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Target Identification and Recognition  
using RF Systems 

(RTO-MP-SET-080) 

Executive Summary 
The goal of this symposium was to describe the current and projected capability of RF systems for Non-
Cooperative Target Identification/Recognition (NCTI/NCTR) at long range and in all weather conditions. 
Specific objectives were to review NCTI/NCTR R&D efforts available to NATO nations, suggest how 
and when this technology may contribute to an operational Combat Identification (CID) capability, and 
address coalition interoperability issues. The symposium was organized along the following themes: 
NCTI/NCTR of air targets, surface targets, passive RF systems & technology, and countermeasures 
against NCTI/NCTR.  

The first half of this three-day symposium was classified NATO (S) and consisted of twenty-three oral 
presentations; these papers are available in a classified supplement to Symposium Proceedings. The 
second-half consisted of eighteen unclassified oral presentations and sixteen unclassified posters that were 
open to Partnership-for-Peace (PfP) nations.  

The symposium started with overview presentations of three active SET TGs: SET-053 “Ground Target 
Recognition by Radar”, SET-068 “Modeling, Analysis and Recognition of Radar Signatures for Non- 
Cooperative Aircraft Identification”, and SET-069 “Advanced mmW Techniques for Ground Target 
Acquisition”. Chairmen of these TGs described their Programmes of Work and presented major results; 
much of the work discussed was later elaborated by other oral and poster presentations.  

Most of the contributed papers discussed the state-of-the-art and problems associated with non-
cooperative aircraft and ground vehicle recognition. Target classifiers were based mostly on analysis of 
high range resolution (HRR) profiles and synthetic aperture radar (SAR) or inverse synthetic aperture 
radar (ISAR) image analysis. A recurrent theme was the comparison of classification results based on real 
data with results obtained from synthetic (model) data. Numerous presentations described and compared 
the relative merits of various computational electromagnetic codes for predicting synthetic target 
signatures and imagery. Various target classification algorithms and/or systems were described and 
compared. One general observation is that each classifier described performs about as well as another; 
there is no compelling reason to chose a particular classifier. This conclusion seems to be independent of 
target type. A few fielded systems consisting of sensor and classifier were described.  

Other topics included the contribution of RF polarimetry to target ID, the application of joint time-
frequency analysis for improving radar imagery, and passive bi/multi-static sensor systems for covertly 
obtaining target data. The capability of NCTI/NCTR using HF radar was described in a contribution from 
Australia. 
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Reconnaissance et identification de cibles 
à l’aide des systèmes RF 

(RTO-MP-SET-080) 

Synthèse 
Ce symposium avait pour objectif de présenter la capacité actuelle et projetée en systèmes RF pour 
l’identification/reconnaissance de cibles non coopératives (NCTI/NCTR) à grande distance et tous temps. 
Les organisateurs ont voulu entre autres faire le point sur les activités de R&D en cours au sein de 
l’OTAN dans ce domaine, prévoir à quelle échéance et de quelle manière ces technologies pourraient être 
mises à contribution dans la réalisation d’une capacité d’identification de cibles non coopératives (CID),  
et examiner la question de l’interopérabilité des coalitions. Il était organisé autour des thèmes suivants :  
le NCTI/NCTR de cibles aériennes et de cibles de surface, les technologies et les systèmes RF passifs, 
ainsi que les contre-mesures contre le NCIT/NCTR.  

La première partie de ce symposium de trois jours était classifiée NATO (S) et consistait en vingt-trois 
présentations orales. Ces communications sont disponibles sous forme d’un supplément classifié au 
compte rendu du symposium. La deuxième partie était composée de dix-huit communications orales non 
classifiées, ainsi que de seize présentations données lors des séances d’affiches, ouvertes aux membres des 
pays du Partenariat pour la paix (PPP).  

Le symposium a débuté par des présentations résumant l’état d’avancement des trois TG actifs, à savoir : 
SET-053 « La reconnaissance radar des cibles au sol », SET-068 « La modélisation, l’analyse et la 
reconnaissance des signatures radar pour la reconnaissance de signatures radar aux fins d’identification 
d’aéronefs non coopératifs », et SET-069 « Les techniques mmW avancées de reconnaissance de cibles au 
sol ». Le président des TG a décrit leurs programmes de travail et a présenté les principales conclusions ; 
bon nombre des sujets évoqués ont été développés plus avant lors d’autres présentations orales et de 
séances d’affiches ultérieures.  

La plupart des communications reçues ont porté sur l’état actuel des connaissances dans le domaine ainsi 
que sur les problèmes associés aux aéronefs non coopératifs et la reconnaissance des véhicules au sol.  
Les classificateurs de cibles étaient basés sur l’analyse de profils de haute résolution en distance (HRR), 
ainsi que sur l’analyse d’imagerie obtenue par des systèmes radar à ouverture synthétique (SAR) et à 
ouverture synthétique inverse (ISAR). La comparaison des résultats de classification basés sur des 
données réelles avec des résultats obtenus à partir de données synthétiques (modèles) est revenue souvent 
dans les discussions. De nombreuses communications présentaient et comparaient les avantages relatifs de 
différents codes de calcul électromagnétiques pour la prévision de signatures et de l’imagerie de cible 
synthétiques. Différents algorithmes et/ou systèmes de classification de cibles ont été présentés et 
comparés. Il est apparu de façon générale que les performances des différents classificateurs étaient plus 
ou moins égales et que, par conséquent, il n’y avait pas de raison impérieuse de choisir tel classificateur 
plutôt que tel autre. Cette conclusion semble être indépendante du type de cible. Un certain nombre de 
systèmes mis en service, composés de capteurs et de classificateurs, ont été présentés.  

Les autres questions examinées comprenaient la contribution de la polarimétrie RF à l’identification des 
cibles, la mise en application de l’analyse temps-fréquence pour l’amélioration de l’imagerie radar et les 
systèmes bi/multistatiques passifs pour la recherche furtive de données de cible. Enfin, l’Australie a 
présenté les possibilités de NCTI/NCTR à l’aide de radars HF. 
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Aspects of NCTR for Near-Future Radar 
Robert Miller, David Shephard, Mark Newman 

BAE SYSTEMS Advanced Technology Centre 
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United Kingdom 

robert.j.miller@baesystems.com 

SUMMARY 

This paper considers a number of aspects related to the achievement of non-cooperative target 
recognition capabilities in current and near-future radar systems. The scope of the paper is restricted to 
consideration of the use of high range-resolution profiles.  Three particular aspects are discussed.  
Firstly, the problem of achieving a high range-resolution capability on radars which typically have only 
narrow instantaneous bandwidths is considered; an approach is described in which the usual 
shortcomings associated with step-frequency waveforms are avoided.  Secondly, the consequences of 
having less than ideal performance from the radar system are considered.  The loss in classification 
performance which occurs when returns are degraded in terms of resolution and signal-to-noise ratio  are 
described.  The results given apply to civil aircraft and compare performance from a feature-matching 
and a profile-correlation algorithm.  The third aspect considered relates to the nature of the classifier 
itself.  There are numerous choices to be made; we discuss what data should be used for classification, 
sources of reference data for classifiers and different types of classification algorithm.  A focus is placed 
on the representation of reference data as a scattering centre model of each aircraft of interest; such a 
model attempts to give an abstract representation of key features in a form which may incorporate both 
radar and non-radar data, and which is not particular to any one radar system. 

1.0 INTRODUCTION 

The desirability of the inclusion of some degree of non-co-operative target recognition (NCTR) capability 
in current and future radar systems is widely recognised.  Discussions of NCTR techniques frequently 
assume the use of a purpose-built radar; however, in view of the long life-times of contemporary radar 
systems, this is not realistic.  It is highly desirable to utilise if at all possible the untapped potential of 
current radar systems to perform NCTR.  The paper starts from this view-point, and discusses a number of 
issues associated with introducing NCTR capability to contemporary or near-future radar systems. 

Two different approaches for using radar to provide NCTR capability are commonly discussed, i.e. (i) 
analysis of frequency modulation of returns (jet engine modulation, helicopter rotor modulation) and (ii) 
comparison of high-resolution range profiles (HRRP) with reference data on signatures of targets of 
interest.  This paper considers only the latter approach.  The scope of the paper is also limited to a 
consideration of air targets. 

The use of existing or modestly upgraded radar systems often implies that there are limitations on the 
waveforms that can be used for NCTR, and these will impact on NCTR performance.  The first part of this 
paper discusses a novel technique for generating HRRP waveforms from a sequence of narrow-band 
pulses.  This technique avoids the shortcomings of a conventional step-frequency approach, which may 
lead to aliasing, high range sidelobes and wrap-round of long targets.  The new technique combines pulses 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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using motion compensation which is accurate to within a fraction of a wavelength to achieve a high 
bandwidth synthetic waveform which is free of phase discontinuities. 

The second part of the paper considers results obtained from degrading high-resolution profiles to show 
how classifier performance changes with variation in resolution and signal-to-noise ratio.  Two different 
kinds of classifier are considered, the first based on feature matching, and the second based on direct 
comparison of profiles with reference data. 

The third part of the paper considers in greater depth the performance of different types of classifier, and 
the nature of the reference data used to perform the classification and its impact on performance.  This 
consideration also overlaps with fundamental concerns regarding the source of reference data on many 
targets of interest – while it may sometimes be possible to obtain detailed radar measurements of friendly 
aircraft, different sources of data will need to be used for other aircraft.  Particular consideration is given 
to the use of a reference model which describes the principal scattering centres on each aircraft of interest.  
The validity of such a model is considered, as is the inclusion of both radar and non-radar data in such a 
model. 

2.0 GENERATION OF HRRP WAVEFORMS 

The ability of a radar system to identify a target from its radar range profile is directly dependent on the 
achieved range resolution, which is in turn dependent on the transmitted bandwidth of the signal. Early 
work indicated that a bandwidth of about 400 MHz is required to identify air targets. Ideally this would be 
achieved using a wideband instantaneous waveform. Most radars currently in service have a very limited 
instantaneous bandwidth. This makes it impossible without a major redesign to achieve the required 
bandwidth using an instantaneous waveform.  The overall RF bandwidth of the system is generally wide 
enough that an alternative is to synthesise the required bandwidth by frequency stepping. 

2 s
(300 metre resolution)

 
Required resolution:- 1.5 meters 
Required Bandwidth:- 100MHz 
25 pulse burst each separated by 4MHz 

Amplitude

Frequency

f0 f1 f2 f3 f23 f24

4MHz

Amplitude

1.5 metre resolution

Range

37.5 metre range window

(     100MHz)

(     4MHz)  

Figure 1: Traditional Step Frequency Technique 
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This frequency-stepping technique has been shown to work successfully and is described in detail in 
standard reference books such as that by Wehner [1]. This type of technique is shown schematically in 
Figure 1. In this example, a 25-pulse burst with a 4 MHz separation between pulses is used to generate a 
synthetic bandwidth of 100 MHz. It is important to note that the size of the resulting time-domain window 
is proportional to the reciprocal of the frequency step; in the example given the 4 MHz frequency step 
results in a synthesised range window 37.5 metres long.  Aircraft longer than this window will be 
incorrectly profiled due to wraparound effects.  This will restrict the length of targets that can be profiled 
using the traditional step frequency technique. To address this issue, an alternative technique known as 
Hybrid Stepped Frequency Range Profiling has been developed by BAE SYSTEMS ATC.  

The hybrid stepped-frequency method involves the transmission of a series of narrow-band FM chirps, 
transmitted at stepped carrier frequencies. The returned signals are combined to form a wide bandwidth 
result spanning a continuous range of frequency – there are no gaps or phase discontinuities. The FM 
chirps can be compressed against a reference either individually before summation, or all together after 
summation. This technique has been successfully demonstrated at our radar test site in Great Baddow, UK.  

The technique has been used to produce range profiles of both stationary calibration targets and aircraft in 
flight. Figure 2 shows a range profile of a stationary test target. The range swath is in excess of one 
kilometre and shows that the hybrid step-frequency technique is not limited by the 1/frequency-step range 
ambiguity of the traditional method. 

Range

TE034 : TTG Range Profile

 

Figure 2: Range profile of test target 

Range

TE190 : Stepped Range Profile

Figure 3: Profile of airborne target 

Figure 3 shows a range profile of a target of opportunity identified as a Boeing 747 measured at a range of 
21 km and having a radial speed of 351 knots.  The 747 has a length of over 70 m; it is evident that no 
fold-over is occurring in the profile.   

The detailed sidelobe structure of the motion-compensated waveform obtained from airborne targets has 
been compared with that obtained from calibration targets; they are found to be virtually identical.  This 
demonstrates that the motion-compensation techniques employed are sufficiently accurate and robust to 
generate high-quality profiles. The range profiles obtained using the hybrid technique are generally found 
to be of very high fidelity and compare favourably with data measured using an instantaneous wideband 
waveform. 
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The processing can be taken a stage further by applying the technique to each Doppler channel in a burst. 
The resulting range-Doppler map is shown in Figure 4(a). The distribution of the Jet Engine Modulation, 
either side of the skin return, is within the anticipated range window and does not show any range-Doppler 
coupling. Figure 4(b) shows a second result measured from a Boeing 737. This target was at 13.5 km and 
a radial speed of 272 knots. In this example, each of two engines give rise to two distinct Doppler 
sidebands. 
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(a) range-Doppler map for Boeing 747 
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TE155 : Stepped Range Doppler Profile
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(b) range-Doppler map for Boeing 737 
Figure 4: Range-Doppler maps  

This technique for producing high range resolution profiles of air targets is robust. It can be applied to 
targets of opportunity with sufficient information available from the measured data to enable motion 
compensation to be undertaken to high accuracy. 

3.0 VARIATION OF RESOLUTION AND SNR 
This section considers the effects of variation of range-resolution and signal-to-noise ratio on classifier 
performance.  Two forms of classifier are considered. 

3.1 Data 
High-resolution data was collected consisting of a sequence of 50 1 µS pulses, each modulated with a 
270 MHz linear FM chirp. 1000 samples of each pulse were taken at a rate of 400 MHz. Pulses are 
compressed using a reference profile from a point target and the results are motion-compensated to 
produce a stack of aligned range profiles. Doppler processing is then applied to produce a range-Doppler 
map. This separates the skin echo from engine returns.  A sample set of 58 aircraft datasets, consisting of 
six different types, was selected from a database of trial data. Table 1 lists the aircraft selected. The 
identity of these aircraft has been confirmed by National Air Traffic Services (NATS). 

Aircraft Type Class No. of Datasets 

Boeing 747 large civil 11 

Lockheed Tristar large civil 8 

Boeing 707 large civil 8 

Boeing 737 medium civil 10 

Boeing 757 medium civil 11 

McDonald Douglas MD80 medium civil  10 

Total  58 

Table 1: Aircraft types in trial data 
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3.2 Classification Algorithms 
Two types of algorithm have been considered, a feature-matching algorithm and a profile-correlation 
algorithm. 

The feature-matching algorithm attempts to match features of the observed aircraft to a list of features 
stored in a database. These features include length, distance of engines from the nose and number of 
engines. A range-Doppler map (see Figure 4) is used to distinguish the skin return from engine returns. 
The algorithm is designed to recognise aircraft over aspect angles between 0° and ±40° from the nose 
since the JEM required to distinguish the engines is typically visible only over this range. The reference 
database used contains 71 aircraft types and variants. These aircraft have been separated into 4 generic 
classes: large civil, medium civil, small civil and large military. The information about each aircraft in the 
database has been gathered from technical data available in the public domain.  The aircraft type is 
determined according to the greatest number of satisfactory matches; the class is determined from the type 
classification.  An aircraft may be unclassified if no satisfactory matches occur. 

The profile-correlation algorithm uses only the range profile of the skin echo from the data, i.e. the 
contents of the zero-Doppler bin in the range-Doppler map.  Profiles are correlated with profiles in a 
reference database which consists of 612 sampled range profiles. The identity of most aircraft has been 
confirmed by NATS. The profiles in this database have been separated into the same four generic types as 
before: large civil, medium civil, small civil and large military.  The trial dataset used is a subset of the 
reference profiles, but the algorithm excludes correlation of a profile with itself.  A k nearest-neighbour 
algorithm is used with classification being based on the majority type or class from the 10 best matches. 

In normal use, any NCTR algorithm would be used in conjunction with tracking data to estimate the 
aspect angle of the target aircraft; such data was not available for the profiles considered here, so classifier 
performance is generally not as good as it could be. 

3.3 Reduction of Resolution and SNR 
To assess the effect of variation of range resolution and SNR on the performance of the classifiers, the trial 
data was degraded in one of two ways, either (i) by reducing the sampling rate to approximately emulate 
the effect of reducing range resolution or (ii) by decreasing the signal-to-noise ratio by injecting additional 
noise into the original data. 

3.3.1 Range Resolution 

To estimate the effects of degradation in range resolution, the data in each of the trial datasets was 
methodically reduced by re-sampling.  The effect of an increase in sampling interval (SI) from 0.375 m to 
1.875 m on the range-Doppler map and the range profile is illustrated in Figure 5. 
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(a) range-Doppler map SI = 0.375 m 

 
(b) range-Doppler map SI = 1.875 m 

 
(c) range-profile SI = 0.375 m 

 
(d) range profile SI = 1.875 m 

Figure 5: Effects of reduced range resolution on range-Doppler map and range profile 

3.3.1.1 Feature-Matching Algorithm 

Figure 6(a) shows that the feature-matching algorithm initially classifies around 50% of the trial datasets 
correctly to type, and that this performance falls away approximately linearly as resolution is decreased. 
Figure 6(b) shows that the algorithm is able to correctly identify the generic class of all classified datasets. 
The number of unclassified datasets rises as the sampling interval is increased. Datasets are unclassified 
when the algorithm is unable to match the aircraft length and the position of its engines to any reference 
set in the database.  

 
(a) classification to type 

 
(b) classification to class 

Figure 6: Effects of reduction in range resolution for feature-matching classifier 
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More detailed analysis of the results indicates that smaller aircraft are mis-identified, but that they are 
always identified with an aircraft of the same class. This is why the class results are much better than the 
type-specific results. 

3.3.1.2 Profile-Correlation Algorithm 

Figure 7(a) shows that the profile-correlation algorithm displays an approximately linear drop in 
performance as the sampling interval is increased. This algorithm is capable of correctly identifying over 
80% of aircraft measured with a range resolution of 2.5 meters or less. Figure 7(b) shows that performance 
for identification of target class is similar to that for identification of target type. Datasets are never 
unclassified under the profile-correlation algorithm, but performance to class may be worse than 
performance to type. For example, suppose that 4 of the 10 matches are of a Boeing 747, 3 matches are a 
Boeing 767 and the remaining 3 are a Boeing 757.  The type chosen would be a Boeing 747 (correct) but 
the generic class would be a medium civil aircraft (incorrect). 

(a) classification to type (b) classification to class 

Figure 7: Effects of reduction in range resolution for profile correlation classifier 

Again, smaller aircraft tend to be more frequently mis-identified. The large Boeing 747 is correctly 
identified for 10 of the 11 Boeing 747 datasets, even with a sampling interval of 6.5 meters. 

3.3.2 Signal to Noise Ratio 

To simulate a reduced signal to noise ratio, the original datasets were combined with sampled noise data 
taken from the radar system with the transmitter turned off. Repeatable results were produced by using a 
single noise dataset injected at varying intensities. 

3.3.2.1 Feature-Matching Algorithm 

Figure 8(a) shows that there is a linear drop in the number of correct identifications as the SNR decreases. 
Figure 8(b) shows that the algorithm’s ability to identify the generic class of the aircraft is not significantly 
affected until the signal to noise ratio is decreased by around 15 dB. Up to this point, over 90% of the 
target aircraft are correctly identified to class. 
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(a) classification to type 

 
(b) classification to class 

Figure 8: Effects of reduction in SNR for feature-matching classifier 

As the signal to noise ratio was reduced the smaller aircraft begin to be mis-identified. Since the larger 
aircraft like the Boeing 747 produce a larger return, and therefore have a higher signal to noise ratio to 
start with, the degradation of the signal is less than that of the smaller aircraft. The signal to noise change 
has a more significant effect on the signature of smaller aircraft than on larger aircraft. 

3.3.2.2 Profile-Correlation Algorithm 

Figure 9(a) and Figure 9(b) show that initially there is very little drop in the performance of the algorithm 
as the signal to noise ratio is decreased. However, once the signal to noise level has been decreased by 
around 8 dB, the performance begins to drop linearly. As previously, the performance of this classifier 
when identifying targets to class is slightly worse than when identifying the type of the aircraft. 

As with the feature-matching algorithm, smaller targets are mis-identified first. 

 
(a) classification to type 

 
(b) classification to class 

Figure 9: Effects of reduction in SNR for profile-correlation classifier 

3.4 Conclusions 
Even with the relatively large aircraft considered here, it is apparent that decrease in range resolution leads 
to quite a rapid fall-off in classifier performance for both algorithms.  It therefore seems desirable to use 
sub-metre range resolution if at all possible.  Profile-correlation seems to be more robust to decrease in 
SNR for classification to type, whereas template-matching seems to be more robust for classification to 
class.  It would be of interest to determine which features of the algorithms are responsible for these 
different performance characteristics.  Finally, the performance of the profile-correlation algorithm is 
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generally substantially better than the feature-matching algorithm, which indicates  that it may be possible 
to identify a richer feature set to improve the performance of the latter algorithm. 

4.0 CLASSIFICATION ISSUES 

In the present context, a classifier is a mechanism which makes an association between radar 
measurements of an aircraft and a particular class or type of aircraft. In order to make this association, it 
makes reference to some form of prior knowledge about each type of aircraft which may be of interest.  
Statistical classification algorithms work on the basis that the measurements, possibly after some 
processing, may be regarded as a point in a high-dimensional ‘decision space’.  The prior knowledge 
serves to divide up the decision space into non-overlapping regions, each of which is associated with a 
particular target type.  The algorithm notes which of these regions the measurement point falls into, and 
makes its decision accordingly.  Provision may also be made for measurement points to be unclassified – 
the measurements may, for example, be too noisy. 

There are many different types of classification algorithm - nearest neighbour, neural nets, tree pruning 
and so on.  These vary in the complexity of the decision surfaces they may represent.  However, they all 
depend critically on the quality of the information they are supplied with to form the decision surfaces.  
The information that is available and its quality is the focus of our emphasis here; the classification 
algorithm used is in all cases a simple, classical k-nearest neighbour algorithm [2]. 

4.1 Target Measurements 
Classification is generally performed on the basis of several measured profiles of the target aircraft, not 
just one.  In the extreme case, hundreds of profiles may be used in order to form an ISAR image of the 
aircraft.  Rihaczek and Hershkowitz [3] use this approach in order to filter out off-fuselage returns; this 
has a distinct advantage, in that returns from the wings of an aircraft can often be confusing since many 
different stores configurations may be employed with a single type of aircraft.  The use of ISAR has, 
however, at least two distinct disadvantages.  Firstly, in order to obtain the large number of profiles 
required, the dwell time must be long, and this is often operationally unattractive.  Secondly, ISAR relies 
on the use of cross-track motion relative to the radar, and it is therefore not at all clear that ISAR may be 
used for the important case of aircraft flying more or less directly towards the radar.  For these reasons, 
ISAR has not been considered further in the present work. 

Radar returns from aircraft vary rapidly with aspect angle, principally due to multiple scatterers occurring 
in the same range gate and interfering with each other.  This variability is unhelpful to classifiers and it is 
therefore desirable to reduce it where possible.  Some degree of reduction in variability may be achieved 
by averaging over a small number of profiles; this technique has therefore been adopted in the current 
work.  Separation of engine returns from fuselage returns may also be achieved by applying Doppler 
processing to a small number of profiles. 

4.2 Prior Knowledge 
Prior knowledge of the backscatter characteristics of an aircraft may be obtained from many sources.  The 
best classification results have been obtained using detailed radar measurements of target aircraft of 
interest.  Such measurements must be made over all aspect angles from which the aircraft is likely to be 
observed, and are therefore time-consuming and expensive to obtain.  Exemplars of likely hostile aircraft 
may also be difficult to obtain.  Consequently, alternative sources of prior knowledge have been sought. 

Good results have also been obtained using scale measurements of detailed aircraft models. Such models 
are again expensive, and the quality of classification achieved depends on the level of detail which goes 
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into the models.  It is not sufficient to represent backscatter from the just the skin of the aircraft, since 
returns may be obtained from components hidden under the skin by radar-transparent materials; perhaps 
the most obvious case is radar equipment covered by a radome in the front of many fighter aircraft. 

A third source of prior knowledge is the use of detailed computer models of aircraft used in conjunction 
with computational electromagnetics (CEM) codes to infer backscatter characteristics.  Errors may occur 
from two principal sources.  Firstly, the model may be insufficiently accurate or lack critical components 
such as antennas or small air inlets.  Secondly, CEM codes used are often based on approximations such 
as physical optics and GTD (geometric theory of diffraction).  Rigorous ‘full-wave’ codes such as method 
of moments and FDTD (finite difference time domain) also exist, but they are computationally expensive, 
and it is not yet feasible to apply such codes to, say, fighter-sized aircraft illuminated with X-band 
frequencies.  However, there is continual progress in this area [4]. 

Prior knowledge from any of the sources noted above can be used to provide templates to which measured 
profiles are matched, or may be used as training data to set up decision surfaces.  Rather than use reference 
profiles directly in this manner, we have chosen to identify prominent returns in each profile and to 
incorporate these into a model from which reference profiles may be regenerated.  The notion is that, for 
each aircraft of interest, we generate a model of the prominent scattering centres on the aircraft.  Each 
scattering centre is described in terms of its position and how the amplitude and phase of its return varies 
with aspect angle – note that this is quite different from describing the returns in terms of those from a 
number of isotropic point scatterers.  For the scattering centre model to be of value in classification, there 
should be only a small number of scattering centres for each aircraft (say less than 10), and the returns 
from each scattering centre should persist over an appreciable range of aspect angle (say greater than 10°). 

An advantage of this approach is that other forms of prior knowledge than those mentioned above may be 
easily incorporated into the model.  In particular, the approximate location of at least some scattering 
centres may be inferred from material such as engineering drawings, CAD models and photographs of 
aircraft. 

The scattering centre model is only a model – it is at best an approximate representation of radar 
backscatter from an aircraft.  This model may be directly validated by forming a map of reflectivity over 
the whole aircraft constructed from profiles taken over a range of accurately known aspect angles using 
tomographic principles.  Scattering centres should be evident as ‘hot-spots’ on tomograms generated in 
this manner. 

Figure 10 shows a set of range profiles obtained at different aspect angles (a) and the tomogram derived 
from them (b).  The range profiles are aligned in such a way that the aircraft appears to rotate about some 
fixed point.  Prominent scattering centres in the range profiles will describe sinusoidal arcs – several of 
these are evident in Figure 10(a).  The tomographic reconstruction maps these arcs into single points in the 
tomogram. 
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(b) tomogram constructed from profiles 

Figure 10: Range profiles and tomogram 

The range profiles shown in Figure 10 were obtained by applying a CEM code to a computer model of an 
aircraft.  The fact that the tomogram exhibits only a small number of discrete points supports the validity 
of representing backscatter from an aircraft as a scattering centre model.  A similar analysis may be 
applied to actual radar measurements of an aircraft to determine to what extent a scattering centre model is 
appropriate. 

4.3 Classification 
The nearest neighbour method of classification relies on a comparison of measured data, or features 
derived from it,  with reference data.  For aircraft targets, comparison is complicated by the following two 
factors.   

Firstly, aircraft signatures depend on aspect angle, but the aspect angle at which an aircraft is measured is 
seldom known at all accurately.  The course of the aircraft may be estimated from tracking data, but this 
does not accurately indicate its aspect, since aircraft commonly do not point in the direction they are 
heading due to cross-winds – they ‘crab’ with respect to their course.  The crab angle may be several 
degrees.  For this reason, it is necessary to compare measurements with reference data applicable to a 
range of aspect angles – we use ±5° about the estimated course.   

Secondly, the range at which features occur in range profile measurements is potentially a powerful 
discriminant amongst aircraft, so that, before reference data can be used, it must be aligned with the 
measured profiles.  Such alignment is a significant part of the overall classification algorithm. 
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Figure 11: Classification scheme overview 

An overview of the classification scheme used in the current work is given in Figure 11.  First, relevant 
(measured) profiles and referents are loaded.  These are then roughly aligned by centring them within the 
range swath.  Next, the pre-aligned profiles and referents are subject to a point transformation; the use of 
these point transformations is a key feature of the scheme described here.  Point transformations may be as 
simple as taking the logarithm of each point on the referent or profile, or may be more complicated such as 
detecting the positions of peaks then taking a hard limit, i.e. applying a threshold to reduce the value to 
one or zero.  The point transformations allow particular features in the profiles to be emphasised or de-
emphasised.  A soft threshold, i.e. reducing all values below a specified threshold to zero, is useful in 
screening out noise in measurements.  Alignment is achieved by one of a variety of methods, such as 
minimising the correlation between profile and referent with respect to shift in range. 

