
The gamma and the beta function

As mentioned in the book [1], see page 6, the integral representation (1.1.18) is often taken
as a definition for the gamma function Γ(z). The advantage of this alternative definition is
that we might avoid the use of infinite products (see appendix A).

Definition 1.

Γ(z) =

∫ ∞
0

e−ttz−1 dt, Re z > 0. (1)

From this definition it is clear that Γ(z) is analytic for Re z > 0. By using integration by
parts we find that

Γ(z + 1) =

∫ ∞
0

e−ttz dt = −
∫ ∞
0

tz de−t = −e−ttz
∣∣∣∞
0

+

∫ ∞
0

e−t dtz

= z

∫ ∞
0

e−ttz−1 dt = zΓ(z), Re z > 0.

Hence we have

Theorem 1.
Γ(z + 1) = zΓ(z), Re z > 0. (2)

Further we have

Γ(1) =

∫ ∞
0

e−t dt = −e−t
∣∣∣∞
0

= 1. (3)

Combining (2) and (3), this leads to

Γ(n+ 1) = n!, n = 0, 1, 2, . . . . (4)

The functional relation (2) can be used to find an analytic continuation of the gamma
function for Re z ≤ 0. For Re z > 0 the gamma function Γ(z) is defined by (1). The functional
relation (2) also holds for Re z > 0.

Let −1 < Re z ≤ 0, then we have Re (z+1) > 0. Hence, Γ(z+1) is defined by the integral
representation (1). Now we define

Γ(z) =
Γ(z + 1)

z
, −1 < Re z ≤ 0, z 6= 0.

Then the gamma function Γ(z) is analytic for Re z > −1 except z = 0. For z = 0 we have

lim
z→0

zΓ(z) = lim
z→0

Γ(z + 1) = Γ(1) = 1.

This implies that Γ(z) has a single pole at z = 0 with residue 1.
This process can be repeated for −2 < Re z ≤ −1, −3 < Re z ≤ −2, etcetera. Then

the gamma function turns out to be an analytic function on C except for single poles at
z = 0,−1,−2, . . .. The residue at z = −n equals

lim
z→−n

(z + n)Γ(z) = lim
z→−n

(z + n)
Γ(z + 1)

z
= lim

z→−n
(z + n)

1

z

1

z + 1
· · · 1

z + n− 1

Γ(z + n+ 1)

z + n

=
Γ(1)

(−n)(−n+ 1) · · · (−1)
=

(−1)n

n!
, n = 0, 1, 2, . . . .

1



As indicated in the book [1], see page 8, the limit formula (1.1.5) can be obtained from
the integral representation (1) by using induction as follows. We first prove that∫ 1

0
(1− t)ntz−1 dt =

n!

(z)n+1
(5)

for Re z > 0 and n = 0, 1, 2, . . .. Here the shifted factorial (a)k is defined by

Definition 2.

(a)k = a(a+ 1) · · · (a+ k − 1), k = 1, 2, 3, . . . and (a)0 = 1. (6)

In order to prove (5) by induction we first take n = 0 to obtain for Re z > 0∫ 1

0
tz−1 dt =

tz

z

∣∣∣1
0

=
1

z
=

0!

(z)1
.

Now we assume that (5) holds for n = k. Then we have∫ 1

0
(1− t)k+1tz−1 dt =

∫ 1

0
(1− t)(1− t)ktz−1 dt =

∫ 1

0
(1− t)ktz−1 dt−

∫ 1

0
(1− t)ktz dt

=
k!

(z)k+1
− k!

(z + 1)k+1
=

k!

(z)k+2
(z + k + 1− z) =

(k + 1)!

(z)k+2
,

which is (5) for n = k + 1. This proves that (5) holds for all n = 0, 1, 2, . . ..
Now we set t = u/n into (5) to find that

1

nz

∫ n

0

(
1− u

n

)n
uz−1 du =

n!

(z)n+1
=⇒

∫ n

0

(
1− u

n

)n
uz−1 du =

n!nz

(z)n+1
.

Since we have
lim
n→∞

(
1− u

n

)n
= e−u,

we conclude that

Γ(z) =

∫ ∞
0

e−uuz−1 du = lim
n→∞

n!nz

(z)n+1
.

The beta function B(u, v) is also defined by means of an integral:

Definition 3.

