
Zilog

zaooo CPU User's

Reference Manual

Z8000 CPU User's
Reference Manual.-.. -III

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library 01 Congress Cataloging in Publication Data
Main entry under Iitle:

Z8000 CPU user's reference man'"al.

I. Zilog Model Z8000 (Computer) 1. Zilog, Inc.
II. Title: Z8000 C.P.U. user's reference manual.
QA76.8.Z55Z15 00 1.64's 81-21043
ISBN 0-13-983908-9 AACR2
ISBN 0-13-983890-2 (pbk.)

Editorial/production supervision by Lori Opre
Manufacturing buyer: Gordon Osbourne

This is a technical manuaL The information contained
herein is subject to change.

All rights reserved. No part of this publication may be reproduced, stored in a retrievel system,
or transmitted, in any form or by any means, electric, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Zilog and the publisher.

Zilog assumes no responsibility for the use of any circuitry other
than circuitry embodied in a Zilog product. No other circuit patent
licenses are implied.

1982, 1981, and 1980 by Zilog, Inc.

This book was previously published under the
title,~cruTechnical~

Printed in the United States of America

10987654321

ISBN

ISBN

0-13-983908-9

0-13-983890-2 {pbk.}

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Ltd., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc_, Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

Table of CODleDls
1.1 Introduction 3
1.2 General Organization. .. 3
1.3 Architectural Features .. 3

General-Purpose Register File. .. 4
Instruction Set .. 4
Data Types... 4
Addressing Modes .. 4
Multiple Memory Address Spaces .. 5
System/Normal Mode of Operation .. 5
Separate I/O Address Spaces. .. 5
Interrupt Structure .. 5
Multi-Processing 6
Large Address Space of the 28001 6
Segmented Addressing of the 28001 . 6
Memory Management 6

1.4 Benefits of the Architecture .. 7
Code Density........... . 7
Compiler Efficiency . 7
Operating System Support .. 7
Support for Many Types of Data Structures. .. 8
Two CPU Versions: 28001 and 28002 .. 8

1.5 Extended Instruction Facility. .. 8
1.6 Summary 8

2.1 Introduction . 11
2.2 General Organization 11
2.3 Hardware Interface. 13

Address/Data Lines 13
Segment Number (28001 only) 13
Bus Timing 13
Status. f3
CPU Control. 14
Bus Control . 14
Interrupts 14
Segment Trap Request (28001 only) 14
Multi-Micro Control 14
System Inputs 14

2.4 Timing............... .. 14
2.5 Address Spaces . 14

Memory Address Space .. 14
I/O Address Space . 15

2.6 General-Purpose Registers.. 15
2.7 Special-Purpose Registers . 17

Program Status Registers . 17
Program Status Area Pointer 17
Refresh Counter . 17

2.8 Instruction Execution... 17
2.9 Instructions.. 17

Instruction Formats 18
2.lOData Types.......... 18
2.11 Addressing Modes . 18
2.12 Extended Processing Architecture 18

v

Z8000 Processor
Overview

I

Architecture

2

Table of Conlenls (Continued)

2.13 Exceptions 19
Reset '" 19
Traps 19
Interrupts 19
Trap and Interrupt Service Procedures 19

3.1 Introduction 23
3.2 Types of Address Spaces 23
3.3 I/O Address Space 23
3.4 Memory Address Spaces 24

Addressable Data Elements 24
Segmented and Nonsegmented Addresses .. 24
Segmentation and Memory Management .. 25

4.1 Introduction 29
4.2 Operating States 29

Running State 29
Stop/Refresh State 29
Bus-Disconnect State 29
Effect of Reset 29

4.3 Instruction Execution 30
Running-State Modes . 30
Segmented and Nonsegmented Modes 30
Normal and System Modes 31

4.4 Extended Instructions 32

5.1 Introduction . , , . . 35
5.2 Use of CPU Registers .. 36
5.3 Addressing Mode Descriptions 36
5.4 Descriptions and Examples (28002 and 28001 Nonsegmemed Mode) 37

Register (R) 37
Immediate (lM) . 37
Indirect Register OR) . 37
Direct Address (DA) . 38
Index (X) 38
Relative Address (RA) 38
Base Address (BA) 39
Base Index (BX) 40

5.5 Descriptions and Examples (Segmented 28001) 40
Register (R) . 40
Immediate OM) 40
Indirect Register (IR) .. 41
Direct Address (DA) 41
Index (X) .. 42
Relative Address (RA) . 42
Base Address (BA) . 43
Base Index (BX) 44

vi

Architecture
(Continued)

2
Address Spaces

3

CPU Operation

4

Addressing Modes

5

6.1 Introduction 47
6.2 Functional Summary 47

Load and Exchange Instructions .. 48
Arithmetic Instructions 48
Logical Instructions .. 49
Program Control Instructions .. 49
Bit Manipulation Instructions .. 50
Rotate and Shift Instructions .. 50
Block Transfer and String Manipulation Instructions .. 51
Input/Output Instructions 52
CPU Control Instructions .. 52
Extended Instructions .. 53

6.3 Processor Flags... 53
6.4 Condition Codes 54
6.5 Instruction Interrupts and Traps " .. 54
6.6 Notation and Binary Encoding .. 55
6.7 28000 Instruction Descriptions and Formats , 57
6.8 EPA Instruction Templates. .. 213

7.1 Introduction 219
7.2 Interrupts 219

Non-Maskable Interrupt (NMI)219
Vectored Interrupt (VI) 219
Nonvectored Interrupt (NVI) . 219

7.3 Traps 219
Extended Instruction Trap 219
Privileged Instruction Trap . 219
System Call Trap 219
Segment Trap 219

7.4 Reset . , 220
7.5 Interrupt Disabling 220
7.6 Interrupt and Trap Handling. 220

Acknowledge Cycle . 220
Status Saving 220
Loading New Program Status 221
Executing the Service Routine 222
Returning from an Interrupt or Trap 222

7.7 Priority 222

8.1 Introduction 225
8.2 Refresh Cycles 225
8.3 Periodic Refresh 225
8.4 Stop-State Refresh 225

vii

Instruction Set

6

Exceptions

7

Refresh

8

Table of Conlenls (Continued)

9.1 Introduction 229
9.2 Bus Operations. 229
9.3 CPU Pins. 230

Transaction Pins . 230
Bus Control Pins . 230
Interrupt/Trap Pins . 230
Multi-Micro Pins 231
CPU Control . 231

9.4 Transactions......... 231
WAIT............................. . 232
Memory Transactions 232
I/O Transactions 234
EPU Transfer Transactions 235
Interrupt/Trap Acknowledge Transactions .. 236
Internal Operations and Refresh Transactions ... 236

9.5 CPU and Extended Processing Unit Interaction 238
9.6 Requests 238

Interrupt/Trap Request 239
Bus Request 239
Resource Request 240
Stop Request 240

9.7 Reset.... 241

External Interface

9

Hardware Information

28000 Family Speciiicalions

Programmers Quick Reference

Glossary of Terms

Vlll

245

249

265

.. 287

Appendix

A
Appendix

B
Appendix

C
Appendix

D

Zilog Sales Offices

West

Sales and Technical Center
Zilog, Incorporated
1333 Lawrence Expressway
Suite 400
Santa Clara, CA 95051
Tele: (408) 446-9848
TWX: 910-338-7621

Sales and Technical Center
Zilog, Incorporated
18023 Sky Park Circle
Suite J
Irvine, CA 92714
Tele: (714) 549-2891
TWX: 910-595-2803

Sales and Technical Center
Zilog, Incorporated
15643 Sherman Way
Suite 430
Van Nuys, CA 91406
Tele: (213) 989-7484
TWX: 910-495-1765

Midwest

Sales and Technical Center
Zilog, Incorporated
890 East Higgins Road
Suite 147
Schaumburg, IL 60195
Tele: (312) 885-8080
TWX: 910-291-1064

South

Sales and Technical Center
Zilog, Incorporated
2711 Valley View, Suite 103
Dallas, TX 75234
Tele: 214/243-6550
TWX: 910-860-5850

Technical Center
Zilog, Incorporated
1442 U.S. Hwy 19 South
Suite 135
Clearwater, FL 33516
Tele: (813) 535-5571

Zilog, Inc. 10340 Bubb Road, Cupertino, California 95014
Telephone (408)446-4666 TWX 910-338-7621

ix

East

Sales and Technical Center
Zilog, Incorporated
Corporate Place
99 South Bedford Street
Burlington, MA 01803
Tele: (617) 273-4222
TWX: 710-332-1726

Sales and Technical Center
Zilog, Incorporated
110 Gibraltar Road
Horsham, PA 19044
Tele: (215) 441-8282
TWX: 510-665-7077

United Kingdom

Zilog (U.K.) Limited
Babbage House, King Street
Maidenhead SL61DU
Berkshire, United Kingdom
Tele: (628) 36131
TELEX~848609

West Germany

ZilogGmbH
Zugspitzstrasse 2a
D-80 11 Vaterstetten
Munich, West Germany
Tele: 081064035
TELEX: 529110 Zilog d.

Japan

Zilog, Japan KK
Linden Sky Heights
Bldg. IF
13-2 Sakuragaoka-Machi
Shibuya-Ku Tokyo 105
Japan
Tele: (813) 496-4428
TWX: 781-23723 Lawright

zaooo CPU User's

Reference Manual

.- I

1.1 Intro­
duction

1.2 General
Organization

This chapter provides a summary description
of the advanced architecture of the 28000
Microprocessor, with special attention given to
those architectural features that set the 28000
CPU apart from its predecessors. A complete

2ilog's 28000 microprocessor has been
designed to accommodate a wide range of
applications, from the relatively simple to the
large and complex. The 28000 CPU is offered
in three versions: the 28001, 2, and 3. The
28003 is discussed in the 28003 CPU User's
Manual. Each CPU comes with an entire family of
support components: a memory management
unit, a DMA controller, serial and parallel I/O
controllers, and extended processing units-all
compatible with 2ilog's 2-Bus. Together with other
28000 Family components, the advanced CPU
architecture provides in an LSI microprocessor
design the flexibility and sophisticated features
usually associated with mini- or mainframe
computers.

The major architectural features of the 28000
CPU that enhance throughput and processing
power are a general purpose register file,
system and normal modes of operation, multi­
ple addressing spaces, a powerful instruction
set, numerous addressing modes, multiple
stacks, sophisticated interrupt structure, a rich
set of data types, separate 1/0 address spaces
and, for the 28001, a large address space and
segmented memory addressing. Each of these
! __ L ~_ ~_ _.&.J ~J.+~;l .; +'h ,....,.t':~:YV~ c.cu..... tlr"\n

Chapter 1
Z8000 Processor Overview

overview of the architecture is provided in
Chapter 2, with detailed descriptions of the
various aspects of the processor provided in
succeeding chapters.

benefits that result from these features are
code density, compiler efficiency and support for
typical operating system operations, and complex
data structures. These topics are treated in
Section 1.3.

The CPU has been designed so that a power­
ful memory management system can be used to
improve the utilization of the main memory
and provide protection capabilities for the
system. This is discussed in Section 1.3.12.
Although memory management is an optional
capability-the 28000 CPU is an extremely
sophisticated processor without memory
management-the CPU has explicit features to
facilitate integrating an external memory
management device into a 28000 system con­
figuration.

Finally, care has been taken to provide a
very general mechanism for extending the
basic instruction set through the use of extern-
al devices (called Extended Processing
Units---EPUs). In general, an EPU is dedicated
to performing complex and time-consuming
tasks so as to unburden the CPU. Typical tasks
for speCialized EPUs include floating-point
arithmetic, data base search and maintenance
onerations. network interfaces, and many

1.3 Architec- 1.3.1 General-Purpose Register File. The
tural Features heart of the 28000 CPU architecture is a file of
(Continued) sixteen 16-bit general-purpose registers. These

general-purpose registers give the 28000 its
power and flexibility and add to its regular
instruction structure.

General-purpose registers can be used as
accumulators, memory pointers or index reg­
isters. Their major advantage is that the partic­
ular use to which they are put can vary during
the course of a program as the needs of the
program change. Thus, the general-purpose
register file avoids the critical bottlenecks of
an implied or dedicated register architecture,
which must save and restore the contents of
dedicated registers when more registers of a
particular type are needed than are supplied
by the processor.

The 28000 CPU register file can be
addressed in several ways: as 16 byte registers
(occupying one half of the file) or as 16 word
registers or, by using the register pairing
mechanism, as eight long-word (32-bit) reg­
isters or as four quadruple-word (64-bit)
registers. Because of this register fleXibility, it
is not necessary (for example) for a 28000 user
to dedicate a 32-bit register to hold a byte of
data. Registers can be used efficiently in
the 28000.

1.3.2 Instruction Set. A powerful instruction
set is one of the distinguishing characteristics
of the 28000. The instruction set is one
measure of the fleXibility and versatility of a
computer. Having a given operation imple­
mented in hardware saves memory and
improves speed. In addition, completeness of
the operations available on a particular data
type is frequently more important than addi­
tional, esoteric instructions, which are unlikely
to affect performance significantly. The 28000
CPU prOVides a full complement of arithmetic,
logical, branch, I/O, shift, rotate, and string
instructions. In addition, special instructions
have been included to facilitate multiprocess­
ing, multiple processor configurations, and
typical high level language and operating
system functions. The general philosophy of
the instruction set is two-operand register­
memory operations, which include as a special
subset register-register operations. However,
to improve code density, a few memory­
memory operations are used for string manipu­
lation. The two-address format reflects the most
frequently occurring operations (such as
A - A + B). Also, haVing one of the
operands in a rapidly accessible general­
purpose register facilitates the use of inter­
mediate results generated during a
calculation.

4

The majority of operations deal with byte,
word, or long-word operands, thereby pro­
viding a high degree of regularity. Also
included in the instruction set are compact,
one-word instructions for the most frequently
used operations, such as branching short
distances in a program.

The instruction set contains some notable
additions to the standard repertoire of earlier
microprocessors. The Load and Exchange
group of instructions has been expanded to
support operating system functions and con­
version of eXisting microprocessor programs.
The usual arithmetic instructions can now deal
with higher-precision operands, while hard­
ware multiply and divide instructions have also
been added. The Bit Manipulation instructions
can use calculated values to specify the bit
position within a byte or word as well as to
specify the position statically in the instruc­
tion. The Rotate and Shift instructions are con­
Siderably more flexible than those in previous
microprocessors. The String instructions are
useful in translating between different char­
acter codes. Multiple-processor configurations
are supported by special instructions.

1.3.3 Data Types. Many data types are sup­
ported by the 28000 architecture. A data type
is supported when it has a hardware represen­
tation and instructions which directly apply to
it. New data types can always be simulated in
terms of basic data types, but hardware sup­
port provides faster and more convenient
operations. The basic data type is the byte,
which is also the basic addressable element.
The architecture also supports the follOWing
data types: words (16 bits), long words (32
bits), byte strings, and word strings. In
addition, bits are fully supported and
addressed by number within a byte or word.
BCD digits are supported and represented as
two 4-bit digits in a byte. Arrays are supported
by the Indexed addressing mode (see 1.3.4
and Chapter 5). Stacks are supported by the
instruction set and by an external device (the
Memory Management Unit, MMU) available
with the 28001.

1.3.4 Addressing Modes. The addressing
mode, which is the wayan operand is speci­
fied in an instruction, determines how an
address is generated. The 28000 CPU offers
eight addressing modes. Together with the
large number of instructions and data types,
they improve the processing power of the
CPU. The addressing modes are Register,
Immediate, Indirect Register, Direct Address,
Index, Relative Address, Base Address, and
Base Index. Several other adcressing modes
are implied by specific instructions, including
autoincrement. The first five modes listed

1.3 Architec- above are basic addressing modes that are
tural Features used most frequently and apply to most
(Continued) instructions having more than one addressing

mode. (In the 28002, Base Address and Index
modes are identical, and in the 28001, Base
Addressing capabilites can be simulated with
all instructions, using Based Addressing or the
Memory Management Unit and the Direct or
Indexed Addressing mode.)

1.3.5 Multiple Memory Address Spaces. The
28000 CPU facilitates the use of multiple
address spaces. When the 28000 CPU
generates an address, it also outputs signals
indicating the particular internal activity which
led to the memory request: instruction fetch,
operand reference, or stack reference. This
information can be used in two ways: to
increase the memory space available to the
processor (for example, by putting programs in
one space and data in another); or to protect
portions of the memory and allow only certain
types of accesses (for example, by allOWing
only instruction fetches from an area desig­
nated to contain proprietary software). The
Memory Management Unit (MMU) has been
designed to provide precisely these kinds of
protection features by using the CPU­
generated status information.

1.3.6 System/Normal Mode of Operation.
The 28000 CPU can run in either system mode
or normal mode. In system mode, all of the
instructions can be executed and all of the
CPU registers can be accessed. This mode is
intended for use by programs performing
operating system functions. In normal mode,
Ql'lrn.o. inc:trl1f"tiflnc::. rnAV n(")t h.o. Aypr"tprl (p rr

mode and the individual users write their pro­
grams to run in normal mode.

To further support the system/normal mode
dichotomy, there are two copies of the stack
pointer-one for a system mode stack and
another for a normal mode stack. These two
stacks facilitate the task sWitching involved
when interrupts or traps occur. To insure that
the normal stack is free of system information,
the information saved on the occurrence of
interrupts or traps is always pushed on to the
system stack before the new program status is
loaded.

1.3.7 Separate 110 Address Spaces. The
28000 Architecture distinguishes between
memory and I/O spaces and thus requires
specific I/O instructions. This architectural
separation allows better protection and has
more potential for extension. The use of
separate I/O spaces also conserves the limited
28002 data memory space. There are in fact
two separate I/O address spaces: Standard I/O
and Special I/O. The main advantage of these
two spaces is to prOVide for two types of
peripheral support chips-Standard I/O pe­
ripherals and Special I/O peripherals-devices
such as the 28010 Memory Management Unit
that do not respond to Standard I/O com­
mands. A second advantage of these two
spaces is that they allow 8-bit peripherals to
attach to the low-order eight bits (Standard
I/O) or to the high-order eight bits (Special
I/O) of the processor Address/Data bus.

The increased speed requirements of future
microprocessors are likely to be achieved by
tailorinq memory and I/O references to their

1.3 Architec- The 28000 has implemented a priority system
tural Features for handling interrupts. Vectored interrupts
(Continued) have higher priority than non-vectored inter­

rupts. This priority scheme allows the efficient
control of many peripheral devices in a 28000
system.

An interrupt causes information relating to
the currently executing program (program
status) to be saved on a special system stack
with a code describing the reason for the
switch. This allows recursive task switches to
occur while leaving the normal stack undis­
turbed by system information. The program
state to handle the interrupt (new program
status) is loaded from a special area in
memory, the .program status area, designated
by a pointer resident in the CPU.

The use of the stack and of a pointer to the
program status area is a specific choice made
to allow architectural compatibility if new
interrupts or traps are added to the
architecture.

1.3.9 Multi-Processing. The increase in micro­
processor computing power that the 28000
represents makes simple the design of
distributed processing systems having many
low-cost microprocessors running dedicated
processes.

The 28000 prOVides some basic mechanisms
that allow the sharing of address spaces among
different microprocessors. Large segmented
address spaces and the support for external
memory management make this possible. Also,
a resource request bus is prOVided which, in
conjunction with software, prOVides the exclu­
sive use of shared critical resources. These
mechanisms, and new peripherals such as the
Z-FIO, have been designed to allow easy asyn­
chronous communication between different
CPUs.

1.3.10 Large Address Space for the Z8001.
For many applications, a basic address space
of 64K bytes is insufficient. A large address
space increases the range of applications of a
system by permitting large, complex programs
and data sets to reside in memory rather than
be partitioned and swapped into a small
memory as needed. A large address space
greatly simplifies program and data manage­
ment. In addition, large address spaces and
memories reduce the need for minimizing pro­
gram size and permit the use of higher level
languages. The segmented version of the
Z8000 generates 23-bit addresses, for a basic
address space of 8 megabytes (8M or 8,388,
608 bytes).

1.3.11 Segmented Addressing of the Z8001.
The segmented version of the 28000 CPU
divides its 23-bit addresses into a 7-bit seg­
ment number and a 16-bit segment offset. The
segment number serves as a logical name of a
segment; it is not altered by the effective

6

address calculation (by indeXing, for exam­
ple). This corresponds to the way memory is
typically used by a program-one portion of
the memory is set aside to hold instructions,
another for data. In a segmented address
space, the instructions could reside in one seg­
ment (or several different modules in different
segments), and each data set could reside in a
separate segment. One advantage of segmenta­
tion is that it speeds up address calculation
and relocation. Thus, segmentation allows the
use of slower memories than linear addressing
schemes allow. In addition, segments prOVide
a convenient way of partitioning memory so
that each partition is given particular access
attributes (for example, read-only). The Z8000
approach to segmentation (simultaneous access
to a large number of segments) is necessary if
all the advantages of segmentation are to be
realized. A system capable of directly access­
ing only, say, four segments would lack the
needed fleXibility and would be constrained by
address space limitations.

1.3.12 Memory Management. Memory
management consists primarily of dynamic
relocation, protection, and sharing of memory.
It offers the follOWing advantages: prOViding a
logical structure to the memory space that is
independent of the actual physical location of
data, protecting the user from inadvertent
mistakes, preventing unauthorized access to mem­
ory resources or data, and protecting the operat­
ing system from disruption by the users.

The addresses manipulated by the program­
mer, used by instructions, and output by the
segmented 28000 CPU are called logical
addresses. The external memory management
system takes the logical addresses and trans­
forms them into physical addresses required
for accessing the memory. This address trans­
formation process is called relocation, which
makes user software independent of the physi­
cal memory. Thus, the user is freed from
specifying where information is actually
located in the physical memory.

The segmented 28000 CPU supports memory
management both with segmented addressing
and with program-status information. A seg­
mented addressing space allows individual
segments to be treated differently.

Program status information generated by the
CPU permits an external memory management
device to monitor the intended use of each
memory access. Thus, illegal types of access
can be suppressed and memory segments pro­
tected from unintended or unwanted modes of
use. For example, system tables could be pro­
tected from direct user access. This added pro­
tection capability becomes more important as
microprocessors are applied to large, complex
tasks.

1.4 Benefits of
the Architec­
ture

The features of the 28000 Architecture com­
bine to provide several significant benefits:
improvements in code density, compiler effi­
ciency, operating system support, and support
for high level data structures.

1.4.1 Code Density. Code density affects both
processor speed and memory utilization. Code
compaction saves memory space-an especial­
ly important factor in smaller systems-and
improves processor speed by reducing the
number of instruction words that must be
fetched and decoded. The 28000 offers several
advantages with respect to code density. The
most frequently used instructions are encoded
in single-word formats. Fewer instructions are
needed to accomplish a given task and a con­
sistent and regular architecture further
reduces the number of instructions required.

Code density is achieved in part by the use
of special "short" formats for certain instruc­
tions which are shown by statistical analysis to
be most frequently used. A "short offset"
mechanism has also been provided to allow a 2­
word segmented address to be reduced to a
single word; this format may be used by
assemblers and compilers.

The largest reduction in program size and
increase in speed results from the consistent
.... -..-3 1............. -I-j.."__ ~ .j..h_ :::I,....~h;+~,...+'l,...c:l. :::Inri

ing modes and data types. Access to
parameters and local variables on the pro­
cedure stack is supported by the "Index With
Short Offset" addressing mode, as well as the
Base Address and Base Index addressing
modes. In addition, address arithmetic is aided
by the Increment and Decrement instructions.

Testing of data, logical evaluation, initializa­
tion, and comparison of data are made possi­
ble by the instructions Test, Test Condition
Codes, Load Immediate Into Memory, and
Compare Immediate With Memory. Since com­
pilers and assemblers frequently manipulate
character strings, the instructions Translate,
Translate And Test, Block Compare, and Com­
pare String all result in dramatic speed
improvements over software simulations of
these important tasks. In addition, any register
except RO can be used as a stack pointer by
the Push and Pop instructions.

1.4.3 Operating System Support. Interrupt
and task-switching features are included to
improve operating system implementations.
The memory-management and compiler­
support features are also quite important.

The interrupt structure has three levels: non­
maskable, non-vectored, and vectored. When
an interrupt occurs, the program status is

. .

1.4 Benefit of
the Architec­
ture
(Continued)

1.5 Extended
Instruction
Facility

1.6 Summary

1.4.4 Support for Many Types of Data Struc­
tures. A data structure is a logical organiza­
tion of primitive elements (byte, word, etc.)
whose format and access conventions are well­
defined. Common data structures include
arrays, lists, stacks, and strings. Since data
structures are high-level constructs frequently
used in programming, processor performance
is significantly enchanced if the CPU provides
mechanisms for efficiently manipulating them.
The 28000 offers such mechanisms.

In many applications, one of the most fre­
quently encountered data structures is the
array. Arrays are supported in the 28000 by
the Index and Base Index Addressing modes
and by segmented addressing. The Base Index
Addressing mode allows the use of pointers into
an array (i.e., offsets from the array's starting
address). Segmented addressing allows an
array to be assigned to one segment, which
can be referenced simply by segment number.

Lists occur more frequently than arrays in
business applications and in general data pro­
cessing. Lists are supported by Indirect Reg­
ister and Base Address Addressing modes. The
Base Index Addressing mode is also useful for
more complex lists.

Stacks are used in all applications for nest­
ing of routines, block structured languages,
and interrupt handling. Stacks are supported
by the Push and Pop instructions, and multiple
stacks may be implemented based on the
general-purpose registers of the 28000. In

The 28000 architecture has a mechanism for
extending the basic instruction set through the
use of exte;-nal devices. Special opcodes have
been set aside to implement this feature. When
the CPU encounters an instruction with these
opcodes in its instruction stream, it will per­
form any indicated address calculation and
data transfer; otherwise, it will treat the
"extended instruction" as being executed by
the external device. Fields have been set aside
in these extended instructions which can be
interpreted by external devices (Extended Pro-

The architectural sophistication of the 28000
microprocessor is on a level comparable with
that of the minicomputer. Features such as
large address spaces, multiple memory spaces,
segmented addresses, and support for multiple
processors are beyond the capabilities of the
traditional microprocessor. The benefits of this

8

addition, two hardware stack pointers are used
to assign separate stacks to system and normal
operating modes, thereby further supporting
the separation of system and normal operating
environments discussed earlier.

Byte strings are supported by the Translate and
Translate And Test instructions. Decimal strings
use the Decimal Adjust instruction to do decimal
arithmetic on strings of BCD data, packed two
characters per byte. The Rotate Digit instructions
also manipulate 4-bit data.

1.4.5 Two CPU Versions: Z8001 and Z8002.
The 28000 CPU is offered in two versions: the
28001 48-pin segmented CPU and the 28002
40-pin nonsegmented CPU. The main differ­
ence between the two is addressing range. The
28001 can directly address 8M bytes of
memory; the 28002 directly addresses 64K
bytes. The 28001 has a non-segmented mode of
operation which permits it to execute programs
written for the 28002.

Not all applications require the large
address space of the 28001; for these appli­
cations the 28002 is recommended. Moreover,
many multiple-processor systems can be imple­
mented with one 28001 and several 28002s,
instead of exclusively using 28001s. Since
segmented 28000s can execute code gen­
erated for nonsegmented CPUs, users can
buy only the power they require without hav­
ing to worry about software incompatibility
between processors.

cessing Units-EPUs) as opcodes. Thus, by
using appropriate EPUs, the instruction set of
the 28000 can be extended to include special­
ized instructions.

In general. an EPU is dedicated to perform­
ing complex and time-consuming tasks in
order to unburden the CPU. Typical tasks suit­
able for specialized EPUs include floating­
point arithmetic, data base search and main­
tenance operations, network interfaces,
graphics support operations-a complete list
would include most areas of computing.

architecture-code density, compiler support,
and operating system support-greatly
enhance the power and versatility of the CPU.
The CPU features that support an external
memory management system also enhance the
CPU's applicability to large system
environments.

2
_-I!-----'-l1li _.,.: , ~----=:

17': '~.L1W7;1,..,.
Zilog

Chapter 2
Architecture

2.1 Intro­
duction

This chapter provides an overview of the
Z8000 CPU architecture. The basic hardware,
operating modes and instruction set are all
described. Differences between the two ver­
sions of the Z8000 (the nonsegmented Z8002

and the segmented Z8001) are noted where
appropriate. Most of the subjects covered here
are also treated with greater detail in later
chapters of the manual.

2.2 General
Organization

Figure 2.1 contains a block diagram that
shows the major elements of the Z8000 CPU,
namely:

• A 16-bit internal data bus, which is used to
move addresses and data within the CPU.

• A Z-Bus interface, which controls the inter­
action of the CPU with the outside world.

• A set of 16 general-purpose registers, which
is used to contain addresses and data.

• Four special-purpose registers, which con­
trol the CPU operation.

• An Arithmetic and Logic Unit, which is
used for manipulating data and generating
addresses.

• An instruction execution control, which
fetches and executes Z8000 instructions.

• An exception-handling control, which pro­
cesses interrupts and traps.

• A refresh control, which generates memory
refresh cycles.

Each of these elements is explained in the
following sections. All of the elements are
common to both the Z8001 CPU and the Z8002
CPU. The differences between the two versions
of the Z8000 are derived from the number of
bits in the addresses they generate. The Z8002
always generates a 16-bit linear address, while
the Z8001 always generates a 23-bit segmented
address (that is, an address composed of a
7-bit segment number and a 16-bit offset).

I +
I

I REFRESH :l I
GENERAL I~ ARITHMETIC

CONTROL I
PURPOSE LOGIC

REGISTERS !y---y UNIT ~ I
I REFRESH

ICOUNTER

it it it
< >

Z·BUS
A ~

INTERNAL DATA BUS INTERFACE Z·BUS

it it it
~ y

II INSTRUCTION I
PROGRAM I PSAP IL _B~~R_ J

STATUS

~ IREGISTERS
INSTRUCTION

-I I- IEXECUTION r----.., EXCEPTION
>--- CONTROL - f- - -ic;- - ~ HANDLING

CONTROL I
t I I

I I
LZ8000C~ ~

1-------------------- 1

Figure 2-1. ZSOOO CPU Functional Block Diagram

II

2.2 General
Organization
(Continued)

Figure 2.2 gives a system-level view of the
Z8000. It is important to realize that the Z8000
CPU comes with a whole family of support
components. The Z8000 Family has been
designed to allow the easy implementation of
powerful systems. The major elements of such
a system might include:

• The Z-Bus, a multiplexed address/data
shared bus that links the components of the
system.

• A Z8000 CPU.

• One or more Extended Processing Units
(EPUs), which are dedicated to performing
specialized, time-consuming tasks.

• A memory sub-system, which in Z8001
systems can include one or more Memory

Management Units (MMUs) that offer sophis­
ticated memory allocation and protection
features.

• One or more Direct Memory Access (DMA)
controllers for high-speed data transfers.

• A large number of possible peripheral
devices interfaced to the Z-Bus through
Universal Peripheral Controllers (UPCs),
Serial Communication Controllers (SCCs),
Counter-Timer and Parallel I/O Controllers
(CIOs) or other Z-Bus peripheral
controllers.

• One or more FIFO I/O Interface Units
(FIOs) for elastic buffering between the
CPU and another device, such as another
CPU in a distributed processing system.

PERIPHERALS

8 8EPU DMA

B< JJ JJ
>Z·BUS

JJ II &
'"00' 0'" { 8 <

U
Z·BUS

MMU

ilJJ
I

MEMORY

I

Figure 2-2. Z8000 System Configuration

12

Figure 2-3. Z8000 Pin Functions

to determine when the multiplexed Address/
Data Bus holds addresses or data. The Memory
Request signal can be used to time control
signals to a memory system.

AD15

AD14

AD13

AD12

READIWRITE AD,1

NORMAUSYSTEM AD,o

BYTElWORD AD,

AD, ADDRESS I
AD, DATA BUS

AD,

AD,

AD.

Z8001
AD,

Z8002
CPU AD,

ADo

1--

-r'=~
I SN,

I SN,

SEGMENT:I SN.

I SN,
NUMBER I

I SN, I
I SN, I
I SNo I

I SEGT SEGMENT I
L__ _~R~__ -l

t t
+5 V GND elK RESET

BUS{TIMING

'w~l
CONT~~~{

CONT=~~{

MULTI.MICRO{
CONTROL

Figure 2.3 shows the 28000 pins grouped
according to function. The 28001 is packaged
in a 48-pin DIP and the 28002 is packaged in a
40-pin DIP. The eight additional pins on the
28001 are the seven segment-number lines and
the segment trap. Except for those eight, all
pins on the two CPU versions are identical.

The 28000 is a 2-Bus CPU; thus, activity on
the pins is governed by the 2-Bus protocols
(see The Z-Bus Summary). These protocols
specify two types of activities: transactions,
which cover all data movement (such as
memory references or I/O operations), and
requests, which cover interrupts and requests
for bus or resource control. The following is a
brief overview of the 28000 pin functions; com­
plete descriptions are found in Chapter 9.

2.3.1 Address/Data Lines. These 16 lines
alternately carry addresses and data. The
addresses may be those of memory locations or
I/O ports. The bus timing signal lines
described below indicate what kind of informa­
tion the Address/Data lines are carrying.

2.3.2 Segment Number (Z8001 only). These
seven lines encode the addresses of up to 128
relocatable memory segments. The segment
signals become valid before the address offset
signals, thus supporting address relocation by
the memory managment system.

2.3.3 Bus Timing. These three lines include
Address Strobe (AS), Data Strobe (DS) and
Memory Request (MREQ). They are used to
signal the beginning of a bus transaction and

2.3 Hardware
Interface

0000
000 I
00 I 0
001 I
0100
010]
0]] 0
0]]]

] 000
] 00]
] 0] 0
] 0]]
]] 00
]] 0]
]]] 0
Ill]

Definition

Internal operation
Memory refresh
1/0 reference
Special 1/0 reference
Segment trap acknowledge
Non-maskable Interrupt acknowledge
Non-veciored interrupt acknowledge
Vectored interrupt acknowledge
Data memory request
Stack memory request
Data memory request (EPU)
Stack memory request (EPU)
Instruciion space access
Instruciion fetch, first word
CPU-EPA Transfer
Test and Set Data Access (28003/4 only)

2.3.4 Status. These lines function to indicate
the kind of transaction on the b~ (STo-ST3),
whether it is a read or write (R/W, where High
is Read and Low is Write), whether it is on
byte or word data (B/W, High = byte,
Low = word), and whether the CPU is
operating in normal mode or system mode
(N/S, High = normal, Low = system). The
STo-ST3 lines also encode additional
characteristics of the bus transactions, as Table
2.1 shows. The availability of status information
defining the type of bus transaction in advance
of data transmission allows bidirectional
drivers and other external hardware elements
to be enabled before data is transferred.

Table 2.1 Status Line Codes

13

2.3 Hardware
Interface
(Continued)

2.4 Timing

2.3.5 CPU Control. These inputs allow exter­
nal devices to delay the operation of the CPU.
The WAIT line, when active (Low), causes the
CPU to idle in the middle of a bus transaction,
taking extra clock cycles until the WAIT line
goes inactive; it is typically used by memory or
I/O peripherals which operate more slowly
than the CPU. The Stop (STOP) line halts
internal CPU operation when the first word of
an instruction (or the second word of an EPA
instruction) has been fetched. This signal is
useful for single-step instruction execution dur­
ing debugging operations and for enabling
Extended Processing Units to halt the CPU
temporarily.

2.3.6 Bus Control. These lines provide the
means for other devices, such as direct
memory access (DMA) controllers, to gain
exclusive use of the system bus, i.e., the signal
lines that are common to several devices in a
system. The external device requesting control
of the bus inputs a bus request (BUSREQ); the
CPU responds with a bus acknowledge
(BUSACK) after three-stating, or electrically
neutralizing, the Address/Data Bus, Bus Tim­
ing lines, Status lines, and Control lines. The
Z-Bus allows a daisy chain to be used to

Figure 2.4 shows the three basic timing
periods of the 28000: a clock cycle, a bus
transaction, and a machine cycle. A clock
cycle (sometimes called a T-state) is one cycle
of the CPU clock, starting with a rising edge.
A bus transaction covers a single data move­
ment on the CPU bus and will last for three or
more clock cycles, starting with a falling edge

enforce a priority among several external
devices.

2.3.1 Interrupts. Three interrupt inputs are
provided: non-maskable interrupts (NMI), vec­
tored interrupts (VI) and non-vectored inter­
rupts (NVI). These permit external devices to
suspend the CPU's execution of its current
program and begin executing an interrupt ser­
vice routine.

2.3.8 Segment Trap Request (Z8001
only). This input to the CPU is used by an
external memory-management system to indi­
cate that an illegal memory access has been
attempted.

2.3.9 Multi-Micro Control. The Multi-Micro In
(MI) and Multi-Micro Out (MO) lines are used
in conjunction with instructions such as MSET
and MREQ to coordinate multiple-CPU sys­
tems. They allow exclusive use by one CPU of
a shared resource in a multiple-CPU system.

2.3.10 System Inputs. The four inputs shown
at the bottom of Figure 3 include + 5 V power,
ground, a single-phase clock signal and a CPU
reset. The reset function is described in
Chapter 7.

of AS and ending with a rising edge of DS. A
machine cycle covers one basic CPU operation
and always starts with a bus transaction. A
machine cycle can extend beyond the end of a
transaction by an unlimited number of clock
cycles.

MACHINE11CYCLE

BUS
TRANSACTION--1

CLOCK CYCLE I
CPU CLOCK

v
v

Figure 2-4. Basic Timing Periods

2.5 Address
Spaces

The 28000 supports two main address
spaces corresponding to the two different kinds
of locations that can be addressed:

• Memory Address Space. This consists of the
addresses of all locations in the main
memory of the computer system.

• 1/0 Address Space. This consists of the
addresses of all I/O ports through which
peripheral devices are accessed.

For more information on address spaces, con­
sult Chapter 3.

14

2.5.1 Memory Address Space. Memory
address space can be further subdivided into
Program Memory address space, Data Memory
address space, and Stack Memory address
space, each for both normal and system
modes.

The particular space addressed is deter­
mined by the external circuitry from the code
appearing at the CPU's output status pins
(STO-ST3) _and the state of the Normal/System
signal (N/S pin). Data memory reference, stack
memory reference, and program memory

2.5 Address
Spaces
(Continued)

2.6 General­
Purpose
Registers

reference each correspond to a different status
code at the STo-ST3 outputs, allowing three
address spaces to be distinguished for each of
two operating modes, giving six address
spaces in all. Each of the six address spaces
has a range as great as the addressing ability
of the processor. For the nonsegmented 28002,
each address space can have up to 64K bytes
of directly addressable memory. The seg­
mented 28001, on the other hand, provides up
to 8M bytes of memory in each address space.

Segmentation is a means of partitioning
memory into variable-sized segments so that a
variety of useful functions may be imple­
mented, including:

• Protection mechanisms that prevent a user
from referencing data belonging to others,
attempting to modify read-only data or over­
flowing a stack.

• Virtual memory, which permits a user to
write functioning programs under the
assumption that the system contains more
memory than is actually available.

• Dynamic relocating, which allows the place­
ment of blocks of data in physical memory

The 28000 CPU contains 16 general-purpose
registers, each 16 bits wide. Any general­
purpose register can be used for any instruc­
tion operand (except for minor exceptions
described at the beginning of Chapter 5).

Figure 2.5 shows these general-purpose reg­
isters. They allow data formats ranging from
bytes to quadruple words. The word registers
are speCified in assembly-language statements
as RO through R15. Sixteen byte registers,

Z8001

independently of user addresses, allowing
better management of the memory resources
and sharing of data and programs.

The signals provided on the segmented
28001 CPU assist in implementing these
features, although additional software and
external circuitry (such as the 28010 MMU) are
generally required to take full advantage of
them. Chapter 3 contains an extensive discus­
sion of segmentation.

2.5.2 I/O Address Space. I/O addresses are
represented as 16-bit words for both the 28001
and 28002.

There are two I/O address spaces, Standard
I/O and Special I/O, which are both separate
from the memory address space. Each I/O
space is accessed through a separate set of I/O
instructions, which can be executed only when
the CPU is operating in system mode.

Standard I/O instructions transfer data
between the CPU and peripherals and Special
I/O instructions transfer data to or from exter­
nal CPU support circuits such as the 28010
MMU. Access to Standard or Special I/O
space is distinguished by the status lines
(STo- ST3)·

RHO-RL7, which may be used as accumulators,
overlap the first eight word registers. Register
groupings for larger operands include eight
double-word (32-bit) registers, RRO-RRI4, and
four quad-word registers, RQO-RQI2, which
are used by a few instructions such as Mul­
tiply, Divide, and Extend Sign.

As Figure 2.5 illustrates, the CPU has two
hardware stack pointers, one dedicated to each
of the two basic operating modes, system and

Z8002

01
000 (

Rol7
R1115

RR'(
R2!

O'!

RR'(
0·1
R51

RR.(0·1
071

RRS(
RsI15

R91

(R101
RR10

R11 I

(R121
RR12

R131I R14R1.
RR14

R1S'

015

SYSTEM STACK POINTER (SEG. NO.)

NORMAL STACK POINTER (SEG. NO.)

SYSTEM STACK POINTER (OFFSET)

NORMAL STACK POINTER (OFFSen

01

01

I~

RO.(
RO!7
R1115

RR2 (
R21

R'!

RR'(
R·I
Rsl

RRO (
ROI
R71

ORO (
Raj,S

.. I
(R1O!

RR10
R1,!

(R121RR12

0131IR141
RR14 R1S' SYSTEM STACK POINTER

R15 NORMAL STACK POINTER

01
01

01

Figure 2-50. Z8001 Segmented General-Purpose

Registers (Register Address Space)

15

Figure 2-5b. Z8002 Nonsegmented General-Purpose

Registers (Registers Address Space)

2.6 General­
Purpose
Registers
(Continued)

2.7 Special­
Purpose
Registers

normal. The segmented zaOOl uses a two-word
stack pointer for each mode (R14'/R15' or
R14/R15), whereas the nonsegmented 28002
uses only one word for each mode (R15'
or R15).

The system stack pointer is used for saving
status information when an interrupt or trap
occurs and for supporting calls in system

In addition to the general-purpose registers,
there are special-purpose registers. These
include the Program Status registers, the Pro­
gram Status Area Pointer, and the Refresh
Counter; they are illustrated for both CPU ver­
sions in Figure 2.6. Each register can be
manipulated by software executing in system
mode, and some are modified automatically by
certain operations.

2.7.1 Program Status Registers. These
registers include the Flag and Control Word
(FCW) and the Program Counter (PC). They
are used to keep track of the state of an exe­
cuting program.

In the nonsegmented 28002, the Program
Status registers consist of two words: one each
for the FCW and the PC. In the segmented
28001, there are four words: one reserved
word, one word for the FCW and two words for
the segmented PC.

The low-order byte of the Flag and Control
Word (FCW) contains the six status flags, from
which the condition codes used for control of
program looping and branching are derived.
The six flags are:

Carry (C), which generally indicates a carry
out of the high-order bit position of a register
being used as an accumulator.

Zero (2), which is generally used to indicate
that the result of an operation is zero.

Sign (S), which is generally used to indicate
that the result of an operation is a negative
number.
15 ,

I 0 I 0 I 0 ! o! 0 ! 0 ! a ! 0 ! 0 ! 0 ! 0 ! 0 ! a ! 0 I 0 ! 0 I :_~~:~VEO

mode. The normal stack pointer is used for
subroutine calls in user programs. In normal­
mode operation only the normal stack pointer
is accessible. In system mode, the system stack
pointer is directly accessed as a general-purpose
register. The normal mode stack pointer can be
assessed as a special control register.

Parity/Overflow (P/V), which is generally used
to indicate either even parity (after logical
operations on byte operands) or overflow (after
arithmetic operations).

Decimal-Adjust (D), which is used in BCD
arithmetic to indicate the type of instruction
that was executed (addition or subtraction).

Half Carry (H), which is used to convert the
binary result of a previous addition or subtraction
of BCD numbers into the correct decimal result.

Section 6.3 provides more detail on these
flags.

The control bits, which occupy the high­
order byte of the FCW, are used to enable
various interrupts or to control CPU operating
modes. The control bits are:

Non-Vectored Interrupt Enable (NVIE), Vec­
tored Interrupt Enable (VIE). These bits deter­
mine whether or not the CPU will accept non­
vectored or vectored interrupts (see Section
2.13).

SystemlNormaI Mode (SiN). When this bit is
set to one, the CPU is operating in system
mode; when cleared to zero, the CPU is in
normal mode (see Section 2.8). The CPU out­
put status line (NIS pm) IS the complement of
this bit.

Extended Processor Architecture (EPA)
Mode. When this bit is set to one, it indicates
that the system contains Extended Processing
Units, and hence extended instructions
15 ,

I 0 I~N IEPA IVIE INVtE! a ! 0 I 0 I c I z Is IPrJ IDA IH I 0 ! 0 I }~~~\:~~

I ' I ~'GM~.TN~M.'~ I ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ,It PROGRAM

r-------====---------, ICOUNTERI SEfMEN:OF7ET ! I
28001 Program Status Reglstt'rs

L:80Ud Proaram Sta.tus Reqist~:rs

1', I SEGMENT NUMBER I ' 1
, , , , , 1 'I ,I! ! I 1 1 1 1

I UPPER OFFSET I ' 1
,

1
, , , , 1

' 1
,I! ! I 1 1 1

£:8001 Program ~tutus Arf..:u POlr;~c·r

I' UPPER POINTER
! ! !

L8UUL Program Slaws Area P0lI11er

RATE
I ! !

28001 Rei resh

ROW
! ! j'R'1 RATE

1
ROW

I !

28002 Reiresh Ccun'er

Figure 2-6. CPU Special Registers

16

2.7 Special
Purpose
Registers
(Continued)

encountered in the CPU instruction stream are
executed (see Section 2.12). When this bit is
cleared to zero, extended instructions are
trapped for software emulation.

Segmentation Mode (SEG). This bit is imple­
mented only in the 28001; it is always cleared
in the nonsegmented 28002. When set to one,
the CPU is operating in segmented mode, and
when cleared to zero, the CPU is operating in
nonsegmented mode (see Section 2.8).

2.7.2 Program Status Area Pointer
(PSAP). The Program Status Area Pointer
points to an array of progam status values
(FCWs and PCs) in main memory called the
Program Status Area. New Program Status reg-

ister values are fetched from this area when an
interrupt or trap occurs. As shown in Figure
2.6, the PSAP comprises either one word (non­
segmented 28002) or two words (segmented
28001); for either configuration, the lower byte
of the pointer must be zero. Refer to Chapter 7
for more details about the Program Status Area
and its layout.

2.7.3 Refresh Counter. The CPU contains a
programmable counter that can be used to
refresh dynamic memory automatically. The
refresh counter register consists of a 9-bit row
counter, a 6-bit rate counter and an enable bit
(Figure 2.6). Refer to Chapter 8 for details of
the refresh mechanism.

2.8 Instruction In the normal course of events, the 28000
Execution CPU will spend most of its time fetching

instructions from memory and executing them.
This process is called the running state of the
CPU. The CPU also has two other states that it
occasionally enters.

Stop/Refresh State. This is really one state,
although it may be entered in two different
ways: either automatically for a periodic
memory refresh; or when the STOP line is acti­
vated. In this state, program execution is
temporarily suspended and the CPU makes use
of the Refresh Counter to generate refreshes.
For more information, consult Chapter 8.

Bus-Disconnect State. This is the state the
CPU enters when the DMA, or some other bus
requester, takes over the bus. Program execu­
tion is suspended and the CPU disconnects
itself from the bus.

While the CPU is in the running state, it can
either be handling interrupts or executing

2.9 Instructions The 28000 instruction set contains over 400
different instructions which are formed by
combining the 110 distinct instruction types
(opcodes) with the various data types and
addressing modes. The complete set is divided
into the following groups:

Load and Exchange for register-to-register
and register-to-memory operations, including
stack management.

Arithmetic for arithmetic operations, including
multiply and divide, on data in either registers
or memory. Compare, increment, and decre­
ment functions are included.

Logical for Boolean operations on data in
registers or memory.

Program Control for program branching (con­
ditional or unconditional), calls, and returns.

Bit Manipulation for setting, resetting and
testing individual bits of bytes or words in
registers or memory.

17

instructions. If it is executing instructions, the
28000 can be in the system or normal execu­
tion mode. In system mode, privileged instruc­
tions (such as those which perform I/O) can be
executed; in normal mode they cannot. This
dichotomy allows the creation of operating
system software, which controls CPU resources
and is protected from application program
action.

In addition, the CPU will be in either seg­
mented or nonsegmented mode. In segmented
mode, which is available only on the 28001,
the program uses 23-bit segmented addresses
for memory accesses; in nonsegmented mode,
which is available on both CPUs, the program
uses 16-bit nonsegmented addresses for mem­
ory accesses.

While executing instructions, the mode of
the CPU is controlled by bits in the FCW (Sec­
tion (2.7). While handling interrupts, the CPU
is always in system mode and, for the 28001, in
segmented mode.

Rotate and Shift for bytes, words, or, for shifts
only, long words within registers.

Block Transfer and String Manipulation for
automatic memory-to-memory transfers of data
blocks or strings, including compare and
translate functions.

Input/Output for transfers of data between I/O
ports and memory or registers.

Extended for operations involving Extended
Processing Units.

CPU Control for accessing special registers,
controlling the CPU operating state, synchro­
nizing multiple-processor operation, enabling/
disabling interrupts, mode selection, and
memory refresh.

Chapter 6 contains details on the full instruc­
tion set.

DECREMENT AND JUMP ON NON·ZERO

DJNZ 11 i 1 I 1 I 1 I I ; I IW I I I ol'se;

GENERAL INSTRUCTION FORMAT (FIRST WORD)

addressing
mode

(

2.9
Instructions
(Continued)

2.9.1 Instruction Formats. Formats of the
instructions are shown in Figure 2.7. The two
most significant bits in the instruction word
determine whether the compact instruction for­
mat (A) or the general instruction format (B) is
used. Compact formats encode the four most
frequently used instructions into single words,
thereby saving on instruction-memory usage
and increasing execution speed. As long as
the two most significant bits are not logic ones,
the general format applies. In the general for­
mat, the two most significant bits in conjunc­
tion with the source-register field are sufficient
for specifying any of the five main addressing
modes. Source and destination fields are four
bits wide for addressing the 16 general­
purpose registers.

A.

B.

COMPACT INSTRUCTION FORMAT

LOAD IMMEDIATE BYTE

LDB 11 I 1 I 0 I 0 I I ;

CALL RELATIVE

CALR 11 i 11 0 1 1 I
JUMP RELATIVE

JR 11 I 1I 1 0 I I c~

Note: W indicates Word (1) or Byte (0)

Of/set'

, • 'Off~et

2.10 Data
Types

2.11
Addressing
Modes

2.12 Extended
Processing
Architecture

The 28000 supports manipulation of eight
data types. Five of these have fixed lengths;
the other three have lengths that can vary
dynamically. Each data type is supported by a
number of instructions which operate upon it
directly. These data types are:

• Bit
• Signed and unsigned byte, word, long

word, or quadruple word binary integer

• Byte or word-length logical value

• Word (nonsegmented) or long word
(segmented) address

The information included in 28000 instruc­
tions consists of the function to be performed,
the type and size of data elements to be
manipulated, and the location of the data
elements. Locations are designated using one
of the follOWing eight addressing modes:

Register Mode. The data element is located in
one of the 16 general-purpose registers.

Immediate Mode. The data element is located
in the instruction.

Indirect Register Mode. The data element can
be found in the location whose address is in a
register.

Direct Address Mode. The data element can
be found in the location whose address is in
the instruction.

Index Mode. The data element can be found

An important feature of the 28000 CPU
architecture is the Extended Processing
Architecture (EPA) facility. This facility pro­
vides a mechanism by which the basic instruc­
tion set of the CPU can be extended viaexter­
nal devices, called Extended Processing Units
(EPUs). A special set of instructions, called
extended instructions, is used to control this
feature. When the CPU encounters one of

18

Figure 2-7. Instruction Formats

• Unsigned byte decimal integer

• Dynamic-length string of byte data

• Dynamic-length string of word data

• Dynamic-length stack of word data

Bits can be manipulated in registers or
memory. Binary and decimal integers and
logical values can be manipulated in registers,
although operands can be fetched directly from
memory. Addresses are manipulated only in
registers, and strings and stacks are manipulated
only in memory.

in the location whose address is the sum of the
contents of a 16-bit index value in a register
ahd an address in the instruction.

Relative Address Mode. The data element can
be found in the location whose address is the
sum of the contents of the program counter
and a 16-bit displacement in the instruction.

Base Address Mode. The data element can be
found in the location whose address is the sum
of a base address in a register and a
displacement in the instruction.

Base Index Mode. The data element can be
found in the location whose address is the sum
of a base address in a register and a displacement
in the instruction.

Chapter 5 defines and illustrates the eight
addressing modes.

these extended instructions in its instruction
stream, it will either trap to a software trap
handler to process the instruction or it will
perform the data transfer portion of the
instruction (leaving the data manipulation part
of the instruction to the EPU). Whether the
CPU traps or transfers data depends on the
setting of the EPA bit in the FCW.

2.12 Extended
Processing
Architecture
(Continued)

2.13
Exceptions

The underlying philosophy behind the EPA
feature is a view of the CPU as an instruction
processor-the CPU fetches instructions,
fetches data associated with the instruction,
performs the operations and stores the result.
Extending the number of operations performed
does not affect the instruction fetch and
address calculation portion of the CPU activi­
ty. The extended instructions exploit this

Three events can alter the normal execu­
tion of a 28000 program: hardware interrupts
that occur when a peripheral device needs ser­
vice, synchronous software traps that occur
when an error condition arises, and system
reset. Chapter 7 contains a detailed descrip­
tion of exceptions and how they are handled.
Interrupt requests and segmentation trap re­
quests are accepted after the completion of the
instruction execution during which they were
made. At the end of the instruction execution,
a spurious instruction fetch transaction is
usually performed before the interrupt
acknowledge sequence begins, but the Pro­
gram Counter is not affected by the spurious
fetch.

2.13.1 Reset. A system reset overrides all
other operating conditions. It puts the CPU in
a known state and then causes a new program
status to be fetched from a reserved area of
memory to reinitialize the Flag and Control
Word (FCW) and the Program Counter (PC).

2.13.2 Traps. Traps are synchronous events
that are usually triggered by specific instruc­
tions and recur each time the instruction is
executed with the same set of data and the
same process or state. The four kinds of traps
are:

Extended instruction attempted in non-EPA
mode. The current instruction is an EPU
instruction, but the system is not in EPA mode.
This trap allows system software to either
simulate instruction or abort the program.

Privileged instruction attempted in normal
mode. The current instruction is privileged
(I/O for example), but the CPU is in normal
mode.

System Call (SC) instruction. This instruction
provides a controlled access from normal-mode
to system-mode operation.

Segmentation violation (supplied by external
circuit). A segmentation violation, such as

19

feature-the CPU fetches the instruction and
performs any address calculation that may be
needed. It also generates the timing signals for
the memory access if data must be transferred
between memory and the extended processor.
But the actual data manipulation is handled by
the EPU. The Extended Processing Architec­
ture is explained more fully in Chapter 4.

using an offset larger than the defined length
of the segment, can be made to cause an
external memory management system to signal
a segmentation trap. This can occur only with
the segmented 28001.

2.13.3 Interrupts. Interrupts are asynchronous
events typically triggered by peripheral
devices needing attention. T~ three kinds of
interrupts associated with the three interrupt
lines of the CPU are:

Non-maskable interrupts (NMI). These inter­
rupts cannot be disabled and are usually
reserved for critical external events that
require immediate attention.

Vectored interrupts (VI). These interrupts
cause eight bits of the vector output by the
interrupting device to be used to select a par­
ticular interrupt service procedure to which
the program automatically branches.

Non-vectored interrupts (NVI). These inter­
rupts are maskable interrupts which are all
handled by the same interrupt procedure.

