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1 Basics of the ACE Model

Like many models in social science, the ACE model strives to explain observed population

variance into smaller components. Like ANOVA techniques, the ACE technique compares

the variance within groups to the variance across groups. Unlike the more general ANOVA

method, the ACE model uses the same two groups, monozygotic (MZ) and dizygotic (DZ)

twins, in all calculations and random variables measured on the same scale. This allows

a focus on differences in correlation of MZ and DZ twins. While more complex structural

equation models have become the vogue in twin studies, as Alford et al. (2005) observe, the

basic logic is intuitive and easy to understand.

Classical twin studies attempt to partition observed variance into three components: the

additive genetic component (A), the shared environment of the twin pairs (C), and a residual

category of environment unshared by the pairs (E). Since these values are assumed to sum to

unity, only two quantities are required to estimate the model for a given variable of interest:

the observed correlation of monozygotic twins (rMZ) and the correlation of dizyogtic twins
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(rDZ). Explicitly, the model is estimated using the following three equations:

A = 2(rMZ − rDZ) (1)

C = 2rDZ − rMZ (2)

E = 1− rMZ (3)

For traits that are driven exclusively by genes, MZ twins will correlate perfectly, but DZ

twins, which are assumed to share half their genetic material on average, will only correlate

at the rDZ = 0.5 level. For traits that are environmental in nature, we would expect to see no

difference in MZ and DZ correlation. These expectations are encapsulated in the three ACE

equations and make for a parsimonious model. Many modern twin studies employ structural

equation modeling or Bayesian methods to estimate these quantities (Medland and Hatemi,

2009), but the underlying logic is based on comparing the covariances of MZ and DZ, and the

arguments in this paper, while employing these specific estimators, apply equally to other

techniques.

Within political science, the classical twin study design has been applied to questions of

political ideology (Alford et al., 2005), partisanship (Settle et al., 2009), political behavior

(Fowler et al., 2008), and political attitudes and tolerance (Eaves and Hatemi, 2008). At

a minimum, these studies make a strong case for the presence of a genetic component to

political behavior. Even the most grudging critic must allow that the “sharp null” of no

genetic influence can be safely rejected. Of course, these studies also attempt to quantify the

effect size, the percent of observed variation “explained” by genes. While this is a noble goal,

are the blunt tools of the classical twin study powerful enough to make this goal? If so, we

would expect that different patterns in correlation would lead to different ACE estimates.

We might also expect the ACE estimates at the macro level to reflect differences at lower

levels in the data. In this paper, I demonstrate a small subset of possible data generating
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processes that could all lead to the same ACE estimates. It is my position that at best ACE

estimates consistently exaggerate actual effects and at worst are substantially misleading.

2 Many roads to the same destination

Given the reliance on correlation, there has been little discussion of what could be generating

the correlations we observe. As a summary statistic, provides a scale free measure of the linear

relationship of two variables, but such a summary can obscur the wide variety of possible

distributions that give rise to the same correlation value. Anscombe (1973)’s famous data

sets provide a warning against relying on summary statistics without understanding the

underlying distributions. Reproduced in Figure 2, these four data sets all have the same

means, variance, and correlation, but produce vastly different scatterplots. While some of

these datasets seem implausible for the subject matter of twin studies (e.g. a quadratic

relationship between twins), Anscombe’s work does beg the quesiton, “What meaningful

differences could the correlations in classical studies be hiding?”

Consider a bivariate mixture distribution f(x, y) composed of k components fk(x, y),

each a bivariate joint distribution with correlation ρi, 1 ≤ i ≤ k. Let w be the weights of the

components, such that wi > 0 and Σwi = 1. The correlation of the overall joint distribution

is then the weighted sum of the component correlations1:

ρ = Σk
1wiρi (4)

A single value of ρ could be derived from several different distributions. For example,

a correlation of 0.5 could come from pair of component distributions with weights w1 =

0.5, w2 = 0.5 and ρ1 = 0.4, ρ2 = 0.6 It could also arrise if w1 = 0.8, w2 = 0.2, and ρ1 =

0.7, ρ2 = −0.3. Figure 2 shows simulated data from these two mixture distributions. For 100

1I have not proved this yet, but I have convinced myself, at least for normal X and Y
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Figure 1: Bivariate Distributions with Identical Correlation (Anscombe, 1973)

samples each, a pair (x, y) is from the first bivariate normal with ρ1 with probability w1 and

from the second distribution with ρ2 otherwise. All of the univariate variables are standard

normal. Analyzing these data results in r = 0.569 for the first distribution and r = 0.459 for

the second distribution, well within expected deviations of the true population correlation.