B(u, v) =

∫ 1

0
tu−1(1− t)v−1 dt, Reu > 0, Re v > 0. (7)

This integral is often called the beta integral. From the definition we easily obtain the
symmetry

B(u, v) = B(v, u), (8)

since we have by using the substitution t = 1− s

B(u, v) =

∫ 1

0
tu−1(1− t)v−1 dt = −

∫ 0

1
(1− s)u−1sv−1 ds =

∫ 1

0
sv−1(1− s)u−1 ds = B(v, u).

The connection between the beta function and the gamma function is given by the fol-
lowing theorem:
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Theorem 2.

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
, Reu > 0, Re v > 0. (9)

In order to prove this theorem we use the definition (1) to obtain

Γ(u)Γ(v) =

∫ ∞
0

e−ttu−1 dt

∫ ∞
0

e−ssv−1 ds =

∫ ∞
0

∫ ∞
0

e−(t+s)tu−1sv−1 dt ds.

Now we apply the change of variables t = xy and s = x(1− y) to this double integral. Note
that t + s = x and that 0 < t < ∞ and 0 < s < ∞ imply that 0 < x < ∞ and 0 < y < 1.
The Jacobian of this transformation is

∂(t, s)

∂(x, y)
=

∣∣∣∣ y x
1− y −x

∣∣∣∣ = −xy − x+ xy = −x.

Since x > 0 we conclude that dt ds =

∣∣∣∣ ∂(t, s)

∂(x, y)

∣∣∣∣ dx dy = x dx dy. Hence we have

Γ(u)Γ(v) =

∫ 1

0

∫ ∞
0

e−xxu−1yu−1xv−1(1− y)v−1x dx dy

=

∫ ∞
0

e−xxu+v−1 dx

∫ 1

0
yu−1(1− y)v−1 dy = Γ(u+ v)B(u, v).

This proves (9).
There exist many useful forms of the beta integral which can be obtained by an appropriate

change of variables. For instance, if we set t = s/(s+ 1) into (7) we obtain

B(u, v) =

∫ 1

0
tu−1(1− t)v−1 dt =

∫ ∞
0

su−1(s+ 1)−u+1(s+ 1)−v+1(s+ 1)−2 ds

=

∫ ∞
0

su−1

(s+ 1)u+v
ds, Reu > 0, Re v > 0.

This proves

Theorem 3.

B(u, v) =

∫ ∞
0

su−1

(s+ 1)u+v
ds, Reu > 0, Re v > 0. (10)

If we set t = cos2 ϕ into (7) we find that

B(u, v) =

∫ 1

0
tu−1(1− t)v−1 dt = −2

∫ 0

π/2
(cosϕ)2u−2(sinϕ)2v−2 cosϕ sinϕdϕ

= 2

∫ π/2

0
(cosϕ)2u−1(sinϕ)2v−1 dϕ, Reu > 0, Re v > 0.

Hence we have

Theorem 4.

B(u, v) = 2

∫ π/2

0
(cosϕ)2u−1(sinϕ)2v−1 dϕ, Reu > 0, Re v > 0. (11)
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Finally, the substitution t = (s− a)/(b− a) in (7) leads to

B(u, v) =

∫ 1

0
tu−1(1− t)v−1 dt

=

∫ b

a
(s− a)u−1(b− a)−u+1(b− s)v−1(b− a)−v+1(b− a)−1 ds

= (b− a)−u−v+1

∫ b

a
(s− a)u−1(b− s)v−1 ds, Reu > 0, Re v > 0.

Hence we have

Theorem 5.∫ b

a
(s− a)u−1(b− s)v−1 ds = (b− a)u+v−1B(u, v), Reu > 0, Re v > 0. (12)

The special case a = −1 and b = 1 is of special interest as we will see later:∫ 1

−1
(1 + s)u−1(1− s)v−1 ds = 2u+v−1B(u, v), Reu > 0, Re v > 0.

The different forms for the beta function have a lot of consequences. For instance, if we
set u = v = 1/2 in (9) we find that

B(1/2, 1/2) =
Γ(1/2)Γ(1/2)

Γ(1)
= {Γ(1/2)}2 .

On the other hand, we have by using (11)

B(1/2, 1/2) = 2

∫ π/2

0
dϕ = 2 · π

2
= π.

