The gamma and the beta function

As mentioned in the book [1], see page 6, the integral representation (1.1.18) is often taken as a definition for the gamma function $\Gamma(z)$. The advantage of this alternative definition is that we might avoid the use of infinite products (see appendix A).

Definition 1.

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t, \quad \operatorname{Re} z>0 \tag{1}
\end{equation*}
$$

From this definition it is clear that $\Gamma(z)$ is analytic for $\operatorname{Re} z>0$. By using integration by parts we find that

$$
\begin{aligned}
\Gamma(z+1) & =\int_{0}^{\infty} e^{-t} t^{z} d t=-\int_{0}^{\infty} t^{z} d e^{-t}=-\left.e^{-t} t^{z}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-t} d t^{z} \\
& =z \int_{0}^{\infty} e^{-t} t^{z-1} d t=z \Gamma(z), \quad \operatorname{Re} z>0
\end{aligned}
$$

Hence we have
Theorem 1.

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z), \quad \operatorname{Re} z>0 \tag{2}
\end{equation*}
$$

Further we have

$$
\begin{equation*}
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=-\left.e^{-t}\right|_{0} ^{\infty}=1 \tag{3}
\end{equation*}
$$

Combining (2) and (3), this leads to

$$
\begin{equation*}
\Gamma(n+1)=n!, \quad n=0,1,2, \ldots \tag{4}
\end{equation*}
$$

The functional relation (2) can be used to find an analytic continuation of the gamma function for $\operatorname{Re} z \leq 0$. For $\operatorname{Re} z>0$ the gamma function $\Gamma(z)$ is defined by (1). The functional relation (2) also holds for $\operatorname{Re} z>0$.

Let $-1<\operatorname{Re} z \leq 0$, then we have $\operatorname{Re}(z+1)>0$. Hence, $\Gamma(z+1)$ is defined by the integral representation (1). Now we define

$$
\Gamma(z)=\frac{\Gamma(z+1)}{z}, \quad-1<\operatorname{Re} z \leq 0, \quad z \neq 0
$$

Then the gamma function $\Gamma(z)$ is analytic for $\operatorname{Re} z>-1$ except $z=0$. For $z=0$ we have

$$
\lim _{z \rightarrow 0} z \Gamma(z)=\lim _{z \rightarrow 0} \Gamma(z+1)=\Gamma(1)=1
$$

This implies that $\Gamma(z)$ has a single pole at $z=0$ with residue 1 .
This process can be repeated for $-2<\operatorname{Re} z \leq-1,-3<\operatorname{Re} z \leq-2$, etcetera. Then the gamma function turns out to be an analytic function on \mathbb{C} except for single poles at $z=0,-1,-2, \ldots$ The residue at $z=-n$ equals

$$
\begin{aligned}
\lim _{z \rightarrow-n}(z+n) \Gamma(z) & =\lim _{z \rightarrow-n}(z+n) \frac{\Gamma(z+1)}{z}=\lim _{z \rightarrow-n}(z+n) \frac{1}{z} \frac{1}{z+1} \cdots \frac{1}{z+n-1} \frac{\Gamma(z+n+1)}{z+n} \\
& =\frac{\Gamma(1)}{(-n)(-n+1) \cdots(-1)}=\frac{(-1)^{n}}{n!}, \quad n=0,1,2, \cdots
\end{aligned}
$$

As indicated in the book [1], see page 8 , the limit formula (1.1.5) can be obtained from the integral representation (1) by using induction as follows. We first prove that

$$
\begin{equation*}
\int_{0}^{1}(1-t)^{n} t^{z-1} d t=\frac{n!}{(z)_{n+1}} \tag{5}
\end{equation*}
$$

for $\operatorname{Re} z>0$ and $n=0,1,2, \ldots$. Here the shifted factorial $(a)_{k}$ is defined by

Definition 2.

$$
\begin{equation*}
(a)_{k}=a(a+1) \cdots(a+k-1), \quad k=1,2,3, \ldots \quad \text { and } \quad(a)_{0}=1 \tag{6}
\end{equation*}
$$

