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bottom-up segmentation. For instance, the classification scores of the Bag of Features (BoF)
model for image classification have been used to build a top-down categorization cost in a Con-
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dictionary learning method used in the BoF model due to the ability of DSDL to capture dis-
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not been used for building a top-down categorization cost for semantic segmentation. In this
paper, we propose a CRF model that incorporates a DSDL based top-down cost for semantic
segmentation. We show that the new CRF energy can be minimized using existing efficient dis-
crete optimization techniques. Moreover, we propose a new method for jointly learning the CRF
parameters, object classifiers and the visual dictionary. Our experiments demonstrate that by
jointly learning these parameters, the feature representation becomes more discriminative and
the segmentation performance improves with respect to that of state-of-the-art methods that use
unsupervised K-means dictionary learning.
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Abstract. A popular trend in semantic segmentation is to use top-down
object information to improve bottom-up segmentation. For instance, the
classification scores of the Bag of Features (BoF) model for image clas-
sification have been used to build a top-down categorization cost in a
Conditional Random Field (CRF) model for semantic segmentation. Re-
cent work shows that discriminative sparse dictionary learning (DSDL)
can improve upon the unsupervised K-means dictionary learning method
used in the BoF model due to the ability of DSDL to capture discrimina-
tive features from different classes. However, to the best of our knowledge,
DSDL has not been used for building a top-down categorization cost for
semantic segmentation. In this paper, we propose a CRF model that in-
corporates a DSDL based top-down cost for semantic segmentation. We
show that the new CRF energy can be minimized using existing efficient
discrete optimization techniques. Moreover, we propose a new method
for jointly learning the CRF parameters, object classifiers and the visual
dictionary. Our experiments demonstrate that by jointly learning these
parameters, the feature representation becomes more discriminative and
the segmentation performance improves with respect to that of state-of-
the-art methods that use unsupervised K-means dictionary learning.

Keywords: discriminative sparse dictionary learning, conditional ran-
dom fields, semantic segmentation

1 Introduction

Semantic image segmentation is the problem of inferring an object class label for
each pixel [17, 12, 16, 33, 27]. This is a fundamental problem in computer vision
with many applications in scene understanding, automatic driving, surveillance,
etc. However, this problem is significantly more complex than image classifica-
tion, where one needs to find a single label for the image. This is because the joint
labeling of all pixels involves reasoning about the image neighborhood structure,
as well as capturing long-range interactions and high-level object class priors.

Prior Work. The most common approach to semantic segmentation is to model
the image with a Conditional Random Field (CRF) model [17]. A CRF captures
the fact that image regions corresponding to the same object class should have
similar features, and regions that are similar to each other (in location or fea-
ture space) should be more likely to share the same label. In a second-order CRF
model, the features coming from each region are usually modeled by the CRF



2 Lingling Tao, Fatih Porikli, René Vidal

unary potentials, which are based on appearance, context and semantic relations,
while pairwise relationships are modeled by the CRF pairwise potentials, which
are based on neighborhood similarity and co-occurrence information. For exam-
ple, early works use patch/super-pixel/region based features such as a Bag of
Features (BoF) representation of color, SIFT features [7, 8], textonboost [24], co-
occurrence statistics [8], relative location features [9], etc. Once the CRF model
has been constructed, multi-label graph cuts [13] or other approximate graph
inference algorithms can be used to efficiently find an optimal segmentation.

In spite of their success, a major disadvantage of second-order CRF models
is that the features they use are too local to capture long-range interactions
and object-level information. To address this issue, various methods have been
proposed. One family of methods [3, 15, 33, 22, 27] uses other cues such as object
detection scores, shape priors, motion information and scene information, to im-
prove object segmentation. For instance, [15, 22] combine object detection results
with pixel-based CRF models; [33] further improves the algorithm by combining
object detection results with shape priors and scene classification information for
holistic scene understanding; and [27] uses exemplar-SVMs to get the detection
results together with shape priors, and combines them with appearance models.
Another family of methods uses more complex higher-order or hierarchical CRF
models. For instance, [12] shows that the integration of higher-order robust PN

potentials improves over the second-order CRF formulation. Also [16] proposes
a hierarchical CRF combining both segment-based and pixel-based CRF models
using robust PN potentials. However, a major drawback of these methods is
that the CRF cliques need to be predefined. Hence they cannot capture global
information about the entire object because the segmentation is unknown.

