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1 Introduction

We outline the original context in which Hall algebras first appeared. Let p be a prime
number, and let M be a finite abelian p-group. By the classification theorem for finitely
generated abelian groups the group M decomposes into a direct sum of cyclic p-groups.
Therefore, we have

M ∼=
r⊕
i=1

Z/(pλi)

where we may assume λ1 ≥ λ2 ≥ · · · ≥ λr so that the sequence

λ = (λ1, λ2, . . . , λr, 0, . . . )

is a partition, i.e., a weakly decreasing sequence of natural numbers with finitely many
nonzero components. We call the partition λ the type of M . The association

M 7→ type of M

provides a bijective correspondence between isomorphism classes of finite abelian p-groups
and partitions.

Given partitions µ(1), µ(2), . . . , µ(s), λ, we define

gλµ(1)µ(2)...µ(s)(p)

to be the number of flags

M = M0 ⊃M1 ⊃ · · · ⊃Ms ⊃Ms+1 = 0

such that Mi−1/Mi has type µ(i) where M is a fixed group of type λ. In this context,
Philip Hall had the following insight:

Theorem 1.1. The numbers gλµν(p) form the structure constants of a unital associative
algebra with basis {uλ} labelled by the set of all partitions. More precisely, the Z-linear
extension of the formula

uµuν =
∑
λ

gλµν(p)uλ

defines a unital associative multiplication on the abelian group
⊕

λ Zuλ. Further, we have

uµ(1)uµ(2) · · ·uµ(s) = gλµ(1)µ(2)...µ(s)(p)uλ.

The resulting associative algebra is called Hall’s algebra of partitions.

We compute some examples of products uµuν . Fixing an abelian p-group M of type
λ, the number gλµν(p) is the number of subgroups N ⊂ M such that N has type ν and
M/N has type µ. In particular, we obtain that gλµν(p) is nonzero if and only if M is an
extension of a p-group N ′ of type µ by a p-group N of type ν.
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(1) We compute

u(1)u(1) = g
(1,1)
(1)(1)(p)u(1,1) + g

(2)
(1)(1)(p)u(2).

Further, g
(1,1)
(1)(1)(p) is the number of subgroups

N ⊂M = Z/(p)⊕ Z/(p)
such that N ∼= Z/(p) and M/N ∼= Z/(p). This coincides with the number of 1-
dimensional subspaces in the Fp-vector space (Fp)2 (here Fp denotes the field with p

elements) of which there are p+1. The number g
(2)
(1)(1)(p) is the number of subgroups

N ⊂M = Z/(p2)

such that N ∼= Z/(p) and M/N ∼= Z/(p). Any such N must lie in the p-torsion
subgroup of M which is pZ/(p2). But pZ/(p2) ∼= Z/(p) and so N = pZ/(p2) which

implies g
(2)
(1)(1)(p) = 1. In conclusion, we have

u(1)u(1) = (p+ 1)u(1,1) + u(2).

(2) We compute

u(1,1)u(1) = g
(1,1,1)
(1,1)(1)(p)u(1,1,1) + g

(2,1)
(1,1)(1)(p)u(2,1).

To compute g
(1,1,1)
(1,1)(1)(p) we have to determine the number of subgroups

N ⊂M = Z/(p)⊕ Z/(p)⊕ Z/(p)
such that N ∼= Z/(p) and M/N ∼= Z/(p) ⊕ Z/(p). This is equivalent to counting
1-dimensional subspaces of F3

p of which there are p2 + p + 1. Further, the number

g
(2,1)
(1,1)(1)(p) is the number of subgroups

N ⊂M = Z/(p2)⊕ Z/(p)
such that N ∼= Z/(p) and M/N ∼= Z/(p) ⊕ Z/(p). As above, the subgroup N
must be contained in the p-torsion subgroup of M which is pZ/(p2)⊕Z/(p). There
are p + 1 such subgroups, but only one of them satisfies the condition M/N ∼=
Z/(p)⊕ Z/(p): N = pZ/(p2), contained in the first summand of M . Therefore, we

have g
(2,1)
(1,1)(1)(p) = 1 so that

u(1,1)u(1) = (p2 + p+ 1)u(1,1,1) + u(2,1).

Note that, in the above examples, the structure constants gλµν(p) are polynomial in p.
Hall showed that this is true in general, and further, that the resulting polynomials have
a very interesting relation to a class of symmetric functions called Schur functions which
we will introduce later.

Theorem 1.2. (1) The numbers gλ
µ(1)µ(2)...µ(s)

(p) are polynomial in p.

(2) The leading terms cλµν of the polynomials gλµν(t) are the structure constants for the
multiplication of Schur functions

sµsν =
∑
λ

cλµνsλ.

The first goal of this course will be to prove Hall’s results. The statement of Theorem
1.1 holds in a context more general than abelian p-groups which we will introduce next.
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2 Proto-abelian categories and Hall algebras

2.1 Categorical preliminaries

Let C be a category. A morphism f : X → Y in C is called a monomorphism (or monic)
if, for every pair of morphisms g : A→ X, h : A→ X, we have

f ◦ g = f ◦ h ⇒ g = h.

We use the symbol ↪→ to denote monomorphisms. A morphism f : X → Y in C is called
an epimorphism (or epic) if, for every pair of morphisms g : Y → A, h : Y → A, we have

g ◦ f = h ◦ f ⇒ g = h.

We use the symbol � to denote epimorphisms. These notions are dual in the following
sense: Introduce the opposite category Cop with the same objects as C but, for every pair
of objects X, Y ,

HomCop(X, Y ) = HomC(Y,X)

equipped with the apparent composition law. Then a morphism f : X → Y is a monomor-
phism in C if and only if the corresponding morphism in Cop (from Y to X) is an epimor-
phism.

Example 2.1. A morphism in the category of sets is a monomorphism (resp. epimor-
phism) if and only if it is injective (resp. surjective).

Problem 2.2. Show that the morphism Z → Q in the category of rings is both a
monomorphism and an epimorphism.

An object ∅ in C is called initial if, for every object X, there is a unique morphism

∅ → X.

Dually, an object ∗ in C is called final if, for every object X, there is a unique morphism

X → ∗.

An object is initial in C if and only if it is final in Cop. An object 0 of C is called a zero
object if it is both initial and final. The category C is called pointed if it has a zero object.
This is equivalent to the requirement that C has an initial object ∅, a final object ∗, and
the unique map

∅ → ∗

is an isomorphism.

Example 2.3. The category of sets has an initial object given by the empty set. Any
set with one element is a final object. The category of sets is therefore not pointed. The
category of abelian groups is pointed since the zero group is both initial and final.
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A commutative square
A //

��

B

f
��

C
g // D

in C is called Cartesian (or pullback square) if, for every pair of morphisms p : X → B,
q : X → C such that g ◦ q = f ◦ p, the dashed arrow in the diagram

X p

��

∃!

  
q

##

A //

��

B

f
��

C
g // D

can be filled in uniquely to make the diagram commute. Dually, a commutative square

A
g′ //

f ′

��

B

��
C // D

in C is called coCartesian (or pushout square) if, for every pair of morphisms p : B → X,
q : C → X such that q ◦ f ′ = p ◦ g′, the dashed arrow in the diagram

A
g′ //

f ′

��

B

�� p

��

C //

q

//

D
∃!

  
X

can be filled in uniquely to make the diagram commute.

Proposition 2.4. Let

A
g′ //

��

B

��
C

g // D

be a pullback square in C and assume that g is monic. Then g′ is monic.

Proof. Follows in a straightforward way from the above definitions.

We formulate the statement of the above proposition as: monomorphisms are stable
under pullback. The dual argument, i.e., the same argument applied to Cop, implies that
epimorphisms are stable under pushout.
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Problem 2.5. Give an example of a pushout square

A
g′ //

��

B

��
C

g // D

in a category C such that g′ is monic but g is not monic, showing that monomorphisms
are not, in general, stable under pushout. Hint: Consider the category of rings.

Let
A

��

// B

��
C // D

(2.6)

be a commutative square in a category C. Assume that (2.6) is a pushout square. Then
the defining universal property implies that the object D is uniquely determined (up to
isomorphism) by the diagram

A

��

// B

C

and we write D = BqAC. In the case when A is initial, we write D = BqC and call D
a coproduct of B and C. Dually, assume that (2.6) is a pullback square. Then the object
A is uniquely determined (up to isomorphism) by the diagram

B

��
C // D

and we write A = B ×D C. If D is final, we write A = B × C and call A a product of B
and C.

Let

A

��

f // B

g
��

0 // C

(2.7)

be a commutative square in a pointed category C where 0 denotes a zero object. If (2.7)
is a pushout square then we call g (or sometimes C) a cokernel of f . If (2.7) is a pullback
square then we call f (or sometimes A) a kernel of f .

2.2 Proto-abelian categories

Our goal in this section will be to introduce a certain class of categories to which Hall’s
associative multiplication law can be generalized.

Definition 2.8. A category C is called proto-abelian if the following conditions hold.
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(1) The category C is pointed.

(2) (a) Every diagram in C of the form

A �
� //

����

B

C

can be completed to a pushout square of the form

A �
� //

����

B

����
C �
� // D.

(b) Every diagram in C of the form

B

����
C �
� // D

can be completed to a pullback square of the form

A �
� //

����

B

����
C �
� // D.

(3) A commutative square in C of the form

A �
� //

����

B

����
C �
� // D

is a pushout square if and only if it is a pullback square.

Proposition 2.9. Let C be a proto-abelian category.

(1) The opposite category Cop is proto-abelian.

(2) Let I be a small category. The category Fun(I,C) of I-diagrams in C is proto-
abelian.

Proof. (1) is immediate, since in Definition 2.8, Conditions (2)(i) and (2)(ii) are dual,
and Conditions (1) and (3) are self-dual. (2) follows since all conditions in Definition 2.8
can be verified pointwise: A morphism F → G in Fun(I,C) is monic (resp. epic) if and
only if, for every i ∈ I, the morphism F (i)→ G(i) in C is monic. A square in Fun(I,C) is
a pushout (resp. pullback) square if and only if, for every i ∈ I, the square in C obtained
by evaluating at i is a pushout (resp. pullback) square.
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Proposition 2.10. Let k be a field. The category Vectk of k-vector spaces is proto-
abelian.

To show this we will use the following lemma.

Lemma 2.11. Given a commutative square

A
f //

g
��

B

g′

��
C

f ′ // D

(2.12)

in the category of k-vector spaces, the following are equivalent:

(1) The square (2.12) is a pullback (resp. pushout) square.

(2) The square

A
ϕ //

��

B ⊕ C
ψ
��

0 // D

where ϕ =

(
f
−g

)
and ψ = (g′, f ′) is a pullback (resp. pushout) square.

(3) The sequence

0 −→ A
ϕ−→ B ⊕ C ψ−→ D −→ 0

is left (resp. right) exact.

Proof. The equivalence of (1) and (2) follows directly from a comparison of the universal
properties of pullback and pushout squares, respectively. The equivalence of (2) and (3)
is immediate.

Proof. (of Proposition 2.10) Property (1) is clear: the zero vector space {0} is a zero
object. To show (2)(i), assume that we are given a diagram

A �
� f //

g
����

B

C

of vector spaces. Using the notation from the lemma, we set D = coker(ϕ) = B ⊕
C/ im(ϕ). We obtain a square

A �
� f //

g
����

B

g′

��
C

f ′ // D

which, by the lemma, is a pushout square. The morphism g′ is epic, since epimorphisms
are stable under pushout. It remains to show that f ′ is monic. By the lemma, we have
a right exact sequence

0 −→ A
ϕ−→ B ⊕ C ψ−→ D −→ 0.
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Since f = πB ◦ ϕ is monic, we deduce that ϕ is monic so that the sequence is exact. To
show that f ′ is monic, it suffices to show that ker(f ′) = 0. Let p : X → C be a morphism
such that f ′ ◦ p = 0. We have to show that p = 0. We have a commutative diagram

0 // A // B ⊕ C // D // 0

X

(0,p)tr

OO

0

II

∃r

cc

where the dashed arrow r exists by the left exactness of the sequence. We obtain f ◦r = 0,
implying r = 0, and hence p = g ◦ r = 0.

The argument for (2)(ii) is analogous. To obtain (3) we note that, given a pushout
square of vector spaces as in (3), we have, by the lemma, a right exact sequence

0 −→ A −→ B ⊕ C −→ D −→ 0

which is, as argued above, since A ↪→ B is monic, also left exact. Therefore, the original
square is also a pullback square. The reverse direction is analogous.

Remark 2.13. The argumentation in the proof of Proposition 2.10 generalizes verbatim
to the following categories

• finite dimensional vector spaces over k,

• abelian groups,

• finite abelian groups,

• abelian p-groups,

• modules over a ring R,

• . . .

These are examples of abelian categories.

Definition 2.14. A category A is called abelian if it has the following properties:

(1) A is pointed,

(2) A has products and coproducts,

(3) A has kernels and cokernels,

(4) every monic is the kernel of its cokernel, and every epic is the cokernel of its kernel.

Problem 2.15. Show (or look up) that these properties imply that for every pair of
objects X and Y , we have

• the set HomA(X, Y ) is equipped with an abelian groups structure which distributes
over composition of morphisms,

• we have X q Y ∼= X × Y =: X ⊕ Y ,

10



and generalize Proposition 2.10 to show that every abelian category is proto-abelian.

We introduce a category VectF1 as follows. An object of VectF1 is a set K equipped
with a marked point ∗ ∈ K (a pointed set). A morphism (K, ∗) → (L, ∗) is a map
f : K → L of underlying sets such that f(∗) = ∗ and the restriction f |K\f−1(∗) is
injective.

Proposition 2.16. The category VectF1 is proto-abelian.

Proof. Any singleton set is a zero object so that VectF1 is pointed. Given a diagram

A �
� f //

g
����

B

C

in VectF1 , we first form the pushout in the category of sets

A �
� f //

g
����

B

g′

��
C

f ′ // B qA C

where B qA C = B ∪ C/{f(a) ∼ g(a), a ∈ A}. It is straightforward to verify that
the resulting pushout diagram in Set in fact forms a pushout diagram in VectF1 . We
explicitly verify that g′ is monic (injective) and f ′ is epic (surjective). This implies (2)(i).
The other properties follow similarly by explicit verification.

2.3 Flags in proto-abelian categories

Let C be a proto-abelian category and let N1, N2, . . . , Ns, M be objects of C. We define
a category FMN1,...,Ns

(C) as follows. An object is given by a sequence

0 = Ms

fs
↪→Ms−1

fs−1

↪→ · · ·M1

f1
↪→M0 = M

such that coker(fi) ∼= Ni. A morphism between objects M• and M ′
• is given by a com-

mutative diagram

Ms−1
� � //

��

Ms−2

��

� � // . . . �
� //M1

� � //

��

M

id
��

M ′
s−1
� � //M ′

s−2
� � // . . . �

� //M ′
1
� � //M.

We refer to the isomorphism classes of the category FMN1,...,Ns
(C) as flags in M of type N1,

. . . , Ns.

Remark 2.17. We define a subobject A ⊂M of M to be an equivalence class of monomor-
phisms A ↪→M where

A ↪→M ∼ A′ ↪→M ⇔ there exists a commutative diagram

A � v
))∼=�� M

A′
( �

55
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The collection of subobjects is naturally partially ordered: A ⊂ M ≤ A′ ⊂ M if there
exists a commutative diagram

A � v
))

�� M

A′
( �

55

for some (and hence all) representatives. Slightly abusing notation, we abbreviate this
by writing

A ⊂ A′ ⊂M.

With this terminology, the isomorphism classes of the category FMN1,...,Ns
(C) are in bijection

with totally ordered chains

{0 ⊂Ms−1 ⊂Ms−2 ⊂ · · · ⊂M1 ⊂M |Mi−1/Mi
∼= Ni}.

Remark 2.18. An object of the category FMN1,...,Ns
(Cop) can be identified with a sequence

0 = Ms

fs
�Ms−1

fs−1

� · · ·M1

f1
�M0 = M

of epimorphisms in C such that ker(fi) ∼= Ni. We may thus refer to isomorphism classes
in this category as coflags in C.

A pushout (and hence pullback) square

A �
� //

����

B

����
C �
� // D

in a proto-abelian category is called biCartesian. A biCartesian square of the form

A �
� //

����

B

����
0 �
� // C

is called a short exact sequence or an extension of C by A.

Lemma 2.19. Let C be a proto-abelian category.

(1) Let C/0 denote the category of diagrams

{A→ 0}

in C where 0 is a fixed zero object. Then the forgetful functor

C/0 → C

is an equivalence.

12



(2) Let D denote the category of diagrams of the form
A �
� //

����

B

C


in C and let D+ denote the category of biCartesian squares

A �
� //

����

B

����
C �
� // D


in C. Then the forgetful functor

D+ → D

is an equivalence.

Proof. (1) The functor is essentially surjective, since for every object A there exists a
map to 0. The functor is fully faithful, since the map A → 0 is unique, and hence for
every morphism A→ A′, the diagram

A //

��

A′

��
0 // 0

commutes. To show (2) note that the forgetful functor is essentially surjective by Property
(2)(i) of proto-abelian categories. Fully faithfulness is an immediate consequence of the
universal property of pushout squares.

Corollary 2.20. Let C be a proto-abelian category. Let M3 denote the category of
diagrams of the form

{A ↪→ B ↪→ C}

in C and let T3 denote the category of diagrams of the form

A �
� //

����

B �
� //

����

C

����
0 �
� // A′ �

� //

����

B′

����
0 �
� // A′′


where all squares are biCartesian. Then the forgetful functor T3 →M3 is an equivalence.

Proof. Iterate the arguments of Lemma 2.19 (1) and (2).
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Remark 2.21. By Corollary 2.20, there exists a (weak) inverse s : M3 → T3 of the
forgetful functor. In particular, to any sequence A ↪→ B ↪→ C there is a naturally
associated short exact sequence

B/A �
� //

����

C/A

����
0 �
� // C/B.

In the context of abelian categories, this statement is known as the Third isomorphism
Theorem which therefore generalizes to proto-abelian categories.

Corollary 2.22. Let C be a proto-abelian category, and let N1, . . . , Ns, M be objects
in C. Then there is an equivalence of categories

FMN1,...,Ns
(C) ' FMNs,...,N1

(Cop).

Proof. Introduce the category TMN1,...,Ns
(C) of diagrams of the form

Ms,s−1
� � //

����

Ms,s−2
� � //

����

. . . Ms,1
� � //

����

M

����
0 �
� //Ms−1,s−2

� � //

����

. . . Ms−1,1
� � //

����

Ms−1,0

����

0
. . .

...
...

M2,1
� � //

����

M2,0

����
0 �
� //M1,0


where all squares are biCartesian and Mi,i−1

∼= Ni. There are natural forgetful functors
from this category to FMN1,...,Ns

(C) (resp. FMNs,...,N1
(Cop)) obtained by forgetting every-

thing but the top row (resp. the rightmost column). These functors are equivalences by
an iterated application of the arguments of Lemma 2.19 (1) and (2) (resp. their dual
versions).

2.4 The Hall algebra

In this section, we define the Hall algebra of any proto-abelian category satisfying addi-
tional finiteness conditions.

Let C be a proto-abelian category. Two extensions A ↪→ B ↪→ A′ and A ↪→ C ↪→ A′

of A′ by A are called equivalent if there exists a commutative diagram

A

id
��

� � // B

∼=
��

// // A′

id
��

A �
� // C // // A′.

We denote the set of equivalence classes of extensions of A′ by A by ExtC(A′, A).
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Definition 2.23. A proto-abelian category C is called finitary if, for every pair of objects
A,A′, the sets HomC(A′, A) and ExtC(A′, A) have finite cardinality.

Given objects N1,. . . ,Ns, M in C, we denote by

|FMN1,...,Ns
(C)|

the number of isomorphism classes of objects in the category FMN1,...,Ns
(C).

Lemma 2.24. For objects L, M , N in C, we have

|FMN,L(C)| = |{L
f
↪→M | coker(f) ∼= N}|
|Aut(L)|

=
|{L ↪→M � N short exact}|

|Aut(L)||Aut(N)|
=
|{M

g
� N | ker(g) ∼= L}|
|Aut(N)|

Proof. The three formulas are obtained by counting isomorphism classes in the categories
FMN,L(C), TMN,L(C), and FML,N(Cop), which are equivalent by the proof of Corollary 2.22.

Theorem 2.25. Let C be a finitary proto-abelian category, and let

Hall(C) =
⊕

[M ]∈iso(C)

Z[M ]

denote the free abelian group on the set of isomorphism classes of objects in C. The
bilinear extension of the formula

[N ] · [L] =
∑

[M ]∈iso(C)

|FMN,L(C)|[M ]

defines a unital associative multiplication law on Hall(C).

Proof. To verify associativity, we have to show the equality

([N ][L])[K] = [N ]([L][K])

for every triple of objects K,L,N in C. We have

([N ][L])[K] =
∑
[M ]

∑
[P ]

|FMP,K(C)||FPN,L(C)|[M ]

where

∑
[P ]

|FPN,L(C)||FMP,K(C)| =
∑
[P ]

|{M
g
� P | ker(g) ∼= K}|
|Aut(P )|

|{P
g′

� N | ker(g′) ∼= L}|
|Aut(N)|

=
∑
[P ]

|{M
g
� P

g′

� N | ker(g) ∼= L, ker(g′) ∼= K}|
|Aut(P )||Aut(N)|

= |FMK,L,N(Cop)|

and
[N ]([L][K]) =

∑
[M ]

∑
[P ]

|FPL,K(C)||FMN,P (C)|[M ]

15



where

∑
[P ]

|FPL,K(C)||FMN,P (C)| =
∑
[P ]

|{K
f
↪→ P | coker(f) ∼= L}|
|Aut(K)|

|{P
f ′

↪→M | coker(f ′) ∼= N}|
|Aut(P )|

=
∑
[P ]

|{K
f
↪→ P

f ′

↪→M | coker(f) ∼= L, coker(f ′) ∼= N}|
|Aut(K)||Aut(P )|

= |FMN,L,K(C)|.

Therefore, associativity follows by Corollary 2.22. To show unitality, we claim that, for
every object N of C, we have

[N ][0] = [0][N ] = [N ].

We use the formula

|FMN,0(C)| = |{0 ↪→M � N short exact}|
|Aut(0)||Aut(N)|

from Lemma 2.24. Given a short exact sequence

0 �
� //

����

M

g
����

0 �
� // N

it follows that g is an isomorphism (since it is the pushout of an isomorphism). Therefore,
|FMN,0(C)| is nonzero if and only if [M ] = [N ] and

|FMN,0(C)| = | Isom(M,N)|
|Aut(N)|

= 1.

