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ABSTRACT:   We present an elementary exposition of genus theory for integral binary 
quadratic forms, placed in a historical context.    
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INTRODUCTION:   Gauss once famously remarked that “mathematics is the queen of 

the sciences and the theory of numbers is the queen of mathematics”.    Published in 

1801, Gauss’ Disquisitiones Arithmeticae stands as one of the crowning achievements of 

number theory.   The theory of binary quadratic forms occupies a large swath of the 

Disquisitiones; one of the unifying ideas in Gauss’ development of quadratic forms is the 

concept of genus.   The generations following Gauss generalized the concepts of genus 

and class group far beyond what Gauss had done, and students approaching the subject 

today can easily lose sight of the basic idea.  

 Our goal is to give a heuristic description of the concept of genus – accessible to 

those with limited background in number theory – and place it in a historical context.   

We do not pretend to give the most general treatment of the topic, but rather to show how 

the idea originally developed and how Gauss’ original definition implies the more 

common definition found in today’s texts.   
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BASIC DEFINITIONS:  An integral binary quadratic form is a polynomial of the type 

22),( cybxyaxyxf  , where a, b, and c are integers.   A form is primitive if the 

integers a, b, and c are relatively prime.  Note that any form is an integer multiple of a 

primitive form.   Throughout, we will assume that all forms are primitive.  We say that a 

form f  represents an integer n if nyxf ),(  has an integer solution; the representation is 

proper if the integers x, y  are relatively prime.  A form is positive definite if it represents 

only positive integers; we will restrict our discussion to positive definite forms. 

The discriminant of 22 cybxyaxf   is defined as acb 42  .  Observe 

that 22)2(),(4 ybyaxyxfa  .  Thus, if 0 , the form represents only positive 

integers or only negative integers, depending on the sign of a .  In particular, if 0  and 

0a  then ),( yxf is positive definite.   Moreover, acb 42   implies that 

2b (mod 4).  Thus we have 0 (mod 4) or 1 (mod 4), depending on whether b 

is even or odd.   Moreover, we will write  )/( ZZ  to denote the multiplicative group of 

congruence classes which are relatively prime to .        

 We say that an integer a is a quadratic residue of p if )(mod2 pax   has a 

solution.   When discussing quadratic residues, it is convenient to use Legendre symbols.   

If  p is an odd prime and a an integer relatively prime to p, then 







p

a
 is defined as 

follows: 

 DEFINITION:    















otherwise1

solution a has)(mod if1 2 pax

p

a
 

This notation allows us to concisely state some well-known facts about quadratic 

residues; here p, q are distinct odd primes:    

     i)  2/)1()1(
1 






  p

p
        ii)   8/)12()1(

2 






 p

p
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    iii)    4/)1)(1()1( 














 qp

p

q

q

p
    iv)  .

























p

ab

p

b

p

a
 

Item (iii) is called the Quadratic Reciprocity Law; discovered independently by Euler and 

Legendre, the first correct proof appeared in Gauss’ Disquisitiones.  Items (i) and (ii) are 

known as the First and Second Supplements to Quadratic Reciprocity and were proved by 

Euler (1749) and Legendre (1785) respectively.  

More generally, let kpppm  21 , and let a be any positive integer.  The Jacobi 

symbol is defined as  

































kp

a

p

a

p

a

m

a

21

.  Observe that if a is a quadratic residue 

modulo m, then 1







m

a
, but the converse is not true.  The Jacobi symbol has many of 

the same basic properties as the Legendre symbol; in particular the four results above are 

valid when p and q are replaced by arbitrary odd integers.  The Jacobi symbol also 

satisfies 





















mn

a

n

a

m

a
.   The reciprocity law for Jacobi symbols was also proved by 

Gauss [7, Art 133], and can be stated as follows:     If m and n  are odd integers, then 
















m

n

n

m
 if either of m, n  )4(mod1  and 















m

n

n

m
 if  )4(mod3 nm .   

 

HISTORICAL BACKGROUND:   The earliest investigations concerning the 

representation of integers by binary quadratic forms were due to Fermat.   In 

correspondence to Pascal and Marsenne, he claimed to have proved the following:  

 
THEOREM 1:  
1.  Every prime number of the form 4k + 1 can be represented by 22 yx  .   