Following alignment, the referents and profiles are subjected to another point transform, which is 
generally different to that used for alignment.  An identity transform leaves data unchanged, giving a 
comparison between the full profile and referent; the referent acts as a template, so the algorithm amounts 
to template-matching.  Comparisons of this form tend to give undue emphasis to noise. A combination of 
soft-limiting and peak detection allows just the positions and amplitudes of peaks to be compared.  With 
this point transform, features are essentially extracted from the profile so that the classification scheme is 
feature-based rather than template-based.  A slightly different transform may be used to hard-limit the 
peak amplitudes; this variation of the algorithm thus compares just the positions of high returns in the 
profile.  This is valuable, given that use of non-radar data to form referents may give reasonably accurate 
indications of peak positions, but will seldom give accurate information on the amplitudes of these returns.  
Using the scheme above, it is possible to directly gauge the effect of discarding or ignoring parts of the 
original data. 

5.0 CONCLUSION 

A number of aspects of NCTR for near-future radar have been discussed.  It has been shown that it is 
feasible to provide such radars with high-resolution capability, and the need for such capability, even for 
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classifying large aircraft, has been demonstrated.  The use of a codified form of reference data in the form 
of a scattering centre model has been discussed – a model of this kind allows both radar data and non-
radar data to be utilised as reference material.  A classification scheme has also been described which 
allows a range of options to be explored in exploiting reference data of this kind.  What remains is to 
establish the performance of such algorithms both in classifying the type and the generic class of aircraft 
of interest. 
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1. INTRODUCTION 

It has been well understood that a given signal can be represented in an infinite number of different ways. 
Of course, different signal representations can be used for different applications. Despite the fact that the 
number of ways describing a given signal are countless, the most “popular”, important and fundamental 
variables are: time and frequency. The time domain indicates how a signal’s amplitude changes over time 
and the frequency domain indicates how often these changes take place. 

The key for the description of a signal was to find a form which would unite the variables above. The tool 
that matched time and frequency was the “Fourier Transform”. Since its introduction in the nineteenth 
century, the Fourier Transform has become one of the most widely used signal-analysis tools across many 
disciplines of science and engineering. The fundamental idea behind Fourier Transform is the 
decomposition of a signal as the sum of weighted sinusoidal functions of different frequencies. The 
projection of the values of these sinusoidal functions (each of which is a function with a unique frequency) 
form the Fourier Transform of the original signal.  

Despite their simple interpretation of pure frequencies, the Fourier transform is not always the best tool to 
analyze “real life signals”. These are usually of finite, perhaps even relatively short duration, and they 
have frequency contents that change over time. The most common examples of such signals are 
biomedical, musical and seismic signals. Especially seismic signals are not like sinusoidal functions, 
extending from negative infinity to positive infinity in time. For such kind of applications, the sinusoidal 
functions are not good models. 

Joint Time Frequency Transforms were developed for the purpose of characterizing the time-varying 
frequency content of a signal. Many transforms were developed and used at different applications. The 
developed transforms are divided into two classes: 

• Linear Time Frequency Transforms, and 

• Quadratic (Bilinear) Transforms. 

At the first class belong a lot of transforms. The most-known are Short Time Fourier Transform (STFT), 
Continuous Wavelet Transform (CWT) and Adaptive Time-Frequency Representation. At the second class 
belongs the Wigner-Ville Distribution (WVD). Scientific research, in the last decade, has focused on Short 
Time Fourier Transform modifications and especially on Wigner-Ville Distribution. [1]  

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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2.  FOURIER TRANSFORM 

The oldest method for signal processing is Fourier Transform. The Fourier Transform of a signal s(t) is 
defined as: 

S(ω)= s(t)exp(-jωt)dt
-

+∞
∫
∞

 

 
where ω=2πf is the angular frequency. The original function can be constructed from the processing 
values by the process of: 

+1s(t)= S(ω)exp(jωt)dω
2π -

∞
∫
∞

 

The above function is known as Inverse Fourier Transform. 

Uncertainty Principle 
A well-known principle of the Fourier Transform is the uncertainty principle, or Heisenberg inequality. 
According to this property, the time duration t∆  of a signal s(t) and the frequency bandwidth ω∆  of the 
Fourier Transform S(ω) are related by: 

2
1∆∆ ωt ≥  

The definitions of the above functions are: 
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As can be assumed from above, time resolution and frequency resolution cannot be arbitrarily small. 
Specifically, smaller time duration of s(t) means greater frequency bandwidth of S(ω) and vice versa [2]. 
The equality of the uncertainty principle is valid in case of Gaussian signals.  

3.  SHORT-TIME FOURIER TRANSFORM 

One of the best-known time-frequency representations of a time signal dates back to Gabor and is known 
as “Short Time Fourier Transform - STFT”. STFT is based on the Fourier Transform and its basic idea is a 
moving window Fourier Transform [3]. The window is moving over the time domain and the examination 
of the frequency content of the signal generates a 2-D time-frequency distribution called “spectrogram”. 
The STFT of a signal s(t) is defined as: 

STFT(t,ω)= s(t')w(t'-t)exp(-jωt')dt'∫  

where w(t’-t) is the moving window. The only difference from Fourier Transform is the presence of the 
window function. The definition of STFT can be also expressed in the frequency domain as: 

1STFT(t,ω)= exp(-jωt) S(ω')W(ω'-ω)exp(-jω't)dω'
2π ∫  

where W(ω’-ω) is the Fourier Transform of the moving window. At the first definition the window is 
moving at the time domain while at the second definition is moving at the frequency domain. Many 
window functions are used, each of them at different application. Some of them are known as: Hamming, 
Hanning, Kaiser-Bessel and Gaussian windows. 

STFT has two major advantages. First of all, according to its definition, STFT is simple enough, as it is 
equal with the computation of multiple Fourier Transforms. The second advantage is the absence of cross 
terms. As the width of the time window is getting smaller, the cross terms are limited, in contrast to 
bilinear transforms (i.e. Wigner-Ville distribution). 

The major disadvantage of STFT is that during processing, the results are not good in both time and 
frequency domain. The processed signal can be either analyzed with good time resolution or frequency 
resolution [2]. This disadvantage is a characteristic of the Fourier Transform which is transferred to the 
STFT. According to the uncertainty principle, the functions t∆  and ω∆  are proporately inverse and their 
value is equal to the width of the moving window and the frequency bandwidth. In addition, any 
component of the signal, whose time duration is smaller than the time duration of the window is 
“disappeared” after the transform of the signal.  

To overcome these limitations of the STFT, in order to obtain a multi-resolution analysis, wavelet 
transforms are used.  
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4.   CONTINUOUS WAVELET TRANSFORM 

General 
The spectrogram generated by STFT is limited in resolution by the extent of the sliding window function. 
Contrary to the fixed resolution of the STFT, the Continuous Wavelet Transform – CWT is a time-
frequency representation capable of achieving variable resolution in one domain (time or frequency) and 
multiresolution in the other domain [3].       

The CWT was generated by a scientific group consisted of P. Goupillaud, A. Grossman and J. Morlet at 
1984 [4]. The basic idea of the CWT is the “wavelet theory” which is the reason of the generation of many 
categories of signal processing. The most-known applications are the multi-resolution signal processing, 
the sub band coding and the wavelet series expansion.  

The research of I. Daubechies was a great assistance at the exponential prevalence of wavelet transforms 
at the telecommunication and the signal-processing domain, as he generated its mathematical theory [5].  

As the Wavelet Transform is an advancement of the Fourier Transform, it is also divided in two classes: 

• Continuous Wavelet Transform, and 

• Discrete Wavelet Transform 

A main characteristic of the wavelet transforms is a new term called “scale” which displays the frequency, 
the basic variable of Fourier Transforms. According to that, in wavelet transforms is introduced the “time-
scale representation”. 

Wavelet Theory 
The “scale” is the basic variable of wavelet transform for non-stationary signals. Small values of scaling 
are proporal to high values of frequency and vice-versa. At wavelet theory, instead of the variable of time 
is used the variable of “shift”.  

A wavelet is just a waveform of finite time duration. The basic difference of the sinusoidal function is that 
wavelet functions are asymmetrical and irregular.  

The basic idea behind wavelet analysis is the decomposition of the signal into varying wavelet function, 
called “mother wavelet”. A fundamental condition of a mother wavelet is the “admissibility condition” 
[6]. The satisfaction of the above condition is necessary for the existence of inverse transform. The mother 
wavelet has to satisfy the next function: 

∞<∫
∞

∞−

dω
ω

Ψ(ω) 2

 

where Ψ(ω) is the Fourier transform of the mother wavelet. In addition to that, it is known that the 
admissibility condition is equivalent to the nullity of the mother wavelet’s DC component. 

Many mother-wavelets are used for different applications. The most known are Morlet, Daubechies and 
Haar wavelets. Of great importance are also the coiflet, symlet, Mexican Hat and biorthogonal wavelets.  
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Haar   

Any discussion concerning wavelets starts with Haar wavelet, the first and simplest. Haar wavelet is 
discontinuous, and resembles to a step function. It represents the same wavelet as Daubechies db1.  

 

 
Daubechies 

Ingrid Daubechies, one of the most significant scientists in the world of wavelet research, invented what 
are called compactly supported orthonormal wavelets — thus making discrete wavelet analysis 
practicable. The names of the Daubechies family wavelets are written dbN, where N is the order, and db 
the “surname” of the wavelet. The db1 wavelet, as mentioned above, is the same as Haar wavelet. Here are 
the wavelet functions psi of the next nine members of the family: 

 

 
Coiflets 

Built by I. Daubechies at the request of R. Coifman. The wavelet function has 2N moments equal to 0 and 
the scaling function has 2N-1 moments equal to 0. The two functions have a support of length 6N-1.  

 

 

Symlets 

The symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to the db family. 
The properties of the two wavelet families are similar. Here are the wavelet functions psi. 
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Mexican Hat 

This wavelet has no scaling function and is derived from a function that is proportional to the second 
derivative function of the Gaussian probability density function. 

 

Mathematical Definition 

The CWT of a signal s(t) can be defined as: 

( )∫ 







−








= dt'tt'

ω
ω*)ψs(t'

ω
ωω)CWT(t,

00

2
1

 

where ψ(*) is the mother wavelet [3]. The scale parameter is expressed as the ratio 
0ω
ω

. The 2-D result is 

the scalogram of the transform. If the mother wavelet is centered at time zero and oscillates at frequency 
ω0 , the definition of the Continuous Wavelet Transform is the decomposition of the signal s(t’) into 
shifted and dilated wavelets ψ[(ω/ω0)(t’-t)].  

The basic advantage of the CWT over the STFT is the multi-resolution property. According to the above 
mathematical definition, the wavelet ψ(*) has two variables: time and frequency. By shifting or dilating 
the wavelet ψ(*) at a fixed parameter t or ω, signal processing is accomplished according to time or scale 
parameter.  

The wavelet transform can also be expressed as:   

( )∫ 
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ω
ω*Ψω'S

2π
ω

ω

ω)CWT(t, 0

0
2

1

 

 



Time-Frequency Analysis of Radar Signals 

RTO-MP-SET-080 7 - 7 

 

 

where Ψ(ω’) is the Fourier transform of ψ(t’). The above equation is also defined as the Fourier transform 

of ( ) 





 ω'
ω
ω*Ψω'S 0 . 

A comparison between STFT and CWT shows that Ψ*(ω) is similar to the frequency window W(ω). Of 
course, the admissibility condition has to be satisfied, which means Ψ(0)=0. 

In CWT the uncertainty condition is satisfied but in a different way than the STFT. At CWT the time 
analysis is better at high frequencies and the scale analysis is better at lower frequencies. 

The basic difference between the Fourier Transform and the STFT and CWT is that, in the second case, 
functions based at finite extent are used, and that is the reason they are used in many applications.  

5.  COMPARISON BETWEEN STFT AND CWT USING MATLAB 

As it has already been mentioned, Time-Frequency Transforms are ideal for a great variety of signal 
processing applications. In our research, the goal is to use Space Time Frequency and Continuous Wavelet 
Transforms, in order to extract the features of a moving target (i.e. aircraft) using the information provided 
by radar systems. In particular, we focus on the process of reconstructing images of radar targets from 
recorded data, using time-frequency transformation. 

The first step of the research, described in this section, is the thorough examination of all these different 
categories of window functions, in STFT, and mother wavelets, in CWT. In order to examine and find out 
the similarities and differences between window functions or between mother wavelets, as well as between 
STFT and CWT, we used simple functions as examples.  

In the following example a simple sine function, consisted of four sins of different frequency, is presented. 
The first diagram shows our function, whereas the next diagrams give a detailed comparison between all 
the parameters concerning window functions and mother wavelets.     

   

 

sin(2πf1t),         0< t ≤250sec                                                          
  sin(2πf2t),      250< t ≤500sec 

                              s(t) = 
sin(2πf3t),     500< t ≤750sec           

  sin(2πf4t),     750< t ≤1000sec      
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Fig.1. Signal under processing 

In the following step, we calculated the STFT (spectrogram) of our signal using the Gaussian pulse as 
window function.  The Gaussian wavelet is described as: 

 

2

2

2σ
t

1/4
e

σπ
1w(t)

−
=

 
 

 

The parameter σ is the one of great importance, as it affects the distinctive ability of the transform. When 
σ is used to give a narrow window in time, then information is getting lost in frequency domain. In the 
opposite situation, information for our signal reconstruction is being lost in the time domain. In the 
following figures is explained exactly the above conclusion using the Gaussian window of length 128 and 
1024. These values determine the frequencies in which the Fourier Transform is computed. The 
computation took place in Matlab® environment. 
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Fig.2. STFT using window parameter 128 

 
Fig.3. STFT using window parameter 1024 

Furthermore, we had the same sine function’s computation using other windows that prove to be quite 
effective in Space Time Frequency Transform. The next three figures show the resulting spectrograms 
with Hamming, Hanning and Kaiser window, for a window length value of 512. As can be noticed, the 
Hamming window has a low distinctive ability in the frequency domain. This leads to an image blurring, 
without letting us take much informaton about our signal in the frequency domain. 
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Fig.4. STFT using Hamming window 

On the other hand, Hanning window is much more informative than the Hamming one. It gives great 
information in the frequency domain, using exactly the same parameters we used for the previous 
computation (window length 512). The following figure presents the image of our signal and, as can be 
easily seen, it provides the frequency values with great precision. The last spectrogram has been computed 
using Kaiser pulse, and is assumed to be of quite high distinctive ability.  

 
Fig.5. STFT using Hanning window 
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Fig.6. STFT using Kaiser window 

To sum up, as far as STFT is concerned, we found out with the figures’ help, that the four different sins of 
our signal are presented consequently in time, but whether we can have or not high distinctive ability, in 
time or frequency domain, depends on the window length and other parameters of the window functions, 
as well as the type of the window function we use. 

We went on using the same signal in order to find out the differences between the mother wavelets in 
Continuous Wavelet Transform. We also tried to compare the two transforms, their attitude in time and 
frequency (or scale) domain. The following figures are the results of CWT computation (scalograms) 
using two different Gaussian wavelets (Gaussian1 and Gaussian8), Mexican Hat wavelet, Morlet wavelet 
(a complex sinusoid windowed with a Gaussian envelope) and Symlet wavelet. In the plots the x-axis 
represents position along the signal (time), the y-axis represents scale, and the color at each x-y point 
represents the magnitude of the wavelet coefficient C. The darker one point is, the smaller coefficient it 
represents. Recall that the higher scales correspond to the most "stretched" wavelets. The more stretched 
the wavelet, the longer the portion of the signal with which it is being compared, and thus the coarser the 
signal features being measured by the wavelet coefficients. What we tried to work out with the following 
figures was to build an image with the less scale computation, which means an informative result without 
comparing our signal with infinite shifted and dilated versions of the mother wavelet we used. This will 
lessen the computation time, and taking under consideration that our research has the goal to image radar 
targets, one can understand that computation time is priceless. 

The process took place in Matlab® environment using 256 or 512 different scaled (stretched) versions of 
the wavelet. Gaussian1 wavelet, compared with Gaussian8, seems to be quite clear from the very first 
scales, whereas Gaussian8 gives information in greater scales. Of course, such a conclusion cannot be 
stable for every signal under processing. It depends on the signal form that is used each time. 
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Fig.7. CWT using Gaussian1 wavelet 

 
Fig.8. CWT using Gaussian8 wavelet 
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Fig.9. CWT using Mexican Hat wavelet 

 
Fig.10. CWT using Morlet wavelet 
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Fig.11. CWT using Symlet wavelet 

In CWT, in low frequencies (large scales), the distinct ability in the time domain is low. Nevertheless, it 
does not appear to be a problem. While frequency is getting greater, which means smaller scales, we get 
better results in time domain. On the contrary, in scale domain the processing proves to be more effective.  

As can be seen from the figures, wavelet analysis is capable of revealing aspects of data that other signal 
analysis techniques (like STFT) miss, aspects like breakdown points, discontinuities in higher derivatives, 
and self-similarity. Furthermore, because it affords a different view of data than those presented by 
traditional techniques, wavelet analysis can often compress or de-noise a signal without appreciable 
degradation.  

Our research continued with the same processing but with the use of a more complex signal, a chirp pulse 
with quadratic instantaneous frequency deviation (1 KHz sample rate), that is presented below: 

 
Fig.12. Quadratic chirp data 
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We used the same window functions to compute the spectrograms, as well as the same mother wavelets. 
 

 
Fig.13. STFT using Gaussian window 

 
Fig.14. STFT using Hanning window 

 
Fig.15. STFT using Kaiser window 
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The results and the conclusions of the second example were almost identical to the first example, which 
ensured that what we noticed in the previous figures was correct. 

 

Fig.16. CWT using Symlet2 wavelet 

 
Fig.17. CWT using Mexican Hat wavelet 

 
Fig.18. CWT using Gaussian8 wavelet 
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Fig.19. CWT using Morlet wavelet 

6.  IMAGE GENERATION FOR A SIMULATED TARGET 

In this section, we formulated a model for the received scattered radar signal of a synthetic (operative) 
aircraft target. According to [7], a radar target can be considered as a collection of finite number of scatteri 
sum of scattered signals from each center. Based on this concept, and using the procedure described in [7], 
we worked on Matlab® environment and generated an aircraft target. We used nine (9) scattering centers 
that are presented in Figure 20, as well as 31 different look angles. The rotation center for our model is on 
coordinates [4530,0]. The radar is located on [0,0] and each of its bursts is consisted of 16 pulses 
(frequencies). Furthermore, we defined the scattering intensity for all scatterers and the Cartesian 
coordinates for all scatterers relative to the center of rotation. To improve even more our scattered signal 
before imaging the target, we interpolated the frequency-angular domain data to Cartesian coordinates. 
The image of the target acquired, after all the described procedure and the final Continuous Wavelet 
Transform, using a Symlet wavelet, is shown in Figure 21. The image is quite clear and the plot is intense 
on the scatterers’ position, forming in that way our target.     

 
Fig.20. Scatterers of the Synthetic model 
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Fig.21. CWT of  the Synthetic model 

7. CONCLUSION 

We have seen that both the Short Time Fourier Tranform and the Continuous Wavelet Transform 
represent ways to divide and examine more thoroughly the time-frequency (or time-scale) plane. We used 
some simple functions to show the differences, the benefits and drawbacks, of each method. Our research 
even concluded comparison between different window functions or mother wavelets. The two methods 
were demonstrated in detail, whereas CWT was also used to form the image of a simulated target. 

The results, as far as the recognition accuracy of the target is concerned, were satisfying, showing that the 
proposed technique – Continous Wavelet Transform – has significant advantages in signal processing, and 
especially in radar target recognition, that is the goal of our research. 

This means that the echoes of radar signals can be collected and processed to generate a two-dimensional 
representation of a target. Nevertheless, a simple time-frequency transform is not enough, when a non-
cooperative target is being studied, due to its radial and rotational motion that leads to a blurred image [8]. 
This issue is extremely important and is an area of future research.  
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SUMMARY 

During the last decade, several spectral estimation techniques have been proposed for application to 
SAR/ISAR imaging. The present study attempts to shed light to a number of parametric spectral estimation 
methods, employed for ISAR imaging of aircraft targets. We focus on performance comparison with 
respect to 1-D and 2-D image resolution. Auto-regressive methods and MUSIC algorithm are examined 
and simulated, based on synthetic radar data, for both 1-D (range profiles) and 2-D (ISAR images) cases.        

1 INTRODUCTION 

In view of radar target recognition and classification, ISAR (inverse synthetic aperture radar) images shall 
be highly resolved (high-resolution imaging), so as to allow for decision making with respect to the target 
category and type. An important step in ISAR imaging is the implementation of high-resolution spectral 
estimation algorithms. Indeed, it is well-known that, under most circumstances, conventional Fourier 
transform processing of the two-dimensional raw radar data (2-D FFT) is not adequate to yield high-
resolution radar aircraft images. Therefore, several spectral estimation techniques, both nonparametric and 
parametric, are applied in order to improve the resolution of both 1-D (i.e. range profiles) and 2-D (i.e. 
ISAR images) radar target images. 

One-dimensional radar signatures of a target can be generated by applying spectral estimation techniques 
to the frequency domain data of the target, and it has been demonstrated that the resulting images are 
enhanced over those obtained via a Fourier transform-based technique. In bibliography, we come along 
extensions from 1-D spectral estimation-based radar signatures to two dimensions, where a Fourier 
transform of the angular domain data to the Doppler domain (cross-range) takes place. Hybrid methods for 
2-D radar imaging employ an inverse Fourier transform on the frequency domain data, and then, a super-
resolution technique is used to transform the angular domain data to the cross-range. Additionally, 1-D 
super-resolution spectral estimation methods can be applied to the frequency domain data and a 
superposition of the resulting 1-D signatures at different angles forms the desired 2-D radar image (known 
as backprojection technique). All these statements of bibliographic nature are more or less the history of 2-
D spectral estimation-based radar imaging before the introduction of direct 2-D extensions of 1-D super-
resolution spectral estimation methods [1]. Over the last decade, a great deal of research efforts has been 
devoted to this particular field and several ISAR imaging methodologies have been proposed [2] - [3].          

In this paper, we compare and evaluate the performance of a number of parametric spectral estimation 
methods [4]. We firstly refer to the covariance and modified covariance methods, and the classical Burg 
method. Although these autoregressive (AR) model-based methods are more suitable for spectral 
estimation of signals with rational spectra, their computational simplicity makes them appealing for radar 
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applications. Next, we elaborate on an eigenanalysis-based method, namely MUSIC (MUltiple SIgnal 
Classification), belonging to the very interesting class of super-resolution subspace methods. All the 
spectral estimation techniques mentioned in this paragraph are compared in the framework of simulated 1-
D radar data, generated in accordance to the analysis of [5]. The resulting range profiles serve as valuable 
metrics of the achievable range resolution of each technique.  

Spectral estimation methods for 2-D radar imaging are also examined in this work. Following the 
simulation setup described in [1], we generate 2-D simulated radar data in the frequency-angular domain, 
and then, we transform them to the spatial (2-D) frequency domain. Two-dimensional extensions of the 
classical AR [6] and MUSIC [1] methods are simulated, in order to perform 2-D spectral estimation and 
overcome the resolution limitations of the 2-D FFT. ISAR images are displayed via contour plots, 
indicating the advantages of each technique. 

This paper is organized as follows. Section 2 refers to the format of the simulated 1-D and 2-D radar data 
on which the 1-D and 2-D spectral estimation techniques, described in Section 3, are applied. Section 3 is 
mainly focused on the 2-D methods, since 1-D spectral estimation methods are extensively described in 
[4]. Range profiles and ISAR images are the simulation results presented in Section 4, so as to compare 
the performance of the employed spectral estimation techniques. Conclusions and comments on the 
simulation results are derived and stated in Section 5, also including comments for future work.    

2 SIMULATED RADAR DATA FORMAT 

It is common knowledge that, in the high-frequency limit, a radar target can be considered as a collection 
of a finite number of scattering centers and scattering center interactions. The coherent scattered signal 
from such a radar target can be represented as the sum of complex scattered signals from each scattering 
center. As it is strongly stressed in [1], the assumption of a non-dispersive nature of the discrete scattering 
centers holds for most radar targets in the high-frequency limit, if the measurement bandwidth is narrow 
and the angular sector is small. 

2.1 One-Dimensional Radar Data 
Following the analysis of [5], we have simulated 1-D radar data (i.e. meaning that there is dependence on 
one coordinate), so as to compare the 1-D spectral estimation methods with respect to their range 
resolution. According to [5], the measured high-frequency radar cross-section (RCS) at frequency if  can 
be represented by a sum of undamped exponentials as 

Ninrf
c

jay i

L

k
kiki ...,,2,1,4exp

1
=+






−=∑

=

π
 (1) 

 
where kr  is the location of the kth scattering center, ka  is the corresponding amplitude, L  is the number 
of scattering centers on the target, N  is the number of frequency measurements ( if ), in  is the  
measurement noise, and c denotes the speed of light. 
 

2.2 Two-Dimensional Radar Data 
In order to generate 2-D radar data in our simulations, we have followed the problem formulation of [1]. 
According to [1], the measured radar scattering signal from d scattering centers at frequency mf  
( 1...,,1,0 −= Mm ) and look angle nθ  ( 1...,,1,0 −= Nn ) is given as 
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where ks  is the complex scattering intensity of the kth scattering center, kx  and ky  are the coordinates of 
the kth scattering center1 on the rotation plane (xy-plane), ( )nmu ,  symbolizes the additive noise, usually 
assumed (as is the case in our simulations) to be white Gaussian with zero mean and variance 2σ .  

In 2-D ISAR imaging, the frequency domain is transformed to the down-range and the angular 
domain to the cross-range. One can notice that the above 2-D data format contains two Fourier transform 
pairs not separable in terms of f  and θ . Adopting the small angle approximation ( 1cos ≈θ  and 

θθ ≈sin ) is a way to obtain data consisting of two separable Fourier transform pairs, but the radar image 
generated using this approximation is unfocused. Interpolation of the frequency-angular domain data to 
Cartesian coordinates (rectangular grid of M x N points) with separable variables ( θcosff x =  and 

θsinff y = ) is the way to obtain a focused radar image. Rewriting the previous radar data equation we 
obtain 
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In our simulations, we have performed this particular interpolation process described in [1], which is based 
on the following explanatory figure. Note that the “interpolated” data are available on a rectangular grid 
with equal increments in both the directions xf  and yf , so that the fast Fourier transform (FFT) can be 
applied for the conventional radar image generation. 
 

 
Figure 1. Frequency-angular domain of scattered radar data and the rectangular grid for the interpolation 

process (reproduced by [1]) 

 
It worths mentioning that the majority of high-resolution spectral estimation methods requires the 
computation of a correlation matrix, based on averaging over a number of snapshots of 1-D and 2-D radar 
data. Since only one snapshot is in most of the times available in radar applications (real-time processing), 

                                                      
1  The xy-coordinates are relative to the center of rotation on the target. 
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there is need for decorrelating signals from various scattering centers. A special technique, known as 
spatial smoothing preprocessing (SSP) [7], and its modified version (MSSP – modified SSP) [8] have been 
proved sufficient to perform the required decorrelation of radar data. However, such preprocessing 
decreases the effective bandwidth and, consequently, results in reduced resolution. Because of this 
disadvantage, we have chosen not to simulate this preprocessing technique and allow some degree of 
correlation between the signals from different scattering centers. This is the reason for the presence of 
some redundant peaks in the resulting range profiles, not causing significant blurring in the final ISAR 
image.         

3 SPECTRAL ESTIMATION METHODS FOR 1-D AND 2-D RADAR IMAGING 

3.1 One-Dimensional Spectral Estimation Methods 

3.1.1 AR Methods 

For the generation of 1-D radar images (i.e. range profiles), we firstly employ three methods belonging to 
the class of autoregressive (AR) spectral estimation methods. These methods are called parametric, since 
they are based on the assumption of an autoregressive model structure for the signal being spectrally 
analyzed. Namely, the covariance, modified covariance and Burg methods are examined. We choose not 
to duplicate the details of each method, since they are widely covered in [4]. In general, all AR methods 
estimate the AR filter coefficients (or AR parameters) ia  ( Ni ...,,1= ) and the average power 2σ  of the 
white noise, filtered by the autoregressive filter to produce a model of the examined signal. The resulting 
power spectral density (PSD) estimate is 
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A common concept behind all three AR methods is the unified estimation of the correlation matrix 

and their main difference lies in the definition of the data matrix. 
 