This shows [N ][0] = [N ], the proof of [0][N ] = [N ] is analogous.

Problem 2.26. Show that, for objects N1, . . . , Ns of C, we have

[N1][N2] · · · [Ns] =
∑
[M ]

|FMN1,N2,...,Ns
(C)|[M ].

2.5 First Examples: The categories VectFq
and VectF1

Let Vect′Fq denote the category of finite dimensional vector spaces over the field Fq where

q is some prime power. The category Vect′Fq is finitary proto-abelian, and we have

Hall(Vect′Fq) =
⊕
n∈N

Z[Fnq ]

with multiplication given by

[Fnq ][Fmq ] = gn+m
n,m (q)[Fn+m

q ]

16



where

gn+m
n,m (q) = |FFn+mq

Fnq ,Fmq (Vect′Fq)|

= |{V ⊂ Fn+m
q | V ∼= Fmq ,Fn+m

q /V ∼= Fnq }|

=
|{Fmq ↪→ Fn+m

q }|
|GLn(Fq)|

=
(qn+m − 1)(qn+m − q) · · · (qn+m − qm−1)

(qm − 1)(qm − q) · · · (qm − qm−1)

=
(qn+m − 1)(qn+m−1 − 1) · · · (qn+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q − 1)

=

[
n+m
m

]
q

.

The symbol appearing in the last line of the calculation denotes a q-binomial coefficient
which is defined as follows: We first define the q-analog of a natural number n ∈ N to be

[n]q =
qn − 1

q − 1
= 1 + q + q2 + · · ·+ qn−1.

The q-factorial of n is defined as

[n]q! = [n]q[n− 1]q . . . [1]q

and we finally set [
n+m
m

]
q

=
[n+m]q!

[m]q![n]q!
.

We have an isomorphism of Z-algebras

Hall(Vect′Fq)
∼=−→ Z[x,

x2

[2]q!
,
x3

[3]q!
, . . . ] ⊂ Q[x]

[Fnq ] 7→ xn

[n]q!

so that Hall(Vect′Fq) can be regarded as a q-analogue of a free divided power algebra on
one generator.

On the other hand, consider the category Vect′F1
defined as the full subcategory of

VectF1 spanned by those pointed sets which have finite cardinality. The category Vect′F1

is finitary proto-abelian. We have

Hall(Vect′F1
) =

⊕
n∈N

Z[{∗, 1, 2, . . . , n}]

with multiplication

[{∗, 1, 2, . . . , n}][{∗, 1, 2, . . . ,m}] = λn+m
n,m [{∗, 1, 2, . . . , n+m}]
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where

λn+m
n,m =

|{{∗, 1, 2, . . . ,m} ↪→ {∗, 1, 2, . . . , n+m}}|
|Sm|

=

(
n+m
m

)
.

We have an isomorphism of algebras

Hall(Vect′F1
)
∼=−→ Z[x,

x2

2!
,
x3

3!
, . . . ] ⊂ Q[x]

[Fnq ] 7→ xn

n!
.

Therefore, the algebra Hall(Vect′F1
) is the free divided power algebra on one generator.

We have
λn+m
n,m = lim

q→1
gn+m
n,m (q).

2.6 Statistical interpretation of q-analogues

Let S be a finite set. A statistic on S is a function

f : S −→ N.

Given a statistic f , we define the corresponding partition function to be

Z(q) =
∑
s∈S

qf(s).

Remark 2.27. Evaluation of the partition function at q = 1 yields the cardinality of
the set S so that Z(q) can be interpreted as a q-analog of |S|. Note that, any q-analog
obtained in this way from a statistic will therefore, by construction, be polynomial in q.

Example 2.28. (1) Consider the set S = {1, . . . , n}. We define a statistic on S via

f : S −→ N, i 7→ i− 1.

The corresponding partition function is

Z(q) = 1 + q + · · ·+ qn−1 = [n]q.

(2) Consider the set Sn underlying the symmetric group on n letters. We define the
inversion statistic on Sn as

inv : Sn −→ N, σ =

(
1 2 . . . n
σ1 σ2 . . . σn

)
7→ |{(i, j) | i < j, σi > σj}|

We claim that we have ∑
σ∈Sn

qinv(σ) = [n]q!.
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To show this, we interpret the summands in the expansion of the product

[n]q! = 1(1 + q)(1 + q + q2) . . . (1 + q + · · ·+ qn−1).

Given a summand qa of the product, it must arise as a product qi1qi2 . . . qin with
0 ≤ ik ≤ k − 1. We produce a corresponding permutation σ by providing an
algorithm to write the list σ1, . . . , σn. In step 1, we start by writing the number
1. In step 2, we write the number 2 to the left of 1 if i1 = 1 or to the right of 1
if i1 = 0. At step k, there will be k − 1 numbers and we label the gaps between
the numbers by 0, . . . , k − 1 from right to left. We fill in the number k into the
gap with label ik. This algorithm produces a permutation σ with inv(σ) = a. The
claim follows immediately from this construction.

(3) We define another statistic on the set Sn, called the major index, as

maj : Sn −→ N, σ 7→
∑

i such that σi>σi+1

i.

As a homework problem, find a similar algorithm to the one for the inversion statis-
tic which shows that ∑

σ∈Sn

qmaj(σ) = [n]q!.

Statistics on the set Sn with partition function [n]q! are called Mahonian, after Ma-
jor Percy Alexander MacMahon who introduced the major index and showed that it is
Mahonian.

Finally, we would like to find a statistical interpretation of the q-binomial coefficient.
We will achieve this by defining a statistic on the set P (m,n+m) of subsets of {1, . . . , n+
m} of cardinality m. A lattice path in the rectangle of size (n,m) is path in R2 which
begins at (0, 0), ends at (n,m), and is obtained by sequence of steps moving either one
integer step to the east or to the north. Given K ∈ P (m,n + m), we can construct a
lattice path by the following rule: at step i, we move east if i /∈ K, and north if i ∈ K. It is
immediate that this construction provides a bijective correspondence between P (m,n+m)
and lattice paths in the rectangle of size (n,m). We now define the statistic as

a : P (m,n+m) −→ N, K 7→ a(K)

where a(K) denotes the area of the part of the rectangle of size (n,m) which lies above
the lattice path corresponding to K.

Proposition 2.29. We have ∑
K∈P (m,n+m)

qa(K) =

[
n+m
m

]
q

.

Proof. We prove this equality by showing that both sides satisfy the recursion

Q(m,n)(q) = qnQ(m− 1, n)(q) +Q(m,n− 1).

On the left hand side, the term qnQ(m−1, n)(q) is the contribution from subsets K such
that n+m ∈ K, the termQ(m,n−1) is the contribution from subsets such that n+m /∈ K.
The right hand side satisfies the recursion by a straightforward calculation.
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In conclusion, we obtain that the structure constants of the Hall algebra of Vect′Fq
have a statistical interpretation and are hence polynomial in q. The value at q = 1 is
realized by the structure constants of the Hall algebra of Vect′F1

.

2.7 Duality

Finally, we observe that the multiplication law for both the Hall algebra of Vect′Fq and

Vect′F1
is commutative. We would like to give a conceptual explanation.

An exact duality on a proto-abelian category C is an equivalence of categories

D : Cop −→ C

which preserves short exact sequences.

Proposition 2.30. Let C be a finitary proto-abelian category which is equipped with
an exact duality D such that, for every object N , we have D(N) ∼= N . Then the Hall
multiplication is commutative.

Proof. Note that, by Lecture 3, we always have an equivalence

FMN1,...,Ns
(C) ' FMNs,...,N1

(Cop).

The duality induces another equivalence

FMNs,...,N1
(Cop) ' FMNs,...,N1

(C).

Hence, we have, in particular,

|FMN,L(C)| = |FML,N(C)|

so that the Hall multiplication is commutative.

Example 2.31. (1) The category Vect′Fq is equipped with the exact duality V 7→
V ∗ = HomVectFq

(V,Fq) which satisfies V ∗ ∼= V .

(2) The category Vect′F1
is equipped with the exact dualityK 7→ K∗ = HomVectF1

(K, {1, ∗}).
Note that, in contrast to the vector spaces over Fq, the dual K∗ can be canonically
identified with K.

Problem 2.32. Generalize Proposition 2.30 to show the following statement: Let C be
a finitary proto-abelian category equipped with an exact duality. Then the duality D

induces an isomorphism of algebras Hall(C)
∼=−→ Hall(C)op.
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3 Hall’s algebra and symmetric functions

Our goal in this section will be to analyze Hall’s algebra of partitions: the Hall algebra
of the category of finite abelian p-groups. To this end, we will have to understand some
basic results about symmetric functions.

3.1 Symmetric functions - Basics

Let Z[x1, . . . , xn] denote the ring of polynomials with integer coefficients. The symmetric
group Sn acts by permuting the variables. The polynomials which are invariant under
this action are called symmetric polynomials. They form a ring which we denote by

Λn = Z[x1, . . . , xn]Sn .

The ring Λn is graded by total degree so that we have

Λk
n =

⊕
k≥0

Λk
n.

Given a tupel α = (α1, α2, . . . , αn) ∈ Nn, we obtain a monomial

xα = xα1
1 x

α2
2 · · ·xαnn .

For a partition λ of length l(λ) ≤ n, we define

mλ(x1, . . . , xn) =
∑
α

xα

where the sum ranges over all distinct permutations α of (λ1, λ2, . . . , λn). For example,
we have

m(1,1,...,1)(x1, . . . , xn) = x1x2 · · ·xn
m(1,1,0,...,0)(x1, . . . , xn) =

∑
i<j

xixj

m(k,0,0,...,0)(x1, . . . , xn) = xk1 + xk2 + · · ·+ xkn.

It is immediate that the collection of polynomials {mλ(x1, . . . , xn)|l(λ) ≤ n} forms a
Z-basis of Λn. In particular, the set {mλ(x1, . . . , xn)|l(λ) ≤ n, |λ| = k} forms a Z-basis
of Λk

n.
Many statements and formulas involving symmetric polynomials hold independently

of the number of variables n. To incorporate this, we introduce symmetric functions
which formalize the notion of symmetric polynomials in countably many variables. Fix
k ≥ 0 and consider the projective system of abelian groups

. . . −→ Λk
n+1

ρn+1−→ Λk
n

ρn−→ Λk
n−1 −→ . . .

where the map ρn+1 : Λk
n+1 −→ Λk

n is obtained by sending xn+1 to 0. We denote the
inverse limit of the projective system by

Λk = lim
←−

Λk
•.
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Example 3.1. Let λ be a partition and let n > l(λ). Then we have

mλ(x1, . . . , xn−1, 0) = mλ(x1, . . . , xn−1).

Therefore, the sequence {mλ(x1, . . . , xn)|n > l(λ)} defines an element of Λk which we
denote by mλ. We call the symmetric functions {mλ} the monomial symmetric functions.

We finally define

Λ =
⊕
k≥0

Λk

called the ring of symmetric functions. There is an apparent bilinear multiplication map
Λk × Λk′ −→ Λk+k′ which makes Λ a graded ring.

Proposition 3.2. Let k ≥ 0. The set {mλ} where λ ranges over all partitions of k forms
a Z-basis of Λk. In particular, the set {mλ} where λ ranges over all partitions forms a
basis of the ring Λ of symmetric functions.

Proof. Let n ≥ k be natural numbers. For a partition λ of k, we have k ≥ l(λ) and hence
also n ≥ l(λ). Therefore, the collection {mλ(x1, . . . , xn)} where λ runs over all partitions
of k forms a basis of Λk

n. From this we deduce that the maps

ρkn+1 : Λk
n+1 −→ Λk

n

are isomorphisms for n ≥ k (they map the basis {mλ(x1, . . . , xn+1)} to the basis {mλ(x1, . . . , xn)}).
In particular, the projection maps

Λ −→ Λk
n

which exhibit Λ as an inverse limit, are isomorphisms for n ≥ k. In light of Example 3.1,
this implies that {mλ} where λ ranges over all partitions of k forms a basis of Λ.

We introduce another family of symmetric functions. For r > 0, let

er = m(1r) =
∑

i1<i2<···<ir

xi1xi2 · · · xir

and for a partition λ, we let
eλ = eλ1eλ2 · · · eλs

where s = l(λ). The symmetric functions {eλ} are called elementary symmetric functions.
Important for us will be the following result which is called the fundamental theorem on
symmetric functions.

Theorem 3.3. The set {eλ} forms a Z-basis of Λ. In particular, the set {e1, e2, . . . } is
algebraically independent and generates Λ as a ring so that

Λ = Z[e1, e2, . . . ]

is a polynomial ring in countably many variables.
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For the proof we need to introduce some terminology for partitions. Given a partition
λ, we introduce the conjugate partition λ′ as

λ′i = |{j|λj ≥ i}|.

In terms of Ferrer diagrams, the diagram for λ′ is simply obtained by transposing the
diagram for λ. We introduce two orders on the set Pn of partitions of n:

(1) The lexicographic order: λ ≤l µ if λ = µ or the first nonzero difference λi − µi is
negative.

(2) The dominance order: λ ≤d µ if

Observe that λ ≤d µ implies λ ≤l µ. Since the dominance order is the one appearing the
most frequently, we also call it the natural order and simply denote it by ≤.

Problem 3.4. Show that the dominance order is not, in general, a total order on Pn.

As we will see, the following proposition immediately implies the fundamental theo-
rem. By a {0, 1}-matrix we mean a matrix (Aij) where i and j range over all positive
natural numbers and each entry is either 0 or 1.

Proposition 3.5. Let λ be a partition and let λ′ be its conjugate.

(1) We have

eλ′ =
∑
µ

aλµmµ

where aλµ denotes the number of {0, 1}-matrices such that, for all i ≥ 1, the sum
over all entries in row i equals λ′i and, for all j ≥ 1, the sum over all entries in
column j equals µj.

(2) We have aλλ = 1, and aλµ = 0 unless |λ| = |µ| and λ ≥ µ.

Before we give the proof of the proposition, we argue how it implies the fundamental
theorem.

Remark 3.6. A matrix (aλµ) with integer entries, indexed by the set of all partitions,
which satisfies the conditions of part (2) of the proposition is called upper unitriangular.
An upper unitriangular matrix (aλµ) is a block matrix with one block for every k ≥ 1
given by (aλµ) where λ and µ range over all partitions of k. If we order the set of partitions
of k in decreasing lexicographic order, then the corresponding block (aλµ) is an upper
triangular matrix with entry 1 along the diagonal. We see that each such block has an
inverse which is again an upper triangular matrix of the same kind. Therefore, the whole
matrix (aλµ) has an inverse which is upper unitriangular, in particular, the inverse has
entries in Z.

By the remark, the matrix (aλµ) from Proposition 3.5 (2), where λ and µ run over
all partitions, is invertible over Z. Since {mµ} forms a Z-basis of Λ, it follows that {eλ′}
forms another Z-basis of Λ such that (aλµ) is the transition matrix between the two bases.
In particular, this implies the statement of the fundamental theorem.

It remains to provide a proof of the proposition:
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Proof. (1) Let xµ, where µ is a partition, be a monomial which appears in the product
expansion of

eλ′ = eλ′1eλ′2 · · · eλ′s .

This means that xµ must be of the form

xµ = y1y2 . . . ys (3.7)

where yi is a monomial term of eλ′i . We write each monomial yi as

yi =
∏
j

x
Aij
j

with Aij ∈ N. We then observe that the condition that yi be a monomial term of eλ′i
simply translates into the condition that the ith row of the matrix (Aij) has entries in
{0, 1} and satisfies

∑
j Aij = λ′i. Similarly, the condition that equation (3.7) holds, i.e.,

that the variable xj appears on the right-hand side with multiplicity µj, translates into the
condition that, for every j, the jth column of the matrix (Aij) sums to µj. This implies
that the number of terms xµ (and hence, since the result is symmetric, the number of
terms mµ) in eλ′ is exactly given by aλµ implying part (1) of the proposition.

To show (2), first assume that (Aij) is a {0, 1}-matrix with row sums λ′ and column
sums µ so that (Aij) has no gaps. Here a gap is a 0 entry in a row which is followed to the
right by an entry 1 in the same row. The condition that (Aij) has no gaps means that the
1-entries of the matrix constitute a Ferrer diagram of the partition λ′ whose transpose is
µ. This implies λ = µ. Vice versa, it is easy to see that this “Ferrer” matrix is the unique
{0, 1}-matrix with row sums λ′ and column sums λ. Therefore, we obtain aλλ = 1. Now
suppose that (Aij) is a {0, 1}-matrix with row sums λ′ and column sums µ which has
a gap. Pick a row with a gap and swap the 0 forming the gap with the rightmost 1 in
the same row, thus obtaining a new matrix (Ãij). The row sums of the new matrix have
not changed. The sequence of column sums α = (α1, α2, . . . ) has changed, in particular,
it may not form a partition. But, enlarging the definition of the dominance order from
partitions to arbitrary sequences with entries in N, it is immediate to verify α ≥ µ. We
obtain a modified matrix (Ãij) with less gaps, row sums λ′, and column sums given by

α ≥ µ. If the matrix (Ãij) has no gaps, then the above argument shows that α = λ.
Otherwise we iterate, producing a totally (dominance) ordered chain of sequences in N

µ ≤ α ≤ · · · ≤ λ

showing that µ ≤ λ.

3.2 Hall’s algebra of partitions

We introduce Hall’s algebra of partitions in a context which is slightly more general than
abelian p-groups: Let R be a discrete valuation ring, i.e., a principal ideal domain with
exactly one nonzero maximal ideal m. We assume that the residue field k = R/m is finite
of cardinality q. An R-module M is called finite if the set underlying M is finite. Since
the residue field is finite, the condition on M to be finite is equivalent to M being finitely
generated and mrM = 0 for some r > 0.
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By the classification result for finitely generated modules over a PID, any finite R-
module decomposes into a sum of cyclic R-modules

M ∼=
⊕
i

R/mλi

where we may assume that λ = (λ1, λ2, . . . ) forms a partition. Therefore, the isomorphism
classes of finite R-modules are naturally labelled by partitions.

Example 3.8. (1) Let R = Zp denote the ring of p-adic integers. Then a finite Zp-
module is a finite abelian group M such that prM = 0 for some r > 0. Therefore,
a finite Zp-module is simply a finite abelian p-group.

(2) Let R = Fq[[t]] the ring of power series in t with coefficients in Fq. A finite Fq[[t]]-
module is a finite dimensional Fq-vector space V which is equipped with a nilpotent
endomorphism T : V → V, v 7→ t.v.

We denote by R−mod′ the category of finite R-modules. The category R−mod′ is
finitary abelian, and the Hall algebra has the underlying abelian group

Hall(R) = Hall(R−mod′) ∼=
⊕
λ

Z[
⊕
i

R/mλi ].

As for abelian p-groups, we introduce the symbol uλ to denote [
⊕

iR/m
λi ]. We will see

later, that the structure constants of Hall(R) only depend on the cardinality q of the
residue field. Before analyzing Hall(R) in more depth, we will try to understand the case
q = 1.

3.3 The Hall algebra of F1[[t]]

It is not immediately clear what the analogue of an abelian p-group for p = 1 should be.
Alternatively, we define in direct analogy with Example (2):

Definition 3.9. A finite F1[[t]]-module is an object of Vect′F1
equipped with a nilpotent

endomorphism.

Proposition 3.10. The isomorphism classes of finite F1[[t]]-modules are naturally la-
belled by the set of all partitions.

Proof. Let K be a finite F1[[t]]-module and denote by T : K → K the corresponding
nilpotent endomorphism. We introduce an oriented graph Γ as follows: the vertices are
given by the elements of K and there is an edge from k to k′ if T (k) = k′. The nilpotency
condition means that, for every element k, we have T r(k) = ∗ for some r > 0. In other
words, the graph Γ is a tree with root ∗. Note however, that since T is a morphism in
the category Vect′F1

it has to be injective on K \ T−1(∗). This implies that the root
∗ is the only branching point of the tree. Each element k of K which is not in the
image of T defines a branch Bk = {T i(k)|i ≥ 0} of Γ. We define the length of Bk to be
|Bk| − 1. We order the tupel of lengths of the branches of Γ in a weakly decreasing way
to obtain a partition (λ1, λ2, . . . ). It is immediate that this construction establishes a
natural bijection between isomorphism classes of finite F1[[t]]-module and partitions.
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Example 3.11. The finite F1[[t]]-module corresponding to the partition (3, 2, 2, 1, 0, . . . )
is represented by the rooted tree

∗

•

77

•

??

•

OO

•

__

•

OO

•

OO

•

OO

•

OO

The category of finite F1[[t]]-modules is a finitary proto-abelian category. The abelian
group underlying its Hall algebra is

Hall(F1[[t]]) =
⊕
λ

Zuλ

where uλ is a formal variable representing the isomorphism class of F1[[t]]-modules with
branch lengths given by λ.

Example 3.12. An example of a short exact sequence of finite F1[[t]]-modules is given
by

∗

•

77

•

??

•

__

•

OO

↪→ ∗

•

77

•

??

•

OO

•

__

•

OO

•

OO

•

OO

•

OO

� ∗

•

77

•

??

•

OO

•

OO

Proposition 3.13. The association K 7→ HomVectF1
(K, {1, ∗}) defines a duality functor

D on the category of finite F1[[t]]-modules such that, for every object K, we have D(K) ∼=
K. In particular, the algebra Hall(F1[[t]]) is commutative.

Proof. Given a finite F1[[t]]-module K with nilpotent endomorphism T , the dual D(T ) =
Hom(K, {1, ∗}) is naturally equipped with a nilpotent endomorphism obtained by pre-
composing with T . The corresponding oriented tree ΓD(T ) is obtained from ΓT by re-
moving ∗, reversing the orientation of all edges, and adding ∗ as a root. This description
implies that D(T ) has the same branch lengths and is hence isomorphic to T .

Proposition 3.14. Let λ be a partition and λ′ its conjugate. We set s = l(λ′). Then,
in Hall(F1[[t]]), we have

u
(1λ
′
1 )
u

(1λ
′
2 )
· · ·u(1λ

′
s ) =

∑
µ

aλµuµ (3.15)

where aλµ denotes the number of {0, 1}-matrices with row sums λ′ and column sums µ.
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Proof. The coefficient aλµ is the number of flags

K = K0 ⊃ K1 ⊃ · · · ⊃ Ks−1 ⊃ Ks = {∗}

where K is fixed of type µ and Ki−1/Ki has type (1λ
′
i). We represent K as an oriented

graph with branches labelled by 1, . . . , s. Let K1 ⊂ K be a submodule such that K/K1

has type (1λ
′
1). Then the set K \K1 consists of exactly λ′i elements which form the tips of

pairwise disjoint branches. We may encode this in a vector v1 in {0, 1}s where we mark
those branches of K which contain a point in K \ K1 by 1 and all remaining branches
by 0. note that the sum over all entries in v1 equals λ′1. We repeat this construction for
each Ki ⊂ Ki−1 and organize the resulting vectors v1, v2, . . . , vs as the rows of a matrix.
By construction, this matrix has row sums λ′ and column sums µ. This construction
establishes a bijection between flags of the above type and {0, 1}-matrices with row sums
λ′ and column sums µ.