2.  Every prime number of the form 3k + 1 can be represented by 22 3yx  .   

3.  Every prime number of the form 8k + 1 or 8k + 3 can be represented by 22 2yx  .   
 

These results motivated much later research on arithmetic quadratic forms by 

Euler and Lagrange.  Beginning in 1730, Euler set out to prove Fermat’s results; he 

succeeded in proving (1) in 1749 (as well as the more general Two-Square Theorem), and 

made significant progress on the other two [1].   In a 1744 paper titled Theoremata circa 
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divisors numerorum in hac forma qbbpaa   contentorum,  Euler recorded many 

examples and formulated many similar conjectures (presented as theorems).  It was in 

this paper that he also established many basic facts about quadratic residues.  His most 

general result along these lines was the following:  

 
THEOREM 2:  Let n be a nonzero integer, and let p be an odd prime relatively prime to n.   

Then   .11),gcd(,| 22 






 


p

n
yxnyxp  

 

In 1773, Lagrange published the landmark paper “Recherches d’arithmetique”, in 

which he succeeded in proving Fermat’s conjectures concerning primes represented by 

the forms 22 2yx   and 22 3yx  .  The same paper contains a general development of the 

theory of binary quadratic forms, treating forms of the type 22 cybxyaxf  .   

Lagrange’s development of the theory is systematic and rigorous – it is here that he 

introduces the crucial concepts of discriminant, equivalence, and reduction.   One of the 

first results is a connection between quadratic residues and the representation problem for 

general quadratic forms: 

THEOREM 3:  Let m be a natural number that is represented by the form 22 cybxyax  .        

                  Then acb 42   is a quadratic residue modulo m. 
   

One of Lagrange’s primary innovations was the concept of equivalence of forms 

(although the terminology is due to Gauss).   We say that two forms are equivalent if one 

can be transformed into the other by an invertible integral linear substitution of variables.  

That is, f and g are equivalent if there are integers ,,, rqp  and s such that 

),(),( syrxqypxgyxf   and 1 qrps .   It can be shown (e.g. see [6] or [11]) 

that equivalence of forms is indeed an equivalence relation.   Moreover, equivalent forms 

have the same discriminant and represent the same integers (the same is true for proper 

representation).   Gauss later refined this idea by introducing the notion of proper 

equivalence.  An equivalence is a proper equivalence if 1 qrps , and it is an improper 

equivalence if 1 qrps .   Following Gauss, we will say that two forms are in the 

same class if they are properly equivalent.  Using these ideas, we obtain the following 
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partial converse of Theorem 3:  

THEOREM 4:  Let p be an odd prime.  Then p is represented by a form of discriminant   

if and only if 1






 
p

.  

Proof:    Let 22 cybxyaxf  represent p, say 22 csbrsarp  .   Because p is 

prime, we must have gcd(r, s) = 1.   Hence, we can write stru 1  for integers  t, u.   

If ),(),( uysxtyrxfyxg  , then g is properly equivalent to f and thus has  

discriminant Moreover, by direct calculation we have 22 ycxybpxg  .  Thus, 

cpb  42  and so )(mod2 pb  . 

Next, suppose that )(mod2 pm  .   We can assume that m has the same parity as   

(replacing m by m + p if necessary).    Writing kpm 2 , and recalling that  

0  or )4(mod1 , we have )4(mod0kp .   Thus the form 22 )4/( ykmxypx  has 

integer coefficients and represents p    

 

Once we have partitioned the set of binary quadratic forms into equivalence 

classes, the next logical step is to choose an appropriate representative for each class.  

This naturally leads another of Lagrange’s innovations, the concept of reduction.   A 

primitive positive definite form 22 cybxyax   is said to be reduced if cab   and 

0b  if either ab   or ca  .  Lagrange showed that every primitive positive definite 

form is properly equivalent to a unique reduced form, and that there are only there are 

only finitely many positive definite forms with a given determinant .  We write 

)(h  for the number of classes of primitive positive definite forms of discriminant .   