In order to prove (5) by induction we first take $n=0$ to obtain for $\operatorname{Re} z>0$

$$
\int_{0}^{1} t^{z-1} d t=\left.\frac{t^{z}}{z}\right|_{0} ^{1}=\frac{1}{z}=\frac{0!}{(z)_{1}}
$$

Now we assume that (5) holds for $n=k$. Then we have

$$
\begin{aligned}
\int_{0}^{1}(1-t)^{k+1} t^{z-1} d t & =\int_{0}^{1}(1-t)(1-t)^{k} t^{z-1} d t=\int_{0}^{1}(1-t)^{k} t^{z-1} d t-\int_{0}^{1}(1-t)^{k} t^{z} d t \\
& =\frac{k!}{(z)_{k+1}}-\frac{k!}{(z+1)_{k+1}}=\frac{k!}{(z)_{k+2}}(z+k+1-z)=\frac{(k+1)!}{(z)_{k+2}}
\end{aligned}
$$

which is (5) for $n=k+1$. This proves that (5) holds for all $n=0,1,2, \ldots$.
Now we set $t=u / n$ into (5) to find that

$$
\frac{1}{n^{z}} \int_{0}^{n}\left(1-\frac{u}{n}\right)^{n} u^{z-1} d u=\frac{n!}{(z)_{n+1}} \quad \Longrightarrow \quad \int_{0}^{n}\left(1-\frac{u}{n}\right)^{n} u^{z-1} d u=\frac{n!n^{z}}{(z)_{n+1}}
$$

Since we have

$$
\lim _{n \rightarrow \infty}\left(1-\frac{u}{n}\right)^{n}=e^{-u}
$$

we conclude that

$$
\Gamma(z)=\int_{0}^{\infty} e^{-u} u^{z-1} d u=\lim _{n \rightarrow \infty} \frac{n!n^{z}}{(z)_{n+1}}
$$

The beta function $B(u, v)$ is also defined by means of an integral:

Definition 3.

$$
\begin{equation*}
B(u, v)=\int_{0}^{1} t^{u-1}(1-t)^{v-1} d t, \quad \operatorname{Re} u>0, \quad \operatorname{Re} v>0 \tag{7}
\end{equation*}
$$

This integral is often called the beta integral. From the definition we easily obtain the symmetry

$$
\begin{equation*}
B(u, v)=B(v, u) \tag{8}
\end{equation*}
$$

since we have by using the substitution $t=1-s$

$$
B(u, v)=\int_{0}^{1} t^{u-1}(1-t)^{v-1} d t=-\int_{1}^{0}(1-s)^{u-1} s^{v-1} d s=\int_{0}^{1} s^{v-1}(1-s)^{u-1} d s=B(v, u)
$$

The connection between the beta function and the gamma function is given by the following theorem:

Theorem 2.

$$
\begin{equation*}
B(u, v)=\frac{\Gamma(u) \Gamma(v)}{\Gamma(u+v)}, \quad \operatorname{Re} u>0, \quad \operatorname{Re} v>0 . \tag{9}
\end{equation*}
$$

In order to prove this theorem we use the definition (1) to obtain

$$
\Gamma(u) \Gamma(v)=\int_{0}^{\infty} e^{-t} t^{u-1} d t \int_{0}^{\infty} e^{-s} s^{v-1} d s=\int_{0}^{\infty} \int_{0}^{\infty} e^{-(t+s)} t^{u-1} s^{v-1} d t d s
$$

Now we apply the change of variables $t=x y$ and $s=x(1-y)$ to this double integral. Note that $t+s=x$ and that $0<t<\infty$ and $0<s<\infty$ imply that $0<x<\infty$ and $0<y<1$. The Jacobian of this transformation is

$$
\frac{\partial(t, s)}{\partial(x, y)}=\left|\begin{array}{cc}
y & x \\
1-y & -x
\end{array}\right|=-x y-x+x y=-x .
$$