Corollary 3.16. The set {u(1r)| r > 0} is algebraically independent and generates
Hall(F1[[t]]) as a Z-algebra. In other words,

Hall(F1[[t]]) = Z[u(1), u(12), . . . ]

is a polynomial ring.

Proof. This is immediate from Proposition 3.5 and Remark 3.6: the matrix (aλµ) is upper
unitriangular and hence invertible over Z.

Corollary 3.17. There is a Z-algebra isomorphism

ϕ : Hall(F1[[t]])
∼=−→ Λ, uλ 7→ mλ

determined by ϕ(u(1r)) = m(1r). We further have ϕ(uλ) = mλ.

Proof. The only statement requiring an argument is that ϕ satisfies ϕ(uλ) = mλ. The
equations obtained by applying ϕ to (3.15), for all λ, uniquely determine the elements
ϕ(uµ), since the matrix (aλµ) is invertible over Z. But, by Proposition 3.5, the elements
{mµ} satisfy the very same set of equations so that we have ϕ(uµ) = mµ.

3.4 Hall’s algebra: a first analysis

We will analyze Hall(R), where R is a discrete valutation ring with residue field k ∼= Fq,
along the same lines as Hall(F1[[t]]).

We start with some preparatory remarks. Recall that the length l(M) of an R-module
M is defined to be the length of a composition series of M . For example, the cyclic module
R/mn has composition series

R/mn ⊃ m/mn ⊃ m2/mn ⊃ · · · ⊃ mn−1/mn ⊃ 0

so that we have l(R/mn) = n. From this, we deduce that a finite module M of type λ has
length given by l(M) = |λ|. Further, given a finite module M , the sequence (µ1, µ2, . . . )
with

µi = dimk(m
i−1M/miM)

is the conjugate partition of λ. Finally, recall that the length is additive in short exact
sequences so that, for a submodule N ⊂M , we have l(M) = l(N) + l(M/N).
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Problem 3.18. Show that Hall(R) is commutative by constructing an exact duality on
the category of finite R-modules as follows. Let π be a local parameter of M , i.e., a
generator of the maximal ideal m. Let E denote the direct limit of the diagram

R/m
π−→ R/m2 π−→ R/m3 π−→ . . .

Show that the functor HomR(−, E) defines an exact duality such that, for every finite
R-module M , we have HomR(M,E) ∼= M .

We have the following analogue of the Proposition in Lecture 6.

Proposition 3.19. Let λ be a partition with conjugate λ′ and set s = l(λ′). Then, in
Hall(R), we have

u
(1λ
′
1 )
u

(1λ
′
2 )
· · ·u(1λ

′
s ) =

∑
µ

bλµuµ (3.20)

where the matrix (bλµ) is upper unitriangular.

Proof. The coefficient bλµ is the number of flags

M = M0 ⊃M1 ⊃M2 ⊃ · · · ⊃Ms−1 ⊃Ms = 0

where M is fixed of type µ and Mi−1/Mi is of type (1λ
′
i), i.e.,

Mi−1/Mi
∼=
⊕
λ′i

R/m.

Given a flag of this kind, we must have mMi−1 ⊂ Mi and therefore miM ⊂ Mi. Using
the additivity of length, this implies

l(M/miM) ≥ l(M/Mi)

which by the above remarks translates into

µ′1 + µ′2 + · · ·+ µ′i−1 ≥ λ′1 + λ′2 + · · ·+ λ′i−1

so that µ′ ≥ λ′ with respect to the dominance order. By Lemma 3.21 below, we have
λ ≤ µ showing that the matrix (bλµ) is upper triangular. If λ = µ, then, by the above
argumentation, we must have miM = Mi which defines a unique flag of the above kind.
Therefore bλλ = 1 so that (bλµ) is upper unitriangular.

Lemma 3.21. Let λ and µ be partitions of n. Then we have

λ ≥ µ⇐⇒ µ′ ≥ λ′.

Proof. It suffices to show one direction. Assume µ′ 6≥ λ′. Then there is an i ≥ 1 such
that

µ′1 + µ′2 + · · ·+ µ′j ≥ λ′1 + λ′2 + · · ·+ λ′j

for 1 ≤ j ≤ i− 1 but

µ′1 + µ′2 + · · ·+ µ′i < λ′1 + λ′2 + · · ·+ λ′i. (3.22)

28



This implies that we must have λ′i > µ′i. We set l = λ′i and m = µ′i. Since |λ′| = |µ′|,
equation (3.22) further implies that

µ′i+1 + µ′i+2 + · · · > λ′i+1 + λ′i+2 + . . . (3.23)

We may write the left-hand side of (3.23) as

µ′i+1 + µ′i+2 + · · · =
m∑
j=1

(µj − i),

the number of boxes in the diagram of µ which lie to the right of the ith column. Similarly,
we have

λ′i+1 + λ′i+2 + · · · =
l∑

j=1

(λj − i).

Therefore, from (3.23), we have

m∑
j=1

(µj − i) >
l∑

j=1

(λj − i) ≥
m∑
j=1

(λj − i).

But this implies
µ1 + µ2 + · · ·+ µm > λ1 + λ2 + · · ·+ λm

so that λ 6≥ µ.

Corollary 3.24. The set {u(1r)| r > 0} is algebraically independent and generates
Hall(R) as a Z-algebra.

Corollary 3.25. There is a Z-algebra isomorphism

ψ : Hall(R)
∼=−→ Λ

determined by ψ(u(1r)) := m(1r). In particular, the set {ψ(uλ)} forms a Z-basis of Λ.

The Z-basis {ϕ(uλ)} of Λ constructed via Hall(F1[[t]]) in §3.3 coincides with the basis
given by the monomial symmetric functions {mλ}. As we will see later on, the symmetric
functions ψ(uλ) forming the Z-basis of Λ from Corollary 3.25 are q-analogues of mλ with
highly interesting properties (up to some renormalization they are known as the Hall-
Littlewood functions).

Our approach to understanding the symmetric functions ψ(uλ) will be indirect: We
will show how the coefficients bλµ of (3.20) can be interpreted as q-analogs of the coef-
ficients aλµ of Lecture 6. To this end, we will introduce a statistic on the set of (0, 1)-
matrices with row sums λ′ and column sums µ.

To be able to understand the result of this analysis, it is necessary to first learn a bit
more about Λ.

3.5 More on symmetric functions

We have defined the Z-bases {mλ} and {eλ} of Λ given by monomial symmetric functions
and elementary symmetric functions, respectively. We will now introduce other natural
Z-bases of Λ indexed by partitions.
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3.5.1 Complete symmetric functions

For r > 0, we define the complete symmetric function

hr =
∑
|λ|=r

mλ,

which is simply the sum over all monomials of degree r. The family {hr} has a concise
generating series given by

H(t) =
∑
r≥0

hrt
r =

∏
i≥1

(1− xit)−1.

In comparison, the family {er} has the generating series

E(t) =
∑
r≥0

ert
r =

∏
i≥1

(1 + xit)

so that we obtain
E(−t)H(t) = 1.

Comparing coefficients of tn, for n > 0, yields the equation

hn − e1hn−1 + e2hn−2 − · · ·+ (−1)nen = 0. (3.26)

Remark 3.27. Note that the resulting system of equations defines recursions which
uniquely determine {hr} in terms of {er} and vice versa.

Since the set {er} is algebraically independent, we may define a Z-algebra homomor-
phism

ω : Λ −→ Λ, er 7→ hr.

By Remark 3.27, applying ω to the equations (3.26) implies that ω(hr) = er so that ω is
an involution, in particular, an isomorphism. We have therefore proven:

Proposition 3.28. The set {hλ} of complete symmetric functions where

hλ = hλ1hλ2 · · ·

is a Z-basis of Λ.

3.5.2 Schur functions

We introduce yet another Z-basis of Λ which will be most relevant for our analysis of
Hall(R): the set of Schur functions. Let α ∈ Nn and consider the polynomial

aα :=
∑
σ∈Sn

sign(σ)σ(xα) = det(x
αj
i )

obtained by anti-symmetrizing xα. We assume

α1 > α2 > · · · > αn
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so that α = λ+ δ where λ is a partition and δ = (n− 1, n− 2, . . . , 1, 0). Note that aα is
divisible in Z[x1, . . . , xn] by the Vandermonde matrix

aδ = det(xn−ji ) =
∏

1≤i<j≤n

xi − xj

and we define the Schur polynomial

sλ(x1, . . . , xn) =
aλ+δ

aδ
.

Example 3.29. We have

s(1,1)(x1, x2) =

∣∣∣∣ x2
1 x1

x2
2 x2

∣∣∣∣∣∣∣∣ x1 1
x2 1

∣∣∣∣ =
x2

1x2 − x1x
2
2

x1 − x2

= x1x2

= m(1,1)(x1, x2)

and

s(3,1)(x1, x2) =

∣∣∣∣ x4
1 x1

x4
2 x2

∣∣∣∣∣∣∣∣ x1 1
x2 1

∣∣∣∣ =
x4

1x2 − x1x
4
2

x1 − x2

= x3
1x2 + x1x

3
2 + x2

1x
2
2

= m(3,1)(x1, x2) +m(2,2)(x1, x2).

The set {aλ+δ(x1, . . . , xn)|l(λ) ≤ n} forms a Z-basis of the group An of antisymmetric
polynomials in n variables. Every antisymmetric polynomial is divisible by aδ so that we
obtain an isomorphism of abelian groups

Λn

∼=−→ An

given by multiplication by aδ. Therefore, the set {sλ(x1, . . . , xn)|l(λ) ≤ n} forms a Z-basis
of Λn.

Problem 3.30. Verify that, for n > l(λ), we have sλ(x1, . . . , xn, 0) = sλ(x1, . . . , xn).

The sequence (sλ(x1, . . . , xn)|n ≥ l(λ)) therefore defines an element sλ of Λ which
we call the Schur function corresponding to λ. By the above discussion, we obtain the
following:

Proposition 3.31. The set {sλ} of Schur functions forms a Z-basis of Λ.

Since we have
Λ = Z[e1, e2, . . . ] = Z[h1, h2, . . . ]

we may express each sλ as a polynomial in {er} and {hr}. The precise formulas are as
follows.

Proposition 3.32 (Jacobi-Trudi). Let λ be a partition.

31



(1) For n ≥ l(λ), we have
sλ = det(hλi−i+j)1≤i,j≤n.

(2) For m ≥ l(λ′), we have
sλ = det(eλ′i−i+j)1≤i,j≤m.

Proof. To show (1) we work with n variables x1, . . . , xn. Denote by e
(k)
r the elementary

symmetric polynomials in x1, . . . , xk−1, xk+1, . . . , xn. They satisfy

E(k)(t) =
n−1∑
r=0

e(k)
r tr =

∏
i 6=k

(1 + xit).

On the other hand, we have

H(t) =
n∏
i=1

(1− xit)−1 =
∑
r≥0

hr(x1, . . . , xn)tr.

For α ∈ Nn, we compare coefficients of tαi in the equality

H(t)E(k)(−t) = (1− xkt)−1

to obtain the equations
n∑
j=1

hαi−n+j(−1)n−je
(k)
n−j = xαi .

We may express this set of equations as a matrix identity

HαM = Aα

where Hα = (hαi−n+j)i,j, M = ((−1)n−je
(k)
n−j)j,k, and Aα = (xαik )i,k. Note that, for

α = ρ = (n− 1, n− 2, . . . , 1, 0), we have det(Hρ) = 1 and hence det(M) = det(Aρ) = aρ
is given by the Vandermonde determinant. We therefore obtain the equation

det(hαi−n+j)aρ = aα (3.33)

which, evaluated at α = λ+ ρ, gives the desired formula.
To show (2), we directly verify the determinantal identity

det(hλi−i+j) = det(eλ′i−i+j)

We introduce, for N > 0, the matrices

H = (hi−j)0≤i,j≤N

and
E = ((−1)i+jei−j)0≤i,j≤N .

We observe that det(E) = det(H) = 1 and that H and E are inverse to one another
(here we use the formula

∑n
r=0(−1)rerhn−r = 0 from Lecture 7). We now set p = l(λ),

q = l(λ′) and set N = p+ q − 1. We now apply Lemma 3.34 below to rows

α = (λi + p− i)1≤i≤p
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and columns
β = (p− i)1≤i≤p

of the matrix H. The corresponding minor of H is

min
α,β

(H) = det(hλi−i+j).

By Lemma 3.35, we have
α̌ = (p− 1 + j − λ′j)1≤j≤q

and
β̌ = (p− 1 + j)1≤j≤q

so that the corresponding cofactor of Etr is given by

(−1)|λ
′|min
α̌,β̌

(Etr) = (−1)|λ
′| det((−1)λ

′
ieλ′i−i+j).

The signs cancel, so that we obtain the desired formula by Lemma 3.34.

Lemma 3.34. Let A, B be square matrices indexed by {0, 1, . . . , N} with det(A) =
det(B) = 1 and AB = I. Consider subsets

α = {α1, α2, . . . , αp} ⊂ {0, 1, . . . , N}

and
β = {β1, β2, . . . , βp} ⊂ {0, 1, . . . , N}

of cardinality p < N + 1. We define the minor

min
α,β

(A)

to be the determinant of the p-by-p submatrix of A with rows α and columns β. We
define

α̌ = {0, 1, . . . , N} \ α
and

β̌ = {0, 1, . . . , N} \ β.
Then we have an equality

min
α,β

(A) = (−1)|α̌|+|β̌|min
α̌,β̌

(Btr).

In plain words, the minors of A coincide with the complementary cofactors of Btr.

Proof. Homework. Hint: Given an N+1-dimensional vector space V , and 0 < p < N+1,
the pairing

p∧
V ⊗

N+1−p∧
V −→

N+1∧
V

given by the exterior product is nondegenerate so that we obtain an isomorphism

p∧
V ∼= Hom(

N+1−p∧
V,

N+1∧
V )

Now analyze how this isomorphism is compatible with the automorphisms induced by
A : V → V on the various exterior powers of V . Choose bases to obtain the desired
formula.
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Lemma 3.35. Let λ be a partition. Set p = l(λ) and q = l(λ′). Then the concatenation
of the sequences

(λi + p− i)1≤i≤p

and
(p− 1 + j − λ′j)1≤j≤q

is a permutation of {0, 1, . . . , p+ q − 1}.

Proof. Consider the diagram of λ visualized as boxes in an integer grid rectangle of size
pxq. The lower boundary of the diagram forms a lattice path starting at the bottom left
corner of the rectangle and ending at the top right corner consisting of horizontal and
vertical steps of length 1. The total length of the lattice path is p + q. We now label
the steps by 0, 1, . . . , p+ q − 1 starting in the bottom left corner so that the first step is
labelled 0, the second step 1, . . . , the last step (reaching the top right corner) p+ q − 1.
We now read off that the vertical steps are labelled by the set

{λi + p− i}1≤i≤p

while the horizontal steps are labelled by

{p− 1 + j − λ′j}1≤j≤q.

We have the following immediate consequences of Proposition 3.32.

Corollary 3.36. (1) For a partition λ, we have

ω(sλ) = sλ′

where ω is the involution of Λ from Lecture 7.

(2) s(n) = hn

(3) s(1n) = en

3.5.3 Transition matrices

Our goal will be to understand the transition matrices between the Z-bases {mλ}, {eλ},
{hλ}, and {sλ} of Λ.

Besides the involution ω on Λ, we will utilize a scalar product on Λ which we now
introduce. We define a bilinear form on Λ by setting

< hλ,mµ >:= δλµ

and extending this formula bilinearly. We will prove:

Proposition 3.37. We have < sλ, sµ >= δλµ so that the Schur functions form an or-
thonormal basis of Λ with respect to the above form.

The statement will follow at once from the following lemma.
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Lemma 3.38. Consider two sets x1, x2, . . . and y1, y2, . . . of independent variables. Then
we have the formulas

(1) ∏
i,j

(1− xiyj)−1 =
∑
λ

hλ(x)mλ(y)

(2) ∏
i,j

(1− xiyj)−1 =
∑
λ

sλ(x)sλ(y)

Proof. Both formulas follow from an explicit manipulation of the involved power series.
To show (1), we have ∏

i,j

(1− xiyj)−1 =
∏
j

H(yi)

=
∏
j

∑
r≥0

hr(x)yj

=
∑
α

hα(x)yα

where the sum in the last line ranges over all compositions, i.e., sequences of natural num-
bers with finitely many nonzero terms. Here hα = hα1hα2 · · · , generalizing the definition
for partitions. Finally, we may express the last line by summing over partitions to obtain∑

α

hα(x)yα =
∑
λ

hλ(x)mλ(y)

To show (2), we work with variables x1, . . . , xn and y1, . . . , yn and calculate

aρ(x)aρ(y)
∏
i,j

(1− xiyj)−1 = aρ(x)aρ(y)
∑
α

hα(x)yα

= aρ(x)
∑

α,σ∈Sn

hα(x) sign(σ)yα+σ.ρ

=
∑
β

aρ(x)
∑
σ

sign(σ)hβ−σ.ρ(x)yβ

where the sum ranges over all β ∈ Nn. We now use the formula

aρ det(hβi−n+j) = aβ

from the proof of the Jacobi-Trudi formulas in Lecture 8 which implies that the last line
equals ∑

β

aβ(x)yβ.

Finally, we note that, since aσβ(x) = sign(σ)aβ(x), we may write this expression as a sum∑
λ

aλ+ρ(x)aλ+ρ(y)

over all partitions of length ≤ n. We obtain the claimed formula by letting n→∞.
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We prove Proposition 3.37.

Proof. We expand the Schur functions in terms of the bases {hλ} and {mλ} writing sλ =∑
ν cλνhν and sλ =

∑
ν dλνmν . We write C = (cλν) and D = (dλν) for the corresponding

matrices indexed by all partitions. Comparing coefficients of the formula∑
λ

sλ(x)sλ(y) =
∑
µ

hµ(x)mµ(y)

we obtain
CtrD = I. (3.39)

On the other hand, we have

< sλ, sµ >=
∑
ν

cλνdµν

which equals δλµ since (3.39) implies CDtr = I.

As immediate consequences, we obtain:

Corollary 3.40. The pairing < −,− > is symmetric, positive definite, and invariant
under the involution ω.

We will now use the various structures introduced on Λ to study the transition matrices
between the bases {mλ}, {eλ},{hλ}, and {sλ}. Given two Z-bases {uλ} and {vλ} of Λ,
we denote by M(u, v) the transition matrix from {vλ} to {uλ} so that

uλ =
∑
µ

M(u, v)λµuµ.

Example 3.41. We have already computed the coefficients of the transition matrix
M(e,m) from {mλ} to {eλ}: we have

M(e,m)λµ = aλ′µ,

the number of {0, 1}-matrices with row sums λ and columns sums µ.

The following formulas are immediate from the definitions:

• M(v, u) = M(u, v)−1

• M(u,w) = M(u, v)M(v, w)

• Suppose u′ and v′ are dual bases (with respect to < −,− >) of u and v, respectively.
Then we have

M(u′, v′) = M(v, u)tr = (M(u, v)−1)tr =: M(u, v)∗.

• M(ω(u), ω(v)) = M(u, v).
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We denote by
K = M(s,m)

the transition matrix between {mλ} and {sλ}. We further introduce the transposition
matrix J with

Jλµ =

{
1 λ = µ′

0 else.

Note that we have J = M(ω(s), s). Then we claim that all transition matrices among
the bases {mλ}, {eλ},{hλ}, and {sλ} can be expressed in terms of J and K:

• M(s, h) = M(s′,m′) = M(s,m)∗ = K∗

• M(s, e) = M(ω(s), h) = M(ω(s), s)M(s, h) = JK∗

Explicit formulas for all transition matrices are now immediately obtained by forming
compositions and inverses of these matrices.

The entries Kλµ of the matrix K are called Kostka numbers and admit an explicit
combinatorial formula: Let λ be a partition and α a composition. We define a tableau of
shape λ and weight µ to be a filling of the boxes in the diagram of λ by natural numbers
such that the following conditions are satisfied:

(1) the numbers in each row are weakly increasing,

(2) the numbers in each column are strictly increasing,

(3) the number i appears αi times.

Example 3.42. The diagram
1 1 1 4 5
2 3 3
4

represents a tableau of shape (5, 3, 1) and weight (3, 1, 2, 2, 1).

Theorem 3.43. The entry Kλµ is given by the number of tableaux of shape λ and weight
µ.

Example 3.44. We have the formula

s(3) = m(3) +m(2,1) +m(1,1,1)

where the coefficients correspond to the tableaux

1 1 1 , 1 1 2 , 1 2 3

of shape (3). As another example, we have

s(2,1) = m(2,1) + 2m(1,1,1)

where the coefficient of m(2,1) corresponds to the tableau

1 1
2
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and the coefficient of m(1,1,1) corresponds to the tableaux

1 2
3 ,

1 3
2 .

The theorem follows immediately from the following combinatorial formula for Schur
functions. We have

sλ =
∑
T

xweight(T )

where the sum runs over all tableau of shape λ.
We only indicate the ideas of the proof, referring to MacDonald’s book (Section I.5)

for details:

(1) We interpret a tableau of shape λ as a sequence

0 = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(n) = λ

where the partition λ(i) contains those boxes with label ≤ i.

(2) We introduce skew Schur functions sµ/ν defined by the formula

< sµ/ν , sλ >=< sµ, sνsλ > .

(3) We prove a formula

sλ(x1, . . . , xn) =
∑

0=λ(0)⊂···⊂λ(n)=λ

sλ(n)/λ(n−1)(xn) · · · sλ(1)/λ(0)(x1)

where the sum ranges over all partitions coming from tableaux of shape λ.

(4) Finally show sλ(i)/λ(i−1)(xi) = xαii where α denotes the weight of the corresponding
tableau.

3.6 Zelevinsky’s statistic

Let R be a DVR with residue field k ∼= Fq. We have shown that, in the Hall algebra of
R, we have the formula

u
(1λ
′
1 )
· · ·u(1λ

′
s ) =

∑
µ

bλµuµ

where bλµ is an upper unitriangular matrix. In this and the next lecture, we will show
that bλµ is the partition function of a statistic and deduce Hall’s theorem. We introduce
some terminology.