But unlike Anscombe’s data, these scatter plots do not immediately suggest that there are

different distributions at work.

Of course, we should only care if mixtures exist in twin data if these mixtures obscure

important information. Consider a world in which the political ideology is linked to one

environmental factor and one Mendelian gene with a recessive genotype and a dominant

genotype. We can then abbreviate individuals with the dominant genotype as G and those

with the recessive as g. Similarly, let E represent the presence of the environmental stimulus

and e its absence. For any individual there are 4 possible pairings: GE, gE,Ge, gg. For

pairs of individuals (where order is not important), there are 10 possible joint distributions:

GEGE, gEgE,GeGe, gggg, GEgE,GEGe, GEgg, gEGe, gEgg,Gegg. It would be quite be-
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Figure 2: Two bivariate mixtures distributions with overall ρ = 0.5

lievable that the correlation of each of these distributions could vary, with some showing

higher correlation and some lower. As in the above examples, different combinations of a

mixture of these distributions could lead to the same overall population correlation, which

might not be immediately apparent from a highlevel understanding of the data.

As an example set of correlations for the overall distributions fMZ and fDZ, consider

Alford et al. (2005)’s estimate of conservative ideology that found “for the overall index of

political conservatism, genetics accounts for approximately half of the variance in ideology,

while shared environment including parental influence accounts for only 11%.” In terms of

the ACE model this represents A = 0.53, C = 0.11, E = 0.36. Solving for rMZ and rDZ from

the ACE equations yields:

rMZ = 1− E = 0.64 (5)

rDZ = rMZ −
A

2
= .64− .265 = 0.375 (6)

In the next five examples, I show how these correlations can be the product of mixture

distributions, specifically subsets of the 10 distributions in the previous paragraph.
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2.1 Example 1: Genetic Effects

The simplest example is actually simpler than the world of one gene and one environmental

stimulus. We start with a world in only the gene matters, with any necessary environmental

conditions common to all individuals. We can then consider only the following three joint

distributions: GG, gg,Gg. For the overall distribution for MZ twins, fMZ, note that only

the GG and gg distributions are possible, given that identical twins share 100% of their

genetic material. Given a gene that is prevalent at a rate of 50%, the weights for the

component distributions are immediate: wGG = 0.5, wgg = 0.5. Since DZ twins each have

a 50% chance of getting the dominant form and can differ, the weights for fDZ vary more:

wGG = 0.25, wgg = 0.25, wGg = 0.5. Given these weights, we have a range of possible of

values for the correlations. Here is an example:

rMZ = 0.64 = 0.5(rGG + rgg) = 0.5(0.88 + 0.4) (7)

rDZ = 0.375 = 0.25(rGG + rgg) + 0.5rGg = 0.25(0.88 + 0.4) + 0.5 · 0.11 (8)

This example is fairly consistent with the ACE assumptions. Twin pairs with iden-

tical genetics correlate more than pairs with dissimilar genes. This is true for both the

macro-level correlation comparing rMZ and rDZ and also the mixture level comparisons where

rGG > rgg > rGg. What is most interesting about this example is the lack of variation in

environmental stimulus (we have assumed all twin pairs experience the same environment),

yet the ACE estimate from these data would ascribe 11% of the population variance to

shared environmental factors. Interestingly, this value is the same as the correlation of het-

erogeneous DZ twins (rGg = .11). But this relationship only holds when the distribution

of dominant and recessive genes sits at 50%/50%. For example, let the dominant form be

found in 75% of the population. Weights for fMZ are then wGG = 0.75, wgg = 0.25 and for

fDZ, wGG = 0.5625, wgg = 0.0625, wGg = 0.375. Given these weights we could see an entirely
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different pattern of correlations:

rMZ = 0.64 = 0.75 · 0.5333 + 0.25 · 0.9 (9)

rDZ = 0.375 = 0.5625 · 0.5333 + 0.0625 · 0.9 + 0.375 · 0.05 (10)

This is example shows a critical flaw in the assumptions of the ACE model. The ACE model

assumes that DZ twins share on average half of their genetic material. In the aggregate,

this assumption generally holds. But when specific genes are not evenly distributed over the

population, we can see divergences from this assumption. In the previous example, 62.5%

of DZ twin pairs had identical genotypes (i.e. wGG + wgg = 0.5625 + 0.0625 = .625), not

the assumed 50%. Interestingly, it seems that as prevalence of a gene increases, we are more

likely to ascribe variation to environmental factors, a rather counterintuitive result.