Thus, )(h is the number of reduced forms of discriminant .    

In the special case where 1)4(  nh , the only reduced form of discriminant -4n 

will be the form 22 nyx  .   In this case,  .122 






 


p

n
nyxp   This situation is 

in fact quite rare – Gauss conjectured that the only values of n for which 1)4(  nh  are  

n = 1, 2, 3, 4, and 7.    The conjecture was proved by Landau in 1903.     More generally, 
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we call  a  fundamental discriminant  if it cannot be written as 0
2 k , where   

k  > 1 and 00  or )4(mod1 .    Gauss conjectured that if  < 0 is a fundamental 

discriminant then h( = 1 only for  = -3, -4,   -7, -8, -11, -19, -43, -67, -163.  This was 

proved in 1952 by Heegner  [12]. 

 

GENUS THEORY:   We say that two primitive positive definite forms of discriminant  

are in the same genus if they represent the same values in *)/( ZZ  .  Recall that 

equivalent forms represent the same integers and so must be in the same genus.    Thus, 

the concept of genus provides a method of separating reduced forms of the same 

discriminant according to congruence classes represented by the forms.  In his table of 

reduced forms, Lagrange showed forms grouped according to the congruence classes 

represented by the forms.    For this reason, many authors credit the original idea of genus 

to Lagrange.   Some authors have even attributed the idea to Euler [10].    However, 

Gauss is the first to explicitly discuss the concept of genus.   More importantly, he is the 

first to put it to use. 

Before presenting Gauss’ definition of genus, a few remarks concerning notation 

and terminology are in order.    Throughout most of the Disquisitiones Arithmetica, 

Gauss assumes forms have even middle coefficient – that is, he mostly considers forms of 

type 22 2 cybxyax  .   (Forms with odd middle coefficient are called “improperly 

primitive”, and are treated separately.)  Instead of discriminants, he uses the determinant 

of the form, defined as acbD  2 .   Note that the discriminant  satisfies D4 .    

The following result, found in Article 229 of  Disquisitiones Arithmetica, is the 

foundation of genus theory.   The proof is paraphrased slightly from the original text.   

 

THEOREM 5:   Let F be a primitive form with determinant D and p a prime number 
dividing D: then the numbers not divisible by p which can be represented by the form F 
agree in that they are either all quadratic residues of p, or they are all nonresidues.  
 
Proof:   Let  22 2 chbghagm   and 22 2 hchgbgam  .   Then 
 

22 )(])([ ghhgDhchghhgbgagmm  . 
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Thus mm   is a quadratic residue mod D, and hence is also a quadratic residue mod p for 

any p dividing D.    It follows that m, m  are either both residues, or both are non-

residues mod p.  That is, if m and m  are both represented by F, then 






 









p

m

p

m
     

From the relation D4 we get two important observations:   First, any odd 

prime that divides D also divides  .   Moreover, if p is an odd prime, then   is a residue 

mod p if and only if D  is.   Thus Theorem 5 still holds if the word determinant is 

replaced by discriminant.  Henceforth, we will revert to the more common practice of 

using discriminants.    

The argument used to prove Theorem 5 also shows that if 8 | D or 4 | D,  then the 

product of two numbers represented by F will be a quadratic residue mod 8 or a quadratic 

residue mod 4, respectively.  Hence if 8 | D, then exactly one of the following is true: all 

numbers represented by F are )8(mod1 , or all are )8(mod3 , or all are )8(mod5 , 

or all are )8(mod7 .   Likewise, if 4 | D, but D|8  , then all numbers represented by F 

are   )4(mod1 , or all are )4(mod3 .     

These observations are then used to classify forms according to characters.  Let 

kppp ,...,, 21  be the odd prime divisors of D.  Define ii Rp  if the numbers 

represented by F are quadratic residues of pi, and ii Np  if the numbers represented by 

F are quadratic non-residues of pi.   We define one additional character, 0 , which will be 

an ordered pair a, b  chosen from the list {(1,4), (3,4), (1,8), (3,8), (5,8), (7,8)}, where all 

numbers m represented by the form f  satisfy )(mod bam  .   For example, we write 

0 = 1,4  to indicate that all numbers represented by the form are congruent to 1 mod 4.    