For compositions α, β, we define an array A of shape α and weight β to be a labelling
of the squares of the diagram of α such that the number i appears βi times. We express
an array as a function

A : α −→ N+

where we consider (the diagram of) α as a subset of N+ × N+. We will extend A to all
of N+ × N+ by letting elements in the complement of α have value ∞. For x = (i, j) ∈
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N+ × N+, we denote x→ = (i, j + 1). We call an array row-ordered (resp. row-strict) if,
for every x ∈ α, A(x→) ≥ A(x) (resp. A(x→) > A(x)). Analogously, we define column-
ordered and column-strict arrays. Further, we define a lexicographic order on N+ × N+

via
(i, j) < (i′, j′) ⇐⇒ either j < j′, or j = j′ and i > i′.

Given a row-strict array A of shape α, we define

d(A) = |{(x, y) ∈ α× α| y < x and A(x) < A(y) < A(x→)}|.

We now have the following statistical interpretation of the coefficients bλµ:

Theorem 3.45. We have
bλµ =

∑
A

qd(A)

where A ranges over all row-strict arrays of shape µ and weight λ′.

We will provide a proof in the next lecture. In this lecture, we will analyze conse-
quences of the theorem.

Remark 3.46. Given a row-strict array of shape α and weight β, we introduce a {0, 1}-
matrix which has entry 1 at the positions {(i, A(x))} where x = (i, j) runs over all
x ∈ α, and entry 0 elsewhere. It is immediate that this construction provides a bijection
between row-strict arrays of shape α and weight β and {0, 1}-matrices with row sums α
and column sums β. In particular, the theorem states that bλµ can be interpreted as the
partition function of the statistic d on the set of {0, 1}-matrices with row sums µ and
column sums λ′ (or equivalently column sums µ and row sums λ′).

We introduce the polynomial aλµ(t) =
∑

A t
d(A) so that bλµ = aλµ(q).

Proposition 3.47. (1) The polynomial aλµ(t) has nonnegative integral coefficients.

(2) aλµ(1) is the number of {0, 1}-matrices with row sums λ′ and column sums µ.

(3) aλµ(t) = 0 unless µ ≤ λ. Moreover, aλλ(t) = 1.

Proof. (1) is obvious, and (2) is a consequence of the above remark. (3) We have aλµ(1) =
0 unless µ ≤ λ which implies the first statement by (1). aλλ(t) = 1 follows from direct
computation, using the fact that there is precisely one {0, 1}-matrix with row sums λ′

and column sums λ and the corresponding array A satisfies d(A) = 0.

Therefore, we obtain the following corollary of Theorem 3.45.

Corollary 3.48. The structure constants of Hall(R) are polynomial in q: There exist
polynomials gλµν(t) such that

uµuν =
∑
λ

gλµν(q)uλ.
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Proof. The structure constants with respect to the basis {vλ} = {u
(1λ
′
1 )
· · ·u(1λ

′
s )} are

constant. The transition matrix from {uλ} to {vλ} is (aλµ(q)) which has polynomial
entries in q. Further, since, by the above proposition, the matrix (aλµ(t)) is upper uni-
triangular, its inverse also has polynomial entries showing that the entries of (aλµ(q))−1

are polynomial in q. Therefore, the structure constants with respect to {uλ} must also
be polynomial in q.

The following proposition provides more detailed information on the polynomials
aλµ(t). For a partition λ, we introduce

n(λ) =
∑
i≥0

(
λ′i
2

)
.

Proposition 3.49. For a row-strict array A of shape µ and weight λ′ let d̃(A) denote
the number of pairs (x, y) ∈ µ × µ such that y lies above x and A(x) < A(y) < A(x→).
Then we have

(1) d(A) + d̃(A) = n(µ)− n(λ)

(2) d̃(A) = 0 if and only if A is column-ordered.

Proof. To show (1) we consider the following sets

D(A) = {(x, y) ∈ µ× µ| y < x,A(x) ≤ A(y) < A(x→)}
N(µ) = {(x, y) ∈ µ× µ| y lies above x}
D̃(A) = {(x, y) ∈ N(µ)| A(x) < A(y) < A(x→)}.

We have

|D(A)| = d(A) + n(λ)

|N(µ)| = n(µ)

|D̃(A)| = d̃(A)

We claim that there is a bijection

ϕ : D(A)→ N(µ) \ D̃(A)

(this will imply (1)). Let (x, y) ∈ D(A). x and y can not lie in the same row. We replace
x by x′ in the same row as x and the same column as y. If y lies above x′ then we set
ϕ(x, y) = (x′, y), else we set ϕ(x, y) = (y, x′). A case by case analysis shows that ϕ defines
indeed a bijection between the above sets. To show (2) the if part is clear. Assume that
A is not column-ordered. Then we choose a maximal column with a pair (x, y) such that
y lies above x, A(x) < A(y). From the fact that the column to the right of x and y is

ordered, it follows that A(y) < A(x→) so that (x, y) is an element of D̃(A).

As an immediate consequence we have:

Corollary 3.50. (1) The polynomial aλµ(t) has degree ≤ n(µ)− n(λ).
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(2) The coefficient of tn(µ)−n(λ) equals Kµ′λ′ .

We renormalize
ãλµ(t) = tn(µ)−n(λ)aλµ(t−1)

so that we have

• ãλµ(1) = aλµ

• ãλµ(0) = Kµ′λ′ .

We introduce the family {Pµ(x, t)} of elements of Λ[t] = Λ⊗ZZ[t] defined via the formula

eλ′ =
∑
µ

ãλµ(t)Pµ(x, t) (3.51)

so that (ãλµ(t)) is the transition matrix from the Z[t]-basis {Pµ(x, t)} to the Z[t]-basis
{eλ′} of Λ[t]. The functions Pλ(x, t) are called Hall-Littlewood symmetric functions.

Theorem 3.52. We have

(1) Pλ(x, 1) = mλ

(2) Pλ(x, 0) = sλ

(3) The isomorphism
ψq : Hall(R)⊗Q −→ Λ⊗Q

defined by ψq(u(1r)) = q−(r2)er satisfies

ψq(uλ) = q−n(λ)P (x, q−1).

Proof. (1) follows from the fact that ãλµ(1) = aλµ is the transition matrix from the basis
{mµ} to {eλ′}. (2) follows since Kµ′λ′ is the transition matrix from the basis {sµ} to {eλ′}
(see Lecture 9). Statement (3) follows from applying ψq to the formula

u
(1λ
′
1 )
· · ·u(1λ

′
s ) =

∑
µ

bλµuµ

and comparing with (3.51) evaluated at t = q−1.

Introducing the polynomials fλµν(t) defined by

Pµ(x, t)Pν(x, t) =
∑
λ

fλµν(t)Pλ(x, t)

we have corresponding statements about structure constants:

(1) fλµν(1) are the structure constants of Λ with respect to the basis {mλ}.

(2) fλµν(0) are the structure constants of Λ with respect to {sλ}.
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(3) We have
gλµν(t) = tn(λ)−n(µ)−n(ν)fλµν(t

−1).

which follow immediately from Theorem 3.52. In particular, we obtain Hall’s theorem:

Theorem 3.53. The polynomials gλµν(t) have degree ≤ n(λ) − n(µ) − n(ν) and the

coefficients of tn(λ)−n(µ)−n(ν) are the structure constants of Λ with respect to the Schur
basis {sλ}.

We conclude our analysis of Hall(R) for a DVR R with k ∼= Fq by proving Zelevinsky’s
theorem. We prove a slightly stronger version which will allow for an inductive argument.

Theorem 3.54. Let µ, λ be partitions and let α ∼ µ be a composition which is a
permutation of µ. Then we have

bλµ =
∑
A

qd(A)

where A ranges over all arrays of shape α and weight λ′.

Proof. Step 1. We reformulate the formula in terms of sequences of compositions: For
α, β compositions, we write β a α if, for all i, αi − 1 ≤ βi ≤ αi. For β a α, we define

d(α, β) = |{(i, j)| βi = αi, βj = αj − 1, and (j, αj) < (i, αi)}|

We then observe that, given α composition and λ partition with l(λ′) ≤ s, we have a
natural bijection between

{row-strict arrays A of shape α and weight λ′}

and {
sequences 0 = α(0) a α(1) a · · · a α(s) = α with |α(i)| − |α(i−1)| = λ′i

}
.

Under this correspondence, we have

d(A) =
∑
i≥0

d(α(i), α(i−1)).

Step 2. Induction: Assume that

u
(1λ
′
1 )
· · ·u

(1
λ′s−1 )

=
∑
ν

 ∑
0=β(0)a···aβ(s−1)=β

∏
i≥1

qd(β(i),β(i−1))

uν

where, for each ν, β is a fixed permutation of ν. Then to show that

u
(1λ
′
1 )
· · ·u(1λ

′
s ) =

∑
µ

( ∑
0=α(0)a···aα(s)=α

∏
i≥1

qd(α(i),α(i−1))

)
uµ

where, for each µ, α is a fixed permutation of µ, it suffices to show

uνu(1r) =
∑
µ

 ∑
βaα,|α|−|β|=r,β∼ν

qd(α,β)

uµ
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where, for each µ, α is any fixed permutation of µ.
Step 3. In other words, we have to verify for the structure constant gµν(1r) of Hall(R),

the formula
gµν(1r) =

∑
β

qd(α,β)

where α is is a fixed permutation of µ and β runs through all permutations of ν such that
β a α, and |α|− |β| = r. Recall that, for a fixed R-module M of type µ the number gµν(1r)

is the number of submodules N ⊂ M such that N has type (1r) and M/N has type ν.
In particular, we have mN = 0, so that N is a r-dimensional k-subspace of the k-vector
space given by the socle S = {x ∈ M |mx = 0} of M . We denote by Gr(S) the set of
all r-dimensional subspaces of S. For every choice of a basis {vi|i ∈ I} of S together
with a total order of I, the set Gr(S) is the disjoint union of Schubert cells defined as
follows: We have one Schubert cell CJ for every r-subset J of I. The elements of CJ have
coordinates (cij ∈ k|j ∈ J, i ∈ I \ J, i > j) where the subspace of S corresponding to a
coordinate (cij) has basis {vj +

∑
i cijvi}j∈J .

Problem 3.55. Verify that Gr(S) is the disjoint union of the Schubert cells CJ .

Therefore, we have
|CJ | = qd(J)

where d(J) is the number of pairs (i, j) such that j ∈ J , i ∈ J \ I, i > j. Suppose

M ∼=
⊕
i∈I

R/mαi

We order I so that j < i iff (j, αj) < (i, αi). Then we have a bijective correspondence
between subsets J ⊂ I and compositions β a α (where βi = αi−1 iff i ∈ J). Under this
correspondence, we have d(J) = d(α, β). Further, for all k-subspaces N ⊂ S ⊂M which
lie in a fixed Schubert cell CJ , the quotient M/N has the same type λ ∼ β. Therefore,
only those Schubert cells so that M/N has type ν contribute to the count and we obtain
precisely the claimed formula.
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4 Hall algebras via groupoids

4.1 2-pullbacks

Let C be a category. Consider a diagram

X // Z Yoo

in C and assume that the pullback X ×Z Y exists. From the universal property of
pullbacks, we deduce:

(A) An isomorphism
X //

∼=
��

Z

∼=
��

Yoo

∼=
��

X ′ // Z ′ Y ′oo

of diagrams in C induces an isomorphism of pullbacks

X ×Z Y
∼=−→ X ′ ×Z′ Y ′.

Example 4.1. Consider a diagram of categories

A
F // C B

Goo (4.2)

where F and G are functors. Then the pullback

A×C B

exists, and can be explicitly described as follows: The objects are given by pairs (a, b)
where a is an object of A, and b is an object of B, so that F (a) = F (b). A morphism
(a, b) → (a′, b′) is given by a pair of morphisms f : a → a′, and g : b → b′ so that
F (f) = G(g).

According to (A), an isomorphism of diagrams of categories as in (4.2) induces an iso-
morphism of pullbacks. On the other hand, since we are typically interested in categories
up to equivalence, we may hope that an equivalence of diagrams as in (4.2) induces an
equivalence of pullbacks. Unfortunately, this fails:

Example 4.3. Let A be a category and consider the diagram

A
∆ // A×A A

∆oo .

We have
A×A×A A ∼= A.

Consider the commutative diagram of categories

A
∆ //

id
��

A×A

id
��

A
∆oo

F
��

A
∆ // A×A Iso(A)Goo

. (4.4)
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Here Iso(A) denotes the category with objects given by isomorphisms a
∼=−→ b and mor-

phisms given by commutative diagrams

a
∼= //

��

b

��
a′

∼= // b′

,

the functor F is given by the assignment a 7→ (a
id→ a) and the functor G maps a

∼=→ b to
(a, b). It is immediate that ∆ is fully faithful and essentially surjective so that (4.4) is an
equivalence of diagrams. However, the induced map on pullbacks

A×A×A A→ A×A×A Iso(A)

is given by the functor
H : A→ Aut(A)

where Aut(A) denotes the category with objects given by automorphisms a
∼=
a and mor-

phisms by commutative diagrams

a
∼= //

f
��

a

f
��

a′
∼= // a′

,

and H is given by the assignment a 7→ ida. In particular, the functor H is not an
equivalence of categories as soon as A has objects with nontrivial automorphisms.

Our solution to this problem will be to modify our concept of pullback. Given a
diagram

A
F // C B

Goo .

of categories, we introduce the 2-pullback to be the category

A×(2)
C B

with objects given by triples (a, b, ϕ) where a ∈ A, b ∈ B and ϕ : F (a)
∼=→ G(b). A

morphism (a, b, ϕ) → (a′, b′, ϕ′) is given by a pair of morphisms f : a → a′, g : b → b′

such that the diagram

F (a)
ϕ //

F (f)
��

G(b)

G(g)

��
F (a′)

ϕ′ // G(b′)

commutes.
Note that we have a diagram of categories

A×(2)
C B

F ′ //

G′

��

B

G
��

A
F // C

?Gη
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where η : FG′ ⇒ GF ′ is a natural isomorphism of functors. We call a diagram

X
F ′ //

G′

��

B

G
��

A
F // C

<Dη

a 2-pullback diagram if the functor X→ A×(2)
C B given by the assignment x 7→ (G′(x), F ′(x), η(x))

is an equivalence.

Proposition 4.5. An equivalence of diagrams of functors

A
F //

'R
��

C

'T
��

B
Goo

'S
��

A′
F ′ // C′ B′

G′oo

induces an equivalence
H : A×(2)

C B −→ A′ ×(2)
C′ B

′

of 2-pullbacks.

Proof. The functor H is given by the assignment (a, b, ϕ) 7→ (R(a), S(b), T (ϕ)). Fully
faithfulness is verified immediately. To show that H is essentially surjective, let (a′, b′, ϕ′)

be an object in A′ ×(2)
C′ B′. Since R and S are essentially surjective, there exist a, b and

isomorphisms R(a) → a′, S(b) → b′. There is a unique isomorphim ψ : R(a) → S(b)
which makes the diagram

R(a)

��

ψ // S(b)

��
a′

ϕ′ // b′

commute. Since the functor T is fully faithful, there exists a (unique) isomorphism

ϕ : a→ b such that T (ϕ) = ψ. The triple (a, b, ϕ) defines an object of A×(2)
C B such that

H(a, b, ϕ) is isomorphic to (a′, b′, ϕ′).

Remark 4.6. Our definition of a 2-pullback square is slightly ad hoc. It can be shown
that 2-pullback squares are characterized, up to equivalence, by a 2-universal property
which is version of the usual universal property of the pullback in which all commutative
diagrams only commute up to a specified natural isomorphism. We will not spell out the
details.

Problem 4.7. Suppose that we have a diagram

A
F //

R
��

B

T
��

G // C

S
��

A′
F ′ // B′

=Eλ

G′ // C′

<Dη

where both squares are 2-pullback squares. Show that the outer rectangle equipped with
the natural isomorphism

G′F ′R
G′◦λ⇒ G′TF

η◦F⇒ SGF

is a 2-pullback square.
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It turns out that in some cases, ordinary pullback squares of categories are actually
2-pullback squares: A functor F : A→ B is called isofibration if, for every object a ∈ A

and every isomorphism ϕ : F (a)
∼=→ b in B, there exists an isomorphism ϕ̃ : a → a′ in A

such that F (ϕ̃) = ϕ.

Proposition 4.8. Let
X //

��

B

��
A

F // C

be a commutative square of categories and assume that F is an isofibration. Then the
square is a 2-pullback square.

Proof. We may assume that X = A×C B and have to verify that the functor

H : A×C B→ A×(2)
C B

given by the assignment (a, b) 7→ (a, b, id : F (a)→ G(b)) is an equivalence of categories.
Again fully faithfulness is immediate. To show that H is essentially surjective, let (a, b, ϕ)

be an object of A×(2)
C B. Since F is an isofibration, there exists a morphism ϕ̃ : a→ a′

such that F (ϕ̃) = ϕ. It is immediate to verify that we have H(a′, b) ∼= (a, b, ϕ).

Example 4.9. (1) The functor Iso(A)→ A, (a
∼=→ b) 7→ (a, b) is an isofibration. There-

fore, the pullback square
Aut(A) //

��

Iso(A)

��
A // A×A

is a 2-pullback square.

(2) By (1), the pullback square
A //

��

A

��
A // A×A

can not in general be a 2-pullback square, since otherwise, the equivalence of dia-
grams (4.4) would imply that the induced functor

A −→ Aut(A)

is an equivalence. We have seen that this is not the case as soon as A has ob-
jects with nontrivial automorphisms. In agreement with the above proposition, the
diagonal functor A→ A×A is not an isofibration.

Lemma 4.10. For any diagram

A
F // C B

Goo

of categories, there exists an equivalent diagram

A′
F ′ // C B

Goo

where F ′ is an isofibration.
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Proof. We define A′ to be the category with objects given by triples (a, c, ϕ) where a ∈ A,
c ∈ C, and ϕ : F (a) → c is an isomorphism. A morphism consists of pair of morphisms
f : a→ a′, g : c→ c′, such that the diagram

F (a)
ϕ //

F (f)

��

c

g

��
F (a′)

ϕ′ // c′

commutes. We define a functor i : A → A′ by the association a 7→ (a, F (a), id) and a
functor F ′ : A′ → C by (a, c, ϕ) 7→ c. It is immediate to verify that i is an equivalence so
that we have an equivalence of diagrams

A
F //

i
��

C

id
��

B
Goo

id
��

A′
F ′ // C B

G
oo

.

Remark 4.11. The above lemma shows that we may always compute 2-pullbacks as
ordinary pullbacks if we are willing to replace the given diagram by an equivalent one.

48



4.2 Groupoids of flags

A groupoid is a category in which all morphisms are invertible.

Example 4.12. (1) Let G be a group. Then we can define a groupoid BG which has
one object ∗ and Hom(∗, ∗) = G where the composition of morphisms is given by
the group law.

(2) Let X be a topological space. Then we can define the fundamental groupoid Π(X)
whose objects are the points of X and a morphism between x and y is a homotopy
class of continuous paths connecting x to y.

(3) Let C be a category. Then can form the maximal groupoid C
∼= of C by simply

discarding all noninvertible morphisms in C.

We introduce a family of groupoids which will be of central relevance for this section.
Let C be a proto-abelian category. Let Xn = Xn(C) denote the maximal groupoid in the
category of diagrams

0 �
� // A0,1

� � //

����

A0,2
� � //

����

. . . A0,n−1
� � //

����

A0,n

����
0 �
� // A1,2

� � //

����

. . . A1,n−1
� � //

����

A1,n

����

0
. . .

...
...

An−2,n−1
� � //

����

An−2,n

����
0 �
� // An−1,n

����
0

(4.13)

in C where 0 is a fixed zero object in C and all squares are required to be biCartesian.
A crucial observation is that the various groupoids X• are related to one another: for
example, for every 0 ≤ k ≤ n, we have a functor

∂k : Xn → Xn−1

obtained by omitting in the diagram (4.13) the objects in the kth row and kth column
and forming the composite of the remaining morphisms. Similarly, for every 0 ≤ k ≤ n,
we have functors

σk : Xn → Xn+1

given by replacing the kth row by two rows connected via identity maps and replacing
the kth column by two columns connected via identity maps.
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Example 4.14. In this section, we will focus on the family of groupoids X•, n ≤ 3,

X0 X1 X2 X3 (4.15)

where we have indicated the functors {∂k} and {σk}. We have:

• The groupoid X0 is the discrete groupoid {0} with one object.

• The groupoid X1 can be identified with the maximal groupoid in the category C.
The functor σ0 : X0 → X1 is given by 0 7→ 0.

• The groupoid X2 can be identified with the groupoid of short exact sequences in
C. The three functors ∂∗ : X2 → X1 associate to a short exact sequence the three
involved objects, respectively. The functor σ0 : X1 → X2 associates to an object A,

the short exact sequence A
id
↪→ A � 0. The functor σ1 : X1 → X2 associates to an

object A, the short exact sequence 0 ↪→ A
id
� A.

Proposition 4.16. Let C be a proto-abelian category.

(1) The commutative squares of groupoids

X3
∂1 //

∂3
��

X2

∂2
��

X2
∂1 // X1

X3
∂2 //

∂0
��

X2

∂0
��

X2
∂1 // X1

(4.17)

are 2-pullback squares.

(2) The commutative squares of groupoids

X1
σ0 //

��

X2

∂0
��

X0
σ0 // X1

X1
σ1 //

��

X2

∂1
��

X0
σ0 // X1

(4.18)

are 2-pullback squares.

Proof. (1) We denote by Mn the maximal groupoid in the category

{A1 ↪→ A2 ↪→ . . . ↪→ An}

of chains of monomorphisms in C. By the argument of Corollary 2.20, the forgetful
functor

Xn −→Mn

is an equivalence of categories. Combining these functors, we obtain an equivalence
between the left-hand square in (4.17) and the commutative square

M3
//

��

M2

��
M2

//M1

(4.19)
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where the functors are given by

A1 ↪→ A2 ↪→ A3
� //

_

��

A2 ↪→ A3_

��
A1 ↪→ A2

� // A2

By Proposition 4.5, it suffices to verify that (4.19) is a 2-pullback square. Since all
functors in the square are isofibrations, it suffices to verify that (4.19) is an ordinary
pullback square. This follows by explicit verification.

To show that the right-hand square in (4.17) is a 2-pullback square, we apply the
analogous argument using the category En of chains of epimorphisms in C instead of the
category Mn.