2.13.4 Trap and Interrupt Service Pro­
cedures. Interrupts and traps are handled
similarly by the 28000 CPU. The 28000 CPU
automatically acknowledges interrupts and
processes traps in system mode. In the case of
the segmented 28001, the CPU uses the
segmented mode regardless of its mode at the
time of interrupt or trap. The program status
information in effect just prior to the interrupt
or trap is pushed onto the system stack. An ad­
ditional word, which serves as an identifier for
the interrupt or trap, also is pushed onto the
system stack, where it can be accessed by the
interrupt or trap handler. The Program Status
registers are loaded with new status informa­
tion obtained from the Program Status Area of
memory. Then control is transferred to the ser­
vice procedure, whose address is now located
in the Program Counter. For details of inter­
rupt and trap handling, refer to Chapter 7.

.- 3

3.1 Intro­
duction

Programs and data may be located in the
main memory of the computer system or in
peripheral devices. In either case, the location
of the information must be specified by an
address of some sort before that information
can be accessed. A set of these addresses is
called an address space.

The 28000 supports two different types of
addresses and thus two categories of address
spaces:

• Memory addresses, which specify locations
in main memory.

• I/O addresses, which specify the ports
through which peripheral devices are
accessed.

Chapter 3
Address Spaces

The CPU generates addresses during four
types of operations:

• Instruction fetches, described in Chapter 4.

• Operand fetches and stores, described in
Chapter 5.

• Exception processing, described in
Chapter 7.

• Refreshes, desCribed in Chapter 8.

Timing information concerning addresses is
described in Chapter 9.

Figure 3-1. Address Spaces on the Z8001 and Z8002

• Data Spaces (status = 1000 or 1010), nor­
mal mode (N/S = 1) or system mode
(NiS = 0). These spaces may be used to
address the data that user or system pro­
grams operate on.

• Stack Spaces (status = 1001 or 1011), nor­
mal mode (N/S = 1) or system mode
(N/S = 0). These spaces can be used to
address the system and normal program
stacks.

• Standard I/O Space (status = 0010). This
space addresses all the I/O ports that are
used for 28000 peripherals.

• Special I/O Space (status = 0011). This
space addresses ports in CPU support chips
(such as the 28010 Memory Management
Unit).

3.2 Types of
Address
Spaces

Within the two general types of address
spaces (memory and I/O), it is possible to dis­
tinguish several subcategories. Figure 3.1
shows the address spaces that are available on
both the 28001 and the 28002.

The difference between the 28001 and the
28002 lies not in the number and type of
address spaces, but rather in the organization
and maximum size of each space. For the
2800 I, each of the six memory address spaces
contains 8M byte addresses grouped into 128
segments, for a total memory addressing capa­
bility of 48M bytes. For the 28002, each mem­
ory space is a homogeneous collection of 64K
byte addresses. In both the 28001 and the
28002, the I/O address spaces contain 64K port
addresses. When an address is used to access
data, the address spaces may be distinguished
by the state of the status lines (STo-ST3) (which
is determined by the way the address was
generated) and by the value of the Normal!
System line (NiS) (which is determined by the
state of the SIN bit in the FCW).

• Instruction Space (status = 1100 or 1101),
normal mode (NlS = 1) or system mode
(NlS = 0). These spaces typically address
memory that contains user programs (nor­
mal) or system programs (system).

MEMORY ADDRESS SPACES

SYSTEM MODE NORMAL MODE

INSTRUCTIONS INSTRUCTIONS

DATA DATA

STACK STACK

I/O ADDRESS SPACES

SYSTEM MODE

STANDARD I/O

SPECIAL I/O

3.3 I/O
Address
Spaces

All I/O addresses are represented by 16-bit
words. Each of the ports addressed is either
eight or 16 bits wide. Transfer to or from 16-bit
ports always involves word data and, for 8-bit
ports, byte data.

23

The address of a 16-bit port may be even or
odd for both address spaces. In Standard I/O
space, byte ports must have an odd address; in
Special I/O space, byte ports must have an
even address.

3.4 Memory
Address
Spaces

Each memory address space in the 28002, or
each segment in each memory address space
on the 28001, can be viewed as addressing a
string of 64K bytes numbered consecutively in
ascending order. The 8-bit byte is the basic
addressable eleraent in 28000 memory address
spaces. However, there are three other
addressable data elements:

• Bits, in either bytes or words.

• 16-bit words.

• 32-bit long words.

3.4.1 Addressable Data Elements. The nature
of the data element being addressed depends
on the instruction being executed. As Chapter
6 explains in detail, different assembler
mnemonics are used for addressing bytes,
words, and long words. Moreover, only certain
instructions can address bits.

A bit can be addressed by specifying a byte
or word address and the number of the bit
within the byte (0-7) or word (0-15). Bits are
numbered right-to-left, from the least to the

7 6 5 4 3 2 1 0

I I I I I I I

most significant. This is consistent with the
convention that bit n corresponds to position
2n in the conventional representation of binary
numbers (see Figure 3.2).

The address of a data type longer than one
byte (word or long word) is the same as the
address of the byte with the lowest memory
address within the word or long word (Figure
3.2). This is the leftmost, highest-order, or
most significant byte of the word or long word.

Word or long word addresses are always
even-numbered. Low bytes of words are stored
at odd-numbered memory locations and high
bytes at even-numbered locations. Byte
addresses can be either even- or odd­
numbered.

Certain memory locations are reserved for
system-reset handling. These are described
fully in Chapter 7. Except for these reserved
locations, there are no memory addresses
specifically designated for a particular
purpose.

BITS IN A BYTE

1514 13 121110 9 8 7 6 5 4 3 2 1 0

I I I
Address n

I , ,

I I I I I I I I I BITS IN A WORD

BYTE

WORD

Address n

I ~PP~R ~OR~IUP~ER ~YTE,

rd',... n + 2

Figure 3-2. Addressable Data Elements

Figure 3-3. Segmented and Non-Segmented
Address Formats

Segmented Memory Address
(Z80010nly)

15 14 8 7 0I0 ! SEGMENT R !0 0 0 0 0 0 0 0 I
~ : : : : ?FFSE1 : : : : : :

15 0

long word and thus can be stored in a long
word register (RRn) or a long word memory
element. There is a short encoding of
segmented addresses that appears in instruc­
tions and requires only 16 bits.

It is important to realize that even though
the 28001 can operate in nonsegmented mode
(Chapter 4), it always generates segmented
addresses. In non-segmented mode the segment
number is supplied by the program counter seg­
ment number.

3.4.2 Segmented and Non-Segmented
Addresses. The two versions of the 28000 CPU
generate two kinds of addresses with different
lengths. The 28002 generates a 16-bit address
specifying one of 64K bytes. The 28001 gener­
ates a 23-bit segmented address. A segmented
address consists of a 7-bit segment number,
which specifies one of 128 segments, and a
16-bit offset, which specifies one of up to 64K
bytes in the segment. Each segment is an inde­
pendent collection of bytes; thus, instructions
and multiple byte data elements cannot cross
segment boundaries. Some of the advantages
of address segmentation are outlined in Sec­
tion 3.4.3.

Figure 3.3 shows the format of segmented
and nonsegmented addresses. Nonsegmented
addresses are 16 bits long and thus can be
stored in word registers (Rn) or in memory as
word-length addressable elements. The 23-bit
segmented addresses are embedded in a 32-bit

24

Non-segmented Memory Address
(Z8002 Only)

ADDRESS
! I , , , ! , I

3.4 Memory
Address
Spaces
(Continued)

3.4.3 Segmentation and Memory Manage­
ment. Addresses manipulated by the pro­
grammer/ used by instructions, and output by
the 28001 are called "logical addresses." An
external memory-management circuit can
translate logical addresses into physical
(actual) memory addresses and perform certain
checks to insure data and programs are prop­
erlyaccessed.

The 28010 Memory Management Unit (MMU)
performs this function for the segmented
addresses produced by the 28001 CPU. A
single MMU holds 64 descriptors. Each
descriptor tells where in physical memory the
segment lies, how long the segment is, and
what kind of accesses can be made to the
segment. The MMU uses these descriptors to
translate logical segment numbers and offsets
into 24-bit physical addresses (as shown in
Figure 3.4). At the same time, the MMU
checks for errors such as writing into a read­
only segment or a system segment being
accessed by a nonsystem program. MMUs are
designed to be combined so that more than
64 descriptors can be supported at once. The
CPU does not require MMUs; the segment
number can be used directly as part of a
physical address.

Some of the benefits of the memory manage­
ment features provided by the MMU are:

• Provision for flexible and efficient allocation
of physical memory resources during the
execution of programs.

• Hardware stack overflow protection.

• Support for multiple, independently execut­
ing programs that can share access to com­
mon code and data.

• Protection from unauthorized or uninten­
tional access to data or programs.

• Detection of obviously incorrect use of
memory by an executing program.

• Separation of users from system functions.

Segmentation in the 28001 helps support
memory management in two ways:

• By allowing part of an address (the segment
number) to be output by the CPU early in a
memory cycle. This keeps access to the ad­
dress descriptor in the MMU from adding to
the basic access time of the memory.

• By providing a standard, variable-sized unit
of memory for the protection, sharing, and
movement of data.

In addition, segmentation is a natural
model for the support of modular programs
and data in a multi-programming environment.
It efficiently supports re-entrant programs by
providing data relocation for different tasks
using common code.

More information about the MMU and
memory management can be found in An
Introduction to the Z8010 MMU Memory
Management Unit and in the Z8010 MMU
Manual and the Z8015 Paged MMU User's
Manual.

LOGICAL
(virtual)

ADDRESSING
SPACE r--l

Figure 3-4. Segmented Address Translation

25

PHYSICAL
MEMORY

t
Segments of physical
memory can be loaded
from peripheral devices
through the CPU or DMA.

.- 4

4.1 Intro­
duction

This chapter gives a fundamental description
of the operating states of the Z8000 CPU and
the process of instruction execution. The
details of instruction execution are described
in Chapters 5 and 6. Other detailed aspects of

Chapter 4
CPU Operation

Z8000 operation are given in Chapter 7
(Exceptions) and Chapter 8 (Refresh). Chapter
9 describes CPU operations as they are mani­
fest on the external pins of the CPU.

Figure 4-1. Operating States and Transistions

The Z8000 CPU has three operating states:
Running state, Stop/Refresh state, and Bus­
Disconnect state. Running state is the usual
state of the processor: the CPU is executing
instructions or handling exceptions. Stop/
Refresh state is entered when the STOP line is
asserted or the refresh counter indicates that a
periodic refresh should be done. In this state,
memory refresh transactions are generated
continually (see Chapter 8). Bus-Disconnect
state is entered when the CPU acknowledges a
bus request and gives up control of the system
bus. Figure 4.1 shows the three states and the
conditions that cause state transitions.

4.2.1 Running State. While the CPU is in
Running state, it is either executing instruc­
tions (as described in Section 4.3) or handling
exceptions (as described in Chapter 7). The
CPU is normally in Running state, but will
leave this state in response to one of three con­
ditions:

• The refresh mechanism indicates that a
periodic refresh needs to be done, in which
case the CPU temporarily enters Stop/
Refresh state.

4.2 Operating
States

BUSREQ RELEASED.

STOP INACTIVE

BUSREQ ASSERTED.
AND ACKNOWLEDGED ON

ii'iJSACi<

STOP RELEASED. OR
PERIODIC REFRESH
COMPLETED

STOP ASSERTED. OR
PERIODIC REFRESH
REQUESTED

BUSREQ RELEASED.

STOP ACTIVE

• An external stop request pushes the CPU
into Stopped state.

• An external bus request pushes the CPU
into Bus-Disconnect state.

4.2.2 Stop/Refresh State. While the CPU is in
Stop/Refresh state, it generates a continuous
stream of refresh cycles (as discussed in Chap­
ter 8) and does not perform any other func­
tions. This state provides for the generation of
memory refreshes by the CPU and allows
external devices to suspend CPU operation.
This feature can be used to force single-step
operation of the processor or to synchronize
the CPU with an Extended Processing Unit (as
described in Section 4.4).

The CPU enters Stop/Refresh state when the
refresh mechanism needs to do a refresh or
when the stop line is activated. It leaves Stop/
Refresh state when neither of these conditions
holds or when a bus request causes the CPU to
enter Bus-Disconnect state.

4.2.3 Bus-Disconnect State. While the CPU is
in Bus-Disconnect state, it does nothing. It
enters Bus-Disconnect state from either Run­
ning state or Stop/Refresh state when a bus
request has been received on BUSREQ and
acknowledged on BUSACK (as described in
Chapter 9). While in this state, it disconnects
itself from the bus by 3-stating its output. It
leaves Bus-Disconnect state when the external
bus request has been released. Note that Bus­
Disconnect state is highesf in priority in that
the presence of a bus request will force the
CPU into this state, regardless of any con­
ditions indicating that a different state should
be entered.

4.2.4 Effect of Reset. Activation of the CPU's
RESET line puts the CPU in a nonoperational
state within five clock cycles, regardless of its
previous state or the states of its other inputs.
The CPU will remain in this state until RESET
is deactivated. When this occurs, the program
enters one of the three operating states
described above, depending on the state of
BUSREQ and STOP inputs. Reset is more fully
described in Chapters 7 and 9.

29

4.3 Instruction While the CPU is in Running state and exe­
Execution cuting instructions, it is controlled by the Pro­

gram Status registers (Figure 4.2). The Pro­
gram Counter gives the address from which
instructions are fetched, the flags control
branching (as described in Chapter 6), and
the control bits determine the mode in which
the CPU operates and the interrupts that are
masked (see Chapter 7).

Instruction execution consists of the repeated
application of two steps:

• Fetch one or more words comprising a
single instruction from the program memory
address space at the address specified by
the Program Counter (PC).

• Perform the operation specified by the
instruction and update the Program Counter
and flags in the Program Status registers.

The operation performed by an instruction
and the way the flags are updated depends on
the particular instruction being executed and
is described in Chapter 6. For most instruc­
tions, the PC value is updated to point to the
word immediately following the last word of the
instruction. The effect of this is that instruc­
tions are fetched sequentially from memory.
Exceptions to this are Branch, Call, Interrupt
Return, Load Program Status, System Call, Halt,
Decrement and Jump if Non-Zero, and Return in­
structions, which cause the PC to be set to a value
generated by the instruction. This causes a transfer
of control with execution continuing at the new
address in PC. The exact operation of these in­
structions is described in Chapter 6.

The 28000 CPU is able to overlap the fetch­
mg of one instructIon with the operatIon of the
previous instruction. This facility, called
Instruction Look-Ahead, is illustrated in Figure
4.3. This shows the execution of a series of.. .
I 0 • 13 D 0 0 • 0 0 0 0 0 0 0 • 0 II........WORD D

, I , , I I ! I ! ! I , ! I !

1-1"* 1·..1¥E 1....1• ! • ! • I c I z I s IPN I D IHI· ! • Il~:

memory-to-register instructions, such as a
value in memory being added to the value in a
general-purpose register. Part of each instruc­
tion is fetched while the previous instruction
execution is being completed. This mechanism
provides faster execution speed than the
typical alternative of fetching each instruction
only after the prior instruction has completed
execution.

After executing an instruction and in some
cases (explained in Chapters 6 and 7) during
an instruction's execution, the CPU checks to
see if there are any traps or interrupts pending
and not masked. If so, it temporarily suspends
instruction execution and begins a standard
exception-handling sequence. This sequence,
which is described fully in Chapter 7, causes
the value of the Program Status registers to be
saved and a new value loaded. Instruction exe­
cution then continues with a new PC value and
Flag and Control Word value. The effect is to
switch the execution of the CPU from one pro­
gram to another.

4.3.1 Running-State Modes. While the CPU is
executing instructions, its mode will be con­
trolled by three control bits in the FCW: the
System/Normal Mode bit (SiN), the Segmenta­
tion Mode bit (SEG), and the EPA Mode bit.

4.3.2 Segmented and Nonsegmented
Modes. The segmentation mode of the CPU
(segmented or nonsegmented) determines the
size and format of addresses that are directly
manipulated by programs. In segmented mode
(SEG = 1), programs manipulate 23-bit seg­
mented addresses; in nonsegmented mode
(SEG = 0), programs generate 16-bit nonseg­
mented addresses. There are also the follOWing
differences in the address portions of instruc­
tions, which are due to the difference in
address size:
15 •

10 Ism IEP·IV1EINV'EI 0 IO! 0 I c I z Is IpNI D IHID! 0 I}~~~\~~

I ~DDR'SS I lPROORAM
L......L.'......I.---I.1---l1--JI--I...'--l..'......L.'......I.I---I.'---l--JI--l.-l.-.L.I.....J COUNTEFI

1·1
I I

j". I

28001 Program Slat us R<ocglS'ers

SEQIIBITNtJIIBEA
, ! I

UPPER OFFSET
I I I

ZSOOI Program SI"tu, Are" PUInter

j'

28002 Program S:atus RcgJs~(?rs

UPPER POINTER
I ! I ! !

28002 Frogr"m Sratus Area Pomter

RATE
! I I I I ! I

ROW
! I j'R" , RATE

! ! ! ! !
ROW
I !

28001 Refresh Counter 28002 Retresh CO'lrl'er

Figure .·2. Program StatWl Reglsten

30

4.3 Instruction
Execution
(Continued)

• Indirect and Base Registers are 32-bit
registers in segmented mode and 16-bit
registers in nonsegmented mode.

• Addresses embedded in instructions are
always 16-bits in nonsegmented mode. They
consist of a 7-bit segment number and either
an 8-bit or 16-bit offset in segmented mode.

Segmented mode is available only on the
28001 CPU; on the 28002, the segment bit is
always forced to zero, indicating nonseg­
mented mode. Because the 28001 supports
segmented and nonsegmented modes, it is
possible to run programs written for the 28002
on the 28001 without alteration. The reverse is
not possible. The 28001 CPU always generates
segmented addresses, even when operating in
nonsegmented mode. When a memory access
is made in nonsegmented mode, the offset of
the segmented address is the 16-bit address
generated by the program, and the segment
number is the value of the segment number
field of the Program Counter.

4.3.3 Normal and System Modes. The opera­
tion mode of the CPU (system mode or normal
mode) determines which instructions can be
executed and which Stack Pointer register
is used.

In system mode (siN = 1), all instructions
can be executed. While in normal mode, cer­
tain privileged instructions that alter sensitive
parts of the machine state (such as I/O opera­
tions or changes to control registers) cannot be
executed.

The second distinction between system and
normal mode is access to the system or normal

Stack Pointer. As shown in Figure 4.4, there
are two Stack Pointer registers (Register 15 in the
28002 and Registers 14 and 15 in the 28001):
one for normal mode and one for system mode.
When in normal mode, a reference to the Stack
Pointer register by an instruction will access the
normal Stack Pointer. When in system mode, an
access to the Stack Pointer register will reference
the system Stack Pointer, unless the 28001 is run­
ning in nonsegmented system mode, in which case
a reference to R14 will access the normal mode
R14. This is summarized in Table 4.l.

In normal mode, the system Stack Pointer is
not accessible; in system mode the normal
Stack Pointer is accessed by using a special
Load Control Register instruction (described in
Chapter 6).

The CPU switches modes whenever the Pro­
gram Status Control bits change. This can
happen when a privileged load control instruc­
tion is executed or when an exception (inter­
rupt, trap, or reset) occurs. There is a special in­
struction (System Call) whose sole purpose is
to generate a special trap and thus provide a con­
trolled transition from normal to system mode.

The distinction between normal/system mode
allows the construction of a protected operat­
ing system. This is a program that runs in
system mode and controls the system's
resources, managing the execution of one or
more application programs which run in nor­
mal mode. Normal and system modes, along
with Memory Protection, provide the basis for
protecting the operating system from malfunc­
tions of application programs.

Figure 4-3. Instruction Look-Ahead

Nonsegmented

Normal Mode

SegmentedNonsegmented

System Mode

Segmented

Register
Referenced by----------------------­

Instruction

Rl4
Rl5
RRl4

System Rl4
System Rl5
System Rl4
System Rl5

Normal Rl4
System Rl5
Normal Rl4
System Rl5

Normal Rl4
Normal Rl5
Normal Rl4
Normal Rl5

Normal Rl4
Normal Rl5
Normal Rl4
Normal Rl5

Note: 28002 always runs In nonsegmented mode.

Table 4.1 Registers Accessed by References to R14 and RIS.

31

4.4 Extended
Instructions

The 28000 CPU supports seven types
of extended instructions, which can be exe­
cuted cooperatively by the CPU and an exter­
nal Extended Processing Unit. The execution
of these instructions is controlled by the EPA
control bit in the FCW.

When the EPA bit is zero, it indicates that
there is no Extended Processing Unit con­
nected to the CPU and causes the CPU to trap
(as explained in Chapter 7) when it encounters
an extended instruction. This allows the opera­
tion of the extended instruction to be simulated
by software running on the CPU.

If the EPA bit is set, it indicates that an
Extended Processing Unit is connected to the
CPU in order to process the operation encoded
in the extended instruction. The CPU will fetch
the extended instruction and perform any
address calculation required by that instruc-

tion. If the instruction specifies the transfer of
data, the CPU will generate the timing signals
for this transfer. The CPU will fetch and begin
executing the next instruction in its instruction
stream. The Extended Processing Unit is
expected to monitor the CPU's activity, partici­
pate in extended instruction data transfers
initiated by the CPU, and execute the
extended instruction. While the Extended Pro­
cessing Unit (EPU) is executing the instruction,
the CPU can be fetching and executing futher in­
structions. If the CPU fetches another extended
instruction before the Extended Processing Unit is
finished executing a previous instruction, the
STOP line may be used by the EPU to delay the
CPU until the previous instruction is complete
This process is described more fully in Chapters
6 and 9.

RROI
Rol7 0:7 01
R1115

RR'I
R'\
R31

AA·I
A·I

I·"
A51

AA':
A61
A71

AA·I
RailS 01 IAOB

GENERAL
PURPOSE

A'I
REGISTERS

IA101
I

RRlO IA111

I A121

lAO"

RR12 1 R13!

AR"I

R14 SYSTEM STACK POINTER (SEG, NO.)

A14 NORMAL STACK POINTER (SEQ. NO.)

IR15 SYSTEM STA.CK POINTER {OFFSETl

I Q1!! NORMAL STACK POINTEH IOFFSETl I

Figure 4-4. General-Purpose Registers

32

5.---'-11I _17': , _~U =_=
17':'~41W
7;1~,...

Zilog

5.1 Intro­
duction

This chapter describes the eight addressing
modes used by instructions to access data in
memory or CPU registers. Separate sets of
examples for the nonsegmented and segmented
modes of operation are given at the end of the
chapter.

An instruction is a consecutive list of one or
more words aligned at even-numbered byte
addresses in memory. Most instructions have
operands in addition to an operation code

Chapter 5
Addressing Modes

(opcode). These operands may reside in CPU
registers or memory locations. The modes by
which references are made to operands are
called "addressing modes." Figure 5.1 illus­
trates these modes. Not all instructions can use
all addressing modes; some instructions can
use only a few, and some instructions use none
at all. In Figure 5.1, the term "operand" refers
to the data to be operated upon.

Addressing Mode Operand Addressing

In the Instruction In a Register

R

In Memory

Operand Value

1M

Register

Immediate

IREGISTER ADDRESS~ The content of the
register

In the instruction

*IR
Indirect

Register

DA

Direct
Address

*X

Index

RA

Relative
Address

*BA
Base

Address

*BX
Base

Index

IREGISTER ADDRESS ~I-------·I OPERAND I

~f--------------".~

The content of the location
whose address is in the
register

The content of the location
whose address is in the
instruction

The content of the loca­
tion whose address is the
address in the instruction
plus the content of the
register.

The content of the location
whose address is the
content of the program
counter. offset by the
displacement in the
instruction

The content of the location
whose address is the
address in the register.
offset by the displacement
in the instruction

The content of the loca­
tion whose address is
the address in a register
plus the index value in
another register.

·Do not use RO or RRO as indirect. index. or base registers.

Figure 5-1. Addressing Modes

35

8 7 0

address for an effective address calculation.
The Program Counter normally is used only to
keep track of the next instruction to be exe­
cuted; whenever an instruction is fetched from
memory, the PC is incremented to point to the
next instruction. For addressing purposes,
however, the updated PC serves as a base for
referencing an operand relative to the location
of an instruction. Operands speCified by rela­
tive addressing reside in the program address
space if the memory system distinguishes
between program and data or stack address
spaces.

Two of the addressing modes, Direct
Address and Index, involve an I/O or memory
address as part of the instruction. I/O
addresses are always 16 bits long, as are non­
segmented memory addresses (28002), so these
addresses occupy one word in the instruction.
Segmented addresses generated by the 28001
are 23 bits long. Within an instruction, a seg­
mented address may occupy either two words
(l6-bit long offset) or one word (8-bit short
offset).

As Figure 5.2 illustrates, bit 7 of the seg­
ment number byte distinguishes the two for­
mats. When this bit is set, the long-offset
representation is implied. When the bit is
cleared, the short-offset address representation
is implied. For a short-offset address, the
23-bit segmented address is reduced to 16 bits
by omitting the eight most significant bits of
the offset, which are assumed to be zero.

short otfset
! ! ! !

8 7

long offset
, ! I

Figure 5-2. Segmented Memory Address
Within Instruction.

NOTE: Shaded area is reserved.

15

15

I !

5.2 Use of The 16 general-purpose CPU registers can,
CPU Registers with the exceptions noted below, be used in

any of the following ways:

• As accumulators, where the data to be
manipulated resides within the register.

• As pointers, where the value in the register
is the memory address of the operand,
rather than the operand itself. In string and
stack instructions, the pointers may be auto­
matically stepped either forward or back­
ward through memory locations.

• As index or base registers, where the con­
tents of the register and the word(s) follow­
ing the instruction are combined to produce
the address of the operand. This allows effi­
cient access to a variety of data structures.

There are two exceptions to the above uses
of general-purpose registers:

• Register RO (or the double register RRO in
segmented mode) cannot be used as an
indirect register, base register, index regis­
ter, or software stack pointer.

• Register R15' (or the double register RRI4'
in the Z8001) is used in acknowledging
interrupts and therefore can never be used
as an accumulator in system-mode opera­
tion. The system-mode registers, Rl4' and
R15', are automatically accessed when R14,
R15, or RR14 are referenced by instructions
executed in system mode.

In addition to the general-purpose use of
28000 registers, the folloWing registers are
used for special purposes:

• Register R15 (or the double register RR 14 in
the 2800 I) is used as a stack pointer for
subroutine calls and returns.

• The byte register RH 1 is used in the
translate instructions (TRDB, TRDRB,
TRIB, TRIRB) and the translate and
test instructions (TRTDB, TRTDRB,
TRTIB, TRTIRB).

• Register RO is used in extended instructions.

In Relative Address (RA) mode, the Program
Counter (PC) is used instead of a general­
purpose CPU register to supply the base

5.3 Addressing The following pages contain descriptions of
Mode the addressing modes of the 28000. Each
Descriptions description:

• Explains how the operand address is
calculated,

• Indicates which address space (Register,
I/O, Special I/O, Data Memory, Stack
Memory, or Program Memory) the operand
is located in,

• Shows the assembly language format used to
specify the addressing mode, and

• Works through an example.

The descriptions are grouped into two sec­
tions-one for nonsegmented CPUs, the other
for segmented CPUs. Users of the 28002 need
refer to the first section only; users of the
28001 in nonsegmented mode should also refer
to the first section, while users of 28001 in
segmented mode should refer to the second
section. In the examples, hexadecimal notation
is used for memory addresses and the contents
of registers and memory locations. The %
symbol precedes hexadecimal numbers in
assembly language text.

36

5.4 Descrip- In this section, the addressing modes of both
lions and the 28002 and the nonsegmented mode 2800 I
Examples and 28003 are described.
(Z8002 and 5.4.1 Register (R). In the Register Addressing
Z8001 Nonseg- mode the instruction processes data taken
mented Mode) from a specified general-purpose register.

Storing data in a register allows shorter
instructions and faster execution than occur
with instructions that access memory.

INSTRUCTION REGISTER

IOPERATION I REGISTER ~I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

After Execution

R2 155891

5.4.3 Indirect Register (lR). In the Indirect
Register Addressing mode, the data processed
is not the value in the speCified register.
Instead, the register holds the address of
the data.

110 or
INSTRUCTION REGISTER MEMORY

IOPERATION I REGISTER~

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE REGISTER.

A single word register is used to hold the
address. Any general-purpose word register
can be used except RO.

Depending on the instruction, the operand
specified by IR mode will be located in either
Standard I/O address space (I/O instructions),
Special I/O address space (Special I/O in­
structions), or data or stack memory address
spaces . For non -I/O references, the operand
will be in stack memory space if the stack
pointer (R15) is used as the indirect register;
otherwise, the operand will be in data memory
space.

The Indirect Register mode may save space
and reduce execution time when consecutive
locations are referenced. This mode can also
be used to simulate more complex addressing
modes, since addresses can be computed
before the data is accessed.

Assembler language format (see also
Chapter 6):
@Rn

Example of IR mode:

LD R2,@R5 !load R2 with the!
!data addressed by the!
!contents of R5!

The operand is always in the register
address space. The register length (byte,
word, register pair, or register quadruple) is
specified by the instruction opcode.

Assembler language format:

RHn, RLn Byte register
Rn Word register
RRn Double-word register
RQn Quadruple-word register

Example of R mode:

LD R2, R3 !load the contents of!
!R3 into R2!

Before Execution

R2iA6B81
R3 9A20

After Execution

R219A20 I
R3 9A20

5.4.2 Immediate (1M). The Immediate Address­
ing mode is the only mode that does not indi­
cate a register or memory address as the
source operand. The data processed by the
instruction is in the instruction.

Before Execution Data Memory

After Execution

R2 OBOE

R3 0005

R4 2000

R5 170C

INSTRUCTION

OPERATION

WORD(S) OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is
often used to initialize registers. The 28000 is
optimized for this function, providing several
short immediate instructions to reduce the
length of programs.

Assembler language format (see also
Chapter 6):

#data

Example of 1M mode:

LDB RH2 #%55 !load hex 55 into RH2!

Before Execution

R2 167891

37

R2

R3

R4

R5

030F

0005

2000

170C

170A

170C

170E

A023

OBOE

lODO

INSTRUCTION

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE INSTRUCTION.

5.4.4 Direct Address (DA). In the Direct
Addressing mode, the data processed is found
at the address speCified in the instruction.

2516 F3C2

2518 3DOE
251A 7ADA

5.4.6 Relative Address (RA). In the Relative
Addressing mode, the data processed is found
at an address relative to the current instruc­
tion. The instruction specifies a two's comple­
ment displacement which is combined with the

'-'~ ~.L __ ..l_ 1 LL_ ..l ..l _-l...l _

Assembler language format (see also
Chapter 6):

address (Rn)

Example of X mode:

LD R4,%231A(R3) !load into R4 the con-!
!tents of the memory!
!location whose!
!address is 231A +!
!the value in R3!

Data Memory

R3101FE I
R4 203A

Before Execution

Address Calculation

231A
+OIFE

2518

After Execution

R3io1FE I
R4 3DOE

R2 167891

Depending upon the instruction, the oper­
and speCified by DA mode will be either in
Standard I/O space (I/O instructions), in
Special I/O space (Special I/O instructions), or
in data memory space.

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed in program memory.
(Actually, the address serves as an immediate
value that is loaded into the Program Counter.)

Assembler language format (see also
Chapter 6):

address either memory, I/O, or
Special I/O

Example of DA mode:

LDB RH2,%5E23 !load RH2 with the!
!data in address!
!5E23!

Before Execution

5.4 Descrip­
tions and
Examples
(Z8002 and
Z8001 Nonseg­
mented Mode)
(Continued)

Assembler language format (see also
Chapter 6):

address

!load into R2 the con-!
!tents of the memory!
!location whose!
!address is the current!
!program counter!
! + hex 6!

Program Memory5.4 Descrip­
tions and
Examples
(Z8002 and
Z8001 Nonseg- Example of RA mode: (Note that the symbol
mented Mode) "$" is used for the value of the current pro-
(Continued) gram counter.)

LDR R2,$+ %6

Because the program counter will be advanced
to point to the next instruction when the
address calculation is performed, the constant
that occurs in the instruction will actually
be +2.

Before Execution

R21AOFOI
PC 0202

Address Calculation

0206
+ 2

0208

After Execution

R21FFFEI
PC 0206

0202

0204

0206

0208

3102 } Instruction
0002
E801

FFFE

5.4.7 Base Address (BA). The Base Address­
ing mode is similar to Index mode in that a
base and offset are combined to produce the
effective address. In Base Addressing, how­
ever, a register contains the base address, and
the displacement is expressed as a 16-bit value
in the instruction. The two are added and the
resulting address points to the data to be pro­
cessed. This addressing mode may be used
only with the Load instructions. Base
Addressing mode, as a complement to Index

mode, allows random access to tables or other
data structures where the displacement of an
element within the structure is known, but the
base of the particular structure must be com­
puted by the program.

Any word register can be used for the base
address except RD.

An operand specified by BA mode will be in
stack memory space if the base register is the
stack pointer (R15) and in data memory space
otherwise.

THE OPEHAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION. OFFSET BY THE CONTENTS OF THE REGISTER.

Data Memory

Assembler language format (see also
Chapter 6):

Rn (#disp)

Example of BA mode:

LDL R5(#%18),RR2 !load the long word!
lin RR2 into the!
!memory location!
!whose address is the!
!value in R5 + hex!
!18!

Before Execution Data Memory

RR2 R2 OAOO

R3 1500 20CO OABE

R4 3100 20C2 F50D

R5 20AA 20C4 BADE

20C6 BODl

39

Address Calculation

20AA
+ 18

20C2
After Execution

RR2 R2 OAOO

R3 1500
R4 3100
R5 20AA

20CO

20C2
20C4

20C6

OABE

OAOO

1500
BODI

5.4 Descrip­
tions and
Examples
(Z8002 and
Z8001 Nonseg­
mented Mode)
(Continued)

5.4.8 Base Index (BX). The Base Index
addressing mode is an extension of the Base
Addressing mode and may be used only with
the Load instructions. In this case, both the
base address and index (displacement) are
held in registers. This mode allows access to
memory locations whose physical addresses
are computed at runtime and are not fully
known at assembly time.

Any word register can be used for either the
base address or the index except RD.

An operand specified by BX mode will be in
stack memory space if the base register is the
stack pointer (RI5) and in data memory
otherwise.

Assembler language format (see also
Chapter 6):

Rn (Rm)

Example of BX mode:

LD R2,R5(R3) !load into R2 the!
!value whose address!
lis the value in!
!R5 + the value in R3!

Before Execution

R2 IF3A

R3 FFFE

R4 0300

R5 1502

Address Calculation

1502
+FFFE

1500

After Execution

R2 BODE

R3 FFFE

R4 0300

R5 1502

Data Memory

14FE OlGl

1500 BODE

1502 F732

REGISTER

L--------11 DISPLACEMENT~

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF REGISTER 1 OFFSET BY THE
DISPLACEMENT IN REGISTER 2.

Byte register
Word register
Double-word register
Quadruple-word
register

5.5 Descrip­
tions and
Examples
(Segmented
Z8001)

In this section, «nn» will often be used
to refer to segment number nn.
5.5.1 Register (R). In the Register Addressing
mode, the instruction processes data taken
from a specified general purpose register.Stor
ing data in a register allows shorter instruc­
tions and faster execution than occurs with
instructions that access memory.

INSTRUCTION REGISTER

IOPERATION I REGISTER~

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER

The operand is always in the register
address space. The register length (byte,
word, register pair, or register quadruple) is
speCified by the instruction opcode.

Assembler language formats (see
also Chapter 6):

RHn, RLn
Rn
RRn
RQn

Example of R mode:

LDL RR2,RR4 !load the contents!
!of RR4 into RR2!

Before Execution

RR2 R2 A6B8

R3 9A20

RR4 R4 38A6

R5 745E

After Execution

RR2 R2 38A6

R3 745E

RR4 R4 38A6

R5 745E

5.5.2 Immediate (1M): The Immediate Address­
ing mode is the only mode that does not indi­
cate a register or memory address as the loca­
tion of the source operand. The data processed
by the instruction is in the instruction.

INSTRUCTION

OPERATION

WORD(S) OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION

A023

OBOE

10D3

Execution sends the

data "23" to the I/O

device addressed by
"0011."

~20~170A

170C

170E

030F

0005

2000

170C

R2

R3

R4

R5

RR2 R2 OBOE

R3 0005

RR4 R4 2000

R5 170C

RR2

RR4

Example of memory access using IR mode:

LD R2,@RR4 !load into R2 the!
!value in the memory!
!location addressed!
!by the contents of!
JRR4J

Data Memory

After Execution

Example of I/O using IR mode:
OUTB @Rl,RLO

Before Execution

RO I0A231
Rl 0011

Before Execution

5.5.3 Indirect Register (IR). In the Indirect
Register Addressing mode, the data processed
is not the value in the speCified register.
Instead, the register holds the address of
the data.

R2 167891
After Execution

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is
often used to initialize registers. The Z8000 is
optimized for this function, providing several
short immediate instructions to reduce the
length of programs.

Assembler language format (see also
Chapter 6):

#data

Example of 1M mode:

LDB RH2,#%55 !load hex 55 into RH2!

Before Execution

110 or
INSTRUCTION REGISTER MEMORY

IOPERATION I REGISTER~

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE REGISTER.

R2 155891

5.5 Descrip­
tions and
Examples
(Segmented
Z8001)
(Continued)

Depending upon the instruction, the oper­
and specified by IR mode will be located in
either I/O address space (I/O instructions).
Special I/O address space (Special I/O
instructions), or data or stack memory address
spaces. For non-I/O references, the operand
will be in stack memory space if the stack
pointer (RR 14) is used as the indirect register,
otherwise the operand will be in data memory
space.

A 16-bit register is used to hold an I/O or
Special I/O address; a register pair is used to
hold a memory address. Any general-purpose
register or register pair may be used except RO
or RRO.

The Indirect Register mode may save space
and reduce execution time when consecutive
locations are referenced. This mode can also
be used to simulate more complex addressing
modes, since addresses can be computed
before the data is accessed.

Assembler language formats (see also
Chapter 6):

@RRn

Contains I/O or
Special I/O address.
Contains memory
address.

5.5.4 Direct Address (DA). In the Direct
Addressing mode, the data processed is found
at the address speCified in the instruction.

INSTRUCTION
1/0 or

MEMORY

I OPERAND I
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS IN
THE INSTRUCTION.

Depending upon the instruction, the oper­
and speCified by the Direct Address (DA)
mode will be either in Standard I/O address
space (Standard I/O instructions), Special I/O
address space (Special I/O instructions), or in
data memory space. I/O addresses are one
word long; memory addresses can be either
one or two words long, depending on whether
the long or short format is used.

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Program Counter.)

41

Example of DA mode:

LDB RH2, 1« 15» %23 j!load RH2 with the!
!value in memory!
!segment 15, dis-!
!placement 23 (hex)!

5.5 Descrip­
tions and
Examples
(Segmented
Z8001)
(Continued)

Assembler language format (see also
Chapter 6):

address either memory, I/O, or
Special I/O where dou­
ble angle brackets
"«" and "»"
enclose the segment
number, and vertical
lines "I" and "I"
enclose short-form
memory addresses.

Before Execution

R2 167891

After Execution

Data Memory

«15» 00221 o;rn; I

0024 0304

R2 106891

5.5.5 Index (X). In the Index Addressing
mode, the instruction processes data located at
an indexed address in memory. The indexed
address is computed by adding the "index"
contained in a word register, to an address
speCified in the instruction also speCified by
the instruction.

The offset of the operand address is com­
puted by adding the 16-bit index value to the
8 or 16-bit offset portion of the address in the

instruction. The segment number of the oper­
and address comes directly from the instruc­
tion. (Any overflow is ignored-it neither sets
the Overflow flag nor increments the segment
number.) Indexed addressing allows random
access to tables or other complex data struc­
tures where the address of the base of the table
is known, but the particular element index
must be computed by the program.

WORDlS)_---_....
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDl'IESS IS THE
ADDRESS IN THE INSTRUCTION. OFFSET BY THE CONTENTS OF THE REGISTER.

«5» %231A
+ OIFE

«5» %2518

5.5.6 Relative Address (RA). In the Relative
Addressing mode, the data processed is found
at an address relative to the current instruc­
tion. The instruction specifies a two's comple­
ment displacement which is added to the offset
of the Program Counter to form the target
address. The Program Counter setting used is
the address of the instruction following the
currently executing instruction. (The assem­
bler will take this into account in calculating
the constant that is assembled into the
instruction.)

Address Calculation

After Execution

R31 OIFE I
R4 3DOE

F3C2
3DOE
7ADA

«5» 2516
2518
251A

Any word register can be used as the index
register except RD. The address in th.; instruc­
tion can be one or two words, depending on
whether a long or short offset is used in the
address.

Operands speCified by X mode are always in
the data memory address space.

Assembler language format:

address(Rn)

Example of X mode:

LD R4, «5» %231A(R3) !load into R4 the!
!contents of the!
!memory location!
!whose address is!
!segment 5,!
!displacement!
!231A + the!
!value in R3!

Data MemoryBefore Execution

R3j OIFE I
R4 203A

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION.

42

5.5 Descrip­
tions and
Examples
(Segmented
Z8001)
(Continued)

An operand specified by RA mode is always
in the program memory address space.

As with the Direct Addressing mode, the
Relative Addressing mode is also used by cer­
tain program control instructions to specify the
address of the next instruction to be executed.
For JR, the result of the addition of the Pro­
gram Counter offset value and the displace­
ment is loaded into the Program Counter; for
DJNZ or CALR instructions; the displacement
is then subtracted from the PC offset. Relative
addressing allows short references forward or
backward from the current Program Counter
value and is used only for such instructions as
Jumps and Calls and special loads (LDR). Note
that because the segment number is unchang­
ed relative addresses are located in the same
segment as the instruction.

5.5.7 Base Address (BA). The Base
Addressing mode is similar to Index mode in
that a base and displacement are combined to
produce the effective address. In Base
Addressing, a register pair contains the 23-bit
segmented base address and the displacement
is expressed as a 16-bit value in the instruc­
tion. The displacement is added to the offset of
the base address, and the resulting address
points to the data to be processed. (The seg­
ment number is not changed.) This addressing
mode may be used only with the Load instruc­
tions. Base Addressing mode, as a complement
to Index mode, allows random access to '
records or other data structures where the
displacement of an element within the struc­
ture is known, but the base of the particular
structure must be computed by the program.

Assembler language format (see also
Chapter 6):

address

Example of RA mode:

LDR R2,$ + 6 !load into R2 the con-J
!tents of the memory!
!location whose!
!address is the!
!current program!
!counter + 6!

Because the program counter will be advanced
to point to the next instruction when the
address calculation is performed, the constant
that occurs in the instruction will actually
be +2.

Before Execution

Address Calculation

« 13»0206
+ 2
« 13»020S

Any double-word register can be used for
the base address except RRO. The Base
Address mode allows access to locations
whose segment numbers are not known at
assembly time.

An operand specified by BA mode will be in
stack memory space if the base register is the
stack pointer (RR14) and in data memory space
otherwise.

If the segment number is known when the
program is assembled (or loaded, for example,
if the loader can resolve symbolic segment
numbers), the Index Addressing mode may
be used to simulate the Based Addressing
mode. For example, if R2 is known to hold seg­
ment number IS, then the operand specified
using the based address RR2 (#93) can also be
referenced by the indexed address «IS»
%93 (R3). The advantage of this simulation is
that Index mode is supported for most
operations, whereas based is restricted to
LOAD and LOAD ADDRESS. Thus, using In­
dexed addressing is faster and leads to com­
pact code.

Assembler language format (see also
Chapter 6):

RRn(#disp) Add the immediate
value to the contents of
RRn; the result is the
address of the operand,

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS
IS THE ADDRESS IN THE REGISTER, OFFSET BY THE DISPLACEMENT IN THE
INSTRUCTION,

3102 }
0002 Instruction

ESOI

FFFE

Program Memory

«13» 0202

0204

0206

020S
PC IODOQ I

0202

R2 IAOFO I

After Execution

R2 IFFFE I

PC IODOO I
0206

43

5.5 Descrip­
tions and
Examples
(Segmented
Z8001)
(Continued)

Example of BA mode:

LDL RR4(#%18),RR2 !load the long word!
!in RR2 into the!
!memory location!
!whose address is!
!the value of RR4!
! + hex 18!

Before Execution Data Memory

RR2 R2 OAOO
R3 1500 «31 » 20CO OABE

RR4 R4 IFOO 20C2 F50D
R5 20AA 20C4 BADE

20C6 BODI

5.5.8 Base Index (BX). The Base Index
addressing mode is an extension of the Base
Addressing mode and may be used only with
the LOAD and LOAD ADDRESS instructions.
In this case, both the base address and index
are held in registers. The index value is added
to the offset of the base address to produce the

Address Calculation

«31»20AA
+ 18
«31» 20C2

After Execution Data Memory

RR2 R2 OAOO
R3 1500 «31» 20CO OABE

RR4 R4 IFOO 20C2 OAOO
R5 20AA 20C4 1500

20C6 BODI

offset of the operand address. The segment
number of the operand address is the same as
the base address. This mode allows access to
memory locations whose physical addresses
are computed at runtime and are not fully
known at assembly time.

REGISTERS

,--_AD_D_RE_ss---,~DATAMEMORY

+ I OPERAND I
REGISTER

'----------1 DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF REGISTER 2 OFFSET BY THE
DISPLACEMENT IN REGISTER 1.

Before Execution

RR2 R2 3535
R3 FFFE

RR4 R4 ODOO

R5 1502

Address Calculation

«13» 1502
+ FFFE
«13» 1 500
After Execution

Any register pair can be used for the base
address except RRO. Any word register except
RO can be used for the index. Note that the
Short Offset format for base addresses is ille­
gal in registers.

An operand specified by BX mode will be in
stack memory space if the base register is the
stack pointer (RR14) and in data memory
otherwise.

Assembler language format (see also
Chapter 6):

RRn(Rn)

Example of BX mode:

LD R2,RR4(R3) !load into R2 the value!
!whose address is the!
!contents of RR4 +!
!the contents of R3!

44

RR2 R2
R3

RR4 R4

R5

BODE
FFFE

ODOO
1502

Data Memory

«13» 14FE 0101
]500 BODE

1502 F732

Data Memory

«13» 14FE Ioiol I
1500 IBODE I
1502 F732

.- 6

6.1 Intro­
duction

This chapter describes the instruction set of
the 28000. An overview of the instruction set is
presented first, in which the instructio.ns are
divided into ten functional groups. The
instructions in each group are listed, followed
by a summary description of the instructions.
Significant characteristics shared by the
instructions in the group, such as the available
addressing modes, flags affected, or inter­
ruptibility, are described. Unusual instructions
or features that are not typical of predecessor
microprocessors are pointed out.

Following the functional summary of the
instruction set, flags and condition codes are

Chapter 6
Instruction Set

discussed in relation to the instruction set. This
is followed by a section discussing interrupt­
ibility of instructions and a description of
traps. The last part of this chapter consists of a
detailed description of each 28000 instruction,
listed in alphabetical order. This section is
intended to be used as a reference by 28000
programmers. The entry for each instruction
includes a description of the instruction,
addressing modes, assembly language mne­
monics, instruction formats, execution times
and simple examples illustrating the use of the
instruction.

dst, src Exchange

ds!, src Load

dst, src Load Address

dst, src Load Address Relative

dst, src Load Constant

dst, src, num Load Multiple

dst, src Load Relative

ds!, src Pop

dst, src Push

6.2 Functional This section presents an overview of the
Summary 28000 instructions. For this purpose, the

instructions may be divided into ten functional
groups:

• Load and Exchange

• Arithmetic

• Logical
• Program Control
• Bit Manipulation
• Rotate and Shift
• Block Transfer and String Manipulation

• Input/Output

• CPU Control
• Extended Instructions

6.2.1 Load and Exchange Instructions.
Instruction Operandlsl Name of Instruction

CLR dst Clear
CLRB

EX
EXB
lO
lOB
lOL

lOA

lOAR

lOK

lOM

lOR
lORB
lORL

POP
POPL

PUSH
PUSHL

47

The Load and Exchange group includes a
variety of instructions that provide for move­
ment of data between registers, memory, and
the program itself (i.e., immediate data). These
instructions are supported with the widest
range of addressing modes, including the Base
(BA) and the Base Index (BX) mode which are
available here only. None of these instructions
affect any of the CPU flags.

The Load and Load Relative instructions
transfer a byte, word, or long word of data
from the source operand to the destination
operand. A special one-word instruction, LDK,
is also included to handle the frequent require­
ment for loading a small constant (0 to 15) into
a register.

These instructions basically provide one of
the follOWing three functions:

• Load a register with data from a register or
a memory location.

• Load a memory location with data from a
register.

• Load a register or a memory location with
immediate data.

The memory location is speCified using any
of the addressing modes OR, DA, X, BA,
BX, RA).

The Clear and Clear Byte instructions can
be used to clear a register or memory location
to zero. While this is functionally equivalent to
a Load Immediate where the immediate data is
zero, this operation occurs frequently enough
to justify a special instruction that is more
compact and faster.

6.2 Functional
Summary
(Continued)

The Exchange instructions swap the contents
of the source and destination operands.

The Load Multiple instruction provides for
efficient saving and restoring of registers. This
can significantly lower the overhead of pro­
cedure calls and context switches such as
those that occur at interrupts. The instruction
allows any contiguous group of 1 to 16 regis­
ters to be transferred to or from a memory
area, which can be designated using the DA,
IR or X addressing modes. (RO is considered to
follow R15, e.g., one may save R9-R15 and
RO-R3 with a single instruction.)

Stack operations are supported by the
PUSH, PUSHL, POP, and POPL instructions.
Any general-purpose register (or register pair
in segmented mode) may be used as the stack
pointer except RO and RRO. The source
operand for the Push instructions and the
destination operand for the Pop instructions
may be a register or a memory location,
specified by the DA, IR, or X addressing
modes. Immediate data can also be pushed
onto a stack one word at a time. Note that byte
operations are not supported, and the stack
pointer register must contain an even value
when a stack instruction is executed. This is
consistent with the general restriction of using
even addresses for word and long word
accesses.

The Load Address and Load Address Rela­
tive instructions compute the effective address
for the DA, X, BA, BX and RA modes and
return the value in a register. They are use-
ful for management of complex data structures.

6.2.2 Arithmetic Instructions
Instruction Operand(s) Name of Instruction

ADC dst, src Add with Carry
ADCB

ADD dsl, HC Add
ADDB
ADDL

CP dsl, src Compare
CPB
CPL

DAB dst Decimal Adjust

DEC dst, src Decrement
DECB

DIV us!, src Divide
DIVL

EXTS dst Extend Sign
EXTSB
EXTSL

INC dsl, src Increment
INCB

MULT cist, src MultIply
MULTL

NEG cist Negate
NEGB

SBC dst, src Subtract with Carry
SBCB

SUB dst, src Subtract
SUBB
SUBL

48

The Arithmetic group consists of instructions
for performing integer arithmetic. The basic
instructions use standard two's complement
binary format and operations. Support is also
provided for implementation of BCD
arithmetic.

Most of the instructions in this group per­
form an operation between a register operand
and a second operand designated by any of
the five basic addressing modes, and load the
result into the register.

The arithmetic instructions in general alter
the C, Z, Sand P/V flags, which can then be
tested by subsequent conditional jump instruc­
tions. The PIV flag is used to indicate arith­
metic overflow for these instructions and it is
referred to as the V (overflow) flag. The byte
version of these instructions generally alters
the D and H flags as well.

The basic integer (binary) operations are
performed on byte, word or long word oper­
ands, although not all operand sizes are sup­
ported by all instructions. Multiple precision
operations can be implemented in software
using the Add with Carry, (ADC, ADCB),
Subtract with Carry (SBC, SBCB) and Extend
Sign (EXTS, EXTSB, EXTSL) instructions.

BCD operations are not provided directly,
but can be implemented using a binary addi­
tion (ADC, ADCB) or subtraction (SUBB,
SBCB) followed by a decimal adjust instruc­
tion (DAB).

The Multiply and Divide instructions perform
signed two's complement arithmetic on word or
long word operands. The Multiply instruction
(MULT) mutliplies two 16-bit operands and
produces a 32-bit result, which is loaded into
the destination register pair. Similarly, Mult­
iply Long (MULTL) multiplies two 32-bit oper­
ands and produces a 64-bit result, which is
loaded into the destination register quadruple.
An overflow condition is never generated by a
multiply, nor can a true carry be generated.
The carry flag is used instead to indicate
where the product has too many significant bits
to be contained entirely in the low-order half
of the destination.

The Divide instruction (DIV) divides a 32-bit
number in the destination register pair by a
16-bit source operand and loads a 16-bit quo­
tient into the low-order half of the destination
register. A 16-bit remainder is loaded into the
high-order half. Divide Long (DIVL) operates
similarly with a 64-bit destination register
quadruple and a 32-bit source. The overflow
flag is set if the quotient is bigger than the
low-order half of the destination, or if the
source is zero.

6.2 Functional 6.2.3 Logical Instructions.
Summary Instruction Operand(s) Name of Instruction

(Continued) AND dSI, src And
ANDB

COM dst Complement
COMB

OR dst, src Or
ORB

TEST dst Test
TESTB
TESTL

XOR dst, src Exclusive Or
XORB

The instructions in this group perform logi­
cal operations on each of the bits of the oper­
ands. The operands may be bytes or words;
logical operations on long word are not sup­
ported (except for TESTL) but are easily imple­
mented with pairs of instructions.

The two-operand instructions, And (AND,
ANDB), Or (OR, ORB) and Exclusive-Or
(XOR,XORB) perform the appropriate logical
operations on corresponding bits of the desti­
nation register and the source operand, which
can be designated by any of five basic ad­
dressing modes (R, IR, DA, 1M, X). The result
is loaded into the destination register.

Complement (COM, COMB) complements
the bits of the destination operand. Finally,
Test (TEST, TESTB, TESTL) performs the OR
operation between the destination operand and
zero and sets the flags accordingly. The Com­
plement and Test instructions can use four
basic addressing modes to specify the
destination (Immediate mode is excluded.)

The Logical instructions set the Z and S flags
based on the result of the operation. The byte
variants of these instructions also set the Parity
Flag (PIV) if the parity of the result is even,
while the word instructions leave this flag
unchanged. The Hand D flags are not affected
by these instructions.

6.2.4 Program Control Instructions.
Instruction Operand(s) Name of Instruction

CALL dSl Call Procedure

CALR dSl Call Procedure Relative

DJNZ r, ds! Decrement and lump if
DBJNZ No! Zero

!RET Interrupt Return

IP CC, ds' lump

JR CC, ds: Iump Relative

RET cc Return from Procedure

SC src System Call

This group consists of the instructions that
affect the Program Counter (PC) and thereby
control program flow. General-purpose

49

registers and memory are not altered except
for the processor stack pointer and the pro­
cessor stack, which playa significant role in
procedures and interrupts. (An exception is
Decrement and Jump if Not Zero (DJNZ), which
uses a register as a loop counter.) The flags
are also preserved except for IRET which
reloads the program status, including the
flags, from the processor stack.

The Jump OP) and Jump Relative OR)
instructions provide a conditional transfer of
control to a new location if the processor flags
statisfy the condition speCified in the condition
code field of the instruction. (See Section 6.4
for a description of condition codes.) Jump
Relative is a one-word instruction that will
jump to any instruction within the range -254
to + 256 bytes from the current location. Most
conditional jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction exploits this fact to
improve code compactness and efficiency.

Call and Call Relative are used for calling
procedures; the current contents of the PC are
pushed onto the processor stack, and the effec­
tive address indicated by the instruction is
loaded into the PC. The use of a procedure
address stack in this manner allows straight­
forward implementation of nested and recur­
sive procedures. Like Jump Relative, Call
Relative provides a one-word instruction for
calling nearby subroutines. However, a much
larger range, -4092 to + 4098 bytes for CALR
instruction, is provided since subroutine calls
exhibit less locality than normal control
transfers.