Finally, the complete character for a form is then defined as: k ,...,; 2,10 .    Two 

forms then said to be in the same genus if they have the same complete character.        

In Article 231, Gauss discusses the possibilities for 0  based on the prime factorization 

of the determinant, as well as the number of potential complete characters in each case.   

In each case, the number of potential complete characters is a power of 2.  

 Let kppp 21   be all of the odd primes dividing .   We summarize the results 

in the table below: 
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                 

    

Possible 0  

 Number of potential 

  complete characters 

   

  k
r ppp  2128  

            (r  > 0) 

      1,8 

      3,8 

      5,8 

      7,8 

 

       22 k  

 

   

 kppp  214  

       1,4 

       3,4 

 

        12 k  

 

)4(mod121  kppp  

        

       1,4  

        

         k2  

                                                                                                             Table 1 

  EXAMPLE:   Let 55 ; then 0  = 1,4  and  there are four reduced forms:  

                         
22

4

22

3

22

2

22

1

434,72

72,14

yxyxfyxyxf

yxyxfyxyxf




 

1f   represents 1, and 1 is a residue for any prime p, so the complete character for 1f  is  

1,4;  R5, R11.  2f  and 3f  each represent 2, which is a non-residue mod 5 and mod 11, so 

the complete character for each of these forms is 1,4;  N 5, N11.   Finally, 4f  represents 4, 

which is a residue modulo any odd prime p.  Thus the complete character for 4f  is R5, 

R11.    

It follows that there are two genera, each with two proper equivalence classes: 

Complete Character         Reduced Forms                 

                 1,4; R5, R11           22
4

22
1 434,14 yxyxfyxyxf   

                1,4; N 5, N11             22
3

22
2 72,72 yxyxfyxyxf   

Note that 2f , 3f   are equivalent, so they must be in the same genus.   However, they are 

not properly equivalent since ),(23 yxff  .  Thus they represent two distinct elements 

within the genus.    

Observe also that in the example above, there were four possible complete 

characters, but only two actually defined a genus.    In Articles 261 and 287,  Gauss 
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shows that the number of genera is always exactly half the number of possible complete 

characters and must always be a power of 2.   For odd, non-square discriminants, this is 

easy to see:  Let m be an odd integer represented by a form f of odd discriminant , and 

let p be an odd prime dividing .   If Rp is a character, then  1







p

m
, whereas if Np is a 

character, then  1







p

m
.    Replacing the characters by their respective Legendre 

symbols and multiplying, we get 
































 m

p

m

p

m

p

m

k21

, where 







m

 is the Jacobi 

symbol and kppp  21 .   By reciprocity we have 





 











m

m m 4/)1)(1()1( .    Since 

m is odd and )4(mod1 , we have 





 







 m

m
.    Finally, since m is represented by f, 

we have 1





 

m
 by Theorem 3.  Thus, for m represented by f, the product of the 

characters is always 1; if k – 1 of the characters are known, the k-th is also determined.  It 

follows that there must be 12 k  complete characters.      

 Reciprocity plays a critical role in the argument above, and this is no accident.  In 

Article 261, Gauss shows that at least half the possible complete characters cannot belong 

to a genus – this fact serves as the basis of his second proof of the Quadratic Reciprocity 

[7, Art 262].   

The argument above (or Theorem 3) shows that if m is represented by a form of 

odd discriminant , then 1





 

m
.   Gauss’ Theorem 5 then allows us to extend this 

relationship to elements of  )/( ZZ .   That is, 





 

m
m )(  is a well-defined map from 

 )/( ZZ  to {+1}.  This is a homomorphism since 





 







 






 

mnnm
.   Moreover, this is 

the unique homomorphism }1{)/(:  ZZ  such that )ker(q  if and only if q is 

represented by a form of discriminant A famous result of Dirichlet guarantees that 

there are infinitely many primes in an arithmetic progression, provided the first term and 
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common difference are relatively prime.   Thus, each element of *)/( ZZ   can be 

represented as q , for some odd prime q not dividing .    From this, it follows that the 

the condition 






 


q
q)(   for odd primes q  determines   uniquely. 