2.2 Example 2: Common Environment

The previous example assumed that all environmental factors were common to all twin pairs.

In this example, consider environmental factors that are common to both individuals in a

twin pair. For example, for twins raised together, we might consider parents’ political beliefs

to be an environmental stimulus. Using the earlier notation, if parents are “conservative,”

the twin pair is labeled as E, otherwise labeled as e. This leads to the following possible

mixture distributions: GGE, GGe, ggE, gge,GgE, Gge.

Assume that environment is independent of genetics (usually assumed in ACE studies,

a point to which we shall return later), and both the gene and environmental factor have

50% prevalence in the population. For fMZ, the mixture weights would be wGGE = wggE =

wGGe = wgge = 0.25. For fDZ, the mixture weights would be wGGE = wggE = wGGe = wgge =

0.125, wGgE = wGge = 0.25. Constraining the correlations such that the presence of E always
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leads to greater similarity of twin pairs:

rMZ = 0.64 = 0.25(GGE + GGe + ggE + gge) (11)

= 0.25(0.94 + 0.74 + 0.54 + 0.34) (12)

rDZ = 0.375 = 0.125(GGE + GGe + ggE + gge) + .25(GgE + Gge) (13)

= 0.125(0.94 + 0.74 + 0.54 + 0.34) + .25(0.21 + .01) (14)

In this example, the presence of the environmental stimulus added a constant factor (0.2)

compared to twin pairs of the same genotypes without the environmental stimulus. It is not

clear how to square the contribution of the environmental factor in this example with the

ACE estimate of C = .11.

2.3 Example 3: G× E

The impacts of environmental stimuli need not be linear in effect. If conservative parents

have a multiplicative impact on their children, given the presence of a specific genotype, gene-

environment interaction (G×E) will manifest differently in homogeneous and heterogeneous

twin pairs. Purcell (2002) shows that when genes and shared environment interact, estimates

of the A quantity will be inflated. If genes are interacting with unshared environment, the

resulting E estimates will be upwardly biased. The logic of these effects is simple. If the

environmental stimulus (E) has no effect outside of the presence of a specific (G), we would

observe far more correlation in homogeneous twins. Put another way, twins with identical

genes will be made more similar by the interaction since both twins will experience the

interaction. Only one twin in heterogeneous pairs will experience the interaction, driving

down the similarity of the behavior of the two. An example of G×E in practice might look

like the following:
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rMZ = 0.64 = 0.25(GGE + GGe + ggE + gge) (15)

= 0.25(0.97 + .53 + .53 + .53) (16)

rDZ = 0.375 = 0.125(GGE + GGe + ggE + gge) + .25(GgE + Gge) (17)

= 0.125(0.97 + .53 + .53 + .53) + .25(0.01 + .21) (18)

By itself, the environmental stimulus has little impact on the similarity of behavior of twin

pairs. But in the presence of the dominant form, the environmental stimulus becomes far

more influential. Similarly, for the GgE and Gge we see the opposite effect: without the

environmental stimulus, the DZ twins behave more similarly when neither twin experiences

an interactive effect than when the environmental stimulus interacts with the genes of one

twin only. Of course, these underlying mixture distributions generate precisely the same

ACE estimates as the previous examples.

2.4 Example 4: rGE

The previous two examples assumed that genes and environment take values independently.

It seems logical, however, that an environmental stimulus such as conservative parenting will

be associated with children with conservative genotypes (and by extension, liberal parents

with children with liberal genotypes). Such dependence between genetic and environmental

variables is commonly referred to as “gene-environment correlation” (rGE). While the pop-

ulation may still have 50% prevalence for a gene and 50% prevalence for a environmental

stimulus, the joint distribution of the two may be decidedly non-independent. Table 2.4

shows a joint distribution of twin pair genotypes with the environmental stimulus for MZ

and DZ twins. The rule defining the cells is simple: if one or more twin has the G form of

the gene, the probability of also receiving in the environmental stimulus is high. If neither
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twin has the G form, the probability of receiving the environmental stimulus is very low.