Both Jump and Call instructions are
available with the indirect register, indexed
and relative address modes in addition to the
direct address mode. These can be useful for
implementing complex control structures such
as dispatch tables.

The Conditional Return instruction is a com­
panion to the Call instruction; if the condition
speCified in the instruction is satisfied, it loads
the PC from the stack and pops the stack.

A special instruction, Decrement and Jump
if Not Zero (DJNZ, DBJNZ) , implements the
control part of the basic PASCAL FOR loop in
a one-word instruction.

System Call (SC) is used for controlled
access to facilities provided by the operating
system. It is implemented identically to a trap
or interrupt: the current program status is
pushed onto the system processor stack fol­
lowed by the instruction itself, and a new pro­
gram status is loaded from a dedicated part of

6.2 Functional the Program Status Area. An 8-bit immediate
Summary
(Continued)

source field in the instruction is ignored by the
CPU hardware. It can be retrieved from the
stack by the software which handles system
calls and interpreted as desired, for example
as an index into a dispatch table to implement
a call to one of the services provided by the
operating system.

Interrupt Return (IRET) is used for returning
from interrupts and traps, including system
calls, to the interrupted routines. This is a
privileged instruction.

6.2.5 Bit Manipulation Instructions
Instruction Operand(sl Name of Instruction

BIT dst, src Bit Test
BITB

RES dst, src Reset Bit
RESB

SET dst, src Set Bit
SETB

TSET dst Test and Set
TSETB

TCC cc, dst Test Condition Code
TCCB

The instructions in this group are useful for
manipulating individual bits in registers or

instruction. (See Section 5.6.1 for a list of con­
dition codes.) This may be used to control sub­
sequent operation of the program after the
flags have been changed by intervening
instructions. It may also be used by language
compilers for generating boolean values.

6.2.6 Rotate and Shift Instructions.
Instruction Operand(sl Name of Instruction

RL dst, src Rotate Left
RLB

RLC dst, src Rotate Left through
RLCB Carry

RLDB dst, src Rotate Left Digit

RR dst, src Rotate Right
RRB

RRC dst, src Rotate Right through
RRCB Carry

RRDB dst, src Rotate Right Digit

SDA dst, src Shift Dynamic Arithmetic
SDAB

,SDAL

SDL dst, src Shift Dynamic Logical
SDLB
SDLL

SLA dst, src Shift Left Arithmetic
SLAB
C:11I1

using the value of each byte as the address of
its own replacement in a translation table. The
more complex Translate and Test instructions
skip over a class of bytes specified by a
translation table, detecting bytes with values
of special interest.

All the operations can proceed through the
data in either direction. Furthermore, the
operations may be repeated automatically
while decrementing a length counter until it is
zero, or they may operate on one storage unit
per execution' with the length counter decre­
mented by one and the source and destination
pointer registers properly adjusted. The latter
form is useful for implementing more complex
operations in software by adding other instruc­
tions within a loop containing the block
instructions.

Any word register can be used as a length
counter in most cases. If the execution of the
instruction causes this register to be decre­
mented to zero, the P/V flag is set. The auto­
repeat forms of these instructions always leave
this flag set.

The D and H flags are not affected by any of
these instructions. The C and S flags are
preserved by all but the compare instructions.

These instructions use the Indirect Register
OR) addressing mode: the source and destina­
tion operands are addressed by the contents of
general-purpose registers (word registers in
nonsegmented mode and register pairs in seg­
mented mode). Note that in the segmented
mode, only the low-order half of the register
pair gets increnented or decremented as with
all address arithmetic in the Z8000.

The repetitive forms of these instructions are
interruptible. This is essential since the repeti­
tion count can be as high as 65,536 and the
instructions can take 9 to 14 cycles for each
iteration after the first one. The instruction can
be interrupted after any iteration. The address
of the instruction itself, rather than the next
one, is saved on the stack, and the contents of
the operand pointer registers, as well as the
repetition counter, are such that the instruc­
tion can simply be reissued after returning
from the interrrupt without any visible dif­
ference in its effect.

Name of InstructionOperand(s)Instruction

This is an exceptionally powerful group of
instructions that provides a full complement of
string comparison, string translation and block
transfer functions. Using these instructions, a
byte or word block of any length up to 64K
bytes can be moved in memory; a byte or word
string can be searched until a given value is
found; two byte or word strings can be com­
pared; and a byte string can be translated by

CPO dst, src, r, cc Compare and Decrement
CPDB

CPDR ds!, src, r, cc Compare, Decrement and
C;PDRB Repeat

CPI dst, src, r, cc Compare and Increment
CPIB

CPIR dst, src, r, cc Compare, Increment and
CPIRB Repeat

CPSD dst, src, r, cc Compare String and
CPSDB Decrement

CPSDR dst, src, r, cc Compare String,
CPSDRB Decrement and Repeat

CPSI dst, src, r, cc Compare String and
CPSIB Increment

CPSIR dst, src, r, cc Compare String,
CPSIRB Increment and Repeat

LOD dst, src, r Load and Decrement
LODB

LODR dst, src, r Load, Decrement and
LODRB Repeat

LDI dst, src, r Load and Increment
LOIB

LDIR dst, src, r Load, Increment and
LOIRB Repeat

TRDB dst, src, r Translate and Decrement

TRDRB dst, src, r Translate, Deciement and
Repeat

TRIB dst, src, r Translate and Increment

TRIRB dst, src, r Translate, Increment and
Repeat

TRTDB srcl, src2, r Translate, Test and
Decrement

TRTDRB srcl, src2, r Translate, Test,
Decrement and Repeat

TRTIB srcl, src2, r Translate, Test and
Increment

TRTIRB srcl, src2, r Translate, Test, Increment
ahd Repeat

6.2 Functional 6.2.7 Block Transfer And String Manipula-
Summary tion Instructions.
(Continued)

51

This group consists of instructions for trans­
ferring a byte, word or block of data between
peripheral devices and the CPU registers or
memory. Two separate I/O address spaces with
l6-bit addresses are recognized, a Standard
I/O address space and a Special I/O address
space. The latter is intended for use with
special 28000 Family devices, typically an
MMU. Instructions that operate on the
Special I/O address space are prefixed with
the word "special." Standard I/O and Special
I/O instructions generate different codes on
the CPU status lines. Normal 8-bit peripherals
are connected to bus lines ADo-AD7. Standard
I/O byte instructions use odd addresses only.
Special 8-bit peripherals such as the MMU,
which are used with Special I/O instructions,

dst, src, r Input and Decrement

dst, src, r Input, Decrement and
Repeat

ds!, src, r Input and Increment

dst, src, r Input, Increment and
Repeat

dst, src, r Output, Decrement and
Repeat

dst, src, r Output, Increment and
Repeat

dst, src Output

dst, src, r Output and Decrement

dst, src, r Output and Increment

dst, src Special Input

dst, src, r Special Input and
Decrement

dst, src, r Special Input, Decrement
and Repeat

dst, src, r Special Input and
Increment

dst, src, r Special Input, Increment
and Repeat

dst, src, r Special Output,
Decrement and Repeat

dst, src, r Special Output,
Increment and Repeat

ds! src Special Output

dst, src, r Special Output and
Decrement

dst, src, r Special Output and
Increment

6.2 Functional 6.2.8 Input/Output Instructions.
Summary Instruction Operand(s) Name of Instruction

(Continued) IN dst, src Input
INB

IND
INDB

INDR
INDRB

INI
INIB

INIR
INIRB

OTDR
OTDRB

OTIR
OTIRB

OUT
OUTB

OUTD
OUTDB

OUTI
OUTIB

SIN
SINB

SIND
SINDB

SINDR
SINDRB

SINI
SINIB

SINIR
SINIRB

SOTDR
SOTDRB

SOTIR
SOTIRB

SOUT
SOUTB

SOUTD
SOUTDB

SOUTI
SOUTIB

52

are connected to bus lines ADs-AD I5. SpeCIal
I/O byte instructions use even addresses only.

The instructions for transferring a single
byte or word (IN, INB, OUT, OUTB, SIN,
SINB, SOUT, SOUTB) can transfer data
between any general-purpose register and any
port in either address space. For the Standard
I/O instructions, the port number may be
specified statically in the instruction or dynam­
ically by the contents of the CPU register. For
the Special I/O instructions the port number is
specified statically.

The remaining instructions in this group
form a powerful and complete complement of
instructions for transferring blocks of data
between I/O ports and memory. The operation
of these instructions is very similar to that of
the block move instructions described earlier,
with the exception that one operand is always
an I/O port which remains unchanged as the
address of the other operand (a memory loca­
tion) is incremented or decremented. These
instructions are also interruptible.

All I/O instructions are privileged, i.e. they
can be executed only in system mode. The
single byte/word I/O instructions don't alter
any flags. The block I/O instructions, includ­
ing the single iteration variants, alter the 2 and
PIV flags. The latter is set when the repetition
counter is decremented to zero.

6.2.9 CPU Control Instructions.
Instruction Operand(s) Name of Instruction

COMFLG flag Complement Flag

DI int Disable Interrupt

EI in! Enable Interrupt

HALT Halt

LDCTL dst, src Load Control Register
LDCTLB

LDPS src Load Program Status

MBIT Multi-Micro Bit Test

MREQ dst Multi-Micro Request

MRES Multi-Micro Reset

MSET Multi-Micro Set

NOP No Operation

RESFLG flag Res~t Flag

SETFLG flag Set Flag

The instructions in this group relate to the
CPU control and status registers (FCW, PSAP,
REFRESH, etc.), or perform other unusual
functions that do not fit into any of the other
groups, such as instructions that support multi­
microprocessor operation. Most of these
instructions are privileged, with the exception
of NOP and the instructions operating on the
flags (SETFLG, RESFLG, COMFLG,
LDCTLB).

6.2 Functional 6.2.10 Extended Instructions. The 28000
Summary
(Continued)

architecture includes a powerful mechanism
for extending the basic instruction set through
the use of external devices known as Extended
Processing Units (EPUs). (See Section 2.12 for
a more comprehensive presentation of the
Extended Processor Architecture.) A group of
six opcodes, OE, OF, 4E, 4F, 8E and 8F (in
hexadecimal), is dedicated for the implemen­
tation of extended instructions using this facil­
ity. The five basic addressing modes (R, JR,
DA, 1M and X) can be used by extended
instructions for accessing data for the EPUs.

There are four types of extended instructions
in the 28000 CPU instruction repertoire: EPU
internal operations; data transfers between

memory and EPU; da ta transfers between EPU
and CPU; and data transfers between EPU flag
registers and CPU flag and control word. The
last type is useful when the program must
branch based on conditions determined by the
EPU. The action taken by the CPU upon
encountering extended instructions is depen­
dent upon the EPA control bit in the CPU's
FCW. When this bit is set, it indicates that the
system configuration includes EPUs; therefore,
the instruction is executed. If this bit is clear,
the CPU traps (extended instruction trap) so
that a trap handler in software can emulate the
desired operation.

The processor flags are a part Of the pro­
gram status (Section 2.7.1). They provide a
link between sequentially executed instructions
in the sense that the result of executing one
instruction may alter the flags, and the
resulting value of the flags may be used to
determine the operation of a subsequent
instruction, typically a conditional jump
instruction. An example is a Test followed by a
Conditional Jump:

6.3 Processor
Flags

TEST R1
JR 2, DONE

!sets 2 flag if R1 = O!
!go to DONE if 2 flag is
set!

The FLAGS register can be separately
loaded by the Load Control Register (LDCTLB)
instruction without disturbing the control bits
in the other byte of the FCW. The contents of
the flag register may also be saved in a reg­
ister or memory.

The Carry (C) flag, when set, generally indi­
cates a carry out of or a borrow into the high­
order bit position of a register being used as
an accumulator. For example, adding the 8-bit
numbers 225 and 64 causes a carry out of bit 7
and sets the Carry flag:

Bit
4

The Carry flag plays an important role in the"
implementation of multiple-precision arithmetic
(see the ADC, SBC instructions). It is also
involved in the Rotate Left Through Carry
(RLC) and Rotate Right Through Carry (RRC)
instructions. One of these instructions is used
to implement rotation or shifting of long strings
of bits.

The 2ero (2) flag is set when the result reg­
ister's contents are zero following certain
operations. This is often useful for deter­
mining when a counter reaches zero. In addi­
tion, the block compare instructions use the 2
flag to indicate when the specified comparison
condition is satisfied.

The Sign (S) flag is set to one when the most
significant bit of a result register contains a
one (a negative number in two's complement
notation) following certain operations.

DONE:

The program branches to DONE if the TEST
sets the 2 flag, i.e., if R1 contains zero.

The program status has six flags for the use
of the programmer and the 28000 processor:

• Carry (C)

• 2ero (2)

• Sign (S)

• Parity/Overflow (PIV)

• Decimal Adjust (D)

• Half Carry (H)

The flags are modified by many instructions,
including the arithmetic and logical
instructions.

Appendix C lists the instructions and the
flags they affect. In addition, there are 28000
CPU control instructions which allow the pro­
grammer to set, reset (clear), or complement
any or all of the first four flags. The Half-Carry
and Decimal-Adjust flags are used by the
28000 processor for BCD arithmetic correc­
tions. They are not used explicitly by the pro­
grammer.

53

225
+ 64

289

o
o

1 0
Carry flag

o
o

o
o

6.3 Processor
Flags
(Continued)

6.4 Condition

The Overflow (V) flag, when set, indicates
that a two's complement number in a result
register has exceeded the largest number or is
less than the smallest number that can be
represented in a two's complement notation.
This flag is set as the result of an arithmetic
operation. Consider the following example:

Bit
4 0

120 0 I 0 0
+ 105 0 0 0 I

225 0 0

Overflow flag set

The result in this case (-31 in two's comple­
ment notation) is incorrect, thus the overflow
flag would be set.

The same bit acts as a Parity (P) flag follow­
ing logical instructions on byte operands. The
number of one bits in the register is counted
and the flag is set if the total is even (that is,
P = 1). If the total is odd, the flag is reset
(P = 0). This flag is often referred to as the
PIV flag.

The first four flags, C, Z, S, and P/V, are
_. __ ..J .1. .L __ l .ll-L~ __! _L ~ "J.

The Block Move and String instructions and
the Block I/O instructions use the PIV flag to
indicate the repetition counter has decre­
mented to o.

The Decimal-Adjust (D) flag is used for BCD
arithmetic. Since the algorithm for correcting
BCD operations is different for addition and
subtraction, this flag is used to record whether
an add or subtract instruction was executed so
that the subsequent Decimal Adjust (DAB)
instruction can perform its function correctly
(See the DAB instruction for further discussion
on the use of this flag).

The Half-Carry (H) flag indicates a carry out
of bit 3 or a borrow into bit 3 as the result of
adding or subtracting bytes containing two
BCD digits each. This flag is used by the DAB
instruction to convert the binary result of a
previous decimal addition or subtraction into
the correct decimal (BCD) result.

Neither the Decimal-Adjust nor the Half­
Carry flag is normally accessed by the pro­
grammer.

forms a part of all conditional instructions.
T~,",l; ... ;l :::l ,..l tho tl=ar...- C'~++1T"\....,.C"

6.5 Instruction The 28000 CPUs implement four kinds of
Interrupts traps:
and Traps _ Extended Instruction
(Continued)

_ Privileged Instruction in normal mode

_ Addressing violation (Segment Trap in
28001 and Address Trap in 28003)

_ System Call

The Extended Instruction trap occurs when
an Extended Instruction is encountered, but
the Extended Processor Architecture Facility is
disabled, i.e., the EPA bit in the FCW is a
zero. This allows the same software to be run
on 28000 system configurations with or without
EPUs. On systems without EPUs, the desired
extended instructions can be emulated by so£1-

ware which is invoked by the Extended
Instruction trap.

The Privileged Instruction trap serves to pro­
tect the integrity of a system from erroneous or
unauthorized actions of arbitrary processes.
Certain instructions, called privileged instruc­
tions, can only be executed in system mode.
An attempt to execute one of these instructions
in normal mode causes a Privileged Instruction
trap. All the 1/0 instructions and most of the
instructions that operate on the FCW are
privileged, as are instructions like HALT
and IRET.

The System Call instruction always causes a
trap. It is used to transfer control to system
mode software in a controlled way, typically to
request supervisor services.

instruction recognized by the assembler. For
example,

ADD Rd.#data

a word register in the
range RO-RI5
a byte register RHn or
RLn where n = 0 - 7
a register pair RRO, RR2,
... RR14
a register quadruple
RQO, RQ4, RQ8 or RQ12

Rbd, Rbs:

RQd:

RRd, RRs:

represents a statement of the form
ADD R3,#35. The assembler will also accept
variations like ADD TOTAL, #NEW-DELTA
where TOTAL, NEW and DELTA have been
suitably defined.

The follOWing notation is used for register
operands:

Rd, Rs

The "s" or "d" represents a source or destina­
tion operand. Address registers used in
Indirect. Base and Base Index addressing
modes represent word registers in nonseg­
mented mode and register pairs in segmented
mode; this situation is flagged and a footnote
explains the situation.

B. Instruction Format. The binary encoding of
the instruction is given in each case for both
the nonsegmented and segmented modes.
Where applicable, both the short and long
forms of the segmented version are given (SS
and SL).

The instruction formats for byte and word
versions of an instruction are usually com­
bined. A single bit, labeled "w," distinguishes

The rest of this chapter consists of detailed
descriptions of each instruction, listed in
alphabetical order. This section describes the
notational conventions used in the instruction
descriptions and the binary encoding for some
of the common instruction fields (e.g., register
designation fields).

The description of an instruction begins with
the instruction mnemonic and instruction name
in the top part of the page. Privileged instruc­
tions are also identified at the top.

The assembler language syntax is then given
in a single generic form that covers all the
variants of the instruction, along with a list of
applicable addressing modes.

Example:

AND dst, src dst: R
ANDB src: R, 1M, IR, DA, X

The operation of the instruction is presented
next, followed by a detailed discussion of the
instruction.

The next part specifies the effect of the
instruction on the processor flags. This is
followed by a table that presents all the
variants of the instruction for each applicable
addressing mode and operand size. For each
of these variants, the follOWing information is
provided:

A. Assembler Language Syntax. The syntax
is shown for each applicable operand width
(byte, word or long). The invariant part of the
syntax is given in UPPER CASE and must
appear as shown. Lower case characters repre­
sent the variable part of the syntax, for which
suitable values are to be substituted. The syn­
tax shown is for the most basic form of the

6.6 Notation
and Binary
Encoding

55

6.6 Notation
and Binary
Encoding
(Continued)

them: a one indicates a word instruction, while
a zero indicates a byte instruction.

Fields specifying register operands are
identified with the same symbols (Rs, RRd,
etc.) as in Assembler Language Syntax. In
some cases, only nonzero values are permitted
for certain registers, such as index registers.
This is indicated by a notation of the form
"RS *- 0."

The binary encoding for register fields is as
follows:

Register Binary

RQO RRO RO RHO 0000
Rl RHI 0001

RR2 R2 RH2 0010
R3 RH3 0011

RQ4 RR4 R4 RH4 0100
R5 RH5 0101

RR6 R6 RH6 0110
R7 RH7 aliI

RQ8 RR8 R8 RLO 1000
R9 RLI 1001

RRIO RIO RL2 1010

Code Meaning

F Always false
Always true

Z Zero
N2 Not zero
C Carry
NC No carry
PL Plus
MI Minus
NE Not equal
EQ Equal
OV Overflow
NOV No overflow
PE Parity even
PO Parity odd
GE Greater than

or equal
LT Less than
GT Greater than
LE Less than or

equal
UGE Unsigned

greater than
or equal

ULT Unsigned
less than

UGT Unsigned
greater than

ULE Unsigned less
than or equal

Register Binary
RII RL3 1011

RQI2 RRI2 RI2 RL4 1100
RI3 RL5 1101

RRI4 RI4 RL6 1110
RI5 RL7 IIII

For easy cross- references, the same symbols
are used in the Assembler Language Syntax
and the instruction format. In the case of relative
addresses, the assembler format uses "address,"
while the instruction format contains "displace­
ment," indicating that the assembler has com­
puted the displacement and inserted it as indicated.

A condition code is indicated by "cc" in
both the Assembler Language Syntax and the
instruction formats. The condition codes, the
flag settings they represent, and the binary
encoding in the instruction are as follows:

Flag Setting Binary

0000
1000

Z = I 0110
2 = 0 1110
C=I 0111
C = 0 IIII
5 = 0 1101
5 = I 0101
Z = 0 1110
2 = I OlIO
V = I 0100
V = a 1100
P = I 0100
P = a 1100
(5 XOR V) = 0 1001

(5 XOR V) = I 0001
(Z OR (5 XOR V)) = a 1010
(Z OR (5 XOR V)) = I 0010

C = a III I

C = I 0111

((C = 0) AND (2 = 0)) 1011

(C OR 2) = I 0011

Note that some of the condition codes correspond to identical flag settings: i.e., Z-EQ, N2-NE,
NC-UGE, PE-OV, PO-NOV.

C. Cycles. This line gives the execution time
of the instructions in CPU cycles.

56

D. Example. A short assembly language
example is given showing the use of the
instruction.

6.7 Z8000
Instruction
Descriptions
and Formats

Operation:

ADC dst, src
ADCB

dst -- dst + src + c

dst: R
src: R

ADC
Add With Carry

Flags:

The source operand, along with the setting of the carry flag, is added to the destina­
tion operand and the sum is stored in the destination. The contents of the source are
not affected. Two's complement addition is performed. In multiple precision arith­
metic, this instruction permits the carry from the addition of low-order operands to
be carried into the addition of high-order operands.

C: Set if there is a carry from the most significant bit of the result; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: ADC-unaffected; ADCB-cleared
H: ADC-unaffected; ADCB-set if there is a carry from the most significant bit of

the low-order four bits of the result; cleared otherwise

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: ADC Rd, Rs
~ 5~ 5ADCB Rbd, Rbs

Example: Long addition can be done with the following instruction sequence, assuming RO, Rl
contain one operand and R2, R3 contain the other operand:

ADD Rl,R3 !add low-order words!
ADC RO,R2 !add carry and high-order words!

If RO contains %0000, Rl contains %FFFF, R2 contains %4320 and R3 contains
%0001/ then the above two instructions leave the value %4321 in RO and %0000
in Rl.

57

ADD
Add

Operation:

ADD dst, src
ADDB
ADDL

dst- dst + src

dst: R
src: R, 1M, IR, DA, X

Flags:

The source operand is added to the destination operand and the sum is stored in the
destination. The contents of the source are not affected. Two's complement addition
is performed.

c: Set if there is a carry from the most significant bit of the result; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: ADD, ADDL-unaffected; ADDB-cleared
H: ADD, ADDL-unaffected; ADDB-set if there is a carry from the most significant

bit of the low-order four bits of the result; cleared otherwise

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: ADD Rd, Rs
~ ~ 4

I
ADDB Rbd, Rbs 4

ADDL RRd, RRs ~1010ll0~ 8 ~lol0llol~ 8

1M: ADD Rd, #data 00\ 000001 \ 0000 I Rd 001000001 1 0000 \ Rd
7 7

data data

ADDB Rbd, #data
001000000 \00001 Rbel 001000000 10000 \ Rbel

7 7
data \ data data I data

ADDL RRd, #data o 0 I 0 1 0 1 1 0 \ 0 0 0 0 \ RRd 001010110100001 RRd

31 data (high) 16 14 31 data (high) 16 14

15 data (low) 0 15 data (low) 0

IR: ADD Rd, @Rsl ~oooooB Rs*O I Rd I 7 ~100000[!J RRs..o I Ad I 7
ADDB Rbd, @Rsl

ADDL RRd, @Rsl ~010110~ 14 §I010l10f~ 14

58

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: ADD Rd, address
101100000[wl 0000 1 Rd I SS 01100000lwlooool RdADDB Rbd, address
I I

9 10
address o 1 segment I offset

01100000lwlooool Rd

SL 11 segment I 00000000 12
offset

ADDL RRd, address I0 1I0 1 0 1 1 0 I0 0 0 0 1 RRd I o 1 I0 1 0 1 1 0 I0 0 0 0 1 RRd

I I
15 SS 16

address o I segment 1 offset

o 1 1 0 1 0 1 1 0 10 0 0 0 I RRd

SL 11 segment I 00000000 18
offset

X: ADD Rd, addr(Rs)
101100000lwi RHO 1 Rd I o 1100000lwi Rs*O I Rd

ADDB Rbd, addr(Rs)
I I

10 SS 10
address o I segment I offset

01100000lwi Rs*O I Rd

SL 11 segment I 00000000 13
offset

ADDL RRd, addr(Rs) I0 1I0 1 0 1 1 0 IRs * 0 I RRd I 011 010110 1 Rs*O I RRd I
I I

16 SS 16
address o I segment I offset I

01 1 01 011 0 IRs*O I RRd

SL 11 segment I 00000000 19
offset

Example: ADD R2, AUGEND !augend A located at % 1254!

Before instruction execution:

Memory

1252~
1254 0 6 4 4

1256

After instruction execution:

Memory

1252~
1254 0 6 4 4

1256

R2

~

R2

~

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

59

AND
And

Operation:

AND dst, src
ANDB

dst ...- dst AND src

dst: R
src: R, 1M, IR, DA, X

Flags:

A logical AND operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A one bit is
stored wherever the corresponding bits in the two operands are both ones; otherwise
a zero bit is stored. The source contents are not affected.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: AND - unaffected; ANDB - set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: 110 10 0 0 1 1 [Vi] Rs I Rd I GOO0111 w l IAND Rd, Rs 4 Rs I Rd 4
ANDB Rbd, Rs

1M: AND Rd, #dala 1001000111100001 Rd I 001000111100001 Rd
7 7

I data I data

ANDB Rbd, #dala 10 0 i 0 0 0 1 1 0 i0 000 i Rbd I
7

o0 i 0 0 0 1 1 0 I 0 0 0 0 I Rbd
7I data I data I data I data

1R: AND Rd, @Rsl ~RRS*OI I~ 7 Rd 7
ANDB Rbd. @Rs!

DA: AND Rd, address I011000111wl 0000 I Rd I o1 10 0 0 1 11 w I0 0 0 0 I Rd I
ANDB Rbd, address

I I
9 55 10

address oI segment I offset I

011000111wl00001 Rd

5L 1 I segment I0 0 0 0 0 0 0 0 12
offset

X: AND Rd, addr(Rs)
101/000111 w l Rs""O I Rd I 01/000111wl RHOI Rd IANDB Rbd, addr(Rs)
I I 10 55

I
10

address oI segment I offset

o110001 11 w I Rs "" 0 I Rd

5L 1I segment I0 0 0 0 0 0 0 0 13
offset

60

Example: ANDB RL3, # %CE

Before instruction execution:

RL3

11100111

After instruction execution:

RL3

1000110

Flags

c z S PIV D H

czspdh

Flags

c z S PIV D H

c01 1 dh

Note I: Word register in nonsegmented mode, register pair in segmented mode.

61

BIT
Bit Test

Operation:

BIT dst, src
BITB

Z .- NOT dst (src)

dst: R, IR, DA, X
src: 1M
or

dst: R
src: R

Flags:

The specified bit within the destination operand is tested, and the Z flag is set to one
if the specified bit is zero; otherwise the Z flag is cleared to zero. The contents of the
destination are not affected. The bit number (the source) can be specified statically
as an immediate value, or dynamically as a word register whose contents are the bit
number. In the dynamic case, the destination operand must be a register, and the
source operand must be RO through R7 for BITB, or RO through R15 for BIT. The bit
number is a value from a to 7 for BITB, or a to 15 for BIT, with a indicating the least
significant bit. Note that only the lower four bits of the source operand are used to
specify the bit number for BIT, while only the lower three bits of the source operand
are used for BITB.

c: Unaffected
Z: Set if specified bit is zero; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Bit Test Static

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: BIT Rd, lib B100111wl~ ~4 4
BITB Rbd, lib

IR: BIT @ Rd 1, lib 100110011~ 8~ 8
BITB @ Rd1,#b

DA: IBIT address, lib 101i100111w!0000i b I 01!100111wiooool b
BITB address, lib 10 SS 11

I address I o I segment I offset

01!10011I w !00001 b

SL 11 segment 10000 0000 13

offset

X: BIT addr(Rd), lib
1011100111wl Rd*O I b I 01!10011IwIRd*01 b

BITB addr(Rd), #b 11 SS 11
I address I O! segment I offset

01110011l w l Rd*O I b

SL 11 segment 10000 0000 14

offset

62

Bit rest Dynamic

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: BIT Rd, Rs 100110011/w100001 Rs I 10 1001100111Wl00QOI Rs I 10
BITB Rbd, RS 2 100001 Rd 10000100001 100001 Rd 10000100001

Example: If register RH2 contains %B2 (0110010), the instruction

BITB RH2, #0

will leave the Z flag set to 1.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Word registers 0-7 only.

63

CALL
Call

Operation:

CALL dst

Nonsegmented
SP __ SP - 2

@SP -- PC
PC -- dst

dst: IR, DA, X

Segmented
SP __ SP - 4
@SP -- PC
PC -- dst

Flags:

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 in nonsegmented mode, or RR14 in
segmented mode. (The program counter value used is the address of the first instruc­
tion following the CALL instruction.) The specified destination address is then
loaded into the PC and points to the first instruction of the called procedure.
At the end of the procedure a RET instruction can be used to return to original pro­
gram. RET pops the top of the processor stack back into the PC.

No flags affected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: CALL Q1Rdi ~011111~ El011111~10 15

DA: CALL address
101101111110000100001 01101111110000100001

1 1
12 SS 18

address 0] segment I offset I

0110111111000010000

SL 1 I segment I 0 0 0 0 0 0 0 0 20

offset

X: CALL addr(Rd)
101/0111111 Rd*olooool

13 SS 0 1I 0.1 1 1 1 1 I Rd'l'O I0 0 0 0 1 18
1 address I oI segment I offset I

o1 I 0 1 1 1 1 1 I Rd'l'O I0 0 0 0

SL 1 I segment I0 0 0 0 0 0 0 0 21
offset

Example: In nonsegmented mode, if the contents of the program counter are %1000 and the
contents of the stack pointer (RI5) are %3002, the instruction

CALL %2520

causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALL instruction with direct address mode specified) to be loaded into
the word at location %3000, and the program counter to be loaded with the value
%2520. The program counter now points to the address of the first instruction in the
procedure to be executed.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

64

Operation:

CALR dst

Nonsegmented
SP SP - 2
@SP PC
PC PC + (2 x displacement)

dst: RA

CALR
Call Relative

Segmented
SP SP - 4
@SP PC
PC PC + (2 x displacement)

Flags:

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 in nonsegmented mode, or RR14 in
segmented mode. (The program counter value used is the address of the first in­
struction following the CALR instruction.) The destination address is calculated and
then loaded into the PC and points to the first instruction of a procedure.

At the end of the procedure a RET instruction can be used to return to the original
program flow. RET pops the top of the processor stack back into the PC.

The destination address is the sum of twice the displacement in the instruction and
the current value of the PC. The displacement is a l2-bit signed value in the range
-2048 to +2047. Thus, the destination address must be in the range -4094 to
+ 4096 bytes from the start of the CALR instruction. In segmented mode, the PC
segment number is not affected. The assembler automatically calculates the dis­
placement by subtracting the PC value of the following instruction from the address
given by the programmer and dividing the result by 2.

No flags affected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

RA: EI ICALR address E2J displacement I 10 displacement 15

Example: In nonsegmented mode, if the contents of the program counter are % 1000 and the
contents of the stack pointer (R15) are %3002, the instruction

CALR PROC

causes the stack pointer to be decremented to %3000, the value %1002 (the address
following the CALR instruction) to be loaded into the word location %3000, and the
program counter to be loaded with the address of the first instruction in procedure
PROC.

65

CLR
Clear

Operation:

CLR dst
CLRB

dst -- 0

dst: R, IR, DA, X

Flags:

The destination is cleared to zero.

No flags affected.

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: CLR Rd 110 loo11 o lwl ~Rd 11000 I 7 7
CLRB Rbd

IR: CLR @Rdl
~ 8 Elo 01 1 0BRRd#{) 11 000 I 8

CLRB @Rdl

DA: CLR address
CLRB address 101100110Iw 10000 110 0 0 I

11 55
0110011 olwl 00001 1000 I

12
I address I oI segment I offset I

01100110Iw I0000 110 0 0

5L 11 segment 10000 0000 14

offset

X: CLR addr(Rd)
CLRB addr(Rd) 101100110Iwi Rd*O 110001

12 55
01 1001101 w IRd*O 110 0 0 I

12
1 address 1 01 segment I offset 1

011001101wl Rd*O 11000

5L 1 I segment I0 0 0 0 0 0 0 0 15

offset

Example: If the word at location %ABBA contains 13/ the statement

CLR %ABBA

will leave the value 0 in the word at location %ABBA.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

66

Operation:

COM dst
COMB

(dst -- NOT dst)

dst: R, IR, DA, X

COM
Complement

Flags:

The contents of the destination are complemented (one's complement); all one bits
are changed to zero, and vice-versa.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: COM-unaffected; COMB-set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: COMRd
~ 7 ~ 7

COMB Rbd

IR: COM (i.'Rdl
§10011 OI~Rd;" 0\ 0000 I 12 El0 0 1 1 0 ~I RRd1'O I0 000 I 12

COMB (i.'Rdi

DA: COM address
101100110lwl0000100001 0110011 olwl 0000 10000 I

COMB address
I I

15 55 16, address o I segment I offset I

0110011 olwl 0000 I0000

5L 1 I segment I0 0 0 0 0 0 0 0 18

offset

X: COM addr(Rd) I0 1 10 0 1 10Iw I Rd '" 0 I0 0 0 0 I o 1 I0 0 1 1 0 IWi Rd", 0 I0 0 0 0 I
COMB addr(Rd)

I I
16 55 16

address o I segment I offset I
0110011 olwl Rd",O 10000

5L 1 I segment I 0 0 0 0 0 0 0 0 19
offset

Example: If register Rl contains %2552 (0010010101010010), the statement

COM Rl

will leave the value %DAAD (101101010101101) in Rl.

Note 1: Word regIster In nonsegmented mode, reglsier palr In segmenred moce.

67

COMFLG
Complement Flag

COMFLG flag Flag: C, Z, S, P, V
FLAGS (4:7) .,.- FLAGS (4:7) XOR instruction (4:7)

Operation:

Flags:

Any combination of the C, Z, S, P or V flags is complemented (each one bit is
changed to zero, and vice-versa). The flags to be complemented are encoded in a
field in the instruction. If the bit in the field is one, the corresponding flag is com­
plemented; if the bit is zero, the flag is left unchanged. Note that the P and V flags
are represented by the same bit. There may be one, two, three or four operands in
the assembly language statement, in any order.

C: Complemented if specified; unaffected otherwise
Z: Complemented if specified; unaffected otherwise
S: Complemented if speCified; unaffected otherwise
P/V: Complemented if speCified; unaffected otherwise
D: Unaffected
H: Undefined

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

COMFLG flags 110001101~ 110001101~7 7

If the C, Z, and S flags are all clear (= 0), and the P flag is set (= 1), the statement

COMFLG P, S, Z, C

wiil leave the C, Z, and S flags set (= l), and the P flag cleared (=0).

68

Operation:

CP dst, src
CPB
CPL

dst - src

dst: R
src: R, IM, IR, DA, X
or
dst: IR, DA, X
src: IM

CP
Compare

Flags:

The source operand is compared to (subtracted from) the destination operand, and
the appropriate flags set accordingly, which may then be used for arithmetic and
logical conditional jumps. Both operands are unaffected, with the only action being
the setting of the flags. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. There are two variants of this instruc­
tion: Compare Register compares the contents of a register against an operand
specified by any of the five basic addressing modes; Compare Immediate performs a
comparison between an operand in memory and an immediate value.

C: Cleared if there is a carry from the most significant bit of the result; set other-
wise, indicating a "borrow"

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected

Compare Register

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: CP Rd, Rs
~ ~CPB Rbd, Rbs 4 4

CPL RRd, RRs E10100001~ 8 B010000~ 8

1M: CP Rd, #data
001001011 10000 I Rd 001001011 10000 I Rd

7 7
data data

CPB Rbd, #data 0010010101000 0 1 Rbd o0 I 0 0 1 0 1 0 I0 0 0 0 I Rbd

I
7

I
7

data data data data

CPL RRd, #data o0 I 0 1 0 0 0 0 I 0 0 0 0 I RRd 001010000 i 0000 I RRd

31 data (high) 16 14 31 data (high) 16 14

15 data (low) 0 15 data (low) 0

IR: CP Rd, @Rsl
~ 7~ 7

CPB Rbd, @Rsl

CPL RRd, @Rsl B010000~ 14 B010000~ 14

69

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: CP Rd, address
CPB Rbd, address 1011001011wl 0000 I Ad I 011001011wl00001 Ad I 10

I I
9 55 Iaddress oI segment 1 offset

011001011wl00001 Ad

5L 1 I segment I 0 0 0 0 0 0 0 0 12

offset

CPL RRd, address
1011010000100001 RAd I 011 010000 I0000 I RRd I
I I

15 55 16
address o1 segment 1 offset I

011010000100001 Rd

5L 1 I segment 1 0 0 0 0 0 0 0 0 18
offset

X: CP Rd, addr(Rs) I0 1I0 0 10 11 w 1 As;O 0 1 Ad I 0110010 11w l AHO I AAd IePB Rbd, addr(Rbs) I I
10 55

I
10

address oI segment I offset

o1 10 0 1 0 11 w I As;O 0 I Ad

5L 1 I segment I0 0 0 0 0 0 0 0 13

offset

ePL RRd, addr(Rs)
10 1 I 0 1 0 0 0 0 1As ;0 0 I AAd I 011010000 I As;OO I RAd I
I I

16 55 16
address 0' segment I offset I

011010000 I Rs;OO! RAd I
! I I_____..... ...II~ SL 1 ...m'"~,,~tOO0 0000II-=-

Compare Immediate

Segmented Mode

Instruction Format Cycles

Nonsegmented Mode

Instruction Format Cycles

Destination
Addressing Assembler Language I------------...-----+-----------~---

Mode Syntax

IR: ep @Rdl, #data

ePB @Rdl, #data

11

11

11

11

70

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: CP address, #data
011 001 10IWI 0000 10001 01100110lw 00001 0001

address 14 55 01 segment offset 15

data data

01100110lw 000010001

11 segment 0000 0000
5L 17

offset

data

CPB address, #data 01100110lwl000 0 10001 01100110lw 00001 0001

address 14 55 01 segment offset 15
data I data data data

01\00110\W 0000\0001

11 segment 0000 0000
5L 17

offset

data data

X: CP addr(Rd), #data o1I0 0 1 1 0IW IRd '" 0 10 0 0 1 01 1001101 W Rd '" 0 10001

address 15 55 01 segment offset 15
data data

o1 10 0 1 1 0IW Rd", 0 I0 0 0 1

11 segment 0000 0000
185L

offset

data

CPB addr(Rd), #data o1I0 0 1 10 IW I Rd '" 0 I0 0 0 1 01100110lw Rd",O 10001

address 15 55 01 segment offset 15
data I data data data

01100110lw Rd",O 10001

11 segment 0000 0000
185L

offset

data data

Example: If register R5 contains %0400, the byte at location %0400 contains 2, and the source
operand is the immediate value 3, the statement

CPB @R5,#3

will leave the C flag set, indicating a borrow I the S flag set, and the Z and V flags
cleared.

Note 1: Word regisrer in nonsegmented mode, register pair In segmented mode.

71

CPD
Compare and Decrement

CPO dst, src, r, cc
CPOB

dst: R
src: IR

Operation:

Flags:

dst - src
AUTODECREMENT src (by 1 if byte, by 2 if word)
r -- r - 1

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are un­
affected.

The source register is then decremented by one if CPDB, or by two if CPD, thus
moving the pointer to the previous element in the string. The word register specified
by "r" (used as a counter) is then decremented by one. The source, destination,
and count registers must be separate and non-overlapping registers.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: CPD Rd, @RsJ, r, cc
11 01 1 1 01 IwIRS"" 0 110 0 0 1 11 0 1 1 1 01 IwIRRs*O 110 00 1

CPDB Rbd, @Rsl, r, cc 20 20
1 0000

1
r I Rd I cc 1 10000

1
r I Rd I cc I

Example: If register RHO contains %FF, register R1 contains %4001, the byte at location
%4001 contains %00, and register R3 contains 5, the instruction

CPDB RHO, @R1, R3, EQ

will leave the Z flag cleared since the condition code would not have been "equal."
Register R1 will contain the value %4000 and R3 will contain 4. For segmented
mode, Rl must be replaced by a register pair.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

72

CPDR dst, src, r, cc
CPDRB

CPDR
Compare, Decrement and Repeat

dst: R
src: IR

Operation:

Flags:

dst - src
AUTODECREMENT src (by 1 if byte; by 2 if word)
r.-r-l
repeat until cc is true or R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
cohdition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are unaf­
fected.

The source register is then decremented by one if CPDRB, or by two if CPDR, thus
moving the pointer to the previous element in the string. The word register specified
by "r" (used as a counter) is decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc­
tion can search a string from 1 to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPDR). The source, destination, and count
registers must be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cydes2 Instruction Format Cydes2

IR: CPDR Rd, @Rsl, r, CC
1 1 011101 Iw IRs * 011100 I 11 01 1 1 01 IW IRRs *0 111 00 1

CPDRB Rbd, @Rsl, r, cc 11 +9n 11 +9n
100001 r I Rd I cc 1 100001 r I Rd I cc 1

Example: If the string of words starting at location %2000 contains the values 0, 2, 4, 6 and 8,
register R2 contains %2008, R3 contains 5, and R8 contains 8, the instruction

CPDR R3, @R2, R8, 8T

will leave the Z flag set indicating the condition was met. Register R2 will contain the
value %2002, R3 will still contain 5, and R8 will contain 2. For segmented mode, a
register pair would be used instead of R2.

Note I: Word register in nonsegmented mode, register pair m segmented mode.

Note 2: n = number of data elements compared.

73

CPI
Compare and Increment

CPI dst, src, r, cc
CPIB

dst: IR
src: IR

Operation:

Flags:

dst - src
AUTOINCREMENT src (by I if byte; by 2 if word)
r'" r - 1

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are
unaffected.

The source register is then incremented by one if CPlB, or by two if CPl, thus
moving the pointer to the next element in the string. The word register specified by
"r" (used as a counter) is then decremented by one. The source, destination, and
counter registers must be separate and non-overlapping registers.

c: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: CPI Rd, @Rsl, r, cc
CPIB Rbd, @Rsl, r, cc 11 0111 01 IwIRI * 0 I00001

20
11 0 111 0 1 IwiRRs*O I0000 1 20

10000
1

r I Rd I cc 1 10000
1

r I Rd I cc 1

74

Example: This instruction can be used in a "loop" of instructions that searches a string of data
for an element meeting the specified condition, but an intermediate operation on
each data element is required. The folloWing sequence of instructions (to be
executed in non-segmented mode) "scans while numeric," that is, a string is
searched until either an ASCII character not in the range "0" to "9" (see Appendix
C) is found, or the end of the string is reached. This involves a range check on each
character (byte) in the string. For segmented mode, RI must be changed to a
register pair.

LD R3, #STRLEN !initialize counter!
LDA RI, STRSTART !load start address!
LDB RLO,#,9' !largest numeric char!

LOOP:
CPB @RI,#'O' !test char < 'a'!
JR ULT,NONNUMERIC
CPIB RLO, @RI, R3, ULE !test char ~ 9!
JR NZ, NONNUMERIC
JR NOV, LOOP !repeat until counter a!

DONE:

NONNUMERIC: !handle non-numeric char!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

75

CPIR
Compare, Increment and Repeat

CPIR dst, src, r, cc
CPIRB

dst: R
src: IR

Operation:

Flags:

dst - src
AUTOINCREMENT src (by 1 if byte; by 2 if word)
r +-r - 1
repeat until cc is true or R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See Section 6.6 for a list of condition codes. Both operands are
unaffected.

The source register is then incremented by one if CPIRB, or by two if CPIR, thus
moving the pointer to the next element in the string. The word register specified by
"r" (used as a counter) is then decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc­
tion can search a string from 1 to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPIR). The source, destination, and counter
registers must be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: CPIR Rd, @Rsl, r, CC
11 01 1 1 01 IwIRs * o! 01 00 1 11011101 IwI RRs 10 10 0 1

CPIRB Rbd,@Rsl, r, cc 11 +9n 11 +9n
1 0000 1 r I Rd I cc I 100001 r I Rd I cc 1

76

Example: The following sequence of instructions (to be executed in nonsegmented mode) can
be used to search a string for an ASCII return character. The pointer to the start of
the string is set, the string length is set, the character (byte) to be searched for is
set, and then the search is accomplished. Testing the Z flag determines whether the
character was found. For segmented mode, Rl must be changed to a register pair.

LDA
LD
LDB
CPIRB
JR

R1, STRSTART
R3, #STRLEN
RLO, #% D
RLO, @Rl,R3, EQ
Z, FOUND

!hex code for return is D!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n =number of data elements compared.

77

CPSD
Compare String and Decrement

CPSD dst, src, r, cc
CPSDB

dst: IR
src: IR

Operation:

Flags:

dst - src
AUTODECREMENT dst and src (by 1 if byte; by 2 if word)
r..-r-l

This instruction can be used to compare two strings of data until the speCified condi­
tion is true. The contents of the location addressed by the source register are com­
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code speCified by "cc" would be set by the
comparison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition
codes. Both operands are unaffected.
The source and destination registers are then decremented by one if CPSDB, or by
two if CPSD, thus moving the pointers to the previous elements in the strings. The
word register speCified by "r" (used as a counter) is then decremented by one.
The source, destination, and count registers must be separate and non-overlapping
registers.

c: Cleared if there is a carry from the most significant bit of the result of the com­
parison; set otherwise, indicating a "borrow". Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Set is the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: cPSD (Ii Rd i , ~, Rsi, r, cc
11 011 1 01 Iw 1Rs * 01 10 10 1 110111 011wlRRHol1 01 0 1

CPSDB (II Rdl ,(II Rsi ,r,cc
10000

1 IRd * 01 cc 1
25

100001 IRRd'FOI cc 1
25

r r

Example: If register R2 contains %2000, the byte at location %2000 contains %FF, register R3
contains %3000, the byte at location %3000 contains %00, and register R4 contains
I, the instruction (executed in nonsegmented mode)

CPSDB @R2, @R3, R4, UGE

will leave the Z flag set to 1 since the condition code would have been "unsigned
greater than or equal", and the V flag will be set to 1 to indicate that the counter R4
now contains O. R2 will contain %IFFF, and R3 will contain %2FFF. For segmented
mode, R2 and R3 must be changed to register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

78

CPSDR cist, src,r, cc
CPSDRB

CPSDR
Compare String. Decrement and Repeat

dst: IR
src: IR

Operation:

Flags:

dst - src
AUTODECREMENT dst and src (by I if byte; by 2 if word)
r +- r - I
repeat until cc is true or r = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified. by "cc" would be set by the compar­
ison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition codes.
Both operands are unaffected.

The source and destination registers are then decremented by one if CPSDRB, or by
two if CPSDR, thus moving the pointers to the previous elements in the strings. The
word register specified by "r" (used as a counter) is then decremented by one. The
entire operation is repeated until either the condition is met or the result of decre­
menting r is zero. This instruction can compare strings from I to 65536 bytes or from
I to 32768 words long (the value of r must not be greater than 32768 for CPSDR).
The source, destination, and count registers must be separate and non-overlapping
registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven more cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

c: Cleared if there is a carry from the most significant bit of the result of the com­
parison; set otherwise, indicating a "borrow". Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers

Z: Set if the conditon code generated by the comparison matches cc; cleared
otherwise

S: Setif the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: CPSDR@Rd1,@Rsl,r,cc
11 0 1 1 1 0 1 IwI Rs~ 11 1 1 0) 11 0 1 1 1 0 1 IwIRRs~ 11 1 1 0 I

CPSDRB@Rd1,@Hsl,r,cc 11 + 14n 11 +14n
10000 I r I Rd~ 1 cc I 100001 r IRRd~1 eel

79

Example: If the words from location %1000 to %1006 contain the values 0, 2, 4, and 6, the
words from location %2000 to %2006 contain the values 0, I, 1,0, register R13 con­
tains %1006, register R14 contains %2006, and register RO contains 4, the instruc­
tion (executed in nonsegmented mode)

CPSDR @R13, @R14, RO, EQ

leaves the Z flag set to 1 since the condition code would have been "equal" (loca­
tions %1000 and %2000 both contain the value 0). The V flag will be set to 1 indi­
cating RO was decremented to O. R13 will contain %OFFE, R14 will contain %IFFE,
and RO will contain O. For segmented mode, R13 and R14 must be changed to
register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmen;ed mode.

Note 2: n ~ number of data elements compared.

80

CPSI dst, src, r, cc
CPSIB

CPSI
Compare String and Increment

dst: IR
src: IR

Operation:

Flags:

dst - src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
r r - 1

This instruction can be used to compare two strings of data until the specified condi­
tion is true. The contents of the location addressed by the source register are com­
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code speCified by "cc" would be set by the
comparison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition codes.
Both operands are unaffected.

The source and destination registers are then incremented by one if CPSIB, or by
two if CPSI, thus moving the pointers to the next elements in the strings. The word
register speCified by "r" (used as a counter) is then decremented by one.
The source, destination, and count registers must be separate and non-overlapping registers.

C: Cleared if there is a carry from the most significant bit of the result of the comparison;
set otherwise, indicating a "borrow". Thus this flag will be set if the destination is less
than the source when viewed as unsigned integers

Z: Set if the condition code generated by the comparison matches cc; cleared otherwise
S: Set is the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: CPSI @Rd1,@Rsl,r,cc 11 0 1 1 1 0 1 IwIRs * 0 I0 0 10 I 11 0111 01 IwIRRs * 0I0010 I
cPSIB @Rdl,@Rsl,r,cc

10000
1

IRd * 01 cc 1
25

10000 1 IRRd *01 cc I 25
r r

81

Example: This instruction can be used in a "loop" of instructions which compares two strings
until the specified condition is true, but where an intermediate operation on each
data element is required. The following sequence of instructions, to be executed in
nonsegmented mode, attempts to match a given source string to the destination
string which is known to contain all upper-case characters. The match should suc­
ceed even if the source string contains some lower-case characters. This involves a
forced conversion of the source string to upper-case (only ASCII alphabetic letters
are assumed, see Appendix C) by resetting bit 5 of each character (byte) to 0 before
comparison.

LDA
LDA
LD

LOOP:
RESB
CPSIB
JR
JR

DONE:

NOTEQUAL:

Rl, SRCSTART
R2, DSTSTART
R3, #STRLEN

@Rl,#5
@RI,@R2, R3, NE
Z, NOTEQUAL
NOV, LOOP

!load start addresses!

!initialize counter!

!force upper-case!
[compare until not equal!
!exit loop if match fails!
!repeat until counter = O!
!match succeeds!

!match fails!

In segmented mode, RI and R2 must both be register pairs.

Note I: Word register in nonsegmented mode. register pair in segmented mode.

82

CPSIR dst, src, r, cc
CPSIRB

CPSIR
Compare String. Increment and Repeat

dst: IR
src: IR

Operation:

Flags:

dst - src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
r+-r-l
repeat until cc is true or r = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by "cc" would be set by the com­
parison; otherwise the Z flag is cleared. See Section 6.6 for a list of condition
codes. Both operands are unaffected. The source and destination registers are then
incremented by one if CPSIRB, or by two if CPSIR, thus moving the pointers to the
next elements in the strings. The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated until either the condition
is met or the result of decrementing r is zero. This instruction can compare strings
from 1 to 65536 bytes or from 1 to 32768 words long (the value of r must not be
greater than 32768 for CPSIR). The source, destination, and counter registers must
be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

C: Cleared if there is a carry from the most significant bit of the result of the last
comparison made; set otherwise, indicating a "borrow". Thus this flag will be set
if the last destination element is less than the last source element when viewed as
unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Set if the result of the last comparison made is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: CPSIR @Rd1,i(.Rsl,r,ee
11011101 I wi Rs ,. 0 1 0110 I 11 01 1 1 01 Iwi RRs * 01 01 1 0 I

CPSIRB @Rdl ,@Rsl ,r,ce 11 + 14n 11 + 14n
1 0000

1
r IRd,. 0 I cc I 10000

1
r IRRd*Oi cc I

83

Example: The CPSIR instruction can be used to compare text strings for lexicographic order.
(For most common character encodings-for example, ASCII and EBCDIC-lexico­
graphic order is the same as alphabetic order for alphabetic text strings that do not
contain blanks.)

Let Sl and S2 be text strings of lengths Ll and L2. According to lexicographic
ordering, Sl is said to be "less than" or "before" S2 if either of the following is true:

• At the first character position at which Sl and
S2 contain different characters, the character
code for the S1 character is less than the
character code for the S2 character.

• Sl is shorter than S2 and is equal, character for
character, to an initial substring of S2.

For example, using the ASCII character code, the following strings are in ascending
lexicographic order:

A
AA
ABC
ABCD
ABD

Let us assume that the address of Sl is in RR2, the address of S2 is in RR4, the
lengths Ll and L2 of Sl and S2 are in RO and Rl, and the shorter of Ll and L2 is in
R6. The the following sequence of instructions will determine whether Sl is less than
S2 in lexicographic order:

CPSIRB @RR2, @RR4, R6, NE

JR Z, CHALCOMPARE

CP RO,Rl

JR LT, S l_IS_LESS
JR Sl-.NOT_LESS

CHALCOMPARE:
JR ULT, S l_IS_LESS

Sl_NOT LESS:

!Scan to first unequal character!
!The following flags settings are possible:
Z = a, v = 1: Strings are equal through Ll
character (Z = 0, V = a cannot occur).
Z = I, V = a or 1: A character position was
found at which the strings are unequal.
C = 1 (S = a or 1): The character in the RR2
string was less (viewed as numbers from a to
255, not as numbers from -128 to + 127).
C = a (S = a or 1): The character in the RR2
string was not less!

!If Z= 1, compare the characters!

!Otherwise, compare string lengths!

!ULT is another name for C = I!

84

Operation:

DAB dst

dst __ DA dst

dst: R

DAB
Decimal Adjust

Flags:

The destination byte is adjusted to form two 4-bit BCD digits following a binary
addition or subtraction operation on two BCD encoded bytes. For addition (ADDB,
ADCB) or subtraction (SUBB, SBCB), the following table indicates the operation
performed:

Carry Bits 4-7 H Flag Bits 0-3 Number Carry
Before Value Before Value Added After

Instruction DAB (Hex) DAB (Hex) To Byte DAB

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0
ADDB 0 0-9 1 0-3 06 0

ADCB 0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1

SUBB 0 0-9 0 0-9 00 0

SBCB 0 0-8 1 6-F FA 0

1 7-F 0 0-9 AO 1
1 6-F 1 6-F 9A 1

The operation is undefined if the destination byte was not the result of a binary
addition or subtraction of BCD digits.

c: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
5: Set if the most significant bit of the result is set; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: DAB Rbd B1100ool~ 5 B1100001~ 5

85

Example: If addition is performed using the BCD values 15 and 27, the result should be 42.
The sum is incorrect, however, when the binary representations are added in the
destination location using standard binary arithmetic.

0001 0101
+ 0010 0111

0011 1100 = %3C

The DAB instruction adjusts this result so that the correct BCD representation is
obtained.

0011 1100
+ 0000 0110

0100 0010 42

86

DEC dst, src
DECB

dst: R, IR, DA, X
src: 1M

DEC
Decrement

Operation:

Flags:

dst .- dst - src (where src = 1 to 16)

The source operand (a value from 1 to 16) is subtracted from the destination operand
and the result is stored in the destination. Subtraction is performed by adding the
two's complement of the source operand to the destination operand. The source
operand may be omitted from the assembly language statement and defaults to the
value 1.