         Let  1,0  (mod 4) be a discriminant.   The principal form is defined by  

               

)4(mod1
4

1

)4(mod0
4

22

22











ifyxyx

ifyx
 

The class and genus containing the principal form are called the principal class and 

principal genus, respectively.   Note that the principal form has discriminant  and is 

reduced.  When n4 , the principal form is 22 nyx  .   Many fundamental properties 

of genus can be described in terms of the homomorphism   and the principal form:  

 

THEOREM 6:  Given a negative integer 1,0  (mod 4), let   be the homomorphism 

of Theorem 4, and let f  be a form of discriminant .  
 
  i)  For an odd prime not dividing ,  )ker(p  if and only if p is represented by  

                 one of the )(h  forms of discriminant .    

ii)   )ker(  is a subgroup of index 2 in  )/( ZZ  

 iii)  The values in  )/( ZZ  represented by the principal form of discriminant   
      form a subgroup )ker(H  

iv)  The values in  )/( ZZ  represented by ),( yxf  form a coset of H  in )ker( . 

v)   For odd ,  }*)/(|{ 2 ZZ  xxH  

Part (i) of the theorem is a restatement of Theorem 3: 






 


p
p)( =1 if and only if p is 

represented by some form of discriminant .   Part (ii) states that exactly half the 

congruence classes in  )/( ZZ  are represented by some form of discriminant ; for odd 

, this follows from our argument that exactly half of all possible complete characters 

actually result in a genus.   Parts (iii) and (iv) get to the heart of genus theory; since 

distinct cosets are disjoint, different genera represent disjoint classes in *)/( ZZ  .   That 

is, we can now describe genera in terms of cosets kH of H in )(Ker .   We could then 
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define a genus to consist of all forms of discriminant  that represent the values of kH  

mod .   Note that this definition could be used to show that each genus contains the 

same number of classes [9, Art. 252].  

 

EXAMPLE:    Recall that there were four reduced forms of discriminant  = - 55:  

                           
22

4

22

3

22

2

22

1

434,72

72,14

yxyxfyxyxf

yxyxfyxyxf




 

There are 40)
11

1
1)(

5

1
1(55)55(   elements in )55/( ZZ .   Of these 40 elements, 

exactly 20 are represented by a form of discriminant  -55.     

Since 2
1 )0,( xxf  , the principal form 22

1 14yxyxf   represents all of the squares:    

    }49,36,34,31,26,16,14,9,4,1{H  

Thus the set of classes in )55/( ZZ  represented by  41 , ff  is  H, which is easily verified 

to be a subgroup of )55/( ZZ .    Also note that 2
2 7),0( yyf  ,  so the set of classes 

represented by 32 , ff  can be written as }52,43,32,28,18,17,13,8,7,2{7 H .  

Of special interest are those discriminants  such that each genus contains exactly 

one class; in this situation, the primes that are represented by a form of discriminant  are 

determined by congruence conditions mod See [2] for details 

 

COMPOSITION OF FORMS:   The theory of composition is intricately linked to that of 

genus.  Composition of forms was first investigated by Legendre and Lagrange, but the 

theory was brought to fruition by Gauss, who discovered a remarkable group structure.  

Gauss’ exposition is long and technical, and is one of the most difficult parts of the 

Disquisitiones.  However, the main result – that classes of binary quadratic forms of fixed 

discriminant form an abelian group under the operation of composition – is justly 

celebrated as one of the milestones of 19th century mathematics.   Mathematicians 

following Gauss were able to streamline the theory considerably.  

Gauss showed that any two forms of the same discriminant can be composed in 

such a way that composition is a well-defined operation on (proper) equivalence classes 

of forms.  For simplicity, we present a version of the operation developed by Dirichlet [2, 
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3] which is based on a case singled out by Gauss for special consideration [7, Art 242].   