(2) We verify the statement for the left-hand square of (4.18). Since the functor ∂0 is
an isofibration, it suffices to show that the canonical functor

(0, σ0) : X1 −→ X0 ×X1 X2

is an equivalence. The right-hand side is the groupoid of short exact sequences with
cokernel equal to 0. But such a short exact sequence is of the form

A
∼=
↪→ B � 0

so that the right-hand side is isomorphic to the groupoid of isomorphisms in C. We now
explicitly verify that the functor (0, σ0) is an equivalence.

Below, we will give a new construction of the Hall algebra of a proto-abelian category
C in which associativity will be an immediate consequence of the 2-pullback squares (4.17)
and unitality will be a consequence of the 2-pullback squares (4.18).

Remark 4.20. A more systematic way to organize the collection of groupoids X• is
as follows. We define the category ∆ with objects given by the linearly ordered sets
[n] = {0, 1, . . . , n} and morphisms given by maps of underlying sets which preserve the
linear order ≤. Then the above functorialities assemble to a functor

X : ∆op −→ Grpd

with values in the category of groupoids. We will study this point of view in more detail
below.
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4.3 Groupoid cardinality and integrals

Let K, S be finite sets. We have

|K q S| = |K|+ |S|

and
|K × S| = |K||S|

so that the categorical operations q and × yield upon application of | − | the numerical
operations of addition and multiplication. One may wonder if there is a categorical
analogue of division (or subtraction).

Example 4.21. Consider the set K = {1, 2, 3, 4} equipped with the action of the cyclic
group C2 =< τ > of order 2 where τ acts via the permutation (14)(23). Then we can
form the orbit set K/C2 and have

|K/C2| = 2 = |K|/|C2|

so that categorical construction of forming the quotient yields division by 2 upon applica-
tion of | − |. However, this interpretation fails as soon as the group action has nontrivial
stabilizers: Letting the group C2 act on the set S = {1, 2, 3} via the permutation (13),
we obtain a quotient S/C2 of cardinality 2 6= 3

2
.

We will now define a notion of cardinality for groupoids which solves the issue of the
example. From now on we use the notation π0(A) for the set of isomorphism classes of
objects in A. A groupoid A is called finite if

(1) the set π0(A) of isomorphism classes of objects is finite,

(2) for every object a ∈ A, the set of automorphisms of a is finite.

Given a finite groupoid A, we introduce the groupoid cardinality

|A| =
∑

[a]∈π0(A)

1

|Aut(a)|
.

Remark 4.22. It is immediate from the definition, that groupoid cardinality is invariant
under equivalences of finite groupoids.

Example 4.23. Any finite set K can be interpreted as a discrete groupoid with K as its
set of objects and morphisms given by identity morphisms only. The groupoid cardinality
of the discrete groupoid associated with K agrees with the cardinality of the set K.

Let K be a finite set equipped with a right action of a finite group G. We define
the action groupoid K//G to have K as its set of objects and morphisms between two
elements k and k′ given by elements g ∈ G such that k.g = k′.

Proposition 4.24. We have
|K//G| = |K|/|G|.
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Proof. The set of isomorphism classes π0(K//G) can be identified with the set of orbits
of the action of G on K. The automorphism group of an object k of K//G coincides with
the stabilizer group Gk = {g ∈ G|k.g = k} ⊂ G. The orbit of an element k under G can
be identified with the quotient set G/Gk of cardinality |G|/|Gk|. We compute

|K//G| =
∑

[k]∈π0(K//G)

1

|Gk|

=
1

|G|
∑

[k]∈π0(K//G)

|G|
|Gk|

=
|K|
|G|

where the last equality follows since the disjoint union of the orbits yields the set K.

Proposition 4.25. Let {∗} denote the discrete groupoid with one object and let

A //

��

B

��
{∗} // C

<Dη

be a 2-pullback square of groupoids such that A and C are finite, and further |π0(C)| = 1.
Then B is finite and we have

|B| = |A||C|.
Proof. We start by noting that π0(B) is finite, since the map π0(A)→ π0(B) is surjective
(which follows immediately from |π0(C)| = 1) and A is finite. As a first step, we use
Lemma 4.10 and the fact that groupoid cardinality is invariant under equivalences, so
that we may assume that the diagram is a commutative pullback diagram of the form

A
G //

��

B

F
��

{∗} // C

where F is an isofibration. As for any groupoid, we have a decomposition

B ∼=
∐

[b]∈π0(B)

B(b)

where B(b) denotes the full subcategory of B consisting of all objects isomorphic to b.
Similarly, we have a decomposition

A ∼=
∐

[b]∈π0(B)

A(b)

where A(b) denotes the full subcategory of A consisting of objects a ∈ A such that G(a)
is isomorphic to b. We obtain, for every [b] ∈ π0(B), a pullback square

A(b) //

��

B(b)

F|B(b)

��
{∗} // C
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where F|B(b) is an isofibration. It suffices to show

|C||A(b)| = |B(b)|

since this implies

|C||A| =
∑

[b]∈π0(B)

|C||A(b)| =
∑

[b]∈π0(B)

|B(b)| = |B|

where we note that the sums are finite since π0(B) is finite. In other words, we may
assume that |π0(B)| = 1 (and, by assumption, |π0(C)| = 1). In this case, since F is an
isofibration, we may find an object b ∈ B such that F (b) = c where c is the image of ∗ in
C. Therefore, we have an equivalence of diagrams

{∗} //

id
��

BG

'
��

BHoo

'
��

{∗} // C Boo

where G = AutC(c), H = AutB(b) and the vertical functors map the base point of BG
(resp. BH) to c (resp. b). Any functor BH → BG corresponds to a group homomorphism
H → G which we denote by ϕ. We now explicitly compute the 2-pullback

{∗} ×BG BH.

The objects are given by triples (∗, ∗BH , g : ∗BG → ∗BG) where g ∈ G so that the set of
objects can be identified with G. A morphism from g to g′ corresponds to a morphism
h : ∗BH → ∗BH such that the diagram

∗BG
g //

id

��

∗BG
ϕ(h)

��
∗BG

g′ // ∗BG

commutes. This condition is equivalent to ϕ(h)g = g′. This groupoid can be identified
with the action groupoid of the H-action on G given by g.h = ϕ(h−1)g. At this point, we
deduce that the group H must be finite, since otherwise, the action would have infinite
stabilizers which contradicts the finiteness (by assumption) of the action groupoid. This
implies that the groupoid B is finite. We further have

|{∗} ×BG BH| = |G//H| =
|G|
|H|

.

which implies the claimed formula

|BH| = |BG||{∗} ×BG BH|.
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Given a set K and a function ϕ : K → Q with finite support, we can introduce the
integral ∫

K

ϕ =
∑
k∈K

ϕ(k).

If K is finite, then we have
∫
K
1 = |K| where 1 denotes the constant function on K with

value 1. We give a generalization to groupoids.
Given a groupoid A, we define F(A) to be the Q-vector space of functions ϕ : obA→

Q which are

(1) constant on isomorphism classes,

(2) nonzero on only finitely many isomorphism classes.

We call A locally finite if every connected component A(a) is finite. Given a locally
finite groupoid A and ϕ ∈ F(A), we define the groupoid integral∫

A

ϕ =
∑

[a]∈π0(A)

ϕ(a)

|Aut(a)|
.

Note that, if A is finite, then we have
∫
A
1 = |A|.

We further introduce a relative version of the groupoid integral given by integration
along the fibers: A functor F : A→ B of groupoids is called

(1) finite if every 2-fiber of F is finite,

(2) locally finite if, for every a ∈ A, the restriction of F to A(a) is finite,

(3) π0-finite if the induced map of sets π0(A)→ π0(B) has finite fibers.

Given a locally finite functor F : A → B and a function ϕ ∈ F(A), we define the
pushforward F!ϕ ∈ F(B) via

F!ϕ(b) :=

∫
Ab

ϕ|Ab

where Ab is the 2-fiber of F at b and ϕ|Ab denotes the pullback of ϕ along the natural
functor Ab → A. We obtain a Q-linear map

F! : F(A) −→ F(B).

Example 4.26. For a locally finite groupoid A the constant functor F : A → {∗} is
locally finite and we have F!ϕ(∗) =

∫
A
ϕ.

Given a π0-finite functor F : A→ B and a function ϕ ∈ F(B), we define the pullback
F ∗ϕ ∈ F(A) via

F ∗ϕ(a) := ϕ(F (a)).

We obtain a Q-linear map
F ∗ : F(B) −→ F(A).

The central properties of the pullback and pushforward operations are captured in
the following Proposition.
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Proposition 4.27. (1) Functoriality.

(a) Let F : A → B and G : B → C be π0-finite functors of groupoids. Then the
composite G ◦ F is π0-finite and we have

(G ◦ F )∗ = F ∗ ◦G∗.

(b) Let F : A → B and G : B → C be locally finite functors of groupoids. Then
the composite G ◦ F is locally finite and we have

(G ◦ F )! = G! ◦ F!.

(2) Base change. Let

X

G′

��

F ′ // B

G
��

A
F // C

<D
(4.28)

be a 2-pullback square with F locally finite and G π0-finite. Then F ′ is locally
finite, G′ is π0-finite, and we have

(F ′)! ◦ (G′)∗ = G∗ ◦ F!.

Proof. (1) The statements of (i) are immediate. We show (ii). By restricting to connected
components, we may assume that A,B are connected, F , G are finite, and have to show
that G ◦ F is finite. To show this, consider the diagram

Ab
//

��

{b}

��
Ac

//

��

Bc
//

��

<D

{c}

��
A

F // B
G //

=E

C

>F

(4.29)

where c ∈ C, b ∈ Bc, and where all squares are 2-pullback squares. It follows from
Problem 4.7 that Ac is the 2-fiber of G ◦ F over c, and Ab is the 2-fiber of F over the
image of b in B. For the connected component Bc(b) of Bc, we further have a restricted
2-pullback square

Ab
//

��

{b}

��
Ac(b) // Bc(b)

@H

(4.30)

where we use the notation from the proof of Proposition 4.25. Therefore, by Proposition
4.25, the groupoid |Ac(b)| is finite. Since we have the finite decomposition

Ac = q[b]∈π0(Bc)Ac(b)

we deduce that Ac is finite which, by definition, implies that G ◦ F is finite.
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To show functoriality, note that both sides of the formula

(G ◦ F )! = G! ◦ F!

are Q-linear so that we may reduce to the case ϕ = 1[a] where a ∈ A. Therefore, we may
assume that A, B are connected, F ,G finite, and ϕ = 1. In this case, we compute

(G ◦ F )!1(c) =
∑

[a]∈π0(Ac)

1

|Aut(a)|
= |Ac|.

On the other hand, we have

G!(F!ϕ)(c) =
∑

[b]∈π0(Bc)

F!1(i(b))

|AutBc(b)|

=
∑

[b]∈π0(Bc)

|Ab||Bc(b)|

=
∑

[b]∈π0(Bc)

|Ac(b)|

= |Ac|

where i : Bb → B denotes the natural functor, and we apply Proposition 4.25 to (4.30).
(2) Replacing A by A(a) and X by X(a), we may assume that A is connected and F

is finite. We will show first show that in this case F ′ is finite, in particular, locally finite.
Given b ∈ B, we augment the 2-pullback diagram (4.28) to form

Xb

��

// {b}

��
X

G′

��

F ′ // B

G
��

=E

A
F // C

>F

(4.31)

By Problem 4.7, the exterior rectangle is a 2-pullback square so that Xb is a 2-fiber of F
over G(b) which is finite since F is finite by assumption.

To show that G′ is π0-finite, we have to show (still assuming A to be connected) that
π0(X) is finite. We have an equivalence

X ' A×(2)
C B

' A×(2)
C q[b]∈π0(B)B(b)

' q[b]∈π0(B)|G([b])=F ([a])A×(2)
C B(b)

' q[b]∈π0(B)|G([b])=F ([a])A×(2)
C(F (a)) B(b)

where a is any object of A. Since the G is π0-finite, the resulting decomposition of
X has only finitely many components. It therefore suffices to show that each of these
components has finitely many isomorphism classes so that we have reduced to the case
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when B and C (and A are connected). In other words, given group homomorphisms
ϕ : G→ H, and ψ : G′ → H, we have to show that

X = BG×(2)
BH BG

′

has finitely many isomorphism classes, assuming that the map Bϕ : BG→ BH is finite.
As we have seen, the 2-fiber of Bϕ : BG → BH is the action groupoid corresponding
to the G-action on H via ϕ. In particular, we have that π0(H//G) is finite so that the
action has finitely many orbits. A direct computation shows that X is given by the action
groupoid of the action of G × G′ on H via h.(g, g′) = ϕ(g)−1hψ(g′). Since the G-action
on H has finitely many orbits, this action also has finitely many orbits implying π0(X)
finite.

To show the base change formula, note that we may assume ϕ = 1. Using the diagram
(4.31), we compute

(F ′)! ◦ (G′)∗1(b) = |Xb| = G∗ ◦ F!1(b)

since Xb is both the 2-fiber of F ′ over b and the 2-fiber of F over G(b).
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4.4 The Hall algebra

Recall that, to a proto-abelian category C we have associated the collection X•(C) of
groupoids of flags in C which are related by functors

∂i : Xn → Xn−1

for 0 ≤ i ≤ n. More generally, for every n, and a subset I ⊂ {0, 1, . . . , n} of cardinality
m+ 1, we obtain a functor

Xn → Xm

which is obtained by selecting only those rows and columns of a diagram in Xn whose
indices lie in I.

Given groupoids A and B, we have a canonical identification

F(A)⊗Q F(B) ∼= F(A×B) (4.32)

which we leave implicit in what follows.

Theorem 4.33. Let C be a finitary proto-abelian category. Consider the diagram

X2
F //

G
��

X1

X1 × X1

of groupoids of flags where G = (∂0, ∂2) and F = ∂1. Then F is locally finite, G is
π0-finite, and the Q-linear map

µ : F(X1 × X1)
F!◦G∗−→ F(X1)

defines an associative algebra structure on the Q-vector space F(X1).

Proof. The condition on the Ext1-sets of C to be finite implies that the functor G is π0-
finite. Given a pair of objects (A,A′) of C, consider the restriciton of F to the subgroupoid
X2(A,A′) ⊂ X2 of short exact sequences in C whose kernel (resp. cokernel) is isomorphic
to A (resp, A′). Since F is an isofibration, we may compute the 2-fiber of the restriction
as a strict fiber. We have a pullback square

(FBA′,A)
∼= //

��

{B}

��
X2(A,A′) // X1

.

The groupoid (FBA′,A)
∼= is the maximal subgroupoid in the category of flags in B of type

A′,A introduced in §4.2. It is discrete and has finitely many isomorphism classes which
implies the local finiteness of F .
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Consider the diagram

X2
F //

G
��

X1

X2 × X1
F×id //

G×id
��

X1 × X1

X1 × X1 × X1

. (4.34)

The map F(X1 × X1 × X1)→ F(X1) given by the composite

F! ◦G∗ ◦ (F × id)! ◦ (F × id)∗

is, via (4.32), identified with µ ◦ (µ ⊗ id). We may extend the diagram (4.34) to the
diagram

X3

��

// X2
F //

G
��

X1

X2 × X1
F×id //

G×id
��

X1 × X1

X1 × X1 × X1

.

where the two components of X3 → X2×X1 correspond to the subsets {0, 1, 2} and {2, 3}
of {0, 1, 2, 3} while the functor X3 → X2 corresponds to the subset {0, 1, 3}. We have a
chain of natural functors composite of the natural functors

X3
F1−→ (X2 × X1)×(2)

X1×X1
X2

F2−→ X2 ×(2)
X1

X2

where F2 is an equivalence by direct verification and the composite F2◦F1 is an equivalence
by Proposition 4.16. Therefore, the functor F1 is an equivalence which shows that the top
left square is a 2-pullback square. Therefore, by Proposition 4.27, the map µ ◦ (µ ⊗ id)
equals to T! ◦R∗ where

R : X3 → X1 × X1 × X1

corresponds to the subsets {0, 1}, {1, 2} and {2, 3} of {0, 1, 2, 3} while the functor

S : X3 → X1

corresponds to {0, 3}. An analogous argument, where the other pullback square of Propo-
sition 4.16 is used, shows that µ◦ (id⊗µ) can also be identified with T! ◦R∗, thus showing
associativity.

Proposition 4.35. The resulting associative algebra is isomorphic to Hall(C)op
Q .

Proof. We have a natural Q-linear isomorphism

Hall(C)Q −→ F(X1)
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determined by [A] 7→ 1[A]. From the calculation of the local 2-fibers of F in the proof of
the above Theorem, it follows that the value of the function

F! ◦G∗(1([A],[A′]))

at B ∈ X1 is given by the groupoid cardinality of the groupoid

FBA′,A(C)

of flags in B of type A′,A. This groupoid is discrete so that we have

|FBA′,A(C)| = π0(FBA′,A(C)).

But these numbers are precisely the structure constants of Hall(C)op which proves the
claim.

Remark 4.36. The proof of Proposition 4.35 shows that the 2-fibers of the functor

F : X2 → X1

are discrete. This means that we could replace F(A) by the abelian group F(A)Z of finitely
supported functions taking values in Z instead of Q. We can pushforward functions in
F(A)Z along locally finite functors whose 2-fibers are further required to be discrete. In
this context, the construction of Theorem 4.33 recovers the integral Hall algebra of C.
The reason for working with F(A) is that, below, we will be interested in pushing forward
along functors which do not have discrete 2-fibers.

Analyzing the proof of Theorem 4.33, we observe that there seem to be two separate
ingredients which imply the associativity of the Hall algebra

(1) The properties of the family X• of groupoids of flags captured in Proposition 4.16.

(2) The properties of the association A→ F(A) captured in Proposition 4.27.

Our next goal is to turn this observation into a mathematical statement. To this end, we
need to introduce some terminology.
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4.5 Monoidal categories and lax monoidal functors

A monoidal category is a category C equipped with the following data:

• a functor
⊗ : C× C→ C

called tensor product,

• an object I called unit,

• for every triple of objects A,B,C, an isomorphism

αA,B,C : (A⊗B)⊗ C
∼=−→ A⊗ (B ⊗ C),

called associator,

• for every object A, isomorphisms

λA : I ⊗ A
∼=−→ A

and
ρA : A⊗ I

∼=−→ A

called left (resp. right) unitor.

These data are required to satisfy the following conditions:

• The isomorphisms αA,B,C , λA, and ρA are required to be functorial in their argu-
ments.

• For every quadrupel (A,B,C,D) of objects, the MacLane pentagon

((A⊗B)⊗ C)⊗D
αA⊗B,C,D

**

αA,B,C⊗idD

tt
(A⊗ (B ⊗ C))⊗D

αA,B⊗C,D
��

(A⊗B)⊗ (C ⊗D)

αA,B,C⊗D
��

A⊗ ((B ⊗ C)⊗D)
idA⊗αB,C,D // A⊗ (B ⊗ (C ⊗D))

commutes.

• For every pair of objects (A,B), the diagram

(A⊗ I)⊗B

ρA⊗idB ''

αA,I,B // A⊗ (I ⊗B)

idA⊗λBww
A⊗B

commutes.
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Example 4.37. (1) The tensor product ⊗k on the category of vector spaces over a
field k can be extended to a monoidal structure.

(2) Any category with products can be given a monoidal structure with A⊗B = A×B.
We call this monoidal structure the Cartesian monoidal structure.

(3) Consider the discrete category {∗} with one object. This category carries a monoidal
structure by letting ∗⊗∗ = ∗ and all structural isomorphisms given by the identity
map.

Let C, D be monoidal categories. A lax monoidal functor from C to D consists of

• a functor F : C→ D,

• a natural transformation γA,B : F (A)⊗ F (B) −→ F (A⊗B) making the diagram

(F (A)⊗ F (B))⊗ F (C) //

γA,B⊗id

��

F (A)⊗ (F (B)⊗ F (C))

id⊗γB,C
��

F (A⊗B)⊗ F (C)

γA⊗B,C
��

F (A)⊗ F (B ⊗ C)

γA,B⊗C
��

F ((A⊗B)⊗ C)
F (αA,B,C)

// F (A⊗ (B ⊗ C))

commute,

• a morphism e : ID → F (IC) making the diagrams

F (A)⊗ ID
id⊗e//

ρF (A) ((

F (A)⊗ F (IC)
γA,IC // F (A⊗ IC)

F (ρA)vv
F (A)

ID ⊗ F (A)
e⊗id//

λF (A) ((

F (IC)⊗ F (A)
γIC,A // F (IC ⊗ A)

F (λA)

vv
F (A)

commute.

A lax monoidal functor is called monoidal if the natural transformation γA,B is an iso-
morphism.

Example 4.38. Let C be a monoidal category and let F : {∗} → C be a lax monoidal
functor. Unravelling the definition, we obtain the following data:

• An object A = F (∗) in C.
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• Morphisms µ : A⊗ A→ A and e : I → A which satisfy

(A⊗ A)⊗ A
αA,A,A//

µ⊗id

��

A⊗ (A⊗ A)

id⊗µ
��

A⊗ A
µ

��

A⊗ A
µ

��
A

id // A

A⊗ I id⊗e //

ρA
%%

A⊗ A µ // A

id{{
A

I ⊗ A e⊗id //

λA %%

A⊗ A µ // A

id{{
A

We call (A, µ, e) an algebra object in C.

Remark 4.39. Since the composite of two lax monoidal functors is naturally lax monoidal,
we observe: Let F : C→ D be a lax monoidal functor of monoidal categories and A and
algebra object in C. Then F (A) is naturally an algebra object in D.

Example 4.40. An algebra object in the category of sets, equipped with the Cartesian
monoidal structure, is a monoid. There is a monoidal functor F : (Set,×)→ (Vectk,⊗k)
which assigns to a set K the free vector space on K. The algebra object F (M) corre-
sponding to a monoid M is the monoid algebra of M . For example, F (N) is isomorphic
to the polynomial algebra in one variable.

.

Remark 4.41. Let (C,⊗) be a monoidal category. Then the opposite category Cop is
equipped with a natural monoidal structure. We refer to algebra objects in (Cop,⊗) as
coalgebra objects in (C,⊗)

64



4.6 Spans of groupoids and the abstract Hall algebra

We introduce the category Span(Grpd) of spans in groupoids. The objects are given by
(small) groupoids. The set of morphisms between groupoids A,B, is defined to be

Hom(A,B) =


X

�� ��
A B

 / ∼

where two spans A← X→ B and A← X′ → B are considered equivalent if there exists
a diagram

X

~~ ck
F

��

  
A B

X′

`` >>
4<

where F is an equivalence. The composition of morphisms is given by forming 2-pullbacks:
Given morphisms f : A→ B and g : B→ C in Span(Grpd), we represent them by spans
A← X→ B and B← Y→ C and form the diagram

Z

�� ��
X

����

Y

�� ��
A B

+3

C

where the square is a 2-pullback square. We then define the composite g ◦ f to be the
morphism from A to C represented by the span

Z

��   
A B.