The value of the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction for the source ranges from 0 to
15, which corresponds to the source values 1 to 16.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs,

and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: DEC Rd, #n
~ 4 ~ 4

DECB Rbd, #n

IR: DEC Ql RdJ, #n
~ 11 El1 0 1 0 1BRRd*O I n - 1I 11

DECB Ql Rd J, #n

DA: DEC address, #n 1011101011wl00001 n-11 01110101!w100001 n-1
DECB address, #n I I

13
55 0I segment I ollset

14
address

011101011wl 00001 n-1

5L 11 segment 10000 0000 16
ollset

X: DEC addr(Rd), #n
1011101011 w I Rd.-O I n - 1 I 011101011wl Rd.-ol n-1

DECB addr(Rd), #n 14 55 14
I address I o I segment I ollset

01!10101!wl Rd.-Oj n-1

5L 11 segment 10000 0000 17
ollset

Example: If register RlO contains %002A, the statement

DEC RlO

will leave the value %0029 in RlO.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

87

DJ
Disable Interrupt

OJ Int

Privileged Instruction

Int: VI, NVI

Operation: If instruction (0)
If instruction (1)

o then NVI .- 0
o then VI .- 0

Flags:

Example:

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI)
control bits in the Flags and Control Word (FCW) are cleared to zero if the cor­
responding bit in the instruction is zero, thus disabling the appropriate type of inter­
rupt. If the corresponding bit in the instruction is one, the control bit will not be
affected. All other bits in the FCW are not affected. There may be one or two
operands in the assembly language statement, in either order.

No flags affected.

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

Dr in! 1011111001~ 101111100 Jooooool]l]7 7

If the NVI and VI control bits are set (1) in the FCW, the instruction:

DI VI

will leave the NVI control bit in the FCW set (1) and will leave the VI control bit in
the FCW cleared (0).

88

DIV dst, src
DIVL

dst: R
src: R, 1M, IR, DA, X

DIV
Divide

Operation:

Flags:

Word: (dst is register pair, src is word):
dst (0:31) is divided by src (0: 15)
(dst (0:31) = quotient x src (0: 15) + remainder)
dst (0: 15) -- quotient
dst (16: 31) -- remainder

Long: (dst register quadruple, src is long word or register pair):
dst (0:63) is divided by src (0:31)
(dst (0:63) = quotient x src (0:31) + remainder)
dst (0:31) -- quotient
dst (32: 63) -- remainder

The destination operand (dividend) is divided by the source operand (divisor), the
quotient is stored in the low-order half of the destination and the remainder is stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as signed, two's complement integers and division is per­
formed so that the remainder is of the same sign as the dividend. For DIV, the
destination is a register pair and the source is a word value; for DIVL, the destina­
tion is a register quadruple and the source is a long word value.

There a four possible outcomes of the Divide instruction, depending on the division,
and the resulting quotient:

CASE 1. If the quotient is within the range -215 to 215 - 1 inclusive for DIV or
-231 to 231 - 1 inclusive for DIVL, then the quotient and remainder are left in the
destination register as defined above, the overflow and carry flags are cleared to
zero, and the sign and zero flags are set according to the value of the quotient.

CASE 2. If the divisor is zero, the destination register remains unchanged, the
overflow and zero flags are set to one and the carry and sign flags are cleared to
zero.

CASE 3. If the quotient is outside the range -216 to 216 - 1 inclusive for DIV or -232

to 232 -1 inclusive for DIVL, the destination register contains an undefined value,
the overflow flag is set to one, the carry and zero flags are cleared to zero, and the
sign flag is undefined.

CASE 4. If the quotient is inside the range of case 3 but outside the range of case
I, then all but the sign bit of the quotient and all of the remainder are left in the
destination register, the overflow and carry flags are set to one, and the sign and
zero flags are set according to the value of the quotient. In this case, the sign flag
can be replicated by subsequent instruction into the high-order half of the destina­
tion to produce the two's complement representation of the quotient in the same
precision as the original dividend.

c: Set if V is set and the quotient lies in the range from _216 to 216 -1 inclusive for
DIV or in the range from _232 to 232 -1 inclusive for DIVL; cleared otherwise

Z: Set if the quotient or divisor is zero; cleared otherwise
S: Undefined if V is set and C is clear (overflow); otherwise set if the quotient is

negative, cleared if the quotient is non-negative.
V: Set if the divisor is zero or if the computed quotient lies outside the range from

_215 to 215 - 1 inclusive for DIV or outside range from _231 to 231 - 1 inclusive
for DIVL; cleared otherwise

D: Unaffected
H: Unaffeded

89

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

B0110111~ft: DIV RRd, Rs B0110111~ 107 107

DIVL ROd, RRs B0110101~ 744 B0110101~ 744

1M: DIV RRd, #data
001011011100001 RRd 001011011100001 RRd

107 107
data data

DIVL ROd, #data
001011010100001 RQd 001011010100001 RQd

data (high) 16 744 31 data (high) 16 74431

15 data (low) 0 15 data (low) 0

~011011~1ft: DIV RRd, @Rsl
~011011~

107 107
DIVL ROd, @Rsl

§]011010[~ 8 011010 IRRs.=O I RQd I
DA: DIV RRd, address

011011011100001 RRd o 1 I0 1 1 0 1 1 10000 1 RRd
108 55 109

address o I segment 1 offset

o 1 1 0 1 1 0 1 1 I0 0 0 0 I RRd
111

5L 1 1 segment 10 0 0 0 0 0 0 0

offset

DIVL ROD, address
0110110 10 100001 RQd 011011010100001 RQd

445 55 746
address o 1 segment I offset

011011010100001 RQd

5L 11 segment 10000 0000 748

offset

X: DIV RRd, addr(Rs)
1011 011011 IRHO I RRd 1 0110110111 Rs.=ol RRd

109 55 109r address I o 1 segment 1 offset

011 011011 1 Rs.=O 1 RRd

5L 11 segment 10000 0000 112

offset

DIVL RQd, addr(Rs)
1011 011010 I Rs.=O I RQd 1 011 011010 I Rs.=O I RQd I

746 55 746I address I o 1 segment' 1 offset

011 011010 I Rs.=O I RQd
749

5L 11 segment 10000 0000

offset

90

Example: If register RRO (composed of word register RO and Rl) contains %00000022 and
register R3 contains 6, the statement

DIV RRO,R3

will leave the value %00040005 in RRO (Rl contains the quotient 5 and RO contains
the remainder 4).

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: The execution time for the instruction will be lower by 94 cycles for word, 714 for long word than in­
dicated for divide by zero and by 82 for word, 693 for long word for overflow conditions.

91

DJNZ
Decrement and Jump if Not Zero

DJNZ R, dst
DBJNZ dst: RA

Operation:

Flags:

R +- R - 1
If R *" 0 then PC +- PC - (2 X displacement)

The register being used as a counter is decremented. If the contents of the register
are not zero after decrementing, the destination address is calculated and then
loaded into the program counter (PC). Control will then pass to the instruction
whose address is pointed to by the PC. When the register counter reaches zero, con­
trol falls through to the instruction following DJNZ or DBJNZ. This instruction pro­
vides a simple method of loop control.

The relative addressing mode is calculated by doubling the displacement in the
instruction, then subtracting this value from the updated value of the PC to derive
the destination address. The updated PC value is taken to be the address of the
instruction following the DJNZ or DBJNZ instruction, while the displacement is a
7-bit positive value in the range 0 to 127. Thus, the destination address must be in
the range -252 to 2 bytes from the start of the DJNZ or DBJNZ instruction. In the
segmented mode, the PC segment number is not affected. The assembler automatic­
ally calculates the displacement by subtracting the PC value of the following instruc­
tion from the address given by the programmer and dividing the result by 2. Note
that DJNZ or DBJNZ cannot be used to transfer control in the forward direction, nor
to another segment in segmented mode operation.

No flags affected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

RA: DJNZ R, address
11111 ! r Iwl disp 1 11 11111 1 r Iwl disp 1 11

DBJNZ Rb, address

Example: DJNZ and DBJNZ are typically used to control a "loop" of instructions. In this exam­
ple for nonsegmented mode, 100 bytes are moved from one buffer area to another,
and the sign bit of each byte is cleared to zero. Register RHO is used as the counter.

LDB RHO,#100 !initalize counter!
LDA Rl, SRCBUF !load start address!
LDA R2, DSTBUF

LOOP:
LDB RLO,@Rl !load source byte!
RESB RLO,#7 !mask off sign bit!
LDB @R2, RLO !store into destination!
INC Rl !advance pointers!
INC R2
DBJNZ RHO, LOOP !repeat until counter O!

NEXT:

For segmented mode, Rl and R2 must be changed to register pairs.

92

Operation:

EI int

If instruction (0)
If instruction (1)

Privileged Instruction

Int: VI, NVI

o then NVI +- 1
othen VI +- 1

EI
Enable Interrupts

Flags:

Example:

Any combination of the Vectored Interrupt (VI) or Non-Vetored Interrupt (NVI) con­
trol bits in the Flags and Control Word (FCW) are set to one if the corresponding bit
in the instruction is zero, thus enabling the appropriate type of interrupt. If the cor­
responding bit in the instruction is one, the control bit will not be affected. All other
bits in the FCW are not affected. There may be one or two operands in the assembly
language statement in either order.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

EI int I 01111100 IOOOOO1[ylj] 7 I 01111100 looooo1l YIY] 7

If the NVI contol bit is set (l) in the FCW, and the VI control bit is clear (0), the
instruction

EI VI

will leave both the NVI and VI control bits in the FCW set (1)

93

EX
Exchange

EX dst, src
EXB

dst: R
src: R, IR, DA, X

Operation:

Flags:

tmp.- src (tmp is a temporary internal register)
src.- dst
dst.- tmp

The contents of the source operand are exchanged with the contents of the destina­
tion operand.

No flags affected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: EX Rd, Rs
~ G!110110Iwl~6 6EXB Rbd, Rbs

IR: EX Rd, @Rsl
~ 12 ~ 12EXB Rbd, @Rsl

DA: EX Rd, address
101110110Iwi 0000 I Rd I 011101101w100001 RdEXB Rbd, address
I I

15 SS 16
address o I segment I offset

01110110lwl00001 Rd

Sl 11 segment 10000 0000 18
offset

X: EX Rd, addr(Rs)
10 1 110 1 1 0IwI Rs * 0 1 Rd I 01 11 011 olwl Rs*O I Rd

EXB Rbd, addr(Rs) 16 SS 16
I address I o I segment I offset

o 1 11 0 1 1 0Iw IRH 0 I Rd

Sl 11 segment 10000 0000 19
offset

Example: If register RO contains 8 and register R5 contains 9, the statement

EX RO,R5

will leave the values 9 in RO and 8 in R5. The flags will be left unchanged.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

94

Operation:

EXTSB dst
EXTS
EXTSL

Byte
if dst (7)

Word
if dst (15)

Long
if dst (31)

dst: R

a then dst (8: 15) -- 000... 000
else dst (8: 15) -- Ill.. .111

a then dst (16:31) -- 000... 000
else dst (16:31) -- Ill.. .111

a then dst (32:63) -- 000... 000
else dst (32:63) -- Ill.. .111

EXTS
Extend Sign

Flags:

The sign bit of the low-order half of the destination operand is copied into all bit
positions of the high-order half of the destination. For EXTSB, the destination is a
word; for EXTS, the destination is a register pair; for EXTSL, the destination is a
register quadruple.

This instruction is useful in multiple precision arithmetic or for conversion of small
signed operands to larger signed operands (as, for example, before a divide).

No flags affected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: ~1110001~EXISB Rd 11 B110001~ 11

EXIS RRD ~11100011~ 11 ~j110001~ 11

EXISL RQd ~1110001~ 11 B110001~ 11

Example: If register pair RR2 (composed of word registers R2 and R3) contains % 12345678,
the statement

EXTS RR2

will leave the value %00005678 in RR2 (because the sign bit of R3 was 0).

95

HALT
Halt

Operation:

Flags:

Privileged Instruction

HALT

The CPU operation is suspended until an interrupt or reset request is received. This
instruction is used to synchronize the 28000 with external events, preserving its state
until an interrupt or reset request is honored. After an interrupt is serviced, the
instruction following HALT is executed. While halted, memory refresh cycles will
still occur, and BUSREQ will be honored.

No flags affected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cyclesl Instruction Format Cyclesl

HALT
101111010 100000000 I 8+3n 101111010 I 00000000 I 8+3n

Note 1: Interrupts are recognized at the end of each 3-cyc1e period; thus n = number of periods without
interruption.

96

Operation

IN dst, src
INB
SIN dst, src
SINB

dst -- src

Privileged Instruction

dst: R
src: IR, DA

dst: R
src: DA

IN
(SIN)

(Special) Input

Flags:

The contents of the source operand, an Input or Special Input port, are loaded into
the destination register. IN and INB are used for Standard I/O operation; SIN and
SINB are used for Special I/O operation.

No flags affected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format 1 Cycles Instruction Format 1 Cycles

IR: IN Rd, @Rs ~11 1 1 1 0 [w IRs,o() I ,
~Rd 10 10

INB Rbd, @Rs

DA: IN Rd, port I0 0 11 1 1 0 1 Iw I Rd 10105 I 100[11101[wl Rd 101051
INB Rbd, port 12 12

I port I I port I
SIN Rd, port

SINB Rbd, port

Example: If register R6 contains the I/O port address %0123 and the port %0123 contains
%FF, the statement

INB RH2, @R6

will leave the value %FF in register RH2.

Note 1. For SIN, S = 1; otherwise S = o.

97

INC
Increment

Operation:

INC dst, src
INCB

dst -- dst + src (src = 1 to 16)

dst: R, IR, DA, X
src: 1M

Flags:

The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Two's complement addition is performed. The
source operand may be omitted from the assembly language statement and defaults
to the value 1.

The value of the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction for the source ranges from
a to 15, which corresponds to the source values 1 to 16.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
0: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: INC Rd, #n
~ 4 ~ 4INCB Rbd, #n

IR: INC @RdJ, #n
EI101 00!:!1 Rd*O In - 1 I 11 ~] 10 10 0[!] RRd~ In - 1 I 11INCB @RdJ , #n

DA: INC address, #n
INCB address, #n

~ 13 55 01110 100lwl 0000 In - 1 14
oI segment 1 offset

01110100lwl00001 n-1

5L 11 segment 10000 0000 16

offset

X: INC addr(Rd), #n
1011101 oolwl Rd*O In - 1 I 01110 100lwl Rd*O In - 1 IINCB addr(Rd). #n 14 55 14
1 adlfress I o I segment I offset I

01110100lwi Rd*O In-1

5L 11 segment 10000 0000 17

offset

Example: If register RH2 contains %21, the statement

1NCB RH2,#6

will leave the value %27 in RH2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

98

IND dst, src, r
INDB
SIND
SINDB

Privileged Instruction IND
(SIND)

(Special) Input and Decrement

dst: IR
src: IR

Operation:

Flags:

dst +- src
AUTODECREMENT dst (by 1 byte, by 2 if word)
r+-r-1

This instruction is used for block input of strings of data. IND and INDB are used for
Standard I/O operation; SIND and SINDB are used for Special I/O operation. The
contents of the I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged. The source, destination, and count registers must be separate and non­
overlapping registers.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode 2 Segmented Mode 2

Addressing Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: IND ([1 Rd1, ([1 Rs, r
100111 011wl Rs *' 01 0008 1 10 0 1 1 1 0 1 Iw IRs *' 0 10 0 0 8 1

INDB ([1 Rd1, ([1 Rs, r 21 21
10000 1 r IRd*,01 1000 1 10000 1 r 1RRd*O 11 00 0 1

SIND ([1 Rdl, ([1 Rs, r

SINDB ([1 Rdl, ([1 Rs, r

Example: In segmented mode, if register RR4 contains %02004000 (segment 2, offset %4000),
register R6 contains the I/O port address %0228, the port %0228 contains %05B9,
and register RO contains %0016, the instruction

IND @RR4, @R6, RO

will leave the value %05B9 in location %02004000, the value 0/002003FFE in RR4,
and the value %0015 in RO. The V flag will be cleared. Register R6 still contains the
value %0228. In nonsegmented mode, a word register would be used instead of
RR4.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: For SIND, S = 1, otherwise S = o.

99

INDR Privileged Instruction
(SINDR)
(Special) Input, Decrement and Repeat

INDR dst, src, r
INDRB
SINDR
SINDRB

dst: IR
src: IR

Operation:

Flags:

dst -- src
AUTODECREMENT dst (by 1 if byte, by 2 if word)
r -- r - 1
repeat until r = 0

This instruction is used for block input of strings of data. INDR and INDRB are used
for Standard I/O operation; SINDR and SINDRB are used for special I/O operation.
The contents of the I/O port addressed by the source word register are loaded into
the memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can input from 1 to 65536 bytes or 32768 words (the value for r
must not be greater than 32768 for INDR or SINDR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted. The source, destination, and count registers must be separate and
non-overlapping registers.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode 3 Segmented Mode 3

Addressing Assembler Language
Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: INDR @Rd1, @Rs, r
INDRB @Rd1, @Rs, r 1001 1 1 01 Iwi Rs * 0 110 OS I 11 + 10n I0 0 1 1 1 0 1 IwIRs * 0 11 0 0 5 I 11 + 10n
SINDR @Rd1, @Rs, r 100001 r IRd * 01 0000 1 100001 r jRRd*ojooool
SINDRB @Rd1, @Rs, r

200

Example: If register Rl contains %202A, register R2 contains the Special 1/0 address %OAFC,
and register R3 contains 8, the instruction

SINDRB @Rl, @R2, R3

will input 8 bytes from the Special 1/0 port OAFC and leave them in descending
order from %202A to %2023. Register Rl will contain %2022, and R3 will contain O.
R2 will not be affected. The V flag will be set. This example assumes nonsegmented
mode; in segmented mode, Rl would be replaced by a register pair.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements transferred.
Note 3: For SINDR, S = I, otherwise S = o.

101

INI Privileged Instruction
(SINI)
(Special) Input and Increment

INI dst, src, r
INIB
SINI
SINIB

dst: IR
src: IR

Operation:

Flags:

dst +- src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
r+-r-1

This instruction is used for block input of strings of data. INI, INIB are used for Stand­
ard I/O operation; SINI, SINIB are used for Special I/O operation. The contents of
the I/O port addressed by the source word register are loaded into the memory loca­
tion addressed by the destination register. I/O port addresses are 16 bits. The
destination register is then incremented by one if a byte instruction, or by two if a
word instruction, thus moving the pointer to the next element of the string in
memory. The word register speCified by "r" (used as a counter) is then decremented
by one. The address of the I/O port in the source register is unchanged. The source,
destination, and count registers should be separate and non-overlapping registers.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: INI @Rd1, @Rs, r
INIB @Rd1, @Rs, r 10011101Iw/Rs*ol100sl 21 100111 011wIR8 * ollOosl 21
SINI @Rd1, @Rs, r 10000

1
r IRd*ol lO ool 100001 r !Rd*ollOool

SINIB @Rd1, @Rs, r

Example: In nonsegmented mode, if register R4 contains %4000, register R6 contains the I/O
port address %0229, the port %0229 contains %B9, and register RO contains %0016,
the instruction

INIB @R4, @R6, RO

will leave the value %B9 in location %4000, the value %4001 in R4, and the value
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In
segmented mode, R4 would be replaced by a register pair.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

102

INIH dst, src, r
INIRB
SlNIR
SINIRB

Privileged Instruction INIR
(SINIR)

(Special) Input, Increment and Repeat

dst: IR
src: IR

Operation:

Flags:

dst __ src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
r __ r-l

repeat until r = 0

This instruction is used for block input of strings of data. INIR and INIRB are used
for Standard I/O operation; SINIR and SINIRB are used for Special I/O operation.
The contents of the I/O port addressed by the source word register are loaded into
the memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then incremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the next element in the string.
The word register specified by \lr" (used as a counter) is then decremented by one.
The address of the I/O port in the source register is unchanged. The entire operation
is repeated until the result of decrementing r is zero. This instruction can input from
1 to 65536 bytes or 32768 words (the value for r must not be greater than 32768 for
INIR or SINIR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted. The source, destination, and count registers must be separate and
non-overlapping registers.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format3 Cycles2 Instruction Format3 Cycles 2

m: INIR @Rd1, @Rs, r
INIRB @Rd1, @Rs, r 10011101 Iw IRs ;10 0 100051 11 + 10n 10011101TwTRs ;10 0 10005 1 11 + 10n
SINIR @Rd1, @Rs, r 100001 r IRd ;10 01 0000 I 100001 r 1RRd;loO I0000 I
SINIRB @Rd1, @Rs, r

103

Example: In nonsegmented mode, if register R1 contains %2023, register R2 contains the I/O
port address %0551, and register R3 contains 8, the statement

INIRB @R1, @R2, R3

will input 8 bytes from port %0551 and leave them in ascending order from %2023
to %202A. Register R1 will contain %202B, and R3 will contain O. R2 will not be
affected. The V flag will be set. In segmented mode, a register pair must be used
instead of R1.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements transferred.

Note 3: For SINIR, S = I, otherwise S = O.

i04

Privileged Instruction

IRET
Interrupt Return

IRET

Operation: Nonsegmented
SP +- SP + 2 (Pop "identifier")
PS +- @SP
SP +- SP + 4

Segmented
SP +- SP + 2 (Pop "identifier")
PS +- @SP
SP +- SP + 6

Flags:

This instruction is used to return to a previously executed procedure at the end of a
procedure entered by an interrupt or trap (including a System Call instruction).
First, the "identifier" word associated with the interrupt or trap is popped from the
system stack and discarded. Then the contents of the location addressed by the
system stack pointer are popped into the program status (PS), loading the Flags and
Control Word (FCW) and the program counter (PC). The new value of the FCW is
not effective until the next instruction, so that the status pins will not be affected by
the new control bits until after the IRET instruction execution is completed. The next
instruction executed is that addressed by the new contents of the PC. The system
stack pointer (R15 if nonsegmented, or RR14 if segmented) is used to access
memory. When using a 28001 or 28003, the operation of IRET in nonsegmented
mode is undefined. A 2800113 must be in segmented mode when an IRET instruction
is performed.

c: Loaded from system stack
Z: Loaded from system stack
S: Loaded from system stack
P IV: Loaded from system stack
D: Loaded from system stack
H: Loaded from system stack

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

01111011 100000000 IIRET I 01111011 100000000 I 13 I 16

Example: In the nonsegmented 28002 version, if the program counter contains %2550, the
system stack pointer (R15) contains %3000, and locations %3000, %3002 and %3004
contain %7F03, a saved FCW value, and % 1004, respectively, the instruction

IRET

will leave the value %3006 in the system stack pointer and the program counter will
contain % 1004, the address of the next instruction to be executed. The program
status will be determined by the saved FCW value.

105

IP
Jump

Operation:

IP cc, dst

If cc is satisfied, then PC -- dst

dst: IR, DA, X

Flags:

A conditional jump transfers program control to the destination address if the condi­
tion specified by "cc" is satisfied by the flags in the FCW. See section 6.6 for a list
of condition codes. If the condition is satisfied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the IP instruction is
executed.

No flags affected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format CycIes2

IR: IP CC, @Rdl §1011110~ 1017 ~011110'~ 1517

DA: IP CC, address
1011011110100001 cc I 011011110100001 cc 1

1 I 7/7 SS
I

8/8
address o1 segment I offset

011011110100001 cc

SL 11 segment 10000 0000 10110

offset

X: IP CC, addr(Rd)
10 1 , 0 1 1 1 1 0 ! Rd "" 0 , cc I 01 1011110 I Rd""O I cc I
1 1

818 SS
1

818
address 01 segment I offset

011 011110 I Rd""O 1 cc

SL 11 segment 10000 0000 11/11

offset

Example: If the carry flag is set, the statement

IP C, %1520

replaces the contents of the program counter with % 1520, thus transferring control
to that location.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: The two values correspond to jump taken and jump not taken.

106

JR cc, dst dst: RA

JR
Jump Relative

Operation:

Flags:

if cc is satisfied then PC -- PC + (2 x displacement)

A conditional jump transfers program control to the destination address if the condi­
tion specified by "cc" is satisfied by the flags in the FCW. See Section 6.6 for a list
of condition codes. If the condition is satisfied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the JR instruction is
executed. The destination address is calculated by doubling the displacement in the
instruction, then adding this value to the updated value of the PC. The updated PC
value is taken to be the address of the instruction following the JR instruction, while
the displacement is an 8-bit signed value in the range -128 to + 127. Thus, the
destination address must be in the range - 254 to +256 bytes from the start of the JR
instruction. In the segmented mode, the PC segment number is not affected.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

No flags affected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

RA: JR CC, address ~l displacement I ~I displacement I6 6

Example: If the result of the last arithmetic operation executed is negative, the next four
instructions (which occupy a total of twelve bytes) are to be skipped. This can be
accomplished with the instruction

JR MI, $ + 14

If the S flag is not set, execution continues with the instruction following the JR.
A byte-saving form of a jump to the label LAB is

JR LAB

where LAB must be within the allowed range. The condition code is "blank" in this
case, and indicates that the jump is always taken.

107

LD
Load

Operation:

LD dst, src
LDB
LDL

dst +- src

dst: R
src: R, IR, DA, x, BA, BX

or
dst: IR, DA, x, BA, BX
src: R
or
dst: R, IR, DA, X
src: 1M

Flags:

The contents of the source are loaded into the destination. The contents of the source
are not affected.

There are three versions of the Load instruction: Load into a register, load into
memory and load an immediate value.

No flags affected

Load Register

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: LD Rd, Rs 110110000~ ~ I3 Rs Rd I 3
LDB Rbd, Rbs

LDL RRd, RRs EJ0101001~ 5 B0101001~ 5

IR: LD Rd, @Rsl
~ 7 ~ 7LDB Rbd, @Rsl

LDL RRd, @Rsl B0101001~ 11 B0101001~ 11

DA: LD Rd, address
LDB Rbd, address 10 111 00 0 0 IwI 0 0 0 0 I Rd I o111 0 0 0 0 IwI0 0 0 0 I Rd

10
1 I

9 SS
address oI segment I offset

o1 11 0 0 0 0 IwI 0 0 0 0 I Rd

SL 1 I segment I 0 0 0 0 0 0 0 0 12

offset

LDL RRd, address
10 11 0 1 0 1 00 I0000 I RRd I 011010100100001 RRd

I I 12 SS 13
address oI segment I offset

o11 0 1 0 1 0 0 I0 0 0 0' RRd

SL 1 I segment I 0 0 0 0 0 0 0 0 15

offset

I

Note 1: \Iv' ora register in nonsegmented mode, register pair in segmented mode.

108

Load Register (Continued)

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

X: LD Rd, addr(Rs)
r0 111 0 0 0 0 Iw1 Rs.= 0 I Rd 1 o 111 0 0 0 0 Iw I Rs.= 01 RdLDB Rbd, addr(Rs) r I

10 55 10
address o I segment I offset

o 1110 0 0 0 Iw I Rs.= 01 Rd

5L 1 I segment I 0 0 0 0 0 0 0 0 13
offset

LDL RRd, addr(Rs)
10110101001Rs",01 RRd I o 1I 0 1 0 1 0 0 I Rs.= 0 I RRd

13 55 13r address 1 O! segment! offset

o 11 0 1 0 1 0 0 1 Rs '" 0 I RRd

5L 1! segment I 0 0 0 0 0 0 0 0 16

offset

BA: LD Rd, Rsl(#disp)
r0 or1 1 0 0 01w1 Rs '" 0 ! Rd 1 00111000!wIRRs*01 RRd

LDB Rbd, Rsl(#disp) 14 14
r displacement I displacement

LDL RRd, Rsl(#disp)
10011 1 0 1 01 I Rs '" 0 I RRd I 0011 101 01 ! RRs", 0 I RRd

17 17
r displacement -j displacement

BX: LD Rd, Rsl (Rx)
r0 11 1 1 0 0 0 Iw I Rs.= 0 I Rd I o 111 1 0 0 0 ! w ! RRs* 0I Rd

LDB Rbd, RSI (Rx)
rooool Rx 10 0 0 0 0 0 0 01

14
00001 Rx i 0000 0000

14

LDL RRd, Rsl (Rx)
101111010111Rs.=01 RRd I 01!1101011[RR5*01 RRd

I 0 0 0 0 I Rx I 0 0 0 0 0 0 0 01
17

0000 I Rx 10000 0000
17

Load Memory

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: LD @Rd1, Rs ~ 8 ~ 8
LDB @Rd1, Rbs

LDL @Rd1, RRs E1011101~ 11 B 011101 !RRd",ol RRs I 11

DA: LD address, Rs
1011101111wl00001 Rs I 011101111wl00ool Rs

LDB address, Rbs 11 55 12
I address 1 o I segment ! offset

011 1 0111[w100001 Rs

5L 1[segment I 0 0 0 0 0 0 0 0 14

offset

Note I: Word register In :1onsegmemed mode, register pair In segmented mode.

109

Load Memory (Continued)

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: LDL address, RRs I0 1\ 0 1 1 1 0 1 I0000 I RRs I o 11 0 1 1 1 0 1 I0 0 0 0 r RRs
14 55 15

I address I oI segment I offset

o 1I0 1 1 1 0 1 I0 0 0 0 I RRs

5L 11 segment I 00000000 17

offset

X: LD addr(Rd), Rs
101110111 Iw 1 Rdo"O I Rs I 55 011101111wl Rdo"O I Rs

LDB addr(Rd). Rbs 12 12
I address I o I segment I offset

011101111wl Rdo"ol Rs

5L 11 segment 100000000 15
offset

LDL addr(Rd). RRs I0 11 0 1 1 1 0 1 I Rd *0 I RRs I 011 011101 IRdo"O I RRs

I I
15 55 15

address o I segment I offset

o 11 0 1 1 1 0 1 1 Rd *0 1 RRs

5L 11 segment I 00000000 18

offset

BA: LD Rd1(#disp). Rs 1001 11 00 llwl Rdo"O I Rs I 00111001!wIRRd*'°1 Rs
LDB Rd1(#disp). Rbs

I I
14 14

displacement displacement

LDL Rdl (#disp), RRs I0 011 1 0 1 1 1 I Rd *0 I RRs I o 011 1 0 1 1 1 IRRd *' 0 I RRs

r I
17 17

displacement displacement

BX: LD Rdl (Rx). Rs
1011110011wl Rd*,ol Rs I o 1111 0 0 11 w IRRd *0 1 Rs

LDB Rdl (Rx). Rbs
10 000 1 Rx 100000000 I 14

0000 I Rx 100000000
14

LDL Rdl (Rx), RRs
10 1I 1 1 0 1 1 1 I Rd*0 I RRs I 011110111 IRRdo"ol RRs

I0 0 0 0 I Rx I 0 0 0 0 0 0 00 I 17
0000 I Rx I 00000000

17

Notei: Word regisier in nonsegmenied mode, regisier pair in segmented mode.

110

Load Immediate Value

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: LD Rd, #data
001100001100001 Rd 00110000110000 I Rd

7 7
data data

LDB Rbd, #data2
001100000 1 0000 I Rbd 001100000 1 0000 I Rbd

1
7

1
7

data data data data

~ Idata 5 ~I data I 5

LDL RRd, #data
0010101001 0000 1 RRd 001010100100001 RRd

31 data (high) 16 11 31 data (high) 16 11

15 data (low) 0 15 data (low) 0

IR: LD @Rd1, #data 0010011011Rd*010101 001 0 0 1 1 0 1 IRRd *0 10 1 0 1
11 11

data data

LDB @Rd1, #data 001001100 !Rd*010101 0010011001RRd*010101
11 11

data 1 data data I data

DA: LD address, #data
0110011011000010101 0110011011000010101

address 14 55 oI segment I offset 15
data data

0110011011000010101

5L
1 I segment I 0 0 0 0 0 0 0 0

17
offset

data

LDB address, #data 011001100 I 00001 0101 011001100 1000010101

address 14 55 oI segment I offset 15
data 1 data data i data

011001100[000010101

5L
1 1 segment I 0 0 0 0 0 0 0 0

17
offset

data 1 data

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: Although two formats exist for "LDB R, 1M", the assembler always uses the short format. In this case, the
"src field" in the instruction format encoding contains the source operand.

III

Load Immediate Value (Continued)

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

X: LD addr(Rd), #data
011 001101 I Rd",O 1 0101 011001101 Rd",O 10 1 0 1

address 15 55 01 segment offset 15

data data

011001101 Rd",O 10101

11 segment 0000 0000
5L 18

offset

data

LDB addr(Rd), #data o1 1 0 0 1 1 0 0 1 Rd '" 0 I0 1 0 1 011001100 Rd",O 10101

address 15 55 01 segment offset 15

data I data data data

011001100 Rd",O 10101

11 segment 0000 0000
5L 18

offset

data data

Example: Several examples of the use of the Load instruction are treated in detail in Chapter 4
under addressing modes.

112

Operation:

LDA dst, src

dst +- address (src)

dst: R
src: DA, x, BA, BX

LDA
Load Address

Flags:

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address computation follows the rules for
address arithmetic. The destination is a word register in nonsegmented mode, and a
register pair in segmented mode.

In segmented mode, the address loaded into the destination has an undefined value
in all reserved bits (bits 16-23 and bit 31). However .. this address may be used by
subsequent instructions in the indirect, base, or base-index addressing modes
without any modification to the reserved bits.

No flags affected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: LDA Rd1, address I0 1 11 1 0 1 1 0 10 0 0 0 1 Rd I o 1 11 1 0 1 1 0 10 0 0 0 I RRd I
12 55 13I address I o 1 segment 1 offset I

o 1 11 1 0 1 1 0 10 0 0 0 1 RRd

5L 1 I segment I 0 0 0 0 0 0 0 0 15
offset

X: LDA Rd1, addr(Rs) I0 1 11 1 0 1 1 0 IRs * 0 I Rd I o 1 11 1 0 1 1 0 IRs * 0 I RRd I
13 55 13

I address I o 1 segment 1 offset I

011110110 1 Rs*O 1 RRd

5L 1 I segment 10 0 0 0 0 0 0 0 16

offset

BA: LDA Rd l , Rsl (#disp) I 0 0 1 1 0 1 0 0 I Rs * 0 1 Rd I 00110100 IRRs*ol RRd I
I I

15 I
15

displacement displacement

BX: LDA Rd1, Rsl (Rx) I 0 1 1 1 0 1 0 0 I Rs * 0 1 Rd I 01110100 IRRs*ol RRd I
10000 I Rx 1 0000 0000 I

15
0000 I Rx 10000 0000 I 15

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

113

Examples: LDA R4/STRUCT

LDA RR2, «3» 8(R4)

LDA RR2,RR4(#8)

lin nonsegmented mode, register R4 is loaded!
!with the nonsegmented address of the location!
!named STRUCTl

lin segmented mode, if index register R4!
lcontains %20, then register RR2 is loaded!
!with the segmented address (segment 3, offset %28)!
lin segmented mode, if base register RR4!
!contains %01000020, then register RR2 is loaded!
!with the segment address« 1 » %28!
!(segment I, offset %28)!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

114

Operation:

LDAR dst, src

dst -- address (src)

dst: R
src: RA

LDAR
Load Address Relative

Flags:

The address or the source operand is computed and loaded into the destination. The
contents or the source are not affected. The destination is a word register in
nonsegmented mode, and a register pair in segmented mode. In segmented mode,
the address loaded into the destination has all "reservedfl bits (bits 16-23 and bit 31)
cleared to zero.

The relative addressing mode is calculated by adding the displacement in the
instruction to the updated value of the program counter (PC) to derive the address.
The updated PC value is taken to be the address of the instruction rollowing the
LDAR instruction, while the displacement is a 16-bit signed value in the range
-32768 to + 32767. The addition is performed following the rules of address
arithmetic, with no modifications to the segment number in segmented mode. Thus
in segmented mode, the source operand must be in the same segment as the LDAR
instruction.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

No flags affected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

RA: LDAR Rd1, address
100110100100001 Rd I I 00 1 1 0 1 00 I0000 !_~

15 15
I displacement I I displacement

Example: LDAR

LDAR

R2, TABLE

RR4, TABLE

lin nonsegmented mode, register R2 is loaded!
!with the address of TABLE!

lin segmented mode, register pair RR4 is!
!loaded with the segmented address of TABLE,!
!which must be in the same segment as the program!

Note I: Word register In nonsegmented mode, register pair in segmemed mode.

115

LDeTL Privileged Instruction
Load Control

LDCTL dst, src dst: CTLR
src: R
or
dst: R
src: CTLR

Operation: dst +- src

This instruction loads the contents of a general purpose register into a control
register, or loads the contents of a control register into a general-purpose register.
The control register may be one of the following CPU registers:

FCW
REFRESH
PSAPSEG
PSAPOFF
NSPSEG
NSPOFF

Flag and Control Word
Refresh Control
Program Status Area Pointer - segment number
Program Status Area Pointer - offset
Normal Stack Pointer - segment number
Normal Stack Pointer - offset

The operation of each of the variants of the instruction is detailed below. The ones
which load data into a control register are described first, followed by the variants
which load data from a control register into a general purpose register. Whenever
bits are marked reserved, the corresponding bit in the source register must be either
a or the value returned by a previous load from the same control register. For com­
patibility with future CPUs, programs should not assume that memory copies of con­
trol registers contain as, nor should they store data in reserved fields of memory
copies of control registers.

Load Into Control Register
LDCTL FCW, Rs

Operation:

Operation:

FCW (2:7) +- Rs (2:7)
FCW (11:15) +- Rs (11:15)

LDCTL REFRESH, Rs

REFRESH (1: 15) +- Rs (1: 15)

Rs:

REFRESH:
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

rrrrrrrrrrrrrr?Ire I rate I counter II.... reserved

116

Operation:

Operation:

Operation:

LDCTL NSPSEG, Rs

NSPSEG (0: 15) -- Rs (0: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: mrrrrrrrrrrrrr
NSPSEG: I I

In segrrrentecrmode, the NSPSEG register is the normal mode R14 and contains the
segment number of the normal mode processor stack pointer which is otherwise
inaccessible for system mode.

In nonsegmented mode, R14 is not used as part of the normal processor stack
pointer. This instruction may not be used in nonsegmented mode.

LDCTL NSPOFF, Rs
NSP, Rs

NSPOFF (0: 15)- Rs (0: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: mrrrrrrrrrrrrr
*NSPOFF: I I

*NSP in nonsegmented mode

In segmented mode, the NSPOFF register is R15 in normal mode and contains the
offset part of the normal processor stack pointer. In nonsegmented mode, R15 is the
entire normal processor stack pointer.

In nonsegmented mode, the mnemonic "NSP" should be used in the assembly
language statement, and indicates the same control register as the mnemonic
"NSPOFF".

LDCTL PSAPSEG, Rs

PSAPSEG (8: 14)- Rs (8: 14)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs cn=trrri' I
PSAPSEG: II seg men! nurn ber ijill~ll!l\il~\ iiil ;';;l~;;w::i>:,,~ll~!ii ;1\l;ill!ifili~lllillll!ilill!ll

+L-----reserved-------l

The PSAPSEG register may not be used in nonsegmented operation. In
segmented Z8000s, care must be exercised when changing the two PSAP register
values so that an interrupt occurring between the changing of PSAPSEG and
PSAPOFF is handled correctly. This is typically accomplished by first disabling
interrupts before changing PSAPSEG and PSAPOFF.

117

Operation:

Operation:

LDCTL PSAPOFF / Rs
PSAP, Rs

PSAPOFF (8: 15) __ Rs (8: 15)

Rs:~ 7 6 5 • 3 2 , 6

* PSAPOFF: I ollset (upper byte) jlllliillllmllilillll!lllll~!!::!:I~

*PSAP in nonsegmented mode

In the nonsegmented 28000s, the mnemonic "PSAP" should be used in the assembly
language statement and indiCates the same control register as the mnemonic
"PSAPOFF ff

• In the segmented Z8000s, care must be exercised when changing the
two PSAP register values so that an interrupt occurring between the changing of
PSAPSEG and PSAPOFF is handled correctly. This is typically accomplished by first
disabling interrupts before changing PSAPSEG and PSAPOFF. The low order byte
of PSAPOFF should be O.

Load From Control Register
LDCTL Rd, FCW

Rd (2:7) -- FCW (2:7)
Rd (11:15) -- FCW 01:15) (Z8001 only)
Rd 01: 14) -- FCW 01: 14) (Z8002 only)
Rd (0: 1) -- UNDEFINED
Rd (8: 10) -- UNDEFINED
Rd (5) -- 0 (Z8002 only)

Rd:

15 14 13 12 11 10 9 8 -r--'T""'--.---.---.--...."""",,,",,

Operation:

LDCTL'Rd, REFRESH

Rd 0 :8) -- REFRESH 0 :8)
Rd (0) -- UNDEFINED
Rd (9: 15) -- UNDEFINED

118

Operation:

Operation:

Operation:

LDCTL Rd, PSAPSEG

Rd (8: 14) -- PSAPSEG (8: 14)
Rd (0:7) -- UNDEFINED
Rd (15) -- UNDEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSAPSEG·~,,:Mdlliblil:_':·<,·,.:ilIBfiM.~ t ~"~,"~""~b~ t~.~
Rd:D I I

+L-------undefined----'

This instruction may not be used in nonsegmented mode.

LDCTL Rd, PSAPOFF
Rd, PSAP

•Rd (8: 15) -- PSAPOFF (8: 15)
Rd (0:7) -- UNDEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.PSAPOFF:~

Rd: I I undefined I

*PSAP in nonsegmented mode

In nonsegmented mode, the mnemonic PSAP should be used in the assembly
language statement, and it indicates the same control register as the mnemonic
PSAPOFF.

LDCTL Rd, NSPSEG

Rd (0: 15) +- NSPSEG (0: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NSPSEG: m=rrr-rrrn=rrm
Rd: I I

This instruction is not available in nonsegmented mode.

119

Operation:

Flags:

LDCTL Rd, NSPOFF
Rd, NSP

Rd (0: 15) +- NSPOFF (0: 15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

'NSPOFF: rrmn=rrrrrmr
Rd: I I

*NSP in nonsegmented mode

In nonsegmented mode, the mnemonic NSP should be used in the assembly
language statement, and it indicates the same control register as the mnemonic
NSPOFF.

No flags affected, except when the destination is the Flag and Control Word (LDCTL
FCW, Rs), in which case all the flags are loaded from the source register.

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

LDcn FCW, Rs I I B i B01111101 Rs 7 01111101 Rs 7

LDCTL REFRESH, Rs I 01111101I~ 7 01111101~ 7

LDCn PSAPSEG, Rs
01111101 [Rs B 7

LDCn PSAPOFF, Rs I 01111101 I Rs 1 11 01 I 7 01111101~ 7PSAP, Rs

LDCn NSPSEG, Rs 01111101~ 7

LDCn NSPOFF, Rs I 01111101 I Rs a 7 01111101I~ 7NSP, Rs

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

LDCTL Rd, FCW I ~01111101 7 I 01111101~ 7

LDCTL Rd, REFRESH I 01111101~ 7 I 01111101 03 7

LDCn Rd, PSAPSEG 01111101I~ 7

LDCTL Rd, PSAPOFF I011111011~ 7 01111101~ 7
LDCTL Rd, PSAP

I
I [0110 1

I

LDCn Rd, NSPSEG

I
01111101 Rd 7

LDCn Rd, NSPOFF I 01111101 I Rd !01111 I 7 01111101~ 7
Rd, NSP

120

Operation:

LDCTLB dst, src

dst ...- src

dst: FLAGS
src: R
or
dst: R
src: FLAGS

LDCTLB
Load Control Byte

This instruction is used to load the FLAGS register or to transfer its contents into a
general-purpose register. Note that this is not a privileged instruction.

Load Into FLAGS Register
LDCTLB FLAGS, Rbs

FLAGS (2:7) ...- src (2:7)

The contents of the source (a byte register) are loaded into the FLAGS register. The
lower two bits of the FLAGS register and the entire source register are unaffected.

Rbs:

FLAGS:

76543210

~
~slplvIDIH.

•reserved

Load From FLAGS Register
LDCTLB Rbd, FLAGS

dst (2:7) - FLAGS (2:7)
dst (0: 1) - 0

The contents of the upper six bits of the FLAGS register are loaded into the destina­
tion (a byte register). The lower two bits of the destination register are cleared to
zero. The FLAGS register is unaffected.

76543210

FLAGS:

Rbd: I 0 ! 0 I

Flags: When the FLAGS register is the destination, all the flags are loaded from the
source. When the FLAGS register is the source, none of the flags are affected.

121

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

LDCTLB FLAGS, Rbs I I~ ~10001100 7 I 10001100 7

LDCTLB Rbd, FLAGS I 10001100[~ 7 I 10001100~ 7

122

LDD dst, src, r
LDDB

clst: IR
sn:;: IR

LDD
Load and Decrement

Operation:

Flags:

dst.- src
AUTODECREMENT clst and src (by I if byte, by 2 if word)
r .- r - I

This instruction is used for block tranl;lf~rs of strings of data. The contents of the loca­
tion addressed by the source register &re loaded into the location addressed by the
destination register. The source and d~stination registers are then decremented by
one if LDDB, or by two if LDD, thus moving the pointers to the previous elements in
the strings. The word register specifi§d by "r" (used as a counter) is then decrement­
ed by one. The source, destination, and counter registers must be sep arate and non­
overlapping registers.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffeded

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: LDD @Rsl, @Rd1, r
LDDB @Rsl, @Rd1, r 11 0111 01 IwIRs * 011 001 I

20
11 0111 01 1w1RRs *0 11 001 I

20
1 0000 I r IRd * 011 0 00 I 10000 I r IRRd*oj 1000 1

Example: In nonsegmented mode, if register HI contains %202A, register R2 contains %404A,
the word at location %404A contains %FFFF, and register R3 contains 5,
the instruction

LDD @RI, @R2, R3

will leave the value %FFFF at location %202A, the value %2028 in RI, the value
%4048 in R2, and the value 4 in R3. The V flag will be cleared. In segmented mode,
register pairs would be used instead of RI and R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

123

LDDR
Load, Decrement and Repeat

LDDR dst, src, r
LDDRB

dst: IR
src: IR

Operation:

Flags:

dst -- src
AUTODECREMENT dst and src (by 1 if byte, by 2 if word)
r -- r - 1
repeat until r = a

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LDDRB, or by two if LDDR, thus moving the pointers to the previous elements
in the strings. The word register speCified by "r lf (used as a counter) is then
decremented by one. The entire operation is repeated until the result of decremen­
ting r is zero. The source, destination, and counter registers must be separate and
non-overlapping registers. This instruction can transfer from 1 to 65536 bytes or from
1 to 32768 words (the value for r must not be greater than 32768 for LDDR).

The effect of decrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing
the pointers ensures that the source string will be copied without destroying the
overlapping area.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
0: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: LDDR @Rd1, @Rsl, r
11 01 1 1 01 IwIRs '" 0 11 001 I 1101 1 101 IwIRRs",O! 1 0 0 1 I

LDDRB @Rd1, @Rsi, r 11 +9n 11 + 9n
10000

1

r IRd '" 010 0 0 0 I 10000
1

r I RRd",O I0000 I

124

Example: In nonsegmented mode, if register Rl contains 0J0202A, register R2 contains 0J0404A,
the words at locations 0J04040 through 0J0404A all contain OJoFFFF, and register R3
contains 6, the instruction

LDDR @Rl, @R2, R3

will leave the value OJoFFFF in the words at locations 0J02020 through %202A, the
value %20lE in Rl, the value %403E in R2, and 0 in R3. The V flag will be set. In
segmented mode, register pairs would be used instead of Rl and R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements transferred.

125

LDI
Load and Increment

LDI dst, src, r
LDIB

dst: IR
src: IR

Operation:

Flags:

dst.- src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
r .- r - 1

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIB, or by two if LDI, thus moving the pointers to the next elements in the
strings. The word register specified by "r" (used as a counter) is then decremented
by one. The source, destination, and counter registers must be separate and non­
overlapping registers.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero, cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: LDI @Rd1, @Rsl, r
11 0111 01 Iw IRI '* 01 °°°1 I 110111 01!wIRRs,*01 00011

LDIB @Rd1, @Rsl, r
100001 IRd '* 0/10 0°I 20

100001 r IRRd,*0!10001
20

r

!initialize counter!
!load start addresses!

Example: This instruction can be used in a "loop" of instructions which transfers a string of
data from one location to another, but an intermediate operation on each data ele­
ment is required. The following sequence transfers a string of 80 bytes, but tests for
a special value (%OD, an ASCII return character) which terminates the loop if
found. This example assumes nonsegmented mode. In segmented mode, register
pairs would be used instead of Rl and R2.

LD R3, #80
LDA Rl, DSTBUF
LDA R2, SRCBUF

LOOP:

DONE:

CPB
JR
LDIB
JR

@R2, #%OD
EO, DONE
@Rl, @R2, R3
NOV, LOOP

!check for return character!
!exit loop if found!
!transfer next byte!
!repeat until counter O!

Note I: Word register in nonsegmented mode, register pair in segmented mode.

126

LDIB dst, src, r
LDIBB

dst: IR
src: IR

LDIR
Load. Increment and Repeat

Operation:

Flags:

dst src
AUTOINCREMENT dst and src (by 1 if byte; by two if word)
r r - 1
repeat until R = a

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIRB, or by two if LDIR, thus moving the pointers to the next elements in the
strings. The word register specified by "r" (used as a counter) is then decremented
by one. The entire operation is repeated until the result of decrementing r is zero.
The source, destination, and counter registers must be separate and non-overlapping
registers. This instruction can transfer from 1 to 65536 bytes or from I to 32768
words (the value for r must hot be greater than 32768 for LDIR).

The effect of incrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing
the pointers ensures that the source string will be copied without destroying the
overlapping area.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

... .-,

IR: LDIR @Rd1, @Rsl, r
11011101Iw!R8,*0100011 110111 01IwIRRS,*0! 00011

LDIRB @Rd1, @Rsl, r
10 0 00 1 IRd'*°looool 11 +90

1000 0 1 jRRd*Oj 00001
11 +90

r r

127

Example: The following sequence of instructions can be used in nonsegmented mode to copy a
buffer of 512 words 0024 bytes) from one area to another. The pointers to the start of
the source and destination are set, the number of words to transfer is set, and then
the transfer takes place.

LDA Rl, DSTBUF
LDA R2, SRCBUF
LD R3, #512
LDIR @R1, @R2, R3

In segmented mode, R1 and R2 must be replaced by register pairs.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = n'~mber of data elements transferred.

128

Operation:

LDK dst, src

dst __ src (src = a to 15)

dst: R
src: 1M

LDK
Load Constant

Flags:

The source operand (a constant value specified in the src field) is loaded into the
destination register. The source operand is a value from a to 15. It is loaded into the
four low-order bits of the destination register, while the high-order 12 bits are
cleared to zero.

No flags affected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: LDK Rd, #data
EJ111101~ 5 B1111011~ 5

Example: To load register R3 with the constant 9:

LDK R3,#9

129

LDM
Load Multiple

LOM dst, src, n dst: R
src: IR, DA, X
or
dst: IR, DA, X
src: R

Operation:

Flags:

dst .- src (n words)

The contents of n source words are loaded into the destination. The contents of the
source are not affected. The value of n lies between 1 and 16, inclusive. This instruc­
tion moves information between memory and registers; registers are accessed in
increasing order starting with the specified register; RO follows R15. The instruction
can be used either to load multiple registers into memory (e.g. to save the contents
of registers upon subroutine entry) or to load multiple registers from memory (e.g. to
restore the contents of registers upon subroutine exit).

The instruction encoding contains values from 0 to 15 in the "num" field correspond­
ing to values of 1 to 16 for n, the number of registers to be loaded or saved.

The starting address is computed once at the start of execution, and incremented by
two for each register loaded. If the original address computation involved a register,
the register's value will not be affected by the address incrementation during
execution. Similarly, modifying that register during a load from memory will not
affect the address used by this instruction.

No flags affected

Load Multiple - Registers From Memory

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: LDM Rd, QI Rsi, #n
001 011 100 1 RuO I0001

11 +3n
001011100 RRS*010001

11 + 3n
00001 Rd 10000 I n-1 00001 Rd 00001 n-1

OA: LDM Rd, address, #n
0110111001000010001 011 011100 000010001

0000 I Rd 10000 I n-1 14+3n 55 00001 Rd 00001 n-1 15+3n

address oI segment offset

011 011100 000010001

00001 Rd 0000 I n-1
17+3n5L

11 segment 0000 0000

offset

130

Load Multiple- Registers From Memory (Continued)

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles 2

X: LDM Rd, addr(Rs), #n
011 011100 I Rs;<O 10001 011 011100 Rs;<O I 0001

00001 Rd 100001 n-1 15+3n 55 0000 I Rd 0000 I n-1 15+3n
address o I segment offset

011 011100 Rs;<O 10001

5L
0000 I Rd 00001n-1

18+3n
11 segment 0000 0000

offset

Load Multiple - Memory From Registers

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: LDM@Rd1, Rs, #n
001011100 IRd;<011001

11 + 3n
001011100 RRd'" 0 11001

11 + 3n
00001 Rs looilol n-1 00001 Rs OOilol n-1

DA: LDM address, Rs, #n
0110111001000011001 011 011100 000011001

0000 I Rs 1 0000 I n-1 14+3n 55 0000 I Rs 0000 j n-1 15+3n

address o I segment offset

011011100 000011001

5L
0000 I Rs 0000 I n-1

17+3n
11 segment 0000 0000

offset

X: LDM addr(Rd), Rs, #n
01 I 011 100 I Rd;<O 11 001 011 011100 Rd;<O 11001

0000 I Rs 1 0000 I n-1 15+3n 55 0000/ Rs 0000/ n-1 15+3n

address o I segment offset

011 011100 Rd;<O 11001

00001 Rs 0000 I n-1
5L

11
18+3n

segment 0000 0000

offset

Example: In nonsegmented mode, if register R5 contains 5, R6 contains %0100, and R7 con­
tains 7, the statement

LDM @R6, R5, #3

will leave the values 5, %0100, and 7 at word locations %0100, %0102, and %0104,
respectively, and none of the registers will be affected. In segmented mode, a
register pair would be used instead of R6.

No:e I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of registers.

131

LDPS
Load Program Status

Privileged Instruction

LDPS src src: IR, DA, X

Operation: PS -- src

The contents of the source operand are loaded into the Program Status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW does not become effective until the next instruction, so that the status
pins will not be affected by the new control bits until after the LDPS instruction
execution is completed. The next instruction executed is that addressed by the new
contents of the PC. The contents of the source are not affected.

This instruction is used to set the Program Status of a program and is particularly
useful for setting the System/Normal mode of a program to Normal mode, or for run­
ning a nonsegmented program in segmented 28000s. The PC segment number is not
affected by the LDPS instruction in nonsegmented mode.

The format of the source operand (Program Status block) depends on the current
Segmentation mode (not on the version of the 28000) and is illustrated in the
following figure:

NONSEGMENTED

FCW

LOW ADDRESS SEGMENTED

PC FCW

PC SEG. NO.

HIGH ADDRESS PC OFFSET

(shaded area is reserved-must be zero)

Flags: All flags are loaded from the source operand.

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: LOPS @Rsl
~11110011~~11110011~ 12 16

DA: LOPS address
101111100110000100001 0111110011000010000

I I
16 55 20

address oI segment I offset

0111110011000010000

5L 1 I segment 10 0 0 0 0 0 0 0 22

offset

X: LOPS addr(Rs) I0 1 11 1 1 0 0 1 I Rs *0 10 0 0 0 I o1 11 1 1 0 0 1 IRs*0 10 0 0 0

I I
17 55 20

address oI segment I offset I

o1 11 1 1 0 0 1 I Rs *0 I0 0 0 0

SL 1! segment ! 0 0 0 0 0 0 0 0 23

I I I I! off~et I
__--.l- L-J..... L-

Note 1: Word register is used in nonsegmented mode, register pair in segmented mode.