Since $x>0$ we conclude that $d t d s=\left|\frac{\partial(t, s)}{\partial(x, y)}\right| d x d y=x d x d y$. Hence we have

$$
\begin{aligned}
\Gamma(u) \Gamma(v) & =\int_{0}^{1} \int_{0}^{\infty} e^{-x} x^{u-1} y^{u-1} x^{v-1}(1-y)^{v-1} x d x d y \\
& =\int_{0}^{\infty} e^{-x} x^{u+v-1} d x \int_{0}^{1} y^{u-1}(1-y)^{v-1} d y=\Gamma(u+v) B(u, v) .
\end{aligned}
$$

This proves (9).
There exist many useful forms of the beta integral which can be obtained by an appropriate change of variables. For instance, if we set $t=s /(s+1)$ into (7) we obtain

$$
\begin{aligned}
B(u, v) & =\int_{0}^{1} t^{u-1}(1-t)^{v-1} d t=\int_{0}^{\infty} s^{u-1}(s+1)^{-u+1}(s+1)^{-v+1}(s+1)^{-2} d s \\
& =\int_{0}^{\infty} \frac{s^{u-1}}{(s+1)^{u+v}} d s, \quad \operatorname{Re} u>0, \quad \operatorname{Re} v>0 .
\end{aligned}
$$

This proves
Theorem 3.

$$
\begin{equation*}
B(u, v)=\int_{0}^{\infty} \frac{s^{u-1}}{(s+1)^{u+v}} d s, \quad \operatorname{Re} u>0, \quad \operatorname{Re} v>0 . \tag{10}
\end{equation*}
$$

If we set $t=\cos ^{2} \varphi$ into (7) we find that

$$
\begin{aligned}
B(u, v) & =\int_{0}^{1} t^{u-1}(1-t)^{v-1} d t=-2 \int_{\pi / 2}^{0}(\cos \varphi)^{2 u-2}(\sin \varphi)^{2 v-2} \cos \varphi \sin \varphi d \varphi \\
& =2 \int_{0}^{\pi / 2}(\cos \varphi)^{2 u-1}(\sin \varphi)^{2 v-1} d \varphi, \quad \operatorname{Re} u>0, \quad \operatorname{Re} v>0 .
\end{aligned}
$$

Hence we have
Theorem 4.

$$
\begin{equation*}
B(u, v)=2 \int_{0}^{\pi / 2}(\cos \varphi)^{2 u-1}(\sin \varphi)^{2 v-1} d \varphi, \quad \operatorname{Re} u>0, \quad \operatorname{Re} v>0 . \tag{11}
\end{equation*}
$$

Finally, the substitution $t=(s-a) /(b-a)$ in (7) leads to

$$
\begin{aligned}
B(u, v) & =\int_{0}^{1} t^{u-1}(1-t)^{v-1} d t \\
& =\int_{a}^{b}(s-a)^{u-1}(b-a)^{-u+1}(b-s)^{v-1}(b-a)^{-v+1}(b-a)^{-1} d s \\
& =(b-a)^{-u-v+1} \int_{a}^{b}(s-a)^{u-1}(b-s)^{v-1} d s, \quad \operatorname{Re} u>0, \quad \operatorname{Re} v>0
\end{aligned}
$$

Hence we have

Theorem 5.

$$
\begin{equation*}
\int_{a}^{b}(s-a)^{u-1}(b-s)^{v-1} d s=(b-a)^{u+v-1} B(u, v), \quad \operatorname{Re} u>0, \quad \operatorname{Re} v>0 \tag{12}
\end{equation*}
$$

The special case $a=-1$ and $b=1$ is of special interest as we will see later:

$$
\int_{-1}^{1}(1+s)^{u-1}(1-s)^{v-1} d s=2^{u+v-1} B(u, v), \quad \operatorname{Re} u>0, \quad \operatorname{Re} v>0
$$