To address this issue, [26] proposes to augment the second-order CRF energy
with a global, top-down categorization potential based on the BoF representation
for image classification [6, 18]. This potential is obtained as the sum of the scores
of a multi-class SVM classifier applied to multiple BoF histograms per image, one
per object class. Since each histogram depends on the unknown segmentation,
during inference one effectively searches for a segmentation of the image that
gives a good classification score for each histogram. While in this approach of [26]
the visual words are learned independently from the classifiers, [10] shows how to
extend this method by using a discriminative dictionary of visual words, which is
learned jointly with the CRF parameters. Both approaches are, however, limited
by the simplicity of the BoF framework. Recent work shows that discriminative
sparse representations can improve over the basic BoF model for classification
due to their ability to capture discriminative features from different classes.
For instance, [20] proposes to learn a discriminative dictionary such that the
classification scores based on the sparse representation are well separated; [32]
shows that extracting sparse codes with a max-pooling scheme outperforms BoF
for object and scene classification; [2] further improves classification performance
by jointly learning the dictionary and the classifier parameters; and [1] presents a
general formulation for supervised dictionary learning adapted to various tasks.
However, these approaches have not been applied to semantic segmentation.



Sparse Dictionaries for Semantic Segmentation 3

Paper Contributions. In this paper, we propose a novel framework for se-
mantic segmentation based on a new CRF model with a top-down discriminative
sparse dictionary learning cost. Our main contributions are the following:

1. A new categorization cost for semantic segmentation based on discriminative
sparse dictionary learning. Although similar approaches have been explored
in image classification tasks [20, 32, 2, 1] and shown good performance, they
have not been used to model top-down information in semantic labeling.

2. A new algorithm for jointly learning a sparse dictionary and the CRF param-
eters, which makes the learned dictionary more discriminative and specifi-
cally trained for the segmentation task. Prior work in this area either learned
the dictionary beforehand or used energies that are linear on the dictionary
and classifier parameters, which makes the learning problem amenable to
structural SVMs [11] or latent structural SVMs [34]. In sharp contrast, we
use a sparse dictionary learning cost, which makes the energy depend non-
linearly on the dictionary atoms. The learning problem we confront is, thus,
significantly more difficult and requires the development of an ad-hoc learn-
ing method. Here, we propose a method based on stochastic gradient descent.

3. From a computational perspective, our approach is more scalable than that
of [26]. This is because the approach in [26] is based on minimizing an energy
involving the histogram intersection kernel, which requires the construction
of graphs with many auxiliary variables. On the other hand, our learning
scheme utilizes a stochastic gradient descent method, which requires fewer
graph-cut inference computations for each training loop.

To the best of our knowledge, there is little work on using discriminative
sparse dictionaries for semantic segmentation. This is arguably due to the com-
plexity of jointly learning the dictionary and the CRF parameters. The only
related works we are aware of are [35, 31]. In [35], a sparse dictionary is used
to build a sparse reconstruction weight matrix for all the super-pixels. Then a
set of representative super-pixels for each class is learned based on the weight
matrix, and classification is done by comparing reconstruction errors from each
class. However, the atoms of the dictionary used in this model are all the data
samples from one object class, thus there is no learning involved. On the other
hand, in [31], a grid-based CRF is defined to model the top-down saliency of the
image. The unary cost for each point on the grid is associated with the sparse
representation of the SIFT descriptor at that point. A max-margin formulation
and gradient descent optimization is then used to jointly learn the dictionary
and the classifier. But this model gives only a binary segmentation on the grid,
and requires fitting one dictionary per class, which could be computationally
expensive for semantic segmentation tasks with a large number of classes.