132

Example: In nonsegmented Z8000s, if the program counter contains %2550, register
R3 contains %5000, location %5000 contains %1800, and location %5002 contains
%AOOO, the instruction

LDPS @R3

will leave the value %AOOO in the program counter, and the FeW value will be
%1800 (indicating Normal Mode, interrupts enabled, and all flags cleared.) In the
segmented mode, a register pair is used instead of R3.

133

LDR
Load Relative

LOR dst, src
LORB
LORL

dst: R
src: RA
or
dst: RA
src: R

Operation:

Flags:

dst .- src

The contents of the source operand are loaded into the destination. The contents of
the source are not affected. The relative address is calculated by adding the
displacement in the instruction to the updated value of the program counter (PC)
to derive the operand's address. In segmented mode, the segmented number of the
computed address is the same as the segment number of the PC. The updated PC
value is taken to be the address of the instruction following the LDR, LDRB, or
LDRL instruction, while the displacement is a l6-bit signed value in the range
-32768 to + 32767.

Status pin information during the access to memory for the data operand will be Pro­
gram Reference, (1100) instead of Data Memory request (1000).

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

This instruction must be used to modify memory locations containing program infor­
mation, such as the Program Status Area, if program and data space are separated
by the memory system.

No flags affected

Load Relative Register

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

RA: LDR Rd, address IOO11000lwlooooI Rd I IOO11000lwlooooi Rd ILDRB Rbd, address 14 14
I displacement I I displacement I

LDRL RRd, address I 001 10101 I0000 I RRd I I 0 0 1 1 0 1 0 1 I0 0 0 0 I RRd I
17 17

I displacement I I displacement I

134

Load Relative Memory

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

RA: LDR address, Rs
IOO11001j wlooooi Rs I IOO110011wlooool Rs ILDRB address, Rbs
I I

14
I I

14
displacement displacement

LDRL address, RRs I 0 0 1 1 0 1 1 1 I0 0 0 0 I RRs I I 00 1 1 0 1 1 1 I0000 I RRs 1
17 17

I displacement I I displacement I

Example: LDR R2, DATA [register R2 is loaded with the value in thel
!location named DATA!

135

MBIT
Multi-Micro Bit Test

MBIT

Privileged Instruction

Operation:

Flags:

S .- 1 if MI high (inactive); a otherwise

This instruction is used to synchronize multiple processors' exclusive access to
shared hardware resources. The multi-micro input pin (Ml) is tested, and the S flag
is cleared if the pin is low (active); otherwise, the S flag is set, indicating that the
pin is high (inactive).

After the MBIT instruction is executed, the S flag can be used to determine whether
a requested resource is available or not. If the S flag is clear, then the resource is
not available; if the S flag is set, then the resource is available for use by this CPU.

c: Unaffected
Z: Undefined
S: Set if MI is high; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

I I IMBIT I 0111101100001010 7 0111101100001010 7

The following sequence of instructions can be used to wait for the availability of a
resource.

LOOP:

AVAILABLE:

MBIT
JR PL,LOOP

!test multi-micro input!
!repeat until resource is available!

136

MREQ dst

Privileged Instruction

dst: R

MREQ
Multi-Micro Request

Operation:

Flags:

z -- a
if MI low (active) then S -- a

MO forced high (inactive)
else MO forced low (active)

repeat dst -- dst - 1 until dst a
if MI low (active) then S -- 1

else S -- a
MO forced high (inactive)

Z -- 1

This instruction is used to synchronize multiple processors' exclusive access to
shared hardware resources. A request for a resource is signalled through the multi­
micro input and output pins (MI and MO), with the Sand Z flags indicating the
availability of the resource after the MREQ instruction has been executed.

First, the Z flag is cleared. Then the MI pin is tested. If the MI pin is low (active),
the S flag is cleared and the MO pin is forced high (inactive),thus indicating that the
resource is not available and removing any previous request by the CPU from the
MO line.

If the MI pin is high (inactive), indicating that the resource may be available, a
sequence of machine operations occurs. First, the MO pin is forced low (active),
signalling a request by the CPU for the resource. Next, a finite delay to allow for
propagation of the signal to other processors is accomplished by repeatedly
decrementing the contents of the destination (a word register) until its value is zero.
The original value of the counter must be greater than 2. Then the MI pin is tested to
determine whether the request for the resource was acknowledged. If the MI pin is
low (active), the S flag is set to one, indicating that the resource is available and
access is granted. If the MI pin is still high (inactive), the S flag is cleared to zero,
and the MO pin is forced high (inactive), indicating that the request was not granted
and removing the request signal for the MO. Finally, in either case, the Z flag is set
to one, indicating that the original test of the MI pin caused a request to be made.
External hardware should inhibit bus request while MO is active to ensure and upper
bound on request timing.

S flag Z flag MO Indicates

a a high Request not signalled
(resource not available)

a high Request not granted
(resource not available)

low Request granted
(resource available)

c: Unaffected
Z: Set if request was signalled; cleared otherwise
S: Set if request was signalled and granted; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

137

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cyclesl Instruction Format Cyclesl

R: MREQ Rd ~1111011~ l!!l111011~12+7" 12+7"

!resource not available!

RO,#5
RO

!allow for propagation delay!
!multi-micro request with delay!
!in register RO!

MI,AVAILABLE
Z,NOT_GRANTED

LD
MREQ

JR
JR

NOT_AVAILABLE:

Example: TRY:

!request not granted!

AVAILABLE:
JR TRY !try again after awhile!

!use resource!

MRES !release resource!

Note 1: If the request is made, n = number of times the destination is decreP-1ented.. If the request is not made,
n = o.

138

Operation:

Privileged Instruction

MRES

MO is forced high (inactive)

MRES
Multi-Micro Reset

Flags:

This instruction is used to synchr-onize multiple processors' exclusive access to
shared hardware resources. The multi-micro output pin MO is forced high (inactive).
Forcing MO high (inactive) indicates that a resource controlled by the CPU is
available for use by other processors.

No flags affected.

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

MRES
101111011 100001001 I 101111011 100001001 I5 5

Example: MRES !signal that resource controlled by this CPU!
lis available to other processors!

139

MSET
Multi-Micro Set

MSET

Privileged Instruction

Operation:

Flags:

MO is forced low (active)

This instruotion is used to synchronize multiple processors' exclusive access to
shared hardware resources. The multi-micro output pin MO is forced low (active).
Forcing MO low (active) is used either to indicate that a resource controlled by the
CPU is not available to other processors, or to signal a request for a resource con­
trolled by some other processor.

No flags affected.

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

MSET
101111011 1000 0 1000 I 5 101111011 t 00001000 I 5

Example: MSET !CPU controlled resource not available!

140

MULT dst, src
MULTL

dst: R
src: R, 1M, IR, DA, X

MULT
Multiply

Operation:

Flags:

Word
dst (0:31) +- dst (0: 15) X src (0: 15)
Long
dst (0:63) +- dst (0:31) x src (0:31)

The low-order half of the destination operand (multiplicand) is multiplied by the
source operand (multiplier) and the product is stored in the destination. The con­
tents of the source are not affected. Both operands are treated as signed, two's com­
plement integers. For MULT, the destination is a register pair and the source is a
word value; for MULTL, the destination is a register quadruple and the source is a
long word value.

For proper instruction execution, the "dst field" in the instruction format encoding
must be even for MULT and must be a multiple of 4 (0, 4, 8, 12) for MULTL. If the
source operand in MULTL is a register, the "src field" must be even.

The initial contents of the high-order half of the destination register do not affect the
operation of this instruction and are overwritten by the result. The carry flag is set to
indicate that the upper half of the destination register is required to represent the
result; if the carry flag is clear, the product can be correctly represented in the same
precision as the multiplicand and the upper half of the destination merely holds a
sign extension.

The follOWing table gives execution times for word and long word operands in each
possible addressing mode.

src Word Long Word

NS SS SL NS SS SL
R 70 70 70 282 + 7*n 282 + 7*n 282 + 7*n

1M 70 70 70 282 + 7*n 282 + 7*n 282 + 7*n
IR 70 70 70 282 + 7*n 282 + 7*n 282 + 7*n

DA 71 72 74 283 +7*n 284 + 7*n 286 + Tn
X 72 72 75 284 + 7*n 284 +7*n 287 + 7*n

(n = number of bits equal to one in the absolute value of the low-order 16 bits of the destination operand)

When the multiplier is zero, the execution time of Multiply is reduced to the follOWing times:

src Word Long Word

NS SS SL NS SS SL
R 18 18 18 30 30 30

1M 18 18 18 30 30 30
IR 18 18 18 30 30 30

DA 19 20 22 31 32 34
X 20 20 23 32 32 35

c: MULT-set if product is less than _2 15 or greater than or equal to 2 15
; cleared

otherwise; MULTL-set if product is less than - 231 or greater than or equal to 231
;

cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

141

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Cycles2Mode Syntax Instruction Format Cycles2 Instruction Format

E!:1011001~R: MULT RRd, Rs E1011001~

MULTL RQd, RRs E1011000~ E!:1011000~

1M: MULT RRd, #data
001 0 1 1 0 0 1 I0000 I RRd 001 0 1 1 0 0 1 I0 000 I RRd

data data

MULTL RQd, #data
001011000100001 ROd 001011000100001 ROd

31 data (high) 16 31 data (high) 16

15 data (low) 0 15 data (low) 0

~1011001~IR: MULT RRd, <1?Rsl ~011001~

MULTL RQd, @Rsl ~ 0 1 1 00 0 IRH 0 I ROd I ~ 011000 IRRso'ol ROd I
DA: MULT RRd, address

011 01100 1J 00001 RRd o 1I 0 1 1 0 0 1 I0 0 0 0 I RRd
55

o I segment Iaddress offset

o 1I 0 1 1 0 0 1 , 0 0 0 0 I RRd

5L 11 segment 10000 0000

offset

MULTL RQd, address
o 1 I 0 1 1 0 0 0 I0 0 0 0 I ROd 011011000100001 ROd

55 Iaddress o I segment offset

011011000 !00001 ROd

5L 1I segment I0 0 0 0 0 0 0 0

offset

X: MULT RRd, addr(Rs)
o 1 I0 1 1 00 1 IRH 0 I RRd J o 1 1 0 1 1 0 0 1 I Rs *0 I RRd

55
address J 01 segment I offset

0110110011 Rso'O I RRd

5L 1 I segment I0 0 0 0 0 0 0 0

offset

MULTL RQd, addr(Rs)
10 11011000 l RHO 1 ROd I o 1I0 1 1 0 0 0 I Rs*0 I RQd

55 II address I o I segment offset

0110110001RSo'O! ROd

5L l' segment I0 0 0 0 0 000

offset

142

Example: If register RQO (composed of register pairs RRO and RR2) contains
%2222222200000031 (RR2 contains decimal 49). the statement

MULTL RQO,#l0

will leave the value %ooOOOOooOOOOOlEA (decimal 490) in RQO.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: Execution times for each instruction are given in the preceding tables.

143

NEG
Negate

Operation:

NEG dst
NEGB

dst ...- - dst

dst: R, IR, DA, X

Flags:

The contents of the destination are negated, that is, replaced by its two's comple­
ment value. Note that %8000 for NEG and %80 for NEGB are replaced by
themselves since in two's complement representation the negative number with
greatest magnitude has no positive counterpart; for these two cases, the V flag is set.

c: Cleared if the result is zero; set otherwise, which indicates a "borrow"
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if the result is %8000 for NEG, or %80 for NEGB: cleared otherwise
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R:
~ ~

NEG Rd
7 Rd

1
0010 1 7

NEGB Rbd

IR: NEG !!fRdl
~0011 0~1 Rd*O 10010 I 12 ~0011 oI!IRRd*0 I001 0 I 12

NEGB «<RdJ

DA: NEG address
10110011 olw10000 10010 I 011001101 wI 0000 1 001 0

NEGB address
I I

15 55 16
address oI segment I offset

011001101 w10000 I0010

5L 1 I segment I0 0 0 0 0 0 0 0 18
offset

X: NEG addr(Rd)
NEGB addr(Rd) I0 1 10 0 1 1 0Iwi Rd * 0 I0 0 10 I

16 55
o1I0 0 1 1 0IwIRd * 0 I0 0 10

16I address I oI segment I offset

o1 10 0 1 1 0IwI Rd * 0 I0 0 1 0

5L 1 I segment I0 0 0 0 0 0 0 0 19

offset

Example: If register R8 contains %05lF, the statement

NEG R8

will leave the value %FAEI in R8.

Note 1: \A../ord register in nonsegmented mode, register pair in ~,egmpnted mode.

144

Operation:

Flags:

NOP

No operation is performed.

No flags affected

NOP
No Operation

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

110001101 I 00000111 INOP 7 110001101 100000111 I 7

145

OR
Or

Operation:

OR dst, src
ORB

dst +- dst OR src

dst: R
src: R, 1M, IR, DA, X

Flags:

The source operand is logically ORed with the destination operand and the result is
stored in the destination. The contents of the source are not affected. The OR opera­
tion results in a one bit being stored whenever either of the corresponding bits in the
two operands is one; otherwise a zero bit is stored.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: OR-unaffected; ORB-set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: OR Rd, Rs
~ 4 ~ 4

ORB Rbd, Rbs

1M: OR Rd, #data
1001000101100001 Rd I 001000101100001 Rd

7 7
I data I data

ORB Rbd, #data
1001000100 1000 0 I Rd I 001000100100001 Rd

I I I 7 I
7

data data data data

IR: OR Rd, @Rsi
~ ~ 7

ORB Roo, @Rsl 7

DA: OR Rd, address
10110001 olwl 0000 1 Rd I 01100010lwl00001 Rd

ORB Rbd, address
I I 9 55 10

address o I segment I offset

0110001 olwl 0000 I Rd

5L 1 I segment I0 0 0 0 0000 12

offset

X: OR Rd, addr(Rs)
10 1 10 0 0 1 01 w IRs*0 I Rd I o 1 10 0 0 1 0 Iw IRs *0 I Rd

ORB Rbd, addr(Rs)
I I

10 55 10
address o I segment I offset

o 1 10 0 0 10Iw IRs *0 I Rd

I
5L 1 I segment I0 0 0 0 0 0 0 0 13

address

146

Example: If register RL3 contains O/OC3 (1000011) and the source operand is the immediate
value 0/07B (01111011), the statement

ORB RL3,#%7B

will leave the value %FB (1111011) in RL3.

Note 1: Word register in nonsegmented mode. register pair in segmented mode.

147

OTDR Privileged Instruction
(80TDR)
(Special) Output, Decrement and Repeat

OTDR dst, src, r
OTDRB
SOTDR
SOTDRB

dst: IR
src: IR

Operation:

Flags:

dst.- src
AUTODECREMENT src (by 1 if byte, by 2 if word)
r.-r-1
repeat until r = 0

This instruction is used for block output of strings of data. OTDR and OTDRB are
used for Standard I/O operation; SOTDR and SOTDRB are used for Special I/O
operation. The contents of the memory location addressed by the source register are
loaded into the I/O port addresses by the destination word register. I/O port ad­
dresses are 16 bits. The source register is then decremented by one if a byte instruc­
tion, or by two if a word instruction, thus moving the pointer to the previous element
of the string in memory. The word register specified by "r" (used as a counter) is
then decremented by one. The address of I/O port in the destination register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can output from 1 to 65536 bytes or 32768 word (the value for r
must not be greater than 32768 for OTDR or SOTDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format3 Cycles2 Instruction Format3 Cycles2

IR: OTDR @Rd,@Rsl, r I001 1 1 01 IwIRs * °11 01 S I 10 o 111 01 IwIRRs*011 01 S IOTDRB @Rd,@Rsl, r 11 + 10n 11 + 10n
SOTDR @Rd,@Rsl, r 10000

1
r IRd*olooool 10000

1

r IRd * °I°°°0 I
SOTDRB atRd,@Rsl, r

148

Example: In nonsegmented mode, if register Rll contains %OFFF, register R12 contains
0/0 B006, and R13 contains 6, the instruction

OTDR @Rll, @R12, R13

will output the string of words from locations O/OB006 to %AFFC (in descending
order of address) to port %OFFF. R12 will contain %AFFA, and R13 will contain O.
Rll will not be affected. The V flag will be set. In segmented mode, R12 would be
replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

Note 3: For SOTDR, S = 1; otherwise S = o.

149

OTIR Privileged Instruction
(SOTIR)
(Special) Output. Increment and Repeat

OTIR dst, src, r
OTIRB
SOTIR
SOTIRB

dst: IR
src: IR

Operation:

Flags:

dst __ src
AUTOINCREMENT src (by 1 if byte, by 2 if word)
r--r-1
repeat until r = a

This instruction is used for block output of strings of data. OTIR and OTIRB are used
for Standard I/O operation; SOTIR and SOTIRB are used for Special 1/0 operation.
The contents of the memory location addressed by the source register are loaded
into the 1/0 port addressed by the destination word register. I/O port addresses are
16 bits. The source register is then incremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the next element of the string in
memory. The word register specified by "r" (used as a counter) is then decremented
by one. The address of I/O port in the destination register is unchanged. The entire
operation is repeated until the result of decrementing r is zero. This instruction can
output from 1 to 65536 bytes or 32768 words (the value for r must not be greater than
32768 for OTIR or SOTIR).

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format3 Cycles Instruction Format3 Cycles

IR: OTIR ({f Rd, @ Rsl, r
OTIRB ({lRd, ({lRs] , r 100111 01/wl Ra *- 01001 sl 11 + 10n I0 0 1 1 1 0 1 IwIRRs*- °I00 1 S I 11 + 10n
SOTIR ~l Rd, ({t Rsi , r 10000

1
r IRd*olooool 100 00 1

r IRd *- 01 0000 I
SOTIRB ({lRd, (1?Rsl, r

150

Example: In nonsegmented mode, the following sequence of instructions can be used to output
a string of bytes to the speCified 1/0 port. The pointers to the I/O port and the start
of the source string are set, the number of bytes to output is set, and then the output
is accomplished.

LD
LDA
LD
OTIRB

Rl, #PORT
R2, SRCBUF
R3, #LENGTH
@Rl, @R2, R3

In segmented mode, a register pair would be used instead of R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

Note 3: For SOTIR, S = 1; otherwise S = O.

151

OUT
(SOUT)
(Special) Output

OUT dst, src
OUTB
SOUT dst, src
SOUTB

Privileged Instruction

dst: IR, DA
src: R

dst: DA
src: R

Operation:

Flags:

dst -- src

The contents of the source register are loaded into the destination, an Output or
Special Output port. OUT and OUTB are used for Standard I/O operation; SOUT
and SOUTB are used for Special I/O operation.

No flags affected.

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format 1 Cycles Instruction Format l Cycles

IR: OUT @Rd, Rs
loo11111~ IOO111111~10 10OUTB @Rd, Rbs

DA: OUT port, Rs
IOO111011 Wl Rs 1011 S I IOO111011 wl Rs 1011 S I

OUTB port, Rbs 12 12

SOUT port, Rs I port I I port I
SOUTB port, Rbs

Example: If register R6 contains %5252, the instruction

OUT % 1120, R6

will output the value %5252 to the port %1120.

Note 1: For SOUL S = 1; otherwise S = o.

152

OUTD dst, src, r
OUTDB
SOUTO
SOUTDB

Privileged Instruction OUTD
(SOUTO)

(Special) Output and Decrement

dst: IR
src: IR

Operation:

Flags:

dst+- src
AUTODECREMENT src (by 1 if byte, by 2 if word)
r+-r-1

This instruction is used for block output of strings of data. OUTD and OUTDB are
used for Standard I/O operation; SOUTD and SOUTDB are used for Special I/O
operation. The contents of the memory location addressed by the source register are
loaded into the I/O port addressed by the destination word register. I/O port ad­
dresses are 16 bits. The source register is then decremented by one if a byte instruc­
tion, or by two if a word instruction, thus moving the pointer to the previous element
of the string in memory. The word register specified by "r" (used as a counter) is
then decremented by one. The address of the I/O port in the destination register is
unchanged.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
0: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format 2 Cycles Instruction Format2 Cycles

IR: OUID @Rd, @Rsl, r
OUIDB @Rd, @Rsl, r I 0 0 1 1 1 0 1 IW !Rs * 0 11 0 1 5 I

21
100 1 1 1 0 1 Iw IRRs *0 11 0 1 5 1

21
S~UID e. Rd, e! Rs', r 10000 1 r IRd '" 0 11000 1 10000 1 r IRd '" 0 11 0 0 0 1

SOUIDB @Rd, @Rsl, r

Example: In segmented mode, if register R2 contains the I/O port address %0030, register RR6
contains % 12005552 (segment % 12, offset %5552), the word at memory location
% 12005552 contains % 1234, and register R8 contains % 1001, the instruction

OUTD @R2, @RR6, R8

will output the value %1234 to port %0030 and leave the value %12005550 in RR6,
and % 1000 in R8. Register R2 will not be affected. The V flag will be cleared. In
nonsegmented mode, a word register would be used instead of RR6.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: For SQUID, S = 1; otherwise S = O.

153

OUTI Privileged Instruction
(SOUTI)
(Special) Output and Increment

OUTI dst, src, r
OUTIB
SOUTI
SOUTIB

dst: IR
src: IR

Operation:

Flags:

dst +- src
AUTOINCREMENT src (by 1 if byte, by 2 if word)
r+-r-l

This instruction is used for block output of strings of data. OUTI and OUTIB are
used for Standard I/O operation; SOUTI and SOUTIB are used for Special I/O
operation. The contents of the memory location addressed by the source register are
loaded into the I/O port addressed by the destination word register. I/O port ad­
dresses are 16-bit. The source register is then incremented by one if a byte instruc­
tion, or by two if a word instruction, thus moving the pointer to the next element of
the string in memory. The word register specified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the destination register is un­
changed.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruc::tion Format2 Cycles Instruc::tion Format 2 Cyc::les

IR: aUII @Rd, @Rsl, r
aUIIB @Rd, @Rsl, r 100111 01 IwIRS * 0 I0015I

21
10 0 1 1 1 0 1 IwIRRs *0 I0 0 1 S 1

21
SaUTI @Rd, @Rsl, r 10 000 1 r IRd*01 1000 1 10000 1 r IRd * 011000 I
SaUTIB @Rd, @Rsl, r

154

!load I/O address!
!load start of string!
!initialize counter!

Example: This instruction can be used in a "loop" of instructions which outputs a string of
data, but an intermediate operation on each element is required. The following
sequence outputs a string of 80 ASCII characters (bytes) with the most significant bit
of each byte set or reset to provide even parity for the entire byte. Bit 7 of each
character is initially zero. This example assumes nonsegmented mode. In segmented
mode, R2 would be replaced with a register pair.

LD RI, #PORT
LDA R2, SRCSTART
LD R3, #80

LOOP:
TESTB @R2 !test byte parity!
JR PE, EVEN
SETB @R2, #7 !force even parity!

EVEN:
OUTIB @RI, @R2, R3 !output next byte!
JR NOV, LOOP !repeat until counter O!

DONE:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: For SOUT!, S = 1; otherwise S = o.

155

POP
Pop

POP dst, src
POPL

dst: R, IR, DA, X
src: IR

Operation:

Flags:

dst -- src
AUTOINCREMENT src (by 2 if word, by 4 if long)

The contents of the location addressed by the source register (a stack pointer) are
loaded into the destination. The source register is then incremented by a value
which equals the size in bytes of the destination operand, thus removing the top ele­
ment of the stack by changing the stack pointer. Any register except RO (or RRO in
segmented mode) can be used as a stack pointer.

The same register cannot be used in both the source and destination addressing
fields.

No flags affected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: E10101111~POP Rd, @Rsl E1010111~ 8 8

POPL RRd, a'Rs! ~, 0 1 0 1 0 1 IRS. * 0 I RRd I 12 ~I 01 01 01 IRRH 01 RRd I 12

IR: POP @Rd1, @Rsl
~10101111~ 12 ~ 0101111 RRs*08 12

POPL @Rd1, @Rs! ~I 010101 IRs*O IRd *0 I 19 E1 010101 IRRs,t°IRRd,t°1 19

DA: POP address, @ Rsl I0 1I 0 1 0 1 1 1 1 Rs,t 0 I0 0 0 0 I 55 01 I 0 1 01 1 1 IRRH 0i000016 16
I address I o I segment I offset

011 0101 11 IRRs,tO 10000

5L 1I segment I 0 0 0 0 0 0 0 0 18

offset

POPL address, Q. Rsl I0 1I0 1 0 1 0 1 I Rs,t 0 I0 0 0 0 I 011 010101 IRRHO 10000
23 55 23

I address I o I segment I offset

0110101011RRHoI0000

5L 1 I segment I 0 0 0 0 0 0 0 0 25
offset

156

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

X: POP addr(Rd), @Rsl I0 1I0 1 0 1 1 1 IRu 0 I Rd;O 0 I 011010111 [RRHol Rd;OO I
I I 16 55 16

address oI segment I offset I

0110101111RRs;OolRd;OO

5L 1 [segment I 0 0 0 0 0 0 0 0 19

offset

POPL addr(Rd), @Rsi
1011 010101 I RuO I Rd;OO I

23 55
011 01 01 01 IRRs;O 0 IRd;O 0 I

23
I address I oI segment I offset I

011 0101011RRs;oO! Rd;OO

5L 1 I segment I 0 0 0 0 0 0 0 0 26

offset

Example: In nonsegmented mode, if register R12 (a stack pointer) contains %1000, the word at
location % 1000 contains %0055, and register R3 contains %0022, the instruction

POP R3, @R12

will leave the value %0055 in R3 and the value %1002 in R12. In segmented mode,
a register pair must be used as the stack pointer instead of R12.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

157

PUSH
Push

PUSH dst, src
PUSHL

dst: IR
src: R, 1M, IR, DA, X

Operation:

Flags:

AUTODECREMENT dst (by 2 if word, by 4 if long)
dst.- src

The contents of the destination register (a stack pointer) are decremented by a value
which equals the size in bytes of the source operand. Then the source operand is
loaded into the location addressed by the updated destination register, thus adding a
new element to the top of the stack by changing the stack pointer. Any register
except RO (or RRO in segmented mode) can be used as a stack pointer.

With PUSHL, the Same register cannot be used for both the source and destination
addressing fields.

No flags affected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: ~O10011~ B0100lll~PUSH «L Rd l , Rs 9 9

PUSHL @Rd1, RRs ~0100011~ 12 B 010001 IRRd*ol RRs I 12

1M: PUSH «L Rdi , #data
10010Ol101I Rd *0/10011 0010011011RRd*0110011

12 12
I data I data I

EJ0100lll~ B010011~PUSH If! Rd1, «L Rsl 13 13

EJ 01 000 1 I Rd * 0 IRS * 0I 20 EI 01000 lI RRd *oIRRS*ol 20

DA: PUSH VI Rd , address
1011010011/ Rd*olooool 011010011!RRd*0Iooool

14 55 14
I address I o I segment! offset I

0110100111RRd*010000

5L 11 segment I 00000000 16
offset

PUSHL@Rd1, address 0110100011RRd*0100001
21 55 I 21

o 1 segment I offset

0110100011RRd*010000

5L 11 segment I 00000000 23

offset

I I I I

158

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

X: PUSH @Rdl, addr(Rs)
101 1010011 I Rd;eO 1 RHO I 011 0100111RRd;e01 Rs;eO

14 55 14
I address I oj segment 1 offset

011 010011IRRd;e0! Rs;eO

5L 1 I segment '0 0 0 0 0 0 0 0 17

offset

PUSHL @Rdl, addr(Rs)
10 1 1010001 IRd;eO 1Rs;eO I 011 0100011RRd;e01 Rs;eO

21 55 21
I address I oI segment 1 offset

o11 0 1 00 0 1 IRRd;e 0IRS;e 0

5L 1 1 segment I 0 0 0 0 0 0 0 0 24

offset

Example: In nonsegmented mode, if register R12 (a stack pointer) contains %1002, the word at
location % 1000 contains %0055, and register R3 contains %0022, the instruction

PUSH @R12, R3

will leave the value %0022 in location %1000 and the value %1000 in R12. In
segmented mode, a register pair must be used as the stack pointer instead of R12.

Note 1: Word register is used in nonsegmented mode, register pair in segmented mode.

159

RES
Reset Bit

RES dst, src
RESB

dst: R, IR, DA, X
src: 1M
or
dst: R
src: R

Operation: dst(src) .,.- 0

This instruction clears the specified bit within the destination operand without
affecting any other bits in the destination. The source (the bit number) can be
specified as either an immediate value (Static), or as a word register which contains
the value (Dynamic). In the second case, the destination operand must be a register,
and the source operand must be RO through R7 for RESB, or RO through R15 for
RES. The bit number is a value from 0 to 7 for RESB, or 0 to 15 for RES, with 0
indicating the least significant bit.

Only the lower four bits of the source operand are used to specify the bit number for
RES, while only the lower three bits of the source operand are used with RESB.
When the source operand is an immediate value, the "src field" in the instruction
format encoding contains the bit number in the lowest four bits for RES, or the
lowest three bits for RESB.

Flags: No flags affected

Reset Bit Static

L.....--_o_ffse_t-----111_

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: RES Rd, #b
~ 4 ~ 4

RESB Rbd, #b

IR: RES (/I Rd', #b
~ 11 ~ 11

RESB ~I Rd J , #b

DA: RES address, #b I011100011wlooooi b I o11100011wlooooI bRESB address, /fb
I I

13 55 14
address oI segment 1 offset

o11100011wlooool b

5L 1I segment 10000 0000 16

offset

X: RES addr(Rd), #b I0111 00011wIRd '" 0 1 b I o1110 0011 wI Rd '" 0 I bRESB addr(Rd), #b
I I

14 55 14
address oI segment 1 offset

I 0111000 'Iwl Rd" I b

5L 11! segment 10000 0000 ! 17

160

Reset Bit Dynamic

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: RES Rd, Rs I0 0 11 0 0 0 1Iw 1 0 0 0 0 1 Rs I 1001100011wl 0000 I Rs JRESB Rbd, Rs 2
I 0 0 0 0 I Rd 10 0 0 0 1 0 0 0 0 I

10
100001 Rd 10000100001

10

Example: If register RL3 contains %B2 (0110010), the instruction

RESB RL3, #1

will leave the value %BO (0110000) in RL3.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Word register 0-7 only.

161

RESFLG
Reset Flag

RESFLG flag flag: C, z, s, P, V

Operation: FLAGS (4:7) FLAGS (4:7) AND NOT instruction (4:7)

Flags:

Example:

Any combination of the C, z, s, P or V flags are cleared to zero if the corresponding
bits in the instruction are one. If the bit in the instruction corresponding to a flag is
zero, the flag will not be affected. All other bits in the FLAGS register are
unaffected. Note that the P and V flags are represented by the same bit.

There may be one, two, three, or four operands in the assembly language statement,
in any order.

c: Cleared if speCified, unaffected otherwise
Z: Cleared if speCified, unaffected otherwise
S: Cleared if speCified, unaffected otherwise
P/V: Cleared if speCified, unaffected otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

RESFLG flags ~ 0011 01 Ie Z S PIYI 0011 I 7 ~ 0 0 1 1 0 1 Ie Z S PlY! 00 1 1 I 7

If the C, S, and V flags are set 0) and the Z flag is clear (0), the statement

RESFLG C. V

will leave the S flag set 0), and the C, Z, and V flags cleared (0).

162

RET
Return

RETcc

Operation: Nonsegmented
if cc is true then
PC-- @SP
SP -- SP + 2

Segmented
if cc is true then
PC -- @SP
SP -- SP + 4

Flags:

This instruction is used to return to a previously executed procedure at the end of a
procedure entered by a CALL or CALR instruction. If the condition specified by
"ce" is satisfied by the flags in the FCW, then the contents of the location addressed
by the processor stack pointer are popped into the program counter (PC). The next
instruction executed is that addressed by the new contents of the PC. See section
6.6 for a list of condition codes. The stack pointer used is Rl5 in nonsegmented
mode, or RRl4 in segmented mode. If the condition is not satisfied, then the instruc­
tion following the RET instruction is executed. If no condition is specified, the return
is taken regardless of the flag settings.

No flags affected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cyclesl Instruction Format Cyclesl

B011110~ B011110E:0RET cC 10/7 13/7

Example: In nonsegmented mode, if the program counter contains %2550, the stack pointer
(RI5) contains %3000, location %3000 contains %1004, and the Z flag is clear, then
the instruction

RET NZ

will leave the value %3002 in the stack pointer and the program counter will contain
%1004 (the address of the next instruction to be executed).

Note 1: The two values correspond to return taken and return not taken.

163

RL
Rotate Left

RL dst, src
RLB

dst: R
src: 1M

Operation: Do src times: (src = 1 or 2)
tmp -- dst
c -- tmp (msb)
dst(O) .- tmp (msb)
dst (n + 1) -- tmp (n) (for n o to msb - 1)

...----__-----,0fJ
Word: 0~15

0~7 °IJByte:

The contents of the destination operand are rotated left one bit position if the source
operand is 1, or two bit positions if the source operand is 2. The most significant bit
(msb) of the destination operand is moved to the bit 0 position and also replaces the
C flag.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

Flags: c: Set if the last bit rotated from the most significant bit position was 1; cleared
otherwise

Z~ Set if the result is zero; cleared otherwise
S~ Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax1 Instruction Format2 Cycles3 Instruction Format2 Cycles3

R: RL Rd, #n
~ 617~ 617RLB Rbd, #n

Example: If register RH5 contains %88 (l 0001000), the statement

RLB RH5

will leave the value %11 (00010001) in RH5 and the Carry flag will be set to one.

Note 1: n = source operand.
Note 2: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits.
Note 3: The given execuliu!l lirIles dfe fUI !'ui.dliu!l Ly 1 dIlJ 2 lJll~ n::!~fJe(;tiV'ely.

164

RLC dst, src
RLCB

dst: R
src: 1M

RLC
Rotate Left through Carry

Operation: Do src times: (src = 1 or 2)
tmp __ c
c- dst (msb)
dst (n + 1)- dst (n) (for n
dst (0) -- tmp

msb -1 to 0)

Flags:

Word:
L0 15C-1

Byte: L[iH7 o~

The contents of the destination operand with the C flag are rotated left one bit posi­
tion if the source operand is I, or two bit positions if the source operand is 2. The
most significant bit (msb) of the destination operand replaces the C flag and the
previous value of the C flag is moved to the bit 0 position of the destination during
each rotation.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

C: Set if the last bit rotated from the most significant bit position was 1; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntaxl Instruction Format2 Cycles3 Instruction Format2 Cycles3

R:
~ B110011w~RLC Rd, #n

6/7 6/7
RLCB Rbd, #n

Example: If the Carry flag is clear (= 0) and register RO contains %800F (000000000001111),
the statement

RLC RO,#2

will leave the value %003D (0000000000111101) in RO and clear the Carry flag.

Note 1: n = source operand.

Note 2: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits.

Note 3: The given execution times are for rotation by 1 and 2 bits respectively.

165

BLDB
Rotate Left Digit

RLDB link, src src: R
link: R

Operation: tmp (0:3) .,.- link (0:3)
link (0:3) .,.- src (4:7)
src (4:7) .,.- src (0:3)
src (0:3) .,.- tmp (0:3)

link
o

I src

Flags:

The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the left by one BCD digit
(four bits). The lower digit of the source is moved to the upper digit of the source;
the upper digit of the source is moved to the lower digit of the link, and the lower
digit of the link is moved to the lower digit of the source. The upper digit of the link
is unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift
to the left a string of BCD digits, thus multiplying it by a power of ten. The link
serves to transfer digits between successive bytes of the string. This is analogous to
the use of the Carry flag in multiple precision shifting using the RLC instruction.

The same byte register must not be used as both the source and the link.

c: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Undefined
V: Unaffected
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: RLDB RbI, Rbs B111110~ 9 B111110~ 9

166

Example: If location 100 contains the BCD digits 0,1 (00000001)/ location 101 contains 2,3
(00100011), and location 102 contains 4,5 (01000101)

100 GJ 101 rn 102 rn
the sequence of statements

LD

LD
CLRB

LOOP:

R3,#3

R2,#102
RHI

!set loop counter for 3 bytes!
1(6 digits)!

!set pointer to low-order digits!
!zero-filliow-order digit!

LDB RLl,@R2 !get next two digits!
RLDB RHl,RLl !shift digits left one position!
LDB @R2,RLl Jreplace shifted digits!
DEC R2 !advance pointer!
DJNZ R3, LOOP !repeat until counter is zero!

will leave the digits 1,2 (00010010) in location 100, the digits 3,4 (00110100) in loca­
tion 101/ and the digits 5,0 (01010000) in location 102.

100 C2El 101 rn 102 rn
In segmented mode, R2 would be replaced by a register pair.

167

RR
Rotate Right

RR dst, src
RRB

dst: R
src: 1M

Operation: Do src times: (src = 1 or 2)
tmp -- dst
c -- tmp (0)
dst (msb) -- tmp (0)
dst (n - 1) -- tmp (n) (for n 1 to msb)

Byte:

Flags:

Word: [1-15
----,0~GJ

[,_7_---,0~GJ

The contents of the destination operand are rotated right one bit position if the
source operand is I, or two bit positions if the source operand is 2. The least signifi­
cant bit of the destination operand is moved to the most significant bit (msb) and
also replaces the C flag.

The source operand may be ~mitted from the assembly language statement and thus
defaults to the value 1.

c: Set if the last bit rotated from the least significant position was l; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Formatl Cycles2 Instruction Format1 Cycles2

R: RR Rd, #n
~ 6/7~ 6/7

RRB Rbd, #n

Example: If register RL6 contains %31 (00110001), the statement

RRB RL6

will leave the value %98 (0011000) in RL6 and the Carry flag will be set to one.

Note I: s = 0 for rotation by I bit; s = 1 for rotation by 2 bits.

Note 2: The given execution times are for rotation by 1 and 2 bits respectively.

168

RRC dst, src
RRCB

dst: R
src: 1M

RRC
Rotate Right through Carry

Operation: Do src times: (src = 1 or 2)
tmp -- c
c- dst (0)
dst (n) -- dst (n + 1) (for n
dst (msb) __ tmp

o to msb - 1)

Word:

Byte:

[""'---1
15 -----°r--GJ

~_7_----,0~

Flags:

The contents of the destination operand with the C flag are rotated one bit position if
the source operand is 1, or two bit positions if the source operand is 2. The least
significant bit of the destination operand replaces the C flag and the previous value
of the C flag is moved to the most significant bit (msb) position of the destination
during each rotation.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

C: Set if the last bit rotated from the least significant bit position was 1; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format l Cycles2 Instruction Format 1 Cycles2

RRC Rd, #n
~ 6/7~ 6/7RRCB Rbd, #n

Example: If the Carry flag is clear (= 0) and the register RO contains %OODD
(00000000110 III01), the statement

RRC RO,#2

will leave the value %8037 (10000000110111) in RO and clear the Carry flag.

Note 1: s = 0 for rotation by I bit; s = I for rotation by" 2 bits

Note 2: The given execution times are for roiation by I and 2 bits respectively.

169

RRDB
Rotate Right Digit

RRDB link, src src: R
link: R

Operation:

Flags:

tmp (0:3) ..,.- link (0:3)
link (0:3) ..,.- src (0:3)
src (0:3) ..,.- src (4:7)
src (4:7) +- tmp (0:3)

,....--_43 I 0 7+ 43:
link I I I l.....-_......----JI src

L....-__ t
L

- -----1_

The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the right by one BCD digit
(four bits).

The lower digit of the source is moved to the lower digit of the link; the upper digit
of the source is moved to the lower digit of the source and the lower digit of the link
is moved to the upper digit of the source.

The upper digit of the link is unaffected. In multiple-digit BCD arithmetic, this
instruction can be used to shift to the right a string of BCD digits, thus dividing it by
a power of ten. The link serves to transfer digits between successive bytes of the
string. This is analogous to the use of the carry flag in multiple precision shifting
using the RRC instruction.

The same byte register must not be used as both the source and the link.

c: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Undefined
V: Unaffected
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: RRDB RbI, Rbs
[£011111001 Rbs I Rbi I 9 11 0 I1 1 1 1 00 I Rbs I Rbi I 9

170

Example: If location 100 contains the BCD digits 1,2 (00010010), location 101 contains 3,4
(00110100), and location 102 contains 5,6 (01010110)

100 r:T:l
L...L:.J

101 r:;T';1

~
102 r:T':1

L..:.L:.J
the sequence of statements

LD

LD
CLRB

LOOP:

R3,#3

R2,#100
RHI

!set loop counter for 3 bytes (6
digits)!

!set pointer to high-order digits!
!zero-fill high-order digit!

LDB RLl,@R2 !get next two digits!
RRDB RHl,RLl !shift digits right one position!
LDB @R2,RLl !replace shifted digits!
INC R2 !advance pointer!
DJNZ R3,LOOP !repeat until counter is zero!

will leave the digits 0,1 (00000001) in location 100, the digits 2,3 (00100011) in loca­
tion 101, and the digits 4,5 (01000101) in location 102. RHI will contain 6, the
remainder from dividing the string by 10.

100 rn 101r:T:1
L.:...L:J

102 rn
In segmented mode, R2 would be replaced by a register pair.

171

SBC
Subtract with Carry

SBC dst, src
SBCB

dst: R
src: R

Operation:

Flags:

dst .- dst - src - C

The source operand, along with the setting of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the
source are not affected. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. In multiple precision arithmetic, this
instruction permits the carry ("borrow") from the subtraction of low-order operands
to be subtracted from the subtraction of high-order operands.

C: Cleared if there is a carry from the most significant bit of the result; set
otherwise, indicating a "borrow"

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared otherwise
0: SBC-unaffected; SBCB-set
H: SBC-unaffected; SBCB-cleared if there is a carry from the most significant bit

of the low-order four bits of the result; set otherwise, indicating a "borrow"

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: SBC Rd, Rs
~ 5~ 5SBCB Rbd, Rbs

Example: Long subtraction may be done with the following instruction sequence, assuming RO,
RI contain one operand and R2, R3 contain the other operand:

SUB Rl,R3 !subtract low-order words!
SBC RO,R2 !subtract carry and high-order words!

If RO contains ~/o0038, RI contains %4000, R2 contains %OOOA and R3 contains
%FOOO, then the above two instructions leave the value %002D in RO and %5000
in RI.

172

Operation:

SC src

Nonsegmented
SP -- SP - 4
@SP -- PS
SP -- SP - 2
@SP __ instruction

PS -- System Call PS

src: 1M

Segmented
SP -- SP - 6
@SP ...- PS

SP -- SP - 2
@SP -- instruction
PS -- System Call PS

SC
System Call

This instruction is used for controlled access to operating system software in a man­
ner similar to a trap or interrupt. The current program status (PS) is pushed on the
system processor stack, and then the instruction itself, which includes the source
operand (an 8-bit value) is pushed. The PS includes the Flag and Control Word
(FCW), and the updated program counter (PC). (The updated program counter
value used is the address of the first instruction following the SC instruction.)

The system stack pointer is always used (R15 in nonsegmented CPUs, or RR14 in
segmented CPUs), regardless of whether system or normal mode is in effect. The
new PS is then loaded from the Program Status block associated with the System
Call trap (see section 6.2.4), and control is passed to the procedure whose address is
the program counter value contained in the new PS. This procedure may inspect the
source operand on the top of the stack to determine the particular software service
desired.

The following figure illustrates the format of the saved program status in the system
stack:

STACK POINTER
AFTER TRAP
OR INTERRUPT

STACK POINTER
BEFORE TRAP
OR INTERRUPT

NONSEGMENTED

LOW
ADDRESS

IDENTIFIER

FCW

PC

HIGH
ADDRESS

SPAFTER_

SP BEFORE_

SEGMENTED

IDENTIFIER

FCW

PC SEGMENT

PC OFFSET
f-------

---1 WORD--

LOW
ADDRESS

HIGH
ADDRESS

Flags:

The segmented 28000s always execute the segmented mode of the System Call in­
struction, regardless of the current mode, and set the Segmentation Mode bit (SEG) to
segmented mode (= 1) at the start of the SC instruction execution. All 28000s set
the SystemlNormal Mode bit (SIN) to system mode (= 1) at the start of the SC in­
struction execution. The status pins reflect the setting of these control bits during the
execution of the SC instruction. However, the setting of SEG and SIN does not affect
the value of these bits in the old FCW pushed onto the stack. The new value of the
FCW is not effective until the next instruction, so that the status pins will not be
affected by the new control bits until after the SC instruction execution is completed.

The "src field" in the instruction format encoding contains the source operand. The
"src field" values range from 0 to 255 corresponding to the source values 0 to 255.

Flags loaded from Program Status Area

173

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

1M: SC #src I01111111 I Isrc 33 I 01111111 I src I 39

Example: In the nonsegmented Z80Q2, if the contents of the program counter are % 1000, the
contents of the system stack pointer (HIS) are %3006, and the Program Counter and
FCW values associated with the System Call trap in the Program Status Area are
%2000 and %5800, respectively, the instruction

SC #3 !system call, request code = 3!

causes the system stack pointer to be decremented to %3000. Location %3000 con­
tains %7F03 (the SC instruction). Location %3002 contains the old FCW, and loca­
tion %3004 contains %1002 (the address of the instruction following the SC instruc­
tion). System mode is in effect, and the Program Counter contains the value %2000,
which is the start of a System Call trap handler, and the FCW contains %5800.

174

SOA dst, src
SOAB
SOAL

dst: R
src: R

SDA
Shift Dynamic Arithmetic

Operation: Right (src negative)
Do - src times:

c +- dst (0)
dst (n) +- dst (n + 1) (for n 0 to msb - 1)
dst (msb) +- dst (msb)

Left (src positive)
Do src times:

c +- dst (msb)
dst (n + 1) +- dst (n) (for n = msb - 1 to 0)
dst (0) +- 0

Right Left

Flags:

7 0 7 0

Byte: c9 l--0 &-1 1_0

15 0 15 0

Word: CS=I ~ &-1 r-o

15 0 15 0

Long:

~
Rn

~ ~
Rn

20Rn + 1

15

Rn+ 1

n=O,2,4, ... ,14 n=O,2,4, ... ,14

The destination operand is shifted arithmetically left or right by the number of bit
positions specified by the contents of the source operand, a word register.

The shift count ranges from -8 to +8 for SDAB, from -16 to + 16 for SDA and from
-32 to +32 for SDAL. If the value is outside the specified range, the operation is
undefined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The sign bit is replicated in shifts to the right, and the C
flag is loaded from bit 0 of the destination. The least significant bit is filled with 0 in
shifts to the left, and the C flag is loaded from the most significant bit (msb) of the
destination. The setting of the carry bit is undefined for zero shift.

c: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during shifting; cleared otherwise
0: Unaffected
H: Unaffected

175

Segmented Mode

Instruction Format Cycles1

Nonsegmented Mode

Instruction Format Cycles1

Destination
Addressing Assembler Language 1------------,.----+-----------.,..---

Mode Syntax

R: SDA Rd, Rs

SDAB Rbd, Rs

SDAL RRd, Rs

15 +3n

15 +3n

15+3n

15+3n

15+3n

15+3n

Example: If register R5 contains %C705 (11000 III 00000 101) and register R1 contains - 2
(%FFFE or 1111111111111110), the statement

SDA R5,Rl

performs an arithmetic right shift of two bit positions, leaves the value %FICI
(1111000III 000001) in R5, and clears the Carry flag.

Note I: n = number of bit positIOns; the execution time for n =0 is the same as for n = 1.

176

SOL dst, src
SOLB
SOLL

dst: R
src: R

SDL
Shift Dynamic Logical

Operation: Right (src negative)
Do - src times

c +- dst (0)
dst (n) +- dst (n + 1) (for n 0 to msb - 1)
dst (msb) +- 0

Left (src positive)
Do src times

c +- dst (msb)
dst (n + 1) +- dst (n) (for n msb - 1 to 0)
dst (0) +-

Right Left

Byte: o-r ----'l-{~ 0-{'---- I-- o

Word: o-I_5

.....l-G 0~_5 1-o
15 0 1~5------------.,;o

Long: .-1 '" 1~ '" o~o
L-r-----Rn-+-1-----~ W..;..5-----R-n-+-1------i~

n=0,2A, ... ,14 n=0,2,4, ... ,14

Flags:

The destination operand is shifted logically left or right by the number of bit posi­
tions specified by the contents of the source operand, a word register. The shift
count ranges from - 8 to +8 for SDLB, from - 16 to + 16 for SDL and from - 32 to
+32 for SDLL. If the value is outside the specified range, the operation is
undefined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The most significant bit (msb) is filled with 0 in shifts to the
right, and the C flag is loaded from bit 0 of the destination. The least significant bit
is filled with 0 in shifts to the left, and the C flag is loaded from the most significant
bit of the destination. The setting of the carry bit is undefined for zero shift.

c: Set if the last bit shifted from the destination was I, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Undefined '
0: Unaffected
H: Unaffected

177

Segmented Mode

Instruction Format Cycles

Nonsegmented Mode

Instruction Format Cycles

Destination
Addressing Assembler Language 1------------......----+------------.----

Mode Syntax

R: SDL Rd, Rs

SDLB Rbd, Rs

SDLL RRd, Rs

15+3n

15+3n

15+3n

Example: If register RL5 contains %B3 (0110011) and register R1 contains 4
(0000000000000100), the statement

SDLB RL5,R1

performs a logical left shift of four bit positions, leaves the value %30 (00110000) in
RL5, and sets the Carry flag.

Note I: n = number of bit positions; the execution time for n = 0 is the same as lor n

178

Operation:

SET dst, src
SETB

dst(src) ...- 1

dst: R, IR, DA, X
src: 1M
or
dst: R
src: R

SET
Set Bit

Flags:

Sets the specified bit within the destination operand without affecting any other bits
in the destination. The source (the bit number) can be specified as either an immedf­
ate value (Static), or as a word register which contains the value (Dynamic). In the
second case, the destination operand must be a register, and the source operand
must be RO through R7 for SETB, or RO through R15 for SET. The bit number is a
value from 0 to 7 for SETB or 0 to 15 for SET, with 0 indicating the least significant
bit.

Only the lower four bits of the source operand are used to specify the bit number for
SET, while only the lower three bits of the source operand are used with SETB.
When thE) source operand is an immediate value, the "src field" in the instruction
format encoding contains the bit number in the lowest four bits for SET, or the
lowest three bits for SETB.

No flags affected

Set Bit Static

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: SET Rd, #b
~ 4 ~ 4SETB Rbd, #b

IR: SET Q' Rd1, #b
~ 11 ~ 11SETB Q, Rd i , #b

DA: SET address, #b
101110010lwl00001 b I 01110010[w100001 b

SETB address, #b
I I

13 55 14
address oI segment I offset

01110010lwl00001 b

5L 1 I segment I 0 0 0 0 0 0 0 0 16

offset

X: SET addr(Rd), #b I0 1 110 0 10Iw IRd,< 0 I b I 55011100101w1Rd,<01 bSETB addr(Rd), #b 14 14
I address I oI segment I offset

01110010IwIRd,<°1 b

5L 1 I segment I 0 0 0 0 0 0 0 0 17

offset

179

Set Bit Dynamic

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: SET Rd, Rs I0 0 110 0 1 0 IwI0 0 0 0 1 Rs I I0 0 110 0 10IwI0 0 0 0 I Rs I
SETB Rbd, Rs2 I 0 0 0 0 I Rd I 0 0 0 0 0 0 0 0 I 10 I 0 0 0 0 1 Rd I 0 0 0 0 0 0 0 01 10

Example: If register RL3 contains %B2 (10110010) and register R2 contains the value 6, the
instruction

SETB RL3, R2

will leave the value %F2 (1110010) in RL3.

Note I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: Word registers 0-7 only.

180

SETFLG flag Flag: C, Z, S, P, V

SETFLG
Set Flag

Operation:

Flags:

FLAGS (4:7) .- FLAGS (4:7) OR instruction (4:7)

Any combination of the C, Z, S, P or V flags are set to one if the corresponding bits
in the instruction are one. If the bit in the instruction corresponding to a flag is zero,
the flag will not be affected. All other bits in the FLAGS register are unaffected.
Note that the P and V flags are represented by the same bit.

There may be one, two, three, or four operands in the assembly language statement,
in any order.

c: Set if specified; unaffected otherwise
Z: Set if specified; unaffected otherwise
S: Set if specified; unaffected otherwise
P/V: Set if specified; unaffected otherwise
D: Unaffected
H: Unaffected

Example:

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

SETFLG flags
110001101 ICZSPIVI 0001 I 7 110001101 \CZSPIVI 0001 I 7

If the C, Z, and S flags are all clear (0), and the P flag is set (1), the statement

SETFLG C

will leave the C and P flags set (1), and the Z and S flags cleared (0).

181

SLA
Shift Left Arithmetic

SLA dst, src
SLAB
SLAL

dst: R
src: 1M

Operation: Do src times:
c dst (msb)
dst (n + 1) dst (n) (for n
dst (0) 0

7 0

msb - 1 to 0)

Byte: 0-i~ I-o
15 0

Word: 0-i~ I-o
15 0

Long:

~~,=====R="====='o~l:J
Y...., R_"_+1 I--o

n = 0, 2, 4, ... , 14

Flags:

The destination operand is shifted arithmetically left the number of bit positions
specified by the source operand. For SLAB, the source is in the range 0 to 8; for
SLA, the source is in the range 0 to 16; for SLAL, the source is in the range 0 to 32.
The least significant bit of the destination is filled with 0, and the C flag is loaded
from the sign bit of the destination. The operation is the equivalent of a multiplica­
tion of the destination by a power of two with overflow indication. A shift of zero
positions does not affect the destination; however, the flags are set according to the
destination value with the C flag undefined.

The src held is encoded in the instruction format as the 8- or 16-bit two's comple­
ment positive value of the source operand. For each operand size, the operation is
undefined if the source operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

c: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during shifting; cleared otherwise
D: Unaffected
H: Unaffected

182

Segmented Mode

Instruction Format Cyclesl

Nonsegmented Mode

Instruction Format Cyclesl

Destination
Addressing Assembler Language 1------------,-----+--------------.---

Mode Syntax

R: SLA Rd, #b

SLAB Rbd, #b

SLAL RRd, #b

13+3b

13+3b

13 +3b

13+3b

13+3b

13+3b

Example: If register pair RR2 contains % 1234ABCD, the statement

SLAL RR2/#8

will leave the value %34ABCDOO in RR2 and clear the Carry flag.

Note I: b = number of bit positions; the execution time for b = 0 is the same as for b = I.

183

SLL
Shift Left Logical

SLL dst, src
SLLB
SLLL

dst: R
src: 1M

Operation: Do src times:
c +- dst (msb)
dst (n + 1) +- dst (n) (for n
dst (0) +- 0

msb - 1 to 0)

Flags:

7 0

Byte: &--1 1_ 0

15 0

Word: &--1 /---0

15 0

Long: 0~ Rn

2.Lr Rn+ 1

n = 0, 2, 4, ... , 14

The destination operand is shifted logically left by the number of bit positions
specified by the source operand. For SLLB, the source is in the range 0 to 8; for
SLL, the source is in the range 0 to 16; for SLLL, the source is in the range 0 to 32.
The least significant bit of the destination is filled with 0, and the C flag is loaded
from the most significant bit (msb) of the destination. This instruction performs an
unsigned multiplication of the destination by a power of two. A shift of zero positions
does not affect the destination; however, the flags are set according to the destina­
tion value. The setting of the carry bit is undefined for zero shift.

The src field is encoded in the instruction format as the 8- or 16-bit positive value of
the source operand. For each operand size, the operation is undefined if the source
operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

c: Set if the last bit shifted from the destination was I, undefined for zero shift;
cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected

184

Segmented Mode

Instruction Format Cyclesl

Nonsegmented Mode

Instruction Format CyclesI

Destination
Addressing Assembler Language t------------.----+-----------.....,...---

Mode Syntax

R: SLL Rd, #b

SLLB Rbd, #b

SLLL RRd, #b

13+3b

13+3b

13+3b

13+3b

13+3b

13+3b

Example: 1£ register R3 contains %4321 (01000011 001 00001), the statement

SLL R3,#1

will leave the value %8642 (1000011001000010) in R3 and clear the carry flag.