The different forms for the beta function have a lot of consequences. For instance, if we set $u=v=1 / 2$ in (9) we find that

$$
B(1 / 2,1 / 2)=\frac{\Gamma(1 / 2) \Gamma(1 / 2)}{\Gamma(1)}=\{\Gamma(1 / 2)\}^{2}
$$

On the other hand, we have by using (11)

$$
B(1 / 2,1 / 2)=2 \int_{0}^{\pi / 2} d \varphi=2 \cdot \frac{\pi}{2}=\pi
$$

This implies that

$$
\begin{equation*}
\Gamma(1 / 2)=\sqrt{\pi} \tag{13}
\end{equation*}
$$

By using the transformation $x^{2}=t$ we now easily obtain the value of the normal integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=2 \int_{0}^{\infty} e^{-x^{2}} d x=\int_{0}^{\infty} e^{-t} t^{-1 / 2} d t=\Gamma(1 / 2)=\sqrt{\pi} \tag{14}
\end{equation*}
$$

The combination of (9) and (11) can be used to compute integrals such as

$$
\begin{gathered}
\int_{0}^{\pi / 2}(\cos \varphi)^{5}(\sin \varphi)^{7} d \varphi=\frac{1}{2} \cdot B(3,4)=\frac{1}{2} \cdot \frac{\Gamma(3) \Gamma(4)}{\Gamma(7)}=\frac{1}{2} \cdot \frac{2!3!}{6!}=\frac{1}{2} \cdot \frac{2}{4 \cdot 5 \cdot 6}=\frac{1}{120} \\
\int_{0}^{\pi / 2}(\cos \varphi)^{7}(\sin \varphi)^{4} d \varphi=\frac{1}{2} \cdot B(4,5 / 2)=\frac{1}{2} \cdot \frac{\Gamma(4) \Gamma(5 / 2)}{\Gamma(13 / 2)}=\frac{1}{2} \cdot \frac{3!}{\frac{5}{2} \cdot \frac{7}{2} \cdot \frac{9}{2} \cdot \frac{11}{2}} \\
=\frac{1}{2} \cdot \frac{6 \cdot 2^{4}}{5 \cdot 7 \cdot 9 \cdot 11}=\frac{16}{1155}
\end{gathered}
$$

and

$$
\begin{aligned}
& \int_{0}^{\pi / 2}(\cos \varphi)^{4}(\sin \varphi)^{6} d \varphi=\frac{1}{2} \cdot B(5 / 2,7 / 2)=\frac{1}{2} \cdot \frac{\Gamma(5 / 2) \Gamma(7 / 2)}{\Gamma(6)} \\
& \quad=\frac{1}{2} \cdot \frac{\frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma(1 / 2) \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma(1 / 2)}{5!}=\frac{5 \cdot 3^{2} \cdot \pi}{2^{6} \cdot 2 \cdot 3 \cdot 4 \cdot 5}=\frac{3 \pi}{2^{9}}=\frac{3 \pi}{512} .
\end{aligned}
$$

Another important consequence of (9) and (11) is Legendre's duplication formula for the gamma function:

Theorem 6.

$$
\begin{equation*}
\Gamma(z) \Gamma(z+1 / 2)=2^{1-2 z} \sqrt{\pi} \Gamma(2 z), \quad \operatorname{Re} z>0 . \tag{15}
\end{equation*}
$$

In order to prove this we use (11) and the transformation $2 \varphi=\tau$ to find that

$$
\begin{aligned}
B(z, z) & =2 \int_{0}^{\pi / 2}(\cos \varphi)^{2 z-1}(\sin \varphi)^{2 z-1} d \varphi=2 \cdot 2^{1-2 z} \int_{0}^{\pi / 2}(\sin 2 \varphi)^{2 z-1} d \varphi \\
& =2^{1-2 z} \int_{0}^{\pi}(\sin \tau)^{2 z-1} d \tau=2^{1-2 z} \cdot 2 \int_{0}^{\pi / 2}(\sin \tau)^{2 z-1} d \tau=2^{1-2 z} \cdot B(z, 1 / 2)
\end{aligned}
$$