It follows from the invariance properties of 2-pullbacks that this operation is well-defined.
We define a monoidal structure on Span(Grpd) as follows: The tensor product is

defined on objects via A⊗B = A×B and on morphisms via

X

�� ��
A B

⊗
X′

~~   
A′ B′

=

X× X′

yy %%
A×A′ B×B′.

Consider the natural functor

i : Grpd −→ Span(Grpd)
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which is the identity on objects and maps a functor F : A → B to the morphism
represented by the span

A
id

��

F

  
A B.

We now define the unit, associator, and unitors to be the image under i of unit, associator,
and unitors of the cartesian monoidal structure on Grpd. The functoriality of i implies
that all coherence conditions are satisfied.

Finally, we define a subcategory of Spanf(Grpd) ⊂ Span(Grpd) with the same ob-
jects but morphisms given by spans

X
G

��

F

  
A B.

such that F locally finite and G π0-finite. The composition of such spans is well-defined
by Proposition 4.27.

Theorem 4.42. Let C be a proto-abelian category and let X• be the corresponding
groupoids of flags in C.

(1) The morphisms in Span(Grpd) represented by the spans

µ :

X2

G

zz

F

  
X1 × X1 X1

and

e :

X0

id

~~

07→0

  
X0 X1

make X1 an algebra object in Span(Grpd). We call (X1, µ, e) the abstract Hall
algebra of C.

(2) Assume C is finitary. Then (X1, µ, e) defines an algebra object in Spanf(Grpd) ⊂
Span(Grpd).

(3) The association A 7→ F(A) extends to a monoidal functor

F : Spanf(Grpd)→ VectQ.

For finitary C, the resulting algebra object F(X1, µ, e) in VectQ is isomorphic to
the (opposite) Hall algebra of C.
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Proof. (1) We have to verify µ ◦ (µ ⊗ id) = µ ◦ (id⊗µ). To compute the left-hand side,
we consider the commutative diagram

X3

��

// X2
F //

G
��

X1

X2 × X1
F×id //

G×id
��

X1 × X1

X1 × X1 × X1

.

We claim that the left-hand square is a pullback square: There is a sequence of natural
functors

X3 −→ (X2 × X1)×(2)
X1×X1

X2 −→ X2 ×(2)
X1

X2

where the composite is an equivalence by using the first 2-pullback square of Proposition
4.16 and the second functor is an equivalence by direct verification. It follows that the
first functor is an equivalence which shows the claim. Therefore, we have

µ ◦ (µ⊗ id) =

X3

R

xx

T

!!
X1 × X1 × X1 X1.

where R is given by the subsets {0, 1}, {1, 2}, {2, 3} of {0, 1, 2, 3} and T by the subset
{0, 3}. Similarly, using the second 2-pullback square of Proposition 4.16, we obtain that

µ ◦ (id⊗µ) =

X3

R

xx

T

!!
X1 × X1 × X1 X1.

so that we deduce associativity. To show right unitality µ ◦ (e ⊗ id) = ρX1 , we consider
the diagram

X1

��

R // X2
F //

G
��

X1

X1 × X0
//

��

X1 × X1

X1 × X0

where R is the functor which associates to an object A of X1 the short exact sequence

A id // A

��
0.

We claim that the top right square is a 2-pullback square which, by a similar argument as
above, reduces to the first 2-pullback square of Proposition 4.16(2). Right unitality follows
from the second 2-pullback square of Proposition 4.16(2) by an analogous argument.
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(2) This is immediate from the proof of Theorem 4.33.
(3) We define a functor F : Span(Grpd) → VectQ by associating to a groupoid A

the vector space F(A) and to a span

X
G

��

F

  
A B.

the linear map F! ◦G∗ : F(A)→ F(B). We define

γA,B : F(A)⊗ F(B)→ F(A×B)

to be the isomorphism given by associating to ϕ ⊗ ψ the function (a, b) 7→ ϕ(a)ψ(b).
Further, the unit morphism

e : Q→ F({∗})

is given by mapping q to ∗ 7→ q. All coherence conditions are easy to verify.
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4.7 Green’s theorem

Green’s theorem states that, under certain assumptions on an abelian category C, we can
introduce a coproduct on the Hall algebra Hall(C) making it a bialgebra up to a certain
twist. In this section, we will use the abstract Hall algebra introduced in §4.6 to provide
a proof of this statement.

Let C be a proto-abelian category and X• the corresponding groupoids of flags. Instead
of considering the span

µ :

X2

G

zz

F

  
X1 × X1 X1

(4.43)

which represents the multiplication on the abstract Hall algebra, we may form the reverse
span

∆ :

X2

F

~~

G

$$
X1 X1 × X1

(4.44)

Also taking into account the reverse c of the unit morphism e, it is immediate that
(X1,∆, c) forms a coalgebra object in Span(Grpd) (cf. Remark 4.41). The proof consists
of reading all span diagrams involved in the proof of Theorem 4.42 in reverse direction.

Given an associative k-algebra A, equipped with a coproduct ∆ : A→ A⊗A, we may
ask if multiplication and comultiplication are compatible in the sense

∆(ab) = ∆(a)∆(b). (4.45)

In other words, introducing on A⊗A the algebra structure (a⊗ b)(a′⊗ b) = aa′⊗ bb′, we
ask if the coproduct ∆ is a homomorphism of algebras.

Example 4.46. Let G be a group and let

k[G] =
⊕
g∈G

kg

denote the group algebra over the field k. The k-linear extension of the formula ∆(g) =
g ⊗ g defines a coproduct

∆ : k[G]→ k[G]⊗ k[G]

on k[G]. It is immediate to verify (4.45).

We address the analogous compatibility question for the abstract Hall algebra.

4.7.1 Squares, frames, and crosses

To analyze whether or not the equation (4.45) holds for the abstract Hall algebra, we
explicitly compute both sides using (4.43) and (4.44). The left-hand side is given by the
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composite

+ //

��

X2
G //

F
��

X1 × X1

X2
F //

G
��

X1

X1 × X1.

which yields
+

L

zz

R

$$
X1 × X1 X1 × X1

(4.47)

where + denotes the groupoid of exact crosses in C: diagrams

B

��
A′ // B′

��

// C ′

B′′

consisting of two exact sequences C with common middle term. The functor L associates
to such a cross the pair of objects (B,B′′), the functor R assigns the pair (A′, C ′). Note
that we can compute the 2-pullback + as an ordinary pullback since the functor F is an
isofibration. The right-hand side of (4.45) is given by

� //

��

X2 × X2
F×F //

P
��

X1 × X1

X2 × X2
G×G //

F×F
��

X1 × X1 × X1 × X1

X1 × X1

where the functor P assigns to a pair (A → A′ → A′′, C → C ′ → C ′′) of short exact
sequences the 4-tupel (A,C,A′′, C ′′) of objects in X1. The composite is represented by
the span

�
M

zz

N

$$
X1 × X1 X1 × X1

(4.48)

70



where � denotes the groupoid of exact frames in C: diagrams

A //

��

B // C

��
A′

��

C ′

��
A′′ // B′′ // C ′′

where the two complete rows and columns are short exact sequences. The functor M
assigns to such a frame the pair (B,B′′) while the functor N assigns the pair (A′, C ′).
To compare the groupoids + and �, we introduce another groupoid: the groupoid � of
exact 3-by-3 squares given by commutative diagrams in C of the form

A //

��

B //

��

C

��
A′ //

��

B′

��

// C ′

��
A′′ // B′′ // C ′′

where all rows and columns are required to be short exact sequences. We obtain a
commutative diagram

+

zz $$
X1 × X1 �oo

OO

��

// X1 × X1

�

dd ::

of groupoids. In what follows, we will assume that the category C is abelian.

Lemma 4.49. The forgetful functor F : �→ + is an equivalence of groupoids.

Proof. We claim that there is a commmutative diagram of groupoids

�

P ��

F // +

♦
Q

??

where ♦ denotes the groupoid of diagrams of the form

A //

��

B

��
A′ // B′

��

// C ′

��
B′′ // C ′′
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where the middle row and column are short exact, the top-left square is a pullback square
and the bottom-right square is a pushout square, and the functors P and Q are forgetful
functors. To show that P exists, we verify that the top-left square of any exact 3-by-3
square is pullback (the fact that the bottom-right square is pushout is the dual statement).
Applying the snake lemma to the diagram

0 // A′ //

��

A′ ⊕B //

��

B //

��

0

0 // A′ // B′ // C ′ // 0

(4.50)

and using the exactness of
0 // A // B // C ′

we obtain the exact sequence

0 // A // A′ ⊕B // B′

which shows our claim by Lemma 2.11. By the argument of Lemma 2.19, it is clear
that the functor Q is an equivalence: essential surjectivity follows from the existence of
pullbacks and pushouts, and fully faithfulness follows from the universal properties which
these constructions enjoy. Similarly, using the universal property of kernels and cokernels,
it is clear that the functor P is fully faithful. To show that P is essentially surjective, we
have to show that every object of ♦ can be extended to an exact 3-by-3 square. To this
end, it suffices to verify that, given an object of ♦, the sequences

0 −→ A −→ B −→ C ′ −→ C ′′ −→ 0 (4.51)

and
0 −→ A −→ A′ −→ B′′ −→ C ′′ −→ 0 (4.52)

are exact. Indeed, given the exactness of (4.51), we may fill in the top-right corner of a
3-by-3 square using the cokernel of A→ B which is also a kernel of C ′ → C ′′. Similarly,
we can fill in the bottom-left corner using the exactness of (4.52). We show exactness
of the first sequence, the argument for the exactness of the second one being analogous.
Applying the snake lemma to (4.50), but now using the exactness of

0 // A // A′ ⊕B // B′

implies the exactness of
0 // A // B // C ′. (4.53)

Similarly, applying the snake lemma to the diagram

0 // B //

��

B′ //

��

B′′ //

��

0

0 // C ′ // B′′ ⊕ C ′ // B′′ // 0

and using the exactness of

B′ // B′′ ⊕ C ′ // C ′′ // 0
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we obtain the exactness of

B // C ′ // C ′′ // 0. (4.54)

Combining (4.53) and (4.54), we obtain the exact sequence (4.51) as claimed.

Using Lemma 4.49, we may replace (4.47) by the span

�

zz $$
X1 × X1 X1 × X1

which represents the same morphism in Span(Grpd). We obtain a diagram

�

zz

��

$$
X1 × X1 X1 × X1

�

dd ::

of groupoids. If the forgetful functor π : � → � were an equivalence, this would imply
the compatibility of the multiplication and comultiplication for the abstract Hall algebra.
As it turns out, this is not the case – the situation is more subtle. We will analyze
the discrepancy of the functor π from being an equivalence by calculating its 2-fibers.
Note that, π being an isofibration, we may calculate the 2-fibers as ordinary fibers of π.
Suppose the frame f is given by the diagram

A //

��

B // C

��
A′

��

C ′

��
A′′ // B′′ // C ′′.

The fiber �f is the groupoid of diagrams of the form

A //

��

B

��

// C

��
A′

��

// Y //

��

C ′

��
A′′ // B′′ // C ′′.

with morphisms inducing the identity on the fixed outer frame f . Note that associated
to the frame f , there is a long exact sequence

ξf : 0 −→ A −→ A′ qA B −→ B′′ ×C′′ C ′ −→ C ′′ −→ 0 (4.55)

given as the Baer sum (see §4.7.2) of the two outer long exact sequences of the frame.

73



Definition 4.56. Let

ξ : 0 −→ Q −→ R −→ S −→ T −→ 0

be an exact sequence in an abelian category A. We introduce a corresponding groupoid
Triv(ξ) of commutative diagrams of the form

Q // R //� o

��

S // T

Y

?? ?? (4.57)

such that the natural maps Y/Q→ S and Y/R→ T are isomorphisms. The morphisms
in Triv(ξ) are given by isomorphisms of diagrams which induce the identity on ξ.

Lemma 4.58. There is an equivalence of groupoids

�f −→ Triv(ξf ).

Proof. It is clear that, given an exact 3-by-3 square, we obtain a canonical diagram of
the form (4.57). To show that this association yields a well-defined functor, we have to
verify that the sequences

0 −→ A −→ Y −→ B′′ ×C′′ C ′ −→ 0 (4.59)

and
0 −→ A′ qA B −→ Y −→ C ′′ −→ 0 (4.60)

are exact. Applying the snake lemma to the diagram

0 // A′ ⊕B //

��

Y ⊕ Y //

��

B′′ ⊕ C ′

��

// 0

0 // Y
id

// Y // 0 // 0

yields the exact sequence
0 −→ A −→ Y −→ B′′ ⊕ C ′

which we may extend to the exact sequence

0 −→ A −→ Y −→ B′′ ⊕ C ′ −→ C ′′ −→ 0

using that the bottom-right square in any exact 3-by-3 square is a pushout square. Since
the kernel of the map B′′ ⊕ C ′ −→ C ′′ is B′′ ×C′′ C ′, we obtain the exactness of (4.59).
The exactness of (4.60) follows similarly.

Since the fully faithfulness of the functor is clear, it remains to show that it is es-
sentially surjective. From an object in Triv(ξf ), we obtain a canonical 3-by-3-square. It
remains to verify that the involved sequences

0 −→ A′ −→ Y −→ C ′ −→ 0
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and
0 −→ B −→ Y −→ B′′ −→ 0

are exact. Applying the snake lemma to the diagram

0 // R //

��

Y //

��

C ′′ //

��

0

0 // C // C ′ // C ′′ // 0

and using the exactness of

0 −→ A′ −→ R −→ C −→ 0

as a Yoneda pushout (see §4.7.2) of the exact sequence

0 −→ A −→ B −→ C −→ 0,

we obtain the first exact sequence. The second exact sequence is obtained by the sym-
metric argument.

It turns out that the groupoid Triv(ξ) has a beautiful interpretation in the context of
Yoneda’s theory of extensions. We review some aspects of this theory.

4.7.2 Yoneda’s theory of extensions

Let C be an abelian category and let A,B be objects in C. An n-extension of B by A is
an exact sequence

ξ : 0 −→ A −→ Xn−1 −→ Xn−2 −→ . . . −→ X0 −→ B −→ 0

in C. Given another extension

ξ′ : 0 −→ A −→ X ′n−1 −→ X ′n−2 −→ . . . −→ X ′0 −→ B −→ 0

we say that ξ and ξ′ are Yoneda equivalent if there exists a commutative diagram

Xn−1
// Xn−2

// . . . // X0

��
0 // A //

==

!!

Yn−1
//

OO

��

Yn−2

OO

��

// . . . // Y0

OO

��

// B // 0

X ′n−1
// X ′n−2

// . . . // X ′0

??

(4.61)

with exact rows.

Problem 4.62. Show that Yoneda equivalence defines and equivalence relation on the
set of n-extensions of B by A.
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We denote by Extn(B,A) the set of equivalence classes of n-extensions of B by A.
The association

(B,A) 7→ Extn(B,A)

is functorial in both arguments: Given a morphism f : A→ A′, and an extension ξ of B
by A as above, we obtain an n-extension

f∗(ξ) : 0 −→ A′ −→ Xn−1 qA A′ −→ Xn−2 −→ . . . −→ X0 −→ B −→ 0

of B by A′ called the Yoneda pushout of ξ along f .

Problem 4.63. Show that the sequence f∗(ξ) is exact. Further show that, for fixed B,
this construction defines a functor C −→ Set, A 7→ Extn(B,A).

Dually, given a morphism g : B′ → B, we obtain an n-extension

g∗(ξ) : 0 −→ A −→ Xn−1 −→ Xn−2 −→ . . . −→ X0 ×B B′ −→ B′ −→ 0

of B′ by A called the Yoneda pullback of ξ along g. Further, the set Extn(B,A) is equipped
with an addition law: Given two extensions ξ and ξ′ as above, we first define

ξ ⊕ ξ′ : 0 −→ A⊕ A −→ Xn−1 ⊕X ′n−1 −→ . . . −→−→ X0 ⊕X ′0 −→ B ⊕B −→ 0

and then the Baer sum
ξ + ξ′ = (∆B)∗((∇A)∗(ξ ⊕ ξ′))

where ∆B : B → B ⊕ B and ∇A : A ⊕ A → A denote diagonal and codiagonal, respec-
tively. We will see below that the Baer sum defines an abelian group structure on the set
Extn(B,A).

Example 4.64. In the case n = 2, we obtain

ξ + ξ′ : 0 −→ A −→ X1 qA X ′1 −→ X0 ×B X ′0 −→ B −→ 0

which is the operation used to produce the exact sequence (4.55).

Due to the complicated nature of the equivalence relation (4.61), it is hard to decide
whether two given extensions ξ and ξ′ are equivalent, let alone to compute the group
Extn(B,A). The situation simplifies greatly if the abelian category A has enough pro-
jectives which we assume from now on (what follows can alternatively be done via dual
arguments assuming that A has enough injectives).

Given an extension

ξ : 0 −→ A −→ Xn−1 −→ Xn−2 −→ . . . −→ X0 −→ B −→ 0

we choose a projective resolution

. . . −→ P1 −→ P0 −→ B

of B. Using the projectivity of the objects Pi we can construct a lift of the identity map
B → B to a morphism of complexes

. . . // Pn+1
d //

��

Pn
d //

fn
��

. . . // P1
d //

f1
��

P0
//

f0
��

B

id
��

. . . // 0 // A // . . . // X1
// X0

// B

(4.65)

so that we obtain an element fn ∈ Hom(Pn, A) satisfying fn ◦ d = 0. This element
therefore defines a n-cocycle in the complex Hom(P•, A).
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Lemma 4.66. The association ξ 7→ fn defines a bijection

Extn(B,A)
∼=−→ Hn(Hom(P•, A))

which carries the Baer sum to the sum given by the natural abelian group structure on
the right hand side. In particular, the set Extn(B,A) equipped with the Baer sum forms
an abelian group.

Proof. Homework.

Since Extn(B,A) forms an abelian group, there exists a distinguished equivalence class
of n-extensions which are trivial in the sense that they represent the neutral element. We
will now provide a detailed study of trivial extensions in the cases n = 1 and n = 2.

Let
ξ : 0 −→ A

i−→ X0 −→ B −→ 0

be an extension of B by A. A splitting of ξ is a morphism s : X0 → A such that si = idA.
We denote by Split(ξ) the set of splittings of ξ which we will now analyze explicitly: Fix
a projective resolution P• of B, and a lift of id : B → B as in (4.65). In particular, we
obtain a corresponding cocycle f1 ∈ Hom(P1, A). Consider the differential

d : Hom(P0, A)→ Hom(P1, A).

Proposition 4.67. There is a canonical bijection of sets

d−1(f1)
∼=−→ Split(ξ).

In particular,

(1) A splitting exists if and only if the class of ξ in Ext1(B,A) is trivial.

(2) If the class of ξ is trivial, then the set of different splittings admits a simply transitive
action of the abelian group Hom(B,A).

Proof. The diagram (4.65) induces a commutative diagram

0 // P1/ imP2
//

f1
��

P0
//

f0
��

B

id
��

// 0

0 // A // X0
// B // 0

with exact rows. Forming the pushout of the top-left square, we obtain a commutative
diagram

0 // A //

id
��

AqP1 P0
//

g

��

B

id
��

// 0

0 // A // X0
// B // 0

with exact rows so that, by the snake lemma, the morphism g is an isomorphism. There-
fore, splittings of ξ are canonically identified with splittings of the short exact sequence

0 // A // AqP1 P0
// B // 0. (4.68)
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We now provide the claimed bijection. Let ϕ ∈ Hom(P0, A) such that ϕ ◦ d = f1. Then
we obtain a morphism

AqP1 P0 −→ A, (a, p) 7→ a+ ϕ(p)

which defines a splitting of (4.68). Vice versa, given a splitting s, we pull back via the
canonical morphism P0 → A qP1 P0 to obtain a morphism ϕ : P0 → A which, by the
relations defining the pushout, satisfies ϕ ◦ d = f1. It is immediate to verify that these
two assignments define inverse maps.

We will now provide an analogous point of view on trivial 2-extensions. Let

ξ : 0 −→ A −→ X1 −→ X0 −→ B −→ 0

be a 2-extension of B by A. A trivialization of ξ is a commutative diagram

A // X1
//

� p

  

X0
// B

Y

>> >>
(4.69)

such that the natural maps Y/A → S and Y/X1 → B are isomorphisms. Note that, in
contrast to the case n = 1, where the collection of splittings forms a set, the collection
of trivializations naturally organizes into a groupoid: the groupoid Triv(ξ) introduced in
Definition 4.56. We will now argue that the groupoid Triv(ξ) is the n = 2 analogue of
the set Split(ξ): Fix a projective resolution P• of B, and a lift of id : B → B as in (4.65).
We obtain a corresponding cocycle f2 ∈ Hom(P2, A) and consider the complex

Hom(P0, A)
d→ Hom(P1, A)

d→ Hom(P2, A).

Proposition 4.70. There is a canonical equivalence of groupoids

T : d−1(f2)//Hom(P0, A)
'−→ Triv(ξ)

where the left-hand side denotes the action groupoid corresponding to the action of the
abelian group Hom(P0, A) on d−1(f2) via (t, g) 7→ t+ g ◦ d. In particular,

(1) A trivialization exists, i.e., Triv(ξ) 6= ∅, if and only if the class of ξ in Ext2(B,A)
is trivial.

(2) Assume that the class of ξ is trivial. Then

(i) The set of isomorphism classes π0(Triv(ξ)) is acted upon simply transitively
by the group Ext1(B,A).

(ii) The automorphism group of any object of Triv(ξ) is isomorphic to the abelian
group Hom(B,A).

Proof. Let t be an object of the action groupoid, i.e., an element t ∈ Hom(P1, A) such
that t ◦ d = f2. From the chosen diagram

P3
//

��

P2
//

f2
��

P1
//

f1
��

P0
//

f0
��

B

id
��

0 // A
i // X1

// X0
// B
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we obtain a commutative diagram

0 //

��

P1/ imP2
//

f1−i◦t
��

P0
//

f0
��

B

id
��

// 0

A
i // X1

// X0
// B // 0

(4.71)

with exact rows. We form the pushout

Yt := X1 qP1/ imP2 P0
∼= X1 qP1 P0

to obtain a commutative diagram

Yt

  
A

i // X1
//

>>

X0
// B.