This implies that
Γ(1/2) =

√
π. (13)

By using the transformation x2 = t we now easily obtain the value of the normal integral∫ ∞
−∞

e−x
2
dx = 2

∫ ∞
0

e−x
2
dx =

∫ ∞
0

e−tt−1/2 dt = Γ(1/2) =
√
π. (14)

The combination of (9) and (11) can be used to compute integrals such as∫ π/2

0
(cosϕ)5(sinϕ)7 dϕ =

1

2
·B(3, 4) =

1

2
· Γ(3)Γ(4)

Γ(7)
=

1

2
· 2! 3!

6!
=

1

2
· 2

4 · 5 · 6
=

1

120
,

∫ π/2

0
(cosϕ)7(sinϕ)4 dϕ =

1

2
·B(4, 5/2) =

1

2
· Γ(4)Γ(5/2)

Γ(13/2)
=

1

2
· 3!
5
2 ·

7
2 ·

9
2 ·

11
2

=
1

2
· 6 · 24

5 · 7 · 9 · 11
=

16

1155
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and ∫ π/2

0
(cosϕ)4(sinϕ)6 dϕ =

1

2
·B(5/2, 7/2) =

1

2
· Γ(5/2)Γ(7/2)

Γ(6)

=
1

2
·
3
2 ·

1
2 · Γ(1/2) · 52 ·

3
2 ·

1
2 · Γ(1/2)

5!
=

5 · 32 · π
26 · 2 · 3 · 4 · 5

=
3π

29
=

3π

512
.

Another important consequence of (9) and (11) is Legendre’s duplication formula for the
gamma function:

Theorem 6.
Γ(z)Γ(z + 1/2) = 21−2z

√
π Γ(2z), Re z > 0. (15)

In order to prove this we use (11) and the transformation 2ϕ = τ to find that

B(z, z) = 2

∫ π/2

0
(cosϕ)2z−1(sinϕ)2z−1 dϕ = 2 · 21−2z

∫ π/2

0
(sin 2ϕ)2z−1 dϕ

= 21−2z
∫ π

0
(sin τ)2z−1 dτ = 21−2z · 2

∫ π/2

0
(sin τ)2z−1 dτ = 21−2z ·B(z, 1/2).

Now we apply (9) to obtain

Γ(z)Γ(z)

Γ(2z)
= B(z, z) = 21−2z ·B(z, 1/2) = 21−2z · Γ(z)Γ(1/2)

Γ(z + 1/2)
, Re z > 0.

Finally, by using (13), this implies that

Γ(z)Γ(z + 1/2) = 21−2z
√
π Γ(2z), Re z > 0.

This proves the theorem.
Legendre’s duplication formula can be generalized to Gauss’s multiplication formula:

Theorem 7.

Γ(z)

n−1∏
k=1

Γ(z + k/n) = n1/2−nz(2π)(n−1)/2Γ(nz), n ∈ {1, 2, 3, . . .}. (16)

The case n = 1 is trivial and the case n = 2 is Legendre’s duplication formula.
Another property of the gamma function is given by Euler’s reflection formula:

Theorem 8.
Γ(z)Γ(1− z) =

π

sinπz
, z 6= 0,±1,±2, . . . . (17)

This can be shown by using contour integration in the complex plane as follows. First we
restrict to real values of z, say z = x with 0 < x < 1. By using (9) and (10) we have

Γ(x)Γ(1− x) = B(x, 1− x) =

∫ ∞
0

tx−1

t+ 1
dt.

In order to compute this integral we consider the contour integral∫
C

zx−1

1− z
dz,
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where the contour C consists of two circles about the origin of radii R and ε respectively,
which are joined along the negative real axis from −R to −ε. Move along the outer circle
with radius R in the positive (counterclockwise) direction and along the inner circle with
radius ε in the negative (clockwise) direction. By the residue theorem we have∫

C

zx−1

1− z
dz = −2πi,

when zx−1 has its principal value. This implies that

−2πi =

∫
C1

zx−1

1− z
dz +

∫
C2

zx−1

1− z
dz +

∫
C3

zx−1

1− z
dz +

∫
C4

zx−1

1− z
dz,

where C1 denotes the outer circle with radius R, C2 denotes the line segment from −R to −ε,
C3 denotes the inner circle with radius ε and C4 denotes the line segment from −ε to −R.
Then we have by writing z = Reiθ for the outer circle∫

C1

zx−1

1− z
dz =

∫ π

−π

Rx−1ei(x−1)θ

1−Reiθ
d
(
Reiθ

)
=

∫ π

−π

iRxeixθ

1−Reiθ
dθ.