Paper Outline. The rest of the paper is organized as follows. In §2 we review
the basic CRF model and the CRF model with higher-order BoF potentials. In §3
we introduce higher-order potentials based on discriminative sparse dictionary
learning. We describe how inference is done and propose a gradient descent
method for jointly learning the dictionary and CRF parameters. In §4 we present
some experimental results as well as a discussion of possible improvements.
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2 Review of CRF Models for Semantic Segmentation

In this section, we describe how the semantic segmentation problem is formulated
using a CRF model. In principle, the goal is to compute an object category
label for each pixel in the image. In practice, however, the image is often over-
segmented into super-pixels and the goal becomes to label each super-pixel. To
that end, the image I is associated with a graph G = (V,E), where V is the set of
nodes and E ⊂ V ×V is the set of edges. Each node i ∈ V is a super-pixel and is
associated with a label xi ∈ {1, . . . , L}, where L is the number of object classes.
Two nodes are connected by an edge if their super-pixels share a boundary.

To find a labeling X = {xi}|V |i=1 for image I, rather than modeling the joint
distribution of all labels P (X), a CRF models the conditional distribution of the
labels given the observations P (X | I) with a Gibbs distribution of the form

P (X | I) ∝ exp
(
− E(X, I)

)
, (1)

where the energy function E(X, I) is the sum of potentials from all cliques of G.

Second-order CRF Model. In the basic second-order CRF model, the energy
function is given as

E(X, I) = λ1
∑
i∈V

φUi (xi, I) + λ2
∑

(i,j)∈E

φPij(xi, xj , I). (2)

The unary potential φU (xi, I) models the cost of assigning class label xi to super-
pixel i, while the pairwise potential φPij(xi, xj , I) models the cost of assigning a
pair of labels (xi, xj) to a pair of neighboring super-pixels (i, j) ∈ E. Then, the
best labeling is the one that maximizes the conditional probability, and thus
minimizes the energy function. In this work, we will use different state-of-art
choices for the unary and pairwise potentials, as described in the experiments.

Top-down BoF Categorization Cost. As discussed before, the basic CRF
model does not capture high-level information about an object class. To address
this issue, [26] proposes a higher-order potential based on the BoF approach. The
key idea is to represent an image I with L class-specific histograms {hl(X)}Ll=1,
each one capturing the distribution of image features for one of the object classes.
Let D be a dictionary of K visual words learned from all training images using
K-means. Let bj ∈ RK be the encoding of feature descriptor fj at the j-th
interest point, i.e., bjk = 1 if the j-th descriptor is associated with the k-th
visual word, and bjk = 0 otherwise. A BoF histogram for class l is constructed
by accumulating bj over interest points that belong to super-pixels with label l,
that is

hl(X) =
∑
j∈S

bjδ(xsj = l), (3)

where S is the set of all interest points in image I and sj ∈ V is the super-
pixel containing interest point j. A top-down categorization cost is then defined
by applying a classifier φOl (·) to this BoF histogram. To encourage the optimal
segmentation to be such that the distribution of features within each segment
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resemble that of one of the object categories, the L categorization costs are
integrated with the basic CRF model by defining the following energy

E(X, I) = λ1
∑
i∈V

φUi (xi, I) + λ2
∑

(i,j)∈E

φPij(xi, xj , I) +

L∑
l=1

φOl (hl(X)). (4)

It is shown in [26] that if the classifiers φOl are linear or intersection-kernel SVMs,
the minimization of the energy can be done using extensions of graph cuts and
that the CRF parameters can be learned by structural SVMs.

One drawback of the approach in [26] is that the dictionary is fixed and
learned independently from the CRF parameters via K-means. To address this
issue, [10] proposes to learn the dictionary of visual words jointly with the CRF
parameters by defining a classifier for each visual word and augmenting the
energy with a dictionary learning cost. Since the assignments of visual descriptors
to visual words are unknown, these assignments become latent variables for the
energy. The optimal segmentation and visual words assignments can be found via
a combination of graph cuts and loopy belief propagation [21], and the dictionary
and CRF parameters are then jointly learned by latent structural SVMs [34].

3 Proposed Discriminative Dictionary Learning CRF Cost

In this section, we present a discriminative sparse dictionary learning cost for
semantic segmentation. As in [26, 10], this cost is based on the construction of
a classifier applied to a class-specific histogram. However, the key difference is
that our histogram is a sum pooling over the sparse coefficients of all feature
descriptors associated with a class. While histograms of this kind have been used
for classification (see, e.g., [32]), the fundamental challenge when using them for
segmentation is that the histograms depend on both the segmentation and the
dictionary. In particular, the histograms depend nonlinearly on the dictionary,
which makes learning methods based on latent structural SVMs no longer ap-
plicable. In what follows, we describe the details of the new categorization cost
as well as how we solve the inference and learning problems.