MZ Twins

E e
GG 0.4 0.1 0.5
gg 0.1 0.4 0.5

0.5 0.5
DZ Twins

E e
GG 0.20 0.05 0.25
gg 0.05 0.20 0.25
Gg 0.4 0.1 0.5

.65 0.35

Table 1: Joint distributions of genes and environment for MZ and DZ twins

These cells form the weights of the mixture distributions for an example of rGE that

would result in the same overall correlation as previous examples:

rMZ = 0.64 = 0.4GGE + 0.1GGe + 0.1ggE + 0.4gge (19)

= 0.4 · 0.6625 + 0.1 · 0.55 + 0.1 · 0.55 + 0.4 · 0.6625 (20)

rDZ = 0.375 = 0.2GGE + 0.05GGe + 0.05ggE + 0.2gge + 0.4GgE + 0.1Gge (21)

= 0.2 · 0.6625 + 0.05 · 0.55 + 0.05 · 0.55 + 0.2 · 0.6625 + 0.4 · 0 + 0.1 · 0.55 (22)

What is most interesting about this example is that heterogeneous pairs without the environ-

mental stimulus correlate just as much as identical twins with “mismatched” environmental

stimuli, but because they are such a small part of the overall DZ twin population (10%), this

finding is masked by the larger groups.

2.5 Example 5: Equal Environments

Throughout these examples, we have treated environmental stimuli exactly the same for MZ

and DZ pairs. In the terminology of classical twin studies, this consistency between MZ and
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DZ twins is known as the“Equal Environments Assumption” (EEA). If we were to notate the

shared environmental stimulus (or lack thereof) for MZ twins as EMZ and eMZ and the shared

environment for DZ twins as EDZ and eDZ, the EEA states EMZ = EDZ and eMZ = eDZ. If MZ

and DZ twins are systematically raised in different environments, this assumption does not

hold. In an extreme example, DZ twins may never be exposed to a necessary environmental

stimulus and weights for any distribution with E would be zero (e.g. wGgE = wGGE = 0),

while MZ twins are always exposed to the stimulus:

rMZ = 0.64 = 0.5GGE + 0GGe + 0.5ggE + 0gge (23)

= 0.5 · 0.905 + 0.5 · 0.375 (24)

rDZ = 0.375 = 0GGE + 0.25GGe + 0ggE + 0.25gge + 0GgE + 0.5Gge (25)

= 0.25 · .375 + 0.25 · 0.375 + 0.5 · 0.375 (26)

This example shows some severe gene-environment interaction. All the component distribu-

tions, except for GGE, show precisely the same amount of correlation. Because no DZ twins

with the GG genotype pair are ever exposed to the environmental stimulus, we cannot make

a meaningful comparison between the two groups.

3 All Models are Wrong, Some are Useful

Despite our concerns about misspecification, rGE, G× E, and equal environments, the basic

logic of classical twin studies is seductive. Like an experiment, we imagine that twins have

been randomly assigned to treatment (being monozygotic) and control (being dizygotic).

In so far as twin zygosity is random (or could be made “as-if” using matching or similar

technique (Rosenbaum and Rubin, 1983)), this logic is sound. Any observed in difference

cannot be the result of a confounding variable, and we have a host of analysis techniques to
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test null hypotheses of no effect. We can even estimate effect size as the difference between

MZ and DZ twins on any given test statistic.

But can we generalize our findings to a larger population? Even leaving aside the not

inconsiderable question of whether twins form a representative sample, does the ACE model

create an accurate picture of forces at work in the general population? The five examples in

this paper covered a wide range of situations, but they all generated the same ACE estimates:

A = 0.53, C = 0.11, E = 0.36. If genes are not evenly distributed, if environmental factors

correlate with genes, if genes interact with the environment, or if environmental factors are

not shared by MZ and DZ twins, the underlying data generating process can deviate widely,

and statements of a variation “explained” by genes or environment do not seem to match the

actual process.

There are at least two solutions that are within our immediate grasp. First, researchers

could be content to test the sharp null of no effect of genetics. Understanding when and where

genes play a role is a valuable pursuit. Second, for cases where researchers want to know

more about the strength of genetic and environmental effects, explicitly modeling both genes

and environment is a necessary action. For example, Purcell (2002) demonstrates regression

techniques that explicitly model G×E. These techniques require gathering data on specific

environmental stimuli, which has typically been avoided in political science applications. To

some degree, this may be the result of the nature of twin registries. With political science

only recently showing an interest in twin data, few studies have been conducted that gather

information on politically relevant variables. As data emerge, adding it to the model should

become common place. If we intend to make claims about genes and environmental factors

we will need to measure both, not simply assume them away.
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