(4.72)

The sequence
0 −→ X1 −→ Yt −→ B −→ 0

is a Yoneda pushout of the top exact sequence in (4.71) and therefore exact. We further
obtain from (4.72) a commutative diagram

0 // X1/A //

id
��

Yt/A //

��

B //

id

��

0

0 // X1/A // X0
// B // 0

where the top row is exact by the third isomorphism theorem, and the bottom row is
trivially exact. The snake lemma implies that Yt/A → X0 is an isomorphism so that
the diagram (4.72) defines an object of Triv(ξ). This defines the functor T on objects.
Given a morphism between objects t and t′, i.e., an element g ∈ Hom(P0, A) such that
t′ = t+ g ◦ d, we obtain an induced morphism Yt → Y ′t via the formula

X1 qtP1
P0 −→ X1 qt

′

P1
P0, (x, p) 7→ (x+ i(g(p)), p)

This association defines T on morphisms. To show that T is essentially surjective, let

Y

  
A i // X1

//

>>

X0
// B.

be an object of Triv(ξ). We consider the diagram

P1

f1

��

P0

��

~~
Y

    
X1

>>

// X0
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and use the projectivity of P0 to obtain a morphism P0 → Y making the diagram com-
mute. Note that the differential d : P1 → P0 does not necessarily make the diagram
commute. However, using the exact sequence

0 −→ A −→ Y −→ X0 −→ 0

we may find a homomorphism t : P1 → A such that the diagram

P1

f1−i◦t

��

d // P0

��

~~
Y

    
X1

>>

// X0

does commute. It follows that imP2 ⊂ P1 lies in the kernel of f1 − i ◦ t such that we
obtain a commutative diagram

0 // P1/ imP2

f1−i◦t

��

$$

// P0

��

~~

// B //

��

0

Y

    
0 // A // X1

::

// X0
// B // 0

We thus obtain a canonical morphism Yt −→ Y which fits in a diagram

0 // X1
//

id
��

Yt //

��

B //

id
��

0

0 // X1
// Y // B // 0

with exact rows so that it must be an isomorphism by the snake lemma. This concludes
the argument for the essential surjectivity of T . Fully faithfulness can be seen as follows:
Consider a morphism

ϕ : Yt −→ Yt′

which defines a morphism in Triv(ξ). Let ι : P0 → Yt and ι′ : P0 → Yt′ be the canonical
morphisms. Then the difference ϕ ◦ ι − ι′ : P0 → Yt′ composes to the zero map into X0

and hence factors uniquely through a morphism g : P0 → A. It is immediate to verify
that this construction provides an inverse to the map

Hom(t, t′) −→ HomTriv(ξ)(Yt, Yt′)

given by the functor T .
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4.7.3 Proof of Green’s theorem

In the previous sections we have seen that the compatibility

∆(ab) = ∆(a)∆(b) (4.73)

of multiplication and comultiplication fails for the abstract Hall algebra since the forgetful
functor

π : �→ �
from exact 3-by-3 squares to exact frames is not an equivalence. However, the language
of groupoids gives us a precise measure for the failure of (4.73): the 2-fibers of the functor
π. As we have seen in Lemma 4.58, the 2-fiber �f over a fixed frame f is given by the
groupoid Triv(ξf ) of trivializations of the 2-extension ξf obtained as the Baer sum of the
two 2-extensions of C ′′ by A which form the frame f .

We will now make sufficient assumptions on the category C so that we can work
around the fact that π is not an equivalence after passing from groupoids to functions by
means of the monoidal functor

F : Spanf (Grpd) −→ VectQ.

Namely, we will assume that the abelian category C is

(1) finitary in the sense of Definition 2.23,

(2) cofinitary: every object of C has only finitely many subobjects,

(3) hereditary: for every pair of objects A,B of C, we have Exti(A,B) ∼= 0 for i > 1.

We have seen that the condition on C to be finitary implies that the abstract Hall algebra
defines an algebra object in Spanf (Grpd) ⊂ Span(Grpd).

Proposition 4.74. Let C be a finitary abelian category.

(1) The condition on C to be cofinitary implies that the object (X1,∆, c) defines a
coalgebra object in Spanf (Grpd).

(2) The condition on C to be hereditary implies that all 2-fibers of π are nonempty.

Proof. Homework.

Consider the commutative diagram

�
π

$$

L′

��

R′

))
� R //

L
��

X2 × X2
F×F //

P
��

X1 × X1

X2 × X2
G×G //

F×F
��

X1 × X1 × X1 × X1

X1 × X1
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The failure of the equality (4.73) after passing to functions is given by

(R′)!(L
′)∗

?

6= (R)!(L)∗.

We compute the left-hand side explicity: letting

ϕ = 1(A→B→C,A′′→B′′→C′′) ∈ F(X2 × X2),

we have

(R′)!(L
′)∗(ϕ) = R!π!π

∗L∗(ϕ) =
|Ext1(C ′′, A)|
|Hom(C ′′, A)|

R!L
∗(ϕ). (4.75)

The last equality follows from Lemma 4.76 below since, using Proposition 4.70 together
with the assumption on C to be hereditary, we have

|�f | = |Triv(ξf )| =
|Ext1(C ′′, A)|
|Hom(C ′′, A)|

.

Lemma 4.76. Let F : A→ B be a functor which is both π0-finite and locally finite. Let
b be an object of B. Then, for every ϕ ∈ F(B), we have

(F!F
∗ϕ)(b) = |Ab|ϕ(b)

so that the effect of F!F
∗ on the function ϕ is given by rescaling with the groupoid

cardinalities of the 2-fibers of F .

Proof. This follows immediately from the definitions.

To compensate for the rescaling factor

|Ext1(C ′′, A)|
|Hom(C ′′, A)|

appearing in (4.75), we use the following modifications:

(1) Instead of the comultiplication ∆, we use the comultiplication represented by the
span

∆′ :

X2

F

~~

G′

$$
X1 X1 × X1

where G′ assigns to a short exact sequence A→ B → C the pair of objects (C,A)
(instead of (A,C)).

(2) Letting H = F(X1, µ, e) we define on H ⊗H the twisted algebra structure

µt : (H ⊗H)⊗ (H ⊗H) −→ H ⊗H

given by setting

(1A ⊗ 1B)(1A′ ⊗ 1B′) :=
|Ext1(A′, B)|
|Hom(A′, B)|

(1A1A′)⊗ (1B1B′).
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Problem 4.77. Show that the formula in (2) defines an associative algebra structure on
H ⊗H.

We arrive at the main result of this section.

Theorem 4.78 (Green). Let C be a finitary, cofinitary, and hereditary abelian category
and consider the datum H = F(X1, µ, e,∆

′, c). Then the diagram

H ⊗H µ //

∆′⊗∆′

��

H

∆′

��
(H ⊗H)⊗ (H ⊗H)

µt
// H ⊗H

commutes.

Remark 4.79. A more conceptual way to intepret the result of the theorem is given as
follows. Given an abelian category C, as usual assumed to be small, we introduce the
Grothendieck group K(C) to be the free abelian group on the set of isomorphism classes
{[A]} of objects modulo the subgroup generated by {[A]− [B] + [C]} where A→ B → C
runs over all short exact sequences in C. The Hall algebra H(C) is naturally an algebra
object in the category of K(C)-graded vector spaces. Assuming that C is hereditary and
finitary, the formula

χ(A,B) =
|Ext1(A,B)|
|Hom(A,B)|

yields a well-defined group homomorphism

K(C)⊗Z K(C)→ (Q \ {0})×.

This allows us to introduce a braiding

bV,W : V ⊗W
∼=−→ W ⊗ V, v ⊗ w 7→ χ(B,A)w ⊗ v

on the monoidal category Vect
K(C)
Q where v⊗w denotes a homogeneous element of degree

([A], [B]). Now we can say that H defines a bialgebra in the braided monoidal category
of K(C)-graded vector spaces.

4.7.4 Example

Note, that we have investigated the compatibility of product and coproduct without
determining an explicit formula for the coproduct. We now provide a formula and analyze
the compatibility of multiplication and comultiplication of product and coproduct for the
category Vect′Fq of finite dimensional Fq-vector spaces.

Let C be a finitary and cofinitary abelian category. For objects A,A′ in C, we introduce
the groupoid Ext(A′, A) with objects given by short exact sequences

0 −→ A −→ X −→ A′ −→ 0
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in C and morphisms given by diagrams

A //

id
��

X //

∼=
��

A′

id
��

A // X ′ // A′

We denote by Ext(A′, A)B the full subgroupoid of Ext(A′, A) consisting of those short
exact sequences where X ∼= B. With this notation, we have

∆′(1[B]) = (G′)!F
∗(1[B]) =

∑
[A′],[A]

|Ext(A′, A)B|1[A′] ⊗ 1[A].

Example 4.80. For the category of finite dimensional Fq-vector spaces we have

F(§1) ∼=
⊕
n≥0

Q1n

where we set 1n := 1[Fnq ]. Further, we have seen

1n1m =

[
n+m
m

]
q

1m+n.

We compute

∆′(1n) =
∑
k+l=n

|Ext(Fkq ,Flq)F
n
q |1k ⊗ 1l

=
∑
k+l=n

q−kl1k ⊗ 1l.

Thus, we have

∆′(1m1n) =

[
n+m
n

]
q

∑
x+y=n+m

q−xy1x ⊗ 1y

and

∆′(1m)∆′(1n) = (
∑
k+l=m

q−kl1k ⊗ 1l)(
∑
r+s=n

q−rs1r ⊗ 1s)

=
∑

n=r+s,m=k+l

q−kl−rs−rl1k+r ⊗ 1l+s

=
∑

n+m=x+y

q−xy
∑
k≤n

qk(n−l)
[
x
k

]
q

[
y

n− k

]
q

.

The compatibility of product and coproduct up to twist therefore amounts to the formula[
n+m
n

]
q

=
∑
k≤n

qk(n−k)

[
x
k

]
q

[
y

n− k

]
q

where x+ y = n+m.
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5 Hall monoidal categories

5.1 Simplicial objects and Segal conditions

We have seen that, given a proto-abelian category C, the associated collection of groupoids
of flags X• can be used to form the abstract Hall algebra. In this section, we would like
to abstract the features of the family X• which enable us to do this.

We begin by systematically describing the structure underlying X•. To this end, we
introduce the simplex category ∆ whose objects are denoted by [n], n ≥ 0. A morphism
from [m] to [n] is given by a map of sets

{0, 1, . . . ,m} −→ {0, 1, . . . , n}

which preserves the linear order ≤.

Remark 5.1. For convenience reasons, we sometimes implicitly replace the simplex cat-
egory by the larger category of all finite nonempty linearly ordered sets. This is harmless
since every such a set is isomorphic to some standard ordinal [n] via a unique isomorphism.
For example, we write {0, 2} → {0, 1, 2} to refer to the map d1 : [1]→ [2].

Let C be a category. A functor

X : ∆op −→ C

is called simplicial object in C. Given a simplicial object X, we obtain, for every 0 ≤ k ≤
n, a morphism

∂k : Xn −→ Xn−1

given by the image under X of the morphism

[n− 1]→ [n], i 7→

{
i for i < k,

i+ 1 for i ≥ k

which omits k. We call ∂k the kth face map. Further, we have, for every 0 ≤ k ≤ n, a
morphism

σk : Xn −→ Xn+1

given by the image under X of the morphism

[n+ 1]→ [n], i 7→

{
i for i < k,

i− 1 for i ≥ k

which repeats k. We call σk the kth degeneracy map.

Example 5.2. Let X be a topological space. We introduce a functor

∆ −→ Top, [n] 7→ R{0, 1, . . . , n}

where R{0, 1, . . . , n} denotes the free real vector space on the set {0, 1, . . . , n} considered
as a topological space. Given n ≥ 0, we define the subspace

|∆n| = {(t0, t1, . . . , tn)| 0 ≤ ti ≤ 1,
∑

ti = 1} ⊂ R{0, 1, . . . , n}
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called the geometric n-simplex. It is easy to verify that the above functor restricts to

|∆•| : ∆ −→ Top, [n] 7→ |∆n|.

We now define the simplicial set

Sing• : ∆op −→ Set, [n] 7→ HomTop(|∆n|, X)

where the functoriality is given by pulling back along |∆•|. The resulting simplicial set
is called the singular simplicial set of X. The initial idea of this construction was to
provide a combinatorial approach to homotopy theory.

Example 5.3. Let C be a category. We introduce a functor

∆ −→ Cat, [n] 7→ 〈n〉

where 〈n〉 is the linearly ordered set {0, 1, . . . , n} interpreted as a category with a unique
morphism from i to j if i ≤ j. The simplicial set

N•(C) : ∆op −→ Set, [n] 7→ Fun(〈n〉,C)

is called the nerve of C.

Proposition 5.4. Let C be a proto-abelian category. Then the collection X• of groupoids
of flags forms a simplicial object in Grpd.

Proof. In §4.2, we have already described the functors ∂k and σk. It is straightforward to
generalize this functoriality to arbitrary morphisms f : [m]→ [n] in ∆: From a diagram
in Xn, we obtain a diagram in Xm by omitting all objects lying in rows or columns whose
indices are not in the image of f , composing the remaining arrows, or introduce identity
maps in between those rows and columns whose indices lie in a nontrivial fiber of f . It
is clear from the construction that this provides a functor.

The nerve of a category is a simplicial set satisfies a special property:

Definition 5.5. A simplicial set K is called Segal if, for every 0 < i < n, the square

K{0,1,...,n} //

��

K{i,i+1,...,n}

��
K{0,1,...,i} // K{i},

where we use the notation from Remark 5.1, is a pullback square.

Problem 5.6. Show that the nerve of a category is a Segal simplicial set. Vice versa,
show that any Segal simplicial set is the nerve of a category.

It turns out that the simplicial groupoid of flags in a proto-abelian category satisfies
a 2-dimensional variant of the Segal condition which we introduce next. Let X• be a
simplicial object in Grpd.
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(1) Consider a planar n+1-gon P with vertices labelled cyclically by the set {0, 1, . . . , n}.
Let i < j be the vertices of a diagonal of P which subdivides the polygon into two
polygons with labels {0, 1, . . . , i, j, j + 1, . . . , n} and {i, i + 1, . . . , j}. We obtain a
corresponding commutative square of groupoids

X{0,1,...,n}

��

// X{0,1,...,i,j,...,n}

��
X{i,i+1,...,j} // X{i,j}.

(5.7)

(2) For every 0 ≤ i < n, there is commutative square

X{0,1,...,n−1}

σi

��

// X{i}

��
X{0,1,...,n} // X{i,i+1}

(5.8)

where σi denotes the ith degeneracy map.

Definition 5.9. A simplicial object X• in Grpd is called 2-Segal if, for every polygonal
subdivision, the corresponding square (5.7) is 2-pullback square. If, in addition, all
squares (5.8) are 2-pullback squares then we call X• unital.

Proposition 5.10. Let C be a proto-abelian category. Then the simplicial groupoid X•
of flags in C is unital 2-Segal.

Proof. We note that all maps in the diagram (5.7) are isofibrations so that it suffices to
check that the squares are ordinary pullback squares. The functor

X{0,1,...,n} −→ X{0,1,...,i,j,...,n} ×X{i,j} X{i,i+1,...,j}

is a forgetful functor which forgets those objects in the diagram (4.13) whose indices
(x, y) correspond to diagonals of Pn which cross the diagonal (i, j). But these objects can
be filled back in by forming pullbacks or pushouts, using the axioms of a proto-abelian
category. We leave the verification of (5.8) to the reader.

In conclusion, we have arrived at the insight that the construction of the Hall algebra
can be split into two steps:

proto-abelian categories
X•(−)
 unital 2-Segal groupoids

F(−)
 associative algebras

This raises questions:

(1) Are there other examples of unital 2-Segal groupoids which lead to interesting
associative algebras?

(2) Are there alternatives for F(−)?

(3) Only the lowest 2-Segal conditions corresponding to the two triangulations of the
square play a role when applying F(−). What is the relevance of the higher 2-Segal
conditions corresponding to subdivisions of a more general planar polygons?
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5.2 Colimits and Kan extensions

We recall some basics of the theory of colimits. For details we refer to [ML98]. Let I,C
be categories and let ϕ : I → C be a functor. Consider the diagonal functor

∆ : C −→ CI , x 7→ ∆(x)

where ∆(x) is the constant I-diagram with value x. A cone over ϕ is a pair (x, η :
ϕ ⇒ ∆(x)) where x is an object of C, called the vertex of the cone and η is a natural
transformation. A cone (c, η) over ϕ is called colimit cone if it has the following universal
property: for every cone (x, ν) over ϕ, there exists a unique morphism f : c → x such
that ν = ∆(f)η. We refer to the vertex of a colimit cone over ϕ as the colimit of ϕ.

Example 5.11. (1) Consider I = ∅ and ϕ : I → C the empty functor. A cone over ϕ
is an object in C and a colimit cone is an initial object.

(2) Let I be the discrete category with two objects. A functor ϕ : I → C corresponds
to a pair of objects (a, b). A cone over ϕ is a diagram of the form

a −→ x←− b.

The cone is a colimit if it exhibits x ∼= aq b as the coproduct of a and b.

(3) Let I be the category with objects 0, 1, 2 and morphisms 0→ 1, 0→ 2, in addition
to the identity morphisms. A functor ϕ : I → C is a diagram

a

��

// b

c

and a cone over ϕ is a commutative square

a

��

// b

��
c // x.

The cone is a colimit cone if the square is a pushout square.

(4) Let I be the category with objects 0, 1 and two morphisms f : 0→ 1, g : 0→ 1 in
addition to identity morphisms. A colimit of an I-diagram ϕ is called coequalizer
of the corresponding morphisms ϕ(f) and ϕ(g).

(5) Let I be a set, considered as a discrete category. A functor ϕ : I → C is a set
of objects {ai|i ∈ I}. A colimit is called the coproduct of this set and denoted by
qi∈Iai.

Proposition 5.12. Suppose a category C has all small coproducts and coequalizers.
Then C has all small colimits.
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Proof. Given a diagram ϕ : I → C, we can identify a cone over ϕ with a cone over the
diagram ∐

f∈Mor(I) ϕ(s(f)) ////
∐

i∈I ϕ(i) (5.13)

where the upper arrow is induced by the maps id : ϕ(s(f)) → ϕ(s(f)) and the lower
arrow is induced by the maps ϕ(f) : ϕ(s(f)) → ϕ(t(f)). Here s(f) and t(f) denote
the source and target of the morphism f , respectively. In particular, a colimit cone over
(5.13), which exists by assumption, determines a colimit cone over ϕ.

Remark 5.14. We have a dual theory of limits: a limit of a diagram ϕ : I → C is defined
to be a colimit of the opposite diagram ϕop : Iop → Cop.

Recall that an adjunction
F : C←→ D : G

between categories C and D is a pair of functors (F,G) equipped, for all x ∈ C and
y ∈ D, with an isomorphism

HomD(F (x), y) ∼= HomC(x,G(y))

which is functorial in x and y. It is immediate from the definitions that, if I, C are
categories such that every I-diagram in C has a colimit, then the association ϕ 7→ colim(ϕ)
is functorial and we obtain an adjunction

colim : CI ←→ C : ∆. (5.15)

Note that the diagonal functor ∆ : C → CI can be interpreted as the pullback functor
along the constant functor I → ∗. We will now define a relative variant of the concept
of colimit: we replace I → ∗ by a functor F : I → J and will generalize the adjunction
(5.15) to an adjuntion

F! : CI ←→ CJ : F ∗ (5.16)

Just as for colimits we first define F!ϕ for a given I-diagram ϕ : I → C.

Definition 5.17. Let F : I → J be a functor and ϕ : I → C be an I-diagram in a category
C. A left extension of ϕ along F is a pair (ψ, ν) consisting of a functor ψ : J → C and
a natural transformation ν : ϕ ⇒ F ∗ψ. A left Kan extension (F!ϕ, η) is a left extension
which is universal in the following sense: for every left extension (ψ, ν) there is a unique
natural transformation ξ : F!ϕ→ ψ such that ν = F ∗(ξ) ◦ η.

Again, it follows immediately from the definitions that, if every I-diagram ϕ admits
a left Kan extension along F : I → J , then we have an adjunction as in (5.16).

We now address the question of how to decide whether Kan extensions exist and, if so,
how we can compute them. Given F : I → J and j ∈ J , we define the comma category
I ↓ j to have objects given by pairs (i, f) where i ∈ I and f : F (i)→ j is a morphism in
J . A morphism (i, f)→ (i′, f ′) is given by a morphism g : i→ i′ such that f = f ′ ◦F (g).

Theorem 5.18. Let F : I → J and ϕ : I → C be functors. Assume that C has small
colimits. Then the left Kan extension F!ϕ of ϕ along F exists and is on an object j ∈ J
given by the formula

F!ϕ(j) ∼= colimϕ|I↓j

where the ϕ|I↓j denotes the pullback of ϕ along the functor I ↓ j → I, (i, f) 7→ i.
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Proof. [Mac95]

Example 5.19. Let H ⊂ G be a subgroup. We have a corresponding functor of groupoids
F : BH → BG. Let C be the category of vector spaces over a field k. A functor
ϕ : BH → C corresponds to a representation of the group H on a vector space V . The
representation F!ϕ : BG→ C is known as the induced representation of V along H ⊂ G
given explicitly as follows: let {gi} be a chosen set of representatives of the quotient set
G/H. Then the underlying vector space of F!ϕ is given by⊕

[gi]∈G/H

Vgi

where each Vgi = V . An element g ∈ G acts by mapping v ∈ Vgi to h.v ∈ Vgj where
ggi = gjh.

5.3 Pull-push for functors

Given a groupoid A, we denote by Fun(A) the category of functors from A to the category
VectC of finite dimensional complex vector spaces which are nonzero on only finitely many
isomorphism classes of A. Let F : A→ B be a functor of groupoids. We have:

• if F is π0-finite, then we have a corresponding pullback functor

F ∗ : Fun(B) −→ Fun(A), ϕ 7→ ϕ ◦ F.

• if F is locally finite, then we have a pushforward functor

F! : Fun(A) −→ Fun(B)

which is defined as a left Kan extension functor. By the pointwise formula for Kan
extensions, we have

F!(ϕ)(b) = colimAb ϕ|Ab

where Ab denotes the 2-fiber of F over b.

These operations satisfy the following compatibility conditions (in analogy to Propo-
sition 4.27).

Proposition 5.20. (1) Functoriality.

(a) Let F : A → B and G : B → C be π0-finite functors of groupoids. Then we
have

(G ◦ F )∗ = F ∗ ◦G∗.

(b) Let F : A → B and G : B → C be locally finite functors of groupoids. Then
we have a canonical isomorphism

(G ◦ F )!
∼= G! ◦ F!.
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(2) Base change. Let

X

G′

��

F ′ // B

G
��

A
F // C

<D
(5.21)

be a 2-pullback square with F locally finite and G π0-finite. Then we have a
canonical isomorphism

(F ′)! ◦ (G′)∗ ∼= G∗ ◦ F!.

