order to guarantee fault tolerance, some re-
dundancy is necessary. The amount of redundancy depends
on the failure types. Consider, for example, three entities
holding a value. Assume that a single entity fails: it always
returns the same, wrong value. By comparing the answers,
it is easy to identify the failing entity and to decide on the
true value. Two entities would not suffice, an analogous sit-
uation would result in a conflict. In general terms, in the
presence of f failures, the network needs n > 2f + 1 entities
to tolerate the failures.

However, failures in a broader sense can also be random
or malicious. These failures are called Byzantine failures, af-
ter the famous Byzantine Generals problem [Lamport et al.
1982]. The original problem description considers the case of
n generals trying to mutually agree via messengers on a com-
mon battle plan. However, f of the generals are traitors and
try to thwart the agreement. The situation is comparable
to a distributed system which aims to reach consensus. The
Byzantine Generals problem with synchronous and reliable
communication reaches consensus as long as n > 3f + 1 is
satisfied [Lamport et al. 1982]. In case of asynchronous com-
munication, the Fischer-Lynch-Paterson (FLP) proof shows
that a asynchronous and deterministic consensus protocol
cannot tolerate any failures at all [Fischer et al. 1985]. Later
[Dolev et al. 1987] refined the results and revealed the depen-
dency on the system properties process synchronicity, com-
munication delay (bounded or undbounded), message order,
and transmission method (point-to-point or broadcast). An
overview of the first decade of this broad field is given by
[Lynch 1989, Turek and Shasha 1992].

The topic kept research busy. Some contributions relaxed
the conditions in order to overcome the impossibility results.
Non-deterministic consensus protocols, for example, provide
solutions to the asynchronous case [Aspnes 2003]. While
consensus becomes possible due to the randomness, the ap-
proach leaves a (small) chance of failing. Others replaced
the requirement of each entity to commit to a final decision
by accepting that each entity has a current view (or “opin-
ion”) that may change as execution proceeds [Angluin et al.
2006]. This yields the concept of “stabilizing consensus”.

All of this comes quite close to what we see in the Bitcoin
protocol: it makes heavy use of randomness in the mining
process and re-adjusts it regularly. Furthermore, Bitcoin
deliberately omits a final and fixed ownership attribution®.
Instead, it uses a rule of thumb: after (typically) six confir-
mations, transactions are considered settled. Convergence
is achieved via the longest chain rule.

5By now, Bitcoin in fact has checkpoints, which are once in a while
hardcoded into the software and mark an irreversible block height in
the block chain. Checkpoints were introduced by Satoshi Nakamoto
later and are not part of the original design.

A popular example which borrows directly from the re-
sults of Byzantine agreement is Ripple (XRP, ripple.com).
Ripple takes a different direction and relies on a set of
trusted “authorities” to build consensus. It implements a
round-based consensus algorithm with final decision making.
The final decision results in a so-called “last closed ledger”
which represents the current state of all accounts. Ripple’s
consensus algorithm achieves 5 f+1 resilience [Schwartz et al.
2014].

Another condition is the timing model, which describes
the message propagation in the network. In the synchronous
communication case, messages arrive after a certain fixed
time span. Any message that takes longer is considered a
failure. Protocols for the synchronous case explicitly rely on
timing assumptions; they often proceed in discrete rounds.
As numerous impossibility results show, solutions are of-
ten only possible for the synchronous case. In the much
more general asynchronous timing model, no assumptions
are made on the relative rate of execution or message deliv-
ery. As [Aguilera 2010] points out, the asynchronous timing
model might not be realistic, because it is unlikely that mes-
sages take longer than a certain threshold (even though this
threshold could well be very high). However, protocols for
the asynchronous case—where they exist—are very generic
and work irrespective of the systems condition.

Thus, the system designer is left with two bad choices.
The fact that Bitcoin allows the blocks’ timestamp to devi-
ate only within a certain range hints at the assumption of a
synchronous network model. The 10 minutes block creation
time was, in the first place, chosen as a tradeoff between
confirmation time and the amount of work wasted due to
chain forks. But it also ensures to reach every corner of the
network even in the face of prolonged propagation times. It
therefore, in a sense, synchronizes the network (loosely).

In addition to the already mentioned conditions, the Bit-
coin network is, due to its structural properties which sup-
port anonymity, of unknown size. In the face of Byzan-
tine failures, this additional condition makes the problem
harder. Malicious entities can set up fake identities which
subvert the election and inject faulty information, i.e., they
can mount a Sybil attack [Douceur 2002]. In Bitcoin, the
proof-of-work requirements tackle this vulnerability by ar-
tificially increasing the cost of a vote. This approach origi-
nates from the attempts to combat spam [Dwork and Naor
1993, Back 2002]. In fact, the idea to use it in the context
of Byzantine agreement protocols has been proposed before
Bitcoin already [Aspnes et al. 2005]. Yet, even though the
possibility of Sybil attacks had been considered there, the
size of the network was assumed to be known; otherwise, the
assumptions are comparable to those behind Bitcoin.