Top-Down Sparse Dictionary Learning Cost. Let D ∈ RF×K be an un-
known dictionary of K visual words, with each visual word normalized to unit
norm. Each feature descriptor fj is encoded with respect to D via sparse coding,
which involves solving the following problem:

αj(D) = argmin
α
{1

2
‖fj −Dα‖2 + λ‖α‖1}. (5)

Note the implicit nonlinear dependency of α on D. The sparse codes of all feature
descriptors associated with class l are then used to construct a histogram

hl(X,D) =
∑
j∈S

αj(D)δ(xsj = l) =
∑
i∈V

∑
j∈Si

αj(D)δ(xi = l), (6)
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where Si is the set of feature points that belong to super-pixel i. Note the
dependency of hl on both the segmentation X and the dictionary D. Finally, let
wl ∈ RF be the parameters of a linear classifier for class l, where we remove the
bias term to simplify the computation. Then the energy function in (4) becomes

E(X, I) = λ1
∑
i∈V

φUi (xi, I) + λ2
∑

(i,j)∈E

φPij(xi, xj , I) +

L∑
l=1

w>l hl(X,D). (7)

Inference. Given an image I, the CRF parameters λ1, λ2, the classifier pa-
rameters {wl}Ll=1, and the dictionary D, our goal is to compute the labeling X∗

that maximizes the conditional probability, i.e.,

X∗ = argmax
X

P (X | I) = argmin
X

E(X, I). (8)

To that end, notice that the top-down categorization term can be decomposed
as a summation of unary potentials

L∑
l=1

w>l hl(X,D) =

L∑
l=1

w>l
∑
i∈V

∑
j∈Si

αj(D)δ(xi = l) =
∑
i∈V

ψO
i (xi,I)︷ ︸︸ ︷

w>xi

∑
j∈Si

αj(D) . (9)

Therefore, we can represent the cost function as

E(X, I) =
∑
i∈V
{λ1φUi (xi, I) + ψOi (xi, I)}+ λ2

∑
(i,j)∈E

φPij(xi, xj , I). (10)

Since this energy is the sum of unary and pairwise potentials, it can be minimized
using approximate inference algorithms, such as α expansion, α− β swap, etc.

Parameter and Dictionary Learning. Given a training set of images {In}Nn=1

and their corresponding segmentations {Xn}Nn=1, we now show how to learn the
CRF parameters λ1, λ2, the classifier parameters {wl}Ll=1, and the dictionary D.

When D is known, we can approach the learning problem using the structural
SVM framework [11]. To that end, we first rewrite the energy function as

E(X, I) = W>Φ(X, I,D), (11)

where

W =


λ1
λ2
w1

...
wL

 and Φ(X, I,D) =



∑
i∈V φ

U (xi, I)∑
(i,j)∈E φ

P
ij(xi, xj , I)∑

i∈V
∑
j∈Si

αjδ(xi = 1)
...∑

i∈V
∑
j∈Si

αjδ(xi = L)

 . (12)

We then seek a vector of parameters W of small norm such that the energy at the
ground truth segmentation E(Xn, In) is smaller than the energy at any other
segmentation E(X̂n, In) by a loss ∆(X̂n, Xn).3 That is, we solve the problem

3 We use a scaled Hamming loss ∆(X̂n, Xn) = γ
∑L

l=1
1
Nl

∑
i∈V δ(x̂

n
i = xni )δ(xni = l).
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min
W,{ξn}

1

2
‖W‖2 +

C

N

N∑
n=1

ξn

s.t. ∀n ∈ {1, . . . , N},∀X̂n

W>Φ(X̂n, In, D)−W>Φ(Xn, In, D) ≥ ∆(X̂n, Xn)− ξn,

(13)

where {ξn} are slack variables that account for the violation of the constraints.
The problem in (13) is a quadratic optimization problem subject to a combi-

natorial number of linear constraints in W , one for each labeling X̂n. As shown
in [11], this problem can be solved using a cutting plane method that alternates
between two steps: given W one finds the most violated constraint by solving
for X̄n = argminX̂{W>Φ(X̂, In, D)−∆(X̂,Xn)}, and given a set of constraints
X̄n one solves for W with this constraint added.