Note I: b = number of bit positIons; the execution lIme for b =0 is the same as for b = I.

185

SRA
Shift Right Arithmetic

SRA dst, src
SRAB
SRAL

dst: R
src: 1M

Operation: Do src times:
c -- dst (0)
dst (n) -- dst (n + 1)(for n
dst (msb) -- dst (msb)

o to msb - 1)

Byte:

15

Word:

Long:

CS....l....-[~0

15

QI_"I _R_n_~u..... R_n+_1 r-~
n = 0, 2, 4, ... , 14

Flags:

The destination operand is shifted arithmetically right by the number of bit positions
specified by the source operand. For SRAB, the source is in the range 1 to 8; for
SRA, the source is in the range 1 to 16; for SRAL, the source is in the range 1 to 32.
A right shift of zero for SRA is not possible. The most significant bit (msb) of the
destination is replicated, and the C flag is loaded from bit 0 of the destination, this
instruction performs a signed division of the destination by a power of two.

The src field is encoded in the instruction format as the 8- or 16-bit two's comple­
ment negative of the source operand. For each operand size, the operation is
undefined if the source operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

c: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

186

Segmented Mode

Instruction Format Cyclesl

Nonsegmented Mode

Instruction Format Cyclesl

Destination
Addressing Assembler Language 1------------,----+------------,----

Mode Syntax

R: SRA Rd, #b

SRAB Rbd, #b

SRAL RRd, #b

13+3b

13+3b

13+3b

13+3b

13+3b

13+3b

Example: If register RH6 contains 0/03B (00111011), the statement

SRAB RH6,#2

will leave the value O/OOE (00001110) in RH6 and set the carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same as for b = 1.

187

SRL
Shift Right Logical

SRL dst, src
SRLB
SRLL

dst: R
src: 1M

Operation: Do src times:
c dst (0)
dst (n) dst (n + 1)(for n
dst (msb) 0

o to msb - 1)

'----_Rn--1
Rn+1 L--r;l________r~L::.J

'---------~~

Byte:

15
Word: 0-1

15
Long: .-:

Lj15

n = 0/ 2, 4, ... , 14

The destination operand is shifted logically right by the number of bit positions
specified by the source operand. For SRLB, the source operand is in the range 1 to
8; for SRL, the source is in the range 1 to 16; for SRLL, the source is in the range 1
to 32. A right shift of zero for SRL is not possible. The most significant bit (msb) of
the destination is filled with 0, and the C flag is loaded from bit 0 of the destination.
This instruction performs an unsigned division of the destination by a power of two.

The src field is encoded in the instruction format as the 8- or l6-bit negative value of
the source operand in two's complement notation. For each operand size, the opera­
tion is undefined if the source operand is not in the range specified above.

The source operand may be omitted from the assembly language statement and thus
defaults to the value of 1.

Flags: c: Set if the last bit shifted from the destination was l; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is one; cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected

188

Segmented Mode

Instruction Format Cyclesl

Nonsegmented Mode

Instruction Format Cyclesl

Destination
Addressing Assembler Language I------------~--+-----------__r---

Mode Syntax

R: SRL Rd, #b

SRLB Rbd, #b

SRLL RRd, #b

13+3b

13+3b

13+3b

13+3b

13+3b

13+3b

Example: If register RO contains % 1111 (0001000100010001), the statement

SRL RO,#6

will leave the value %0044 (0000000001000100) in RO and clear the carry flag.

Note I: b = number of bit positions; the execution time for b = 0 is the same as for b = I.

189

SUB
Subtract

Operation:

SUB dst, src
SUBB
SUBL

dst- dst - src

dst: R
src: R, 1M, IR/ DA, X

Flags:

The source operand is subtracted from the destination operand and the result is
stored in the destination. The contents of the source are not affected. Subtraction is
performed by adding the two/s complement of the source operand to the destination
operand.

c: Cleared if there is a carry from the most significant bit; set otherwise, indicating
a "borrow"

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared otherwise
D: SUB, SUBL-unaffected; SUBB-set
H: SUB, SUBL-unaffected; SUBB-cleared if there is a carry from the most

significant bit of the low-order four bits of the result; set otherwise, indicating a
"borrow"

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: SUB Rd, Rs BOOO01Iw~ ~SUBB Rbd, Rbs 4 4

R010010~ I B0100101~SUEL RRd, RRs 8 8

1M: SUB Rd, #data
00[000010100001 Rd 001000010100001 Rd

7 7
data data

SUBB Rbd, #data o 0 I 0 0 0 0 1 1 I0 0 0 0 I Rbd o 0 I 0 0 0 0 1 1 I 0 0 0 0 I Rbd
7 7

data I data data I data

SUBL RRd, #data 001 01 0010 I 0000 I RRd o 0 I 0 1 0 0 1 0 I 0 0 0 0 I RRd

31 data (high) 16 14 31 data (high) 16 14

15 data (low) 0 15 data (low) 0

IR: ISUB Rd, @Rsl
[00 10000 1j wi Rs;< 0 I Rd 7 BOOO01EI RRhO I Rd I 7

SUBB Rbd, @Rsl

SUBL RRd, lftRsl I0 0 I 0 1 0 0 1 0 I Rs;< 0 I RRd I 14 B 010010 IRRS;<ol RRd I 14

190

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

DA: SUB Rd, address
101[00001I w! 0000 1 Rd I o1 i 0 0 0 0 11 w10 0 0 0 i Rd I

SUBB Rbd, address
I I 9 55 I 10

address o I segment I offset

o1 I0 0 0 0 1IW I 0 0 0 0 1 Rd

5L 1 I segment i 00000000 12
offset

SUBL RRd, address
1011 01 001 0 I0000 I RRd I o1 I 0 1 00 1 0 I 0000 1 RRd I

I I 15 55 I 16
address o I segment I offset

o 11 0 1 001 0 I 0000 [RRd

5L 1 I segment I 0 0 0 0 0 0 0 0 18
offset

X: SUB Rd, addr(Rs)
101 1000 01 1W 1 Rs *0 I Rd I o1 10 0 0 0 11 W 1 Rs *0 I Rd ISUBB Rbd, addr(Rs) 10 55 I

10
I address I oI segment I offset

o1 10 0 0 0 1 ! W [Rs '" 0 I Rd

5L 1 I segment I 0 0 0 0 0 0 0 0 13
offset

SUBL RRD, addr(Rs)
I 0 1 I 0 1 0 0 1 0 I Rs '" 0 1 RRd I o1 I 0 1 0 0 1 0 I Rs *0 1 RRd I

16 55 16
I address I 01 segment i offset I

o1 1 0 1 0 0 1 0 I Rs '" 0 I RRd

5L 1 I segment I 0 0 0 0 0 0 0 0 19

offset

Example: If register RO contains %0344, the statement

SUB RO,#%AA

will leave the value %029A in RO.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

191

TCC
Test Condition Code

Tee cc, dst
TeCB

dst: R

Operation:

Flags:

if cc is satisfied then
dst (0) -- 1

This instruction is used to create a Boolean data value based on the flags set by a
previous operation. The flags in the FCW are tested to see if the condition specified
by "ce" is satisfied. If the condition is satisfied, then the least significant bit of the
destination is set. If the condition is not satisfied, bit zero of the destination is not
cleared but retains its previous value. All other bits in the destination are unaffected
by this instruction.

No flags affected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: Tee CC, Rd
~ 5~ 5

TeeB CC, Rbd

Example: If register Rl contains 0/ and the Z flag is set, the statement

TCC EQ/Rl

will leave the value 1 in Rl.

192

Operation:

TEST dst
TESTB
TESTL

dst OR 0

dst: R, IR, DA, X

TEST
Test

Flags:

The destination operand is tested (logically ORed with zero), and the Z, Sand P
flags are set to reflect the attributes of the result. The flags may then be used for
logical conditional jumps. The contents of the destination are not affected.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: TEST-unaffected; TESTL-undefined; TESTB-set if parity of the result is even;

cleared otherwise
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: TEST Rd [10100110~ 7 ~ 7
TESTB Rbd

TESTL RRd ~10111001~ 13 ~1011100~ 13

IR: TEST illRdl
~ 8 Eloo 11 0BRRd*ol 01 00 I 8

TESTB iZlRdl

TESTL illRdi ~011100~ 13 El 0 1 1 1 0 0 IRRd *0 11 0 0 0 I 13

DA: TEST address
101100110lWl00ool01001 01100110Iwi 00001 0100

TESTB address 11 55 12
I address I oI segment 1 offset

0110011 01 W I 0000 I 01 00

5L 1 I segment I 0 0 0 0 0 0 0 0 14

address

TESTL address
101101110010000110001

16 55
0110111001000011000

17
I address I oI segment 1 offset

0110111001000011000

5L 1 I segment I 0 0 0 0 0 0 0 0 19

offset

193

Destination Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

X: TEST addr(Rd)
10110011 olwl Rd,*O 101001 o1 10 0 1 1 0IwIRd '* 0 I0 1 0 0TESTE addr(Rd)
I 12 55 12

address I oI segment I offset

o1 I0 0 1 101wI Rd '" 0 I0 1 0 0

5L 1 I segment I 0 0 0 0 0 0 0 0 15

offset

I0 1 1 0 1 1 1 0 0 I Rd '" 0 11 0 0 0 I
17 55

o1I 0 1 1 1 0 0 IRM 0 11 0 0 0
17

I address I oI segment 1 offset

011 011100 I Rd,*O 11 000

5L 1 I segment I 0 0 0 0 0 0 0 0 20

offset

Example: If register R5 contains %FFFF (1111111111111111), the statement

TEST R5

will set the S flag, clear the Z flag, and leave the other flags unaffected.

NC:t": I: '/v'ord register in ~on.segmentedmooe, reglS!er paIr segmE-:::eG mode.

194

Operation:

TRDB dst, src, r

dst +- src[dst]
AUTODECREMENT dst by 1
r+-r-l

dst: IR
src: IR

TRDB
Translate and Decrement

Flags:

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rule for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table which replaces the original contents of the location
addressed by the destination register.

The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by "r" (used as a
counter) is then decremented by one. The original contents of register RHI are lost
and are replaced by an undefined value. RO and Rl in nonsegmented mode, or RRO in
segmented mode, must not be used as a source or destination pointer, and Rl should
not be used as a counter. The source, destination, and counter registers must be
separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur. The
source register is unchanged.

c: Unaffected
z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: TRDB a? Rd1, a, Rs:, r
110 1 1 1 1 0 0 0 I Rd '" 0 110 0 0 I

25
1101111000 IRRd",0!1000 I

25
10000 1 r IRs '" 0 I 0 0 0 0 I 10000 1 r !RRS '" 0 I 0000 I

Example: In nonsegmented mode, if register R6 contains %4001, the byte at location %4001
contains 3, register R9 contains % 1000, the byte at location % 1003 contains %AA,
and register R12 contains 2, the instruction

TRDB @R6, @R9, R12

will leave the value %AA in location %4001, the value %4000 in R6, and the value
1 in R12. R9 will not be affected. The V flag will be cleared. RHI will be set to an
undefined value. In segmented mode, R6 and R9 would be replaced with
register pairs.

Note I: Word regisrer In nonsegmenred mode, reglsrer pair in segmented mode.

195

TRDRB
Translate, Decrement and Repeat

TRDRB dst, src, r dst: IR
src: IR

Operation:

Flags:

dst -- src [dst]
AUTODECREMENT dst by 1
r -- r - 1
repeat until r = a

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table that replaces the original contents of the location
addressed by the destination register.

The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by "r" (used as a
counter) is then decremented by one. The entire operation is repeated until the
result of decrementing r is zero. This instruction can translate from 1 to 65536 bytes.
The original contents of register RH 1 are lost and are replaced by an undefined
value. The source register is unchanged. The source, destination, and counter
registers must be separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the mterrupt request
is accepted, so the instruction can be properly resumed. Seven cycles should be
added to this instruction's execution time for each interrupt request that is accepted.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: TRDRB @Rd 1, @RS1, r 11011110001Rd*0111001 1101 1110001RRd*0111001
11+14n 11 +14nlooooi r IRs * °I°°°°I 100001 r IRRs*O! 0000 I

196

Example: In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, respectively, register R9 con­
tains %1000, the translation table from location %1000 through %lOFF contains 0,
1, 2, ... , %7F, 0, 1, 2, ... , %7F (the second zero is located at % 1080), and register
R12 contains 3, the instruction

TRDRB @R6, @R9, R12

will leave the values %00, %40, %00 in byte locations %4000 through %4002,
respectively. Register R6 will contain %3FFF, and R12 will contain O. R9 will not be
affected. The V flag will be set, and the contents of RHI will be replaced by an
undefined value. In segmented mode, R6 and R9 would be replaced by register
pairs.

BEFORE

%1000

%4000 %1001

%4001 %1002

%4002

AFTER %107F

%1080

%4000 %1081

%4001 %1082

%4002

%10FF

00000000

00000001

00000010

···o 11 1 1 1 1 1

00000000

00000001

00000010

···o 1 1 1 1 1 1 1

Note 1: Word register in nonsegmenied mode, register pair in segmented mode.

Note 2: n = number of data elements translated.

197

TRIB
Translate and Increment

TRIB dst, src I r dst: IR
src: IR

Operation:

Flags:

dst src[dst]
AUTOINCREMENT dst by 1
r r - 1

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table which replaces the original contents of the location
addressed by the destination register. The destination register is then incremented
by one, thus moving the pointer to the next element in the string. The word register
specified by "r" (used as a counter) is then decremented by one. The original con­
tents of register RHI are lost and are replaced by an undefined value. The source
register is unchanged. The source, destination, and counter registers must be
separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

c: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

TRIB @Rd1• @Rsl, r
11011110001Rd*0100001 110111 1 0001RRd*0100001

10000
1 /Rs*%oool

25
10000

1 IRRS *°I0°0 0 I
25

r r

198

!initialize counter!
!load start addresses!

Example: This instruction can be used in a "loop" of instructions which translate a string of
data from one code to any other desired code, but an intermediate operation on
each data element is required. The following sequence translates a string of 1000
bytes to the same string of bytes, with all ASCII "control characters" (values less
than 32, see Appendix C) translated to the "blank" character (value = 32). A test,
however, is made for the special character "return" (value = 13) which terminates
the loop. The translation table contains 256 bytes. The first 33 (0-32) entries all con­
tain the value 32, and all other entries contain their own index in the table, counting
from zero. This example assumes nonsegmented mode. In segmented mode, R4 and
R5 would be replaced by register pairs.

LD R3, #1000
LDA R4, STRING
LDA R5, TABLE

LOOP:

DONE:

CPB
JR
TRIB
JR

@R4, #13
EO, DONE
@R4, @R5, R3
NOV, LOOP

!check for return character!
!exit loop if found!
!translate next byte!
!repeat until counter O!

TABLE +0

TABLE + 1

TABLE + 2

TABLE + 32

TABLE + 33

TABLE + 34

TABLE + 255

00100000

00100000

00100000

·
·

00100000

00100001

00100010

···11111111

Note I: Word register in nonsegmented mode, register pair in segmented mode.

199

TRIRB
Translate, Increment and Repeat

TRIRB dst I src, r dst: IR
src: IR

Operation: dst +- src[dst]
AUTOINCREMENT dst by 1
r +- r - 1
repeat until r = a

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
~••+~~....l~....l uTah h;,....h_'"'..M"".. 7""..("'\'" Th~ !'mm i!=l 1l!=lP.c1 as the address of an 8-bit transla-

Example: The following sequence of instructions can be used to translate a string of 80 bytes
from one code to another. The pointers to the string and the translation table are set,
the number of bytes to translate is set, and then the translation is accomplished.
After executing the last instruction, the V flag is set and the contents of RHI are lost.
The example assumes nonsegmented mode. In segmented mode, R4 and R5 would
be replaced by register pairs.

LDA
LDA
LD
TRIRB

R4, STRING
R5, TABLE
R3, #80
@R4, @R5, R3

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements translated.

201

THTDB
Translate, Test and Decrement

TRTDB srcl, src2, r src 1: IR
src 2: IR

Operation:

Flags:

RH 1 __ src2[srcl]
AUTODECREMENT srcl by 1
r--r-l

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RHl. The Z
flag is set if the value loaded into RHl is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by one, thus moving the pointer to the previous
element in the string. The word register specified by "r" (used as a counter) is then
decremented by one. The second source register is unaffected. The source and
counter registers must be separate and non-overlapping registers.

Because the 8-bit target byte is added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible 8-bit target byte values will
occur.

c: Unaffected
Z: Set if the translation value loaded into RH 1 is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: TRTDB @Rsll, @Rs21, r
11 0 11 1 1 000 IRS1 *- ~ 1 0 1 0 I

25 110 1 1 1 1 0 0 0 IRRS1*- ~ 1 0 1 0 1 25
10000

1
r /RS2 *- 01 00001 10000

1
r IRRSU~ 0000I

Example: In nonsegmented mode, if register R6 contains %4001, the byte at location %4001
contains 3, register R9 contains %1000, the byte at location %1003 contains %AA,
and register R12 contains 2, the instruction

TRTDB @R6, @R9, R12

Will leave the value %AA in RH1, the value %4000 in R6, and the value 1 in R12.
Location %4001 and register R9 will not be affected. The Z and V flags will be
cleared. In segmented mode, register pairs must be used instead of R6 and R9.

Note Word register in tlonsegmented mode, register pair in segmented mode.

202

TRTDRB srcl, src2, r

TRTDRB
Translate, Test, Decrement and Repeat

srcl: IR
src2: IR

Operation:

Flags:

RHI +- src 2[srcl]
AUTODECREMENT srcl by 1
r +- r - 1
repeat until RH 1 =1= 0 or r = 0

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RHl. The Z
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by one, thus moving the pointer to the previous
element in the string. The word register specified by "r" (used as a counter) is then
decremented by one. The entire operation is repeated until either the Z flag is clear,
indicating that a non-zero translation value was loaded into RHl, or until the result
of decrementing r is zero. This instruction can translate and test from I to
65536 bytes. The source and counter registers must be separate and non-overlapping
registers.

Target byte values which have corresponding zero translation-table entry values are
to be scanned over, while target byte values which have corresponding non-zero
translation-table entry values are to be detected. Because the 8-bit target byte is
added to the second source register to obtain the address of a translation value, the
table may contain 256 bytes. A smaller table size may be used where it is known that
not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted so that the instruction can be properly resumed. Seven cycles should be
added to this instruction's execution time for each interrupt request that is accepted.

c: Unaffected
Z: Set if the translation value loaded into RHI is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: TRTDRB@Rsl] ,@Rs2] ,r
110 11 1 1 0 0 0 IRS1 * 0)1 1 1 0 1

11+14n
1101111000IRRs1*0!11101

11 +14n
100 0 0 I r !RS2 * 011 1 10 I 1 0000 1 r IRRsuol1 1 1 0 I

203

Example: In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, repectively, register R9 contains
% 1000, the translation table from location % 1000 through % lOFF contains 0, 1,
2, """, %7F, 0, 1, 2, """, %7F (the second zero is located at %1080), and register
Rl2 contains 3, the instruction

TRTDRB @R6, @R9, R12

will leave the value %40 in RHI (which was loaded from location %1040). Register
R6 will contain %4000, and R12 will contain 1. R9 will not be affected. The Z and V
flags will be cleared. In segmented mode, register pairs are used instead of R6
and R9.

%1000

%4000 %1001

%4001 %1002

%4002

%107F

%1080

%1081

%1082

%10FF

00000000

00000001

00000010

···o 1 1 1 1 1 1 1

00000000

00000001

00000010

···o 1 1 1 1 1 1 1

Note I: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number oj data elements translated.

204

Operation:

TRTIB src I, src2, r

RH 1 -- src2[srcl]
AUTOINCREMENT srcl by 1
r -- r - 1

srcl: IR
src2: IR

TRTIB
Translate, Test and Increment

Flags:

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RHl. The Z
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then incremented by one, thus moving the pointer to the next ele­
ment in the string. The word register speCified by "r" (used as a counter) is then
decremented by one. The second source register is unaffected. The source and
counter registers must be separate and non-overlapping registers.

Because the 8-bit target byte is added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible 8-bit target byte values
will occur.

c: Unaffected
Z: Set if the translation value loaded into RHI is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

IR: TRTIB@Rsll, @Rs2 1, r
11 0 11 1 1 0 0 0 IRS1 oF ~ 0 0 10 I

25
11 0 11 1 1 0 0 0 !RRS1oF 01 0 0 1 0 I

25
1 0000 I r IRS2 oF 01 0 0 0 0 1 10 000 1 r IRRS2oFOI 0000 I

205

Example: This instruction can be used in a "loop" of instructions which translate and test a
string of data, but an intermediate operation on each data element is required. The
following sequence outputs a string of 72 bytes, with each byte of the original string
translated from its 7-bit ASCII code to an 8-bit value with odd parity. Lower case
characters are translated to upper case, and any embedded control characters are
skipped over. The translation table contains 128 bytes, which assumes that the most
significant bit of each byte in the string to be translated is always zero. The first 32
entries and the 128th entry are zero, so that ASCII control characters and the
"delete" character (%7F) are suppressed. The given instruction sequence is for
nonsegmented mode. In segmented mode, register pairs would be used instead of R3
and R4.

LD R5, #72 !initialize counter!
LDA R3, STRING !load start address!
LDA R4, TABLE

LOOP:
TRTIB @R3, @R4, R5 !translate and test next byte!
JR Z, LOOP !skip control character!
OUTB PORTn, RHl !output characters!
JR NOV, LOOP !repeat until counter = O!

DONE:

Note I: Word regIster In nonsegmented mode, register pair in segmented mode.

206

TRTIRB
Translate, Test, Increment and Repeat

Operation:

TRTIRB srcI, src2, r

RHI -4- src2[srcI]
AUTOINCREMENT srcl by 1
r-4-r-I
repeat until RH 1 '" 0 or r = 0

srcI: IR
src2: IR

Flags:

This instruction is used to scan a string of bytes, testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RHl. The Z
flag is set if the value loaded into RH 1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected.

The first source register is then incremented by one, thus moving the pointer to the
next element in the string. The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated until either the Z flag is
clear, indicating that a non-zero translation value was loaded into RHI, or until the
result of decrementing r is zero. This instruction can translate and test from 1 to
65536 bytes. The source and counter registers must be separate and non-overlapping
registers.

Target byte values which have corresponding zero translation table entry values are
scanned over, while target byte values which have corresponding non-zero transla­
tion table entry values are detected and terminate the scan. Because the 8-bit target
byte is added to the second source register to obtain the address of a translation
value, the table may contain 256 bytes. A smaller table size may be used where it is
known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction's execution time for each interrupt request that is accepted.

c: Unaffected
Z: Set if the translation value loaded into,RHl is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: TRTIRB lifRsll, lifRs21, r
11 0 t 1 1 1 0 0 0 IRS1 oF 01 0 1 1 0 1 11 + 14n

1101111000 IRRS1oFOI 0110 I 11+14n
1 0000 1 r \RS2 oF 011 1 1 0 1 1 0000

1
r !RRS2oFOI1 11 0 I

207

Example: The following sequence of instructions can be used in nonsegmented mode to scan a
string of 80 bytes, testing for special characters as defined by corresponding non­
zero translation table entry values. The pointers to the string and translation table
are set, the number of bytes to scan is set, and then the translation and testing is
done. The Z and V flags can be tested after the operation to determine if a special
character was found and whether the end of the string has been reached. The
translation value loaded into RHl might then be used to index another table, or to
select one of a set of sequences of instructions to execute next. In segmented mode,
R4 and R5 must be replaced with register pairs.

LDA R4, STRING
LDA R5, TABLE
LD R6, #80
TRTIRB @R4, @R5, R6
JR NZ, SPECIAL

END_OF_STRING:

SPECIAL:
JR

LAST_CHAR_SPECIAL:

Note 1; Word register in nonsegmented mode, reg:ster pair in segmented mode.

Note 2: n = number of data elements translated.

208

Operation:

TSET dst
TSETB

S +- dst(msb)
dst(O:msb) +- 111...111

dst: R, IR, DA, X

T8ET
Test and Set

Flags:

Tests the most significant bit of the destination operand, copying its value into the S
flag, then sets the entire destination to all 1 bits. This instruction provides a locking
mechanism which can be used to synchronize software processes which require
exclusive access to certain data or instructions at one time.

During the execution of this instruction, BUSRQ is not honored in the time between
loading the destination from memory and storing the destination to memory. For
systems with one processor, this ensures that the testing and setting of the destination
will be completed without any intervening accesses. To synchronize software
processes residing on separate processors where the destination is a shared memory
location, this instruction should be used with a 28003.

c: Unaffected
Z: Unaffected
S: Set if the most significant bit of the destination was 1; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: TSET Rd
~ 7 ~ 7TSETB Rbd

IR: TSET @Rd1

~ 11 B0011 oEIRRd*ol 011 01 11
TSETB @Rd1

DA: TSET address
101100110lwl0000101101 01100110Iwi 00001 0110 1TSETB address
I I

14 55 15
address o I segment I offset I

011001101 w I0000 I0110

5L 1 I segment I 0 0 0 0 0 0 0 0 17

offset

X: TSET addr(Rd) I0 1 10 0 1 1 0 Iw I Rd * 0 I0 1 1 0 I o 1 10 0 1 1 0Iw I Rd * 0 I0 1 10 I
TSETB addr(Rd)

I I
15 55 15

address o I segment I offset I

o 1 10 0 1 1 0 Iw I Rd * 0 I0 1 1 0

5L 1 I segment [0 0 0 0 0 0 0 0 18

offset

209

!loop until resource con-!
!trolled by SEMAPHORE!
!is available!

SEMAPHORE
MI,ENTER

A simple mutually-exclusive critical region may be implemented by the follOWing
sequence of statements:

ENTER:
TSET
JR

Example:

!Critical Region-only one software process!
!executes this code at a time!

CLR SEMAPHORE !release resource controlled!
!by SEMAPHORE!

210

Operation:

XOR dst, src
XORB

dst .,.- dst XOR src

dst: R
src: R, 1M, IR, DA, X

XOR
Exclusive Or

Flags:

The source operand is logically EXCLUSIVE ORed with the destination operand and
the result is stored in the destination. The contents of the source are not affected.
The EXCLUSIVE OR operation results in a one bit being stored whenever the cor­
responding bits in the two operands are different; otherwise, a zero bit is stored.

c: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: XOR-unaffected; XORB-set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Source Nonsegmented Mode Segmented Mode
Addressing Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: XOR Rd, Rs
E!]00100B Rs I Rd I 4 ~ 4

XORB Rbd, Rbs

1M: XOR.Rd, #data
1001001001100001 Rd 1 00100100110000 I Rd

I I
7 7

data data

XORB Rbd, #data
10 0 I00 1 0 0 0 I0 000 I Rbd I 001001000 10000 I Rbd

7 7
I data I data I data

1
data

If>

IR: XOR Rd. !JlRsl
~ 7 ~ 7

XORB Rbd, !Jl Rsl

DA: XOR Rd, address
101100100lwl00001 Rd I 01/001001wl 0000 I Rd

XORB Rbd, address
I I

9 55
oI segment I 10

address offset

01100100lwl00001 Rd

5L 1 I segment I 0 0 0 0 0 0 0 0 12
offset

X: XOR Rd, addr(Rs)
101100100lwi Rs;<°l Rd I o1 10 0 1 0 0 IwI RH 0 I Rd

XORB Rbd, addr(Rs)
I I 10 55 10

address oI segment I offset

o1 10 0 1 0 0 Iw I Rs;< 0 I Rd

5L 1 I segment I 0 0 0 0 0 0 0 0 13

offset

211

Example: If register RL3 contains %C3 (1000011) and the source operand is the immediate
value %7B (01111011)/ the statement

XORB RL3/#%7B

will leave the value %B8 (0111000) in RL3.

Note 1; Word register in nonsegmented mode, register pair in segmented mode.

212

6.8 EPA
Instruction
Templates

Operation:

There are seven "templates" for EPA instruc­
tions. These templates correspond to EPA
instructions, which combine EPU operations
with possible transfers between memory and an
EPU, between CPU registers and EPU regis­
ters, and between the Flag byte of the CPU's
FCW and the EPU. Each of these templates is
described on the following pages. The descrip­
tion assumes that the EPA control bit in the
CPU's FCW has been set to 1. In addition, the
description is from the point of view of
the CPU-that is, only CPU activities are
described; the operation of the EPU is implied,

Memory ...- EPU

but the full specification of the instruction
depends upon the implementation of the EPU
and is beyond the scope of this manual.

Fields ignored by the CPU are shaded in the
diagrams of the templates. The 2-bit field in bit
positions 0 and 1 of the first word of each
template would normally be used as an identi­
fication field for selecting one of up to four
EPUs in a multiple EPU system configuration.
Other shaded fields would typically contain
opcodes for instructing an EPU as to the oper­
ation it is to perform in addition to the data
transfer specified by the template.

Extended Instruction
Load Memory from EPU

The CPU performs the indicated address calculation and generates n EPU memory
write transactions. The n words are supplied by an EPU and are stored in n con­
secutive memory locations starting with the effective address and increasing in
address.

Flags/Registers: No flags or CPU registers are affected by this instruction.

Clock Cycles

mode dst N5 55 5L
0 0 IR (dst *- 0) 11 +3n
0 1 X (dst *- 0) 15 + 3n l5+3n 18 +3n
0 1 DA (dst = 0) 14+3n 15+3n 17 +3n

213

Extended Instruction
Load EPU from Memory

Operation: EPU __ Memory

The CPU performs the indicated address calculation and generates n EPU memory
read transactions. The n consecutive words are fetched from the memory locations
starting with the effective address. The data is read by an EPU and operated upon
according to the EPA instruction encoded into the shaded fields.

Flags/Registers: No flags or CPU registers are affected by this instruction.

Clock Cycles

mode src NS SS SL
0 0 IR (src 1= 0) 11 +3n
0 1 X (src 1= 0) 15+3n 15 +3n 18+3n
0 1 DA (src = 0) 14+3n 15+3n 17+3n

Extended Instruction
Load CPU from EPU

Operation: CPU -- EPU registers

The contents of n words are transferred from an EPU to consecutive CPU registers
starting with register dst. CPU registers are transferred consecutively I with register 0
following register 15.

Flags/Registers: No flags are affected by this instruction.

Execution Time: 11 + 4n cycles.

214

Operation:

Extended Instruction
Load EPU from CPU

EPU -- CPU registers

The contents of n words are transferred to an EPU from consecutive CPU registers
starting with register src. CPU registers are transferred consecutively, with register 0
following register 15.

Flags/Registers: No flags are affected by this instruction.

Execution Time: 11 + 4n cycles.

Extended Instruction
Load FCW from EPU

Operation: Flags ..,.- EPU

The Flags in the CPU's Flag and Control Word are loaded with information from an
EPU on AD lines ADo-AD7.

Flags/Registers: The contents of CPU register 0 are undefined after the execution of this instruction.

Execution Time: 15 cycles.

215

Extended Instruction
Load EPU from FeW

Operation: EPU ...- Flags

The Flags in the CPU's Flag and Control Word are transferred to an EPU on AD
lines ADo-AD7.

Flags/Registers: The flags in the FCW are unaffected by this instruction.

Execution Time: 15 cycles.

Extended Instruction
Internal EPU Operation

Operation: Internal EPU Operation

The CPU treats this template as a No Op. It is typically used to initiate an internal
EPU operation.

Flags/Registers: The flags in the FCW are unaffected by this instruction.

Execution Time: 11 + 4n cycles.

216

.- 7

7.1 Intro­
duction

7.2 Interrupts

7.3 Traps

The 28000 CPU supports three types of
exceptions (conditions that can alter the nor­
mal flow of program execution):

• interrupts

• traps

• reset
Interrupts are asynchronous events typically

triggered by peripheral devices needing atten­
tion. They cause the processor to temporarily
suspend its present program execution in
order to service the requesting device. Traps
are synchronous events that are responses by
the CPU to certain events detected during the

Three kinds of interrupts are activated by
three different pins on the 28000 CPU. (Inter­
rupt handling for all interrupts is discussed in
Section 7.6.)

7.2.1 Non-Maskable Interrupt (NMI).
This type of interrupt cannot be disabled
(masked) by software. It is typically reserved
for highest-priority external events that require
immediate attention.

7.2.2 Vectored Interrupt (VI). One result of
any interrupt or trap is that a l6-bit identifier
word is pushed onto the system stack (see Sec­
tion 7.6.2). This word may be used to identify
the source of the interrupt or trap. In vectored
interrupts, this identifier is also used by the

The 28001 and 28002 CPUs support three
traps generated internally. The 28001 supports
a fourth trap, which is generated externally
(but synchronously) by the Memory Manage­
ment Unit. Since a trap always occurs when all
its defining conditions are present, traps can­
not be disabled. (Trap handling operations are
discussed in Section 7.6.)

7.3.1 Extended Instruction Trap. This trap
occurs when the CPU encounters an extended
instruction (see Section 6.2.10) while the EPA
bit in the FCW is cleared. This trap allows the
program to simulate the operations of the EPU
when none is present in the system or to abort
the program.

7.3.2 Privileged Instruction Trap. This trap
occurs whenever an attempt is made to execute
a privileged instruction while the CPU is in
normal mode (SiN bit in the FCW is cleared).

219

Chapter 7
Exceptions

attempted execution of an instruction. Thus,
the major distinction between traps and inter­
rupts is their origin: a trap condition is always
reproducible by re-executing the program that
created the traps, whereas an interrupt is
generally independent of the currently exe­
cuting task. A reset overrides all other condi­
tions, including all interrupts and traps. It
occurs when the RESET line is activated, and it
causes certain control registers to be initial­
ized. The action that the 28000 CPU takes in
response to an interrupt, trap, or reset is
similar; hence, they are treated together in this
chapter.

CPU hardware as a pointer to select a particu­
lar interrupt service routine. The processing of
vectored interrupts is thus considerably faster
than would be the case if a general trap hand­
ler had to first examine the identifier, then
branch off to the appropriate service routine.
These interrupts can be disabled by software.

7.2.3 Nonvectored Interrupts (NVI). These
interrupts also result in an identifier word
being pushed onto the system stack. However,
the CPU does not use the identifier as a vector
to select a service routine: all non-vectored
interrupts are serviced by the same routine.
They can be disabled by software.

This trap allows the CPU to detect and prevent
operation (such as I/O) that could disable the
system.

7.3.3 System Call Trap. This trap occurs
whenever a System Call (SC) instruction is
executed. It allows an orderly transition to be
made between normal mode and system mode.

7.3.4 Segment Trap. This trap occurs when
ever the SEGT line is asserted on a 28001,
regardless of the state of the SEG bit in the
FCW. This trap is generated by external
memory management hardware, such as the
28010 Memory Management Unit (MMU), and
is the result of detecting a memory access
violation (such as an offset larger than the
assigned segment length) or a write warning
(a write into the lowest 256 bytes of a stack).
See the MMU Technical Manual for more
information on memory management hardware.

7.4 Reset

7.5 Interrupt
Disabling

7.6 Interrupt
and Trap
Handling

A reset initializes selected control registers
of the CPU to system specifiable values. A
reset can occur at the end of any clock cycle,
provided the RESET line is Low.

A system reset overrides all other consider­
ations, including interrupts, traps, bus
requests, and stop requests. A reset should be
used to initialize a system as part of the power­
up sequence.

Within five clock cycles of the RESET
becoming Low, ADo-ADI5 are 3-stated;
AS,DS, MREQ, BUSACK, and MO are forced
High; STo-ST3 are forced High and SNo - SN6
are forced Low. The R/W, B/W, and NiSlines
are undefined. RESET must be held Low five

Vectored and nonvectored interrupts can be
enabled or disabled independently via software
by setting or clearing appropriate control bits
in the Flag and Control Word (FCW). Two
control bits in the FCW control the maskable
interrupts: VIE and NVIE. Any control bit may
be changed by automatically loading a new
FCW during an interrupt or trap acknowledge
sequence and may be restored to its previous
setting by an Interrupt Return (IRET) instruc­
tion. When VIE is I, vectored interrupts are
enabled; when NVIE is I, non-vectored inter­
rupts are enabled. These two flags may be set

The CPU response to a trap or interrupt
request consists of five steps: acknowledging
the external request (for interrupts and seg­
ment traps), saving the old program status
information, loading a new program status,
executmg the service routine, and returning to
the mterrupted task. Interrupt timing is shown
on page 236.

7.6.1 Acknowledge Cycle. An external
acknowledge cycle is required only for exter­
nally generated requests. As described in
Chapter 9, the main effect of such a cycle is to
receive from the external device a 16-bit iden­
tifier word, which will be saved with the old
program status. Before the acknowledge cycle,
the CPU enters segmented (28001 only) system
mode. (The Nis line indicates that a transition
has been made to system mode.) The old FCW
is not affected by this change in mode. The
CPU remains in this mode until it begins to
execute the exception service routine', at which
time its mode is dictated by the FCW.

7.6.2 Status Saving. The old program status
information is saved by being pushed on the
system stack in the follOWing order: the Pro­
gram Counter; the Flag and Control Word

clock cycles to properly reset the CPU.
Three clock cycles after RESET has returned

to High, consecutive memory read cycles are
executed in system mode to initialize the Pro­
gram Status registers. In the 28001, the first
cycle reads the FCW from location 0002 of
segment 0, the next reads the PC from location
0004, and the following initial instruction fetch
cycle starts the program. Each of these fetches
is made from system program address space.
In the 28002, the first cycle reads the FCW
from location 0004 and the following initial in­
struction fetch cycle starts the program. Each
of these fetches is made from the program
address space.

or cleared together or separately. In addition,
these control bits are set when the FCW is
loaded via a LDPC and DCTL FCW.

When a type of interrupt has been disabled,
the CPU ignores any interrupt request on the
corresponding input pin. Because maskable
interrupt requests are not retained by the
CPU, the request signal must be asserted until
the CPU acknowledges the request.

(FCW); and finally, the interrupt/trap
identifier word. The identifier word contains
the reason or source of the trap or interrupt.
For internal traps, the identifier is the first
word of the trapped instruction. For segment
trap or interrupts, the identifier is the value
on the data bus read by the CPU during the
interrupt-acknowledge or trap-acknowledge
cycle. The format of the saved program status
in the system stack is illustrated in Figure
7.1.

lOW lOW

SYSTEM STACK ADDRESS ADDRESS

~~l~T~= AFTER..... SYSTEM SP IDENTIFIER
AFTER TRAP

INTERRUPT OR INTERRUPT Few

PC SEGMENT

SYSTEM STACK
PC OFFSET

~~~~T6: BEFORE--..
SYSTEM SP .-

INTERRUPT BEFORE TRAP
OR INTERRUPT

.-1 WORD~ 4-1 WORD .....

HIGH HIGH
ADDRESS ADDRESS

Figure 7-1. Format of Saved Program Status in the
System Stack

220



The following table shows the PC value that
is pushed on the stack for each type of inter­
rupt and trap.

• Assumes successful completion of instruction fetch

t If executing an interruptable instruction (e.g. LDIR)
and the instruction has not completed, then the next
instruction is the current instruction.

7.6.3 Loading New Program Status. After
saving the current program status, the new
program status (PC and FCW) is automatically
loaded from the Program Status Area in system
program memory. The particular status words
fetched from the Program Status Area are a
function of the type of trap or interrupt and
(for vectored interrupt) of the interrupt vector.
Figure 7.2 shows the format of the Program
Status Area.

For each kind of interrupt or trap other than
a vectored interrupt, there is a single program
status block that is automatically loaded into
the Program Status registers (which includes
the Flag and Control Word and the Program
Counter).

Note that the size of each program status
block depends on the version of the 28000 (two
words for the nonsegmented Z8002 and four
words for the segmented Z8001).

For all vectored interrupts, the same Flag
and Control Word (FCW) is loaded from the
corresponding program status block. However,
the appropriate Program Counter (PC) value is
selected from up to 256 (28002) or 128 (Z8001)
different values in the Program Status Area.
The low-order eight bits of the identifier
placed on the data bus by the interrupting
device is multiplied by two and used as an off­
set into the Program Status Area following the
FCW for vectored interrupts. On the Z8002,
the identifier value 0 selects the first PC value,
the value 1 selects the second PC, and so on
up to the identifier value 255. On the Z8001,
the identifier value 0 selects the first PC value,

BYTE OFFSET

~
o 0

PCn

PC,

PC,

SYSTEM
CALL
TRAP

RESERVED

FCW

=.JSEGL­
PC OFFSET

PROGRAM STATUS AREA
POINTER (PSAP)

~

~rPPER

=~~~OFFSET IMPLIED

Z8002

RESERVED

FCW

RESERVED

Few I~~~~~~~I~N 1------1
-3 SEG L-. TRAP

PC OFFSET

USEG~
pen OFFSET

Figure 7-2. Program Status Area

PSEGL-
PC,OFFSET

Wp~~~~ VECTOREDoSE~ INTERRUPTS

PC3 OFFSET

RESERVED

:rSE~C SE';R~~NT

PC OFFSET -1-----1
RESERVED

, Few NON.MASKABlEI--__--l
U seGL- INTERRUPT

PC OFFSET

RESERVED

Few NON-VECTOREDI--__--IU SEGL- INTERRUPT

PC OFFSET

BYTE OFFSET
HEX DECIMAL

o 0

the value 2 selects the second PC, and so on
up to the identifier value 254, which selects
the 128th PC value. All vectors on Z8001
systems must be even.

The Program Status Area is addressed by a
special control register, the Program Status
Area Pointer, or PSAP. This pointer is one
word for the nonsegmented Z8002 and two
words for the segmented Z8001. As shown in
Figure 7.2, the pointer contains a segment
number (if applicable) and the high-order byte
of a 16-bit offset address. The low-order byte is
assumed to contain zeros; thus the Program
Status Area must start on a 256-byte address
boundary. The programmer accesses the PSAP
using the Load Control Register instruction
(LDCTL).

PC Value Is Address of:

Second Word of Instruction
Word Following First Word

of Instruction
Next Instruction
Next Instruction' t
Next Instructiont

Exception:

System Call Trap
Segment Trap
All Interrupts

Extended Instruction Trap
Privileged Instruction Trap

7.6 Interrupt
and Trap
Handling
(Continued)

221



7.6 Interrupt
and Trap
Handling
(Continued)

7.7 Priority

7.6.4 Executing the Service Routine. Loading
the new program status automatically initializes
the Program Counter to the starting address of
the service routine to process the interrupt or
trap. This program is now executed. Because a
new FCW was loaded, the maskable interrupts
can be disabled for the initial processing of the
service routine by a suitable choice of FCW.
This allows critical information to be stored
before subsequent interrupts are handled. Ser­
vice routines that enable interrupts before exit­
ing permit interrupts to be handled in a nested
fashion.

Because it is possible for several exceptions
to occur simultaneously, the CPU enforces a
priority scheme for deciding which event will
be honored first. The follOWing gives the
descending priority order:

• Reset
• Internal Trap (i.e., privileged instruction,

system call, extended instruction)

• Non-Maskable Interrupt

• Segment Trap (28001 only)

• Vectored Interrupt

• Nonvectored Interrupt

This is how the priority system works:

• Whenever a reset is requested, it is immedi­
ately performed.

• If several non-reset exceptions occur simul­
taneously, the one that has the highest
priority and is also enabled (traps and non­
maskable interrupts are always enabled) is
acknowledged, old status is saved, and new
status is loaded. The new status consists of
the starting address of the service routine
(PC) and a new FCW that may disable vec­
tored and nonvectored interrupts.

• If any enabled exceptions remain, the
highest-priority one is acknowledged, the
old status is saved, and the new status is
loaded. Note that in this case, the old status
is the PC and FCW of the previous excep­
tion's service routine.

7.6.5 Returning from an Interrupt or Trap.
Upon completion, the service routine can exe­
cute an Interrupt Return instruction, IRET, to
cause execution to continue at the point where
the interrupt or trap occurred. IRET causes
information to be popped from the system stack
in the follOWing order: the identifier is dis­
carded, the saved FCW and PC are restored.
The newly loaded FCW takes effect with the
next fetched instruction, which is determined
by the restored Program Counter.

On 28001 CPUs, IRET can be executed only
in segmented mode; in nonsegmented mode
the operation is undefined.

• This process is repeated until no enabled
exceptions remain. At that point, the cur­
rent PC and FCW will contain the status
values for the lowest priority exception that
was acknowledged.

• The execution of the service routines now
proceeds in reverse priority order. That
is, the lowest priority exception is
serviced first.

• After all the exceptions have been serviced,
the original status is restored and execution
resumes.

Within each of the classes above, there can
be multiple-interrupt sources. The internal
traps are mutually exclusive and therefore
need no priority resolution within that class.
The other types arise from external sources;
thus when multiple devices share the same
request line, the possibility arises that more
than one device mav reauest service from the
CPU simultaneously. Either all the interrupt
sources must be serviced simultaneously (as
with the MMU) or competing requests must be
resolved externally to the CPU, for example,
by means of a daisy-chain or priority interrupt
controller. This resolution is done during the
interrupt acknowledge cycle.

222



.- 8





8.1 Intro­
duction

8.2 Refresh
Cycles

8.3 Periodic
Refresh

8.4 Stop-State
Refresh

The 28000 CPU has an internal mechanism
for refreshing dynamic memory. This
mechanism can be activated in two ways:

• When the Refresh Enable (RE) bit in the
CPU Refresh Counter is set to one (Figure
8.1), memory refresh is performed period­
ically at a rate specified by the RATE field
in the counter. (See Section 8.3.)

The refresh mechanism is a way of gener­
ating a special kind of bus transaction called a
refresh cycle, which is described in Chapter 9.
A refresh cycle is three clock cycles long and
may be inserted immediately after the last
clock cycle of any transaction.

During a refresh cycle, the status lines are
set to 0001 and the address lines ADj-ADa are

The Refresh Enable (RE) bit controls only
Periodic Refresh; refresh cycles may be
generated using the STOP line, regardless of
the state of RE. When RE is set to one, the
value of the 6-bit RATE field determines the
time between successive refreshes (the refresh
period). When RATE = 0, the refresh period
is 256 clock cycles; when RATE = n, the
refresh period is 4n clock cycles. (Thus, if
there is a 4 MHz clock, the refresh period can
be from 1 JLS to 64 /l-s.)

The LDCTL instruction is used to set the
refresh rate, to set or clear RE, or to initialize
or read the ROW field. (See Section 6.7 for a
detailed discussion of this instruction.)

The refresh cycle is generated as soon as
possible after the refresh period has elapsed.
This usually means after the last clock cycle of
the current transaction. If the CPU receives a

The CPU has three internal operating states:
Running, Stop, and Bus-Disconnect states (see
Section 2.8). Stop state is entered during the
first word fetch of an instruction if STOP is
activated before the machine cycle begins, or
during the second word fetch of an EPA

225

Chapter 8
Refresh

• When the STOP line is activated, the CPU
generates memory refreshes continuously.
(See Section 8.4.)

I I I I
RATE

+++++++++
ADa AD7 AD6 ADs AD4 AD3 AD2 AD1 ADo

Figure 8-1. Refresh Control Register

set to the value of the row address counter.
Address lines ADg-ADj5 are undefined, and
ADo is always O. The ROW value determines
the memory row that is being refreshed on this
cycle. Since memory is word-organized, ADo
is always zero. After the refresh cycle is com­
plete, the ROW field is incremented by two,
thus stepping through 256 rows.

trap or an interrupt simultaneously with a
Periodic Refresh request, the refresh operation
is performed first.

When the CPU does not have control of the
bus (that is, when BUSACK is asserted and the
CPU enters Bus-Disconnect state or when the
WAIT line is deactivated), the CPU cannot
issue refresh cycles. To deal with the situa­
tion, both 28000 CPUs have internal circuitry
that records when the refresh period has
elapsed and refresh cycles cannot be gener­
ated. When the CPU regains control of the
bus, or when the WAIT line is deactivated, it
immediately issues the skipped refresh cycles.
The internal circuitry can record up to two
such skipped refresh operations.

After a reset operation, Periodic Refresh is
disabled (RE is cleared) and the internal cir­
cuitry that counts skipped refreshes is cleared.

instruction if the STOP line is activated before
the start of the machine cycle. When STOP is
found High again, one more refresh cycle is
performed, then the remaining clock cycles of
the instruction fetch are executed. (See
Appendix A for more timing information.)





.- 9





9.1 Intro­
duction

9.2 Bus
Operations

This chapter covers the external manifesta­
tions (e.g., the activity on the CPU pins) that
result from the operations described in
Chapters 2 through 8. Since the pins are con­
nected to the system bus (see Figure 2.3 in
Chapter 2), much of the discussion will center

Two kinds of operations can occur on the
system bus: transactions and requests. At any
given time, one device (either the CPU or a
bus requester, such as the Z8016 DMA Con­
troller) has control of the bus and is known as
the bus master. A transaction is initiated by
the bus master and is responded to by some
other device on the bus. Only one transaction
can proceed at a time; six kinds of transactions
can occur:

• Memory transaction. This type is used to
transfer eight or 16 bits of data to or from a
memory location (Section 9.4.2).

• 1/0 transaction. This type is used to transfer
eight or 16 bits of data to or from a periph­
eral or CPU support component, such as an
MMU (Section 9.4.3).

• EPU transfer. This type is used to transfer
16 bits of data between the CPU and an EPU
(Section 9.4.4).

• Interrupt/Trap Acknowledge. This type is
used to acknowledge an interrupt or trap
and to transfer an identification/status word
from the interrupting or trapping device
(Section 9.4.5).

• Refresh. These transactions do not transfer
data. They refresh dynamic memory (Sec­
tion 9.4.6).

• Internal operation. These transactions do

Chapter 9
External Interface

on the bus and bus operations. The Z8000 CPU
is designed to be compatible with the Zilog
Z-Bus protocols, which are described in the
Z-Bus Summary. In the sections that follow, the
interface between the Z8000 CPU and its
environment is described in detail.

not transfer data. They indicate that the
CPU is performing an operation that does
not require data to be transferred on the bus
(Section 9.4.6).

Only the bus master may initiate trans­
actions. A request, however, may be initiated
by a component that does not have control of
the bus. Four types of requests can occur:

• Interrupt request. This type is used to
request the attention of the CPU (Section
9.6.1).

• Bus request. This type is used to request
control of the bus to initiate transactions
(Section 9.6.2).

• Resource request. This type is used to
request control of a particular system
resource (Section 9.6.3).

• Stop request. This type is used to delay
CPU instruction execution (Section 9.6.4).

When an interrupt or bus request is made, it
is answered by the CPU according to its type:
for interrupt request, an interrupt acknowledge
transaction is initiated; for bus requests, the
CPU enters Bus Disconnect state, relinquishes
the bus, and activates an acknowledge signal;
for stop requests, the CPU stops execution and
enters Stop/Refresh state. A resource request
is generated by the CPU when it executes a
multi-micro request instruction.

229



Figure 9-1. Pin Functions

AD,S

AD,.

AD13 ..........

AO, 2

AD" ..........

AD1o~

Ao.,_

AD, - ADDRESS I
AD, _ DATA BUS

ADo -
ADs ........

AD,

--1- Z8001l
ONLY,

I

J

SEQMENT i
NUMBER I

I
I
I

SEGMENT I
_~R~ __ --.J

28001
28002

CPU

t
+5 V GND elK

READ~

NORMAUS'i'S'i'EM

BYTElWORD

ST,

ST,

ST,

ST,

TRANS­
ACTIONS

BUSACK. Bus Acknowledge (Output, active
Low). A Low on this line indicates that the
CPU has relinquished control of the bus in
response to a bus request.

9.3.3 Interrupt/Trap Pins. These pins convey
interrupt and external trap requests to
the CPU.
NMI. Non-Maskable Interrupt (Input, Edge
activated). A High-to-Low transition on NMI
requests a non-maskable interrupt.

NVI. Non- Vectored Interrupt (Input, active
Low). A Low on this line requests a non­
vectored interrupt.

VI. Vectored Interrupt (Input, active Low). A
Low on this line requests a vectored interrupt.

SEGT. Segment Trap (28001 only, Input,
active Low). A Low on this line requests a seg­
ment trap.

( ----NM1
INTERRUPTS{ ~

l NVI

MULTI.MICRO{ iii
CONTROL iii)

SNo-SN7• Segment Number (28001 only, Out­
put, active High, 3-state). These lines contain
the segment number portion of a memory
address.

STo-ST3• (Output, active, High, 3-state).
These lines indicate the kind of transaction
occurring on the bus and give additional
information about the transaction (such as the
address space for memory transactions).

AS. Address Strobe (Output, active Low,
3-state). The rising edge of AS indicates the
beginning of a transaction and shows that the
Address, STo-ST3, N/S, R/W, and B/W signals
are valid.

DS. Data Strobe (Output, active Low, 3­
state). DS provides timing for data movement
to or from the CPU.

R/W. Read/Write (Output, Low = Write, 3­
state). This signal determines the direction of
data transfer for memory, I/O, or EPU transfer
transactions.

B/W. Byte/Word (Output, Low = Word,
3-state). This signal indicates whether a byte
or word of data is 10 be transmitted during a
transaction.

N/S. Normal/System Mode (Output, Low­
System Mode, 3-state). N!S indicates the CPU
is in the normal or system mode.

WAIT. (Input, active Low). A Low on this line
indicates that the responding device needs
more time to complete a transaction.

MREQ. Memory Request (Output, active Low,
3-state). A falling edge on this line indicates
that the address/data bus is holding a memory
address.

9.3.2 Bus Control Pins. These pins carry
signals for requesting and obtaining control of
the bus from the CPU.

9.3 CPU Pins The CPU pins can be grouped into five
categories according to their functions
(Figure 9.1).

9.3.1 Transaction Pins. These signals provide
timing, control, and data transfer for Z-Bus
transactions.

ADo-AD1S• Address/Data (Output, active High,
3-state). These multiplexed data and address
lines carry I/O addresses, memory addresses,
and data during Z-Bus transactions. For the
Z8001, only the offset portion of memory
addresses is carried on these lines.

BUSREQ. Bus Request (Input, active Low). A
Low indicates that a bus requester has
obtained or is trying to obtain control of
J.1- _ L .. _
l1!~ uu~,

230



9-3. CPU Pins 9.3.4 Multi-Micro Pins. These pins are the
(Continued) Z8000's interface to the Z-Bus resource request

lines.

MI. Multi-Micro In (Input, active Low). This
input is used to sample the state of the
resource request lines.

MO. Multi-Micro Out (Output, active
Low). This line is used by the CPU to make
resource requests.

9.3.5 CPU Control. These pins carry signals
which control the overall operation of
the CPU. -

STOP. (Input, active Low). This line is used to
suspend CPU operation during the fetch of the
first word of an instruction, or during an EPU
instruction if an EPU is busy.

RESET. (Input, active Low). A Low on this line
resets the CPU.

9.4 Trans­
actions

Data transfers to and from the CPU are
accomplished through the use of transactions.
Figure 9.2 shows the general timing for a
transaction.

All transactions start with Address Strobe
(AS-) being driven Low and then raised High
by the CPU. On the rising edge of AS, the
status lines STo-ST3 are valid; these lines indi-

WAIT sampled
for memory and
EPU transfer
transactions.

WAIT sampled for
1/0 and interrupt/trap Data on AD lines
acknowledge is sampled for
transactions. transfers to CPU.

CLOCK

AS
(ADDRESS STROBE)

Cycle present only for I/O
interrupt/trap
acknowledge transactions.

.......- WAIT clock cycles added
here in response to WAIT line.

AS falling indicates first AS rising indicates that status
clock cycle of a transaction. and address lines are valid.

SNo-SN6
(SEGMENT NO.) SEGMENT NUMBER

Segment No_ becomes
available one clock cycle
before rest of address.

, For continuation see Read and
Write below.

Status information becomes
available at the same time
as the address and remains
active throughout the trans·
action.

Memory, EPU transfers and"#
interrupt/trap acknowledge.

I I
For transfers to the CPU
(Memory reads, 1/0 reads,

:~~~~~~~t~::'a~~~~:~~ge)-.G----+-----+~
the AD lines are first
3·stated by the CPU.

For transfers from the CPU
(Memory writes, 1/0 writes,
and transfers to the EPU) ""-
the CPU places the data on

'her Iines_

ADo-AD15
(ADDRESS OFFSED

{

OS
(DATA

READ STROBE)

AOo-AD 15
(DATA)

{

OS
(DATA

STROBE)

WRITE ADo-AD"

(DATA)

STO-ST3.
RtW, BtW, SIN

(STATUS
INFORMATION) _-+ +' 1"-----1------1------1------1-------1-

Figure 9-2. Transaction Timing

231



9-4. Trans­
actions
(Continued)

cate the type of transaction being initiated (see
Table 9.1; the six types of transactions are dis­
cussed in the sections that follow). Associated
with the status lines are three other lines that
become valid at this time. These are Normal!
System (N/S), ReadlWrite (RlW), and
Byte/Word (B/W). Except where indicated
below, NIS designates the operating mode of
the CPU, RlW designates the direction of data
transfer (read to the CPU, write from the
CPU), and B/W designates the length of the
data item being transferred.

If the transaction requires an address, it too
is valid on the rising edge of AS. No address is
required for interrupt acknowledge, EPU
transfer, or internal operation transactions. (In
the 28001, the segment number lines SNo-SN6
are valid one clock cycle earlier to allow for
external memory management hardware. See
Chapter 2 for more information.)

The CPU uses Data Strobe (DS) to time the
actual data transfer. (Note that refresh and
internal operation transactions do not transfer
any data and thus do not activate DS.) For
write operations (RIW = Low), a Low on DS
indicates that valid data from the bus master is
on the ADo-ADI5 lines. For read operations
(RIW = High), the bus master makes
ADo-ADI5 3-state before driving DS Low so
that the addressed device can put its data on
the bus. The bus master samples this data on
the falling clock edge just before raising
DS High.

9.4.1 WAIT. As shown in Figure 9.2, WAIT is
sampled on a falling clock edge one cycle
before data is sampled by the CPU (Read) or
DS rises (Read or Write). If WAIT is Low,
another cycle is added to the transaction
before data is sampled or DS rises. In this
added cycle and all subsequent cycles added
due to WAIT being Low, WAIT is again sam­
pled on the falling edge and, if it is Low,
another cycle is added to the transaction. In
this way, the transaction can be extended to an
arbitrary length to accommodate (for example)
slow memories or I/O devices that are not yet
ready for data transfer.

It must be emphasized that the WAIT input
is synchronous. Thus, it must meet the setup
and hold times given in Appendix A in order
for the CPU to function correctly. This
requires asynchronously generated WAIT
signals to be synchronized before they are
input into the CPU.

9.4.2 Memory Transactions. Memory Trans­
actions move data to or from memory when the
CPU makes a memory access. Thus, they are
generated during program execution to fetch
instructions from memory and to fetch and
store memory data. They are also generated to
store old program status and fetch new pro­
gram status during interrupt and trap handling
and after reset.

As shown in Figure 9.3, a memory trans­
action is three clock cycles long unless

Kind of Transaction Additional Information

1":'2rn<31 Operation

Refresh

I 0 Transaction

Interrupt
Acknowledge

Transaction

Memory
Transaction

EPU Transfer

0000

0001

{
DOlO
0011

1
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1111

1110

Standard I/O
Speciall/O

Segment Trap
Non-Maskable Interrupt
Non- Vectored Interrupt
Vectored Interrupt

Data Address Space
Stack Address Space,
Data Address Space, EPU Transfer
Stack Address Space, EPU Transfer
Program Address Space,
Program Address Space, First Word of Instruction
Test and Set (28003 only)

Table 9-1. Status Codes

232



9-4. Trans­
actions
(Continued)

extended as explained above in WArT. The
status pins, besides indicating a memory trans­
action, give the following information:

• Whether the memory access is to the data
(1000, 1010), stack (100 I, 1011), or program
(1100, 1101) address space (Chapter 3).

• Whether the first word of an instruction is
being fetched (1101).

• Whether the data for the access is to be
supplied (write) or captured (read) by an
Extended Processing Unit (1010, 1011).

Status codes 1000 and 1001 may also indi­
cate that the EPU is to capture or supply the
data.

For the 28002, the full memory address will
be on ADo-AD I5 when AS rises. For the
28001, the offset portion of the segmented
address will be on ADo-ADI5 and the segment
number portion will be on SNo-SN6 when AS
rises. The segment portion will also be on
SNo-SN6 approximately one cycle before
ADO-AD I5 is valid.

Tn T, T, T,

ILr-L-~
~

p.....--

CLOCK DATA SAMPLED

-
"'WAITC:::::

FOR READ

WAIT

STATUSES
[(BM', NIS,

iSTo-ST,)
I

SNo-SNs SEGMENT NUMBER
!

I

is !

I

I I I
--

I

i

I
MREQ

I <=:)AD
MEMORY ADDRESS >---READ

I

-
OS

READ

R1W / I ~READ

i

AD
MEMORY ADDRESS! DATA OUT

WRITE

i
-
OS

WRITE

i !

-

I /R1W

i \ i \
WRITE

Figure 9-3. Memory Read and Write Transaction

233



9-4. Trans­
actions
(Continued)

Bytes transferred to or from odd memory
(address bit a is 1) locations are always trans­
mitted on lines ADo-AD? (bit a on ADo). Bytes
transferred to or from even memory locations
(address bit a is 0) are always transmitted on
lines ADs-AD15 (bit aon ADs). Thus, the
memory attached to a 28000 will look like that
shown in Figure 9.4. For byte reads (B/W
High, R/W High) the CPU uses only the byte
whose address it outputs. For byte writes (BIW
High, R/W Low), the memory should store only
the byte whose address was output. During
byte memory writes, the CPU places the same
byte on both halves of the bus, and the proper
byte must be selected by testing Ao. For word
transfers, (B/W = Low), all 16 bits are cap­
tured by the CPU (Read: RlW = High) or
stored by the memory (Write: R/W = Low).

As explained more fully in Section 9.5, a
28001 CPU and an Extended Processing Unit
act like a single CPU with the CPU providing
addresses, status and timing information and
the EPU providing or capturing data.

9.4.3 I/O Transactions. I/O transactions move
data to or from peripherals or CPU support
devices (e.g., MMUs). They are generated
during the execution of I/O instructions.

As shown in Figure 9.5, I/O transactions are
four clock cycles long at minimum, and they
may be lengthened by the addition of WAIT
cycles. The extra clock cycles allow for slower
peripheral operation.

The status lines indicate whether the access
is to the Standard I/O (0010) or Special I/O
(00 11) Address Spaces. The N/S line is always
Low, indicating system mode. The I/O address
is found on ADo-AD15 when AS rises. Since
the I/O address is always 16 bits long, the seg­
ment number lines are undefined on 28001
CPUs. For byte transfers (B/W = High) in
Standard I/O space, addresses must be odd;
for byte transfers in Special I/O space,
addresses must be even.

Word data (B/W = Low) to or from the CPU
is transmitted on ADo-AD15. Byte data
(B/W = High) is transmitted on ADO-AD? for
Standard I/O and on ADs-AD15 for Special
I/O. This allows peripheral devices or CPU
support devices to attach to only eight of the
16 ADo-AD16 lines. The Read/Write line (RlW)
indicates the direction of the data transfer:
peripheral-to-CPU (Read: RlW = High) or
CPU-to-peripheral (Write: RlW = Low).

i6.BIT Z·BUS DATA PATH

D
ADo

LOWER
BYTE
BANK

1000 ADDRESS)

Bffl -ot>------,.....-t'"'
ADo ~-...- ...e~<r-H_L../

LOWER
BANK

RIW ---i:::====~::::;L)-----------' ENABLE

ADO-AD,.

Figure 9-4. Memory Organization

234



9-4. Trans­
actions
(Continued)

9.4.4 EPU Transfer Transactions. These trans­
actions move data between the CPU and an
Extended Processing Unit (EPU), thus allowing
the CPU to transfer data to or from an EPU or
to read or write an EPU's Status Registers or
between EPU and memory. They are generated
during the execution of the EPA instruction.

EPU memory transfer transactions have the
same form as memory transactions (Figure 9.3)
and thus are three clock cycles long, unless
extended by WAIT. No address is generated,
and there is only one status code that can be
used on the STo-ST 3 lines (111 0). In a
multiple EPU system, the EPU which is to

participate in a transaction is selected implic­
itly, as described in Secion 9.5, rather than
by an address. EPU-CPU transactions have the
same timing relationship as I/O transactions
(Figure 9-5).

The data transferred is l6-bit words (BIW
Low), except for transfers between the Flags
byte of the FCW and an EPU. In this case a
byte of data is transferred on ADo-AD7
(BiW = High). The Read/Write line (R/W)
indicates the direction of the data transfer. The
N/S line indicates either system mode (Low) or
normal mode (High).

m...--+DATA SAMPLED
FOR READ

T, T, TWA

CLOCK

WAIT

STATUSES
(8m, 5T0-5T3)

HIS

AS

MREQ

AD
INPUT

os
INPUT

~'E'''~ j
I
I

~~=p< PORT ADDRESS I X DATA OUT

os \OUTPUT

~WnOUTPUT:

Figure 9-5. Input/Output Transaction

235



9-4. Trans­
actions
(Continued)

9.4.5 Interrupt/Trap Acknowledge Trans­
actions. These transactions acknowledge an
interrupt or trap and read a 16-bit identifier
word from the device that generated the inter­
rupt or trap. The transactions are generated
automatically by the hardware when an inter­
rupt or segment trap is detected.

These transactions are eight clock cycles
long at a minimum (as shown in Figure 9.6),
having five automatic WAIT cycles. The WAIT
cycles are used to give the interrupt priority
daisy chain (or other priority resolution
device) time to settle before the identifier word
is read. (Consult the Z-Bus Summary for more
information on the operation of the priority
daisy-chain. )

The status lines identify the type of excep­
tion that is !>eing acknowledged. The possibil­
ities are Segment Trap (0100), Non-Maskable
Interrupt (OlGl), Non-Vectored Interrupt
(0110), and Vectored Interrupt (0111). No
address is generated. The N/S line indicates

system mode (Low), the RlW line indicates
READ (High), and the B/W line indicates
Word (Low).

The only item of data transferred is the
indentifier word, which is always 16 bits long
and is captured from the ADo-ADlilines on
the falling clock edge just before DS is
raised High.

As shown in Figure 9.6, there are two places
where WAIT is sampled and thus a WAIT
cycle may be inserted. The first serves to delay
the falling edge of DS to allow the daisy chain
a longer time to settle, and the second serves
to delay the point at which data is read.

9.4.6 Internal Operations and Refresh Trans­
actions. There are two kinds of bus trans­
actions made by the CPU that do not transfer
data: internal operations and memory refresh.
Both transactions look like a memory trans­
action, except that Data Strobe remains High
and no data is transferred.

T T,

CLOCK

'~i---~~~~iU~JT!~~---i-I-I~~f!:J~N_-t--__-----A-UTO-MA-TtC ::~}:T~~~~E

fr~

\ *-SAMPlE
INTER,!!!~ __SAMPLE

NIIII "---+--

.,w-:r­

.,wll-

STO.ST.=r=:= =D<~----------.-
DS-_._-------------..

\'--__-J!

.~~---------( 10'_NT"""_>_-to-

Figure 9-6. Interrupt and Segment Trap Request and Acknowledge Transition.

236



9-4. Trans­
actions
(Continued)

For internal operation transaction (shown in
Figure 9.7), the Address and Segment Number
lines contain arbitrary data when the Address
Strobe goes High. The R/W line indicates
Read (High); the B/W line is undefined, and
N/S is the same as for the immediately
preceding transaction. This transaction is initi­
ated to maintain a minimum transaction rate
while the CPU is doing a long internal
operation.

A memory refresh transaction (shown in
Figure 9.8) is generated by the Z8000 CPU's

refresh mechanism as described in Chapter 8
and can corne immediately after the final clock
cycle of any other transaction. The memory
refresh counter's 9-bit ROW field is output on
ADO-ADs during the normal time for
addresses. This transaction can be used to
generate refreshes for dynamic RAMs. The
value of N/S, R/W, and B/W is the same as for
the immediately preceeding transaction.

WAIT is not sampled during internal opera­
tion or refresh cycles.

~.,="
CLOCK