Thus, in principle, all the puzzle pieces required to build a
consensus protocol similar to Bitcoin were there. The simi-
larity of the problem and the advances in the field were rec-
ognized [Szabo 2003]. The idea to employ Byzantine agree-
ment protocols such as [Malkhi and Reiter 1998] to the area
of distributed digital currencies paved the ground [Szabo
1998]. Even design proposals and prototypes existed [Dai
1998, Finney 2004, Szabo 2005]. Eventually, in 2008, time
was ready and Bitcoin appeared.

In summary, we can say that Bitcoin tackles the Byzantine
Generals problem from a practical angle. Nakamoto him-
self compared the protocol design to this particular problem
[Nakamoto 2008c]. As also discussed in [Miller 2012], Bit-
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coin balances viability and security and seems to have found
a sweet spot. It suggests that Bitcoin underlies the assump-
tions of a synchronous network of unknown size, relaxes the
deterministic constraint and takes eventual consistency as
adequate. [Miller and LaViola Jr 2014] considered these as-
sumptions and derived a fault tolerance of 2f 4+ 1, where f
is the total hash power of malicious miners (Byzantine fail-
ures). This meets the intuitions and the analyses of the 51%
attacks: as long as more than half of the hash power is con-
trolled by honest miners, the network will eventually reach
consensus, even in the presence of malicious miners. How-
ever, as [Garay et al. 2014] add to this view, Bitcoin meets
the theoretical fault tolerance only as long as the assump-
tion of synchronicity holds. Thus, information propagation
amongst honest peers is essential, especially when the mali-
cious miners’ hash power approaches the critical threshold;
otherwise the system becomes fragile and insecure.

6.2 Proof of Work — the Monopoly Problem

Proof of work is a key component of Bitcoin. Inherently,
any task suitable as a basis for proof-of-work schemes needs
to be difficult to solve, but trivial to verify. It often boils
down to a random process of trying to find a solution to a
puzzle—like a (partial) hash collision.

Bitcoin’s precursors B-money [Dai 1998], RPOW [Finney
2004] and Bit Gold [Szabo 2005] already incorporated a
proof-of-work scheme in one way or the other. In all these
cases, the motivation was to consider the solution to the
puzzle as a scarce and valuable good, like “gold”. RPOW is
a centralized approach, which uses reusable proof of work as
token money. Coins are minted by a server in return to a
proof of work. The coins are reusable and transferable, while
the central server checks for validity. B-money decentralizes
the process by assuming a synchronous unjammable broad-
cast channel. Transactions are issued by signing a contract,
which is broadcast so that everybody knows of it. Alter-
natively, a trusted set of servers can be employed to keep
track of the ledger. Bit gold chains the proof of work and
uses the last entry to create the next challenge. It uses a
Byzantine agreement protocol which relies on a quorum of
addresses rather than a quorum of computing power. It is
thus vulnerable to Sybil attacks. Finally, it was the Bitcoin
protocol to combine Sybil resistance and coin minting by a
sophisticated proof-of-work scheme.

Originally, the paradigm of proof of work is “one-CPU-
one-vote” [Nakamoto 2008a]. Bitcoin uses a CPU-bound
function (i.e., SHA-256 [Eastlake and Hansen 2011]) as the
basis for its proof-of-work scheme. Miners are by nature ra-
tional profit seekers. Their mining costs consist of expenses
for mining hardware and ongoing energy cost. They strive
to reach the break-even point as quickly as possible, to make
as much profit as possible. The first miners used comput-
ers with ordinary CPUs to solve the proof of work. Even
though CPUs are extremely versatile, the versatility comes
at the expense of limited speed. Miners therefore quickly
sought for faster solutions to dominate the competition and
to make more profit.

Mining operations are highly parallelizable. Some graph-
ics processors (GPUs) are therefore able to compute the
repeated hash operations much faster and much more en-
ergy efficient than any CPU. GPU mining quickly replaced
CPU mining. Bitcoin’s popularity picked up pace and
pushed the competition even more. The fact that CPU-

bound hash functions are suitable for hardware acceler-
ation [Chaves et al. 2008] received attention. Thus, it
was only a matter of time until hardware-based mining
solutions became available—first based on reconfigurable
logic (Field-Programmable Gate Arrays, FPGAs) and sub-
sequently based on application-specific integrated circuits
(ASICs). FPGAs and especially ASICs significantly accel-
erate the speed and efficiency of mining. Since then, only
ASICs are economically viable for bitcoin mining. They
achieve hash rates in the order of one terahash per second.
[Bedford Taylor 2013, O’'Dwyer and Malone 2014] tell the
story of Bitcoin hardware and its energy footprint in de-
tail. Recent observations and optimizations [Courtois et al.
2014b] will probably continue to push the hash rates even
higher in the future.