Unfortunately, in our case both W and D are unknown. Moreover, the energy
is not linear in D and its dependency on D is not explicit. As a result, the
cutting plane method does not apply to our problem. Therefore, we propose an
alternative approach inspired by recent work on image classification [1, 2, 31].

Let us first rewrite the optimization problem in (13) over both W and D as:

J(W,D) = (14)

1

2
‖W‖2 +

C

N

N∑
n=1

[
W>Φ(Xn, In, D)−min

X̂n

{W>Φ(X̂n, In, D)−∆(X̂n, Xn)}
]
.

The basic idea is to solve this problem by stochastic gradient descent and the key
challenge is the computation of the gradient with respect to D. Let us denote the
variables after the t-th iteration as Dt and Wt, and the most violated constraint
as {X̄n

t }. We can easily compute the derivative of J with respect to W as:

∂J

∂W

∣∣∣
Wt,Dt

= Wt +
C

N

N∑
n=1

(Φ(Xn, In, Dt)− Φ(X̄n
t , I

n, Dt)). (15)

To compute the derivative of J with respect to D, notice that J depends implic-
itly on D through the sparse codes {αj}. Thus, we can compute ∂J/∂D using
the chain rule, which requires computing ∂J/∂α and ∂α/∂D.

Under certain assumptions, ∂α/∂D can be computed as shown in [1, 2, 31].
Specifically, since 0 has to be a subgradient of the objective function in (5), the
sparse representation α of feature descriptor f must satisfy

D>(Dα− f) = −λ sign(α). (16)

Now, suppose that the support of α (denoted as Λ) does not change when there
is a small perturbation of D and let A = (D>ΛDΛ)−1, where DΛ is a submatrix
of D whose columns are indexed by Λ. After taking the derivative of (16) with
respect to D we get:

∂α(k)

∂D
= (f −Dα)A[k] − (DA>)〈k〉α

> ∀k ∈ Λ, (17)
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Algorithm 1 Parameter Learning for Semantic Labeling with Sparse Dictio-
naries
1: Initialize the parameter with W0 and D0

2: while iter t ≤ maxiter do
3: Randomly select Q images
4: for q = 1, . . . , Q do
5: Compute sparse code α for q-th image using Eqn. (5)
6: Find the most violated constraint X̄q for this sample
7: end for
8: Compute the partial gradient of W and D corresponding to these Q samples

using Eqn. (15) and Eqn. (19). Denote them as gWt and gDt respectively.
9: Gradient Descent: Wt+1 = Wt − τtgWt, Dt+1 = Dt − τtgDt

10: Dt+1=normalize(Dt)
11: t+ +
12: end while

where (k), [k], and 〈k〉 denote the k-th entry, row, and column, respectively.
Given the set of images {In}Nn=1 with the corresponding set of feature points

{Sn}Nn=1, one can apply the chain rule to compute ∂J
∂D . Denote znj = ∂J

∂αn
j

as the

partial derivative of J with respect to the sparse codes αnj of feature point j in
image In, then

znj =
∂J

∂αnj

∣∣∣
Wt,Dt

= wxn
sj
,t − wx̂n

sj,t
,t, (18)

where xnsj , x̂
n
sj ,t denote the ground-truth label and the computed label of feature

point fnj at iteration t respectively. According to the chain rule, we have

∂J

∂D
=

N∑
n=1

∑
j∈Sn

∂J

∂αnj

> ∂αnj
∂D

=

N∑
n=1

∑
j∈Sn

∑
k∈Λn

j

∂J

∂αnj (k)

> ∂αnj (k)

∂D

=

N∑
n=1

∑
j∈Sn

∑
k∈Λn

j

znj (k){(fnj −Dαnj )Anj[k] − (DA>j )〈k〉α
n
j
>}

=

N∑
n=1

∑
j∈Sn

(fnj −Dαnj )(Anj z
n
j )> −DAnj

>znj α
n
j
>, (19)

where Anj = (D>Λn
j
DΛn

j
)−1. For simplicity, we removed the sub-script t from all

the variables that change through iterations.
Instead of summing over all the image samples, in our algorithm, we use

stochastic gradient descent, i.e., at each iteration we select a small subset of
sample images and compute the gradient based on this subset only. The detailed
algorithm is described in Algorithm 1.