3.1.2 MUSIC Method 

Another spectral estimation technique, also member of the wide class of parametric methods, simulated to 
obtain 1-D radar images is the MUSIC algorithm [4]. This method has been used for radar target 
recognition applications, providing super-resolved range profiles compared to those of the conventional 
IFFT for the same frequency bandwidth [5].  
In the next two paragraphs, we shortly present the mathematical background of MUSIC for range profile 
generation. Rewriting equation (1) in vector notation we have 

 
y = Ea + n (5) 

 
where y [ ]TNyy ,...,1=  is the data vector, E ( ) ( )[ ]Lrere ,...,1=  is a matrix with columns the N direction 

vectors of the form ( )
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amplitude vector, and n [ ]TNnn ,...,1=  is the noise vector. 
 The first step of the MUSIC algorithm involves the computation of the correlation matrix of the 
radar scattering signal y. The data correlation matrix is defined as 
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Ryy = E[y yH]     (6) 

 
where we shall not forget that usually one data snapshot is available in radar applications, thus the 
ensemble average can be discarded from (6). Eigenanalysis of the correlation matrix is the second step of 
MUSIC, resulting in N eigenvectors, L of which correspond to the L maximum eigenvalues and constitute 
the signal subspace. The (N–L) eigenvectors, corresponding to the (N–L) minimum eigenvalues of the 
correlation matrix, form the noise subspace. The MUSIC algorithm takes advantage of the fact that the 
direction vector ( )re  is orthogonal to the noise eigenvectors ui ( NLi ,...,1+= ), at each scattering center 
location krr = . The generation of the MUSIC pseudo-spectrum is the final step of the algorithm 
(estimated range profile) and is given by 
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3.2 Two-Dimensional Spectral Estimation Methods  
Two-dimensional ISAR images are obtained by applying 2-D spectral estimation techniques. In our 
simulations, we have developed 2-D MUSIC algorithm [1] and 2-D autoregressive spectral estimation 
(similar to the autocorrelation method in one dimension) [6]. 

3.2.1 MUSIC Method 

Starting from the 2-D radar data format specified through equation (3), we present the basic theory of the 
2-D MUSIC in the next paragraphs. Rewriting equation (3) in vector notation we have 

x = As + u (8) 
 
where x ( ) ( ) ( ) ( ) ( )[ ]TNMxxMxxx 1,1,...,1,0,0,1,...,0,1,0,0 −−−= is the column-ordered data vector, 

u ( ) ( ) ( ) ( ) ( )[ ]TNMuuMuuu 1,1,...,1,0,0,1,...,0,1,0,0 −−−=  is the column-ordered noise vector, 

s [ ]Tdss ,...,1=  is the scattering intensity vector, A ( ) ( )[ ]dd yxayxa ,,...,, 11=  is a matrix with columns 
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 Similarly to the 1-D case, the first step of the 2-D MUSIC algorithm is the computation of the 
correlation matrix, based on one snapshot of 2-D radar data. The data correlation matrix is defined as 
 

Rxx = E[x xH]     (9) 
  

Following the 1-D analysis, the next step of 2-D MUSIC involves the eigendecomposition of the 
correlation matrix. At this point, one should notice that the data vector x has length M·N. As a result, the 
correlation matrix is square with dimension M·N and its eigendecomposition produces (M·N – d) noise 
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eigenvectors and d signal eigenvectors. All eigenvectors have the same length as the data vector. The 
eigenvectors of the noise subspace (corresponding to the (M·N – d) minimum eigenvalues) form a matrix 
En. The final step of the algorithm is the formation of the 2-D MUSIC pseudo-spectrum 

 

( ) ( ) ( )
( ) ( )yxaEEyxa

yxayxayxP
H
nn

H

H

MUSIC ,,
,,, =   (10) 

 
which indicates the positions of the scattering centers, identified as peaks of the pseudo-spectrum. Note 
that the scattering intensity information embodied in the 2-D MUSIC pseudo-spectrum (estimated ISAR 
image) is not very accurate. Therefore, amplitude estimation methods (such as least squares or weighted 
least squares) have to be applied separately from the 2-D MUSIC, if one desires more accurate estimation 
of the intensity of each scattering center. 

3.2.2 AR Method 

Two-dimensional AR spectral estimation can be implemented in a number of ways, starting from simple 
inversion of the data correlation matrix (direct method) and ending to iterative techniques, proposed to 
reduce the computational cost2. In the following paragraph, we briefly describe the direct method that is 
simpler than recursive solutions. In our simulations, we employ a small dataset and the computational 
burden of the direct method is not deterrent. 

Typically, for the application of AR methods in two dimensions the data must be broken up into separate 
regions (i.e. sub-matrices of the original data matrix), each with distinct prediction error filter coefficients. 
The direct 2-D AR method for each region is summarized in the next lines. Firstly, the examined radar 
signal ( )21,nnx  is modeled as the output of a two-dimensional AR filter driven by white noise ( )21,nne   
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To determine the AR filter coefficients from the available data, we define the prediction error filter (PEF), 
which is formed by stacking columns of the array of coefficients ( )jia , , as 

( ) ( )[ ( ) ( ) ( ) ( ) ]TNNaaNaaNaa 1,1,...,0,2,1,1,...,0,1,1,0,...,1,0,1 2122 −−−−=α . The coefficients 
are chosen so as to minimize the mean square value of the prediction error, defined as 

( ) ( )[ ] αα xx
H RnnenneEMSE == 2121

* ,,       (12) 
 
where the data correlation matrix is =xxR E[x* xT], with the column-ordered data vector given by 

x ( ) ( )[ ( ) ( ) ]TNnNnxnnxNnnxnnx 1,1,...,,1,1,,...,, 22112122121 +−+−−+−= . With ( )ikε  being a 

vector of length k  whose ith element is unity, with all the other elements equal to zero, [ ]T21,ωωω =  
denoting the vector of angular frequencies (one for each dimension of the resultant spectral estimate), and 
the matrix E  defined as 
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2  There is always a trade-off between computational cost and algorithmic complexity. 
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the 2-D AR estimate of the PSD of the 2-D radar signal is given by 
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4 SIMULATION RESULTS 

The simulated radar target is a simple wire model of an aircraft with nine scattering centers, drawn in the 
following figure. The maximum target extent is 15 m and it is initially nose-on to the radar. The position 
of the radar on the xy-plane is (0,0) and the center of rotation is set on the position (4530,0) on the target. 
The positions of the nine scattering centers are (4525,0), (4527,3.5), (4527,-3.5), (4530,0), (4530,7), 
(4530,-7), (4540,0), (4540,1.5), (4540,-1.5). The xy-coordinates in the next figure are with respect to the 
center of rotation.     
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Figure 2. Simple aircraft model simulated as radar target 

Taking into account the chosen parameters of the stepped frequency radar waveform (frequency step = 5 
MHz, pulse repetition frequency = 10 KHz), the unambiguous down-range window is 30 m and the 
unambiguous maximum detection range is 15 km. Consequently, when plotting range profiles of the above 
target, we expect to identify scattering centers at down-range positions of 0 m (for down-range 4530 m), 
10 m (for down-range 4540 m), 25 m (for down-range 4525 m) and 27 m (for down-range 4527 m). In our 
simulations, we have set the initial carrier frequency equal to 16.7 GHz, so as to imitate the frequency 
band of the imaging radar of the TIRA system3. 

As far as the Fourier processing for radar imaging is concerned, it is well-known that the corresponding 
down-range and cross-range resolution depend on the radar signal bandwidth and the aperture angle (i.e. 
                                                      

3  TIRA stands for Tracking & Imaging RAdar. TIRA system (FGAN-FHR) is a radar system used to track and image air-borne 
targets in space and in atmosphere. 
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total look angle variation) respectively. Stepped frequency radar waveform is chosen in order to efficiently 
increase the signal bandwidth and improve the range resolution of FFT-based radar images. In our 
simulations, we do not employ windowed versions of the FFT, since there is always a trade-off between 
resolution and sidelobes’ level (i.e. lower sidelobes are achieved at the cost of wider spectral peaks). 
Hanning and Hamming windows, for either one dimension or two dimensions, can satisfactorily reduce 
sidelobes. 

The following two figures show range profiles generated by applying IFFT, covariance, modified 
covariance, Burg and MUSIC methods, for signal-to-noise ratio (SNR) of 25 dB and 10 dB. The stepped 
frequency waveform consists of 128 pulses (i.e. 128 frequencies), scanning a total signal bandwidth of 640 
MHz. Note that the amplitude estimates for MUSIC-based range profile shall not be compared with those 
of the other four spectral estimates, since they are obtained by the MUSIC pseudo-spectrum. 

The next three figures picture ISAR images generated by 2-D FFT, 2-D MUSIC and 2-D AR methods. 
The FFT-based image is obtained by simulating 512 frequencies and 200 look angles, so that its resolution 
is comparable to the one of the spectral estimation-based images. Note the dependence of resolution 
capabilities on the number of simulated frequency or angle steps. The other two images, based on 2-D 
spectral estimation, are obtained by simulating 16 frequencies and 31 look angles. Furthermore, 
considerable amount of white noise is added to the 2-D radar data (SNR = 25 dB). It worths noticing that 
the achievable resolution is sufficient for radar target recognition applications, even though very small 
datasets are simulated. The amplitude estimates are normalized to their maximum value (recall that the 
MUSIC-based amplitude estimates are derived from the 2-D pseudo-spectrum) and are quite similar. The 
extraneous peaks observed in MUSIC-based ISAR image are because of the correlation between data from 
different scattering centers. MSSP shall be employed in cases where the correlation causes severe image 
blurring.        
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Figure 3. Range profiles generated respectively by applying IFFT, covariance, modified 
covariance, Burg and MUSIC methods, for SNR = 25 dB 
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Figure 4. Range profiles generated respectively by applying IFFT, covariance, modified 
covariance, Burg and MUSIC methods, for SNR = 10 dB 
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 Figure 5. ISAR image generated by 2-D FFT (SNR = 40 dB)  
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Figure 6. ISAR image generated by 2-D MUSIC (SNR = 25 dB) 
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Figure 7. ISAR image generated by 2-D AR  method (SNR = 25 dB) 

5 CONCLUSIONS AND FUTURE WORK 

Judging from the simulation results presented in Section 4 and those obtained through various simulation 
cases, we have reached the following conclusions with respect to the performance of spectral estimation-
based radar imaging techniques: 

 
(i) The spectral peaks of the IFFT-based range profiles are not as accurate (with respect to 

scatterers’ ranges) as those of the spectral estimation-based range profiles. Moreover, higher 
sidelobes are evident in case of IFFT, compared to the smoother spectral estimates of  AR 
methods (see Figure 3).  

(ii) MUSIC-based range profiles, in case of moderate or high SNR, are more highly resolved than 
those of AR methods. Nonetheless, the problem of redundant spectral peaks shall be overcome 
by applying the MSSP technique, especially in case of low SNR values where the resulting range 
profile is severely worsened. 

(iii) Burg method exhibits high-resolution capability for low SNR, whereas the sidelobes’ level of 
IFFT-based range profiles increases as SNR decreases. 

(iv) Spectral estimation-based ISAR images are characterized by satisfactorily high resolution, even 
for quite small datasets. On the other hand, the resolution of 2-D FFT-based images strongly 
depends on the number of frequencies (i.e. signal bandwidth) or look angles (i.e. aperture angle) 
simulated.   

(v) Extraneous scattering centers, with low amplitude estimates, are identified by 2-D MUSIC 
pseudo-spectrum. In radar target recognition applications, MSSP may be necessary. 

(vi) Two-dimensional AR spectral estimation and MUSIC result in quite similar ISAR image 
resolution. More complex target models would probably indicate the superiority of 2-D MUSIC.   
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 The present study has motivated future research into three important topics: 
 

(i) The computational cost of super-resolution spectral estimation techniques, especially for two-
dimensional radar imaging, is the basic reason for choosing datasets as small as possible. The 
main advantage of FFT-based imaging is the computational speed. In order to lessen the 
computational burden, efficient techniques for computing the data correlation matrix shall be 
examined in future studies. The advantage of saving valuable memory space is of crucial 
importance for real-time radar signal processors. 

(ii) Possible combinations between parametric (AR, MUSIC) and nonparametric high-resolution 
spectral estimation methods (Capon, APES) are under careful evaluation for two-dimensional 
radar imaging. 

(iii) Above all, we are currently involved in processing real TIRA data provided by FGAN-FHR. 
Conventional FFT and super-resolution spectral estimation methods are to be applied on these 
measured data.  
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ABSTRACT 

For a decade, NATO nations, both on their own and within NATO groups have performed studies in the 
field of Twodimensional Inverse Synthetic Aperture Radar (2D-ISAR) and High Resolution Radar (HRR) 
Range Profiles. During that work high-quality radar imagery data of aircraft has become available 
through measurement campaigns. It was shown that the acquisition of a sufficiently large and 
representative reference database is a difficult and laborious process. Other database properties, such as 
its contents, size, upgradability, retrieval speed, operational use, etcetera have not received sufficient 
attention within these studies. In the future, NATO may be playing a major role in maintaining a NATO 
central database of radar signatures. This paper provides an initial understanding of the operational 
implications for performing such a task. It argues that, instead of providing a central database to NATO 
nations, NATO should stimulate the use of decentralized classifiers and databases and ensure that 
coalition partners can access them via a data network in operational situations. 

1. INTRODUCTION 

Target identification is essential for any combat command and control and weapon system. Effective 
response to threats can be generated only if the ability exists to rapidly detect, track and identify targets 
present. Cooperative identification techniques play an important role. These techniques include IFF and 
the use of airspace control procedures. 

A serious drawback of these methods is that they require the cooperation of the targets. This can lead to 
serious consequences if friendly or neutral targets fail to cooperate. In the extreme case, the target will be 
marked hostile and will be engaged by own fire. Furthermore, enemy units can exploit cooperative 
identification to mask their identity. Nevertheless, cooperative identification methods remain crucial for 
the positive identification of own troops. 

Positive identification of neutral or enemy troops under all operational circumstances, however, remains a 
deficiency in NATO’s air defence capability. In fact, it is acknowledged that it is the most serious 
deficiency and one that impacts almost every aspect of air command and control and weapon system 
employment. The lack of timely and reliable means to identify all air vehicles at all aspect ranges 
necessitates the use of very restrictive airspace and weapon control orders. This limits the effective use of 
advanced weapon systems, specifically of beyond visual range systems. 

To improve identification capabilities and to ensure high confidence in positive air target identification, 
more advanced techniques and additional information sources have been proposed (see for example 
STANAG 4162 on the “Technical Characteristics of the NATO Identification System (NIS)”). These 
include Non-Cooperative Target Identification (NCTI) by radar. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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Radar based NCTI techniques include modulation techniques (like Jet Engine Modulation (JEM), 
Helicopter Rotor Modulation (HERM) and Propeller Rotor Modulation (PRRM)) and imaging techniques, 
either one-dimensional (High Range Resolution (HRR) profiles) or two-dimensional Inverse Synthetic 
Aperture Radar (2D-ISAR)). Under the Sensors and Electronics Technology (SET) Panel of the Research 
and Technology Organization (RTO) of NATO, extensive research has been conducted over the past two 
decades to establish and enhance the benefits of these techniques. 

At the end of the eighties, JEM was regarded as most promising but limited only to nose-on aspects. 
Nowadays, modern tracking radars generally have JEM capabilities. HRR was also looked upon as 
promising but required further development. The past decade, research within NATO focused on 
classifying HRR profiles and on the generation of synthetic databases for HRR classifiers. It is foreseen 
that next-generation radars generally will possess means of generating HRR profiles. HRR classification 
means are expected on a longer term though. 

While considerable attention has been paid to the development of NCTI classifiers, only limited attention 
has been paid to issues concerning their operational use. These issues include the desirability and the 
definition of requirements for a possible future NATO database for NCTI. 

This paper discusses some of the issues related to the operational deployment of NCTI classifiers. It 
attempts to develop a coherent view on the future operational use of NCTI classifiers, specifically HRR 
based ones. Therefore, the second and third section current trends in concepts of operations and 
technological trends, respectively, to the foreseeable future. The fourth section then formulates general 
requirements for NCTI databases. Finally, the fifth section combines the results from the previous chapters 
and formulates a coherent view on the future use of NCTI classifier and databases within NATO. 

2. OPERATIONAL CONSIDERATIONS 

It is imperative to understand that the next military operation where NATO is involved in differs from the 
last one and that making statements about any future conflict therefore is quite hazardous. However, it is 
safe to say that the probability of NATO having to respond to large-scale aggression against one or more 
of the members is low. Instead, potential threats to Alliance security are more likely to result from regional 
conflicts, ethnic strife or other crises beyond Alliance territory, as well as the proliferation of weapons of 
mass destruction and their means of delivery. 

Future NATO operations are therefore likely to be smaller in scale, they may be longer in duration, extend 
multinational co-operation to lower levels and take place concurrently with other NATO operations. The 
operations possibly will include contributions from Partnership for Peace (PfP) nations or even from other 
non-allied nations. 

These developments will make their demands on the combined NCTI capability. The next few sections 
will develop some of the interoperability issues a little bit more. The final section exemplifies the foreseen 
use of NCTI capabilities. 

2.1 Types of Conflict and Anti Fratricide 
The types of conflict NATO nations have been and will continue to be involved in, can be divided into 
non-combat and combat operations. Non-combat operations typically have the aim to promote or to keep 
peace. They may include contributions from many nations, not necessarily allied with NATO. The level of 
force applied is relatively low and one might argue that these operations don’t have the need for extremely 
accurate non-cooperative identification means. Combat type operations typically have the aim to resolve 
conflicts, to deter war or even to fight and win war. The level of force applied is higher than in non-
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combat operations, and consequently the need for accurate and complete NCTI means may be more 
urgent. 

Operational analysis has demonstrated that when the Blue Force has an overwhelming superiority over the 
Red Force, with all other factors being equal, the ratio of fratricide to the total number of Blue casualties 
can be greater than the fratricide rate in situations where Blue and Red are more evenly matched. The ratio 
indeed approaches 100 percent, even if the Blue losses are much lower [1, 2]. The accelerated operational 
tempo, the increased accuracy, lethality and speed/range of modern weapons, the lack of common tactics, 
techniques and procedures, and the absence of combined training of the coalition partners can explain the 
apparently increasing fratricide rates [2]. 

These factors contribute to augment both the likelihood and adverse consequences of human error, 
particularly in a coalition that consists of forces with varying degrees of interoperability, i.e. a coalition 
that is more likely to be found with no-combat, peace keeping operations. If we start from the idea that 
better means of identification can significantly decrease the number of friendly fire casualties, it is 
inevitable that both in non-combat operations as well as in combat operations, non-cooperative 
identification means have to be as accurate as possible, even though the level of force differs. In all 
situations, an NCTI database should therefore at least contain signatures of every allied platform in theatre 
and preferably a vast number of enemy platforms. 

2.2 A Networked Force 
Information technology is undergoing a fundamental shift from platform-centric computing to network-
centric computing. This shift is most obvious in the explosive growth of the internet, intranets and 
extranets. Information can now be distributed, and exploited across the extremely heterogeneous global 
computing environment. 

Evidently, the technology that enables network-centric computing is also available in military 
environments. The use of networks of (weapon)platforms in military operations stirred the imagination of 
military thinkers. In fact, they have embraced the new technology and developed theories like Network-
Centric Warfare (NCW), Network Centric Operations (NCO) and Network Enabled Capabilities (NEC). 
In theory, NCW, or NCO and NEC for that matter, will result in a revolutionary change in the way we 
think about and conduct warfare [3]. In reality, it is more likely to result in incremental, evolutionary 
changes in military capabilities and doctrines. 

Whatever the outcome of these developments will be, it is safe to assume that platform operators have 
access to relevant information via, or contained by the network, and that they have knowledge, or have 
access to knowledge, about the location and capabilities of other platforms in the network. 

2.3 Identification within a Networked Force 
As an example of how platforms could behave in a networked force, consider the air superiority mission. 

In a conventional force, each fighter pilot is able to develop situational awareness by three means: firstly, 
by direct visual observation, secondly by indirect observation using on-board sensors and thirdly, via 
voice or Link-16 communications with other fighter pilots. If a pilot is to establish ID on a threat, he relies 
solely on his own sensors, classifiers and databases. 

In a networked force, the pilot has a fourth means to develop situational awareness, namely digital 
information that is exchanged with external sources, such as other fighter aircraft or airborne surveillance 
and C2 aircraft, over a network. At the time of the information request, the information can already be 
contained by the network, or can be generated by other platforms. Specifically, the pilot can ask the 
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airborne surveillance aircraft to establish ID on the threat he is currently facing. Alternatively, he can use 
his own sensors to measure a HRR profile of the threat and ask a central classifier to classify the profile 
using a central database. 

In these examples, the platform operator (the pilot) only uses the network to communicate with other 
platforms. However, he still needs to know where the information that he needs can be obtained. Although 
the platforms can communicate via a data network, the environment can still be characterized as Platform-
Centric. 

In Network-Centric environments, the pilot approaches the network as a separate entity. If he needs ID on 
a threat he queries the network rather than the individual platforms. The network then takes care of the 
selection and deployment of resources (platforms, sensors, classifiers, and databases) to answer the query. 

Although the distinction between a networked Platform-Centric environment and a Network-Centric 
environment is small to the platform operator, it is a large one to the network technology. We shall see, 
however, that the distinction has only fractional impact on the requirements on NCTI databases. 

3. TECHNICAL CONSIDERATIONS 

3.1 Radar Technology 
Implementations of HRR and 2D-ISAR techniques in radar systems require that those radars be wideband 
and coherent. The most important requirements for NCTI relate to the geometrical resolutions (range 
resolutions in HRR, range and cross-range resolution in 2D-ISAR). Resolution requirements impose radar 
system bandwidth requirements, and bandwidth is a key parameter which is usually limited by the 
transmitter or antenna technology for a given radar design. 

The Final Report of the Task Group (TG) 09 of the Sensors and Electronics Technology Panel (SET) lists 
a comprehensive set of requirements for radar imaging techniques [4]. These requirements are not very 
stringent, apart maybe from the motion compensation requirements for ISAR. The latter is, however, more 
a processing/algorithmic requirement than a system requirement. A number of existing radars already have 
the required bandwidth and some of these even could support NCTI modes. 

It is the expectation that many future radar systems will have a HRR and/or ISAR mode if such a mode 
fits into their operational scope. Motion compensation for ISAR will remain a different task that requires a 
lot of processing power. Meeting this requirement, however, will be a matter of availability of motion 
compensation algorithms, rather than processing power. 

The required bandwidth can be achieved relatively easily by the transmitter technology, even within a 
single pulse. X-band will be the preferred choice for the operational frequency. The growing use of phased 
array antennas might limit the HRR capabilities to stepped frequency waveforms (SFWs) if phase shifters 
are applied. Since these waveforms require longer dwell times, the use of an HRR classification dwell 
must be seriously considered in an operational situation as to not consume too much time budget. 
Furthermore, HRR classifiers should be able to handle HRR profiles obtained with SFWs and be robust 
for subtle differences. Phased array antennas using time-delay steering can handle larger bandwidths 
though. 

3.2 Classifiers 
The process of identifying aircraft based upon its JEM, HRR or ISAR signature can be separated in a 
number of stages. These include motion compensation, other pre-processing (like range alignment, 
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dynamic range compression and dimension reduction), feature extraction and finally classification. Apart 
from the motion compensation, these stages can be considered an integral part of the classifiers. 

Classifiers for radar NCTI can be divided into three groups. The first group comprises of classifiers based 
on correlation techniques. The nearest neighbour (NN) classifier is perhaps the most widely known. Since 
an NN-classifier does not incorporate statistical distributions, its use in the (Bayesian) IDCP framework 
(see section 3.3) is not straightforward. Another type of classifier based on correlation techniques is the 
Template Matching (TM) classifier. Its theoretical basis is well-established and the algorithm can be made 
as robust as in the NN case. Moreover, the template allows for information about the statistical distribution 
of the feature vectors and the incorporation in an IDCP framework much easier.  

A second group of classifiers uses neural networks. The most elementary classifier that uses a neural net is 
the Radial Basis Functions (RBF) classifier. Radial Basis Functions provide a way to construct a smooth, 
non-linear mapping from a high dimensional feature vector space to a lower dimensional space, in which 
the class labels are defined. The important advantage, as opposed to many neural network types, is that the 
fitting is done in a well-defined linear way. There is no need for tuning the learning rate nor the size of the 
network, and there is no danger of slipping into a local optimum instead of a global one. As in the nearest 
neighbour case, the only quantities that enter the classifier are, as in the NN case, profile to profile 
distances. Incorporation into an IDCP framework is possible but not straightforward. 

A final group of classifiers consist of model or feature based classifiers. While the actual classification 
step might very well consist of Radial Basis Functions, Nearest Neighbour, Template Matching or other 
previously mentioned classifier, they distinguish themselves by the presence of a feature extraction step. 
JEM classification algorithms all make use of simple features, such as the number of blades on a 
compressor stage and the blade chopping frequency. For HHR, recent investigation showed that positions 
of peaks in an HRR profile can be used as class discriminating features. 

From this overview, it is clear that the databases belonging to these very divergent types of classifier are 
also very different in their nature. It is safe to say that the type of classifier defines the database and vice-
versa. Therefore, classifiers and databases cannot be viewed separately. 

3.3 IDCP  
No single identification sensor or source is capable of providing positive identification of all friend, foe 
and neutral platforms under all conditions (e.g. countermeasures). The combination, however, of more 
than one identification sensor or source can increase the probability of correct identification. The 
Identification Data Combining Process (IDCP) is a component of the NATO Identification System (NIS) 
and it provides a standardized process for using, combining and exchanging identification data, in order to 
improve identification accuracy and timelines. 

As of November 1996 there are (completed) parts of STANAG 4162 Annex D which cover the processing 
of the following identification sensor and source types: IFF, ESM, Flight Plans, Procedural Routing, Track 
Behaviour, Identification by point of Origin, Link 16 PPLI Messages, Nationally Sensitive Sources, and 
Discrete Events (e.g. target is jamming a friendly radar). A first draft of the NCTI part just covers the JEM 
NCTI technique, as imaging radar was considered insufficiently mature to be included at that time. 
Nevertheless, the general principles covering the addition of radar imaging sensors to the IDCP framework 
are clear, even if the details remain to be defined. 

The IDCP specifies Bayes’ theorem to fuse the information from different types of sensors. Fusion can be 
carried out in the Platform Object Class (e.g. F-14, F-15, Tornado, etc.) and/or the Basic Identity Object 
Class (i.e. Own Forces, Enemy Forces, Non-Aligned), depending on the sensor type. It is appropriate to 
convert the declaration from a radar JEM, or imaging sensor into a Likelihood Vector of the Platform 
Object Class. 
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Given the operational trend from platform-centric towards network-centric, the IDCP concept will only 
gain in importance. To be able to fuse ID information from different radar NCTI sensors (e.g. classifiers) 
it is essential that they provide a measure of reliability with their declarations. The databases coupled to 
these classifiers should allow for this (extra) information. 

3.4 Information and Communication Technology 

Information and communication technology and the networks they enable play a fundamental role in 
future military operations. Consequently, understanding the underlying trends that govern technology and 
influence the value-creation potential of networks is important to understanding the potential power of 
network-centric operations. 

Military operations employ commercial information technologies, as well as military specific information 
technologies. In general, the primary difference between the networks used by deployed warfighters and 
the networks used by non-mobile entities, is the characteristics of the links. The primary transmission path 
for the deployed warfighter is radio frequency communications enabled by radio, data link, or satellite. 
Furthermore, military operations typically require special link features, such as anti-jam properties, which 
to date have not been priorities for commercial users. 

There are a number of fundamental business and technology trends that shape the future of networks and 
the future of network-centric operations [5]. 

• Moore’s law: Computer chip performance doubles every eighteen months. The same technology 
trends which have enabled the performance-cost ratio for personal computers to double 
approximately every 18 months have also enabled relatively small, powerful chips to be deployed 
in a wide variety of devices, such as personal digital assistants (PDAs). Analogous trends are 
being played out in warfare as we make the shift to network-centric operations. 

• Data storage capacity doubles every twelve months. Like silicon integrated circuits, data storage 
devices has put on a spurt of their own, first matching the pace of chip developments but over the 
few years surpassing it. Since the giant magnetoresistive head (GMR) reached  the market in 
1997, density has been doubling each year. At the same time, costs of data storage device has 
fallen from approximately 1 dollar per megabyte to only a few tenths of a cent per megabyte and 
is now well below the cost of paper [6]. 

• Transmission Capacity doubles every twelve months. Currently, the primary backbone of 
advanced networks (both voice and data) is fiber optic cable. Recent and ongoing developments in 
the field of optical communications have resulted in the doubling of the transmission capacity of 
fiber optic cable every 12 months. This performance trend in fiber optical communications is key 
to enabling the significant capacity increase of the Internet. The last ten years has seen a rapid 
evolution of radio communication systems, GSM systems in particular. To maintain competitive 
advantage, equipment manufacturers are being driven to develop low cost and high volume 
products with increasing levels of functionality and miniaturization. In addition, companies are 
pursuing efforts to launch large constellations of satellites to provide high capacity bandwidth 
worldwide over radio frequency. In February 2002, regulatory approval for the development of 
Ultra Wideband (UWB) Communications was granted. As a result, the IEEE is expected to 
announce the use of UWB in their new communications standard. UWB technology allows 
systems to operate across a range of frequency bands, without interfering with existing systems. 
UWB signals appear as very low background noise to an unauthorized receiver. This radically 
reduces the probability of interception or detection and provides high physical security benefits 
compared with more conventional technologies. The operating range of current systems is, 
however, still limited to tens of metres. 
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• Confluence of Trends—Network-Centric computing. The consequences of these mutually 
reinforcing trends have been profound. The combination of increasing performance and cost 
suppression has resulted in the widespread adoption of computers in business and in the home 
which, when combined with trends in communications, has set the stage for network-centric 
computing and network-centric operations. The combination of digital communications 
capabilities and breakthroughs in software technology has enabled information interactions among 
entities of virtually any size that can be connected to the network. 