Following the increasing computational power, Bitcoin ad-
justs the difficulty, i.e., the target value, to maintain the
ten-minute-per-block target rate. This behavior can be seen
in Figure 8, which we generated by parsing the block chain
and calculating a moving average of the block confirmation
time (plotted on the left y-axis) for a small part of the block
chain. We can observe a repeated decrease of the confir-
mation time, which implies that the total hash rate of all
participants increases. Every 2016 blocks, Bitcoin adjusts
the difficulty of the proof of work (plotted on the right y-
axis). Only very seldom in the history of Bitcoin it happened
that the difficulty was adjusted downwards. Most often it
increases.

Overall the difficulty follows an exponential growth, as
Figure 9 shows (please note the logarithmically scaled y-
axes). Since the difficulty is continuously adjusted to the
hash rate, the data line in this plot can be interpreted as
either of these: the hash rate (according to the left y-axis)
or the difficulty (according to the right y-axis).

The use of specialized mining equipment increases the vot-
ing power per entity. This development subverts the proof-
of-work paradigm and therefore implies a threat. In partic-
ular, it reduces the democratic basis by suppressing “small”
miners. As consequence, the trust in Bitcoin degrades.

In Bitcoin, we can take the idiom “rich gets richer” liter-
ally: it has been shown that the wealth of rich users increases
faster than the wealth of users with low balance [Kondor
et al. 2013]. Additionally, there is an alarming trend that
the power of a small group of miners significantly exceeds the
power that all other users contribute [Gervais et al. 2014].
This raises the question whether Bitcoin is still truly a decen-
tralized currency or if it is shifting towards the centralized
banking model which it originally questioned.

During the early steps of proof of work (i.e., Hashcash)
and before Bitcoin, the imbalanced capabilities of systems
were already identified as a possible issue. This was con-
sidered inherent to CPU-bound functions. In order to re-
cover the situation, the idea to employ memory-bound func-
tions instead was introduced. The approach is to incorporate
large amounts of (unpredictable) memory access operations
in the proof of work calculations, so that these constitute
the dominant factor. Hence, solving the proof of work is
limited by the memory access time, not by the CPU speed.
The underlying assumption is that the differences between
users with regard to memory access speed are inherently
much smaller than the differences with respect to comput-
ing power. Memory-bound functions had been proposed in
the context of spam prevention before [Dwork et al. 2003,
Abadi et al. 2005].
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Figure 8: Moving average of the confirmation time and difficulty.
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Figure 9: Hash rate and difficulty (logscale).

In the context of Bitcoin, functions such as scrypt [Per-
cival 2009] and CryptoNight [van Saberhagen 2013] have
been discussed. In a corresponding proof-of-work scheme,
memory-intensive operations are added to the hashing op-
erations. The intention is to foster more evenly distributed
power among the user base, to avoid the emergence of a
monopoly. Unfortunately, scrypt—which is probably the
most popular alternative proof of work scheme, and is used,
e.g., by Litecoin (LTC, litecoin.org)—still enables the
use of specialized mining devices. The appearance of more
energy-efficient GPU-based mining brought a significant in-
crease of Litecoin’s hash rate. Moreover, most alternative
hash functions are rather immature and not as well ana-
lyzed as, for example, SHA-256. Therefore, concerns about
possible future weaknesses remain. In general, there are dis-
cussions whether ASIC-resistant proof of work can exist at
all [Hearn 2014, Lists 2014a].

Another fundamental criticism of proof of work in gen-
eral and Bitcoin in particular is that it wastes compu-
tational power (and thus energy) without any intrinsic
value. Contributions which try to alter this situation are

struct an approximately linear difficulty metric for a given
chain length. Even though Primecoin is considered a CPU-
only currency (since finding prime chains appears to be inef-
ficient on GPUs), doubts along the same lines as mentioned
earlier exist [Koooooj 2013], and first GPU-based miners are
already available.

For completeness, we briefly mention some altcoins which
also rely on proof of work. We have already mentioned Lite-
coin as an adopter of scrypt as the underlying hash function.
Dogecoin (DOGE, dogecoin.com) is another popular altcoin
which uses scrypt. Both are Bitcoin forks (and thus use
the same code base), but have faster confirmations times of
2.5 minutes and 1 minute, respectively. Dogecoin also has
a much higher coin supply and a higher reward per block.
Therefore, it is gaining traction as a microdonation system.