Since the problem of jointly learning D and W is non-convex, it is very
important to have a good initialization for Algorithm 1. We compute D0 by
applying the sparse dictionary learning algorithm of [19] to all feature descriptors
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{fj}. We then compute W0 as [λ1, λ2, λ3w1, . . . , λ3wL], where {wl}Ll=1 are the
parameters of a multi-class linear SVM classifier (without bias term) trained on
the histograms {hl(Xn, D0)}, and λ1, λ2, λ3 are the parameters of the model

E(X, I) = λ1
∑
i∈V

φU (xi, I) + λ2
∑

(i,j)∈E

φPij(xi, xj , I) + λ3

L∑
l=1

w>l hl(X,D0) (20)

trained on the segmentations {Xn} using standard structural SVM learning.

4 Experimental Results

Datasets. We evaluate our algorithm on three datasets: the Graz-02 dataset,
the PASCAL VOC 2010 dataset and the MSRC21 dataset. The Graz-02 Dataset
[23] contains 900 images of size 480×640. Each image is labeled with 4 categories:
bike, pedestrian, car and background. In our experiments, we use 450 images for
training and the other 450 for testing. The PASCAL VOC 2010 dataset [5]
contains 1928 images labeled with 20 object classes and a background class.
Following [14], since there is no publicly available groundtruth for the test data,
we split the training/validation dataset and use 600 images among them for
training, 364 for validation and 964 for testing. The MSRC21 dataset [25] consists
of 591 color images of size 320×213 and corresponding ground-truth labeling for
21 classes. The standard train-validation-test split is used as described in [25].

Metric. We evaluate our algorithm using two performance metrics: accuracy
and intersection-union metric (VOC measure). We compute the per-class accu-
racy as the percentage of pixels that are classified correctly for each object class,
and report the ’average’ accuracy (the mean of the per-class percentages) and the
’global’ accuracy (the percentage of pixels from all classes that are classified cor-
rectly). We compute the VOC measure for each object class as #TP

#TP+#FP+#FN ,
where #TP , #FP and #FN are the number of true positives, false positives and
false negatives, respectively, and report the mean VOC measure over all classes.

Top-down Term. Since this framework is general, it can be applied with dif-
ferent unary, pairwise and top-down terms with different features. In our exper-
iments, we used three different methods to extract feature points and compute
object-level histograms. In the first method (TP1), we extract sparse SIFT fea-
tures for each image at detected interest points, similar to [26, 10]. In this case,
each super-pixel region can contain 0, 1 or more feature points, and we use the
absolute value of the sparse code for our top-down term. In the second method
(TP2), we extract one SIFT feature at the center of each super-pixel region, to
capture the texture of the whole region. In the third method (TP3), we compute
the vectorized average TextonBoost scores of all pixels in each super-pixel as
feature points. In the last two methods, each super-pixel is associated with only
one feature point. The first two methods are used for the Graz02 dataset, while
the third method is used for both the PASCAL VOC and MSRC21 datasets.

Unary Potentials. We use different unary potentials for different datasets.
For the Graz-02 dataset, we use the same unary potentials as in [26, 10] in order
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to make our results comparable. Specifically, we first create super-pixels by over-
segmenting each image using the Quick Shift algorithm [30]. Then we extract
dense SIFT features on each image, and compute the BoF representation for
each super-pixel region. We then train an SVM with a χ2-RBF kernel using
LibSVM [4]. For each super-pixel, we apply the SVM classifier to the associated
histogram and compute the logarithm of the output probability as the unary
potential. For the PASCAL VOC and MSRC21 datasets, we use the pixel-wise
unaries based on TextonBoost classifier provided by [14]. The super-pixel unary
potentials are then computed by first taking the logarithm of the probabilities
and then averaging over all pixels inside each super-pixel.

Pairwise Potentials. For all datasets, we use a contrast sensitive cost
Bij

1+‖Ci−Cj‖
[10] as pairwise potentials, where Bij is the length of shared boundary between
super-pixel i and j, and Ci is the mean color of super-pixel i.