In the same way we have by writing z = εeiθ for the inner circle∫
C3

zx−1

1− z
dz =

∫ −π
π

iεxeixθ

1− εeiθ
dθ.

For the line segment from −R to −ε we have by writing z = −t = teπi∫
C2

zx−1

1− z
dz =

∫ ε

R

tx−1ei(x−1)π

1 + t
d
(
teπi

)
=

∫ ε

R

tx−1eixπ

1 + t
dt.

In the same way we have by writing z = −t = te−πi∫
C4

zx−1

1− z
dz =

∫ R

ε

tx−1e−ixπ

1 + t
dt.

Since 0 < x < 1 we have

lim
R→∞

∫ π

−π

iRxeixθ

1−Reiθ
dθ = 0 and lim

ε↓0

∫ −π
π

iεxeixθ

1− εeiθ
dθ = 0.

Hence we have

−2πi =

∫ 0

∞

tx−1eixπ

1 + t
dt+

∫ ∞
0

tx−1e−ixπ

1 + t
dt,

or

−2πi =
(
e−ixπ − eixπ

) ∫ ∞
0

tx−1

1 + t
dt =⇒

∫ ∞
0

tx−1

1 + t
dt =

2πi

eixπ − e−ixπ
=

π

sinπx
.

This proves the theorem for real values of z, say z = x with 0 < x < 1. The full result follows
by analytic continuation. Alternatively, the result can be obtained as follows. If (17) holds
for real values of z with 0 < z < 1, then it holds for all complex z with 0 < Re z < 1 by
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analyticity. Then it also holds for Re z = 0 with z 6= 0 by continuity. Finally, the full result
follows for z shifted by integers using (2) and sin(z + π) = − sin z. Note that (17) holds for
all complex values of z with z 6= 0,−1,−2, . . .. Instead of (17) we may write

1

Γ(z)Γ(1− z)
=

sinπz

π
, (18)

which holds for all z ∈ C.
Now we will prove an asymptotic formula which is due to Stirling. First we define

Definition 4. Two functions f and g of a real variable x are called asymptotically equal,
notation

f ∼ g for x→∞, if lim
x→∞

f(x)

g(x)
= 1.

Now we have Stirling’s formula:

Theorem 9.
Γ(x+ 1) ∼ xx+1/2e−x

√
2π, x→∞. (19)

Here x denotes a real variable. This can be proved as follows. Consider

Γ(x+ 1) =

∫ ∞
0

e−ttx dt,

where x ∈ R. Then we obtain by using the transformation t = x(1 + u)

Γ(x+ 1) =

∫ ∞
−1

e−x(1+u)xx(1 + u)xx du = xx+1e−x
∫ ∞
−1

e−xu(1 + u)x du

= xx+1e−x
∫ ∞
−1

ex(−u+ln(1+u)) du.

The function f(u) = −u + ln(1 + u) equals zero for u = 0. For other values of u we have
f(u) < 0. This implies that the integrand of the last integral equals 1 at u = 0 and that this
integrand becomes very small for large values of x at other values of u. So for large values of
x we only have to deal with the integrand near u = 0. Note that we have

f(u) = −u+ ln(1 + u) = −1

2
u2 +O(u3) for u→ 0.

This implies that ∫ ∞
−1

ex(−u+ln(1+u)) du ∼
∫ ∞
−∞

e−xu
2/2 du for x→∞.

If we set u = t
√

2/x we have by using the normal integral (14)∫ ∞
−∞

e−xu
2/2 du = x−1/2

√
2

∫ ∞
−∞

e−t
2
dt = x−1/2

√
2π.

Hence we have
Γ(x+ 1) ∼ xx+1/2e−x

√
2π, x→∞,

which proves the theorem.
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Note that Stirling’s formula implies that

n! ∼ nne−n
√

2πn for n→∞

and that
Γ(n+ a)

Γ(n+ b)
∼ na−b for n→∞.