Not deployed, but nevertheless appealing is the idea of
FawkesCoin [Bonneau and Miller 2014]. As the name in-
dicates, it builds upon the Guy Fawkes signature proto-
col [Anderson et al. 1998], which substitutes Bitcoin’s el-
liptic curve DSA (ECDSA). FawkesCoin thereby constructs
a digital currency with only symmetric cryptography. Due
to the symmetry property, signatures can be used securely
only once. Hence, FawkesCoin requires to use a fresh address
for every transaction (which, however, is also recommended
for Bitcoin anyway).
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6.3 Proof of Stake — Towards Solving Incen-
tive Problems

Even though Bitcoin vividly shows that a digital currency
based on proof of work is viable, weaknesses still exist. The
participants of Bitcoin pay the miners via a mechanism of in-
flation to secure the currency. Nevertheless, the future when
the block reward declines over time remains unclear. Ap-
proximately every four years (i.e., every 210,000 blocks) the
block reward halves. After the first reward halving, we can
observe a slight dip in the difficulty, implying that miners
left the network. If the controlled supply of coins continues
as specified, approximately in the year 2032 the reward will
be less than 1 BTC, and in the year 2140 it will be down to
zero. According to [Courtois 2014], this kind of deflation is
a self-destruction mechanism. It puts the security of crypto
currencies at risk by driving off miners. Whether the trans-
action fees will suffice to compensate the decreasing reward
and to provide the necessary incentive for miners remains
unclear and is controversially discussed [Kroll et al. 2013].

The relationship between the miners’ strategy and the
mining reward follows a trade-off, which can be modeled
using game theory [Houy 2014a]. Once the miner finds a
solution, she needs to make sure to propagate the informa-
tion before others claim the next block to get the reward.
The transactions to include in a block are chosen by the
miner. We can assume that their number has no effect on
the complexity of the proof of work, but that a higher num-
ber increases the time to reach consensus: the more bytes
the block contains, the more time it takes to broadcast it
through network. And the more transactions a block holds,
the more time it takes to verify its validity. On the other
hand, the more transactions there are in a block, the bigger
the reward. According to [Houy 2014a], there is a unique
Nash equilibrium, i. e., a point where no participant can gain
an advantage from changing her strategy. Interestingly, at
this Nash equilibrium miners will not include any transac-
tion at all in their blocks. Obviously, this would render
Bitcoin practically useless, which hurts miners as well. The
Nash equilibrium shifts as soon as transaction fees increase
or the block reward significantly decreases. This suggests
that transaction fees might provide an incentive.

However, there is a problem with decreasing rewards,
which boils down to the tragedy of the commons [Hardin
1968]. Tragedy of the commons is a game theoretic term
which describes the phenomenon that taking individually,
independently optimized (and thus most likely selfish) ac-
tions reduce the peer group’s long-term gain by depleting a
common resource. Known examples come from areas such as
environmental pollution, fishing resources and road traffic.

The relevance to Bitcoin is multifaceted [Bentov et al.
2014]. From the users’ perspective, it is in the interest of all
users to provide an incentive for miners and to pay transac-
tion fees in order to maintain a secure network. However,
each individual user’s (selfish) interest is to let others pay
the fees. Users might therefore start to issue transactions
without fees. If the majority acts this way, mining becomes
unprofitable, and miners will give up. From the miners’ per-
spective, there is another tragedy of the commons problem.
On one hand, their group interest is to have users pay high
fees per transaction. On the other hand, the cost of includ-
ing a transaction in a block is negligibly small. Thus, each
miner gains a personal advantage by simply including every
transaction with a fee, independent from the actual amount.

This might lead to continuously lower fees, up to the point
where mining is not lucrative anymore. In both cases, min-
ers will turn away and thus gaining a monopoly becomes
easier. Again, there is a risk for the currency’s security.

Questioning proof of work as a basis and looking for alter-
natives lets us revisit the fundamental requirements which
need to be fulfilled: first, the block generation must be some-
how “expensive”, and individual miners shall not be able to
gain an overproportionally high ability to mint coins. Sec-
ond, consensus must eventually be reached; there must be
a common rule to resolve forks and to determine the main
block chain. Third, it must be forgery proof. The latter is
a general requirement for currencies, which must hold here,
too.

It turns out that coin age is a viable alternative to proof
of work. Coin age is defined as the currency amount times
the holding period [King and Nadal 2012]. For example, if
Alice transfers two coins to Bob and Bob held the coins for
90 days, the coin age is 180 coin-days. When Bob spends
the two coins, the coin age he accumulated is destroyed.