Implementation Details. We use the VL feat toolbox [29] for preprocessing.
We use vl quickshift to generate super-pixels and set the parameter that controls
super-pixel size to τ = 8. When extracting dense SIFT features to construct the
unaries, we use the vl dsift function with spatial bin size set to 12. To define
the top-down cost, when computing sparse SIFT features (TP1), we apply the
vl sift function with default settings, while for TP2, we set the position for SIFT
features to be the center position of each super-pixel, and the spatial bin size to
8. For initializing the linear classifiers w1, . . . , wL, we use the Matlab Structural
SVM toolbox [28]. For initializing the dictionary and computing sparse represen-
tations, we use the sparse coding toolbox provided by [19], where λ is set to 0.1,
and the dictionary is of size 400 for SIFT feature points, and 50 for TextonBoost
based feature points. The parameter C in our Max-Margin formulation is set to
1000. The scale γ of the hamming loss is set to 1000. For gradient descent, we use
an initial step size τ0 =1e-6. We run 100 iterations for Graz02, and 600 iterations
for PASCAL VOC and MSRC21. For PASCAL VOC and MSRC21, we use the
validation data to train our parameters, while the unary potentials from [14] are
computed based on training data. For Graz02, both unary potentials and model
parameters are computed based on training data.

4.1 Graz-02 Dataset

Results. Tables 1 and 2 show the VOC measure and per-class accuracy, re-
spectively, on the Graz-02 dataset. Since we randomly sampled super-pixels to
compute the unary potentials for this dataset, we run the experiment 5 times
and calculate the mean and variance of the result (reported in parenthesis). In
the tables, U+P refers to the basic CRF model described by Eqn. (2), and TP1
and TP2 refer to the first two methods for extracting top-down feature points.
Notice that the U+P result is computed by our implementation, while results
from [26, 10] are taken from the original paper. To show that these results are
comparable, we observe that in [10], their U+P implementation gives an average
of 50.82% in VOC measure metric, and 80.36% in average per-class accuracy,
which means our method and [10] are built based on comparable baselines.



Sparse Dictionaries for Semantic Segmentation 11

Table 1. VOC measure on Graz-02
Dataset

U+P [26] [10] Ours-TP1 Ours-TP2

BG 79.4 (0.8) 82.3 78.0 86.4 (0.1) 87.2 (0.1)

Bike 44.3 (0.3) 46.2 55.6 52.8 (0.1) 52.5 (0.1)

Car 40.6 (1.5) 36.5 41.5 44.1 (0.3) 48.4 (0.6)

Human 37.9 (1.2) 39.0 37.3 41.2 (0.8) 44.1 (0.6)

Mean 50.6 (0.3) 51.0 53.1 56.1 (0.1) 58.0 (0.1)

Table 2. Accuracy on Graz-02 Dataset

U+P [26] [10] Ours-TP1 Ours-TP2

BG 81.6 (0.3) 86.4 75.9 90.6 (0.1) 91.2 (0.1)

Bike 85.9 (0.1) 73.0 84.9 77.8 (1.7) 76.3 (0.5)

Car 78.9 (0.8) 68.7 76.7 66.3 (6.6) 68.2 (1.6)

Human 80.0 (1.4) 71.3 79.8 66.7 (5.5) 70.0 (1.2)

Mean 81.6 (0.1) 74.9 79.3 75.4 (0.6) 76.4 (0.1)

Global 81.72 (0.2) N/A N/A 87.6 (0.1) 88.1 (0.1)

Image Ground Truth U+P [26] Ours-TP1 Ours-TP2

Fig. 1. Example segmentation results for the Graz02 dataset using different methods.
The background, bikes, cars and humans are color coded as blue, cyan, yellow and red
respectively.



12 Lingling Tao, Fatih Porikli, René Vidal

Discussion. From Table 1 we can see that our method outperforms both our
baseline U+P and other state-of-art methods (except for the bike category).
However, the per-class accuracy in Table 2 is not improved except for the Back-
ground category. This is understandable since our goal is to reduce the false
negative rate as well as the false positive rate, while the accuracy metric focuses
on the true positive rate exclusively. Note that for the Car and Human category,
the VOC measure is improved by around 7% while the accuracy decreases by
around 10%. This implies that a lot of false positives are removed, i.e. less back-
ground pixels are labeled as object. That is also why we observe improvement
in both the accuracy and VOC measures for the Background class. Notice also
that the performance for the Bike class decreases for our method. Our conjecture
is that in the annotations of Graz02 the pixels inside the wheel are labeled as
bike, while most of them are background except for the spokes. This leads to
decreased performance, since some of the pixels inside the wheel are classified as
background. We would expect better results with more detailed annotations.