We say that 2
11

2
11 ycxybxaf   and 2

22
2

22 ycxybxaf  are concordant  (the 

terminology is due to Dedekind [3]) if the following conditions hold:    

                 i)  021 aa       ii)  21 bb          iii)  21 |ca  and 12 |ca  

If two concordant forms have the same discriminant, say 22
2

11
2 44 cabcab  , then 

2211 caca  , and so 1221 // acac  .    We then define the composition of two concordant 

forms 21 , ff  of discriminant  as  22
2121 cybxyxaaff  , where 21 bbb   and 

1221 // acacc  .   Dirichlet showed that given two equivalence classes of forms C1, 

C2, it is always possible to find concordant forms 21, ff  with 11 Cf   and 22 Cf  .   

Suppose that 2
1211

2
111 cyaybxxaf  and 2

2122
2

222 cyaybxxaf  are 

concordant forms.   Then setting 2121 ycyxxX    and  21212211 ybyxyayxaY  , we 

have 22
21

2
2122

2
22

2
1211

2
11 ))(( cYbXYXaacyaybxxacyaybxxa   (by direct 

calculation).   Using this identity and the definition of composition given above, we 

quickly deduce that 21 ff   represents  m1m2  whenever 1f  represents m1 and 2f  

represents m2.  The following theorem summarizes the main properties of composition [7, 

Art 242]: 

 
THEOREM  8 [Gauss]:   For a fixed discriminant  the set of equivalence classes of 
primitive positive definite forms comprise an abelian group under the operation of 
composition.  The identity of this group is the class containing the principal form.  The 
class containing the form 22 cybxyax   and the class containing its “opposite”  

22 cybxyax   are inverses. 
   

This group is called the class group, and has cardinality h().   The proof is long and 

technical, as might be expected; the results themselves represent an unprecedented level 

of abstraction for their time.   Soon after discussing composition of classes, Gauss defines 

duplication: let K and L be proper equivalence classes of forms of discriminant D.   If 

LKK  , then we say that L is obtained by duplication of K.  In Article 247, Gauss 

points out that the duplication of any class lies in the principal genus; in Articles 286-287 

he shows the converse, stating that  
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“it is clear that any properly primitive class of binary forms belonging to the principal 
genus can be derived from the duplication of some properly primitive class of the same 
determinant”.    
 

This fact is often referred to in the literature as the Principal Genus Theorem.  While the 

statement is made rather casually (not even stated as a formal theorem), Gauss 

nonetheless describes it as “among the most beautiful in the theory of binary forms”.  

(See [12] for a discussion of the many generalizations of this result.)     

 We conclude with a description of Gauss’ proof of the Principal Genus Theorem. 

To demonstrate how duplication of any class is in the principal genus, Gauss defines 

composition of genera, and in doing so describes another group structure.   In Article 246, 

he shows that if ff , are primitive forms from one genus, and if gg ,   are primitive 

forms from another genus, then the compositions gf   and gf   will be in the same 

genus.   He then explains how one can determine the genus of gf   using the characters 

for f, g respectively.   First, he gives a multiplication table for the characters 0 ; then he 

describes multiplication of characters 
ii  ,  as Rpi  if  

 ii  and as Npi  if 
 ii  .   

The characters of gf  are then the products of .,...,1,0,, kiii    If the discriminant 

is odd, we can illustrate this by replacing the characters by their respective Legendre 

symbols.  Let kppp  21  be odd, and let f, g come from the genera 21,GG  

respectively.   Suppose that m is represented by f and that n is represented by g, so the 

total characters of the forms can be described as 

























kp

m

p

m

p

m
,,,

21

 and 



























kp

n

p

n

p

n
,,,

21

 respectively.   Then 21 GG   is the genus with total character 



























kp

mn

p

mn

p

mn
,,,

21

.   Note that the principal genus always represents 1, which is a 

quadratic residue modulo any prime; that is, 1
1










ip
 for all i.   Thus the principal genus 

G is the genus in which all the characters have value 1.  On the other hand, if Gi is any 
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other genus and m is an integer represented by Gi, the characters for ii GG  will be 


























kp

m

p

m

p

m 2

2

2

1

2

,,,   = 1, 1,…, 1.   Hence GGG ii  .  Moreover, it follows that the 

genera form a group of order 2, whose identity is the principal genus.    
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