Now we apply (9) to obtain

$$
\frac{\Gamma(z) \Gamma(z)}{\Gamma(2 z)}=B(z, z)=2^{1-2 z} \cdot B(z, 1 / 2)=2^{1-2 z} \cdot \frac{\Gamma(z) \Gamma(1 / 2)}{\Gamma(z+1 / 2)}, \quad \operatorname{Re} z>0 .
$$

Finally, by using (13), this implies that

$$
\Gamma(z) \Gamma(z+1 / 2)=2^{1-2 z} \sqrt{\pi} \Gamma(2 z), \quad \operatorname{Re} z>0 .
$$

This proves the theorem.
Legendre's duplication formula can be generalized to Gauss's multiplication formula:

Theorem 7.

$$
\begin{equation*}
\Gamma(z) \prod_{k=1}^{n-1} \Gamma(z+k / n)=n^{1 / 2-n z}(2 \pi)^{(n-1) / 2} \Gamma(n z), \quad n \in\{1,2,3, \ldots\} . \tag{16}
\end{equation*}
$$

The case $n=1$ is trivial and the case $n=2$ is Legendre's duplication formula.
Another property of the gamma function is given by Euler's reflection formula:

Theorem 8.

$$
\begin{equation*}
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}, \quad z \neq 0, \pm 1, \pm 2, \ldots \tag{17}
\end{equation*}
$$

This can be shown by using contour integration in the complex plane as follows. First we restrict to real values of z, say $z=x$ with $0<x<1$. By using (9) and (10) we have

$$
\Gamma(x) \Gamma(1-x)=B(x, 1-x)=\int_{0}^{\infty} \frac{t^{x-1}}{t+1} d t .
$$

In order to compute this integral we consider the contour integral

$$
\int_{\mathcal{C}} \frac{z^{x-1}}{1-z} d z
$$

where the contour \mathcal{C} consists of two circles about the origin of radii R and ϵ respectively, which are joined along the negative real axis from $-R$ to $-\epsilon$. Move along the outer circle with radius R in the positive (counterclockwise) direction and along the inner circle with radius ϵ in the negative (clockwise) direction. By the residue theorem we have

$$
\int_{\mathcal{C}} \frac{z^{x-1}}{1-z} d z=-2 \pi i
$$

when z^{x-1} has its principal value. This implies that

$$
-2 \pi i=\int_{\mathcal{C}_{1}} \frac{z^{x-1}}{1-z} d z+\int_{\mathcal{C}_{2}} \frac{z^{x-1}}{1-z} d z+\int_{\mathcal{C}_{3}} \frac{z^{x-1}}{1-z} d z+\int_{\mathcal{C}_{4}} \frac{z^{x-1}}{1-z} d z
$$

where \mathcal{C}_{1} denotes the outer circle with radius R, \mathcal{C}_{2} denotes the line segment from $-R$ to $-\epsilon$, \mathcal{C}_{3} denotes the inner circle with radius ϵ and \mathcal{C}_{4} denotes the line segment from $-\epsilon$ to $-R$. Then we have by writing $z=R e^{i \theta}$ for the outer circle

$$
\int_{\mathcal{C}_{1}} \frac{z^{x-1}}{1-z} d z=\int_{-\pi}^{\pi} \frac{R^{x-1} e^{i(x-1) \theta}}{1-R e^{i \theta}} d\left(R e^{i \theta}\right)=\int_{-\pi}^{\pi} \frac{i R^{x} e^{i x \theta}}{1-R e^{i \theta}} d \theta
$$

In the same way we have by writing $z=\epsilon e^{i \theta}$ for the inner circle

$$
\int_{\mathcal{C}_{3}} \frac{z^{x-1}}{1-z} d z=\int_{\pi}^{-\pi} \frac{i \epsilon^{x} e^{i x \theta}}{1-\epsilon e^{i \theta}} d \theta
$$