Military information and communication technology generally follows commercial technology with a 
delay of several years and thus the same evolution rate can be assumed. This implies that future military 
platforms will possess networking capabilities comparable to today’s commercially available capabilities. 

4. DATABASE REQUIREMENTS 

Basic requirements for NCTI databases include requirements for the following properties: type of 
information, size, retrieval speed, maintenance, data sources, aircraft types and configurations, etc. 
Requirements for these properties are not universal but depend heavily on technical possibilities, on their 
operational use, i.e. on the type of conflict in which they are deployed and, most importantly, on the 
classifier they are used with. 

Furthermore, practical issues may restrict their contents. It will be impossible to build an NCTI database 
based upon measurements of all possible aircraft that can be encountered in theatre. While measurements 
of every friendly aircraft may be available, this is certainly not the case for neutral, let alone for hostile 
aircraft. Databases based upon synthetic data might relief this problem partly. 

However, even the availability of friendly signatures (either measured or synthetic) might be limited, 
especially in multinational operations. It is not unthinkable that NATO members are reluctant to share 
signatures of some of their national aircraft with other members, let alone with possible non-NATO 
members within a certain coalition. 

While technical requirements, like speed and size, can (eventually) be met by the ever-increasing 
technological possibilities, the issues related to classifier dependence and to database contents (i.e. 
signature availability and proliferation) need to be solved explicitly. 

4.1 Dependence on NCTI Technique and NCTI Classifier 
The precise information required in an operational database clearly depends on the imaging technique and 
the classification algorithm. The database for a JEM classifier will typically comprise JEM features like 
the blade-chopping frequency, the number of blades per compressor and the number of compressor stages 
of individual jet engines. 

The database for an HRR profile classifier will typically comprise either individual range profiles, 
averaged range profiles, templates that are similar to averaged range profiles, or of features that are 
extracted from range profiles. If the classification algorithm is preceded by a pre-processing stage, for 
example a power law transformation, the same pre-processing of the reference profiles in the database will 
be required. Furthermore, depending on the classification algorithm, it may be computationally more 
efficient to store the Fourier Transformed range profiles, instead of the profiles themselves. 

The contents of an operational ISAR database will also depend on the feature extraction and classification 
algorithms employed. Database for ISAR may comprise of 3D peak locations of carefully selected 
scatterers that are visible at each aspect angle of interest. Other recognition algorithms proposed for ISAR 
require databases consisting of sets of moments of the ISAR image intensity. 



The Desirability of a NATO-Central Database 
for Non-Cooperative Target Recognition of Aircraft  

23 - 8 RTO-MP-SET-080 

 

 

It is clear that NCTI databases depend heavily on the classifier they belong to. Indeed, it is impossible to 
view them separately. The type of classifier defines the database and vice-versa. This means that if there 
are to be NATO databases for NCTI, then there have to be corresponding NATO classifiers as well. This 
would require a lot of extra research and development efforts to co-ordinate the development and 
maintenance of such a classifier/database combination. 

4.2 Nationally Sensitive Contents 
The concept of a NATO NCTI central database, or rather NATO-central NCTI classifiers including 
databases, suffers from the problem of data availability. Since the database of signatures depends on the 
classifier, dedicated measurement campaigns have to be organized, or dedicated synthetic signatures have 
to be generated. Clearly, operational aircraft from non-NATO nations will never participate in such a 
measurement campaign. NATO intelligence sources, however will be able to provide detailed CAD 
models of hostile aircraft, and therefore the generation of synthetic signatures is feasible in principle. 

While using synthetic signatures might relieve the need for signatures of neutral and hostile aircraft, the 
real challenge might be the availability of signatures of aircraft of individual member nations, to other 
NATO nations. It is not unthinkable that nations will be very reluctant to share such sensitive information 
as HRR or ISAR signature to every other NATO nation. 

A possible way to diminish this reluctance is to ensure confidentiality by encrypting the information in the 
database and to offer the NATO classifier/database combination on a operation-by-operation basis as a 
black box to nations that participate in the operation. However, next to the research and development 
overhead caused by the classifier/database generation, this would require additional administrative 
overhead. Even if confidentiality within a NATO central office is guaranteed, it is still questionable if 
every nation can be convinced to release signature data of their most modern aircraft. 

4.3 The Network Enabled Approach 
The two previous sections roughly sketched the difficulties related to a NATO NCTI database with the 
aim to provide it to nations if circumstances call for it. Firstly, it is useless to provide databases to member 
nations without a corresponding classifier and secondly, it may be very hard to obtain relevant signature 
data. Solving these difficulties seems to implicate such a lot of effort that it may be sensible to look for 
alternatives for a centralized database. 

A possible solution to solve the main difficulties would be to stimulate the use of decentralized 
classifier/database combinations. Each nation that participates in a multi-national operation is responsible 
for providing means to classify their own aircraft using their own classifier / database combinations. This 
way, signatures of their own aircraft do not have to be distributed to other nations. Of course, other nations 
would need access to the classifier/database combinations. This can be achieved by using a network. 

Consider for instance the individual fighter aircraft that operates in a multi-national war-like operation. In 
the previous chapters we have established that future fighter aircraft will possess the following resources: 

• Sensors that allow for the measurement of NCTI signatures, being JEM spectra, HRR profiles 
and/or ISAR imagery. 

• A classifier that accepts these measurements as input and classifies them against a database, 
which, at the least, contains their own national aircraft and possibly other friendly, neutral or 
hostile aircraft in theatre. 

• A communication link, which connects to a network. This communication channel allows for the 
distribution of NCTI signatures to other linked platforms. 
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Now suppose the platform operator (the pilot) needs ID on a threat he is facing. His first action will be to 
query the network for an ID on the threat. If this is not available or if it is unreliable, he uses his own 
sensors to obtain a JEM, HRR or ISAR signature of the threat. He then offers this signature to his 
classifier and at the same time sends out a request to other platforms to classify the signature using their 
classifiers. All classifiers in the network will prioritize and schedule this request and possibly come up 
with an answer that gets sent back to the requesting platform. Finally, the requesting platform combines 
the ID information, preferably using the IDCP protocol, and stores the ID for immediate and future use. 

5. DISCUSSION AND CONCLUSIONS 

Accurate identification has always been a requirement on the battlefield and has nowadays become even 
more stringent when military operations involve multi-national coalitions. Better means of identification 
significantly reduces the risk of fratricide and –partly therefore– enhances the effectiveness of advanced 
weapon systems, especially of those that can be employed beyond visual range. 

In the past few decades, considerable attention has been paid to the development of non-cooperative 
identification systems and algorithms. As a result, the majority of future radar systems will possess a HRR 
and/or ISAR mode if such a mode fits into their operational scope. Contrarily, only limited attention has 
been paid to the operational use of NCTI classifiers, including the desirability and the requirements for a 
possible NATO central database for use with NCTI systems. 

To assess if a NATO-central NCTI database is desirable, the previous chapters highlighted some 
operational and technological trends and projected them into the foreseeable future. The analysis of these 
trends seems to indicate that the answer to the question whether a NATO-central database is desirable is a 
negative. 

There are a two serious impediments to the idea of a NATO-central NCTI database, that cannot be 
circumvented in practice. Firstly, we have established that NCTI classifiers and NCTI databases cannot be 
separated (see section 3.2 and 4.1). The availability of a NATO-central database implies the availability of 
a NATO-central NCTI classifier, which would require a lot of research and development in NATO panels. 
Efforts that are much more effective when conducted within the NATO nations themselves. 

Secondly, Section 2 argued that both in non-combat and in combat operations, non-cooperative 
identification means have to be as accurate as possible, even though the level of force differs from the one 
type to the other. An NCTI database should therefore at least contain signatures of every allied platform in 
theatre and preferably a vast number of enemy platforms. While using synthetic signatures might relieve 
the need for signatures of hostile and neutral aircraft, security considerations might restrain NATO nations 
from sharing signatures of their own aircraft with other NATO nations. Confidentially guaranteed via 
NATO encryption and procedures might not convince every nation to release signature data of their most 
modern aircraft. 

The alternative to enhance identification within multi-national coalitions is to stimulate the use of 
decentralized classifiers and to use a network to offer access within the coalition. Each nation that 
participates in a multi-national operation is responsible for providing means to classify their own aircraft 
using their own classifier / database combinations. This way, signatures of their own aircraft do not have 
to be distributed to other nations. This concept is further specified in section 0. In concreto, next to the 
non-trivial issues related to a networked force (which lie beyond the scope of this report), this approach 
would require NATO to: 

• Stimulate nations to develop and maintain classifiers that report a measure of reliability with their 
declarations. 
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• Stimulate nations to develop and maintain classifier/database combinations that allow for the 
identification of at least their own national aircraft. 

• Stimulate nations to include foreseeable neutral and hostile aircraft as well, by organizing 
measurement campaigns that include neutral / civil aircraft and by providing CAD models of non 
allied fighter aircraft. 

• Specify a data format for the exchange of HRR and ISAR signatures, as well as for the exchange 
of ID classification results. 
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SUMMARY

Passive radar systems that exploit illuminators of opportunity, such as FM radio and television broadcasts, to
detect and track airborne targets have been under development for over a decade. This paper reviews efforts
to add radar imaging and target recognition capabilities to such systems. We discuss recent developments
along two parallel threads:

1) Target recognition via radar cross section (RCS) profiles: In this approach, databases of the RCS of
targets at different incident and observed angles are created using method-of-moments computational
electromagnetics codes. The extracted RCS profiles for different targets, scaled to account for antenna
patterns and atmospheric propagation, are compared to the collected data. A coordinated flight model is used
to estimate the aircraft's orientation along its flight path. The low frequencies used in passive radar naturally
give stable features well suited for automatic target recognition.

2) Radar imaging: A traditional inverse synthetic aperture approach to forming images with passive radar
data results in severe artefacts due to the sparse and irregular Fourier sampling patterns resulting from
realistic data collection scenarios. We review the application of a recent optimization-based, region-
enhancing imaging algorithm to passive radar imaging that effectively suppresses these artefacts, and
illustrate the difficulties posed by the underlying multidimensional autofocus problem.

1.0 INTRODUCTION

Traditional active radar systems transmit waveforms and deduce information about targets by measuring and
analyzing the reflected signals.  A radically different approach to radar arises when we consider that modern
civilization is already drenched in transmissions such as FM radio, television, and cell phone signals. Passive
radar systems that “hitchhike” off of such existing “illuminators of opportunity” remain covert compared to
their active brethren. Other covert sensors, like as ESM sensors employing multilateration,1 are available, but
they rely on the assumption that the objects of interest are broadcasting and don’t mind announcing their
presence. PCL sensors require no such assumption. We save on the cost of building a transmitter, since
another party has already gone through the trouble. However, communication signals were not designed with
radar applications in mind. The cost of the radar system then shifts from traditional radar hardware to the
digital signal processing know-how and horsepower required to make sense of the received signals. The price
of radar hardware remains relatively fixed, while the cost of computational power continues to plummet.

                                                       1 For example, see http://www.roke.co.uk/download/datasheets/multilateration.pdf.
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Passive radar can thus boast something active radar cannot: its further development is primarily driven by
Moore’s law. The passive radar approach has often been referred to as PCL (Passive Coherent Location.) To
our knowledge, the term PCL was first coined by Dick Lodwig and colleagues at what was then IBM, later
Loral, and currently Lockheed Martin. The term PCL is closely tied with Lockheed Martin’s Silent Sentry
series, of which Silent Sentry 3 is the latest incarnation, although the acronym PCL has evolved to refer to
passive radar systems in general. The term PCR (either “Passive Coherent Radar” or “Passive Covert Radar”)
has also become popular. Interest in PCR has skyrocketed in the past five years. International conferences on
PCR were hosted by Roke Manor in the United Kingdom in June 2002, and by the University of Washington
in Seattle in the United States in October 2003. At the time of writing, the IEE Proceedings Radar, Sonar, and
Navigation is preparing a special issue devoted to PCR guest edited by Paul Howland (NATO C3 Agency)
and Paul Gilgallon (U.S. Air Force Research Lab).

A three-year DARPA-sponsored program at the Univ. of Illinois at Urbana-Champaign on the “Design and
Optimization of Passive and Active Imaging Radar” began in the Fall of 1998. A prime thrust of this effort
was the development of ways to add automatic target recognition (ATR) and radar imaging components to
passive radar systems. Follow-up efforts (some in collaboration with colleagues at MIT and Univ. of
Michigan Ann Arbor) have continued at Georgia Tech, sponsored by NATO NC3A, AFOSR, startup funds
from Georgia Tech’s School of Electrical and Computer Engineering, and the Demetrius T. Paris
Professorship. This paper briefly reviews some of this work, and points out some avenues for further research.

2.0 AUTOMATIC TARGET RECOGNITION

One approach to target identification compares the collected data to target libraries synthesized using
electromagnetic codes. To ensure robust classification in the presence of noise and errors in estimates of
position and orientation, it is helpful if the Radar Cross Section (RCS) of the targets vary “slowly” with small
changes in these components of the state vector. The variation in RCS, as characterized by the number of nulls
encountered as a target's aspect changes, is proportional to the electrical length of the target. At FM-band
frequencies (100 MHz), a fighter-sized aircraft is approximately five wavelengths long. In contrast, at the X-
band frequencies used by many active radars (10 GHz), the same aircraft would be 500 wavelengths long.

In the late 70's and early 80's, a series of papers [1-3] illustrated that low frequencies are quite natural for
target classification. Those papers had active radars in mind, but low-frequency radar did not catch on in the
West since most of the desired spectrum has been allocated to communications. PCR systems, on the other
hand, which directly exploit existing long wavelength emissions that are convenient for target recognition,
circumvent the frequency allocation problem faced by active radars.

2.1 Joint Tracking/Recognition with Particle Filters

Target tracking and target recognition are generally considered to be separate tasks. In particular, target
tracking algorithms generally track two-dimensional or three-dimensional target positions in Cartesian
coordinates via simple constant velocity or constant acceleration models; target orientation is generally not
directly accounted for. The notion that tracking and recognition algorithms could help one another dates back
to work by Sworder and colleagues [4-6]; in particular, the authors suggest using imaging information to
detect manoeuvre changes. Sensors detailed enough to provide target recognition data generally can also
provide orientation; in fact, orientation must often be estimated as a nuisance parameter. The orientation and
position of aircraft paths are clearly coupled. Miller, Srivastava, and Grenander [7] suggest fusing the
recognition and tracking tasks into a single joint estimation problem.
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Picking up this thread, Herman [8-9] followed up on an earlier suggestion [10] to conduct joint recognition
and tracking from passive radar data using particle filters. Instead of trying to form two-dimensional Inverse
Synthetic Aperture Radar (ISAR) or one-dimensional range profiles to provide the “imaging data,” Herman
used the raw RCS. This avoided issues relating to calibrating phase information. Since high-frequency codes
such as XPATCH are not accurate at the long wavelengths of interest in passive radar, the RCS of different
targets was simulated from CAD models using the method-of-moments code FISC (Fast Illinois Solver Code)
[11-12].

2.2 ATR with a Coordinated Flight Model

Herman’s joint tracking/recognition approach described in the previous section is quite complicated to
implement, and computationally intensive because of the particle filter. This prompted the search for a simpler
method that could perhaps be implemented in real-time in the immediate future. Drawing from traditional
aerodynamics texts, Ehrman created a simple algorithm for finding the likely orientation sequence of an
aircraft given a flight path [13], and considered ATR from passive radar RCS data using the orientation
sequence estimated by that algorithm [14-16], assuming the track estimated by the tracker to be correct. This
is a simpler feed-forward strategy than Herman’s approach, in that the results of the RCS data are not fed back
into the tracker. Ehrman also considered atmospheric propagation and antenna pattern effects not considered
by Herman (although they could easily be adapted and included in Herman’s procedure).

Ehrman’s initial studies considered vertically polarized data, and gave quite encouraging results on a four-
class problem consisting of a Falcon-20, a Falcon-100, a T-38, and a VFY-218.2 When horizontal polarization
was considered [17-18], an interesting phenomenon was observed: for a complex path derived from an
instrumented F-15 flight, the Falcon-20 was never correctly identified, even at low noise levels. This pointed
out the limitation of the simple coordinated flight model. In essence, the Falcon-20 at the estimated orientation
looked more like the Falcon-100 at the correct orientation than the Falcon-20 at the correct orientation! Thus,
Ehrman’s PhD work is currently moving in the direction of jointly estimating the orientations and target type
from the data (although still not as complex as jointly estimating the orientations, target type, and positions
from the data as in Herman’s approach.) The coordinated flight model can provide a mean, and the algorithm
can search in an “error ball” of orientations around that mean.

2.3 Performance Analysis

In some scenarios, we might expect aircraft to be flying around certain common flight paths (for instance,
routes between airports). In these situations, it may be reasonable to ask: how long do we need to collect data
for a particular aircraft before we can make a decision about its type with a certain degree of accuracy?
Ehrman [19] has been considering information-theoretic measures [20], such as relative entropies (i.e.
Kullback-Leibler distances [21]) and Chernoff distances, as means of approximating probabilities of error
without having to conduct extensive Monte Carlo simulations. As part of her ongoing PhD work, Ehrman has
computed approximations for these information-theoretic distances between Rician distributions, which are
appropriate for slowly fluctuating targets.

                                                       

2 The VFY-218 is not a real aircraft; it is a CAD model commonly used by the computational electromagnetics community.
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2.4 The Difficulty of Computing Scattering Databases

The scattering databases needed for ATR consist of complex reflectances sampled over the five-dimensional
space of incident azimuth, incident elevation, observed azimuth, observed elevation, and frequency. A full
viewing sphere of bistatic angles is needed to accommodate manoeuvring aircraft. To reduce the time
complexity of creating such databases, especially using computationally intensive codes such as FISC, it is
helpful to sample the space as sparsely as possible while maintaining accuracy. Sampling densely enough to
satisfy the Nyquist criteria requires a tremendous amount of computing time.

There is a need for the development of informative scattering models that will permit sampling at a rate below
the Nyquist limit. In the high-frequency regime, the electric current induced on a metallic scatter by an
incident electromagnetic wave tends to clump at the corners of that object; hence, scattering center models are
quite powerful [22-25]. At low frequencies, the current tends to spread out over the aircraft; radar images take
on a distributed appearance, instead of the point-like appearance often seen at high frequencies. Thus, to make
this approach to ATR practical for a large number of targets, novel techniques and models will need to be
developed.

2.5 Helicopter Blade Modulation

For helicopters, the Doppler modulation lines arising from blade motion form a strong target type
discriminant. The ability to identify different helicopter types using active low-frequency radar has been
demonstrated by Kuschel (see Section 2 of [26]). We do not know of any PCR-specific studies along these
lines, although it is clearly a ripe area for exploration.

3.0 IMAGING

In the previous section on ATR, most of the discussion focused on using raw RCS data. One could also
conduct ATR using, for instance, ISAR images or range profiles. Considering the difficulty of forming ISAR
and related images from passive radar data, we have found it easier to use raw RCS for ATR, since phase
errors are not an issue in using RCS. However, radar images may be useful in their own right. There may
always be targets present that are not in the ATR system’s library, and in such cases it would be useful to have
some sort of image to present to a human analyst.

3.1 Nonlinear vs. Linear Imaging Models

The “nonlinear vs. linear” question may have two different meanings in this context. In one meaning, it refers
to the underlying data model, i.e. whether the quantities of interest map linearly to the data space. In the other
meaning, it refers to the processing of the algorithm, i.e. whether the algorithm is a linear transformation of
the received data.

At the beginning of the DARPA project mentioned in the introduction, much effort was focused on nonlinear
data models, including forays into the distorted Born iterative method [27] and the so-called “linear sampling”
methods [BLW] (which are not really linear) of Colton, Kirsch, and colleagues. While these efforts are
interesting in their own right, they may be overkill for the passive radar problem, and nonlinear imaging
models may be a red herring in this context. Indeed, if extensive data are available, simple inversion methods
based on linear models produce surprisingly superb images, as discussed in the next section.
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Ye, Bresler, and Moulin [29-31] developed several interesting two-dimensional contour estimation
techniques, along with associated performance bounds, for both linear and nonlinear data models. To be
practical, these should be extended to the three-dimensional case.

3.2 Nonlinear Algorithms for Linear Models

In traditional radar imaging using linear data models, the received complex radar data can be thought of as
samples of the Fourier transform of the image of interest. If a sufficient amount of data is available in a
sufficiently concentrated region, one can simply zero-pad the parts of Fourier space where data is unavailable
and take a two-dimensional inverse Fourier transform. Using this technique on low-frequency data sets
derived from FISC yields images that, remarkably, resemble optical images of the aircraft, far more than at
microwave frequencies, where the images have a point-like appearance. The trouble is that to form such an
image, unrealistically rich data sets are needed. In a realistic collection scenario, the available data is strongly
limited by the collection geometry, and straightforward zero-padding usually leads to unrecognizable images
[32-33].

The sampling patterns arising in passive radar bear a passing resemblance to those found in radio astronomy;
hence, it became natural to try algorithms from radio astronomy such as CLEAN. Unfortunately, the complex-
valued and distributed nature of passive radar images lead to disappointing results from CLEAN [34].
CLEAN works best on images that are point-like in nature, such as microwave radar images, whereas low-
frequency radar images are more evenly distributed throughout regions. This led to a search for a more
sophisticated technique, such as Çetin’s [35-36] region-enhanced nonquadratic optimization techniques. In
this approach, an objective function is formulated that combines a term indicating fidelity to the data with a
term incorporating prior knowledge about likely images. The term chosen encourages smoothness within
regions while allowing sharp edges between regions. When applied to the same passive radar examples used
in [31], the region-enhanced technique was found to provide remarkable improvements [37]. Along another
path, Ye, Bresler, and Moulin [38] developed a level-set based method for reconstruction from sparse Fourier
samples, which should be revisited in this context.

Another issue that may arise is the angular dependence of radar reflection. At high frequencies, reasonable
cross-range resolution may be obtained using data from a small angular extent. At low frequencies, data may
need to be collected over a wide range of angles to obtain good cross-range resolution. Some wide-angle
imaging algorithms, based on Wigner-Ville distributions, are proposed in [39].

3.3 The Autofocus Problem

In an ISAR imaging scenario, the distance from the radar platform to an airborne target must be known to
demodulate the received radar signal and retrieve the imaging data. When this distance is not known exactly, a
phase error term results that corrupts the imaging data. The effect is a phase error function, varying with each
received echo, which acts as a blurring filter, defocusing the radar image. All of the studies described in the
previous section assumed there was no such phase error. Autofocus algorithms create an estimate of this phase
error function to correct the defocused image. Such a capability will be a vital component of any working
imaging system.

Existing autofocus algorithms developed for ISAR imaging assume a monostatic scenario.  This assumption
implies a single transmitter is colocated with a single receiver, and large bandwidth pulses are available to
illuminate targets. The sampled Fourier imaging data collected under these conditions form a two dimensional
polar ribbon in frequency space. The angular extent of this ribbon corresponds to the received echos, and the
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radial extent to the samples from each echo. Here the phase error varies only with echo, or with the angular
dimension.

In a passive radar-imaging scenario, multiple transmitters, such as different FM radio and/or television signals
operating at different frequencies, are used to illuminate the airborne targets. The advantage of this scheme is
stealthiness; targets are unaware that they are being watched.  However, several drawbacks make forming
images challenging. First, the tracking data produced by a passive system is not as accurate as that of a
conventional active system.  Secondly, unlike active systems, which employ specially crafted high bandwidth
pulses, passive systems must rely upon narrowband FM or TV signals, which are essentially an impulse in the
frequency domain when thought of from an imaging standpoint. Consequently, only a thin arc of Fourier data
is collected from each station, in contrast to a two dimensional polar ribbon associated with a single active
wideband transmitter. In the passive scenario, the range from transmitter to target to receiver must be known
to demodulate the received radar signal. Inaccurate target position estimates result in inaccurate calculated
two-way ranges, and thus phase errors appear.  Because the transmitters are located at different positions, and
operate at different frequencies, the phase error function corresponding to each station, or each arc in
frequency space, will be different (though related by the geometry).  Thus, we cannot think of the autofocus
problem as compensating for a phase error function that varies in only one dimension. We effectively have a
two-dimensional autofocus problem.

We might conjecture that a passive radar autofocus algorithm should be built around correcting the trajectory
of the aircraft itself rather than directly estimating phase errors. Although the phase error functions corrupting
multiple arcs of Fourier imaging data are different, they are related by the underlying geometry. We seek the
trajectory that most closely resembles the actual trajectory, and consequently results in the best image. The
autofocus perspective turns this on its head, and seeks the best image, which consequently may give a better
track. A measure of image sharpness may be utilized as a cost function in determining the best trajectory.
Several such measures, such as the entropy of the image, are available [40]. Morrison [41-42] has conducted
further work in this direction.

4.0 CONCLUSIONS

This paper has reviewed recent efforts to develop ATR and radar imaging technologies appropriate for passive
radar systems. Radar imaging is particularly difficult, as problems of sparse Fourier samples, angle-dependant
scattering, and phase errors need to be overcome. The first two problems have been considered extensively,
but they have been considered separately. Bringing solutions to all of these challenges together into a single
algorithm will be extremely challenging.
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SUMMARY 

Radars operating in the HF band achieve extremely long range detection by exploiting propagation modes 
which preclude many of the standard  target classification techniques, at least in their conventional form. 
Yet, in order to take full advantage of an over-the-horizon detection capability, reliable target 
classification, recognition and identification is essential. This paper explores the options for target 
classification at HF, reviews some of the results which have been achieved, mainly but not exclusively 
with reference to skywave radars, and assesses the prospects for operational target classification, 
recognition and identification. 

1.0 INTRODUCTION 

Radars operating in the HF band are well known for their ‘over-the-horizon’ detection capabilities, whether 
via skywave propagation as with Jindalee [1] and ROTHR [2], for instance, or via surface wave 
propagation, as with SECAR [3], SWR503 [4], the AMS HFSWR [5] and others. These radars achieve 
extremely long range detection by exploiting propagation modes which preclude many of the established  
target classification techniques, at least in their conventional form. Indeed, given the vicissitudes of the 
ionosphere and the losses encountered with any form of over-the-horizon propagation, it is remarkable that 
even the detection mission can be achieved with adequate reliability. When one also takes into account the 
dramatic constraints on spatial resolution imposed by aperture and bandwidth limitations, and the fact that 
the radar wavelength is of the same order as the target dimensions, the prospect of determining target class, 
type, or possibly even identity, would appear remote.  
From the operational perspective, this prognosis has long been a major concern. In order to take full 
advantage of an over-the-horizon detection capability, reliable target classification, recognition and 
identification is regarded as essential. This applies not only to the need to satisfy rules of engagement in the 
event of hostilities but, more routinely, to situational awareness, to the assignment of other assets on the 
basis of HF radar cueing, and to potential intelligence collection and analysis. Indeed, from the operational 
perspective, the value of virtually all wide area surveillance products generated by HF radar is substantially 
reduced in the absence of a moderately capable target classification functionality. 
In spite of this motivation, with few exceptions the technical challenges posed by target classification at HF 
have not succumbed to the efforts of the radar researchers. Nevertheless, considerable progress has been 
made in a number of areas. On the basis of many experiments, much of the relevant physics is now 
understood, a variety of approaches to differentiating between targets of interest have been conceived and 
explored by experiment or modelling, concepts for integrating these schemes within the radar tasking and 
control architecture have been proposed, and many mathematical and computational tools have been 
devised to model and interpret radar observations. Moreover, the realisation that the ability to classify 
targets depends on the degree of control over radar resources, and radar design, is now taken into 
consideration when proposing enhancements to existing radar systems.  

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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Techniques which have been explored in the quest for an NCTR capability in existing HF radar systems 
include : 

(i) statistics of target echo magnitude  
a. shape of the distribution 
b. absolute RCS via calibration using co-located scatterers 
c. ratios of RCS for different targets 

(ii) multi-frequency interrogation 
a. discrete spanning set 
b. target-matched illumination 
c. wide sweep waveforms 

(iii) bistatic and multi-static scattering geometries (all of the above) 
(iv) modulation signatures 
(v) micro-Doppler information 
(vi) distributed scattering signature analysis 
(vii) nonlinear scattering  
(viii) accurate determination of target kinematics 
  

 
This paper explores the options for target classification at HF, reviews some of the results which have been 
achieved, mainly but not exclusively with reference to skywave radars, and assesses the prospects for 
operational target classification, recognition and identification. 

2.0 THE SEMANTICS OF CLASSIFICATION, RECOGNITION AND 
IDENTIFICATION 

At the outset, it is essential to clarify the terminology used to describe the various levels of specificity with 
which a sensor might distinguish between different targets. According to NATO definitions (Source: 
AAP-6 NATO Glossary of Terms and Definitions) :  

IDENTIFICATION  is the indication by any act or means of one’s own friendly character or 
individuality.  The determination by any act or means of the friendly or hostile nature of a detected 
person, object or phenomenon.  
  