The idea to use the coin age to define the reward is known
as proof of stake [King and Nadal 2012] (PoS). It is, for ex-
ample, implemented in Peercoin (PPC, peercoin.net). Min-
ing a proof-of-stake block requires to construct a so-called
coinstake block (named after Bitcoin’s coinbase transaction).
In a coinstake transaction, owners send coins in their pos-
session to themselves and add a predefined percentage as
their reward. Analogue to proof of work, a hash value below
or equal to a target value is required to successfully mint
a block. In contrast to proof of work (and Bitcoin), the
difficulty is individually determined: it is inversely propor-
tional to the coin age. Because the hash is—except for a
timestamp—calculated on static data, there is no way for
miners to use their computational power to solve the puzzle
faster than others. In particular, there is no nonce which can
be modified. Instead, every second the timestamp changes
and miners have a new chance of finding the solution. If
they find a solution, they broadcast the block including the
coinstake transaction. The coinstake transaction assigns the
reward to the miner, but also resets the coin age. Of course,
new coin age can subsequently be accumulated again, slowly
increasing the chances of solving the puzzle next time.

One can think of coin age in proof of stake the same way
as of computing power in proof of work. A huge pile of old
coins is equivalent to a powerful ASIC mining rig. But there
are key differences: the “power” is independent from com-
puting power. Instead, it depends on the deposit. Thereby,
proof of stake provides an answer to the criticism that proof
of work wastes energy. Unlike Primecoin, which tries to put
an intrinsic value into the proof of work, proof of stake elimi-
nates the high energy consumption altogether. It shifts from
a highly competitive tournament to a raffle-like scheme, with
repeatedly occurring new chances for all participants. In ad-
dition, miners destroy the coin age by claiming the reward;
they do not keep it for the next round. This gives others the
chance to “win the raffle”, too.

These properties mitigate the risk of monopoly in the
tragedy of the commons problem. Note that the voting
power is more equally distributed. Thus, “rich gets richer” is
complemented by “poor gets richer” [King 2013a], meaning
every participant can provide a proof of stake, thus help to
secure the block chain and in return get a reward in propor-
tion to their holding.
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Besides, exploiting a proof of stake-based currency seems
much more expensive. In contrast to proof of work, where
the longest block chain survives, proof of stake declares the
block chain with the highest total sum of destroyed coin age
as the main chain. In order to perform an attack similar
to the 51%-attack, an attacker must hold a huge amount of
coins, which even when destroying the coin age suffices to
gain more than half of the odds. It is assumed that the cost
for gaining the majority of computing power in a proof-of-
work scheme (e.g., for hardware) is smaller than the cost
for buying enough coins in proof-of-stake setting. However,
there are also objections to this claim [Houy 2014b], sug-
gesting that the attack would be anticipated and thus coins
would be ditched, which reduces the attacker’s costs. Never-
theless an attacker holding lots of coins would suffer severely
from ruining the currency, which probably reduces the in-
centive to do so in the first place.

For practical purposes, proof of stake is proposed to com-
plement proof of work and to become the dominant fac-
tor when the proof of work block rewards subside. Indeed,
Peercoin and others (such as Memcoin2 [Mackenzie 2010])
are designed as hybrid systems. Yet, there are also en-
tirely proof of stake-based altcoins, such as Nextcoin (NXT,
nextcoin.org).

Derivatives—such as transactions as proof of Stake
(TaPoS) [Larimer 2013] and delegated proof of stake (DPoS)
[Larimer 2014]—are supposed to mitigate the monopoly
problem, and at the same time to make the system more se-
cure by collecting votes from a larger base. We will cover the
details of the problems which motivated these (and other)
directions in the next section.

6.4 Proof of Activity — Incentivize Active
Participation

Proof of stake shows an alternative to proof of work, but
it comes with a number of limitations. And actually there
is another tragedy of the commons problem, which affects
proof of stake likewise.

[Babaioff et al. 2012] emphasize the goal of informa-
tion propagation in Bitcoin. They compare it to the 2009
DARPA Network Challenge [DARPA 2009]: on the date of
the 40th anniversary of the Internet, DARPA announced
a challenge in which competing participants tried to find
red weather balloons across the US. MIT’s winning strat-
egy [Pickard et al. 2010] consisted of recruiting hunters and
offering a reward. However, they recognized that this is an-
other challenge by itself, so they offered an additional reward
for recruiters of balloon finders. This way they created an
incentive to spread the word. In fact, the additional reward
is necessary because each additional hunter competes with
other hunters in the proximity, i.e., each additional partici-
pant reduces the others’ chances of finding the balloon.

From the miners’ perspective, the situation in Bitcoin is
not different, especially when the block reward decreases and
the transaction fees should compensate. This reveals an-
other tragedy of the commons [Bentov et al. 2014]: a miner
has an incentive to keep any transaction including a fee for
itself. Eventually, the miner will not relay the transaction,
so as to reduce competition. Instead of rewarding transac-
tion fees to the miners, Peercoin destroys the fees in order
to eliminate the incentive to not cooperate [King and Nadal
2012].