For the line segment from $-R$ to $-\epsilon$ we have by writing $z=-t=t e^{\pi i}$

$$
\int_{\mathcal{C}_{2}} \frac{z^{x-1}}{1-z} d z=\int_{R}^{\epsilon} \frac{t^{x-1} e^{i(x-1) \pi}}{1+t} d\left(t e^{\pi i}\right)=\int_{R}^{\epsilon} \frac{t^{x-1} e^{i x \pi}}{1+t} d t
$$

In the same way we have by writing $z=-t=t e^{-\pi i}$

$$
\int_{\mathcal{C}_{4}} \frac{z^{x-1}}{1-z} d z=\int_{\epsilon}^{R} \frac{t^{x-1} e^{-i x \pi}}{1+t} d t
$$

Since $0<x<1$ we have

$$
\lim _{R \rightarrow \infty} \int_{-\pi}^{\pi} \frac{i R^{x} e^{i x \theta}}{1-R e^{i \theta}} d \theta=0 \quad \text { and } \quad \lim _{\epsilon \downarrow 0} \int_{\pi}^{-\pi} \frac{i \epsilon^{x} e^{i x \theta}}{1-\epsilon e^{i \theta}} d \theta=0
$$

Hence we have

$$
-2 \pi i=\int_{\infty}^{0} \frac{t^{x-1} e^{i x \pi}}{1+t} d t+\int_{0}^{\infty} \frac{t^{x-1} e^{-i x \pi}}{1+t} d t
$$

or

$$
-2 \pi i=\left(e^{-i x \pi}-e^{i x \pi}\right) \int_{0}^{\infty} \frac{t^{x-1}}{1+t} d t \quad \Longrightarrow \quad \int_{0}^{\infty} \frac{t^{x-1}}{1+t} d t=\frac{2 \pi i}{e^{i x \pi}-e^{-i x \pi}}=\frac{\pi}{\sin \pi x}
$$

This proves the theorem for real values of z, say $z=x$ with $0<x<1$. The full result follows by analytic continuation. Alternatively, the result can be obtained as follows. If (17) holds for real values of z with $0<z<1$, then it holds for all complex z with $0<\operatorname{Re} z<1$ by
analyticity. Then it also holds for $\operatorname{Re} z=0$ with $z \neq 0$ by continuity. Finally, the full result follows for z shifted by integers using (2) and $\sin (z+\pi)=-\sin z$. Note that (17) holds for all complex values of z with $z \neq 0,-1,-2, \ldots$ Instead of (17) we may write

$$
\begin{equation*}
\frac{1}{\Gamma(z) \Gamma(1-z)}=\frac{\sin \pi z}{\pi} \tag{18}
\end{equation*}
$$

which holds for all $z \in \mathbb{C}$.
Now we will prove an asymptotic formula which is due to Stirling. First we define
Definition 4. Two functions f and g of a real variable x are called asymptotically equal, notation

$$
f \sim g \quad \text { for } \quad x \rightarrow \infty, \quad \text { if } \quad \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1
$$

Now we have Stirling's formula:
Theorem 9.

$$
\begin{equation*}
\Gamma(x+1) \sim x^{x+1 / 2} e^{-x} \sqrt{2 \pi}, \quad x \rightarrow \infty \tag{19}
\end{equation*}
$$

Here x denotes a real variable. This can be proved as follows. Consider

$$
\Gamma(x+1)=\int_{0}^{\infty} e^{-t} t^{x} d t
$$

where $x \in \mathbb{R}$. Then we obtain by using the transformation $t=x(1+u)$

$$
\begin{aligned}
\Gamma(x+1) & =\int_{-1}^{\infty} e^{-x(1+u)} x^{x}(1+u)^{x} x d u=x^{x+1} e^{-x} \int_{-1}^{\infty} e^{-x u}(1+u)^{x} d u \\
& =x^{x+1} e^{-x} \int_{-1}^{\infty} e^{x(-u+\ln (1+u))} d u
\end{aligned}
$$