~~~~ .__.1. ·

:~-
MREQ. iii, RlW . HIGH

NIS

Figure 9-7. Internal Operation Timing

STO-STa

REFRESHADOAESS)------- -------- -C

RIW.BIW.IIIi}_--+- -+__..._.._S"""OUS_....,...CY_Cl_E _

Figure 9-8. Memory Refresh llmmg

237

9.5 CPU and
Extended Pro­
cessing Unit
Interaction

A 28000 CPU and one or more Extended
Processing Units (EPUs) work together like a
single CPU component, with the CPU pro­
viding address, status and timing signals and
the EPU supplying and capturing data. The
EPU monitors the status and timing signals out­
put by the CPU so that it will know when to
participate in a memory or EPU transfer trans­
action. When the EPU is to participate in a
memory transaction, the CPU puts its AD lines
in 3-state while DS is Low, so that the EPU may
use them.

In order to know which transaction it is to
participate in, the EPU must track the follow­
ing sequence of events:

• When the CPU fetches the first word of an
instruction (ST3-STO = 1101), the EPU must
also capture the instruction returned by
memory. If the instruction is an extended
instruction, it will have an ID field which
indicates whether or not the EPU is to
execute the instruction.

• If the instruction is to be executed by the
EPU, the next non-refresh transaction by the
c;PlT will fAkh thA f':Acond word of the

AD lines while data is being transferred
(DS Low). EPU memory transfers are always
word-oriented (B/W Low).

• If the instruction involves a transfer between
the CPU and EPU, the next one to 16 non­
refresh transactions by the CPU will transfer
data between the EPU and CPU
(ST3-STO = 1110).
Note that in order to follow this sequence, an

EPU will have to monitor the BUSACK line to
verify that the transaction it is monitoring on
the bus was generated by the CPU. It should
also be noted that in a multiple EPU system,
there is no indication on the bus as to which
EPU is cooperating with the CPU at any given
time. This must be determined by the EPUs
from the extended instructions they capture.

A final aspect of CPU-EPU interaction is the
use of the CPU's STOP pin. When an EPU
begins to execute an extended instruction, the
CPU can continue fetching and executing
instructions. If the CPU fetches another
extended instruction before the first one has
completed execution, the EPU must activate
the CPU's STOP pin to stop the CPU (as

9-6. Requests
(Continued)

9.6.1 Interrupt/Trap Request. The 28000 CPU
supports three interrupts and one external trap
(segment trap) as shown in Figure 9.6. The
Interrupt Request line (INT) of a device that is
capable of generating an interrupt may be tied
to any of the three 28000 interrupt pins (NMI,
NVI, VI). Several devices can be connected to
one pin, the devices arranged in a priority
daisy chain (see the Z-Bus Summary). The seg­
ment trap pin (SEGT) is activated by the
memory management hardware. The CPU uses
the same protocol for handling requests on any
of these pins. Here is the sequence of events
that is followed:

• Any High-to-Low transition on the NMI
input is asynchronously edge-detected, and
the internal NMI latch is set. At the begin­
ning of the last clock cycle in the last
machine cycle of any instruction, the VI,
NVI, and SEGT inputs are sampled along
with the state of the internal NMI latch.

• If an interrupt or trap is detected, the sub­
sequent initial instruction fetch cycle is
exercised, but nullified.

• The next machine cycle is the interrupt
acknowledge transaction (see Section 9.4.4)
that results in an identifier word from the
highest-priority interrupting device being
read off the AD lines.

• This word, along with the program status
information, is stored on the system stack,
and new status information is loaded (see
Chapter 7).

For more information about the system-level
aspects of the interrupt structure, consult the
Z-Bus Summary.

9.6.2 Bus Request. To generate transactions
on the bus, a potential bus master (such as the
DMA Controller) must gain control of the bus
by making a bus request (shown in Figure
9.9). A bus request is initiated by pulling
BUSREQ Low. Several bus requesters may be
wired to the BUSREQ pin; priorities are
resolved externally to the CPU, usually by a
priority daisy chain (see the Z-Bus Summary) .

The asynchronous BUSREQ signal generates
an internal BUSREQ, which is synchronous. If
the external BUSREQ is Low at the beginning

_----BUS AVAILABLE----..

CLOCK

BUSREQ

INTERNAL
BUSREQ

Tx Ix Tx Tx Tx

>-------------+--1

MREQ, OS, ------------4-_
STo-ST3•)-..... -.... 1--

----t---- ---
---- ---

----f---- ---

~-- ---- --- ----

)-.--__________-+-J

SN

AD

BUSACK

Figure 9-9. Bus Request/Acknowledge Timing

239

9-6. Requests
(Continued)

of any machine cycle, the internal
l3DSREQ will cause the bus acknowledge line
(BUSACK) to be asserted after the current
machine cycle is completed. The CPU then
enters Bus-Disconnect state and gives up con­
trol of the bus. All CPU Output pins, except
BUSACK and MO, are 3-stated.

The CPU regains control of the bus two
clock cycles after BUSREQ rises. Any device
desiring control of the bus must wait at least
two cycles after BUSREQ has risen before
pulling it down again.

9.6.3 Resource Request. The CPU generates
resource requests by executing the Multi-Micro
Request (MREQ) instruction. The CPU tests the
availability of the shared resource by examin­
ing 'MI. If MI is High, the resource is
available, otherwise the CPU must try again
later. The MO pin is used to make the resource
request. MO is pulled Low, then, after a delay

I
---REFRESH---I

T,,. T'll Tlil

for arbitration of priority, MI is tested again. If
it is Low, the CPU has control of the resource;
if it is still High, the request was not granted.
In the case of failure, MO must be deactivated.
But if successful, MO must be kept active until
the CPU is ready to release the resource
whereupon MO is deactivated by an MRES
instruction.

The Z-Bus Summary describes an arbitration
scheme that is implemented with a resource
request daisy chain.

9.6.4 Stop Request. As shown in Figure 9-10,
the STOP pin is normally sampled on the fall­
ing clock edge immediately preceding an ini­
tial instruction fetch cycle. If STOP is found
Low, the CPU enters Stop/Refresh state and a
stream of memory refresh cycles is inserted
after the third clock cycle in the instruction
fetch. The ROW field in the Refresh Counter is
incremented by two after every refresh cycle.

STOP""\ ! \ !)()C J \~ _

-c::=:>-- ~~TRUCT~::~~~~ >- - -< :~6~~~~ :>--
u\J V ~

os "---I

STO-ST, ===>< --.JXI...... _

!
Alii

________x:=
_ x:=

Figure 9-10. Stop Timing

240

9-6. Requests
(Continued)

9.7 Reset

When STOP is found High again, the next
refresh cycle is completed, then the original
instruction continues.

If the EPA bit in the FCW is set (indicating
an EPU is in the system), the STOP line is also
sampled on the on the falling clock edge
immediately preceding the second word of an

A hardware reset puts the Z8000 in a known
state and initializes selected control registers
of the CPU to system speCifiable values (as
described in Section 7.4). A reset will begin at
the end of any clock cycle, if the RESET line
is Low.

A system reset overrides all other operations
of the chip, including interrupts, traps, bus
requests and stop requests. A reset should be
used to initialize a system as part of the power­
up sequence.

Within five clock cycles of the RESET

instruction fetch-if the first word indicates an
extended instruction. Thus, the STOP line may
be used by an EPU to deactivate the CPU
whenever the CPU fetches an extended
instruction before the EPU has finished pro­
cessing an earlier one. The STOP line may
also be used to externally single-step the CPU.

line becominSLlo~igure9.11), ADo-AD15
are 3-stated; AS, DS, MREQ, BUSACK,
MO, and ST0 - ST3 are forced High; SN 0 - SN6

are forced Low. The R/W, B/W and N/S lines
are undefined. Reset must be held Low at least
five clock cycles.

After RESET has returned High for three
clock cycles, consecutive memory-read trans­
actions are executed in the system mode to ini­
tialize the Program Status Registers. These cor­
respond to the memory accesses described in
Section 7.4

\'---------
----------')-----

... ..,.,1

STO-ST3 ..,.,1

.iii----------------
BUSAK ,.,I

________...J1

\

Figure 9-11. Reset Timing

241

.- A

Appendix A

TRANS­
ACTIONS

MULTIOMICRO{
CONTROL

READIWRITE

NORMAUSYSTEM

BYTElWORO

Z8001
CPU

iii

iTo

..,....-..,..:--__S-_EG_Tr ~~;~mlT

t t t
+5 V GND eLK

AD, AD,

AD, SN,

AD10 SNs

AD11 AD,

AD12 AD,

A013 AD,

STOP SN,

iii ADs

AD1s AD,

AD t • AD,

+5V AD,

Vi SN,

NVi GND

SEGT CLOCK

NMi AS
RESET RESERVED

iTo BtW

MREci NIS

os piw

ST, BUSACK

ST, WAIT

ST, BUSREQ

ST, 23 26 SN,

SN3924 2SPSN1

Z8001 CPU Pin Functions
Z8001 Pin Assignments

AD,

AD,

AD,

AD,

AD,

ADs

AD,

AD,

AD,

GND

CLOCK

AS

RESERVED

8tW

NIS

R1W
BUSACK

WAIT

BUSREQ

ST,

J; 1 40

~
2 39

3 38

4 37

5 36

6 35

7 34

8 33

9 32

10
Z8002

31

I 11 30

I 12 29

I 13 28

14 27

15 26

16 25

17 24

18 23

~
19 22P

20 21 lJ

AC1s

AD,.

+5V

V
NY

Nil

RESET

iTo

MREQ

os
ST,

ST,

ST,

ADDRESSl
DATA BUS

Z8002
CPU

iii

iTo

READIWRITE

NORMAUS\'SfEM

BYTElWORDTRANS­
ACTIONS

MULTI.MICRO{
CONTROL

t t t
+5 V GND ClK

Z8002 Pin Assignments

Z8002 CPU Pin Functions

245

B.-IIIIW • III _
.,.:,~ .-
17':'~~
7;1",.
Zilog

Z8010 MMU
Memory
Management Unit

~
Zilog

Product
Brief

Features • Dynamic segment relocation makes software
addresses independent of physical memory
addresses.

• Sophisticated access validation protects
memory areas from unauthorized or unin­
tentional access.

• MMU architecture supports multiprogram­
ming systems.

• Sixty-four variable-sized segments from 256
to 64K bytes can be managed within a total
physical address space of 16M bytes; all 64
segments are randomly accessible.

• Multiple MMUs can support several transla­
tion tables for each of the six 28001 address
spaces.

Description Declining memory costs coupled with the
increasing power of microprocessors has
accelerated the use of high-level languages,
sophisticated operating systems, complex pro­
grams and large data bases in micromputer
systems. The 28001 microprocessor CPU sup­
ports these trends with an eight megabyte
direct address space as well as a rich and
powerful instruction set. The 28010 Memory
Management Unit (MMU) provides flexible and

efficient support for this large address space
by offering dynamic segment relocation as well
as numerous memory-protection features.

The primary memory of a computer is one
of its major resources. As such, the manage­
ment of this resource becomes a major con­
cern as demands on it increase. These
demands arise from multiple users (or multiple
tasks within a dedicated application), the need
to increase system integrity by limiting access

t t t
+ 5 V GND ClK RESET DECOUPLE

DMAISEGMENT __ DMASYNC

cs NIS

DMASYNC ANi
SEGT AS

SUP os
AESET STo

A2, ST,

A22 ST2

A2, ST,

A20 AD,

A,. AD.

+5V AD10

A" AD'1
An ClK

AlB GND

A15 AD'2
A14 AD'3
A13 AD,4

A'2 AD,s

Al1 SNo
AlO SN,

Ag SN,

As SN,

RESERVED SN,

SN. SNs

PHYSICAL
ADDRESS

SUPPRESS

AM }
NfS -4--

ST3-
STATUS

ST2-

ST,

STo-

A"

A22

A21

A20

A,.

A"

An

A"

A15

A14

A13

Z8010 A12
MMU

Al1

A,O

A.

As

SEGT SUP
SEGMENT

TRAP

CHIP SELECT __ cs

{

__ AS
BUS TIMING ___ OS

Figure 1. Pin Functions Figure 2. Pin Assignments

249

Description
(Continued)

to various portions of the memory, and from
the need to structure large, complex programs
and systems.

Multiple tasks (or users) of a system that
can reside anywhere in memory are called
reJocatabJe. Generally, systems in which all
tasks are relocatable offer far greater flexibility
in responding to changing system environ­
ments. Another aspect of multiple-task envi­
ronments is sharing: separate tasks can
execute the same program on different data, or
several tasks may execute different programs
using the same da ta.

Unfortunately, a problem that arises in
multiple-task systems is that of system integrity.
Tasks must be protected from unwanted inter­
actions with other tasks; user tasks must be
prohibited from performing operating system
functions; and user tasks must also be pro­
tected from themselves so they cannot overflow
the areas allotted to them.

In addition to these considerations, support
for the design and implementation of large,
complex programs and systems is itself an
important consideration. Modern trends are
toward the partitioning of a complex task into
small, simple, self-contained subtasks that have
well-defined interfaces. Because these subtasks
interact with each other, communication
between them must be carefully controlled.
Memory-management systems can offer effec­
tive solutions for implementing large systems
modularly designed.

The Z8010 Memory Management Unit sup­
ports multiple-process and large modular soft­
~are systems with dynamic segment relocation.
Futhermore, it enhances system integrity with

a powerful set of memory protection features.

Relocation. Dynamic segment relocation
makes user software addresses independent of
the physical memory addresses, thereby free­
ing the user from specifying where information
is actually located in the physical memory and
providing a flexible, efficient method for sup­
porting multi-programming systems.

The Z-MMU uses a translation table to
transform the 23-bit logical addresses from the
28001 CPU into 24-bit addresses for the
physical memory. Memory segments are
variable in size from 256 bytes to 64K, in
increments of 256 bytes. Pairs of Z-MMUs sup­
port the 128 segment numbers available for the
various Z8001 CPU address spaces. Within an
address space, any number of Z-MMUs can be
used to accommodate multiple translation
tables for system and normal operating modes,
or to support more sophisticated memory­
management systems.

System Integrity. Z-MMU memory-protection
features safeguard memory areas from
unauthorized or unintended access by
associating special access restrictions with
each segment. A segment is assigned a "per­
sonality" consisting of several attributes when
it is initially entered into the Z-MMU. When a
memory reference is made, these attributes are
checked against the status information sup­
plied by the 28001 CPU. If a mismatch occurs,
a trap is generated and the CPU is inter­
rupted. The CPU can then check the status
registers of the MMU to determine the cause
and take appropriate action to correct the pro­
blem.

IL-.l 1 II

1\
00- 0 , >r
°8- 0 15 >

IJ1--;Do- AD,

r
Ao-A,)

1 ~ ~
ADe-AD15 Ao- A23) MEMORY

~ .~ V

K 5 No- 5N6
SUP

Z8001
CPU \j A Z8010

5To-5T3 ~MMU
5To-5T3

IT5EGT JlSV
AS f---+ ~
OS f---+

rFR/W f---+
N/5 f---+
BIW

1 I,

Figure 3. The MMU in a Z8001 System

250

Z-Bus
System Structure

~
Zilog

Descriptive
Brief

Features • Multiplexed address/data bus, shared by
I/O and memory.

• Peripherals may be asynchronous.

• Up to 24-bit memory address, 16-bit I/O.

• 8 or 16 data bits.

• Daisy-chained bus request.

• Daisy-chained resource request.

• Vectored or nonvectored interrupts.

• Separate memory and I/O address space.

------PRIMARy SIQNALS------

EXTENDED ADDRESS\

V

STATUS>

-- AS - PERIPHERAL
__ Os _ AND MEMORY

--R/W_
---B/W_
_WAIT-­

RESET

< ADo-AD" >

CPU

BUS
MASTER

-CLOCK_

-----BUS REQUEST SIGNALS-----
__BUSREQ_

--BUSACK- REQUESTER

,--.ilAi­L--
BAO

_

------INTERRUPT SIGNALS-----­

_iNT---

The Z-bus is a shared bus that links the com­
ponents of the Z8000 family. A bus user can be
any device that can generate bus transactions.
Five different types of transactions can be
passed on the Z-bus to serve the basic needs of
I/O and memory structures in a distributed­
processing environment. The five types are:

• Memory access

• I/O transfer

• Interrupt

• Bus request

• Resource request
Memory Access. Status signals issued by the
CPU distinguish memory transactions from
others and select the address space to be
accessed. Slow memory devices may assert the
WAIT signal to prolong the transaction.
Extended addresses may be used with the
segmented Z8001 CPU and the Z80 10 MMU.
Other status signals define direction (R/W) ,
Normal/System (Nls), Byte/Word (B/W), and
the various address spaces.

Description

PERIPHERAL

C::i:~==
----RESOURCE REQUEST SIGNALS----

Z-BUS
COMPONENT

--MMRQ_

-MMST--

_MMAI--,
_ MMAO-----.J

MULTI-MICRO
REQUEST
NETWORK

Figure 1. Z-Bus Signals

251

Z·BUS Z·BUS Z·BUS
PERIPHERAL PERIPHERAL PERIPHERAL

+ 5 Y lEI ADo-AD7 is os i'NT INTACK 'EO lEI ADo-AD7 AS os fNf INTACK lEO lEI ADo-AD7 AS os iNf INTACK lEO

AL.'::f I Itt I II i t I t Iii t
,

AI>{)-AD7 ,

+1AS ~ I I I I I I
Z-BUS os I I

,
CPU

INT

WAIT I---

STATUS H STATUS t
DECODER r ,

AD8-AD15~ FROM 16-BIT PERIPHERALS

Description
(Continued)

HIGHEST
PRIORITY

LOWEST
PRIORITY

Figure 2. Interrupt Connections

outputs. (Multiple INTs might occur
simultaneously.) The highest-priority IEO has
the effect of removing IEI inputs from all
devices beyond it on the same daisy chain,
thereby preventing them from requesting inter­
rupts further until their IEI inputs are restored.
Three Wait cycles after the leading edge of
INTACK (or more, if WAIT has been asserted
by the highest-priority device requesting ser­
vice). to allow the chain to settle, a DS from
the CPU stimulates the one highest-priority re­
questing peripheral to place its vector on the
bus. Two (or more) additional Wait cycles
later, the service routine is invoked, and
INTACK is returned high. At this time, all re­
questers of higher priority than the one being
serviced (those whose IEI lines are still high)
are enabled, and may generate new interrupt
requests. Once a peripheral has been serviced
it unmasks the daisy chain so lower-priority in­
terrupts can be generated.

Bus Request. The bus request is used to
transfer control of the Z-bus for memory or I/O
transactions. The BUSRQ input line to the
Z-bus CPU, the wired-OR of BRQ outputs from
all requesters, initiates a bus request. The
BUSAK output line from the CPU is daisy­
chained through BAI inputs and BAO outputs
of all requesters in order of priority, to grant
use of the bus to the first requester whose
BAO is held high at that time.

Resource Request. The resource request
chain is used to share a resource among
several Z-bus CPUs, none of which is default
master of that resource. The resource-request
protocol is similar to that of the bus request,
except for an added status line that inhibits il11
requesters from issuing requests any time the
resource is busy. The acknowledge daisy-chain
resolves contention in the event of simul­
taneous requests.

WAIT SAMPLED
TO EXTEND

VECTOR ACCESS
TIME

;' READ
VECTOR

(/
Tw. \ Tw. \ T,TW, Tw TwT,

CLOCK , I

ADo-AD7 ::::x::::t:::....... -- i w~~ ;:T~~LOEOI I-":L:~""-
: DAISY CHAIN i I VECTO~ ./m,-

iNn: 1'-. I SETTU[G TIMEI I I (fff

AS --l-'--.J IUS SET FOR HIGHEST PRIORITY PERIPHERAL

OS • i I i<' > r-
WAIT :~::~::::::~:::~T\F::iT"1:::::

I I I

I/O Transfer. The status line I/O reference
distinguishes I/O transactions from others. The
l6-bit multiplexed bus is used for address and
data (without extension), and AS, DS, R/W,
B/W, and WAIT are used in a similar way.

Direct addressing of the internal registers of
peripherals is facilitated by the use of
multiplexed address and data lines. (See
Figure 1.) The Z-bus is asynchronous, so
peripherals' clocks need not be synchronized
with the CPU clock, which is therefore not
transmitted on the bus directly. The signals
(strobes, acknowledges, etc.) generated in the
course of any transaction provide all necessary
timing information.
Interrupt. The Z-bus interrupt scheme is an
interrupt-under service priority daisy chain
that requires no separate priority controller.
Interrupt requests are all tied directly to the
INT pin of the CPU. (See Figure 2.) Physical
position along the IEI/IEO daisy chain deter­
mines the priority assigned to any given
peripheral. Upon receipt of an INT signal, the
CPU issues an INTACK. (See Figure 3.) This
temporarily inhibits further interrupt requests,
while all devices that have initiated interrupt
requests prior to that INTACK drop their IEO

Figure 3. Interrupt Acknowledge Timing

252

~
Zilog

Features

Description

• Complete slave microcomputer, for
distributed-processing Z-Bus use.

• Unmatched power of Z8 architecture,
instruction set.

• Three programmable I/O ports, two with
2-wire handshake, or any combination of
data and control lines.

• Six levels of priority interrupts to Z- UPC.

The Z- UPC Universal Peripheral Controller
is a distributed microcomputer that performs
the three basic interfacing functions needed to
interface a CPU with peripherals: device con­
trol by ROM-resident internal software, data
manipulation, such as reformatting or
arithmetic, and data buffering in internal
registers.

The Z- UPC is similar to the Z8 microcom­
puter and uses the Z8 instruction set. Under

18090 Z-UPC
UDiversal
Pedpheral CODlroDer

Product
Brief
• Two programmable 8-bit counter/timers with

6-bit prescalers.

• 256 byte register £jle, accessible by both
master CPU and Z-UPC, as allocated by
Z- UPC program.

• 2K bytes of on-chip program ROM for effi­
ciency, versatility.

program controL its three 8-line I/O ports can
be tailored to the needs of its user. Perma­
nently configured as a single-chip controller
with 2K bytes of internal ROM, the Z- UPC
executes instructions in 2.2 jJ.S average using a
4-MHz clock source. Its register £jle contains
256 bytes, of which 234 are general-purpose
registers, 19 are status and control registers,
and three are port registers.

.....-. AD?

.......... AD6

............. ADs

AODRESSI AD,
DATA BUS AD,

....-..... AD2

.....-.. AD,

......... ADo

T1M~~~ I -- AID UPC
AND RESET I -- Ril

I-- WR

CONTROL I -- ~'T

\

iNfOR P3,

INTERRUPT -- INTACK OR P32
MASTER CPU __ lEI OR P30

lEO OR P3,

PCLK ----+-

Pl'-l
P16

P1s-....Pl _
, PORT 1

P13

P12

PI,

P10

P3'_}
P3,

PORT 3
P32--

PJ,;

P2'_j
P20-

P2s

P24
P2, PORT 2

P22

P2,

P20

+5 V P3,

PCLK PJ,;

lEO OR P3, P2,

lEI OR P30 P20

iNf OR P3, P2,

INTACK OR P32 P2,

Ril P2,

ViR P22

AID P2,

Cs P20

GND P3,

PJ,

AD, Pl,

AD. Pl.

AD, Pl,

AD, Pl,

AD, Pl,

AD2 P12

AD, Pl,

ADo Plo

Figure 1. Pin Functions Figure 2. Pin Assignments

253

Description
(Continued)

The Z-UPC Universal Peripheral Controller
is an intelligent device that generates all the
control signals peripheral devices need.
Because it does off-line arithmetic, translates
data before transmitting, and buffers data, the
Z- UPC unburdens the master CPU, thereby
increasing the overall speed and efficiency of
the system in which it resides.

Based upon the Z8 microcomputer architec­
ture, the Z-UPC offers fast execution time, effi­
cient use of memory, and sophisticated inter­
rupt, I/O, and bit manipulation. Its powerful
and extensive instruction types, combined with
its efficient internal register addressing
scheme, not only speeds program execution,
but also efficiently packs program into the on­
chip ROM.

A unique characteristic of the Z- UPC is its
register file, which contains I/O port and con­
trol registers that can be accessed both by the
Z-UPC program and by its associated master
CPU. This results in byte efficiency, program­
ming efficiency, and address space efficiency
because Z- UPC instructions can operate direct­
lyon I/O data without moving it to and from
an accumulator. It also allows the Z- UPC user
to allocate as data buffer between the CPU and
the peripheral all register space not in use as

accumulators, address pointers, index regis­
ters, or stack. Registers not used as buffer are
protected against CPU access.

The register file is divided into 16 groups of
16 working registers each. A register pointer
allows fast, short-format instructions to access
anyone of these groups quickly, resulting in
fast and easy task switching. Two-way com­
munication between the master CPU and the
register file is facilitated by another pointer
that positions 16 interface registers anywhere
within the register file. These registers are
accessed directly by both the master CPU and
the slave Z-UPC. Four more registers, similarly
accessed, convey control and status informa­
tion.

All of Z-Bus's daisy-chained priority inter­
rupt system can be implemented in the Z- UPC
under software control, or the Z-UPC can be
programmed to function in a polled
environment. In all, the Z-UPC has 24 pins
that can be dedicated to I/O functions.
Grouped logically into three 8-line ports, they
can be programmed in many combinations of
inputs, outputs, and bidirectional lines, with or
without handshake and with push-pull or open­
drain outputs.

HOST CPU INTERFACE

INTERFACE
REGISTERS

(PART OF REGISTER
FILE)

Z·BUS TO
MASTER

CPU

Voo Vss CLOCK

PROGRAM
MEMORY
2K)(8

HANDSHAKE

r

(110 OPTIONAL
CONTROL FUNCTION)

110

110

T'N

TOUT

Figure 3. Z-UPC Functional Block Diagram

254

~
Zilog

Features

Description

• Two independent 8-bit double-buffered
bidirectional I/O ports plus a special­
purpose 4-bi t I/O port.

• Four handshake modes including 3-wire.

• Request/Wait line for high speed data
transfer.

The Z8036 CIO Counter/timer and Parallel
I/O element is a general-purpose peripheral
circuit that satisfies most counter/timer and
parallel I/O needs encountered in system
deSIgns. ThIs versatIle deVIce contams three
I/O ports and three counter/timers. Many pro­
grammable options tailor its configuration to
specific applications. The use of the device is
Simplified by making all internal registers
(command, status, and data) readable and
(except for status bits) writable. Also, each
register is given its own unique address so it
can be accessed directly-no special sequen­
tial operations are required. The Z-CIO is
directly Z-Bus compatible.

Either 8-bit I/O port can be a handshake

Z8036 Z-CIG
CoDDler/Timer aad
ParaDeI I/O Unit

Product
Brief

• Three independent l6-bit counters.

• All registers read/write and directly
addressable.

• Flexible pattern recognition logic, program­
mable as l6-input interrupt controller.

byte port or a bit port. In the bit mode, data
direction is programmable bit by bit. In the
handshake mode, the ports can be input, out­
put, or bidirectional, and they may be linked
to form a 16-bit port. The four handshake
modes include 3-wire (like IEEE-488),
interlocked (for interfacing to a Z-UPC, Z-FIO
or another Z-CIO), strobed, and pulsed. The
pulsed mode connects one counter/timer with
the handshake logic for interfacing a
mechanical device such as a printer. The 4-bit
port provides handshake controls, special
controls (Wait/Request) or general-purpose I/O.

The counter/timer section contains three
l6-bit counters, two of which can be software­
configured as a 32-bit counter/timer. Up to

AD~~l~
AD, PA,

~)~.,.
AD, AD,

AD. PA.
ADs AD,

AD, PAs
AD. AD,

AD, PA,
AD, ADoDATA

BUS ---
AD, PA3 OS Gsa--- AD, PA,

RIW CS,--- AD, PA,
GND AS--- ADo PAc
PBo PAc

BUS { ___ As Z8036 PB,

~l..m

PB, PA,TIMING
AND RESET --- OS CIO PB. PB, PA,

CONTROL {=: RfW PB,
PB, PA,

cs;; PB, PB, PA,

CS, PB, PB5 PAs

'""M"~{=
iNr PB, PB. PA.
INTACK PB, PB, PA,
lEI PBo PClK INTACK
lEO PC,

~} ..m

lEI iNT
PC,

lEO +5V
PC,

PCo PC,
PCo PC, PC,

t t
PClK +5 V GND

Figure 1. Pin Functions

255

Figure 2. Pin Assignments

Description
(Continued)

four I/O lines for each counter are available
for direct external control and status informa­
tion. All counters have a programmable output
duty cycle, continuous or single-cycle oper­
ation, and the counting process can be pro­
grammed to be either retriggered or nonretrig­
gered.

Figure 3 shows how the Z-CIO is used. The
two general purpose 8-bit ports are similar.
They can be programmed as handshake
driven, double-buffered ports (input, output,
or bidirectional) or as control ports in which
the direction of each bit is individually pro­
grammable. Port B can also be specified to
provide external access for two of the counter/
timers. Each port includes pattern recognition
logic allowing interrupt generation when a
specified pattern is detected. The pattern
recognition logic can be programmed so that
the port functions like a priority interrupt con­
troller.

To control these capabilities, each port con­
tains 13 registers. Three of these, the input,
output, and buffer registers, are data path
registers. Two others, the mode specification
and handshake specification registers, define
the mode of the port and specify what hand­
shake to use, if any. The reference pattern for
the pattern recognition logic is defined in
three registers, the pattern polarity, pattern
transition, and pattern mask registers. The
detailed characteristics of each bit path (for
example, the direction of data flow, or whether
a path is inverting or noninverting) are pro­
grammed using the data path polarity, data
direction, and special I/O control registers.
The primary control and status bits are
grouped in (j cinglf' register so that after the
ports are codigured initially, only this register

need be accessed often. One register contains
the interrupt vector associated with each port.
To facilitate initialization, the port logic is
designed so that if a capability of the port is
not required the registers associated with that
capability are ignored and need not be pro­
grammed.

The function of port C depends upon the
roles of ports A and B. Port C provides hand­
shake lines for the other two when required.
Any bits of port C not so used can be used as
I/O lines or as external access to the third
counter/timer.

Besides the data input and output registers,
three registers are needed. These specify the
details of each bit path: data path polarity,
data direction, and special I/O control.

The three counter/timers are all identical.
Each is composed of a 16-bit down-counter, a
16-bit time constant register (which holds the
value loaded into the down-counter), a 16-bit
current count register (used to read the con­
tents of the down-counter), and two 8-bit
registers for control and status (the mode
select and control registers). All three share a
common vector register.

Each counter/timer can be programmed as
either counter or timer. Up to four port I/O
lines can be designated as external access
lines for it. The lines are: Counter Input, Gate
Input, Trigger Input, and Counter/Timer Out­
put. Three different counter/timer output duty
cycles are available: pulse, one-shot, or
square wave. The operation of the counter/
timer can be speCified to be either single cycle
or continuous. The counting sequence may be
retriggered or nonretriggered l lJ!:.der ;;:-cqrer!1
control.

A 1\ A~7 P~l ~ 0,

(PRINTER

'I V ADo PAo V Du
pCo

J HANDSHAKE
AS PC,

OS PC,

ZB036
PC,

) 00"'""CSo cia PB, AND

CS, PB,
STATUS

PB,

Z·BUS

::: r----,lll''i L'
PBl i tNT

'-- p_BO..l L- CONTROL

NON Z·BUS
PERIPHERAL

Figure 3. Functional Block Diagram

256

~
Zilog

Features

Description

• Two independent, 0 to 1M bit per second,
full-duplex channels, each with its own
quartz oscillator, baud-rate generator, and
digital phase-locked loop for clock
recovery.

• Multi-protocol operation under program
control.

• Programmable for NRZ, NRZI, or FM
coding.

• Asynchronous mode with 5 to 8 bits and 1,
11/2 , or 2 stop bits per character, program­
mable clock factor, brea.k detection a.nd
generation, and parity, overrun, and fram-

The Z-SCC Serial Communication Controller
is a dual-channel, multi-protocol data com­
munication peripheral for Z-Bus use. It is
software-configured to satisfy a wide variety of
serial communication applications. Its basic
function is serial-to-parallel and parallel-to­
serial conversion. However, the Z-SCC also
contains a repertoire of new, sophisticated
internal functions that minimize the need for

Z8030 Z-SCC Serial
Communications
Controller

Product
Brief

ing error detection.

• Bisynchronous mode with internal or exter­
nal character synchronization on one or two
sync characters and CRC generation and
checking with CRC-16 or CRC-CCITT
preset to either Is or Os.

• SDLC/HDLC mode with comprehensive
frame-level control, automatic zero insertion
and deletion, I-field residue handling, abort
generation and detection, CRC generation
and checking, and SDLC loop mode
operation.

• Local loopback and auto-echo modes.

external random logic on the circuit card.
The Z-SCC handles asynchronous formats,

synchronous byte-oriented protocols such as
IBM Bisync, and synchronous bit-oriented pro­
tocols such as HDLC and IBM SDLC. This ver­
satile device also supports virtually any other
serial data transfer application (cassette or
diskette interface, for example).

The device can generate and check CRC

-- AD, AD, ADo-- AD, AD, AD2
ADs ADs AD,

ADDRESSI AD, AD, AD,

DATA BUS AD,
CH·A iNT Os

AD2 CHANNEL lEO AS- AD, CONTROLS
lEI RIWFOR MODEM,-- ADo DMA,OR INTACK CSo

BUS l- AS CTSA -- OTHER +5V CS,
TIMING Os DCDA -- WIREQ AAND RESET - GND

CONTROL I=: RIW TxDB } SERIAL SYNCA W/REQ B

CS, RxDB __ DATA
RTxCA SYNCB

CSo TRxes -}CHANNEL RxDA RTxCB

,~..""" I:::::
iNT RTxCB _ CLOCKS

TRxCA RxDB
INTACK SYNCB -\ TxDA TRxes

lEI WIREQ B CHANNEL CH·B
DTRIREQ A TxDB

lEO DTRJREQ B CONTROLS
RTSA DTR/REQ B

RTSB IFOR MODEM,
RTSBDMA, OR CTSA

z:g~o CTSB _ OTHER
DCDA CTSB

DCDB - PCLK DCDB

t t t
+ 5 V GND PCLK

Figure 1. Pin Functions Figure 2. Pin Assignments

257

Description
(Continued)

codes in any synchronous mode and can be
programmed to check data integrity in various
modes. It also has facilities for modem controls
in both channels. In applications where these
controls are not needed, the modem controls
can be used for general-purpose I/O.

As is standard among Zilog peripheral com­
ponents, the Z-Bus daisy-chain interrupt
heirarchy is supported.

The Z-SCC contains the necessary multi­
plexed address/data bus interface with strobe
and chip select lines to function as a Z-Bus
peripheral. It includes internal control and
interrupt logic, two full-duplex channels and
two baud-rate generators. Associated with
each channel are several read and write
registers for mode control as well as the logic
necessary to interface to modems or other
external devices.

The read and write register group for each
channel includes ten control registers, two
sync-character registers, and four status
registers. Each baud rate generator has two
read/write registers for holding the time con­
stant that determines baud rate. Associated
with the interrupt logic is a write register for
interrupt vector and three read registers: vec­
tor with status, vector without status, and inter­
rupt pending status.

The logic for both channels provides format­
ting, synchronization and validation for data
transferred to and from the channel interface.
The modem control inputs are monitored by
the control logic under program control. All of
the modem control signals are general purpose
in nature and optionally can be used for func­
tions other than modem control.

INTERNAL
CONTROL

lOGIC

ADDRESS/
DATA

CONTROL

CPU
BUS 110

INTERRUPT
CONTROL

LINES

INTERRUPT
CONTROL

LOGIC

_ } MOOEM, DMA, OR
OTHER CONTROLS

-} MODEM, DUA, OR
OTHER CONTROLS

ISERIAL DATA

_ ICHANNEL CLOCKS

SYNC
WAIT/REQUEST

Figure 3. Functional Block Diagram

Typical
Applications

Figure 4 shows how a Z-SCC can be con­
nected with channel A programmed for the
Synchronous Data Link Control (SDLC) Loop
mode, functioning as a secondary station. If
NRZI or FM coding is used, no clock lines are
required because the clock can be recovered
from the received data, using the Z-SCC's on­
chip digital phase locked loop (DPLL).
Another Z-SCC (not shown), programmed for
the SDLC mode, would be the controlling sta­
tion, polling the loop for traffic. The figure
shows a typicaL asynchronous serial port
being serviced by channel B of the Z-SCC. It
could just as well support another synchronous
data link, or even a high-speed link, transfer­
ring data via a DMA controller.

258

{

TxOA t>J}
CHANNEL~ SDLC

A RxOA _ LOOP

ZB030
SCC

"':'" I

hOB

TRxCB

RTxCB
MODEM } DATA

RxOB _ LINK

l }
CONTROL

Figure 4. Loop Secondary Station and Serial Port

Z8038 z-no
FIFO Inpal/Gatput
Interface 1JDit

~
Zilog

Product
Brief

Features • Asynchronous bidirectional FIFO buffer,
used with most major microprocessors as
CPu/CPU or CPU/peripheral interface.

• Interlocked 2-wire or 3-wire handshake port
mode; Empty, Full, and Request/Wait lines
for high-speed data transfer.

• 128 x 8 organization, expandable to any
width; cascadable to any depth.

• Preset byte count in FlO buffer can inter­
rupt CPU.

• All registers directly addressable.

• Vectored/non-vectored interrupts on
pattern/status match, over/underflow error,
buffer status.

Description The Z-FIO is a general-purpose micro­
processor interface that provides elastic buffer-
ing bet-vvecn a.synchronous CPUs in a parallel-
processor network or between CPU and
peripheral circuits. The Z-FIO can interface a
Z-Bus microprocessor or any other major pro­
cessor to another microprocessor or to a
peripheral circuit or port.

In Z8000 systems, the FlO furthers dis­
tributed-processor operation because it can
interconnect components or subsystems
operating at different speeds. Also, it can
increase system throughput by transferring

words as well as bytes. This bidirectional
device accepts data and holds it until it can be
used by another device in the system. In most
I/O transactions, introducing a l28-deep buffer
cuts interrupt servicing overhead by two
orders of magnitude.

The Z-FIO greatly facilitates system
throughput by moving variable-size blocks
under either direct memory access or interrupt
control-an especially important consideration
when fast peripheral circuits need interfacing.
Complete status information is also provided
for operation in polled environments.

+5V

Do

0,

0,

0,

0,

0,

D.

07

Mo

0,

M,

+5V GND

Figure 1. Pin Functions Figure 2. Pin Assignments

259

Pin Z-Bus Z-Bus 2-Wire 3-Wire
Assignments Low Byte High Byte Non-Z-Bus HS Port'" HS Port'"

[K] REO/WT REO/WT REO/WT RFD/DA'l RFDDAV

[I] DMASTB DMASTB DACK ACKIN DAVDAC

@] J5S i5S R5 FULL DACRFD

@] R/W R/W WR EMPTY EMPTY

~ CS CS CS CLEAR CLEAR

[!] :AS" :AS" C/i) DATA DIR DATADIR

@J INTACK Ac INTACK IN IN,

~ lEO A, lEO OUT, OUT,

ITJ lEI A" lEI ill ill
CD];>-JT A j INT OUT, OUT

'Port 2 side only. See table below.

Description
(Continued)

The internal functions of the Z-FIO are
shown in the block diagram (Figure 3). It is
made up of two ports that are identical except
for programming. The port programmed by
pins Mo and M I is called Port 1; the port pro­
grammed by bits Bo and Bl is called Port 2.

Each port of the FlO has sixteen program­
mable registers that define operating protocols
and pin signals. Common to both ports, and
situated between them, is the 128 x 8 RAM
used for data storage. The RAM is capable of
simultaneous, independent read and write
operations. This means, for example, that the
Port 1 CPU can write a byte of data into the
FlO without disturbing a simultaneous read
operation by the Port 2 CPU. The outputs of
the read and write counters are used to

address the buffer RAM, and also are fed into
a subtractor to determine the current number
of bytes in the memory. This number can be
read by either CPU from a status register
dedicated to each port. Another programmable
register is compared against the status register
to generate interrupts and/or start and stop
DMA transfers. A pair of port registers allows
for communication between CPUs, bypassing
the main buffer memory.

Operating Modes. The Z-FIO has twelve
different programmable modes (Table below).
The states of two package pins determine the
mode of operation of Port 1, and Port 2 is pro­
grammed by two bits (Bo and Bl) in one of the
Port 1 control registers.

TO
Z·BUS

OR GENERAL
MICROPROCESSOR

OR
PORT WITH

HANDSHAKE

Figure 3. Functional Block Diagram

Operating
Modes

Mode MI

10

MO BO

Z·Bus Low Byte

Z· Bus Low Byte

Z·Bus Low Byte

Z· Bus Low Byte

Z·Bus High Byte

Z· Bus High Byl.e

Z·Bus High Byte

Z·Bus High Byte

Non·Z·Bus

Non·Z·Bus

Non·Z·Bus

Nun-Z-Bus

260

Z·Bus Low By!e

Non·Z·Bus

3Wlre HS

2·Wire HS

Z-Bus High Byte

Non·Z·Bus

3·Wire HS

2·Wlre HS

Z Bus Low Bylp

Non-Z-Bus Low Byte

3·Wire HS

2-Wire HS

~
Zilog

Z8060
Z-FIFO Baffer Vllil
aad z.no Expaader

Product
Brief

Features

Description

• Asynchronous, bidirectional first-in, first-out
buffer.

• Extends depth of Z-FIO without limit.

• 128 x 8 organization.

The Z-FIFO first-in, first-out buffer unit is a
128 x 8-bit memory with bidirectional data
transfer capability and handshake logic. Its
structure is similar to that of other FIFOs that
are commonly available, such as the AM2812
and the 3351. The handshake logic used is
compatible with that of the Z8, the Z-CIO, and
Z-FIO. Z-FIFO buffers can be cascaded, end to
end, without limit, their RFD/DAV and ACKIN
signals daisy-chained, to make a FIFO array
any desired number of words deep. Two such
channels in parallel, suitably controlled, make
up a 16-bit-wide buffer array.

• 3-state data outputs.

• Empty and Full status pins are wire-ORed
among multiple stages.

1
0, : 0'_)
DO, PORT II PORT ~' -

5 1 2 5

DATA - 0, : 0, DATA
BUS 0 3 I 0 3 BUS

_ 0, Z8060 0,_
-0, FI~O 0,_

\-00 I 0o-J

{

ACKIN I ACKIN __ }

CONTROL __ RFO/DAv : RF.O../D..AV _ CONTROL
OUTPI,IT I OUTPUT

---- E~~r:...l~~·~E --

{

AlBIN

COMMON -- FULL

CONTROL EMPTY

RESET

+SV GNO

Figure 1. Pin Functions

TO Z·BUS
OR GENERAL

MICROPROCESSOR

ANY NUMBER OF FIFOS.-----..., ,....------,

Figure 2. Using nFOs to Extend nos

261

TO Z·BUS
OR QENERAL
MICROPROCESSOR

.- c

Appendix C

Clock Cycles·

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes NS SS SL NS SS SL

ADC R,src R Add with Carry
ADCB R - R + src + carry

ADD R,src R 4 4 4 8 8 8 Add
ADDB 1M 7 7 7 14 14 14 R - R + src
ADDL 1R 7 7 7 14 14 14

DA 9 10 12 15 16 18
X 10 10 13 16 16 19

AND R,src R 4 4 4 AND
ANDB 1M 7 7 7 R - RAND src

IR 7 7 7
DA 9 10 12
X 10 10 13

BIT dst,b R 4 4 4 Test Bit Static
BITB 1R 8 8 8 Z flag - NOT dst bit specified by b

DA 10 II 13
X II II 14

BIT dst,R R 10 10 10 Test Bit Dynamic
BITB Z flag - NOT dst bit specified by

contents of R

CALL dst IR 10 15 l:i Call Subroutine
DA 12 18 20 Autodecrement SP
X 13 18 21 @ SP - PC

PC - dst

CALR dst RA 10 15 15 Call Relative
Autodecrement SP
@ SP - PC
PC - dst (range PC - 4094 to PC
+4096)

CLR dst R 7 7 7 Clear
CLRB 1R 8 8 8 dst - 0

DA II 12 14
X 12 12 15

COM dst R 7 7 7 Complement
COMB IR 12 12 12 dst - NOT dst

DA 15 16 18
X 16 16 19

COMFLG flags 7 7 7 Complement Flag
(Any combination of C, Z, S, PIV)

CP R,src R 4 4 4 8 8 8 Compare with Register
CPB 1M 7 7 7 14 14 14 R - src
CPL IR 7 7 7 14 14 14

DA 9 10 12 15 16 18
X 10 10 13 16 16 19

CP dst,1M IR II II II Compare with Immediate
CPB DA 14 15 17 dst - 1M

X 15 15 18

* NS = Non-Segmented, SS = Shorl Segmented Offset. SL =Segmented Long Offset. Blank = Not Implemented.