But proof of stake has some more limitations: it entirely
depends on the coin age, which can be accumulated by hold-
ing coins only, and can be claimed in a coinstake transac-
tion to oneself. Coins spent in regular transactions assigning
coins to others also destroy the coin age, but are not con-
sidered in the proof-of-stake raffle. Thus, hoarding coins is
encouraged; [Ren 2014] therefore talks of collectibles rather
than currencies.

The major weakness, though, is that coin age accumulates
even when the node is not connected to the network. It suf-
fices when nodes come online occasionally and wait for their
reward, only to go offline again afterwards. This behavior
will result in a more bursty reward distribution than in the
case where nodes remain online all the time, but stakehold-
ers most likely will accept that. The lack of a sufficient
number of online nodes, though, facilitates attacks.

Any reward scheme which tries to incentivize in one or
the other sense must pay attention to Sybil attacks. For
example, MIT’s strategy in the DARPA challenge was vul-
nerable, because balloon hunters could set up false identities
as recruiters to increase their finder’s reward. [Babaioff et al.
2012] provide first findings in this direction. In the follow-
ing, we summarize two extensions [Ren 2014, Bentov et al.
2014] which incorporate proof of stake and provide an ad-
vanced reward scheme. Related approaches which avoid the
usage of proof of stake exist, too [Paul et al. 2014].

[Ren 2014] follows the idea that a higher activity produces
a healthier economy. The author identifies the problem that
coin age is a linear function of time. In practice, Peercoin
implements an upper and a lower bound of coin age to mit-
igate some of the mentioned problems. However, changing
the increment function to an exponential decay function,
for example, would have a profound impact. In such a set-
ting, the increment rate of the coin age decreases with time
and asymptotically converges to zero. Parameterizing the
decay constant allows for a deliberate specification of the
function’s half-life time. This changes the incentive: a fresh
coin accumulates coin age much faster, up to a fixed value.
The intention is to reduce the resistance to trade coins and
to encourage users to stay online. It is conceivable to em-
ploy other functions, such as non-monotonic and/or periodic
functions. That would imply to punish hoarding coins even
more, or to reflect a seasonal pattern. The basic idea is
termed proof of stake velocity and is implemented in Redd-
coin (RDD, reddcoin.com).

The approach by [Bentov et al. 2014] is to directly reward
active peers for their contribution. The idea is to raffle a
fraction of the proof-of-work block reward among all active
nodes, while their stake determines the amount of raffle tick-
ets, i.e., their chances of winning. It is thus a combination
of proof of work and proof of stake. In detail, miners mine
“empty” block only. If they solve the proof-of-work puz-
zle, they broadcast it in the network as before. Everybody
receiving the block derives N deterministic pseudorandom
ticket numbers from it. The first N — 1 most lucky stake-
holders sign the block with their respective private key and
broadcast the signature. If the N-th most lucky stakeholder
sees the block, she creates a wrapper, includes the block, all
transactions, the N — 1 signatures, adds her own signature
and broadcasts the wrapped block. Others will consider it
as a legitimate extension of the block chain if the block and
the lucky stakeholders are valid. Finally the transaction fees
are shared by stakeholders and the miner.
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In order to determine the N lucky stakeholders, the pseu-
dorandom number is interpreted as an index in the list of all
so far minted satoshis. Finding the user in possession of the
satoshi is done by a procedure called “follow-the-satoshi”.
Everybody can verify it by inspecting the block chain and
following the satoshi from the coinbase transaction up to the
address currently holding it. Please note that this is much
like proof of stake, with the difference that the coin age is ir-
relevant. Alice holding two coins has twice as high a chance
to be picked as Bob holding one coin. The decision to share
the transaction fees as reward among the stakeholders and
not, for example, the entire block reward is rooted in the
observation which we pointed out earlier: a high reward for
the stake incentivizes undesirable coin hoarding. The small
fees are considered a nice bonus, but not an incentive for
hoarding.

The underlying concept is to reward active peers which
are online. If one of the lucky stakeholders is offline, he will
not be able to respond and to add her signature. Hence, the
block cannot be completed. At some point, there will be
another miner solving the proof of work, drawing N differ-
ent stakeholders. The difficulty is adjusted according to the
hash rate and the fraction of active peers. The concept is ac-
cordingly called proof of activity (PoA) [Bentov et al. 2014].
It rewards stakeholders who participate rather than pun-
ishing passive stakeholders. The proof-of-work component
is inevitable to make the system converge and to provide
a rule to resolve forks. Moreover, it is necessary to throttle
the speed of picking the lucky stakeholders. Proof of activity
improves security: besides a huge amount of computational
power, an attacker needs a significant amount of stake to
double spend.