The function $f(u)=-u+\ln (1+u)$ equals zero for $u=0$. For other values of u we have $f(u)<0$. This implies that the integrand of the last integral equals 1 at $u=0$ and that this integrand becomes very small for large values of x at other values of u. So for large values of x we only have to deal with the integrand near $u=0$. Note that we have

$$
f(u)=-u+\ln (1+u)=-\frac{1}{2} u^{2}+\mathcal{O}\left(u^{3}\right) \quad \text { for } \quad u \rightarrow 0
$$

This implies that

$$
\int_{-1}^{\infty} e^{x(-u+\ln (1+u))} d u \sim \int_{-\infty}^{\infty} e^{-x u^{2} / 2} d u \quad \text { for } \quad x \rightarrow \infty
$$

If we set $u=t \sqrt{2 / x}$ we have by using the normal integral (14)

$$
\int_{-\infty}^{\infty} e^{-x u^{2} / 2} d u=x^{-1 / 2} \sqrt{2} \int_{-\infty}^{\infty} e^{-t^{2}} d t=x^{-1 / 2} \sqrt{2 \pi}
$$

Hence we have

$$
\Gamma(x+1) \sim x^{x+1 / 2} e^{-x} \sqrt{2 \pi}, \quad x \rightarrow \infty
$$

which proves the theorem.

Note that Stirling's formula implies that

$$
n!\sim n^{n} e^{-n} \sqrt{2 \pi n} \text { for } n \rightarrow \infty
$$

and that

$$
\frac{\Gamma(n+a)}{\Gamma(n+b)} \sim n^{a-b} \quad \text { for } \quad n \rightarrow \infty
$$

The theorem can be extended for z in the complex plane:
Theorem 10. For $\delta>0$ we have

$$
\begin{equation*}
\Gamma(z+1) \sim z^{z+1 / 2} e^{-z} \sqrt{2 \pi} \quad \text { for } \quad|z| \rightarrow \infty \quad \text { with } \quad|\arg z| \leq \pi-\delta \tag{20}
\end{equation*}
$$

Stirling's asymptotic formula can be used to give an alternative proof for Euler's reflection formula (17) for the gamma function. Consider the function

$$
f(z)=\Gamma(z) \Gamma(1-z) \sin \pi z
$$

Then we have

$$
f(z+1)=\Gamma(z+1) \Gamma(-z) \sin \pi(z+1)=z \Gamma(z) \cdot \frac{\Gamma(1-z)}{-z} \cdot-\sin \pi z=f(z)
$$

Hence, f is periodic with period 1. Further we have

$$
\begin{equation*}
\lim _{z \rightarrow 0} f(z)=\lim _{z \rightarrow 0} \Gamma(z) \Gamma(1-z) \sin \pi z=\lim _{z \rightarrow 0} \Gamma(z+1) \Gamma(1-z) \frac{\sin \pi z}{z}=\pi \tag{21}
\end{equation*}
$$

which implies that f has no poles. Hence, f is analytic and periodic with period 1 . Now we want to apply Liouville's theorem for entire functions, id est functions which are analytic on the whole complex plane:

Theorem 11. Every bounded entire function is constant.
Therefore, we want to show that f is bounded. Since f is periodic with period 1 we consider $0 \leq \operatorname{Re} z \leq 1$, say $z=x+i y$ with x and y real and $0 \leq x \leq 1$. Then we have

$$
\sin \pi z=\frac{e^{i \pi z}-e^{-i \pi z}}{2 i} \sim-\frac{1}{2 i} e^{-i \pi z}=\frac{i}{2} e^{-i \pi z} \quad \text { for } \quad y \rightarrow \infty
$$

Now we apply Stirling's formula to obtain

$$
f(z)=\Gamma(z) \Gamma(1-z) \sin \pi z \sim z^{z-1 / 2} e^{-z} \sqrt{2 \pi}(-z)^{-z+1 / 2} e^{z} \sqrt{2 \pi} \frac{i}{2} e^{-i \pi z}
$$

For $y>0$ we have $-z / z=e^{-\pi i}$. Hence, $f(z) \sim \pi$ for $y \rightarrow \infty$. This implies that f is bounded. So, Liouville's theorem implies that f is constant. By using (21) we conclude that $f(z)=\pi$, which proves Euler's reflection formula (17) or (18).