RECOGNITION is the determination of the nature of a detected person, object or phenomenon, and 
possibly its class or type.  This may include the determination of an individual within a particular class or 
type. There are consequently various degrees of recognition :   
 

- General recognition: recognise an object by class e.g. recognise a vehicle as tank, infantry 
fighting vehicle, or truck, or recognise an aircraft as either a bomber or a fighter.  A lower level of 
general recognition might be to recognise a vehicle as tracked or wheeled, or recognise an aircraft 
as swept winged or straight winged 
- Detailed recognition: recognise an object by type e.g. recognise a vehicle as either a T-80 tank 
or an M-1 Abrams tank, or recognise an aircraft as an Su-27 or a Tornado.  It may entail the 
recognition of an individual person or object e.g. “finger printing.” 

 
These definitions were no doubt adopted to serve important operational purposes, but they are not entirely 
consistent with their etymology, nor do they span the range of possible scenarios. In particular, the use of 
identification as the signifier of intent is unfortunate. One might suggest, only half in jest, a new term – 
intentification – to fill this need. Accordingly, the following alternatives and additions, based on usage in 
the domain of statistical pattern recognition, are adopted in this paper. For clarity they are formulated as 
verbs rather than as nouns.  
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Proceeding from the most general level,  
 
Classify – associate with, or assign to, one of a number of sets (classes) which are distinguished by one or 
more criteria, irrespective of whether there is any prior knowledge of the class membership or class 
boundaries.  
 
Recognise - establish membership of one of a number of disjoint known sets (classes)  
 
Identify – establish the absolute sameness with one of a number of possible individual members of a class 
of known elements 
 
For example, suppose we were to take a number of aircraft and, for each, measure (i)  its weight, and (ii) 
its median RCS (over some range of parameter values). If we were then to plot the results as points on the 
plane, we might find that they tend to cluster in two groups, with larger weights generally associated with 
larger RCS values. Without even labelling the axes, or knowing anything about what the points represent, 
a given point could be associated with one cluster or the other by means of purely statistical measures. To 
classify objects in the most general sense is to perform this kind of assignment. Now if we are told that 
there are only two types of aircraft involved – fighters and bombers – we might label the two classes 
appropriately, even if we don’t have confirmation that any particular point is in the correct class. If some 
points are labelled – the case of supervised training – we can  use these points first to design our 
classifier, allowing for subsequent unsupervised training if desired. Then, confident in our labelling of the 
classes, we have the possibility of recognition, that is, assignment to a known class. Finally, if that class is 
feature-rich, and there is adequate prior information, the prospect of identifying the individual members of 
the class can be entertained.   
With this hierarchy, a typical sensor mission has the structure shown in Figure 1, where the additional 
term discrimination  is used to denote the acceptance of some input patterns and the rejection of others, as 
with situations where strong clutter is present. This, of course, is equivalent to increasing the number of 
pattern classes. 
 

 
Figure 1: The sequence of progressively more intimate assignment  as implemented in many 

sensor systems  

2.0 HF RADAR SYSTEMS 

Radars operating in the HF band can be classified according to the propagation mechanisms they exploit, 
noting that the mode of propagation from transmitter to target may differ from that occurring between 
target and receiver. A taxonomy based on this classification is presented in Figure 2. The key to 
understanding this diagram is to note the use of the columns to refer to transmitter-to-target aspects and 
rows for the receiver-to-target aspects.  Common sense suggests that it would be unreasonable to expect 
any single classification technique to be effective for such a diverse group of radar configurations, and this 
turns out to be indeed the case.  Further, quite striking differences exist between alternative 
implementations of radars from each of the principal categories shown in Figure 2, so that what may be 
possible with the Australian Jindalee  radar, for example, may not possible with the US Navy’s ROTHR, 
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or vice versa., though both these radars are bistatic land-based skywave-out, skywave-back radars. For this 
reason, the discussion which follows will attempt to avoid system-specific judgments. Further, the 
emphasis will be placed on skywave radars, with surface wave radars treated in lesser detail, noting that 
though there are numerous commonalities.  

 

Figure 2: Taxonomy of HF radar configurations, with selected radars indicated  

2.1 Radar Process Models  

The starting point for an analysis of target classification at HF is a model of the radar process, that is, a 
formal representation of the relationship between the measurements and the system being measured. Such 
a model has been developed and used extensively for HF skywave radar applications [6-8]. Following [7], 
the radar process model allowing for multihop propagation can be written 
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where 

w  represents the selected waveform 

T~ represents the transmitting complex, including transmitters and antennas 
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)1(~ S
TM represents propagation from transmitter to the first  ground scattering region  

S~  represents all scattering processes in the current region 
)1(

)(
~ +jS

jSM  represents propagation from j-th scattering region to the (j+1)-th region 

)( BnS and )( BmS represent the receiver location 

ln represent external noise sources, interferers or jammers 
)1(~ S

NM represents propagation from a noise source to its first ground scattering region 

m represents internal noise 

R~ represents the receiving complex, including antennas and receivers 
P  represents the signal processing 
s   represents the signal decomposition after processing 

 
When appropriate substitutions are made, and the squared modulus of this ‘voltage’ formulation taken,  
equation (1) reduces to the familiar scalar radar equation,  

2

43 .)4(
λ

πσ
RTT GGP

SNRkTBR
=  

This conventional form is of little use for HF radar applications, even when various system and 
propagation losses are incorporated in the form of multiplicative loss factors With HF skywave radar, the 
range dependence of signal intensity is governed by the electron density profile of the ionosphere and the 
modal structure of the earth-ionosphere waveguide, not by a simple power law. For HF surface wave 
radar, the range dependence of signal intensity is dominated by diffraction processes, modified by the 
prevailing surface roughness.  
 

2.2 Observables, signatures and the classification domain 

The raw materials on which the target classification process operates are the sensor responses to the 
universe around it – the observables. In the main, these are related to the intrinsic physical attributes of the 
target which govern its interaction with the electromagnetic field of the radar signal, but the 
electromagnetic field in the vicinity of the target is not observed by the radar, nor even is the field arriving 
at the receiving antenna. In most cases, though, the observables  can be represented mathematically by an 
integral operator which maps the set of target ‘states’ into the space of radar output signal parameters. One 
other category of observable needs to be mentioned – perturbations to the target’s environment which 
might be independently observable, such as ship wakes. Of course, the interaction with the environment 
also reacts on the target’s intrinsic observables, such as the airframe oscillations causing micro-Doppler 
modulation.  
Clearly, the first issue to be decided in any target classification task is to establish which observables will 
be available for consideration. The second step is to explore their information content, as embodied in 
their statistical properties, so that the classification scheme can make most effective use of the  ‘evidence’.  
Subsequent development deals with the design of the classifier and the prediction of its performance; these 
later stages will not be addressed in this paper.  
Target classification may thus be viewed as a statistical decision theoretic problem based on observations 
of the radar output s, subject to specified constraints on the degrees of freedom of the radar measurements. 
For example, the observations may take the form of : 
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• a single look, by which is meant (for HF radar) almost invariably the spectral decomposition 
of time series corresponding to a  single coherent integration period, from a number of 
simultaneous spatial cells 

• a sequence of looks, with the advantage of multiple sampling of any stochastic behaviour, as 
well as the prospect of establishing a track on each target  

• a sequence of measurements carried out with different radar parameters (eg carrier frequency, 
scattering geometry), possibly as an adaptive decision-making process 

The process of classifying (recognising, identifying) a target echo may exploit any information thus 
obtained, and make use of any ancillary information, such as anticipated target behaviour, in conjunction 
with the direct information which has been imprinted on the received radar signal by the physics of 
scattering from the target and retrieved by the radar reception and signal processing.  

 

# ACCESSIBLE 
FUNCTIONALITY 

OBSERVATION  
METHODOLOGY 

CLASSIFICATION 
DOMAIN 

5 network control stereoscopic operation 

multistatic operation 

cooperative waveforms 

multi-aspect RCS 

bistatic RCS 

nonlinear scattering 

4 individual radar control multi-frequency operation 

spatial mapping  

optimised clutter calibration 

spatio-polarisation agility 

multi-frequency RCS ratios 

distributed echo analysis 

absolute RCS 

polarisation scattering 
matrix  

3 signal processing 

(beyond basic range-
azimuth-Doppler 
decomposition) 

high-resolution Doppler 

time-frequency analysis 

higher-order spectrum analysis 

harmonic extraction 

micro-Doppler 

time-varying parameters 

nonlinear scattering 

periodic internal motions 

2 processed data  

        -  multiple dwells 

target dynamics 

statistical echo analysis 

targets  in company 

multimode analysis 

track history 

inter-track correlation 

track future 

performance data 

monostatic RCS  

RCS ratios 

differential RCS  

point-of-origin 

mission analysis 

response to stimuli 

1 processed data  

        -  single dwell 

peak amplitude  

peak coordinates  

peak phase modulation 

monostatic RCS  

performance data 

environmental coupling 

 

Table 1: Levels of system control and corresponding domains for target classification 
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This latter quantity – the information imprinted on the radar signal by the target – is usually termed the 
target’s radar signature.  Unfortunately such a definition is lacking in two respects. First, it appears to 
confine attention to the electromagnetic phenomena occurring at the target, and fails to mention the role of 
the observing radar – ‘the paper on which the signature is written and the pen which writes it’. Second, it 
ignores certain target-related perturbations to the received signal, such as shadow effects and some 
multiple scattering processes. While this is true for all radars, it acquires special significance in the case of 
HF radars, where propagation is often hard to separate from scattering. For this reason there is merit in 
adopting a more pragmatic definition.  
Following [9], the generalised radar signature (GRS) of an object x is defined  as : 
 
 GRS (x) = response of radar when x is present - response of radar when x is absent 
 
This immediately raises the question as to how radar resources should be allocated and scheduled in order 
to provide the best outcome because the radar timeline is generally heavily committed, so opening up 
possibilities for extracting more detailed information is generally possible only at the expense of coverage 
or revisit rate. The situation is complicated by the variability of the HF propagation environment, which 
impacts on tasking through the need to balance mission priority against the ability of the prevailing 
conditions to support that mission. Thus it is highly probable that a radar attempting to classify targets will 
be obliged to operate in modes which are sub-optimum insofar as they do not allocate the maximum of 
potentially useful resources to this task. Table 1 presents a plausible hierarchy of accessible functionality, 
together with the corresponding options for radar signature measurements relevant to target classification. 
 

2.3 Complications arising with HF systems, propagation and scattering 
With most conventional  radars, operating at microwave frequencies, the various terms in the radar 
equation can be assumed known or calculable to reasonable precision. Propagation losses are dominated 
by the inverse square law dependence, noise by internal thermal noise, antenna gains are accurately 
known, the transmitted polarisation is the same as the polarisation incident on the target, range resolution 
cell size can be orders of magnitude smaller than overall target dimensions, and so on. Correction terms 
for additional losses due to polarisation mismatch, antenna insertion loss, etc, are often introduced, but 
these effects are relatively modest and, in any event, generally known with considerable accuracy.  Thus, 
it is normally possible to interpret the received echo power directly in terms of the effective RCS of the 
scattering object. Under these circumstances, target classification has a very favourable prognosis. 
In the case of HF radars, virtually all these convenient idealisations must be discarded, as departures from 
the idealised models mentioned above are typically measured in tens of dB. The reasons for this are 
evident from a consideration of the properties of the individual operators in the radar process model and 
the environmental phenomena which impact on them; some of these are summarised in Table 2.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Some features of ionospheric radiowave propagation 
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OPERATOR ATTRIBUTE   or  ENVIRONMENTAL PHENOMENON     
T - limited to fixed linear ( V or H ) polarisation 

- antenna array gain is imprecisely known 

MSKY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSURFACE 

- path losses are frequency dependent, with deviative and non-deviative absorption   
- wave-like disturbances in the ionosphere tilt, focus and defocus the radiowaves 
- various large-scale processes in the ionosphere modulate the phase of traversing 

radiowaves, causing Doppler shifts and Doppler broadening  
- generalised Faraday rotation causes unknown random, time-varying, frequency-

dependent  transformation of the polarisation state of the radiowave on each transit 
- only a limited band of frequencies will propagate to a given region at one time 
- the available frequency band can change on time-scales of 10 minutes 
- phase and group paths are strongly frequency-dependent, limiting signal bandwidth 

and hence range resolution 
- wavefronts after ionospheric reflection are no longer planar/cylindrical but 

corrugated, so scattering geometry is not strictly determinstic  
- the ionospheric plasma supports nonlinear coupling mechanisms by which different 

transitting signals can cross-modulate 
- multiple scattering of surface waves modulates them in phase/Doppler, 

direction of travel, time delay, and  azimuthal angle of arrival 

S - the radar wavelength is comparable with target size, denying access to target detail 
- ship targets are immersed in a field of scattering water waves with comparable 

speeds and RCS, with no prospect of spatial domain separation   
- uncertainty in the propagation path means that the scattering geometry is not 

accurately known, especially in elevation 
 

R - only a single polarisation component of the received field is   measured  ( V or H ) 
- array calibration is difficult and may depend on direction of arrival, etc 
- imperfections in receivers cause severe significant distortion 
 

n - under almost all conditions, HF radars are externally noise-limited 
- the external noise is strongly non-Gaussian  

 
Table 2 : Phenomena impacting on the process model operators at HF 

3.0 MODELLING AND MEASUREMENT OF TARGET SIGNATURES  

 
As mentioned in Section 2.2, the first stage in NCTR development is to identify the observables which 
will be used for the analysis. A  list of possible candidates is provided in the Introduction and, in a slightly 
different form, in column 3 of Figure 1. The stochastic nature of almost signature component 
measurements means that classifier design and the achievable performance will be governed by the 
underlying probability distributions of these observables. These distributions are not always accessible to 
direct measurement, but a deep understanding of the physical origins of stochastic behaviour can be used 
instead to infer statistical behaviour, construct models, and generally facilitate a Bayesian estimation 
approach. In this section, some of the more obvious observables used for target classification, recognition 
and identification are considered and illustrated with  data from various Australian HF radar programs. 
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3.1 Classification based on target RCS estimates 
The scattering of radar signals from a deterministic target is usually described by the target polarisation 
scattering matrix which relates the scattered field to the incident field,   
 scat incE S E=
r r

%  
from which the conventional RCS for the scattering process where the incident field is α-polarised and the 
scattered field β-polarised is defined by 
 
σβα  =  Sβα*. Sβα   
 
At HF the linear V-H polarisation basis is normally appropriate because of antenna designs. This 
representation applies for bistatic and monostatic scattering. A key advantage of the scattering matrix 
formulation at HF is that the most important subspaces – those spanning the azimuthal bistatic geometry 
combinations – are conveniently represented graphically, as illustrated in Figure 4. In almost all practical 
situations, the variations with elevation are less sensitive and occur operationally on much slower 
timescales.  Classification based on RCS attempts to establish a mapping between scalar RCS estimates  
and the set of candidate targets.  Unfortunately, as discussed in Section 2.3, ionospheric polarisation 
transformations and propagation losses intervene to complicate this process, forcing a statistical treatment. 

3.1.1 RCS Modelling 

In order to develop a target recognition capability, some library of signature data must be accumulated. 
Opportunities to collect real-world measurements are obviously limited, and scale model measurements 
are expensive and time-consuming, so the training sets for RCS-based classification are most conveniently 
derived by numerical modelling. 
 

 
 

Figure 4: (a) Magnitudes of the elements of the bistatic polarisation scattering matrix of an 
aircraft, and  (b)  phase plot of the HH component 
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Figure 4 shows typical outputs of the Jindalee radar signature modelling facility. In these examples, the 
magnitude of the elements of the polarisation scattering matrix are plotted for all bistatic Tx – Rx azimuth 
combinations, at a common fixed elevation angle (left picture). In each coloured square, the abscissa 
corresponds to incident azimuth, ranging from 0° to 360°, with the ordinate representing scattered azimuth 
from 0° to 360°. The trailing diagonal is the monostatic solution. On the right, in this example, the phase 
of the HH element of the polarisation scattering matrix is plotted against the same coordinates.   

3.1.2 Model validation 

Experimental validation of computer model predictions can be performed in two ways – by scale model 
measurements in an anechoic chamber, and in field trials with real targets collocated with suitable 
reference scatterers  to provide absolute RCS calibration. Figure 5 shows examples of each of these  

 
Figure 5: (a) Comparison of  theoretical predictions with scale model measurements of the H-H 
RCS of an aircraft, carried out in the DSTO anechoic chamber,  and  (b) comparison of 
theoretical predictions with calibrated at-sea measurements of a ship (V-V component). 

approaches.  In Figure 5(a), anechoic measurements of a 1:144 scale model aircraft are compared with the 
predictions of NEC2 – the well-known numerical code based on the method of moments technique.  In 
this example, there is agreement to within 2 – 3 dB over most of the (scaled) frequency range 8 – 20 MHz, 
degrading at lower frequencies. More significantly, a consistent trend is apparent, with the model under-
estimating at low frequencies and over-estimating at high frequencies.  This is a consequence of the 
inadequate fidelity of the numerical grid model used for the calculations which was matched to 10 MHz. 
Adapting the model as a function of frequency yields results to better than 2 dB across the band. Figure 
5(b) shows the results of field trials with an HF surface wave radar and a cooperating vessel, which carried 
out manoeuvres around a calibration buoy at a range of about 50 km from the radar. Despite the 
complexity of the target and the complications introduced by the rough sea in the vicinity of the target, the 
discrepancy between theory and measurement (lower panel) is within 3 dB, generally 1 – 2 dB, except 
near the null which occurred at one aspect. The conclusion to be drawn from these examples is that 
modelling to within 2 – 3 dB is achievable, even for reasonably complex targets.   
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3.1.3 Precision requirements 

In many practical situations the inter-class distances are small, imposing stringent requirements on 
modelling fidelity. This is illustrated in Figure 6 which shows the close similarity of the bistatic RCS of 
two aircraft of similar overall dimensions as a function of bistatic angle for illumination at an incidence 
angle of  30°.   The aircraft concerned have very similar dimensions, as shown in Table 3 (this example is 
taken from a study undertaken in 1986). This type of study establishes minimum requirements for model 
precision. 

 

             
 

Figure 6: Bistatic RCS comparison for one illumination geometry 

AIRCRAFT LENGTH (m) WINGSPAN (m) HEIGHT (m) CRUISING 
SPEED (km/hr) 

Aircraft #1 42.4 34.3 10.8 900 

Aircraft #2 40.6 32.9 10.4 917 

Table 3: Major dimensions of Tu-22M-3 and Boeing 727-100 

3.1.4 RCS calibration using sea clutter 

Sea clutter at HF has a characteristic Doppler spectrum which embodies detailed information about the 
distribution of waves on the sea surface, that is to say, the directional wave spectrum. Knowledge of this 
spectrum at one radar frequency suffices to calculate the absolute RCS per unit area of the sea (scattering 
coefficient) at any HF frequency. Combined with the resolution cell area, this immediately yields a 
reference RCS enabling absolute calibration. Techniques for estimating the ocean directional wave 
spectrum from the radar Doppler spectrum, have been developed by several researchers (eg.[10-12]); an 
example of this process is shown in Figure 7. On the left is a measured Doppler spectrum, superimposed 
on which is the ‘best fit’ Doppler spectrum obtained by optimising a 7-parameter model of the directional 
wave spectrum. On the right is an example of a measured Doppler spectrum together with the discretised 
directional wave spectrum computed by an iterative non-parametric technique ([13]).  
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Figure 7: (a) Best-fit 7-parameter sea clutter Doppler spectrum model matched to measured data  
(b) measured Doppler spectrum (right) with the inferred directional wave spectrum (centre). 

3.1.5 Bistatic RCS and stereoscopic observations 
 
Inspection of figures 4 and 8 confirms that target classification information is distributed across the full 
bistatic domain [14]. The opportunity to collect bistatic RCS only arises when spatially-separated transmit 
and receive facilities view the same region, which might seem to be a rare (and extravagant) arrangement. 
One consideration which makes it worthy of serious study is the prospect of exploiting transmitters of 
opportunity to collect data which supplements that provided by dedicated radar facilities [15].  
 

3.2 Classification based on target RCS ratios 

                
Figure 8: (a) Magnitude of the ratio of the HH bistatic RCS of fighter aircraft  #1 at two 

frequencies, and  (b) for fighter aircraft  #2  at the same two frequencies.  
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Given the difficulty and often impossibility of calibrating the target echo by means of sea clutter or other 
reference scatters in the vicinity of the target, classification based on absolute RCS must often be 
abandoned in favour of techniques based on target RCS ratios.  Figure 8 shows how the ratios of the 
bistatic RCS (HH component) at two frequencies differ between two fighter aircraft. This kind of 
information can be used for target discrimination / classification  when the propagation losses cannot be 
inferred. By selecting two frequencies which yield very different RCS values for target #1, say, and such 
that the differential propagation loss is not likely to exceed some threshold 1 2( ) ( )T RCS f RCS f< −  
a simple binary classification rule can be formulated. Repeated application of the rule, with a suitable set 
of frequencies, provides, in principle, a multi-class recognition capability [16]. 

3.3 Classification based on target RCS distributions 
As noted in Section 2.3, ionospheric propagation subjects the signal to a host of phenomena which 
modulate the signal’s amplitude, phase, frequency, polarisation state, harmonic content, and so on. It is 
therefore desirable, if not essential, when utilising echo amplitude information, to employ statistics which 
are commensurate with the required discrimination. The design of suitable statistics is nontrivial, keeping 
in mind the operational constraints, but modelling and experiment have established some guidelines [17].  
 

                          
 

                Figure 9: (a) Predicted and measured histograms of inferred scalar RCS. 
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Figure 9a shows the predicted distribution of inferred RCS for an aircraft target at a prescribed altitude, 
taking into account the ground reflections and the major ionospheric processes, and employing correct 
bistatic RCS values, averaging with respect to a designated probability distribution for the generalised 
Faraday rotation.  Figure 9b presents histograms of skywave radar measurements of three specially 
constructed targets, with different scattering matrices, designed to test the adopted models for the 
ionospheric propagation phenomena. Finally, Figure 9c compares the measured distributions of inferred 
RCS from two different ships – one merchant, one naval.  
 

3.4 Classification based on target modulation signatures 
 
At HF the radar wavelength is comparable with the target dimension, so it is not meaningful to attempt to 
isolate the contributions to the scattered field from individual parts of the target, some of which may be 
moving relative to others. Instead, for non-relativistic targets, the scattering may be approximated quite 
accurately by the temporal evolution of the field scattered from a target whose spatial configuration may 
be taken as instantaneously at rest in the coordinate frame of its centre of mass (the quasi-stationary 
approximation [18]). The frequency spectrum (‘Doppler’) of the field scattered from such a time 
dependent target can then be written 
 

( ) ( ) ( ) ( )i t i t
scat scat incE E t e dt S t E t e dtω ωω − −= =∫ ∫
r r r

%  

 
so, for a time-harmonic incident field,  0

0( ) i t
incE t E e ω=
r r

, 
0( )

0( ) ( ) i t
scatE S t E e dtω ωω − −= ∫
r r

%  

 
In the case of periodic modulation of the target geometry (or electrical properties), with some period T and 
corresponding  fundamental frequency 1T −Ω ≡ , 
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so, after demodulation,  the signature takes the form of a line spectrum at harmonics of the fundamental 
frequency of modulation Ω [19] (shifted by the Doppler associated with the forward movement of the 
helicopter). In the case of a helicopter rotor or aircraft propeller,  

( ) ( )shaft rate number of bladesΩ = ×  

so the line spacing alone provides a characteristic signature, unique in almost all cases, and independent of 
the line intensities or the transmitting and receiving antenna polarisations. Figure 10 shows the modulation 
signatures of two helicopters measured in 1983 with the Jindalee radar. The discrimination power of these 
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signatures is obvious, so helicopter classification / recognition is a viable mission for HF skywave radar. 
In contrast, Figure 11(a), which shows a Lockheed P-3C Orion, one of the most common propeller-driven 
military aircraft, with its 4.11 m diameter 4-bladed propeller. Figure 11(b) is the theoretical spectrum 
computed for a comparable propeller-driven aircraft. The strongest modulation sideband is almost 50 dB 
below the ‘DC’ term (often erroneously referred to as the ‘skin’ echo), so only if the target SNR were to 
exceed ~ 60 dB would there be any prospect of recognition.   
 

 
 

Figure 10:  Measured Doppler signatures of two helicopters (Jindalee, 1983) 

         
 

 Figure 11: (a) Lockheed P-3C LRMP aircraft showing its 4.11 m diameter propellers, and (b) the 
computed line spectrum signature for a different propeller-driven aircraft  

3.5 Classification based on the target polarisation scattering matrix 
The methods discussed so far rely on estimates of target RCS derived from scaled projections of unitary 
transformations of the scattering matrix, or on statistical distributions or ratios of such projections. Clearly 
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it would be much more informative of the target if the entire complex scattering matrix could be determined 
[20], rather than samples of the squared modulus of some unknown linear combinations of its elements. 
This would seem to be an impossibility – the signal leaving the transmitter undergoes a ‘random’ 
polarisation transformation en route to the target, samples the scattering matrix, the undergoes another 
random transformation en route back to the receiver, so how could the consequences of these unknown 
transformations be removed ? Figure 12 shows this hypothetical polarisation transformation sequence and 
the resultant mismatch at the receiving antenna. Surprisingly, as reported in [21], under certain constraints 
the scattering matrix might be determinable, though development of a practical classification scheme 
based on this is in its infancy.  
Assuming for the moment that the scattering matrix were observable, the question of how to perform 
classification / recognition arises. One approach, which has been explored in some depth [22], is to 
compute the characteristic eigenvectors associated with the optimal polarisation states, that is, the states  
which correspond to solutions of a family of extremal problems, as formulated by Kennaugh (see Huynen 
[23]) and others in the context of microwave polarimetry. These solutions have varying sensitivities to 
illumination geometry, radar frequency and so on, but numerical experiments using computed scattering 
matrices for two fighter aircraft found well-behaved differences which could be used in a target 
classification scheme based on the geodesic metric on the Poincare sphere. An example from this study is 
presented in Figure 13, which shows elevation and plan views of the Poincare sphere with the loci of the 
characteristic eigenvectors traced out as the target azimuth is varied.  

                          
 

Figure 12: The sequence of polarisation transformations in HF skywave radar 
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                   .  

Figure 13: Trajectories of optimum polarisation states under target aspect changes 

Of course, in the case of HF surface wave radar, this technique is of no use as the propagation of surface 
waves over seawater is overwhelmingly confined to vertically polarised fields.  

3.6 Classification based on other scattering mechanisms 

3.6.1 Nonlinear scattering 

Most targets of interest can be modelled as linear media, so the scattering matrix representation is valid. 
On occasion, though, targets can manifest nonlinear electromagnetic properties – the so called ‘rusty bolt’ 
phenomenon associated with ships is an example. Under these conditions,  the conventional notion of RCS 
must be generalised, as described in [24].   

3.6.2 Distributed scattering 

Multiple and diffuse scattering processes are potentially active in the resolution cell, so energy arriving at 
the receiver via these mechanisms will be distributed across time delay, azimuth and elevation angle, and 
Doppler. Detailed modelling (see eg. [15]) has shown that, under some circumstances, these contributions 
can contribute to target classification for both skywave and surface wave radars. 

3.7 Classification based on target kinematics 

It is a consequence of aerodynamics and fluid dynamics that aircraft and ships achieve their optimum 
performance in terms of economy, or speed, or manoeuverability, over a relatively narrow range of 
kinematic parameters – speed, altitude, climb rate, velocity relative to prevailing seas, and so on.  While 
one cannot presume that classification / recognition based on this kind of target information will be robust 
under all circumstances, it is surprisingly effective and adds to the dimensionality of the classification 
space, thereby enhancing classifier performance.  
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3.8 Classification based on target IFF transponders 
So far the discussion has focussed on non-cooperative target classification and recognition. Yet there are 
situations where IFF is a useful facility, even at over-the-horizon distances. Various beacons able to serve 
in this capacity have been developed and tested on ships, aircraft and, of course, on land. The example 
shown in Figure 14 was measured in 1977; the IFF was mounted on a small (30 m) patrol boat.  
   

            
 

Figure 14: Cooperative target recognition – IFF modulation signature at a range of 1470 km 

4.0 CONCLUSIONS 

In spite of some daunting challenges posed by the propagation mechanisms involved and the vagaries of 
the environment, a modest target classification capability is slowly emerging as a potentially viable option 
for both skywave and surface wave radars. Given a deep understanding of the physics involved, and 
access to sophisticated computer modelling codes, it would seem possible, in principle, to exploit the 
technical features of advanced HF radar systems to achieve a limited but still operationally significant 
target classification capability. 
 
The prospects for the future emergence of a universal target classification and recognition system are not 
nearly so bright. The fundamental information limits imposed by under-sampling, and the ill-posedness of 
the corresponding inverse problems, make it unlikely that HF radar will deliver all the classification and 
recognition capabilities desired by the operational community, while identification in the intimate sense 
defined in this paper is not likely to emerge except as an outcome of data fusion with other sources. 

While it is gratifying that some success has been achieved with these approaches, it is an unfortunate reality 
that almost all existing HF radar designs have largely ignored the issues related to target classification, and 
hence fail to incorporate some features which could enhance their ability to extract target information 
leading to reliable classification, recognition and identification.  
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SUMMARY  

This paper describes the design of the automatic target classifier which has been introduced into the 
AMSTAR Battlefield Surveillance Radar.  It discusses the requirements which have driven the design of 
the classifier, the data which is used to make the classification, the choice of Linear Discriminant Analysis 
as one of  the classification techniques used and the use of Principal Components Analysis to simplify the 
training of the discriminator.  It also discusses the addition of other classes by the use of other data about 
the targets.  It includes a discussion of the testing of the classifier and the performance achieved. 