6.5 Proof of Publication — Provable Commit-
ments

After looking at various proof-of-X schemes, let us close
the circle and come to another achievement of comput-
ing history which apparently influenced the Bitcoin design,
namely secure timestamping. A timestamping service pro-
vides timestamps for digital documents, which securely keep
track of the creation and modification time of the document.
There are many timestamping schemes, such as PKI-based
centralized services, where documents and timestamps are
hashed and secured by the private key of the timestamping
server. However, the server can easily backdate documents
by hashing and signing a previous timestamp. Thus, the ap-
proach comes with the premise of trusting the timestamping
server.

In order to tackle this issue, [Haber and Stornetta 1991]
developed so-called linked timestamps. Each timestamp cer-
tificate includes a hash of the previous one. This ensures a
total order of documents, even if inaccurate clocks are in
place. Furthermore, it hardens fake certificates, because it
is not possible to retroactively hook documents in the linked
chain of timestamps.

As [Haber and Stornetta 1991] already note, it is possible
to distribute the process of secure timestamping. Instead of
relying on a single server, it is favorable to consult multiple
instances. The hash of the document can be interpreted as a
k-tuple of server IDs to request certificates from. However,
a vulnerability to Sybil attacks shows up again, and the
problem in general is very closely related to the Byzantine
Generals.

Once again, this is where Bitcoin steps in: Bitcoin also
references previous transactions and links blocks, but it also
provides Sybil resilience. In fact, it is essential for a trans-
action system to determine the order of actions. Since Bit-
coin’s proof-of-work mechanism constantly readjusts the dif-
ficulty to meet the target of one block every 10 minutes, the
protocol can also be considered a distributed secure times-
tamping service, where the timestamp accuracy is roughly
the block generation time.

The authors of [Clark and Essex 2012] come to a similar
conclusion and propose a carbon dating commitment proto-
col based on Bitcoin, namely CommitCoin. The idea is, in
a more general context, also known as proof of publication
and comes in various manifestations. In the case of Commit-
Coin, a Bitcoin address is generated which encodes the in-
formation of a respective document. Other use cases include
coin tosses or lotteries [Back and Bentov 2014, Andrychow-
icz et al. 2014b], where a group of players bet coins by is-
suing elaborate transactions. Finally one player is chosen
randomly as the winner and gets the money. This works
without a central entity and without the need to trust each
other. Generalizations of these protocols are provided by
[Andrychowicz et al. 2014a, Kumaresan and Bentov 2014].

Proofs of publication require a number of complex steps
to encode the data and to preserve the involved coins. How-
ever, intentional coin destruction can also be used for sound
purposes. At the beginning, especially with currencies re-
lying on proof of stake, the problem of how to bootstrap a
new currency exists. Bitcoin, for example, (and many other
proof of work-based currencies) had its genesis block. Other
altcoins, such as Counterparty or Mastercoin”, bootstraped
by using the idea of a proof of burn. By “burning” coins of
one currency in a verifiable but unspendable way, coins of
another currency can be generated and assigned. At first
sight, burning coins might seem to be a harsh primitive of
commitment, but it can be considered as expensive, just like
a proof of work.

This property makes proof of burn a very well viable tool
for migration. Simple protocol changes such as invalidat-
ing an old transaction type might involve a soft fork, but
generally remain backward compatible. Older clients will
continue to accept transactions which are considered invalid
by new software releases. In order to enforce the changes,
the majority of the miners must upgrade. Miners that do not
upgrade may waste computing power by generating blocks
that will be rejected by others. On the other hand, miners
have a handle to oppose unwilling upgrades as long as the
majority refuses.

Changes to core components such as the block structure,
difficulty rules, or the set of valid transactions are much
more difficile and often involve a hard fork. Since it makes
previously invalid transactions or blocks valid, it requires all
users and miners to upgrade. However, as it was done with
P2SH transactions, changes could be implemented in such
a way that new transaction types appear to older clients
like a previously already valid transaction type. If this is
not possible, proof of burn steps in and provides a way of
moving from one chain to another. The authors of [Back
et al. 2014] take it one step further: why not send coins

7Strictly speaking, Mastercoin did not use proof of burn. It rather
used a so-called exodus address, which was a regular Bitcoin address
and funded the development of the currency. On a more abstract
level, though, it follows the same idea.



not only to addresses within one block chain, but also to
concurrent block chains? As a result, they developed so-
called side chains. Similar to proof of burn, coins are sent to
a special output. Thereby, they are not destroyed, but only
“immobilized” until somebody can prove they are no longer
being used elsewhere. This adds a form of reversibility to
the proof of burn. In order to make this work for Bitcoin,
a new validation rule would have to be introduced, though,
which would require at least a soft fork.