Let C be a finitary proto-abelian category. Given a span of groupoids

X
L

��

R

��
A B

with L π0-finite and R locally finite, we obtain a corresponding functor

R! ◦ L∗ : Fun(A) −→ Fun(B).

Applying this to the span
X2

G

zz

F

  
X1 × X1 X1

yields a functor Fun(X1×X1)→ Fun(X1) which we precompose with the pointwise tensor
product Fun(X1)× Fun(X1)→ Fun(X1 × X1) to obtain

⊗ : Fun(X1)× Fun(X1) −→ Fun(X1).

Further, from the span
X0

id

~~

σ0

  
X0 X1

we obtain a functor Fun(X0) −→ Fun(X1) which we evaluate on k to obtain

I ∈ Fun(X1).

Theorem 5.22. Let C be a finitary proto-abelian category. The datum (Fun(X1),⊗, I)
naturally extends to a monoidal structure on the category Fun(X1).

Proof. We sketch the basic idea of the proof, the main point being the derivation of
MacLane’s pentagon. There are five 2-Segal conditions involving X4, corresponding to
the five possible subdivisions of a planar pentagon. We denote by Pij the subdivision
0 ≤ i < j ≤ 4 of the pentagon. We further introduce the notation

X(Pij) = X{0,...,i,j,...,4} ×X{i,j} X{i,...,j} (5.23)
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for the corresponding pullback so that, for every subdivision, we have, by the 2-Segal
property, an equivalence

X4 −→ X(Pij).

For example, we have

X(P13) = X{0,1,3,4} ×X{1,3} X{1,2,3}
∼= X3 ×X1 X2

Similarly, we label the five different triangulations Tij,kl of the pentagon via their internal
edges i → j and k → l. We use the notation X(Tij,kl) analogous to (5.23) so that we
have, for example,

X(T13,14) = X{0,1,4} ×X{1,4} X{1,3,4} ×X{1,3} X{1,2,3} ∼= X2 ×X1 X2 ×X1 X2.

We obtain a commutative diagram of groupoids

X4 X(T02,03)

X(T02,24)

X(T14,24)

X(T13,14)

X(T03,13)

X(P02)

X(P24)

X(P14)

X(P13)

X(P03)

(5.24)

in which, by the various 2-Segal conditions, all functors are equivalences.
The basic idea of the argument is now as follows: Let ϕ, ψ, ξ be objects in Fun(X1).

We have a diagram of groupoids

X{0,1,2} ×X{0,2} X{0,2,3} X{0,1,2,3}oo // X{0,1,3} ×X{1,3} X{1,2,3}

where, by the lowest 2-Segal conditions corresponding to the two triangulations of a
square, both functors are equivalences. They are responsible for isomorphisms

(ϕ⊗ ψ)⊗ ξ ϕ⊗ ψ ⊗ ξ
∼=
α1

oo
∼=
α2

// ϕ⊗ (ψ ⊗ ξ)

which we use to define the associator of the monoidal structure as α = α2 ◦ α−1
1 . Here,

the middle term ϕ⊗ ψ ⊗ ξ is defined as a pull-push along the span

X{0,1} × X{1,2} × X{2,3} X{0,1,2,3}oo // X{0,3} .
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Given four objects ϕ, ψ, ξ, ε, the commutative diagram (5.24) is responsible for a com-
mutative diagram of isomorphisms

ϕ⊗ ψ ⊗ ξ ⊗ ε ((ϕ⊗ ψ)⊗ ξ)⊗ ε

(ϕ⊗ ψ)⊗ (ξ ⊗ ε)

ϕ⊗ (ψ ⊗ (ξ ⊗ ε))

ϕ⊗ ((ψ ⊗ ξ)⊗ ε)

(ϕ⊗ (ψ ⊗ ξ))⊗ ε

(ϕ⊗ ψ)⊗ ξ ⊗ ε

ϕ⊗ ψ ⊗ (ξ ⊗ ε)

ϕ⊗ (ψ ⊗ ξ ⊗ ε)

ϕ⊗ (ψ ⊗ ξ)⊗ ε

(ϕ⊗ ψ ⊗ ξ)⊗ ε

(5.25)

Along the boundary of (5.25), we extract the commutative MacLane pentagon for the
tensor product on Fun(X1). To make this argument formally precise is somewhat tedious:
it is best done by interpreting monoidal structures in terms of Grothendieck fibrations
over the category ∆op.

We call the monoidal category (Fun(X1),⊗, I) the Hall monoidal category Hall⊗(C)
of C.

Remark 5.26. The construction of the Hall monoidal category can be understood as an
instance of Day convolution [Day74]: From the simplicial groupoid of flags we can con-
struct a promonoidal structure on the groupoid X1 which is then turned into a monoidal
one by passing to functors.

We discuss two examples:

5.3.1 Hall⊗(VectF1)

We restrict attention to the skeleton C ⊂ VectF1 consisting of the standard pointed sets
{∗, 1, . . . , n}, n ≥ 0. Thus, we have

X1(C) '
∐
n≥0

BSn

so that an object of Hall⊗(C) is given by a sequence (ρn)n≥0 of representations of Sn in
VectC where only finitely many representations are nonzero. We have

(ρn)n≥0
∼=
⊕
n≥0

ρn

93



where ρn is interpreted as an object of Hall⊗(C) which is zero on all groupoids BSm,
m 6= n. The tensor product of Hall⊗(C) is additive so that it suffices to describe ρn⊗ ρm.
This is obtained by pull-push along the span of groupoids

X1 × X1 ←− X2 −→ X1

which factors through the pull-push along the span

BSn ×BSm
∼=←− B(Sn × Sm) −→ BSn+m.

This is obtained by restricting to the subgroupoid of X2 spanned by a fixed chosen short
exact sequence

{∗, 1, . . . , n} ↪→ {∗, 1, . . . , n+m}� {∗, 1, . . . ,m}. (5.27)

and noting that this choice determines an embedding of the automorphism group Sn×Sm
of (5.27) into the automorphism group Sn+m of {∗, 1, . . . , n + m}. The tensor product
ρn ⊗ ρm in Hall⊗(C) is therefore given by the induced represention of the external tensor
product ρn � ρm along the embedding Sn × Sm ⊂ Sn+m.

The resulting monoidal category plays an important role in classical representation
theory. It is canonically monoidally equivalent to the category of polynomial functors:
functors F : VectC → VectC satisfying the following condition

• for every collection of morphisms fi : V → W , 1 ≤ i ≤ n, between fixed vector
spaces, the expression F (λ1f1 + · · · + λrfr), λi ∈ C, is a function polynomial with
coefficients in Hom(F (V ), F (W )).

The polynomial functor corresponding to the representation ρn is given by

F : VectC → VectC, V 7→ (Xn ⊗ V ⊗n)Sn .

The Hall monoidal structure induces the structure of an associative algebra on the
Grothendieck group K0(Hall⊗(C)). Using the interpretation via polynomial functors we
can canonically identify K0(Hall⊗(C)) with the algebra Λ of symmetric functions. Under
this identification, the basis given by isomorphism classes of irreducible representations
gets identified with the basis of Λ given by the Schur functions. Therefore, we obtain yet
another Hall algebraic construction of the algebra of symmetric functions which naturally
exhibits an interesting basis. For a detailed exposition of this theory (due to Schur) we
refer the reader to [Mac95].

5.3.2 Hall⊗(VectFq)

We consider the skeleton C ⊂ VectFq consisting of the standard objects Fnq so that we
have

X1(C) '
∐
n≥0

BGLn(Fq).

An object of Hall⊗(C) is therefore given by a sequence (ρn)n≥0 of representations of
GLn(Fq) in VectC with only finitely many nonzero components. The tensor product
ρn ⊗ ρm is obtained by pull-push along the span of groupoids

X1 × X1 ←− X2 −→ X1
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which factors through the pull-push along the span

BGLn(Fq)×BGLm(Fq)
∼=←− BPn,m(Fq) −→ BGLn+m(Fq)

where Pn,m is the parabolic subgroup of GLn+m given by the automorphism group of a
fixed short exact sequence

Fnq ↪→ Fn+m
q � Fmq .

Therefore, the tensor product ρn ⊗ ρm in Hall⊗(C) is given by first pulling back the
representation of GLn(Fq)×GLm(Fq) along Pn,m → GLn(Fq)×GLm(Fq) and then forming
the induced representation along Pn,m ⊂ GLn+m(Fq).

Green [Gre55, Mac95] has developed a q-analog of Schur’s theory which uses the
associative algebra given by the Grothendieck group of Hall⊗(VectFq) to construct all
irreducible characters of the groups GLn(Fq). The monoidal category Hall⊗(VectFq)
itself features in the work of Joyal-Street [JS95] who explain that the commutativity of
Green’s algebra comes from a (partial) braided structure.
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6 Derived Hall algebras via ∞-groupoids

The idea of constructing the Hall algebra via the simplicial groupoid of flags X• is a very
flexible one. We explain how it can be adopted to construct Hall algebras of derived
categories or, more generally, stable∞-categories. This section is a translation of [Toë06]
(also cf. [Ber13]) into the language of ∞-categories which makes the analogy to proto-
abelian categories immediate. We use [Lur09] as a standard reference.

6.1 Coherent diagrams in differential graded categories

An ∞-category C is a simplicial set such that, for every 0 < i < n and every Λn
i → C,

there exists a commutative diagram

Λn
i

//

��

C

∆n

>>

.

The arrow Λn
i → C represents the boundary of an n-simplex with ith face removed, called

an inner horn in C, and the condition asks that it can be filled to a full n-simplex in C.

Example 6.1. The nerve of a small category provides an example of an ∞-category
where every inner horn has a unique filling. This corresponds to the fact that every
n-tupel of composable morphisms has a unique composite. In a general ∞-category the
composite is not required to be unique. However, the totality of all horn filling conditions
encodes that it is unique up to a coherent system of homotopies.

Example 6.2. Given ∞-categories C, D, we define the simplicial set Fun(C,D) of func-
tors from C to D given by the internal hom in the category of simplicial sets. Then
Fun(C,D) is an ∞-category.

Example 6.3. A differential graded (dg) category T is a category enriched over the
monoidal category of complexes of abelian groups. The collection of dg categories orga-
nizes into a category dgcat with morphisms given by enriched functors. Following [Lur11],
we associate to T an ∞-category called the dg nerve of T .

We associate to the n-simplex ∆n a dg category dg(∆n) with objects given by the set
{0, 1, . . . , n}. The graded Z-linear category underlying dg(∆n) is freely generated by the
morphisms

fI ∈ dg(∆n)(i−, i+)−m

where I runs over the subsets {i− < im < im−1 < · · · < i1 < i+} ⊂ {0, 1, . . . , n}, m ≥ 0.
On these generators, the differential is given by the formula

dfI =
∑

1≤j≤m

(−1)j(fI\{ij} − f{ij<···<im<i+} ◦ f{i−<i1<···<ij})

and extended to all morphisms by the Z-linear Leibniz rule. We have d2 = 0 on generators
and therefore on all morphisms. The dg categories dg(∆n), n ≥ 0, assemble to form a
cosimplicial object in dgcat which allows us to define the dg nerve of T

Ndg(T ) = Homdgcat(dg(∆•), T ).

It is shown in [Lur11, 1.3.1.10] that Ndg(T ) is in fact an ∞-category.
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It is instructive to analyze the low-dimensional simplices of the dg nerve Ndg(T ):

• The 0-simplices are the objects of T .

• A 1-simplex in Ndg(T ) is a morphism f{0,1} : a0 → a1 of degree 0 which is closed,
i.e., df = 0.

• A 2-simplex in Ndg(T ) is given by objects a0, a1, a2, closed morphisms f{0,1} : a0 →
a1, f{1,2} : a1 → a2, f{0,2} : a0 → a2, and a morphism f{0,1,2} : a0 → a2 of degree −1
which satisfies

df{0,1,2} = f{0,2} − f{1,2} ◦ f{0,1}
so that we obtain a triangle in T which commutes up to the chosen homotopy
f{0,1,2}. A key point here is that we do not simply require the triangle to commute
up to homotopy, but the homotopy is part of the data forming the triangle.

• A 3-simplex in Ndg(T ) involves the data of the four boundary 2-simplices as above
and, in addition, a morphism f{0,1,2,3} : a0 → a3 of degree −2 such that

df{0,1,2,3} = f{0,1,3} − f{2,3} ◦ f{0,1,2} − f{0,2,3} + f{1,2,3} ◦ f{0,1}.

We can interpret this data as follows: The boundary of a 3-simplex in Ndg(T )
encodes two homotopies between f{0,3} and the composite f{2,3} ◦ f{1,2} ◦ f{0,1} given
by f{0,1,3} + f{1,2,3} ◦ f{0,1} and f{0,2,3} + f{2,3} ◦ f{0,1,2}, respectively. To obtain a
full 3-simplex in Ndg(T ) we have to provide the homotopy f{0,1,2,3} between these
homotopies.

• . . .

The passage from a dg category T to the ∞-category Ndg(T ) allows us (and forces
us) to systematically consider diagrams in T which commute up to specified coherent
homotopy: Let I be a category and N(I) its nerve. We define a coherent I-diagram in T
to be a functor, i.e., a map of simplicial sets

N(I)→ Ndg(T ).

Example 6.4. Consider the category I given by the universal commutative square: I
has four objects 1, 2, 3, 4, morphisms f1 : 1→ 2, f2 : 2→ 4, f3 : 1→ 3, f4 : 3→ 4 subject
to the relation f2 ◦ f1 = f4 ◦ f3. An I-coherent diagram in T consists of

a1
f1 //

f3

��
g

h2

h1

!!

a2

f2

��
a3 f4

// a4

where the morphisms f1, f2, f3, f4 and g are closed of degree 0, and we have dh1 =
g − f2 ◦ f1, dh2 = g − f4 ◦ f3.

One of the main advantage of homotopy coherent diagrams over homotopy commu-
tative ones is the existence of a good theory of limits. We give an example.
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Example 6.5. Let A be an abelian category with enough projectives and consider the
dg category Ch−(Aproj) of bounded-above cochain complexes of projective objects in
A. We define the bounded-above derived ∞-category of A as the dg nerve D−(A) :=
Ndg(Ch−(Aproj). The ordinary bounded-above derived category is obtained by passing
to the homotopy category h(D−(A)) which is defined as the ordinary category obtained
by identifying homotopic morphisms. Consider an edge f : X → Y in D−(A), i.e., a
morphism between bounded-above complexes of projectives X and Y . Conside the cone
of f , i.e., the complex with

cone(f)n = Xn+1 ⊕ Y n

and differential given by

d =

(
−dX 0

f dY

)
.

We obtain a coherent square

X
f //

��
0
h

0 ##

Y

i
��

0 // cone(f)

(6.6)

in D−(A) where
i : Y → cone(f), y 7→ (0, y)

and
h : X → cone(f), x 7→ (−x, 0)

so that we have dh = 0−i◦f . The key fact is that the diagram (6.6) is a pushout diagram
in the ∞-category D−(A) so that the cone is characterized by a universal property. This
statement becomes wrong if we pass from D−(A) to the homotopy category h(D−A):
the image of the square (6.6) commutes up to unspecified homotopy, but this data is,
in general, insufficient to characterize cone(f) by a universal property. As an extreme
case, consider the cone of the zero morphism X → 0 which is the translation X[1]. The
coherent square

X 0 //

��
0
h

0 !!

0

i
��

0 // X[1]

involves the map
h : X → X[1], x 7→ x

considered as a self-homotopy of 0. For precise definitions and proofs, we refer the reader
to [Lur11, 1.3.2].

6.2 Stable ∞-categories

We take for granted the existence of a theory of limits for ∞-categories (cf. [Lur09]).

Definition 6.7. An ∞-category C is called stable if the following conditions hold:

(1) The ∞-category C is pointed.
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(2) (a) Every diagram in C of the form

A //

��

B

C

can be completed to a pushout square of the form

A //

��

B

��
C // D.

(b) Every diagram in C of the form

B

��
C // D

can be completed to a pullback square of the form

A //

��

B

��
C // D.

(3) A square in C of the form
A //

��

B

��
C // D

is a pushout square if and only if it is a pullback square.

Remark 6.8. Note that these axioms correspond precisely to the axioms defining a
proto-abelian category, except that we drop the conditions on horizontal (resp. vertical)
morphisms to be monic (resp. epic).

Example 6.9. The bounded-above derived ∞-category D−(A) of an abelian category
with enough projectives is stable.

Remark 6.10. It can be shown (cf. [Lur11]) that the homotopy category of a stable
∞-category C has a canonical triangulated structure. The stable ∞-category C can
be regarded as an enhancement of hC with better properties such as the existence of
functorial cones.

To generalize the simplicial groupoid of flags X• to stable ∞-categories we need to
understand what the ∞-categorical analog of a groupoid is: An ∞-groupoid is an ∞-
category C whose homotopy category is a groupoid.
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Example 6.11. (1) The nerve of a groupoid is an ∞-groupoid.

(2) Given an ∞-category C, let C' denote the simplicial subset of C consisting of only
those simplices whose edges become isomorphisms in the homotopy category hC.
Then C' is an ∞-groupoid called the maximal ∞-groupoid in C.

(3) Let X be a topological space. We define the singular simplicial set Sing(X) with
n-simplices

Sing(X)n := HomTop(|∆n|, X)

given by continuous morphisms from a geometric n-simplex to X. Then Sing(X)
is an ∞-groupoid. The functor Sing from topological spaces to simplicial sets has
a left adjoint given by the geometric realization |K| of a simplicial set. The pair of
functors (| − |, Sing) defines a Quillen equivalence between suitably defined model
categories of topological spaces and∞-groupoids so that, from the point of view of
homotopy theory, the two concepts are equivalent (see, e.g., [Lur09]).

6.3 The S-construction and the derived Hall algebra

With these concepts at hand, we can adapt the theory of Section 4 from proto-abelian
categories to stable ∞-categories. We define the analog of the simplicial groupoid of
flags X• for a stable ∞-category C as follows: Let n ≥ 0. We introduce the category
T n = Fun([1], [n]) where we interpret the linearly ordered sets [1] and [n] as categories.
A functor

N(T n)→ C

is simply a coherent version of a triangular diagram of shape (4.13). We define

Xn ⊂ Fun(N(T n),C)'

to be the ∞-groupoid of coherent diagrams so that

(1) the diagonal objects are 0,

(2) all squares are pushout squares and hence, by stability, also pullback squares.

Using Example 6.11(3), we typically interpret the resulting simplicial ∞-groupoid X• as
a simplicial space.

Remark 6.12. In other words, besides the idea to use coherent diagrams, the only
substantial modification in comparison to the case when C is proto-abelian is to allow
arbitrary chains of morphisms as opposed to flags given by chains of monomorphisms.

Theorem 6.13 ([DK12]). Let C be a stable ∞-category. The simplicial space X•(C) is
2-Segal.

Remark 6.14. For the simplicial groupoids of flags in proto-abelian categories, the pull-
back conditions on the squares (5.7) and (5.8) have to be interpreted in the 2-category of
groupoids: the squares have to be 2-pullback squares. In the context of Theorem 6.13, the
pullback conditions have to be interpreted in the ∞-category of ∞-groupoids. Using the
equivalence between∞-groupoids and topological spaces this can be made quite explicit:
the squares have to be homotopy pullback squares.
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The construction of the Hall algebra of a stable ∞-category from X•(C) can also be
adapted to our new context: given a topological space X, we pass to the vector space
F(X) of functions ϕ : X → Q which are constant along connected components and
only supported on finitely many connected components. All definitions of Section 4.3
admit natural generalizations to this context. The central idea is to replace the groupoid
cardinality

|A| =
∑

[a]∈π0(A)

1

|Aut(a)|

by the homotopy cardinality

|X| =
∑

[x]∈π0(X)

1

|π1(X, x)|
|π2(X, x)|

1

1

|π3(X, x)|
. . .

as introduced by Baez-Dolan [BD01], and 2-pullbacks by homotopy pullbacks. In particu-
lar, we obtain natural pushforward and pullback operations for maps X → Y of topolog-
ical spaces satisfying suitable finiteness conditions. Assume that the stable ∞-category
C is finitary: for every pair of objects X, Y , the groups Hom(X, Y [i]) of morphisms in
the homotopy category are finite and non-zero for only finitely many i. Then we may
apply the constructions of Section 4.3, adapted to the current situation, to obtain the
Hall algebra of C.

Example 6.15. Let A be a finitary abelian category of finite global dimension with
enough projective objects. Then the dg nerve Db(A) of the full dg subcategory of
Ch−(Aproj) consisting of those complexes with bounded cohomology objects is finitary.
In this example, we obtain the derived Hall algebra as defined in [Toë06].

In complete analogy to [Toë06], we obtain an explicit description of the structure
constants of the derived Hall algebra of a stable ∞-category C. Given objects X, Y, Z,
we have

gZX,Y =
|Hom(X,Z)Y |

∏
i>0 |Hom(X[i], Z)|(−1)i

|Aut(X)|
∏

i>0 |Hom(X[i], X)|(−1)i

where Hom denotes the morphisms in the homotopy category of hC of C and Hom(X,Z)Y
denotes the subset given by those morphisms whose cone is isomorphic to Y . Note that
the structure constants only depend on the triangulated category hC
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[Toë06] Bertrand Toën. Derived Hall algebras. Duke Mathematical Journal, 135(3):587–
615, 2006.

102


	Introduction
	Proto-abelian categories and Hall algebras
	Categorical preliminaries
	Proto-abelian categories
	Flags in proto-abelian categories
	The Hall algebra
	First Examples: The categories VectFq and VectF1
	Statistical interpretation of q-analogues
	Duality

	Hall's algebra and symmetric functions
	Symmetric functions - Basics
	Hall's algebra of partitions
	The Hall algebra of  F1[ [t]]
	Hall's algebra: a first analysis
	More on symmetric functions
	Complete symmetric functions
	Schur functions
	Transition matrices

	Zelevinsky's statistic

	Hall algebras via groupoids
	2-pullbacks
	Groupoids of flags
	Groupoid cardinality and integrals
	The Hall algebra
	Monoidal categories and lax monoidal functors
	Spans of groupoids and the abstract Hall algebra
	Green's theorem
	Squares, frames, and crosses
	Yoneda's theory of extensions
	Proof of Green's theorem
	Example


	Hall monoidal categories
	Simplicial objects and Segal conditions
	Colimits and Kan extensions
	Pull-push for functors
	Hall(VectF1)
	Hall(VectFq)


	Derived Hall algebras via -groupoids
	Coherent diagrams in differential graded categories
	Stable -categories
	The S-construction and the derived Hall algebra