Stirling's formula can also be used to give an alternative proof for Legendre's duplication formula (15). Consider the function

$$
g(z)=2^{2 z-1} \frac{\Gamma(z) \Gamma(z+1 / 2)}{\Gamma(1 / 2) \Gamma(2 z)}
$$

Then we have by using (2)

$$
g(z+1)=2^{2 z+1} \frac{\Gamma(z+1) \Gamma(z+3 / 2)}{\Gamma(1 / 2) \Gamma(2 z+2)}=2^{2 z+1} \frac{z \Gamma(z)(z+1 / 2) \Gamma(z+1 / 2)}{\Gamma(1 / 2)(2 z+1) 2 z \Gamma(2 z)}=g(z) .
$$

Further we have by using (13) and Stirling's asymptotic formula (20)

$$
g(z) \sim 2^{2 z-1} \frac{z^{z-1 / 2} e^{-z} \sqrt{2 \pi} z^{z} e^{-z} \sqrt{2 \pi}}{\sqrt{\pi} 2^{2 z-1 / 2} z^{2 z-1 / 2} e^{-2 z} \sqrt{2 \pi}}=1 .
$$

This implies that

$$
\lim _{n \rightarrow \infty} g(z+n)=1,
$$

also for integer values for n. On the other hand we have $g(z+n)=g(z)$ for integer values of n. This implies that $g(z)=1$ for all z. This proves (15).

Finally we have the digamma function $\psi(z)$ which is related to the gamma function. This function $\psi(z)$ is defined as follows.
Definition 5.

$$
\begin{equation*}
\psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=\frac{d}{d z} \ln \Gamma(z), \quad z \neq 0,-1,-2, \ldots . \tag{22}
\end{equation*}
$$

A property of this digamma function that is easily proved by using (2) is given by the following theorem:
Theorem 12.

$$
\begin{equation*}
\psi(z+1)=\psi(z)+\frac{1}{z} \tag{23}
\end{equation*}
$$

By using (2) we have

$$
\psi(z+1)=\frac{d}{d z} \ln \Gamma(z+1)=\frac{d}{d z} \ln (z \Gamma(z))=\frac{d}{d z} \ln z+\frac{d}{d z} \ln \Gamma(z)=\frac{1}{z}+\psi(z) .
$$

This proves the theorem. Iteration of (23) easily leads to

Theorem 13.

$$
\begin{equation*}
\psi(z+n)=\psi(z)+\frac{1}{z}+\frac{1}{z+1}+\ldots+\frac{1}{z+n-1}, \quad n=1,2,3, \ldots . \tag{24}
\end{equation*}
$$

Another property of the digamma function is given by
Theorem 14.

$$
\begin{equation*}
\psi(z)-\psi(1-z)=-\frac{\pi}{\tan \pi z}, \quad z \neq 0, \pm 1, \pm 2, \ldots . \tag{25}
\end{equation*}
$$

The proof of this theorem is based on (17). We have

$$
\begin{aligned}
\psi(z)-\psi(1-z) & =\frac{d}{d z} \ln \Gamma(z)+\frac{d}{d z} \ln \Gamma(1-z)=\frac{d}{d z} \ln (\Gamma(z) \Gamma(1-z)) \\
& =\frac{d}{d z} \ln \frac{\pi}{\sin \pi z}=\frac{\sin \pi z}{\pi} \cdot \frac{-\pi^{2} \cos \pi z}{(\sin \pi z)^{2}}=-\frac{\pi}{\tan \pi z} .
\end{aligned}
$$

References

[1] G.E. Andrews, R. Askey and R. Roy, Special Functions. Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, 1999.