265

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes NS SS SL NS SS SL

CPD RX,src,Ry,cc IR 20 20 20 Compare and Decrement
CPDB RX - src

Autodecrement src address
Ry - Ry - 1

CPDR Rx,src,Ry,cc IR 01 + 9n) Compare. Decrement and Repeat
CPDRB Ry - src

Autodecrement src address
Rx - Ry - I
Repeat until cc is true or Ry = 0

CPI RX,src,Ry,cc IR 20 20 20 Compare and Increment
CPIB RX - src

Autoincrement src address
Ry - Ry - 1

CPIR RX,src,Ry,cc IR 01 + 9n) Compare. Increment and Repeat
CPIRB RX - src

Autoincrement src address
Ry - Ry - 1
Repeat until cc is true or Ry = 0

CPSD dst,src,R,cc IR 25 25 25 Compare String and Decrement
CPSDB dst - src

Autodecrement dst and src addresses
R - R- 1

CPSDR dst,src,R,cc IR 01 + 14n) Compare String. Deer. and Repeat
CPSDRB dst - src

Autodecrement dst and src addresses
R-R-l
Repeat until cc is true or R = 0

CPSI dst,src,R,cc IR 25 25 25 Compare String and Increment
cpsm dst - src

Autoincrement dst and src addresses
R-R-l

CPSIR dst,src,R,cc IR 01 + 14n) Compare String. Incr. and Repeat
CPSIRB dst - src

Autoincrement dst and src addresses
R-R-l
Hepeat untJi cc 1S true or R = 0

DAB dst R Decimal AdjUllt

DEC dst,n R 4 4 4 Decrement by n
DECB IR 11 II II dst - dst - n

DA 13 14 16 (n = 1...16)
X 14 14 17

DI* int Disable Interrupt
(Any combination of NV!, VI)

DIV R,src R 10'1 107 107 '/44 744 744 Divide (signed)
DIVL 1M 107 107 107 744 744 744 Word: Rn + 1- Hn,n -'- I -i- src

IR 101 1U'J 10'1 744 '/44 '/44 Rn- remainder
DA 108 109 ill 745 746 '148 Long Word: Rn + 2,n .;- 3- Rn... n + 37 src
X 109 1m lU 746 746 749 Rn,n + 1- remainder

*Privileged instruction. Executed in system mode only.

266

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes NS 55 SL NS 55 SL

DJNZ R,dst RA 11 11 11 Decrement and Jump if Non-Zero
DBINZ R-R-l

If R *- 0: PC - dst(range PC - 252 to PC + 2)

EI* int Enable Interrupt
(Any combination of NVI, VI)

EX R,src R 6 6 6 Exchange
EXB IR 12 12 12 R - src

DA 15 16 18
X 16 16 19

EXTS dst R 11 11 11 11 11 11 Extend Sign
EXTSB Extend sign of low order half of dst
EXTSL through high order half of dst

HALT* (8 + 3 n) HALT

IN* R,src IR 10 10 10 Input
INB* DA 12 12 12 R - src

INC dst,n R 4 4 4 Increment by n
INCB IR 11 11 11 dst - dst + n

DA 13 14 16 (n = 1...16)
X 14 14 17

IND* dst,src,R IR 21 21 21 Input and Decrement
INDB* dst - src

Autodecrement dst address
R-R-l

INDR* dst,src,R IR (11 + IOn) Input. Decrement and Repeat
INDRB* dst - src

Autodecrement dst address
R-R-l
D __~ _.j.~1 D _ f'I
~~C"t-..I'C;::;;U~ U.l..LlJ. .L ~l - v

Im* dst,src,R IR 21 21 21 Input and Increment
INIB* dst - src

Autoincrement dst address
R-R-l

INIR* dst,src,R IR (11 + 1On) Input. Increment and Repeat
INIRB* dst - src

Autoincrement dst address
R-R-l
Repeat until R = 0

IRET* 13 16 16 Interrupt Return
PS - @ SP
Autoincrement SP

JP cC,dst IR 10 15 15 (taken) Jump Conditional
IR 7 7 OJ (not taken) If cc is true: PC - dst

DA 7 8 10
X 8 8 11

JR cC,dst RA 6 6 6 Jump Conditional Relative
If cc is true: PC - dst
(range PC - 256 to PC + 254)

*Privileged instruction. Executed in system mode only.

267

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes N5 55 5L N5 55 5L

LO R,sre R 3 3 5 5 5 Load into Register
LOB 1M 7 7 11 11 11 R - sre
LOL 1M 5 (byte only)

IR 7 7 7 11 11 11
DA 9 10 12 12 13 15
X 10 10 13 13 13 16

BA 14 14 14 17 17 17
BX 14 14 14 17 17 17

LO dst,R IR 8 8 8 11 11 11 Load into Memory (Store)
LDB DA 11 12 14 14 15 17 dst - R
LOL X 12 12 15 15 15 18

BA 14 14 14 17 17 17
BX 14 14 14 17 17 17

LO dst,IM IR 11 11 11 Load Immediate into Memory
LOB DA 14 15 17 dst - 1M

X 15 15 18

LOA R,sre DA 12 13 15 Load Address
X 13 13 16 R - address (sre)

BA 15 15 15
BX 15 15 15

LOAR R,sre RA 15 15 15 Load Address Relative
R -address (sre)

LOCn* CTLR,sre R Load into Control Register
CTLR - sre

LDCn* dst,CLTR R Load from Control Register
dst - CTLR

LOCnB FLAGS,sre R Load into Flag Byte Register
FLAGS - sre

LOCTLB dst,FLAGS R Load from Flag Byte Register
dst - FLAGS

LOO dst,sre,R IR 20 20 20 Load and Decrement
LOOB dst - sre

Autodeerement dst and sre addresses
R-R+l

LOOR dSI,sre,R IR (11 -to 9 n) Load. Decrement and Repeat
LOORB dst ~ sre

Autodeerement dst and sre addresses
R-R-l
Repeat until R = 0

LOI dst,sre,R IR 20 20 20 Load and Increment
LDIB dst - sre

Autoinerement dst and sre addresses
R-R-l

LOIR dst,sre,R IR (11 ... 9 n) Load. Increment and Repeat
LOIRB dst - sre

Autoinerement dst and sre addresses
R-R-I
Repeat until R = 0

268

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes NS 55 SL NS 55 SL

LDK R,src 1M Load Constant
R - n (n = 0 .. 15)

LDM R,src,n IR II II I] Load Multiple
DA 14 15 17 + 3n dst - src (n consecutive words)
X 15 15 18 (n = 1...16)

LDM dst,R,n IR II II II Load Multiple (Store Multiple)
DA 14 15 17 + 3n dst - R (n consecutive words)
X 15 15 18 (n = 1...16)

LDPS* src IR 12 12 12 Load Program Status
DA 16 20 22 PS - src
X 17 20 23

LDR R,src RA 14 14 14 17 17 17 Load Relative
LORB R - src

(range -32768 . . + 32767)

LOR dst,R RA 14 14 14 17 17 17 Load Relative (Store Relative)
LORB dst - R
LDRL (range -32768... + 32767)

MBIT* Test Multi-Micro Bit
Set if MI is Low; reset S if MI is High.

MREQ* dst R (12 + 7n) Multi-Micro Request

MRES* 5 Multi-Micro Reset

MSET* 5 Multi-Micro Set

MULT R,src R 70 70 70 282 + 282 + 282 + Multiply (signed)
MULTL 1M 70 70 70 282 + 282 + 282 + Word: Rn,n+ 1- Rn + I X src

IR 70 70 70 282 + 282 + 282 + Long Word: Rn ... n+3-Rn+2, n+3x src
D1'>, 71 72 74 283 + 283.j. 286.j. -l- Plus seven cycles for each 1 in the
X 72 72 75 284 + 284 + 287 + absolute value of the low order 16 bits of the

multiplicand.

NEG dst R 7 7 7 Negate
NEGB IR 12 12 12 dst - 0 - dst

DA 15 16 18
X 16 16 19

NOP No Operation

OR R,src R 4 4 4 OR
ORB 1M 7 7 7 R - R OR src

IR 7 7 7
DA 9 10 12
X 10 10 13

OTDR* dst,src,r IR (II + 10 n) Output. Decrement and Repeat
OTDRB* dst - src

Autodecrement src address
R-R-I
Repeat until R = 0

*Privileged instructions. Executed in system mode only.

269

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes NS SS SL NS SS SL

orm* dst,src,R IR (II + 10 n) Output. Increment and Repeat
OTIRB* dst - src

Autoincrement scr address
R-R-I
Repeat until R = 0

OUT* dst,R IR 10 10 10 Output
OUTB* DA 12 12 12 dst - R

OUTD* dst,src,R IR 21 21 21 Output and Decrement
OUTDB'" dst - src

Autodecrement src address
R-R-I

OUTI* dst,src,R IR 21 21 21 Output and Increment
OUTIB* dst - src

Autoincrement src address
R-R-I

POP dst,IR R 8 8 8 12 12 12 Pop
POPL IR 12 12 12 19 19 19 dst - IR

DA 16 16 18 23 23 25 Autoincrement contents of R
X 16 16 19 23 23 26

PUSH IR,src R 9 9 9 12 12 12 Push
PUSHL 1M 12 12 12 Autodecrement contents of R

IR 13 13 13 20 20 20 IR - src
DA 14 14 16 21 21 23
X 14 14 17 21 21 24

RES dst,b R 4 4 4 Reset Bit Static
RESB IR II II II Reset dst bit specified by b

DA 13 14 16
X 14 14 17

RES dst,R R 10 10 10 Reset Bit Dynamic
RESB Reset dst bit specified by contents of R

RESflG flag Reset Flag
(Any combination of C, Z, S, PIV)

RET cc 10 10 13 (taken) Return Conditional
7 7 7 (not taken) If cc is true: PC - @ SP

Autoincrement SP

RL dst,n R 6 for n = I Rotate Left
RLB R 7 for n = 2 by n bits (n = L 2)

RLC dst,n R 6 for n = I Rotate Left through Carry
RLCB R 7 for n = 2 by n bits (n = I, 2)

RLDB R,src R 9 9 Rotate Digit Left

RR dst,n R 6 for n '" I Rotate Right
RRB R 7 for n '" 2 by n bits (n = I, 2)

RRC dst,n R 6 for n = I Rotate Right through Carry
RRCB R 7 for n = 2 by n bits (n = L 2)

·Prlvlleged instruction. Executed in system mode only.

270

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes NS SS SL NS SS SL

RRDB R,src R Rotate Digit Right

SBC R,src R Subtract with Carry
SBCB R - R - src - carry

SC src 1M 33 39 39 System Call
Autodecrement SP
@ SP - old PS
Push instruction
PS - System Call PS

SDA dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Arithmetic
SDAB Shift dst left or right
SDAL by contents of R

SDL dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Logical
SDLB Shift dst left or right
SDLL by contents of R

SET dst,b R 4 4 4 Set Bit Static
SETB IR II II II Set dst bit specified by b

DA 13 14 16
X 14 14 17

SET dst,R R 10 10 10 Set Bit Dynamic
SETB Set dst bit specified by contents of R

SETFLG flag Set Flag
(Any combination of C, Z, S, PIV)

SIN* R,src DA 12 12 12 Special Input
SINB* R - src

SIND* dst,src,R IR 21 21 21 Special Input and Decrement
SINDB* dst - src

Autodecrement dst address
R - R - I

SINDR* dst,src,R IR (11 + IOn) Special Input. Decrement and Repeat
SINDRB* dst - src

Autodecrement dst address
R-R-I
Repeat until R = 0

SINI* dst,src,R IR 21 21 21 Special Input and Increment
SINIB* dst - src

Autoincrement dst address
R - R - I

SINIR* dst,src,R IR (11 + IOn) Special Input. Increment and Repeat
SINIRB* dst - src

Autoincrement dst address
R-R-I
Repeat until R = 0

SLA dst,n R (13 + 3n) (13 + 3n) Shift Left Arithmetic
SLAB by n bits
SLAL

SLL dst,n R (13 + 3n) (13 + 3n) Shift Left Logical
SLLB by n bits
SLLL

*Privileged instruction. Executed in system mode only.

271

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes NS SS SL NS SS SL

SOTDR* dst,src,R IR (II + 10 n) Special Output. Deer. and Repeat
SOTDRB* dst - src

Autodecrement src address
R-R-I
Repeat until R = 0

SOTIR* dst,src,R R (II + 10 n) Special Output. Incr. and Repeat
SOTIRB* dst - src

Autoincrement src address
R - R - I
Repeat until R = 0

SOUT* dst,src DA 12 12 12 Special Output
SOUTB* dst - src

SOUTD* dst,src,R IR 21 21 21 Special Output and Decrement
SOUTDB* dst - src

Autodecrement src address
R-R-I

SOUTI* dst,src,R IR 21 21 21 Special Output and Increment
SOUTIB* dst - src

Autoincrement src address
R-R-I

SRA dst,n R (13 + 3 n) (13 + 3 n) Shift Right Arithmetic
SRAB by n bits
SRAL

SRL dst,n R (l3 + 3 n) (13 + 3 n) Shift Right Logical
SRLB by n bits
SRLL

SUB R,src R 4 4 4 8 8 8 Subtract
SUBB 1M 7 7 7 14 14 14 R - R - src
SUBL lR 7 7 7 14 14 14

DA 9 10 12 15 16 18
X 10 10 13 16 16 19

TCC cC,dst R 5 5 Test Condition Code
TCCB Set LSB if cc is true

TEST dst R 13 13 Test
TESTB IR 8 13 ''"' dst OR C

DA II 12 11 17 19
X 12 12 15 17 20

*Privileged instructions, Executed in system mode only.

272

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes NS SS SL NS SS SL

TRDB dst,src,R IR 25 25 25 Translate and Decrement
dst - src(ds!)
Autodecrement dst address
R-R-I

TRDRB dst,src,R IR (11 + 14n) Translate. Decrement and Repeat
dst - src (ds!)
Autodecrement dst address
R-R-I
Repeat until R = 0

TRIB dst,src,R IR 25 25 25 Translate and Increment
dst - src(dst)
Autoincrement dst address
R-R-I

TRffiB dst,src,R IR (11 + 14n) Translate. Increment and Repeat
dst - src(dst)
Autoincrement dst address
R-R-l
Repeat until R = 0

TRTDB srcl ,src2,R IR 25 25 25 Translate and Test. Decrement
RHI +- src2 (srcl)
Autodecrement src I address
R-R-I

TRTDRB srcl ,src2, R IR (11 + 14n) Translate and Test. Decr. and Repeat
RHI - src2 (srcl)
Autodecrement src I address
R-R-I
Repeat until R = 0 or RH I '*

TRTIB src 1,src2,R IR 25 25 25 Translate and Testr Increment
RHI - src2 (src 1)

Autoincrement src address
R-R-I

TRTIRB srcl,src2,R IR (11 + 14n) Translate and Test. Incr. and Repeat
RHI - src2 (srcl)
Autoincrement src I address
R - RI
Repeat until R = 0 or RH I '* U

TSET dst R 7 7 7 Test and Set
TSETB IR II II II S flag - MSB of dst

DA 14 15 17 dst - allIs
X 15 15 18

XOR R,src R 4 4 4 Exclusive OR
XORB 1M 7 7 7 R - R XOR src

IR 7 7 7
DA 9 10 12
X 10 10 13

273

LOWER NIBBLE (HEX). UPPER INSTRUCTION BYTE

0 I 2 3 4 5 6 7 8 9 A B C 0 E F

ADDB ADD SUBB SUB ORB OR ANDB AND XORB XOR CPB CP See See EXTEND EXTEND
R-IR R - IR R -IR R -IR R -IR R -IR R -IR R - IR R -IR R -IR R -IR R - iR Table Table INST INST
R -1M R -1M R -1M R -1M R -1M R -1M R -1M R -!M R -1M R -1M R - 1M R -1M I I

CPL PUSHL SUBL PUSH LOL POPL ADDL POP MULn MULT DIVL DIV See LDL JP CALL
R-IR IR-IR R-IR IR-IR R-IR IR -IR R - IR IR -IR R - IR R - IR R - IR R - IR Table IR-R PC-IR PC-IR
R -1M R -1M R - 1M R - 1M R -1M R -1M R -1M R -1M 2

LOB LO RESB RES SETB SET BITB BIT INCB INC DECB DEC EXB EX LOB LD
R -IR R -IR IR -1M IR -1M IR - 1M IR -1M IR - 1M iR -1M IR -1M IR - 1M IR -1M IR - 1M R-iR R-IR IR-P IR-R
R -1M R -1M R - R R - R R-R R - R R-R R - R

LOB LO LOB LD LOA LOL RSVD LOL RSVD LOPS See See INB IN OUTB OUT
R - SA R - SA SA - R SA - R R - SA R - SA SA - R IR Table Table R-IR R-IR lR-R IR-R

LORB LOR LDRB LOR LDAR LORL LDRL 3 3
R - RA R - RA RA - R RA - R R - RA R - RA RA - R

ADDB ADD SUBB SUB ORB OR ANDB AND XORB XOR CPB CP See See EXTEND EXTEND
R-X R - X H-X H-X R-X R-X R - X R - X A - X R-X R - X R - X Table Table INST INST

R - DA R - DA R - DA R - DA R - DA R - DA R - DA R - DA R - DA R - DA R - DA R - DA I I

5
CPL PUSHL SUBL PUSH LDL POPL ADDL POP MULn MULT DIVL DIV See LOL JP CALL

5 R-X IR - X R-X IE - X R-X IR - X R - X IR - X R - X R-X R - X h - X Table X-A PC-X PC-X
R - DA IR - DA R - DA IA - DA R - DA IR - DA R - DA IR -DA R - DA R - DA R - DA DA-R PC-DA PC-DA

Z
0

LOB LO RESB RES SETB SET BITB BIT INCB INC DECB DEC EXB EX LOB LO;::
U 6 R-X R - X X - 1M X -1M X -1M X -1M X -1M X -1M X -1M X -!M X -!M X - 1M A-X A-X X-R X-R
::J R - DA R - DA DA -1M DA -1M DA -1M DA -1M DA -1M DA -1M DA -1M DA -1M DA -1M DA -1M R-DA R-DA DA-R DA-R

~
!i LOB 10 LOB LD LOA LDL LOA LOL RSVD LOPS HALT See EI See RSVD SC

~ 7 A - SX R....... BX SX - R SX - R R - BX R - BX R - X SX - R PS - X Table 01 Table
R - DA PS - DA 7 7

~

~
ADDB ADD SUBB SUB ORB OR ANDB AND XORB XOR CPB CP See See EXTEND EXTEND

8 R-R R-R R - R R - R R - R R -R R - R R - R R - A R-R 8 - R R - R Table Table INST. INST.
I I

~
CPL PUSHL SUBL PUSH LDL POPL ADDL POP MULn MULT DIVL DIV See RSVD RET RSVD::

i: 9 1'. - R 11'. - R R - R IR - R R-R R - IR 1'. - R 1'. - 18 R - R 1'. -R R - R R - R Table PC-ISP'

!5
2

g:
LOB LO RESB RES S,ETB SET BITB BIT INCB INC DECB DEC EXB EX TCCB TCC::J

A 1'. - R R - R R -1M R -1M R - 1M R - 1M R -1M R -1M R - 1M H - 1M R -1M R - 1M H-R 1'.-R A

DAB EXTS See See ADCB ADC SBCB SBC See RSVD See See RHOB LOI RLOB RSVD
EXTSB Table Table R - R H - R R -H R - H Table Table Table A P-IM P

~SL 4 4 5 6 6

LOB

C R - 1M

CALR

D PC - RA

IR
PC - RA

DIJIZ
DBIJIZ

PC - RA

Op Code Map

Notes:

I) Reserved Instructions (RSVD) should not be
used. The result of their execution is not defined.

2) The execution of an extended instruction will
result in an Extended Instruction Trap if the EPA
bit in the FCW is a zero. If the flag is a one the
Extended Instruction will be executed by the EPU
function.

3) The zaooo CPU will interpret any bit pattern
(including reserved and undocumented opcodes.
and illegal register endings) as some other cor­
rectly encoded instruction, and either execute
that instruction or generate a trap (e.g. if the new
instruction is a privileged instruction and the
CPU is in normal mode). Non-documented in­
struction encodings will be used in future 28000
Family CPUs to extend the instruction set.

274

Table I.

'" r--r-nMI r--r-nMI... I R"=---IR I ~
--'>-
i><1Il R-DA"'zeo

TESTL TESn

I ~TL I
"';::
;~

8 IR X
JA

Z ...

ffi~ LOM LOM
:til: 9 lR-R X-R
0'" JA-P
.. :t

9

Table 2.

COMB COM
IR IR

CPB CP
lR.IM lR,IM

NEGB NEG
lR lR

RSVD RSVD

TESTB TEST
IR IR

LOB LO
IR-IM lR-IM

TSETB TSET
IR lR

RSVD RSVD

CLRB CLR
lR lR

PUSH
1M

L--

COMB COM
X X

DA DA

CPB CP
KIM X.IM

DA,IM DA,IM

NEGB NEG
X x

DA DA

RSVD RSVD

TESTB TEST
x X

DA DA

LOB LO
X-1M X-1M

DA-IM DA-IM

TSETB TSET
X X

DA DA

RSVD RSVD

CLRB CLR
X X

DA DA

COMB COM
R R

LDCTLB SETFLG
R-FLGS

NEGB NEG
R R

RSVD RESFLG

TESTB TEST
R R

RSVD COMFLG

TSETB TSET
R R

RSVD NOP

CLRB CLR
R R

LDCnB
FLGS-R

-

3A 3B

INIB 1NI
IR-IR IR-lR
lNIRB INIR
lR-lR IR-lR

51mB SlNI
IR-IR lR-lR
SlNIRB SINIR
IR-lR IR-lR

oum OUT!
lR-IR IR-lR
OTIRB OUTIR
IR-IR IR-IR

soum SOUT!
IR-IR IR-lR

SOTIRB SOTIR
IR-lR IR-lR

INB IN
R-DA R-DA

SINB SIN
R-DA R-DA

OUTB OUT
DA-R DA-R

SOUTB SOUT
DA-R DA-R

INDB IND
lR-lR IR-IR
INORB INOR
lR-IR IR-lR

SINDB SIND
...

SINORB SINOR
lR-IR IR-lR

OUTOB OUTO
IR-lR IR-lR

OTORB OTOR
lR-IR IR-IR

SOUTOB SOUTO
IR-IR IR-IR

SOTORB SOTOR
IR-rR IR-IR

Table 3.

808C404C00oc

'"...>-
III 2
Z

~
U

~ 3

~
ffi

~
><
~ 5

'"..III
IIIz: 6

ffi
:t
o
.. 7

275

B2 B3 B8 BA BB 7B 70

RLB RL TRIB CPIB CPI IRET RSVD

(l bit) (l bit)
PC -,SSP

R R

LOIB LOI

SLLB SLL RSVD lR-II-<. lR-iF. RSVD RSVD
LOIRB LOIRR R
lR-IF lR-iF

SRLB SRL
R R

TRTIB CPSIB CPSI RSVD LDCTL

RLB RL IF Ii'. F.-FC"V

(2 bits) (2 bits)

R R

RSVD RSVD RSVD RSVD LDCTL

SOLB SOL
R R

TRIRB CPRIB CPIR RSVD LDCTL

RRB RR
IR IR R-

P:::AF'5EG
I: b.i) Ii bit)

R R

RS'v"u FS'v'u ?,S"iD R5\iD LDCTL
p-

SLLL P'iAPUff
RSVD R

SRLL

'" ~ TRTIRB CPSIRB CPSIR RSVD LDCTL...
I"~ RRB RR ~

Z 6 (2 bits) (2 bits) Z
0 g;:: R R
U U PSVD RSVD RSVD RSVD LDCTL::> ::>

f- -~';5FC'FFl!: lit:
RSVD SOLL ...

~ 7 R ~
15 l5 TROB CPOB CPO MSET RSVD
~ ~

9 BLCB BLC 9
>< '1 bll' B'";; ;; PSVC LDDB LDD MRES RSVD

~ '" ;P-IF. ?-IP

SLAB SLA :l LDDRB LDDR

Z 9 R R Z
15 SRAB SM 15R R TRTDB CPSOB CPSD MBIT LDCTL
~ ~ Ff:'.",'_p

9 BLCB RLC 9
(2 bi!s) (2 bIts)

R R
RSVD RSVD RSVD RSVD LDCTL

I

RFRSH-R

SOAB SOA U IR R

CPORB CPDR LDCTL
I TRDRB I ! PSAP'iE(;

RRCB RRC -p

'j bll;
R RSVD RSVD RSVD MREQ LDCTL

R PSAPc;FF

SLAL
-p

RSVD R
SRAL TRTDRB CPSDRB CPSDR RSVD LDCTL

IR N;:;PSEG-I'

RRCB RRC
b:ts)

LDCTL
R:::VD HS'v'[l RSVD .'bf\;F'

SDAL
RSVD R

Table 4. Table 5. Table 6. Table 7.

276

Topical
Index Data Addressing Flags

Instruction Description Mnemonic Types Modes Affected

Arithmetic
Add with Carry ADC B, W R C, Z, S, V, D', H
Add ADD B, W, L R, 1M, IR, DA, X C, Z, S, V, Di, Hi
Compare (Immediate) CP B, W IR, DA, X C, Z, S, V
Compare (Register) CP B, W, L R, 1M, IR, DA, X C, Z, S, V
Decimal Adjust DAB B IR C, Z, S
Decrement DEC B, W R, IR, DA, X Z, S, V
Divide DIV W, L R, 1M, IR, DA, X C, Z, S, V
Extend Sign EXTS B, W, L R
Increment INC B, W R, IR, DA, X Z, S, V
Multiply MULT W, L R, 1M, IR, DA, X C, Z, S, V
Negate NEG B, W R, IR, DA, X C, Z, S, V
Subtract with Carry , SBC B, W R C, Z, S, V, D', H'
Subtract SUB B, W, L R, 1M, IR, DA, X C, Z, S, V, D', Hi

Bit Manipulation
Bit Test BIT B, W R Z
Bit Reset (Static) RES B, W R, IR, DA, X
Bit Reset (Dynamic) RES B, W R
Bit Set (Static) SET B, W R, IR, DA, X
Bit Set (Dynamic) SET B, W R
Test and Set TSET B, W R, IR, DA, X S

Block Transfer and String Manipulation
Compare and Decrement CPD B, W IR C, Z, S, V
Compare, Decrement, qnd Repeat CPDR B, W IR C, Z, S, V
Compare and Increment CPI B, W IR C, Z, S, V
Compare, Increment, and Repeat CPIR B, W IR C, Z, S, V
Compare String and Decrement CPSD B, W IR C, Z, S, V
Compare String, Decrement, and Repeat CPSDR B, W IR C, Z, S, V
Compare String and Increment CPSI B, W IR C, Z, S, V
Compare String, Increment, and Repeat CPSIR B, W IR C, Z, S, V
Load and Decrement 10D B, Vi IR Z, V
Load, Decrement, and Repeat 10DR B, W IR Z, V
Load and Increment 101 B, W IR Z, V
Load, Increment, and Repeat 10IR B, W IR Z, V
Translate and Decrement TRDB B IR Z, V
Translate, Decrement, and Repeat TRDRB B IR Z, V
Translate and Increment TRIB B IR Z, V
Translate, Increment, and Repeat TRIRB B IR Z, V
Translate, Test, and Decrement TRTDB B IR Z, V
Translate, Test, Decrement, Repeat TRTDRB B IR Z, V
Translate, Test, and Increment TRTIB B IR Z, V
Translate, Test, Increment, and Repeat TRTIRB B IR Z, V

CPU Control Instructions
Complement Flag COMFLG C', Z', S', p', V'
Disable Interrupt DI
Enable Interrupt EI
Halt HALT
Load Control Register (from register) 10Cn R C', Z', S', p', D', H'
Load Control Register (to register) LDCn
Load Program Status 10PS IR, DA, X C, Z, S, P, D, H
Multi-Bit Test MBIT Z, S
Multi-Micro Request MREQ Z, S
Multi-Micro Reset MRES
Multi-Micro Set MSET
No Operation NOP
Reset Flag RESFLG C', Z', S', p', V'
Set Flag SETFLG C', Z', S', p', V'

1. Flag aflected only for byte operation.

2. Flag modIfIed only if specified by the InstructIOn.

277

Topical
Index
(Continued)

Instruction Description

Input/Output Instructions'
Input
Input and Decrement
Input, Decrement and Repeat
Input and Increment
Input, Increment, and Repeat
Output
Output and Decrement
Output, Decrement, and Repeat
Output and Increment
Output, Increment, and Repeat

Load and Exchange Instructions
Clear
Exchange
Load
Load Address
Load Address Relative
Load Constant
Load Immediate Into Memory
Load Into Memory
Load Into Register
Load Multiple
Load Relative
Pop
Push

Mnemonic

(S)lN'
(S)lND'
(S)lNDR'
(S)lNI'
(S)lNIR'
(S)OUT'
(S)OUTD'
(S)OUTDR'
(S)OUTI'
(S)OUTJR'

CLR
EX
LD
LDA
LDAR
LDK
LD
LD
LD
LDM
LDR
POP
PUSH

Data
Types

B, W
B, W
B, W
B, W
B, W
B, W
B, W
B, W
B, W
B, W

B, W
B, W
B, W
B, W
B, W
B, W
B, W
B, W, L
B, W, L
B, W
B, W
W, L
W, L

Addressing Flags
Modes Affected

Regular Special
JR, DA (DA)
IR (lR) Z, V
IR (lR) Z, V
IR (JR) Z, V
JR (lR) Z, V
JR, DA (DA)
JR OR) Z, V
JR (IR) Z, V
JR (JRJ Z, V
JR (lR) Z, V

R, JR, DA, X
R, IR, DA, X
R, JR, DA, X, BA, BX, 1M
DA,X,BA,BX
RA
R
IR, DA, X
JR, DA, X, BA, BX
R, 1M, JR, DA, X, BA, BX
IR, DA, X
RA
R, JR, DA, X
R, 1M, IR, DA, X

Logical Instructions
And
Complement
Or
Test
Test Condition Code
Exclusive Or

Program Control Instructions
Call Procedure
Call Procedure Relative
Decrement, Jump if Not Zero
Interrupt Return
Jump
Jump Relative
Return From Procedure
System Call

Rotate and Shift Instructions
Rotate Left
Rotate Left Through Carry
Rotate Left Digit
Rotate Right
Rotate Right Through Carry
Rotate Right Digit
Shift Dynamic Arithmetic
Shift Dynamic Logical
Shift Left Arithmetic
Shift Left Logical
Shift Right Arithmetic
Shift Right Logical

AND
COM
OR
TEST
TCC
XOR

CALL
CALR
DJNZ
JRET
JP
JR
RET
SC

RL
RLC
RLDB
RR
RRC
RRDB
SDA
SDL
SLA
SLL
SRA
SRL

B, W
B, W
B, W
B, W, L
B, W
B, W

B, W

B, W
B, W
B
B, W
B, W
B
B, W, L
B, W, L
B, W, L
B, W, L
B, W, L
B, W, L

R, 1M, JR, DA, X
R, JR, DA, X
R, 1M, IR, DA, X
R, IR, DA, X
R
R, 1M, IR, DA, X

JR, DA, X
RA
RA

JR, DA, X
RA

R
R
R
R
R
R
R
R
R
R
R
R

Z, S, p'
Z, S, p'
Z, S, p'
Z, S, p'

Z, S, p'

C, Z, S, P, 0, H

C, Z, S, V
C, Z, S, V
Z, S
C, Z, S, V
C, Z, S, V
Z, S
C, Z, S, V
C, Z, S, V
C, Z, S, V
C, Z, S, V
C, Z, S, V
C, Z, S, V

3. Each I/O instructIOn has a Speclal counierpart used to alert other devices that a Special L·O transactJon IS occur·
ring. The Specwll'O mnemOnIC is S + Regular mnemonic. Reier to section 6.2.8 ior further details.

278

••0\
.01, O? 01 ••oi

.01, 01

I·"
R1115 01 Rll,s 01

··'l ·,1 I ..,[·,1
·JI ::::J ·JI

... [··1 I ··'1 ··1
.51 I .51

···1
.61 I ···1

.61 ~

·,1 I ·,1

RR·l
RailS 01

I~
RR'[

Rsl,s 01

I·"
R91 R91

1R101 IR101
RRtO RR10

Rnl Rll!

IR121 IR121

I~"'
RR1Z

RR12

R131 R131I R14
SYSTEM STACK POINTER (SEG. NO.) IR141R14 NORMAL STACK POINTER lSEG. NO,1 (N$PSEG) RR14 R1S' SYSTEM STACK POINTER

RR14 R15 SYSTEM STACK POINTER (OFFSET) R15 NORMAL STACK POINTER (NSPj

R15 NORMAL STACK POINTER (OFFSET) (N$POFF)

Segment ZaDOO General Purpose Registers Non-Segmented ZSOOO General Purpose Registers

Register Binary Hex

RQO RRO RO RHO 0000 a
RI RHI 0001 I

RR2 R2 RH2 0010 2
R3 RH3 0011 3

RQ4 RR4 R4 RH4 0100 4
Wi HH:i 0101 5

nnu nu lUlU VJ.1U

R7 RH7 alII 7
RQ8 RR8 R8 RLO 1000 8

R9 RLl 1001 9
RRIO RIO RL2 1010 A

Ril RL3 lOll B
RQI2 RRI2 RI2 RL4 1100 C

RI3 RL5 1101 D
RRI4 RI4 RL6 IlIa E

RI5 RL7 IIII F

Binary Encoding for Register Fields

28002

LOW LOW

SYSTEM STACK ADDRESS ADDRESS

~~~~T~~ AFTER..... IDENTIFIER SYSTEM SP IDENTIFIER
AFTER TRAP

INTERRUPT OR INTERRUPT

PC SEGMENT

SYSTEM STACK
PC OFFSETPOINTER BEFORE ....

TRAP OR SYSTEM SP
INTERRUPT BEFORE TRAP

OR INTERRUPT

.....-1 WORD ........ .....-1 WORD ......

HIGH HIGH
ADDRESS ADDRESS

Format of Saved Program Status in the System Stack

279



CONTROL BITS FLAGS
15 0

FE9s'+AI VI INVlliiiii!!P!!W '" II C I z IS IpNI D IH tii yy Ilil

PROGRAM COUNTER I
NONSEGMENTED

CONTROL BITS FLAGS

PROGRAM COUNTER OFFSET

SEGMENTED

Program Status Blocks

PROGRAM STATUS AREA
POINTER (PSAP)

~

~r=~O::~OFFSET IMPLIED

BYTE OFFSET Z8001 Z8002 BYTE OFFSET
HEX DECIMAL DECIMAL HEX

0 0 RESERVED 0 0

RESERVED
FCW

FCW EXTENDED
INSTRUCTION

Wp~E~~ TRAP

RESERVED
FCW

FCW PRIVILEGED

WSEGL-
INSTRUCTION

TRAP PC
PC OFFSET

24
RESERVED

FCW
FCW SYSTEM

WSEGL-
CALL
TRAP PC

PC OFFSET

RESERVED

FCW SEGMENT
NOT USED

--.Jp~E~F~
TRAP

40
RESERVED

FCW
FCW NON-MASKABLE

--.Jp~E~F~
INTERRUPT

PC

RESERVED
--

30
FCW NON-VECTORED

Wp~~~~
INTERRUPT

PC

38 56
RESERVED

FCW 28
FCW

3C 60 ~~E~km- PC, 30

~D~~~km- VECTORED
PC,

H~~~~
iNTERRUPTS

PC,

H~:~~ PC,

23A 540

Program Status Area

280



Condition
Codes Code Meaning Flag Setting Binary

F Always false' 0000
Always true 1000

Z Zero 2 = 1 0110
NZ Not zero 2 = a lIla
C Carry C = 1 aliI
NC No carry C = a 1111
PL Plus 3 = a 1101
MI Mmus 3 = 1 0101
NE Noi equal Z = a 1110
EQ Equal 2 = I 0110
OV Overflow V = I 0100
NOV No overflow V = a 1100
PE Panty even P = I 0100
PO Parity odd P = a 1100
GE Greater than (3 XOR V) 1001

or equal
LT Less than (3 XOR V) I 0001
GT Greater than (Z OR (3 XOR V)) = a 1010
LE Less than or (Z OR (3 XOR V)) = 1 0010

equal
UGE UnsIgned C = a 1111

greater than
or equal

ULT Ur;signed C = 1 0111
less than

UGT Unsigned ((C = 0) AND (2 = 0)) 1011
greater than

ULE Unsigned less (C OR 2) = I 0011
than or equal

This iable provides ihe condition codes and the flag settings they represent.

Note thai some of the condition codes correspond to identical flag settings: i.e., 2-EQ, N2-NE,
....T" TTf1I:' DC (\11 Dt\ ~Tni.T
.I.'l'-'-U\,,;AL/ .I. L·'-"V, .L '-"-J.,'-"V.

'Presenily nor lmplemented In PLZ,ASM Z8000 compiler.

7 6 5 4 3 2 1 °
I I I 1 1 1 I BITS IN A BYTE

,1511411311211111°19 8171615141312111°,
BITS IN A WORD

BYTE

WORD

Address n Address n + 1

Addressable Data Elements

281



Z8000
Addressing
Modes

Addressing Mode

B

Register

1M

Immediate

Operand Addressing

In the Instruction In a Register

IREGISTER ADDRESS~

In Memory

Operand Value

The content 01 the
register

In the instruction

*IB
Indirect

Register

DA

Direct
Address

*X

Index

BA

Relative
Address

*BA
Base

Address

*BX
Base

Index

I REGISTER ADDRESS~1------....1OPERAND I

~~-----------_.~

PC VALUE ~

~~====~I OPERANO I

The content 01 the location
whose address is in the
register

The content 01 the location
whose address is in the
instruction

The content 01 the loca­
tion whose address is the
address in the instruction
plus the content 01 the
working register.

The content 01 the location
whose address is the
content 01 the program
counter. olfset by the
displacement in the
instruction

The content 01 the location
whose address is the
address in the register.
olfset by the displacement
in the instruction

The content 01 the loca­
tion whose address is
the address in a register
plus the index value in
another register.

Powers
of 2
and 16

+ Do not use RO or RHO as indirect, index, or base registers.

2n 16"

256 8 2° 16° I 0

512 9 2' 16' 16 1

28 162 256 2
I 024 10

212 16' 4096 3
2048 11 2" 16' 65536 4

4096 12 2" 16' I 048576 5

8 192 13 224 16" 16777216 6

16384 14 2'" 16' 268 435 456 7

232 168 4294967296 8
32768 15

236 169 68719476736 9
65536 16 2'" 16'° 1 099511 627776 10

131 072 17 2'" 16" 17592 186044416 11

262 144 18 2'" 16" 281 474976710656 12

524 288 2" 16" 4 503 599 627 370 496 13
19

256 1614 72 057 594 037 927 936 14
I 048 576 20 2'" - 16 15 1 152921 504606846976 15
2097 152 21

4 194304 22 Powers of IS
8388608 23

16 777 216 ~~

Powers of 2

282



Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal

268,435,456 16,777,216 1,048,576 65,536 4,096 256 16

536,870,912 33,554,432 2,097,152 131,072 8,192 512 32

805,306,368 50,331,648 3,145,728 196,608 12,288 768 48

1.073,741.824 4 67,108,864 4,194,304 262,144 16,384 1,024 64

5 1,342,177,280 83,886,080 5,242,880 327,680 20,480 J.280 80

1.610,612,736 6 100,663,296 6,291,456 393,216 24,576 1,536 96

1,879,048,192 7 117,440,512 7,340,032 458,752 28,672 1,792 112

8 2,147,483,648 134,217,728 8,388,608 524,288 32,768 2,048 128

2,415,919,104 9 150,994,944 9,437,184 589,824 36,864 2,304 144

A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10

B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11

C 3,221,225,472 C 201,326,592 C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12

D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13

E 3,758,096,384 234,881.024 14,680,064 917,504 57,344 3,584 224 14

F 4,026,531,840 251,658,240 15,728,640 983,040 61,440 3,840 240 15

Hexadecimal and Decimallnterger Conversion Table

To Convert Hexadecimal to Decimal To Convert Decimal to Hexadecimal

l. Locate the column of decimal numbers corresponding to l. (a) Select from the tabel the highest decimal number
the left-most digit or letter of the hexadecimal: select that is equal to or less than the number to be
from this column and record the number that cor- converted.
responds to the position of the hexadecimal digit or (b) Record the hexadecimal of the column containing
letter. the selected number.

2. Repeat step I for each remaining position.
(c) Subtract the selected decimal from the number to be

converted.
3. Add the numbers selected from the table to form the

2. Using the remainder from step I(c) repeat all of step 1
decimal number.

to develop successive positions of the hexadecimal (and
To convert integer numbers greater than the capacity of a remainder).
the table, use the techniques below:

3. Combine terms to form the hexadecimal number.

Hexadecimal to Decimal
Decimal to Hexadecimal

Succesive cumulative mulitplication from left to right,
Divide and collect the remainder in reverse order.adding units position.

Example: D3416 =338010 Example: Example: 338010 =D3416 Example:

D = 13 Conversion of 16~remainder Conversion of
x 16 Hexadecimal Value 16~41

Decimal Value
208 D34 3380

3 = +13 16~3
2TI l.D 3328 D l.D -3328
x 16 52

3376 2. 48
4 = +4 2. 3 -48

3380 3. 6

4. Decimal 3380
3.4 -4

4. Hexadecimal D34

283



ASCII Hexadecimal Character Meaning Hexadecimal Character
Characters

00 NUL NULL Character 40 @

01 SOH Start of Heading 41 A
02 STX Start of Text 42 B
03 ETX End of Text 43 C

--04 EOT -- End of Transmission 44 D
05 ENQ Enquiry 45 E
06 ACK Acknowledge 46 F
07 BEL Bell 47 G

--08 BS --Backspace 48 H
09 HT Horizontal Tabulation 49 I
OA LF Line Feed 4A J
OB VT Vertical Tabulation 4B K

--OC FF -- Form Feed 4C L
OD CR Carriage Return 4D M
OE SO Shift Out 4E N
OF SI Shift In 4F 0

--10 DLE-- Data Link Escape 50 P
II DCI Device Control I 51 Q
12 DC2 Device Control 2 52 R
13 DC3 Device Control 3 53 S

--14 DC4 -- Device Control 4 54 T
15 NAK Negative Acknowledge 55 U
16 SYN Synchronous Idle 56 V
17 ETB End of Transmission Block 57 W

--18 CAN-- Cancel 58 X
19 EM End of Medium 59 Y
IA SUB Substitute 5A Z
IB ESC Escape 5B [

--IC FS -- File Separator 5C \
lD GS Group Separator 5D )
IE RS Record Separator 5E
IF US Unit Separator 5F

--20 SP -- Space 60
21 ! 61
22 62 b
23 63

--24 64 d
25 % 65 e
26 & 66 f
27 67 g

--28 68 h---
29 69
2A 6A
2B + 6B

--2C 6C
2D 6D m
2E 6E
2F / 6F 0

--30 0 70 p
31 I 71 q
32 2 72
33 3 73

--34 4 74
35 5 75
36 6 76
37 7 77

--38 8 78
39 9 79
3A 7A
3B 7B

-- 3C < 7C
3D 7D
3E > 7E
3F ? 7F DEL Delete

284



.- D





Glossary of
Terms

address: An entity that specifies one par­
ticular element in a set of similar elements.
May be either a memory address or an I/O
address (q.q.v). (See also segmented address,
logical address, physical address.)

address space: A set of addresses. The Z8000
can access eight separate address spaces:
normal-mode program memory space, system­
mode program memory space, normal-mode
data memory space, system-mode data memory
space, normal-mode stack memory space,
system-mode stack memory space, standard
I/O space, and special I/O space. (See normal
mode, system mode, program memory address
space, data memory address space, stack
memory address space, standard I/O address
space, and special I/O address space.)

addressing mode: The way in which the
address of an operand (q.v.) is specified.
There are eight addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Index, Base Address, Relative Address, Base
Index (q.q.v).

autodecrement: The contents of a register are
decremented and then used as speCified by the
instruction.

autoincrement: The contents of a register are
used as speCified by the instruction and then
incremented.

Base address (BA) addressing mode: A
based address consists of a register that con­
tains the base and a 16-bit displacement (q.v.).
The displacement is added to the base and the
resulting address indicates the effective
address (q.v.). In nonsegmented mode, the
base address is held in a word register (q.v.)
and the displacement is in the instruction. In
segmented mode, the segmented base address
is held in a register pair and the displacement
is in the instruction.

Base Index (BX) addressing mode: Based
Indexed addressing is similar to Based
addressing except that the displacement
("index"), as well as the base, is held in a
register. In nonsegmented mode, the base
address is held in a word register and the
index is held in a word register. In segmented
mode, the segmented base address is held in a
register pair (q. v.) and the index is held in a
word register.

287

Appendix D

BCD digit: A Binary Coded Decimal digit is
an encoding of the ten decimal digits into a
4-bit code that is simply the first ten binary
numbers in the binary number system (starting
with 0). This code is used to represent and
process numbers in the base-lO (decimal)
format.

bus: A group of signal lines, which connects
the devices in a system.

Bus-Disconnect state: The CPU state during
which the CPU is not the bus master and may
not initiate transactions (q.v.) on the bus.

bus master: The device in control of the bus.
Must be a device that is able to initiate
transactions.

bus request: A request for control of the bus.

byte: A byte is eight contiguous bits; a byte in
memory starts on an addressable byte
boundary.

byte register: An 8-bit register. The Z8000
CPU contains 16 general-purpose byte
registers, designated RLn and RHn (n = 0-7).

clock cycle: One cycle of the CPU clock,
beginning with a rising edge.

condition: An event detected by the hardware
and indicated by setting the appropriate flag.
A condition is caused by the execution of an
instruction and is always reproducible. The
Z8000 has six flags to record these events,
called status flags (q.v.).

context switching: Interrupting the activity in
progress and switching to another activity. A
context switch involves saving for later restora­
tion the contents of the general-purpose
registers, the Program Counter and the Flag
and Status Word (q.v.).

CPU state: Either Running state, Stop/Refresh
state, or Bus-Disconnect state (q.q.v.).

data memory address space: A memory
address space (q.v.) that is identified by the
status codes 1000 or 1010.

data structure: A logical organization of
primitive elements (e.g. byte or word) whose
format and access conventions are well­
defined. Examples of data structures are
tables, lists and arrays.



Glossary of
Terms

data type: The way in which bits are grouped
and interpreted. For an instruction, the data
type of an operand determines its size and the
significance of its bits. Operand data types
include byte, word, long word, byte string,
word string, and BCD digit.

Direct Address (DA) addressing mode: In this
mode, the operand address is contained within
the instruction.

displacement: A number contained in the
instruction for use in calculating the effective
address (q.v.) of an operand. The displace­
ment is added to the contents of a register dur­
ing the calculation.

DMA: Direct Memory Access is a method for
transferring data to or from main memory at
high speed by avoiding the CPU registers.

effective address: The address obtained after
indirect or indexing modification. In non­
segmented mode, the effective address is a
16-bit number. In segmented mode, the effec­
tive address consists 01 a 7-bit segment number
and 16-bit offset. In systems with memory
management, the effective address is the
logical address which must be translated to
obtain the physical memory address.

flags: Bits in the Flag and Control Word
(q.v.) that indicate conditions (q.v.).

Flag and Control Word: One of the two Pro­
gram Status registers; it contains flags (q.v.)
and bits that control the operation of the CPU.

Immediate (I) addressing mode: In this
mode, the operand is contained within the
instuction.

Index (X) addressing mode: In this mode, the
operand address is obtained by adding the
contents of an index register (q.v.) to a base
address contained in the instruction.

index register: A word register used to con­
tain a displacement for use in effective address
calculation.

Indirect Register (lR) addressing mode: In
this mode, the operand address is contained
within a register.

instruction fetch: An access to program
memory address space (q.v.).

interrupt request: An event other than a trap
or jump or call instruction that changes the
normal flow of instruction execution. (See non­
maskable, non-vectored, and vectored
interrupts. )

interrupt service routine: The rou tine exe­
cuted in response to an interrupt.

interrupt/trap acknowledge transaction: The
transaction initiated by the CPU in response to
an interrupt or trap. Obtains an identifier word
from the interrupting device or memory man­
agement hardware.

I/O address: The address of an I/O port,
always 16 bits long. Word ports may have even
or odd addresses, Special I/O byte ports are
even, Standard I/O byte ports are odd.

I/O transaction: A transaction that transfers
data to or from a peripheral device or memory
management hardware.

logical address: The address manipulated by
the programmer, used by instructions and out­
put by the 28000.

long word: A long word is 32 contiguous bits;
a long word in memory starts on an even
addressable byte boundary.

machine cycle: One basic CPU operation,
starting with a bus transaction (q.v.).

memory address: An address specifying a
location in memory. Word and long-word
addresses must be even, byte addresses may
be even or odd.

memory management: The process of trans­
lating logical addresses into physical
addresses (q.q.v.), plus certain protection
functions.

memory transactions: A transaction that
transfers data to or from main memory.

normal mode: A Running-state (q.v.) mode in
which the SIN flag in the FCW is 0 and the
N/S line is High. In this mode, the CPU may
not execute privileged instructions (q.v.).

non-maskable interrupts: Interrupts (q. v .)
which cannot be disabled.

nonsegmented mode: A Running-state mode
of the 28000 CPUs. For segmented CPUs in this
mode, all addresses are generated with the same
segment number (q.v.).

non-vectored interrupts: Interrupts (q.v.)
which do not use the identifier word as a vec­
tor to an interrupt service routine (q.v.).

offset: In a 28001 CPU, the 16-bit value that
appears on the AD lines when an address is
generated.

operand: An item of data operated on by an
instruction.

physical address: The address required for
accessing the memory, obtained from the
logical address generated by the 28000 by
memory management hardware, for example,
the 28010 Memory Management Unit.

privileged instruction: An instruction intend­
ed for use primarily by an operating system,
which can be executed only in System mode.
In general, instructions that change the pro­
cessor state or perform I/O are privileged.

Program Counter (PC): One of the two Pro­
gram Status registers (q.v.). Contains the
address of the current instruction.

288



Glossary of
Terms

program memory address space: The
memory address space (q.v.) indicated by the
status codes (1100 or 1101).

Program Status Area: The area in memory
reserved for the starting program status of the
interrupt and trap service routines.

Program Status Area Pointer: The register
that contains the starting address of the Pro­
gram Status Area.

Program Status registers: The two registers
(PC and FCW) that contain the program
status.

refresh counter: A register that controls the
Z8000 dynamic memory, periodic-refresh
mechanism. Used to set the refresh rate and to
enable the mechanism.

refresh cycle: A type of transaction used to
refresh dynamic memory. It is three clock
cycles long.

Refresh/Stop state: A CPU state entered
whenever the STOP line is asserted. A con­
tinuous stream of refresh cycles (q.v.) is
generated.

register: A storage location in hardware logic
other than the memory. Bits within a register
are numbered from 0, with the least significant
being the rightmost. See also byte register,
word register, register pair, and register quad.

Register (R) addressing mode: In this mode,
the operand is in a general-purpose register.

register pair: One of eight pairs of general­
purpose word registers, designated RRn
(n = 0,2,4, ... , 12, 14).

register quad: One of four groups of four
word registers, designated RQn (n = 0, 4,
8, 12).

Relative Address (RA) addressing mode: In
this mode, the operand address is calculated
by adding a displacement found in the instruc­
tion to the current PC value.

request: Either an interrrupt request, bus
request, resource request, or STOP request
(qq.v.). An external device requests that the
CPU perform some action.

reset: An internal CPU operation that initial­
izes the Program Status registers. It is acti­
vated by the RESET line.

Running state: One of the three CPU states.
Tn this state, the CPU is fetching and exe­
cuting instructions or handling interrupts.

segment: In a Z8001, a set of adjacent
memory addresses (up to 64K) with the same
segment number (q.v.) on lines SNo-SN6.

segment number: A number specifying a
memory segment (q.v.). Placed on the
SNO-SN6 lines during memory transactions in
Z8001 system. Part of a segmented
address (q. v.).

segmented address: In segmented Z8000
CPU's, a 23-bit value consisting of a 7-bit seg­
ment number (q.v.) and a 16-bit offset (q.v.)

segmented mode: One of the Running-state
modes of the segmented Z8000 CPU. In this
mode, CPU generates addresses that can have
different segment members.

Special I/O address space: An I/O address
space (q. v.). that is identified by the status
code 0011. Used to access memory manage­
ment hardware.

stack: A data structure used for temporary
storage or for procedure and interrupt service
routine linkages. A stack uses the last-in, first­
out concept. As items are added to, or pushed
onto, the stack, the stack pointer decrements;
as items are removed from, or popped off, the
stack, the stack pointer increments.

stack memory address space: A memory
address space (q.v.) that is identified by the
status codes 1001 and lOll.

stack pointer: A general-purpose register
indicating the top (lowest address) of a stack.

Standard I/O address space: An I/O address
space (q.v.) that is identified by the status
code 0010. Used for accessing peripherals.

status code: A 4-bit encoding of the CPU's
current transaction, for example, internal
operation, segment trap acknowledge, or stack
memory request.

status flags: Status flags are set according to
the outcome of certain instructions to direct
the subsequent flow of the program as neces­
sary. There are six status flags: Carry, Zero,
Sign, Parity/Overflow, Decimal Adjust and
Half Carry. The first four are grouped together
to determine the condition code, the last two
are used in programs manipulating BCD
digits.

status lines: The lines STo-ST3, which contain
the status code during transactions.

stop request: A request that is made by acti­
vating the STOP line.

Stop/Refresh state: See Refresh/Stop state.

system mode: A Running-state mode (q.v.) in
which the SIN flag in the FCW is 1 and the
N/S line is Low. In this mode, the CPU may
exercise privileged instructions (q.v.).

transaction: One of the basic bus operations.
A transaction lasts three or more clock cycles
and covers a single data movement on the bus.

289



Glossary of
Terms

trap: A condition that occurs at the end of an
instruction that caused an illegal operation.
The 28000 traps are internal traps arising from
system call, EPA instruction and privileged in­
structions executed in normal mode, and an
external trap, the segmentation/address trap,
arising from memory access violations in systems
with memory management. A trap is similar to
an interrupt in that it causes the executing pro­
gram to be interrupted and the Program Status
registers to be saved on the system stack. Traps
cannot be disabled.
vectored ·interrupts: Interrupts (q. v.) which
use the identifier word as a vector to the inter­
rupt service routine (q.v.). May be
disabled.

290

WAIT cycle: A clock cycle during which the
WAIT line is active. Used to prolong trans­
actions, since no signal line is sampled while
WAIT is active.

word: Two contiguous bytes (16 bits) starting
on an even addressable byte boundary. Bits
are numbered from the right, 0 through 15. A
word is identified by the address of the byte
containing the most significant bit, bit 15.

word register: A 16-bit register.


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290