Similar to proof of burn, provable commitment protocols
such as proof of bandwidth or proof of retrievability can be
used to repay expenses as it was proposed in the context
of Tor [Ghosh et al. 2014, Jansen et al. 2014, Biryukov and
Pustogarov 2014b] or to realize a decentralized file storage
[Miller et al. 2014].

7. SUMMARY OF OBSERVATIONS AND
FUTURE RESEARCH DIRECTIONS

After our extensive characterization of Bitcoin and its re-
lated approaches, it is time to take a look back and briefly
summarize our observations, before we discuss future re-
search directions and the next generation of Bitcoin.

We exposed the agreement on and maintenance of an un-
forgeable, but distributed, ledger—the block chain—which
holds all assignments ever created—the transactions—and
makes them verifiable to everyone. Bitcoin is considered a
secure timestamping service and a practical solution to the
Byzantine Generals problem. In order to achieve consen-
sus, Bitcoin accepts the risk of failure. In particular, double
spends (or race attacks) are and will always be possible. The
risk, though, can be minimized and is subject to a personal
trade-off.

The transparency of the system is a fundamental aspect
to achieve verifiability, but likewise it introduces an om-
nipresent global attacker model. Therefore, we can conclude
Bitcoin is anything but private. Nevertheless, it can hide
identities and the efforts to strengthen this property con-
tinue. The attempts and techniques recall the discussion
on anonymity networks. However it also brings up commit-
ment schemes such as zero knowledge proofs and gives them
a whole new “playground”. Thus, we see the starting point
of a symbiotic effect between different areas.

Probably one of the most outstanding contributions of
Bitcoin is the degree of decentralization which was previ-
ously deemed impossible. The ingenious concept of mining,
may it be based on proof of work, proof of stake or some-
thing else, secures the ledger and eventually stabilizes the
consensus. It binds “votes” to something “expensive” and
incentivizes to “pay” for it by holding out the prospect of
a reward, which at the same time controls the money sup-
ply of the digital currency. Without mining, fake identities
would be able to subvert the consensus and destroy the sys-
tem. Because of this crucial point, we can conclude that
> 50% attacks are the worst-case scenario. Furthermore,
the mining monopoly threatens the decentralization.

The previously listed observations and features are often
considered to be the most innovative parts of Bitcoin. But
only in combination with one of the most distinctive fea-
tures, namely the scripting capabilities, the depth of possi-
bilities becomes evident. The instruction set may be limited,
but it is still a powerful tool to realize sophisticated trans-
actions and contracts. This trend is further followed by a

second generation of cryptocurrencies with a fully-fledged
scripting language. Yet the possibilities are barely explored.

For the future it remains unclear whether Bitcoin can and
will stay as robust as it is today. Especially the scalability
of the network and the subsiding rewards are pressing and
need to be addressed. At the moment both apparently work
well enough. In case of the peer-to-peer network, though,
one can already observe symptoms of degradation, such as a
long-tail distribution of the information propagation delay.
However, Bitcoin’s security assumptions rely heavily on the
fast propagation of transactions and blocks. Thus, in order
to scale to more participants and higher transaction rates
the network needs to be able to handle the load. In case of
the subsiding mining rewards the research community is un-
sure whether this poses a real problem or if fees are able to
provide the necessary incentive. So far, we discussed a huge
body of approaches which aim to be a solution to issues in
Bitcoin. Some of them are deployed as an altcoin or an addi-
tional service. We provide a summary in Table 2, where we
also point to the respective papers and the section(s) where
we discussed them. Yet it remains unclear which alternative
approach is most promising to actually improve Bitcoin, and
which will survive in practice.

All the altcoins can be considered as a huge testing envi-
ronment, from which Bitcoin can borrow in the future to ad-
dress weaknesses. Bitcoin is constantly evolving and remains
under development. It established the so-called Bitcoin im-
provement proposal (BIP) design documents as a way to
introduce new features to Bitcoin. If a BIP finds the mutual
consent of the community, it becomes accepted. However,
since some of the proposed changes are more invasive than
others, migration is an important point.

In summary, Bitcoin and the huge zoo of altcoins con-
stitute a highly dynamic and certainly not yet fully under-
stood field of research, in which numerous open questions
with very high practical relevance remain to be answered.
It will certainly be highly interesting to follow the future
developments in this dynamic field.

8. CONCLUSION

In this survey we studied the broad field of Bitcoin, its
characteristics and related concepts. In particular, we in-
vestigated the protocol’s foundations, including the role of
proof of work, and their relationship to security and net-
work aspects. By doing so, we provided a holistic technical
perspective on distributed currencies—and we pointed to
manyfold open research opportunities.
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