The theorem can be extended for z in the complex plane:

Theorem 10. For δ > 0 we have

Γ(z + 1) ∼ zz+1/2e−z
√

2π for |z| → ∞ with | arg z| ≤ π − δ. (20)

Stirling’s asymptotic formula can be used to give an alternative proof for Euler’s reflection
formula (17) for the gamma function. Consider the function

f(z) = Γ(z)Γ(1− z) sinπz.

Then we have

f(z + 1) = Γ(z + 1)Γ(−z) sinπ(z + 1) = zΓ(z) · Γ(1− z)
−z

· − sinπz = f(z).

Hence, f is periodic with period 1. Further we have

lim
z→0

f(z) = lim
z→0

Γ(z)Γ(1− z) sinπz = lim
z→0

Γ(z + 1)Γ(1− z)sinπz

z
= π, (21)

which implies that f has no poles. Hence, f is analytic and periodic with period 1. Now we
want to apply Liouville’s theorem for entire functions, id est functions which are analytic on
the whole complex plane:

Theorem 11. Every bounded entire function is constant.

Therefore, we want to show that f is bounded. Since f is periodic with period 1 we consider
0 ≤ Re z ≤ 1, say z = x+ iy with x and y real and 0 ≤ x ≤ 1. Then we have

sinπz =
eiπz − e−iπz

2i
∼ − 1

2i
e−iπz =

i

2
e−iπz for y →∞.

Now we apply Stirling’s formula to obtain

f(z) = Γ(z)Γ(1− z) sinπz ∼ zz−1/2e−z
√

2π (−z)−z+1/2ez
√

2π
i

2
e−iπz.

For y > 0 we have −z/z = e−πi. Hence, f(z) ∼ π for y →∞. This implies that f is bounded.
So, Liouville’s theorem implies that f is constant. By using (21) we conclude that f(z) = π,
which proves Euler’s reflection formula (17) or (18).

Stirling’s formula can also be used to give an alternative proof for Legendre’s duplication
formula (15). Consider the function

g(z) = 22z−1
Γ(z)Γ(z + 1/2)

Γ(1/2)Γ(2z)
.
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Then we have by using (2)

g(z + 1) = 22z+1Γ(z + 1)Γ(z + 3/2)

Γ(1/2)Γ(2z + 2)
= 22z+1 zΓ(z)(z + 1/2)Γ(z + 1/2)

Γ(1/2)(2z + 1)2zΓ(2z)
= g(z).

Further we have by using (13) and Stirling’s asymptotic formula (20)

g(z) ∼ 22z−1
zz−1/2e−z

√
2π zze−z

√
2π

√
π 22z−1/2z2z−1/2e−2z

√
2π

= 1.

This implies that
lim
n→∞

g(z + n) = 1,

also for integer values for n. On the other hand we have g(z + n) = g(z) for integer values of
n. This implies that g(z) = 1 for all z. This proves (15).

Finally we have the digamma function ψ(z) which is related to the gamma function. This
function ψ(z) is defined as follows.

Definition 5.

ψ(z) =
Γ′(z)

Γ(z)
=

d

dz
ln Γ(z), z 6= 0,−1,−2, . . . . (22)

A property of this digamma function that is easily proved by using (2) is given by the following
theorem:

Theorem 12.

ψ(z + 1) = ψ(z) +
1

z
. (23)

By using (2) we have

ψ(z + 1) =
d

dz
ln Γ(z + 1) =

d

dz
ln (zΓ(z)) =

d

dz
ln z +

d

dz
ln Γ(z) =

1

z
+ ψ(z).

This proves the theorem. Iteration of (23) easily leads to

Theorem 13.

ψ(z + n) = ψ(z) +
1

z
+

1

z + 1
+ . . .+

1

z + n− 1
, n = 1, 2, 3, . . . . (24)

Another property of the digamma function is given by

Theorem 14.
ψ(z)− ψ(1− z) = − π

tanπz
, z 6= 0,±1,±2, . . . . (25)

The proof of this theorem is based on (17). We have

ψ(z)− ψ(1− z) =
d

dz
ln Γ(z) +

d

dz
ln Γ(1− z) =

d

dz
ln (Γ(z)Γ(1− z))

=
d

dz
ln

π

sinπz
=

sinπz

π
· −π

2 cosπz

(sinπz)2
= − π

tanπz
.
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