We show some qualitative results in Fig. 1. As we can see, although more
foreground object pixels are labeled as background, the segmentation is more
accurate at the boundaries and fewer superpixels from the background are la-
beled as other class. For example, for the Bike category, our method can remove
false positives in the triangle area (row 2 in Fig. 1).

To further understand the effect of jointly learning the dictionary and the
CRF parameters, we run experiments where only the weights W is updated,
while the dictionary D is fixed. In this case, we achieve an average VOC measure
of 50.1% for TP1 and 51.0% for TP2, which seems to suggest that for this dataset,
updating the dictionary leads to majority of the improvement.

4.2 PASCAL VOC2010

Results. Fig. 2 shows the per-class VOC measure obtained by the baseline
method (U+P) and our proposed method on the PASCAL VOC2010 dataset
using the third feature extraction method (TP3) to construct the top-down cat-
egorization cost. In addition, Table 3 shows the average VOC measure obtained
by both methods together with the results of [25, 14, 33] for comparison. The
grid-CRF method refers to the one used by [25], while its performance is re-
ported in [14]. Notice that the dense-CRF in [14] models each pixel as a node of
the graph, and the work in [33] uses also detection scores. On the other hand,
our method adopts a super-pixel based CRF instead of a dense pixel based CRF
and does not use any detection information directly. Therefore, it is more fair to
compare our results with those of the grid-CRF method in [25].

Discussion. As expected, our U+P baseline performs as good as the grid-CRF
model, since they have similar graph size. Our method with jointly updating
dictionary and CRF leads to a 1.4% improvement in VOC measure and the
performance is comparable with more complex methods [14, 33]. As we can see
in Fig. 2, for most of the object classes, we obtain an improvement of up to 5%.
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Fig. 2. VOC measure on VOC 2010 dataset using baseline U+P and our method

Table 3. Results on VOC2010 Dataset

grid-CRF [25] dense-CRF [14] [33] U+P Ours-TP3

VOC measure 28.3 30.2 31.2 28.9 30.3

4.3 MSRC21

Results. Table 4 gives the mean and global accuracy obtained by the baseline
method (U+P) and our proposed method on the MSRC21 dataset using the
TextonBoost based unary potential and top-down terms, as for the PASCAL
VOC2010 dataset. The results of [24, 15, 14, 33] are also reported for comparison,
while the performance of [15] on MSRC21 dataset is reported in [33]. We also
show some qualitative results in Fig. 3.

Discussion. The global accuracy given by our algorithm is slightly worse than
that of other methods. However, the mean accuracy is on par with the perfor-
mance of the dense-CRF model [14], and is only 1% less than the performance of
[33]. As explained before, [33] combines both scene information and object infor-
mation, while our method only uses TextonBoost feature. This suggests that our
algorithm gives comparable result while using simpler models. Finally, while our
results are just marginally better than those of the U+P baseline, when looking
at the example segmentations in in Fig. 3 we observe that our methods gives
qualitatively better segmentations.
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Table 4. Results on MSRC21 Dataset

Shotton HCRF Dense Yao U+P Ours-TP3
et al. [24] + Coocc. [15] CRF [14] et al.[33]

Mean Accuracy 67 77.8 78.3 79.3 77.7 78.4

Global Accuracy 72 86.5 86.0 86.2 84.3 84.5

Image Ground Truth U+P Ours-TP3

Fig. 3. Example segmentation results for the MSRC21 dataset using the U+P baseline
and our proposed method.

5 Conclusion

In this paper, we presented a new semantic segmentation framework that incor-
porates a top-down object categorization cost based on a discriminative sparse
representation of each object. We proposed an optimization framework to jointly
learn the sparse dictionary and the CRF parameters, so that the dictionary is
specifically trained for the segmentation task. Experimental results showed that
our algorithm outperforms the basic CRF model and the top-down model with
BoF representation, suggesting that a jointly learned dictionary can help to im-
prove segmentation performance compared with a pre-learned BoF dictionary.
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