1.0 INTRODUCTION  

The classifier described in this paper has been designed and implemented for the AMSTAR (Advanced 
Man Portable Surveillance and Tracking Radar) radar.  This is a man-portable battlefield surveillance 
radar, derived from the earlier MSTAR radar [1].  Fig. 1 shows a picture of the radar.  The principal 
features of the radar are: 

• small size and light weight 

•  low power consumption enabling operation from long periods from rechargeable batteries and 

•  very good Doppler performance. 

The small size, light weight and low power consumption allow the radar to be man-portable.  The Doppler 
processing allows it to perform its battlefield surveillance task, detecting slow-moving personnel and other 
targets, but rejecting clutter. The original MSTAR radar had been in service with the UK and other armed 
forces since 1989. It was designed primarily as a artillery spotting aid, for locating targets of interest and 
observing fall of shot.  The advanced MSTAR (AMSTAR) variant originated as a Mid-Life Improvement 
(MLI) of the original design which was undertaken during the year 2000.  In common with most, if not all, 
radars of its general class, MSTAR is a coherent radar and has from the outset possessed a  so called 
'audio' output which can be used by the operator to classify targets.  This audio mode uses a sample-and-
hold to 'stretch' the train of pulses returned from a target so that they form a continuous signal.  The 
frequency spectrum of the resulting signal is the Doppler spectrum which would be obtained from CW 
illumination of the same target.  The radar operates in the upper J-band and for this carrier frequency the 
Doppler frequencies lie within the audio band, being of the order of a kilohertz, and so can be presented as 
an audio tone to the radar operator, via headphones.   After listening to the target for a few seconds a 
trained operator can classify it with a high degree of accuracy. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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The Doppler audio frequently sounds surprisingly like the actual sound of the object, perhaps because the 
same underlying mechanisms modulate both the sound which the target makes and its Doppler spectrum. 

The audio-based classifier has three deficiencies, however.  The first deficiency is that it must stop 
scanning and stare at the target which is to be classified, interrupting the execution of its other tasks.  The 
second deficiency is that classification imposes a high workload on operator.  He must use the cursor to set 
the radar to the desired bearing to 'stare' at the target of interest, and must frequently search in range to 
find the range cell which contains the target of interest.  He must then listen intently to the audio to decide 
the target class.  The third deficiency with such a classifier is that the operator must be trained to 
discriminate the different sounds made by different targets, which require a considerable investment in 
time and resources. 

An automatic classification aid which operates whilst the radar continues to perform its surveillance is 
thus a significant aid in reducing the operators' workload.  The classifier is thus required to operate 'on the 
fly' during the normal surveillance dwell of the radar so the operator does not have to interrupt normal 
surveillance operations to obtain a classification - classifications must be generated automatically for all 
plots and made available on demand.  

For the surveillance application, the classifier has to be sufficiently accurate that after observing a target 
for a few scans the operator can be reasonably confident of its class.  It is important to realise that this 
application does not need the same level of reliability as some other non-cooperative target classification 
applications (see, for example, reference 2), since the operator can make use of other information, such as 
target speed and, if desired, the audio mode, to supplement the information provided by the automatic 
classifier. It should be emphasised again that the purpose of the automatic classifier is to relieve the 
operators of the workload required to listen to the Doppler signals of each target one at a time.  In an 
environment with few targets, the operators still generally prefer the confidence they obtain by listening to 
the Doppler from a target, but when there are many targets present, that is not always possible and then the 
automatic classifier can be used as an aid to help to decide which targets should be examined individually. 

2.0 CLASSIFICATION DURING THE SCAN 

Since the radar must classify the target as it scans past during its normal surveillance operations, the 
sample of the Doppler which it can use is limited in length.  The dwell during which the classification 
must be performed is typically less than 100ms.  This time is much shorter than that used for audio 
classification, where the operator can in principle listen to the Doppler for as long as he likes and will 
typically listen for several seconds.  This difference between the 'audio' case and the 'scanning'  case 
means that the techniques which are appropriate for audio recognition are not necessarily appropriate for 
the automatic classifier.  Indeed, the fact that audio-based classification is possible does not in itself prove 
that classification with a scanning radar is possible.   

Jahangir et al. [3] describe a Doppler classifier which uses speech-recognition principles, but they 
concentrate more on longer audio samples and show that the performance degrades with shorter samples.   
They point out that a classifier, such as ours, which treats the spectrum as stationary and performs a single 
transform over all of the data is likely to be sub-optimal for longer data sets, where the spectrum generally 
changes with time.  In our case, however, the shortness of the samples means that the spectrum can 
reasonably be considered to be stationary.  To continue the analogy with speech: conventional speech 
recognition looks at the chain of successive phonemes, whereas this 'scanning mode' classifier is trying to 
perform a task which is closer to trying to recognize a single phoneme. 
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3.0 CLASSIFIER ARCHITECTURE 

For the MSTAR MLI, the set of possible target classes between which discrimination was required was: 

•  Personnel 

•  Wheeled Vehicle 

•  Tracked Vehicle 

Internally the classifier also generated the classes of  

• Unknown 

• Reject. 

The later versions also includes the classes of  

• Helicopter 

• Small ship 

• Large ship 

The original MSTAR MLI variant, which distinguished between  Personnel, Wheeled Vehicles and 
Tracked Vehicles, used a linear discriminant[4] for the classification, with separate templates for each of a 
number of velocity bands, and used principal component analysis[5] to simplify the training process.  This 
was preceded by pre-processing to organize the data into a form which was suitable for the linear 
discrimination process. The set of velocity bands ensured that the class of 'Personnel' could not be returned 
from a target which was moving faster than a running man. 

3.1 Rejected and Unknown 
It is important to be able to recognize the cases where the classification breaks down. A class of 
'Unknown' is returned if the Doppler sideband information is likely to have been corrupted by noise 
sidebands returned from a much larger clutter return in the same range/azimuth cell. This process is also 
refined to allow the target itself to be rejected if it may be purely a detection of the transmitter noise 
sidebands.  The stability of the radar is such that this almost never happens, but it is a theoretical 
possibility in the presence of extremely large clutter returns at relatively short range, and is an easy 
condition for which to check within the classifier, since all of the preliminary work the has already been 
done in order to check the validity of the Doppler sideband information.  

3.2 Helicopters 
As shown in figure 12 of reference 6, the signature of the helicopter blade 'flash' is very distinctive.  The 
approach which has been taken is to look for significant energy in the part of the spectrum which is 
moving in the opposite sense from the body of the object.  Since the blade flash is a fleeting phenomenon, 
it is not appropriate to process it using the relatively long sampling windows used by the linear 
discriminant system.  The actual detection process is therefore performed in the time domain, where the 
energy from the blade flash is concentrated, rather than in the frequency domain, where it is diffuse, so the 
detection process can then be more efficient.  The ability to detect the blades, together with the basic 
radar's ability to detect a crawling man, i.e. a target which is moving extremely slowly, means that the 
radar now has an effective capability to detect as well as recognise hovering helicopters.  

The process of detecting the blade-flashes was found to be significantly more reliable than attempting to 
use the rotor hub motion as a classification 'feature' in a linear discriminant system. 



A Doppler-Based Target Classifier Using 
Linear Discriminants and Principal Components  

26 - 4 RTO-MP-SET-080 

3.3 Ships 
Ships are in effect defined as targets which are not helicopters but which are over the sea.  Preliminary 
studies were made to look at the effectiveness of a Doppler-based classifier for ships.  Although under 
some circumstances the audio obtained from the Doppler from ships can be quite distinctive, it was found 
to be difficult reliably to incorporate ships into the scheme of the linear discriminant, because of the 
variability of their signatures. 

It may be possible in some cases to determine whether the clutter background is land or sea from its 
statistical variations and Doppler spectrum, but it was reckoned that, again, it would be very difficult to do 
this reliably, particularly with a radar like MSTAR which was designed to reject the clutter, so in the end 
this decision was made using maps and this determines whether a target is assumed to be a land target or a 
ship.  The details of this process are discussed in section 8. 

3.4 Architecture 
When the classifier was extended to include the additional classes, the decision was taken to move away 
from the almost pure 'linear discriminant-based' approach originally used.  The positive reason for doing 
this was to take account of additional information, such as radar cross section, which although not a 
reliable discriminant in itself, does contain useful information.  The negative reason was to avoid the 
possibility of the classification being degraded as more classes are added.  For example, if there are N 
classes then N-1 binary comparisons might be made to determine the target class.  If each classification 
has a probability of p of being correct, then the overall probability of correct classification is only  

p0 = pN-1  

For example, if p = 90% and N =3, typical of the original classifier, then p0 = 81%.  Extending the number 
of classes to 5 would therefore be expected to reduce the probability of correct classification to only about 
66%. 

Another desire is to be able, where the resultant update rate is acceptable to the user, to correlate the 
classification obtained on the same object on different scans, again to improve the performance. 

The overall algorithm of the classifier is thus: 

 if target is below the clutter sidebands then Class :=  'Reject' 
  else  if Doppler sidebands are masked by clutter sidebands then Class :=  'Unknown' 
   else  if target is small and slow-moving then Class :=  'Personnel' 
    else  if  'blade flash' detected then Class :=  'Helicopter' 

    else  perform linear discrimination to distinguish between  
'Wheeled,' 'Tracked' and 'Personnel'; 

 if  the target is over the sea  and  Class in ['Personnel,' 'Wheeled,' 'Tracked']  then 
  if radar cross section > threshold then Class := 'Small Ship' 
  else  Class := 'Large Ship'; 
 compare class with other classifications of the same object; 
 if there is a clear winner then  return weighted majority class 
 else return 'Unknown.' 
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4.0 PRE-PROCESSING THE SIGNAL SPECTRA  

The sequence of samples obtained during the radar's dwell is first Fourier transformed to form a spectrum, 
representing the Doppler shifts of the body of the target and of any parts of the target which are moving 
independently of the main body at that moment.  Figs. 2 to 4 show typical spectra of a wheeled vehicle, a 
tracked vehicle and a man walking.  The clean spectrum of the wheeled vehicle can be contrasted with the 
much more complex, but asymmetrical, spectrum of the tracked vehicle, and this can again be 
distinguished from the more symmetrical spectrum of the walking man.  

This spectrum is also used to assess whether the target should be 'Rejected' or classified as 'Unknown' on 
account of the level of clutter present.  

4.1. Pre-Processing for the Linear Discriminant Algorithm 
Before the spectrum is presented to the linear discriminant classifier it is edited in the frequency domain to 
remove Doppler cells which it is calculated can only contain noise.  Typically 100 Doppler bins are kept to 
ensure that all significant features of the signal are retained.  The spectrum is also regularized by moving 
its peak, which is assumed to represent the Doppler shift of the bulk of the target, to the centre of the 
spectrum.   

To avoid too great a degree of reliance on the normalization of the spectra with respect to different target 
velocities, six separate classifiers are used, covering differing velocity bands. The body velocity is 
estimated from the peak of the spectrum and the signal is presented to the appropriate classifier.  

The spectrum is also normalized in amplitude.  This normalization presents some theoretical problems 
which can be solved only by experimentation to provide an acceptable ad-hoc solution:  if the spectrum is 
not normalized then changes in signal level can affect the signature, confusing the classification process.  
If it is normalized, however, potentially useful information about signal levels is lost.  Normalization also 
assumes implicitly that the amplitudes of all the Doppler components change together, but this has in 
practice been found to be the more successful approach.  

The normalized spectrum is then treated as a vector of features which is passed to the classifier. 

5.0 ROBUSTNESS TO SIGNAL TO NOISE RATIO 

The Doppler-based classification approach is relatively robust to the signal to noise ratio of the targets.  
Provided that the signal to noise ratio is sufficiently high for the Doppler sidebands to be distinguished 
from the noise, the classification performance is substantially independent of that ratio.   

Although the power level in any one Doppler sideband is relatively low compared with the body return, 
the total power in all the sidebands is quite high.  The 'classic' radar range equation also means that 
reduction in classification range compared with the detection range is proportional only to the fourth root 
of the ratio of 'body' to 'sideband' power, so good classification performance is maintained over most of 
the radar's detection range against a given target.  

The detection process, and likewise the classification process, of the AMSTAR radar is substantially 
immune to the effects of clutter because: 

•  low power radars such as this have relatively low dynamic ranges, making good clutter 
suppression easier, 

•  the all-solid state design makes the radar very stable 
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•  the fine Doppler resolution makes it easy to distinguish even slow-moving targets (and their 
Doppler sidebands) from the Doppler sidebands of the nominally-stationary clutter. 

6.0 CLASSIFICATION APPROACH 

Since the radar must have low power consumption any algorithms used in the real-time classification 
process must be simple, although complex, time-consuming processes can be used, if required, for off line, 
training.  

6.1. Fisher Linear Discriminant 
A statistical classification technique, Fisher's Linear Discriminant Analysis (LDA), was chosen [4].  This 
provides an optimum discrimination solution for a linearly separable problem.  A possible alternative 
approach would be to use a neural network [6], of which a multi-layer perceptron, trained by back-
propagation would perhaps have been the most appropriate form.  The principal theoretical advantage of 
the neural network is that it can cope with problems in which the two classes are not linearly separable.  
The potential difficulties of training the network mean, however, that it is generally best to try a linear 
technique first and stick to that if it can give adequate results.   

It is sometimes very hard to understand the inner workings of a neural network, although the behaviour of 
the LDA can also sometimes be hard to understand in a multi-dimensional problem.  Understanding how 
the algorithm is working is of considerable practical benefit when it is to be used in a radar system.  It can 
help to show whether the performance which has been achieved is as good as it should be, whether the 
pre-processing and the choice of classification parameters have been appropriate and, on a more mundane 
level, even whether the algorithm has been coded properly. 

 6.1.1. Choice of Decision Point 

As mentioned above, the basic LDA treats the normalized Doppler spectrum as a feature vector, treating 
each frequency bin as a separate dimension.  As is well-known, the algorithm determines the hyperplane 
which best separates the points in one class from another.  

The position of this hyperplane is determined from the statistical distributions of the positions of the 
returns from the two classes.  One 'tunable' parameter is the criterion for the position of this line.  
Alternative definitions allow it to be, for example, at the point where the probability distributions overlap, 
so that the most probable answer is given for any particular point in the hyperspace.  If the distributions 
have different covariances, however, this is not necessarily the same as the position which gives equal 
probabilities of error for the two classes.    This point is illustrated in Fig. 5.  In practice, a hybrid approach 
was used in the AMSTAR classifier, which was chosen to give the best balance of performance overall. 

6.1.2. Run-Time Complexity 

The actual output of the training stage is the vector representing a normal to the discriminant line, or, more 
generally, a normal to the discriminant hyperplane.  The test of a particular spectrum is performed by 
calculating the scalar product of the feature vector and this reference normal, which projects the point in 
the hyperspace onto that normal.  The choice of class is made by determining to which side of the 
discrimination hyperplane the point falls.  The run-time complexity is thus one multiplication and one 
addition per element of the spectrum plus one comparison, which is all very simple compared, for 
example, with the Fourier transformation required to generate the spectrum in the first place.  
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6.2 Principal Component Analysis 
The amount of training data required increases with the number of elements in the vector.  As mentioned 
above, typically 100 elements are used in the vector, but it is clear that the number of independent 
'features' in the data is far fewer than that.  If the dimensionality of the test vector can be reduced to reflect 
the number of degrees of freedom in the underlying data then the amount of training data can be reduced.  
A well-known way of doing this is to use the Principal Components Analysis (PCA) technique [5], also 
known as the Karhunen-Loeve transform..   

As is well known, the principal directions found by the PCA are the eigenvectors of the autocorrelation 
matrix of the data, and the significance of each dimension is indicated by the relative value of the 
associated eigenvalue, so the simplification of the problem is achieved by retaining only a relatively small 
number of the most significant components.  

In general the PCA complements rather than replaces the LDA, because the PCA is not looking for 
directions which optimize the between-class discrimination, but rather for directions which explain as 
much as possible of the variance within the union of both classes.    

It is not commonly recognized that it is theoretically possible that the most significant directions chosen 
by the PCA could only explain components of the covariance which are common to both classes, in which 
case if the other 'less significant' dimensions are discarded, it would no longer be possible to discriminate 
between the classes. Figure 8 illustrates how this can occur by taking a hypothetical example where the 
data contains two dimensions.  The ellipses represent the distributions of the two classes in these 
dimensions.  It can be seen that most of the variance in this case is in dimension 1, whereas all the 
discrimination information is in dimension 2.  A 'degenerate' PCA which, took only the first principal 
component, would therefore in this case discard all the discrimination information.  Although this is 
clearly an extreme, simplified, case it will be appreciated that similar effects can in theory happen in more 
complex, practical, cases.    

In practice, however the principal dimensions do usually contain most of the classification information.  
This has been specifically checked for this classifier by showing that if the principal components are 
excluded from the classification vector, very poor discrimination is achieved between the classes. 

Removal of only a few dimensions, with the lowest eigenvalues, on the other hand, can sometimes 
significantly help the discrimination process by eliminating dimensions which explain virtually none of 
the variance, but which serve only to compromise the stability of the algorithm.   It is sometimes difficult 
to relate some of these phenomena directly back to the original data set, but dimensions which explain 
nothing of the variance are probably due to artefacts in the pre-processing. 

Although the directions chosen by the PCA contain most of the discrimination information, the principal 
direction is in general not aligned exactly with the normal to the original discrimination plane. In order to 
obtain good discrimination the PCA is thus followed by an LDA process as described previously.  The 
PCA is thus used during the training process as a 'pre-processor', to reduce the dimensionality of the 
problem. About ten principal components are typically retained, leading to a ten-fold reduction in the 
amount of training which must be obtained.  

It is important to emphasize that the PCA does not affect the complexity of the real-time classification, 
since the dimensionality of the reference vector can be increased again after training to match the size of 
the data vector, so that no additional real-time processing of the data is required.  
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7.0 TESTING AND PERFORMANCE 

7.1 Tests during Development 
During the training phase, 10% of the available data, chosen at random, was set aside for testing, i.e. 90% 
was used to train the discriminator but the other 10% was only used to test it.  The individual types of the 
vehicles used to gather the training data, their registration numbers and the identities of the personnel who 
acted as the 'targets' were all recorded to allow checks to be made that the classifier was not accidentally 
discriminating between the identities of individual targets when it should generalize for broad classes. 

Tests were made of the correlation of false alarms between adjacent data samples to assess what time 
delay was needed before samples of training data could be considered to be independent.  It was 
concluded that, very approximately, samples of personnel which were separated by 50ms could be 
considered independent whereas the delay had to be 100ms for wheeled vehicles and 150ms for tracked.  
Since each sample was about 50ms along, all the 'personnel' data could be used to provide independent 
training samples, but only alternate samples of the wheeled vehicle data and one in every three of the 
tracked vehicle data.  This 'thinning out' of the data meant that we avoided the possibility that some of the 
'test' data could have been highly correlated with particular adjacent examples of the training data. 

During the training phase, tests were carried out to assess the sensitivity of the classifier to the aspect of 
the targets, by training a discriminator using only data gathered at one nominal aspect angle and testing it 
with data gathered at another. As expected, it was found that the Doppler signature is relatively insensitive 
to changes in aspect angle.  The signatures remained correlated over about 30 degrees, although large 
changes in aspect can causes significant changes in the signatures, probably due to obscuration of parts of 
targets.  

The sensitivity to variations in range was tested by adding noise to the test data to simulate a reduction in 
the signal to noise ratio.  The sensitivity to changes in velocity was tested by varying the number of 
velocity bands and checking that this did not significantly change the performance.  

7.2. Acceptance Tests 
Proposing a test plan for the classifier can present a significant theoretical problem if one does do not 
know a priori what factors, such as target range or speed or direction, might affect its performance. In that 
case field tests would have to cover all possible target conditions and would be prohibitively expensive.  
The problem of testing the classifier can, however, be made manageable by making use of the tests which 
have been performed during the development to assess the sensitivity to aspect angle, range, velocity etc.   
This allows a suitable range of tests to be devised, but there may still be a relatively large number of 
combinations to be tested.   

For AMSTAR most of the testing was performed using the 'test set' extracted from the training data, as 
described above, which had been used for the tests performed during the training.  This contained enough 
data to obtain statistically significant results in different scenarios to ensure that the classifier's 
performance was satisfactory in all combinations of scenarios.  Since the whole training and testing 
system operated in software, the process of obtaining the results in these laboratory based tests was also 
many times faster than reading each result individually from the radar display and recording it by hand.   
Although this procedure is efficient, it suffers from the fact that it is still dependent on the correctness of 
the sensitivity analysis carried out during the training phase and can only test the classifier against data 
gathered in the same scenarios as the training data.  A relatively small number of completely independent 
'field' tests were therefore performed to give confidence that the results of the 'laboratory' testing were 
reliable.  Whilst these could confirm that the classifier worked in the scenarios tested, it could not give 
statistically significant information on a large number of the scenarios individually.  
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The overall classification performance obtained for the three-class case used in the MLI variant has 
already been reported before [8].  The comparable results with four classes plus 'Unknown' are: 

Table 1: Overall Classification Accuracy for the AMSTAR Classifier 

True Class   Reported As 
 Personnel Wheeled Tracked Helicopter Unknown 

Personnel 83%  14%  3%  1%  0% 
Wheeled 0%  82%  10%  5%  4% 
Tracked 0%  15%  77%  8%  0% 
Helicopter 3%  6%  4%  82%  6% 
 

The totals are not exactly 100% due to rounding errors.  It will be appreciated that these results are for a 
single observation of the target and the results seen by the operator will be better, once successive looks 
have been compared as discussed below. 

It will be noted that, compared with the three-class case, the performance on tracked vehicles has dropped 
slightly below 80% for this 'single look' case reported above, although the change in the numbers is 
probably not significant. It is noteworthy that these results are still generally better than those reported in 
[3] for short dwells, although better results were obtained with the hidden Markov models when longer 
dwells were available.   

The corresponding field trials of this 'four class' classifier showed correct classifications of between 73% 
and 80% on a single 'look', which, is in equivalent to a value of the order of 90% after the scan-to-scan 
comparisons, and is thus comparable with the results reported in reference 8.  The field trials also showed 
that, as predicted, correct classification was achieved at ranges of the same order as the detection range. 

8.0 POST PROCESSING 

8.1. Scan to Scan Processing 
The classifier follows the radar's plot extractor. The output of the classifier is used to tag the plot when it 
is sent to the radar's Control and Display Assembly.   The operator accesses the classification by putting 
the cursor near the plot.  This placement does not have to be as precise as is needed for audio 
classification.  If the nominated plot is part of a trail, the display processing can be arranged to look at the 
classification of adjacent plots to reject occasional false classifications or to report 'unknown' if the 
classifications are inconsistent.  This process ensures that the accuracy after a few scans is at least as 80% 
for any combination of target type and velocity band, i.e. it gives good results not only in 'average' 
scenarios but in the worst case.  In other variants, an automatic tracker can be used to associate the plots 
together, and the individual classifications within the track can be compared to eliminate the occasional 
erroneous classifications. 

If the classification is inconsistent, this is used in some variants as an additional 'trap' which also allows 
the class to be reported as 'Unknown.'  User feedback suggests that operators are much happier with a 
relatively high proportion of returns being classed as 'Unknown' than they are with firm classifications 
which are in fact erroneous.  

8.2. Sea Target Classifications 
It is also at this stage that the classification of sea targets is incorporated.  The map in the MMI is used to 
ascertain whether the target is on the land or on the sea.  If it on the sea and not a helicopter or an 
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'unknown,' it is classified as a ship.  Ships are distinguished between 'large' and 'small' on the basis of their 
radar cross sections.  The ratio of radar cross section between 'small' and 'large' targets is 50:1 (17dB) and 
by placing the threshold 5dB above the limit for a 'small' target there is a 94% chance that a target with a 
Swerling 2 fluctuation and an RCS at the limit of the values to be classified will be classified correctly.   

9.0 CONCLUSION 

An automatic classifier has been successfully incorporated into the AMSTAR Battlefield Surveillance 
Radar.  It uses Linear Discriminant Analysis to exploit the Doppler signatures of the targets to provide 
classification between the classes of Personnel, Wheeled vehicle and Tracked vehicle on land, Small and 
Large Ships on the sea and Helicopters in both domains.  This provides classification aids which can 
significantly reduce the operator's workload without compromising the radar's surveillance mode 
performance.  A performance equivalent to better than 90% average and better than 80% worst-case after 
scan-to-scan comparisons, equal to that reported in reference 8 for the three-class case has now been 
achieved for the four-class case.  The technique of Principal Components Analysis has also been used to 
minimize the amount of training data required. 
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Figure 1: The AMSTAR Radar  

 

    

Figure 2: Spectrum of a Tracked Vehicle                        Figure 3: Spectrum of a Wheeled Vehicle 
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Figure 4: Spectrum of a Walking Man 

 

    

Figure 5: Different Discrimination Choices  Figure 6: Hypothetical a Case when PCA            
for the Linear Discriminant Classifier                          would not work with LDA 
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ABSTRACT 

Multi frequency data from continuous wave radar is used to recognize air, sea and land targets. Target 
range profile data is extracted both from the linear combination of the frequencies and the non-linear 
Delta K processing. The results are discussed in light of the motion pattern and the vibration of the target. 
Continuous wave data offers long integration time for Doppler processing, which can be used to get high-
resolution Doppler signatures of the targets. These features are discussed as target classifiers. The paper 
describes the technology and presents some experimental results. The application and limitations of the 
technology is discussed with focus on integration in a pulsed system. 

1.0 INTRODUCTION 

Using a multi frequency continuous wave or range gated radar system we can sample the targets Doppler 
shifts at several frequencies in parallel.  

 

Figure 1: To the left in the figure is an overview of the system under developing. To the right the 
fundamental idea of operation of the system is presented. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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The multi frequency return can be processed linear or by non-linear K∆ . The author’s organisation is 
developing a range gated radar system for multi frequency experiments for targets at air, sea and land. An 
overview of this system is given in figure 1. In our stepwise development of this system we execute 
experiments and simulations as to understand the fundamental theory and the possibilities for our system.  

Office of Naval Research (ONR) is sponsoring parts of the work presented in this paper. 

2.0 BASIC THEORY  

2.1 Electromagnetic theory 
When solving the basic scattering equations the following very simple relationship results after several 
approximations:  

Here r  is the position vector, K  the scattering wave number, σ  the scattering cross section on voltage 
basis. 

If the scatterers are distributed in space along the direction as a delay function ( )σ r , the field strength as a 
function of wave number of the backscattered wave is the Fourier transform of this delay function. Hence, 
if we measure ( )E K  (the received fields as function of wave number), we can find the spatial distribution 
of the target by an inverse Fourier transformation process:  

The target can also be described in the ∆K  domain using an autocorrelation function 

( ) ( )( ) ~ ( )j K z jKr j K rR K e R r e e drσ
− ∆ ∆∆ ∫  

Here z is the distance to the target. Different type of targets will have different autocorrelation function as 
seen in figure 2.  

 

Figure 2: Different type of targets has different correlation functions. 

 

  

E K( ) σ r( )e
jK r⋅–

rd∫∼

  σ r( ) E K( )e
jK r⋅

Kd∫∼
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2.2 DK processing 
Linear processing of multi frequency data combines the different frequency components that are obtained 
in parallel or stepwise and gives range resolution through a Fourier transform of this. 

In K∆  processing each frequency component is selected through narrowband filters. These frequency 
components are then multiplied with each other to form a set of K∆  timeseries. Using unequal spacing 
between the frequencies it is possible to obtain a higher number of unique frequency spacing than the 
number of frequencies used. For valid Coulomb rulers we obtain [ ]( 1) 2N n n= −  frequency spacing by 
using n frequencies.  

As a basic example of the K∆ processing we use a target that consist of two corner reflectors of unit 
amplitude spaced z meters apart in radial distance. The target moves at a given speed in outward radial 
distance. A timeseries for a single frequency component is given by 

( ) ( )0 1exp expi i iV jK r jK r= + . 

Here iK  is the scattering wave number for frequency component i. 0r and 1r the radial distance to the two 
scattereres, which is a function of time when the target moves. 

A K∆  time series is found by multiplying two frequency components as 

[ ]( ) exp( ) 1 exp( ) exp( ) exp( ) exp( )k lV conj V j Kr jK r jK r j K r j K r= ∆ + − ∆ + ∆ ∆ ∆ + ∆ ∆ . 

Here K is the scattering wave number of the carrier, r∆  the distance between the scattering elements, r the 
distance to the first scattering element and K∆ the difference wave number. 

We see that the first term in the above equation, exp( )j Kr∆ , is recognized as the K∆  channel Doppler 
shift. This can be removed by mixing. The second term, exp( )jK r∆ , is dependant on the ‘carrier 
frequency’ and r∆ . Since r∆  is supposed be to unknown, we cannot predict this term. If r∆  is vibrating 
sufficiently with time/range it is averaged to zero. The desired signature exp( )j K r∆ ∆  lies in term 3 and 
4. If the term exp( )jK r∆ is not averaged the overall result is a signature that is a summation of the 
desired signature and a phase shifted version of it. Note that for non-vibrating objects it is possible to 
modulate the transmitted signal with a random phase shift or a frequency sweep to average out the 
unwanted interferences. 

A simple simulation illustrates the dependence on the targets motion pattern. Our target consists of two 
identical reflectors spaced 10 meters apart in radial direction. The simulated carrier frequency is 3.4 GHz. 
The simulated target is at 8000 m range and moving 100 meter in one second. The separation between the 
scatterers is varying randomly within 4 centimeters in radial direction during motion. In figure 3 results 
form the simulation is presented in 9 subfigures. The subfigures are numbered from 1 in the upper left to 9 
in the lower right. 1-6 are intensity plots with the y-axis as range/time and the x-axis as F∆ 0-25 MHz 
(left to right). The contents of the subfigures are: 

1. Term 1, exp( )j Kr∆ , from the K∆  function. This is the K∆  Doppler signal. We clearly se that as the 
target moves the Doppler signal from the higher K∆  channels is of higher frequency.  

2. Term 2, exp( )jK r∆ , from the K∆  function. As this term is dependant on the carrier wave number K 
and not the separation K∆ , there is no variation along the frequency axis. The randomness of the target 
element vibration, r∆ , is seen along the y-axis.  
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3. Term 3, exp( )j K r∆ ∆ exp( )jK r∆ , from the K∆  function. We can se that the wanted signature is 
randomly shifted along the frequency axis. 

4. Term 4, exp( )j K r∆ ∆ , from the K∆  function. This is the desired signature of the target.  

5. The whole K∆  function. Through its randomness it is possible to view the contours of the K∆  
signature. 

6. The direct multi frequency function. Here the x-axis is frequency from carrier (left) up to carrier + 25 
MHz (right). No particular signature is visible. 

7. A time sample of one of the received channels. 

8. The average in time/range of the signals the DK function (sub image 5, solid line) and the multi 
frequency function (sub image 6, dashed line). We can see that there is more coherent contribution to the 
signature when averaging over K∆  than over plain multi frequency. 

9. The averages in sub image 8 have been normalized. The solid line is the desired signature of the target. 
The dashed line is the simulated K∆  signature and the dotted line is the multi frequency signature. We 
can se that the simulated K∆  signature nearly overlaps the expected signature whereas the plain multi 
frequency signature contains errors. 

 

Figure 3: The subfigures are numbered [1,2,3] from left to right in the upper row, [4,5,6] in the 
middle row and [7,8,9] in the lower row.  Each subfigure is commented in the text. 
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2.3 Delta K estimation error function 
Setting the starting range to zero we can simplify the a single DK channel response to  

[ ]( ) 2exp( ( ) ) cos( ( ) ) cos( ( ) )k l k l k l k lV conj V j k k r j k k r j k k r= − ∆ − ∆ + + ∆ . 

Here the target consists of two corner reflectors one placed at zero meters and one placed r∆  in radial 
direction. kk  and lk  are the wave numbers of which the difference wave number in this example arises 
from. Investigating this equation we see that the first cosinus term represent the desired difference wave 
number amplitude, while the second term represents the rapidly fluctuating estimate error. We see that the 
latter expression depends on the sum of the wave numbers and the distance between the scattering 
elements. 

In figure 4 this latter function is evaluated for two different carrier frequencies, increasing separation 
between the scattering elements and a carrier sweep. 

Evaluating the subfigures in figure 4 we find 

1. Error function evaluated for a carrier frequency of 5 GHz. As the distance between the scattering 
elements increases the error function rotates at a constant ratio defined by the sum of the wave 
numbers. As we sweep the carrier towards higher frequency, thus increasing the sum of the wave 
numbers the rotation ratio as a function of target element separation increases. 

2. The same as subfigure 1 with 10 GHz carrier. We can se that the ratio of rotation as a function of 
range between the scattering elements has increased. This means that a vibration of less 
displacement than can average out the estimation error for using higher carriers. 

3. We can se that using a carrier sweep to average out the estimation error the sweep length 
necessary depends on the distance between the target elements and not the carrier frequency. 

4. The same as 3. 



Recognition of Targets by Linear and 
Non-Linear (Delta K) Processing of Multi Frequency Data  

28 - 6 RTO-MP-SET-080 

 

Figure 4: The subfigures 1 upper left 2 upper right, 3 middle and 4 lower are commented in the 
text. 

3.0 CLUTTER VIEWED IN THE FREQUENCY DOMAIN 

3.1 Sea surface clutter 
The dominating sea surface gravity capillary wave is described by the basic wave equation  

gKω =  
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The phase velocity of this wave is then given by  

gv
K K
ω

= =  

The dispersivity of this equation is seen in figure 5. 

 

Figure 5:  The dispersivity of the sea surface waves gives rise to a characteristic Doppler 
signature in the frequency domain.  

Using the wind as the driving force this velocity cannot exceed that of the wind. Setting the phase velocity 
of the wave equal to the wind speed we can construct the minimum coupling wave number as 

min 2
vind

gK
V

=  

If EM waves have the same wave number they will couple to these ocean waves.  

( ) ( )4 sin 2 4 sin 2
EM Ocean

F
K K

c
π θ π θ

λ
= = =  

This equation leads us to a frequency (or difference frequency) that for maximum coupling to the wind 
driven waves as  

( )24 sin 2
cgF

Vπ θ
= . 

For backscattering the sinusoidal term equals unity. The same expression is valid for matching the ocean 
waves by F∆ by substituting F with F∆ in the equation. 

Defining a 10dB width of this spectrum we can form a function that tells where the interaction between 
the EM waves and the sea surface waves is dominating. Avoiding these regions, as seen in figure 6, is 
essential for suppression of the sea surface clutter. 
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Figure 6 : Region of Interaction between EM waves and sea surface waves 

3.2 LAND clutter 
For many stochastic processes is popular to use the Komolgorov spectral function. Kolomgorov 
characterize randomly orientated scatterers in wave number space as nKK −=Φ ),( ω  where n in most 
cases is -11/3. Applying this theory to a forest background we can use the dominating distance between 
the trees as the dominant scale. This is illustrated in figure 7, left. Dealing now with targets of rectangular 
shape that corresponds to a K∆ frequency signature of the form sin( )x x . This gives a signal to clutter 
structure as illustrated in the figure 7, right. 

 

 
 

Figure 7: Left, two forests with different dominating spacing between the trees have 
different K∆ frequency signature. Right, a typical target of less length than the dominating 

clutter scale will have a larger bandwidth in the K∆ frequency domain. 
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4.0 EXPERIMENTAL VERIFICATION   

 

Figure 8: Experimental hardware. 

Our experimental radar, which performs a subset of the system presented in figure 1, is seen in figure 8 
and can be summarized by the following statements: 

• Size of radar 20x30x40 cm 

• Size of antennas 20x20cm aperture, 60 cm length 

• Weight of radar with antennas appx 12 kilo 

• Detection range for a target of 220mσ =  is 80 km 

• Receiver noise factor 1 dB 

• Transmitted power up to 10W cw 

This experimental radar system was used in the experiments presented in the following subchapters.  

4.1 Small boat 
A boat with a length 5 meters was the target for a measurement campaign in the Oslo Fjord in Norway.  
One small corner reflector was mounted in the front of the boat and one in the stern. To frequencies were 
on the air simultaneously giving data to form one ∆K channel. The measurements were done in 
backscatter mode with the boat travelling in radial inwards direction. The experiment was repeated several 
times with different frequency settings to construct a ∆K signature.  

The ∆K frequency signature of the target and the ∆K Doppler signature of the target can be seen in figure 
9. We can see that the measured points fit well with the theoretical curves. 
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Figure 9: Left: Measured points of the ∆K  signature of the target upon the theoretical curve for 5 
m spacing. Right:  Measured points of ∆K Doppler signature of the target upon the theoretical 

curve based on GPS measured speed 

4.2 Detection and ID of land targets 

4.2.1 Calibration 

This experiment was conducted by the shore side of the lake Mjøsa in Norway. Two targets of corner 
reflectors with different spacing were towed on a rope in near radial direction. Transmitting 4 frequencies 
in parallel we towed each target several times with different frequency sets. Figure 10 presents the 
measured points from two runs for each target. We can see that the measured points fit well with the 
theoretical curve.  

 

Figure 10: To the left is the signature of a target consisting of two reflectors spaced 275 cm in 
radial direction. To the right the spacing is 565 cm. Both targets were towed in near radial 

direction. The reflectors was vibration during motion 

4.2.2 Cars with a forest background 

This experiment took place at a road with a forest background. The distance to the target was 500 meters. 
Two cars of same length but of different shape were driving in near radial direction. In figure 11 we can se 
the difference in their signature. 
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Figure 11: Measured signatures of a military jeep and a VW golf wagon. 

4.2.3 ISAR 

At the same site as for the calibration experiment two targets of corner reflectors where used in ISAR 
measurements. A single continuous wave frequency illuminated the corner reflectors that were sliding 
along a fixed rope. 

We present here measurements of a two elements target. The first with a length of 565 cm and the second 
with a length of 275 cm. The measurements were done in backscatter mode with an aspect angle of 45 
degrees. The different targets moved with the same speed and along the same path. Figure 12 displays the 
smoothed time series for a single channel for the 275 cm target and the same for the 565 cm target.  

 

Figure 12: Smoothed time series of a cross range moving target of two corner reflectors spaced 
2.75 m Left and spaced 5.65 m right 
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In figure 12 we can see that the different target lengths modulate the received signal with a different 
‘frequency’. Using a FFT we can find the frequency. This is presented in figure 13.  

 

Figure 13: FFT of the ISAR time series. The solid line represents the target of 275 cm. The dotted 
line represents the 575 cm target. We see that as expected the dominating frequency of the 575 

cm target is close to double that of the 275 cm target. 

5.0 CONCLUSION 

We have presented the fundamental theory around our experimental multi frequency system. From 
simulations we find the dependency on the target motion pattern to obtain valid results. The simple 
experiments presented reflect the theoretical values and is a good basis for more advanced measurements. 

6.0 BIBLIOGRAPHY 

[1] GJESSING, D.T.: ‘Remote surveillance by Electromagnetic Waves for Air-Water-Land’ (Ann 
Arbor: Science Publishers, 1978) 

[2] GJESSING, D.T.: ‘Adaptive Radar in remote Sensing’ (Ann Arbor: Science Publishers, 1981) 

[3] GJESSING, D.T.: ‘Target adaptive matched illumination, principles and applications’ (Peter 
Peregrinus IEE, 1986) 

[4] HAYKIN, S.: ‘Communication Systems’ (WILEY, New York, 1983) 

[5] ISHIMARU, A.: ‘Electromagnetic Wave Propagation, Radiation, and Scattering’ (PRENTICE 
HALL, New Jersey, 1991) 

[6] ISHIMARU, A.: ‘Wave Propagation and Scattering in Random Media, volume 2’ (ACADEMIC 
PRESS, New york, 1978) 

[7] STRATTON, J.A.:, ‘ELECTROMAGNETIC THEORY’ (McGraw-Hill, New York, 1941) 



  

RTO-MP-SET-080 29 - 1 
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ABSTRACT 

Three target types, namely T72, ZSU 23-4 and BMP-2 were measured in a tower/turntable configuration 
in several articulations each. A set of geometric, statistical, structural and polarimetric features is used to 
study the robustness of classification. Based on the Kolmogoroff-Smirnov distance between histograms a 
metric is defined that at the same time allows to quantify intra-class robustness and inter-class 
separability for an individual feature. For sets of several features, a simple classification approach in 
connection with a reference confusion matrix allows to assess the robustness of classification. It is 
demonstrated, that averaging the feature reference over all available target articulations improves the 
classification performance as compared to a reference that is based on one articulation only. Also, it is 
shown that in most cases, the classification is the better the more precisely the target aspect angle can be 
estimated independently.  -- The paper reports work that is done in the framework of the NATO RTO/SET-
069 working group. 

1  INTRODUCTION 

Features are a means of statistical pattern recognition that ATR algorithms use to discriminate ground 
targets from the surrounding clutter background and, subsequently, to sort potential targets into one of 
several target classes (including the non-target case). Problems for ATR arise from the specular nature of 
radar imagery because small changes to the configuration of targets can result in significant changes to the 
resulting target signature [3][4].  This adds to the challenge of constructing a classifier that is both robust 
to changes in target configuration and target aspect, and which is capable of generalizing to previously 
unseen targets. 

 ATR features have to provide at the same time good inter-class separability and good intra-class stability. 
The reference vectors usually are obtained from former measurements of the respective target either on a 
turntable or by means of SAR and are stored in look-up tables. The test vectors are obtained on-line while 
the seeker is passing over the target area. In order for the ATR to provide reliable results both the test 
vectors and the reference vectors have to show robustness against target modifications, preferably 
including camouflage, different target realizations or articulations, slight changes in depression angle, 
aspect angle changes that occur during the time-on-target, and many more. Robustness has to be 
understood in the sense that the statistics of the test and reference vectors either remain unchanged, or that 
their changes are taken into account appropriately, and that the estimates that are obtained of these vectors 
are representative for this statistics. As a consequence, the classification performance should not be 
degraded. In order to obtain the desired robustness it is of great importance to eliminate those target 
variations that can be handled beforehand, the most crucial one being the aspect angle dependence. The 
analysis of tower/turntable measurements on typical targets shows that feature values as a function of 
aspect angle do not only fluctuate around a stable mean, but that their statistics themselves, i.e. mean and 
standard deviation, are a function of aspect angle. It has been demonstrated before [1][2] how important an 
independent determination of the target aspect angle is. Among the methods most commonly used are the 
Hough transform or a process of pattern matching [1] [5]. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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Three different military vehicles were measured in a tower/turntable configuration at 35GHz with 
800MHz bandwidth using the fully polarimetric MEMPHIS radar. Each vehicle was measured in several 
different articulations (hatches open or closed, turret turned to different positions) while its positioning on 
the turntable remained unchanged. All data underwent an identical polarimetric calibration to warrant 
optimal comparability. 

As a means to assess feature robustness several metrics were developed to quantify the results. Two 
approaches are compared:  

•  the separability between feature histograms (using the Kolmogoroff-Smirnow distance as a 
distance measure) 

• analysis of confusion matrices based on a generic classification scheme  

Typical features of various types (geometric, statistical, polarimetric, scatterer power, structural etc.) are 
used, each one depending on one or two parameters that allow optimization. 

The paper is organised in  five sections. The first one gives a short description of the measurement setup. 
In the second, the features used for classification are described in some detail. Next, the relationship 
between robustness and inter-class separability is analysed. Section four shows how confusion matrices 
can be used to characterize robustness. Finally, some thoughts on the aspect angle behaviour of the 
features are presented. 

2  MEASUREMENT SETUP 

For the measurements that are analysed here, the FGAN operated fully polarimetric MEMPHIS radar [8] 
was located on top of a tower at a height of 47 meters. The three targets (T72, ZSU 23-4 and BMP)  were 
positioned on a turntable at a distance of about 154m, giving rise to a slant range of 161m and a depression 
angle of 17°. 

The MEMPHIS 35 GHz radar transmitted linear V polarisation, and received H and V simultaneously thus 
providing orthogonal VV and VH channels. The basic waveform is a linear chirp with 200 MHz 
bandwidth. In order to achieve higher range resolution, this chirp is combined with a stepped frequency 
mode with 8 steps of 100 MHz increment [9]. The resulting maximum processing bandwidth thus is 800 
MHz. However, as this requires a 320-point DFT (2.5 MHz frequency sampling step), here only a reduced 
bandwidth of 640 MHz was processed allowing the use of a 256-point FFT. The resulting range resolution 
is about 0.24m which is sufficient for this kind of ATR analysis [10]. 

A full revolution of the turntable took place in 130 seconds, the effective PRF was 2300s-1/8 such that a 
128-point Doppler FFT results in a cross-range resolution of 0.2m, sufficiently close to the desired square-
pixel case. The targets were measured in the following configurations: the turret of the T-72 was 
positioned 20° to the left, and in 30° intervals from 0° (forward) to 180° (backward). In the case of the 
ZSU 4 different and of the BMP 5 different combinations of shut/closed driver’s, commander’s and turret 
hatches were realized, cf.[6]. 

3  CALCULATION OF THE CLASSIFICATION FEATURES 

All feature values were computed on the basis of 2-D ISAR images with 0.24m (range) by 0.2m (cross-
range) pixels. They were taken from a list prepared by the NATO SET-TG14 working group [7]. For 
geometrical, statistical, and structural features, the total power map (|VV|2 + |VH|2 ) was used, for the 
polarimetric features the VV and VH power map were used in parallel.  
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• ft1 = range extent of 20 strongest scatterers 

• ft2 = cross-range extent of 20 strongest scatterers 

• ft3 = ft1*ft2 (= area of the “minimum bounding rectangle” (MBR)) 

• ft4 = mean/std.dev.(total power|MBR) 

• ft5 = (powersum 10 strongest scatterers) /powersum(MBR) 

• ft6 = log10(pmax(1)/pmax(5)) (ratio between strongest and 5th strongest scatterer within the 
MBR) 

• ft7 = log10(pmax(1)/pmin)|MBR    (ratio between strongest and weakest scatterer within the 
MBR) 

• ft8 = max(pvv/pvh)|dB - min(pvv/pvh)|dB  (span of parallel/cross channel separation) 

• ft9 = slope(pmax vs.dif)|dB  

• ft10 = shift(pmax vs.dif)|dB 
(in ft9 and ft10 “pmax” stands for the 10 strongest scatters within the MBR, sorted in descending order, 
“dif” contains the related channel differences pvv/pvh, shift and slope refer to a least squares line fit that is 
applied to these 10 pairs of values). 

The rationale for the selection of this set of features is not that they constitute a “best” set. Rather they are 
considered to be a “generic” set with representatives from several feature types, namely geometric, 
statistical, scatterer power related or structural, and polarimetric. Of course, some of these features are 
more or less correlated with one another. This can be assessed either by determining all the mutual cross 
correlation coefficients, or by a principal component analysis (PCA, [11]). Therefore, only certain subsets 
out of these 10 features will form meaningful sets of ATR features.  

4  INTRA-CLASS ROBUSTNESS VS. INTER-CLASS SEPARABILTY 

The basic test of robustness is to analyse how strongly the feature statistics is changed when the respective 
target is modified. It is clear that each feature as a function of aspect angle will reflect any target 
modifications under those angles where they become effective. But in the ideal case, the overall statistics 
as measured over a certain aspect angle interval, should only slightly be affected, i.e. the probability 
density function (pdf) should be more or less the same. 

There is a duality between intra-class robustness and inter-class separabilty. The more tolerant a feature or 
set of features or a classification scheme is towards different articulations of a certain target type, the less 
likely it is to precisely discriminate between a large number of different target types. 

A convenient way to compare two probability density functions (pdf’s) or histograms is by determining 
the Kolmogoroff-Smirnov distance (KSD) which is defined as the maximum difference between the two 
pertinent cumulative distributions: 

Let p1(f) and p2(f) be two probability density functions (pdf’s) of a certain feature “f” obtained from two 
different vehicles. The pertinent distribution functions then are  

∫
∞−

=
f

ii dffpfP ')'()(     (i=1,2) 

and hence  
KS(p1, p2) = maxf |P1(f) – P2(f)|. 
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By definition, the KSD can vary between 0 and 1, where “0” means identity, and “1” means complete 
separation without any overlap.   

Fig. 1 shows as an example the power 
feature #6 for the five  different 
articulations of the BMP. As one sees, 
the polar curves in some cases may 
differ considerably e.g. in the interval 
80° to 120° or near 330°. However, the 
histograms look rather similar. Thus, at 
first sight this seems to be a candidate 
for a robust feature. 

On the other hand, robustness is only 
one criterion that an ATR feature has to 
fulfill. Good discrimination w.r.t. other 
targets is another important one, and 
both properties have to be examined and 
eventually a trade-off has to be made. 

Let us now quantify the similarity 
between the pdfs of different target 
articulations by means of the KSD. This 
is best done using a table that lists all 
possible combinations of pairs of targets 

for a selected feature. Let us again look at feature #6 (Table 1). The KSD between pairs of different T72 
are fairly low, mostly less than 0.1 with some outliers up to 0.144, which suggests a few major 
differences. 

For pairs of ZSU or BMP, values are below 0.086 and hence close to zero as required. In the areas that are 
dark grey-shaded we have pairs of different target types. Here, in the ideal case we would expect values 
close to 1, i.e. complete separation. Of course, this is not the case, rather the values are around 0.2, hardly 
above 0.23. This is certainly not satisfactory, but one has to keep in mind that the classification will not be 
done with only one feature but that one will go to higher dimensions of the feature space where less 
overlap is expected. 

The dark shaded areas of the triangular matrix K is where KSD values close to “1” are expected, all others 
should be close to zero. If we define a reference matrix R which contains only the desired values 0 or 1 in 
the appropriate positions, then the quality of a feature can be judged by computing the distance between 
the actual matrix and the reference matrix. 

 
Figure1 plot of feature #6 vs. aspect angle, and 

related histograms for5 articulations of  the BMP 
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Table 1  KSD between pdf’s of all 17 targets for feature #6 
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Table 2 shows an example. The smaller this value is, the closer the measured matrix is to the reference. 
Taking this metric, the range extent (feature 1) performs best. 

However, this single value does no longer allow to differentiate between robustness and separability. 
Robustness is the better the closer the intraclass KSD are to zero, and 
separability is the better the closer the interclass KSD are to 1. One can 
therefore average all intraclass KSD (resulting  in K0) and all interclass 
KSD (resulting in K1) and plot the results in K0-K1-coordinates (fig.3). The 
closer a feature is located to the point (0,1) the better its performance will 
be [6]. 

 
 

 
Feature # d 
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Table 2 mean 
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As one sees from the definitions of the classification features, they all depend at least on one free 
parameter. First of all this is the number of scatterers (Nsc) that is is used to create the MBR on which all 
subsequent computations are performed. Nsc=20 was used for most of the analyses presented here. In 
addition, feature #5 uses a subset of scatterers within the MBR (here 10 out of 20), and feature #6 is the 
power ratio between the strongest and 5th-strongest scatterer within the MBR, thus introducing a second 
parameter for each of them. One can think of using these free parameters in connection with either the 
reference matrix described above, or the point (0,1)  in the K0-K1-plane to somehow optimize the features. 
The values that were used in the original definitions may seem somewhat arbitrary and need a 
justification. Let us begin with the reference matrix and the related distance measure (1). If we vary the 
common parameter Nsc, we can consider d=d(Nsc) and try to find a minimum in a certain reasonable 
interval. Fig.2 shows d(Nsc) for all 10 features 
where Nsc was varied between 10 and 30. As 
one sees, there is almost no dependence on Nsc, 
features 1,3,4,5,7,9,10 show a very small 
decrease of d(Nsc) with increasing Nsc, features 2 
and 8 show an increase of d(Nsc), and #6 is not 
influenced at all. From this one cannot get a 
clear recommendation towards a certain value of 
Nsc. 

Because d(Nsc) cannot distinguish between 
robustness and separability, we now want to 
look to K0 and K1 which describe these two 
properties individually. Fig.3 shows how each 
feature moves in the K0-K1-plane when Nsc is 
varied between 10 and 30. The starting point 
(Nsc=10) is marked by ‘o’ while the final point 
is marked by ‘*’.  

What we hope to find is a tendency to 
approach K0=0 and K1=1. However, none of 
the 10 features follows this pattern.  Rather, K0 
and K1 both tend to increase with increasing 
Nsc (features 1,3,4,7,9)  or are almost constant 
(features 6 and 8). Obviously, it is not possible 
to push K0 beneath a value of ≈0.08.  As one 
recognizes, none of the 10 features comes 
close to the desired locus (0,1) in the K0-K1-
plane for values of Nsc between 10 and 30. 
One must conclude that Nsc offers only a very 
limited optimization potential for the 10 
features under consideration. It seems as if the 
10 features as defined above do not reflect 
sufficiently the geometrical and scatterer 
structure of the targets and therefore are too 
insensitive w.r.t. Nsc. 

 
Figure 2   distance between K and R for 

varying Nsc 

 
Figure 3   K1 vs. K0 for varying Nsc,  
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5  CONFUSION MATRICES 

Another means to assess feature robustness is to apply a generic classification scheme to the available data 
and determine the probabilities of classification (Pc) which can either be probabilities of correct 
classification (Pcc) in the case of the like target class, or probabilities of false alarm (Pfa), for the other 
target classes. This classification is performed for certain sets of features. For this purpose one has to 
create reference feature vectors (or training data) for all available targets or target types. Then a target 
under test is chosen, a test feature vector determined, and the Euclidian distance  

∑
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in feature space computed between this test vector and all reference vectors. The target under test for this 
special feature vector then gets the label of the reference target to which its distance is minimum. This is 
repeated for a large number of test vectors of the respective target under test (either from a limited aspect 
angle interval or - as in our examples - from all aspect angles between 0° and 360°), the scores being 

summed up for all 
reference 

categories. The Pc  
values finally are 
determined as the 
ratio between the 
individual scores 
and the total 
number of test 
vectors. In this 

simple 
implementaion, we 
can talk of a 
“forced decision 
classifier” because 
the non-target case 
is not taken into 
account. 

Out of the 10 
features analysed 

here, subsets of only a few of them were formed for classification purposes. The main requirement for 
feature selection is that they carry independent information, i.e. are statistically independent. There are 
several ways to achieve this goal. A common one is the principal component analysis (PCA, [11])  where, 
dependent on the eigenvalues of the covariance matrix, only the most “meaningful” features or linear 
combinations of features are retained. Another, simpler way is to determine the cross-correlation 
coefficients for all possible pairs of features, and then select only those sets that are essentially 
uncorrelated. The feature sets analysed in the following are the result of this latter procedure. 

How can one create reference feature vectors? For this purpose we refer to results from former analyses 
[1][12] that demonstrated the importance of an independent determination of the orientation of the target 
under test. Thus, comparison has only to be done to reference feature vectors out of a limited aspect angle 
interval instead of [0°, 360°] which considerably increases the classification performance. An achievable 
value for the precision of pose estimation is 10° to 20° or even better. Therefore, for the present analysis, a 
sliding window averaging was applied to the original features over a ±10° interval with respect to each 
aspect angle thus creating the pertinent reference value. Fig.4 shows the effect of this averaging. The 
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Figure 4: Feature 2 (cross-range extent for 8 T72, test values (left) and reference values (right) 
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dependence of the classification result on the width of this interval, i.e. the precision with which the aspect 
angle can be determined, is analysed in [13]. 

Feature #1 Reference target class 
Test target ↓ T72 ZSU 23-4 BMP2 

T72 39.7±12.6 35.8±14.0 24.4±10.2 
ZSU 23-4 27.4±13.6 55.5±16.9 17.2±9.5 

BMP2 26.0±15.0 20.1±11.3 53.8±19.6  

Feature #2 Reference target class 
Test target ↓ T72 ZSU 23-4 BMP2 

T72 47.3±5.3 26.9±5.0 25.8±4.4 
ZSU 23-4 31.7±5.0 39.8±7.2 28.6±3.5 

BMP2 31.2±3.7 24.3±4.4 44.6±4.1  

Table 3 Means and standard deviations of Pc values (%) for range extent (#1) and cross-range 
extent (#2) 

We have now at our disposition a total of 17 test targets (8 T72, 4 ZSU, 5 BMP) and 17 references, 
accordingly. If we want to construct a confusion matrix, we have to choose a triplet of test targets out of 
the three target classes, as well as a triplet of references. For each triplet we have 8⋅4⋅5=160 ways to 
choose from the given data, hence 160⋅160 ways to obtain a confusion matrix. It is not reasonable to 
perform all possible combinations, though. Instead, for a total of 500 randomly generated combinations, 
the confusion matrices were computed and the means and standard deviations of all matrix elements 
determined. By definition, the main diagonale of the confusion matrix contains the Pcc values whereas the 
off-diagonale values represent Pfa. All lines sum up to 100%. The Pc standard deviations can be used as 
another measure of robustness. The smaller they are the less sensitive the classification process is to 
different articulations of a target, and to the influence of selecting test and reference targets. 

As an example (table 3) let us consider the geometrical features #1 (range extent) and #2 (cross-range 
extent). Ft.1 performs quite well in the case of the ZSU and the BMP, but almost fails for the T72. Ft.2, on 
the other hand, performs well for the T72 and the BMP, but less well for the ZSU. What is striking, 
however, are the standard deviations, which are in the range of 4%-7% for ft.2, but between 11% and 
almost 20% for ft.1! Obviously, the range extent is less stable and reliable and consequently less robust 
than the cross-range extent. This is due to self-masking (shadowing) effects that cause scatterers at the rear 
parts of the target to be invisible under many aspect angles. This confirms results from former analysis 
[14]. 

 
Ft. set #1 Reference target class 

Test target ↓ T72 ZSU 23-4 BMP2 
T72 50.0±8.0 25.5±6.0 24.5±5.2 

ZSU 23-4 28.9±9.4 49.8±14.7 21.3±6.2 
BMP2 22.1±4.2 20.1±3.9 57.8±5.0  

Ft. set #2 Reference target class 
Test target ↓ T72 ZSU 23-4 BMP2 

T72 48.3±12.5 28.5±12.2 23.2±8.4 
ZSU 23-4 24.3±14.9 59.3±20.4 16.4±8.4 

BMP2 26.9±15.0 15.4±9.6 57.6±19.4  

Table 4 Means and standard deviations of Pc values (%) for feature set #1 (fts.2,6,8,9) and set #2 
(fts.1,5,7,8,9) 

The second example (table 4) deals with sets of features instead of individual features.  Set #1 consists of 
features 2,6,8,9, set #2 consists of features 1,5,7,8,9. Both show comparable performance for the T72 and 
the BMP, set #2 yields 10% higher Pc for the ZSU. However, set #2 has much higher standard deviations, 
especially for the Pcc(ZSU) the value is 20% which reflects a lack of reliability of the result. It may be 
excellent, but it may as well be insufficient, depending on the random choice of the test and reference sets. 
This striking difference may be due to the use of feature 1 in set #2, and of feature 2 in set #1. 

Another approach to assess classification robustness is suggested by a former result [6] which states that 
the most stable reference (which is not necessarily the one with the best performance) is obtained by 
averaging the references from all available articulations of a certain target class. We will analyse this 
result a little more in-depth.  Averaging the 8 references of T72, 4 of ZSU and 5 of BMP results in one 
overall reference triplet (designated by ORT). Without averaging, we can define a total of 8⋅4⋅5=160 
different reference triplets as pointed out earlier. Thus we can obtain a total of 161 confusion matrices of 



Robust Acquisition of Relocatable Targets 

RTO-MP-SET-080 29 - 9 

size 17 x 3 if we test all 17 targets against all possible reference triplets. We then want to compare the 160 
cases of individual reference triplets (IRT) with the ORT case. 

  
Figure 5  ORT (left) vs. <IRT> case for set of features 1,5,7,8,9 

As an example we show the case of a feature set consisting of features 1,5,7,8,9.  Fig.5 shows on the left 
side the ORT case, on the right side the <IRT> case, i.e. mean±std.dev. from all 160 combinations. On the 
abscissa we have the 17 test targets, subdivided by vertical lines into three classes. The ordinate represents 
Pc(%).  We see that all 17 test targets get the highest score in their respective class, although in two cases 
(ORT, T72 #3 and #4) the results are very tight w.r.t a possible misclassification as ZSU. For the ZSU, the 
ORT results are better than the IRT average, but the large std.dev. indicates that there are IRT 
combinations that outperform the ORT case. For the BMP there is no clear tendency: the “weak” cases 
(#13,14,15) get weaker with ORT, the “strong” cases (#16,17) get stronger. For the T72, only #1,2 and 8 
show an advantage for ORT, for the remaining articulations, the IRT shows a larger Pc-difference to a 
possible ZSZ misclassification.  

 

   
Figure 6  <IRT> results for T72 (left), ZSU(center) and BMP(right), set of features 2,6,8,9 
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An easier comparison is shown in fig.6, this time for a feature set consisting of fts.2,6,8,9. The diagrams 
show the results of testing against the T72 reference (left), the ZSU reference (center) and the BMP 
reference (right). The <IRT> results are indicated by their respective symbols and color, including ±1σ-
error bars. The pertinent ORT results are marked by black squares. In all 17 cases, the ORT results are 
better than the <IRT> results, although only slightly for the BMP.  – After looking in many more 
examples of individual features and sets of several features one may summarize that in the “robust” cases 
(characterized by small standard deviations) the ORT is to be preferred to the IRT, whereas in less robust 
cases IRT may be better, although a clear tendency is often missing. Also, one can state that the 
classification results in the ORT case become more homogeneous, i.e. each articulation is recognized with 
essentially the same probability, as was already found in [6]. 

  
Figure 7  greyshade histograms of classification probabilities for two  feature sets 

 

It is interesting to look not only at the mean and standard deviation of the 160 IRT cases but also to study 
their complete histograms (fig.7). These are represented by grey-shading where ‘black’ means highest 
frequency of occurrence. We compare the two feature sets 1,5,7,8,9 (left) and 2,6,8,9 (right) where the 
reference in both cases is the BMP. The abscissa represents the Pc(%) values, the ordinate shows all 17 test 
targets. Set #1 shows some strange phenomena: first, the histograms for test targets #13-16 are bimodal, 
i.e.there is one group of cases with Pc up to 60-80%, another group, where Pc is only around 30% which 
means no classification at all. Second, the histogram in the case of test target #17 is smeared almost 
uniformly between 40% and more than 90%. Clearly, this set of features is not robust because it does not 
provide reliable and reproduceable results. Picking a random set of references can mean anything from 
success to failure. On the other hand, set #2 shows narrow and well defined histograms which indicate 
reproduceability and robustness. 

6  CONSIDERATIONS OF ASPECT ANGLE DEPENDENCE  

We want to conclude with some thoughts on the aspect angle dependence of classification features. For 
certain features, especially geometric ones like range and cross-range extent, it is clear that they will vary 
as a function of aspect angle. For others, like statistical or polarimetric features, it is not clear what 
behaviour to expect, although an aspect angle dependence should be anticipated in every case.  
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An example is shown in fig.8 where a typical 
statistical feature (f4) is represented. F4 is 
defined as the ratio between mean and standard 
deviation of the 20 strongest scatterers 
belonging to the target, its area being declared to 
be the “minimum bounding rectangle” (MBR) 
within each 2-d ISAR image. These ISAR 
images are processed with angular increments of 
about 1/40 of a degree (as a cross-range 
resolution of 0.2m at 35GHz requires an angular 
increment of 1.2°, this means overlapping ISAR 
processing). Thus, an aspect angle interval of 
12° which may be assumed to be a typical value 
for the precision with which the target orintation 
can be determined, gives rise to about 500 
templates. The resulting feature values are 
transformed into a histogram which represents 
the f4 statistics at the respective aspect angle. 

Fig.8 shows the full series of histograms between 0° and 360°. As one sees, the statistics of f4 is by no 
means constant. 

Fig.9 shows this KS distance between the 
overall pdf of f4 (out of 360°) and the 
“local” pdf’s as a function of aspect 
angle. The deviation in this example can 
be as high as 0.5! 

How does this aspect angle dependence 
influence the target recognition process?  
For each potential target, a reference 
vector has to be established in a multi-
dimensional feature space. These 
reference vectors normally are derived 
from tower/turntable or spot SAR 
measurements if available. The target that 
has to be classified provides a test vector 
(or a series of test vectors during the time-
on-target) that now is compared to the 
available reference vectors. A certain 

distance measure in feature space is defined, and the reference which is closest to the test vector 
determines the target class. 

Now, if no information is available on the target orientation and the variability of the respective feature 
statistics, the reference vector has to be determined from the [0°, 360°] interval with no preferred aspect 
angle. Consequently, this reference can be unnecessarily far away from the true reference that would apply 
for the present target aspect. This could result in a misclassification and hence a degradation in 
performance. 

Fig.8 feature #4 histograms for sliding 
windows  

Fig.9 KS distance between global and local f4 pdf‘s 
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This effect is demonstrated in fig.10. As a simple 
example, a 2-dimensional feature space is shown 
defined by f4 as above, and f5, where f5 is the 
fraction of backscatter energy that is contained in 
the 20 sttrongest scatterers as compared to the total 
energy within the MBR. The red cross marks the 
overall (i.e. averaged over 360°) reference vector 
with the pertinent standard deviations “σ” of 
features f4 and f5. The irregular line shows the 
behaviour of the “local” reference as a function of 
aspect angle, where each local reference is 
averaged over a sliding 12° interval. As one sees, 
the aspect angle dependent reference vectors can lie 
far outside the 1σ-ellipse around the overall 
reference vector so that using the latter clearly may 
lead to erroneous classification. All this underlines 
the importance of an independent  determination of 
the target orientation to initialize the ATR process, 

as was already found in former analyses [1][2][5]. More details can be found in [13]. 

7  SUMMARY AND CONCLUSIONS 

Three target types, namely T72, ZSU 23-4 and BMP-2 were measured in a tower/turntable configuration 
in 8, 4 and 5 articulations, respectively. Based on 2-D ISAR images in the VV and VH channel, a set of 10 
geometric, statistical, structural and polarimetric features was calculated which was used to study the 
robustness of classification. The Kolmogoroff-Smirnov distance measure between histograms (pdf’s) was 
used to define a metric that at the same time allows to quantify intra-class robustness and inter-class 
separability for an individual feature. For sets of several features, a simple classification approach in 
connection with a reference confusion matrix allows to assess the robustness of classification. At the same 
time this reference matrix can be used to maximize robustness by varying the free parameters of the 
feature definitions such that the difference of the measured confusion matrix with respect to the reference 
matrix is minimized. It was found that the number of scatterers Nsc does not offer a good potential for 
optimization. 

As former analysis has shown the importance of an independent pose estimation of the target under test, 
reference feature vectors were computed as sliding window averages over +/-10° aspect intervals. It could 
be demonstrated further, that averaging this reference over all available target articulations improves the 
classification performance as compared to a reference that is based on one articulation only. 

The set of 17 measurements was used to establish a statistics of the confusion matrices. The standard 
deviations of the Pc values vary widely depending on the type of feature or feature set. They lend 
themselves to be used as another metric to characterize robustness. 

Finally, it was demonstrated that the feature statistics may be strongly dependent on the aspect angle of the 
target. As a consequence, the ATR performance has to be improved by independently determining the 
target orientation, e.g. by means of a Hough transform or pattern matching.  

Fig.10  behaviour of features 4&5 references 
between 0° and 360° 
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ABSTRACT 

The focus of this paper is the classification of military vehicles in high-resolution SAR images in an ATR 
framework. The usage of kernel machine classifiers is discussed. A new kernel machine, the relevance 
vector machine with integrated generator (RVMG) is introduced. Here, a single parameter controls the 
trade-off between speed and classification quality. Moreover classification heuristics and an adaptive 
feature extraction are used. These methods enable an improvement of the classification quality as well as 
a reduction of the computational effort. A parametrized reject criterion is presented to handle the 
classification of confusion objects. Therefore receiver operator characteristic (ROC) curves have been 
calculated. Tests have been performed using the MSTAR public target dataset and a fully polarimetric 
dataset from QinetiQ. An assessment of several polarimetric features has been performed. 

1.0 INTRODUCTION 

This paper focuses on the classification module of an ATR system of military vehicles in high-resolution 
SAR images. Modern digitally controlled radar systems have the ability to operate quasi simultaneously in 
two or more different modes. After detection of moving targets by MTI or other sensors the region of 
interest with the target cue can be recorded by a high-resolution spotlight SAR. Template based matching 
is a common approach for classification, i.e. the taken signature is matched with image catalogs of the 
interesting vehicles. The drawback is the high computational effort for the cross-classification. On the 
other hand during the last years a series of novel classification techniques – the kernel machine classifiers 
– have been introduced, see [1,2,3,4]. 

These kernel machines enable an improvement of the classification quality as well as a reduction of the 
computational effort. An enhanced new kernel machine, the Relevance Vector Machine with integrated 
Generator (RVMG) has been developed [9]. The basic idea is combining the high classification quality of 
the Support Vector Machine (SVM) by margin maximization and the low effort of the Relevance Vector 
Machine (RVM) caused by the special statistical approach. A single parameter controls the trade-off 
between its speed and classification quality. 

Kernel machines are limited to two-class problems. Therefore, additional classification heuristics are 
required to solve multi-class problems. A simple but effective heuristic is proposed to handle operational 
classification problems of ten or more classes. 

Obtaining real time capability of a classification module is possible by automatic feature extraction. We 
follow the common approach using adaptive Fourier-coefficients. The normalized 2D-SAR image is 
transformed via discrete Fourier transformation. Each single Fourier coefficient defines a weak classifier 
for the training dataset (two-class problem), i.e. a linear discrimination is defined. Then the best of these 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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weak classifiers are chosen as feature extractors. Because of by the significantly lower dimension of the 
samples involved, the computational effort is now noticeably less time consuming. 

Our investigations have been carried out with different datasets. Using the MSTAR public target dataset 
[10] ten classes were taken into consideration. The tests have shown that an RVMG with 500 Fourier 
coefficients yields a better classification quality (93.23%) for the ten class MSTAR problem than the 
nearest neighbor classifier (88.17%). Additionally the classifier (test phase) is 116 times faster than the 
nearest neighbor classifier that works on the original data set. 

Current investigations with a nine class data set from QinetiQ deal with full polarimetric SAR data. The 
objective is to assess polarimetric feature extraction in combination with kernel machines to yield an even 
more robust ATR processing chain. The tests have shown that polarimetric features can slightly improve 
the classification quality. Among these the simple energy based features have proven more robust than 
complex ones. 

Moreover, ROC curves have been calculated for the QinetiQ data set with four training classes and five 
classes with confusion objects. Therefore a parametrized reject criterion is proposed in this paper. It is 
possible to optimize the classification result with respect to the reject threshold and the kernel parameter. 
The ROC curves related to different polarimetric features enable an assessment relative to the False Alarm 
Rate (FAR). 

The paper ends with the conclusion that reviews our work. Furthermore we will give attention to 
generalizability of SAR image catalogs for future investigations. 

2.0 KEY PROPERTIES OF THE CLASSIFICATION MODULE 

The proposed classification module is a part of the ATR processing chain shown in Figure 1. It is 
responsible for the classification of high resolution target signatures in SAR (and other) image data. 

Detection Report

ATR Processing Chain
Target Recognition

Segmentation Feature Extraction Classification
Detection Report

ATR Processing Chain
Target Recognition

Segmentation Feature Extraction Classification
 

Figure 1: ATR processing chain with main modules 

It has the following key properties that are dependent on several methods: 

• Robust classification – kernel classifiers 

• Improved applicability for multi-class problems – decision heuristic  

• Real time ability – Fourier-coefficient-based feature extraction and RVMG 

• Tunable trade-off between quality and FAR – RVMG 

• Possible adaptation to requirements concerning classification quality, computational effort, FAR – 
parametrized reject criterion 

The feature extraction has a very close connection to the classifier. Especially the Fourier-coefficient-
based feature extraction works as a pre-classifier because of its adaptivity. Therefore the classification 
module may be understood as combination of the feature extraction, the kernel classifier, and the decision 
heuristic. 
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3.0 IMPLEMENTED METHODS 

In this paragraph we introduce the methods implemented in the classifiers processing chain. 

3.1 Kernel Machines 
Our investigations are focused on kernel machines as classifiers. In many applications these have shown a 
high potential for robust classification [3,4,5,7]. Therefore the SVM (Support Vector Machine) and the 
RVM (Relevance Vector Machine) have been implemented. 

Figure 2 left: SVM – robustness and high quality by margin maximization 
right: RVM – low effort by low number of RVs 

The main characteristics of SVM and RVM are sketched in Figure 2. The SVM calculates Support Vectors 
(SVs) with non zero weights by margin maximization. This results in robustness and high generalization 
ability. In contrast, the RVM uses a special statistical approach to maximize the auto-classification quality 
and reduce the number of Relevance Vectors (RVs) – these are the vectors with non zero weights. 

All investigated kernel machines use the RBF (Radial Basis Function) kernel, see Figure 3. As mentioned 
in [7] it has been shown that the RBF kernel is usually better than linear or polynomial kernels. 
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Figure 3: Test function of SVM and RVM, K is chosen as RBF kernel 

SVM and RVM have the same test function (Figure 3). But the training – i.e. the determination of the 
weights – is based on different concepts. Therefore they have a very different behavior. 

3.2 RVMG – Relevance Vector Machine with Integrated Generator 
Customizing kernel machines results in the RVMG (RVM with integrated Generator), see [9]. A single 
parameter controls the trade-off between speed and classification quality of the RVMG. The basic idea is 
to combine the advantages of the SVM – high classification quality by margin maximization – and the 
RVM – low effort caused by the special statistical approach. Therefore additional points are generated in 
dependence on a single parameter λ  controlling the relative distance of the new points to the margin, see 
Figure 4. 
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Figure 4: RVMG - Generated points establish a margin between  
the points of the two training classes 

Using such additional points it is possible to define the RVMG as a modified RVM. The training 
algorithm of the RVM only uses a system matrix Φ  with kernel elements K, e.g. K is the RBF kernel. It 
also uses class labels, so called hyper-parameters, and weights wi, that have to be determined, see [5,6]. 
The rows of Φ  correspond to the training vectors. The columns correspond to the basis functions. Basis 
functions and the RVM training dataset are independent of each other. It follows: The training dataset can 
be extended by generated data without any effect on the basis functions, see Figure 5. 
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Figure 5: Extended system matrix by generated points, basis functions are not affected 

This is in contrast to the original RVM where the basis functions have been set up corresponding to the 
training dataset. For more details refer to [9]. 

The RVMG has the following characteristics: 

• Fortification of class boundaries 

• No blur of class boundaries, no increase of class overlap 

• No density increase of inner class regions 

• Manageable number of additional training points 

• Variable distance (controlled by the scalar parameter λ ) between original and generated training 
points 

First tests were conducted in [9] using a three-class problem with MSTAR data that present a wide 
spectrum of RVMGs (dependent onλ ). They vary from a machine (original RVM) 15 times faster and 
10% lower quality than the SVM to a machine a little faster than the SVM and even better. In this paper 
we present experimental set-ups with up to ten classes. 
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3.3 Heuristics for Multi-Class Problems 
Decision heuristics qualify the two-class kernel machines for multi-class problems. The approaches used 
have been assessed for suitability concerning problems with many classes. Different approaches were 
feasible. 

The first one is the 1-to-rest-heuristic. It discriminates each class against the union of all other classes. 
Each machine gives +1 or –1 relative to the decision surface. A class is determined if an unambiguous 
decision exists. The test sample is rejected if any conflict occurs. 

A slight modification of the 1-to-rest heuristic is possible if each machine gives the distance to the 
decision boundary. Then the class with maximum distance is chosen. A reject is not possible. 

The third heuristic is the 1-to-1-heuristic. It uses classifiers for each pair of classes. A two stage majority 
decision follows: The test sample is rejected if all classes get 70% or lower of the possible votes. The 
winner class is determined by direct comparison of the three best classes. 

All three heuristics were tested using ten classes of vehicles provided by the MSTAR public target dataset. 
Hereby we found that for all tested kernel machines the classification results obtained using the 1-to-1-
heuristic are the most favorable. The 1-to-restMx (with maximum decision) is sometimes better but it 
contradicts the idea of a necessary reject class. 

3.4 Preprocessing & Feature Extraction 
Kernel machines map input data into a high dimensional feature space. This is sometimes taken to mean 
that feature extraction is not necessary for such classifiers. But nevertheless preprocessing and feature 
extraction are able to enhance the generalization and to speed-up the whole classification. 

It is well known, e.g. see [3], that in many cases a simple data-independent low pass filter not only reduces 
the computational effort but also generally improves the quality of the classification. This behavior is 
confirmed by our tests presented below. 

Other investigations on Fourier-coefficient-based feature extraction have been done. This is an adaptive 
method for pre-classifying. The 2D-SAR data normalized with respect to energy is transformed via 2D 
discrete Fourier transformation. Each single Fourier coefficient defines a weak classifier for the training 
dataset (two-class problem), i.e. a linear discrimination is defined. Then the best of these weak classifiers 
are chosen as feature extractors. 

3.5 Reject Criterion and ROC Curves 
If the classifier is only tested against trained classes the tests only deliver a proposition concerning a 
closed world performance. More reliable and robust results can be achieved by tests against a set of 
unknown signatures, so-called confusers. For this, a reject criterion parametrized by a scalar dmin is 
introduced. Therefore ROC (Receiver Operator Characteristics) curves can be computed, presenting the 
interrelationship of FAR (False Alarm Rate) and classification quality. 

The reject criterion is sketched in Figure 6. It is given in the high dimensional feature space of the kernel 
machine that is defined implicitly by the kernel – here we use the RBF kernel only. Classification in this 
feature space is done by simple linear discrimination. Therefore using the 1-to-1 decision heuristic each 
class has been trained against each other, i.e. hyperplanes cij define the classes’ boundaries. An acceptance 
region is defined by the minimal distance dmin to all related hyperplanes, i.e. we use the 1-norm. 
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Figure 6: Parametrized reject criterion – An acceptance region is defined for each class. 

The already used 1-to-1 decision heuristic is extended by the reject criterion. Thus there are two reasons to 
reject samples: The sample is rejected by the parametrized reject criterion or due to a class conflict 
inclusive ambiguous class voting. 

4.0 MSTAR DATA TESTS 

The first investigations in classifying high resolution SAR data have been done with the MSTAR public 
dataset. The chosen MSTAR data consists of 3671 training and 3203 test chips organized in ten classes: 
BMP2, BTR70, T72, BTR60, 2S1, BRDM_2, D7, T62, ZIL131, and ZSU_23_4. The data has been taken 
under a depression angle of 17° for the training samples and of 15° for the test samples. Only the 
magnitude data have been used for the tests. 

4.1 Heuristics and Kernel Machines for Robust Classification 
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Figure 7: Results of different combinations of heuristics and machines applied to the MSTAR ten 
classes problem.   Left: Correct classified samples,   Right: Percentage of used SVs or RVs 

The decision heuristics and kernel classifiers introduced above are tested with the ten-class MSTAR 
problem. The results given in Figure 7 demonstrate the different behavior of the kernel machines.  

For the SVM and RVM machines the results of the 1-to-1 heuristic are even better than these of 1-to-rest 
heuristic due to the stability of voting strategy. The 1-to-restMx with maximum decision yields good 
results but is off the discussion because of the necessity of a reject class. The RVMG (λ = 0.25) has been 
tested for the 1-to-1 heuristic only, because of the higher stability of the 1-to-1 heuristic – take a look at 
the number of SVs / RVs – and the huge computational effort for the training. The better generalization 
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(low number of RVs) of the RVMG with respect to the SVM (factor 2.7) results in a 5.56% lower 
classification quality. 

The nearest neighbor classifier produces a similar result with 88.17% (and 100% SVs). Here it should be 
remarked that we count the overall used number of SVs (RVs) and do not sum up the SVs used in all two-
class sub-problems. 

4.2 Real-Time-Capability by Fourier-Coefficient-Based Feature Extraction 
Fourier-coefficient-based feature extraction is an adaptive method for pre-classifying and was tested for 
different kernel machines. The results are given in Figure 8. For each the best 500 or 1000 coefficients are 
chosen. 
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Figure 8: Real time ability by Fourier coefficients (500 or 1000 coefficients have been selected)  
Classification quality (CC) and percentage of SVs or RVs for MSTAR ten classes are given. 

RVMG25 with 500 coefficients is real-time-capable because it is 116 times faster (more than 100 samples 
per second without I/O) than the nearest neighbor classifier (CCNN=88.17%) without feature extraction. 
This speed increase is due to the reduction in dimensions from 16384 (original data) to 500 (Fourier 
coefficients). 

5.0 FULLY POLARIMETRIC QINETIQ DATA TESTS 

It is a very interesting question how the classifier performance can be improved by fully polarimetric data. 
We investigated this problem using the QinetiQ dataset. The QinetiQ dataset contains 4006 images 
subdivided into 9 target classes A to I. Each of these classes is further subdivided into a training set 
consisting of 335 different target aspects and into a test set consisting of 110 test samples. Each of the 
complex-valued images of size 150x100 is depicting one single target. However, the target positions are 
varying from image to image. As a fixed target position is a prerequisite for achieving good results using 
SVM, 64x64 image sub-windows were selected in a pre-processing step. In the new images the centre of 
gravity of the binary object mask of the target coincides with the centre of the image window. Because the 
investigations were carried out with magnitude based features, only the magnitudes are stored 
(QinetiQ64). In order to be able to assess the influence of the image resolution, a further dataset 
(QinetiQ32) was generated degrading the 64x64 images to 32x32 using a 2x2 window. 
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5.1 Polarimetric Feature Selection 
For both QinetiQ32 and QinetiQ64 different polarimetric features were investigated using the SVM. The 
classification results obtained using complex-valued features, especially the Pauli decomposition, were 
lower than 50%. Therefore in the following only magnitude based features were considered. 

The tested polarimetric features based on the magnitudes are: 

• a single coplanar channel (VV, HH) 
• the average of the two coplanar channels (MAGVVHH) 
• the concatenation of the two coplanar channels (VVHH) 
• the average of all four channels (MAG) 
• the concatenation of all four channels (ALL) 

The investigations were done using QinetiQ64 as well as QinetiQ32 applying the SVM with Gaussian 
filtering (σ = 0.75 for QinetiQ32 , σ = 1.5 for QinetiQ64). A survey of the results is shown in Figure 9. 
The classification quality is represented in blue whereas the computational effort is depicted in purple. 
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Figure 9: Efficiency and quality achieved using SVM 

The results pointed out that it is more favorable to use QinetiQ32 with the reduced geometrical but 
improved signal-to-noise-ratio than to use QinetiQ64 possessing the fully geometrical information. 
However, there is a clear distinction between the features based on averaging and those based on 
concatenation. In case of averaging the increase of the classification rate is small, less than 2%. In case of 
concatenation the increase is essentially larger, more than 10%.  

Using the fully polarimetric information is also of value. For QinetiQ32 an increase, concerning the 
classification rate, of about 2% was noticeable. For the QinetiQ64 an increase of about 5% was detected. 
In both cases the best classification results were obtained using both coplanar channels. The main 
advantage of using all four channels is the reduction of the number of support vectors. Assessing the 
computational effort it is necessary to consider that concatenation enlarges the dimension of the support 
vectors by two or even four times. Therefore a reduction of the computational effort can be achieved only 
for averaging based features. Thus the most promising feature is MAG32 because of its good classification 
results and its low computational effort. Considering only the classification rate MAGVVHH32 and 
ALL32 are also well suited features. Finally HH32 is also a good choice as the classification performance 
is diminished only by 2% and the support vector quota is similar to the one of MAG32. 
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5.2 Real-Time-Capability by Advanced Methods 
For usage in an operational ATR system the classification task must be solved in real time. In the case of 
high-resolution SAR data this is actually not state of the art. To achieve this objective we use the RVM 
and RVMG which minimize the number of support vectors, as well as adaptive Fourier coefficients and 
the combination of these using the most promising features MAG32, MAGVVHH32 and ALL32. 
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Figure 10: Classification quality of the most favorable features 

The classification results obtained using these new methods with Gaussian filtering are depicted in Figure 
10. The results for the SVM are given in the first column. Results of the SVM with image data 
transformed into 100 Fourier coefficients (SVMF) are indicated in the second column. The third and 
fourth column present the results of the new RVMG when using the control value λ = 0.1 (RVMG10) 
respectively λ = 0.25 (RVMG25). Finally, the fifth column indicates the results of the RVMG with image 
data transformed to 100 Fourier coefficients (RVMG10F). 

As expected the best results were obtained applying the SVM achieving a classification rate of more than 
87%. The poorest results were obtained using RVMG10F with a classification rate varying for the 
different features between slightly more then 75% and slightly less than 80%. The best results were 
obtained using MAG32 with a loss of about 1% in case of SVMF and about 8% in case of RVMG10. With 
the exception of RVMG10F with the MAGVVHH32 feature, all classification rates decrease by less than 
10%. 

An important assessment criterion for the tested methods was the computational effort. Comparing the 
different methods we have to consider that in case of SVMGF and RVMGF the image data consisting of 
1024 pixels was reduced to a vector of 100 Fourier coefficients which causes a nearly 90% reduction of 
the computational effort. 
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Figure 11: Computational effort of the most favorable features in percent of that of an SVM with 
100% SVs without Fourier coefficients 

In Figure 11 a survey of the corresponding adapted computational efforts is given. All new methods have 
an essentially lower effort. For the RVMG25 test the speed up factor is considerably higher than 2. The 
RVMG10F yields a speed up factor of nearly 40, with respect to the SVM. 

5.3 Optimization of FAR against Quality 
In the preceding sections the performance concerning the discrimination between trained classes was 
investigated. In case of ATR however not only objects of the trained classes but also objects of non-
trained classes or even artifacts will occur. Therefore an important property of a classifier would be the 
capability to reject objects not belonging to one of the trained classes. 

In order to test whether the implemented reject criterion fulfills this demand, the following experiment 
was carried out. Only the four classes A, B, D and G of the QinetiQ dataset were trained. Then the test 
samples of all nine classes were classified. The results obtained are depicted in Figure 12 in case of 
MAG32, in Figure 13 in case of MAGVVHH32 and in Figure 14 in case of ALL32. The results are 
controlled by two parameters. The curves family is parametrized by the reject criterion, i.e. the minimal 
distance (1-norm) dmin to all related hyperplanes. The curves were determined by varying the kernel factor 
σ of the RBF. 

The results demonstrate that for distinct FAR intervals related optimal dmin values and optimal features 
exist. Generally using a larger dmin i.e. a stronger reject criterion will result in a poorer classifier 
performance. However, as MAG32 is indicating, this global trend may no longer be valid for small FARs 
– usually the most interesting part of the curves. In this specific example the reject criterion dmin = 0.5 is 
the most favorable one. This may be the reason that generally only small values of the normalization 
factor σ can guarantee small FARs. But these settings also cause the rejection of a large number of real 
targets. Reducing the false alarms by increasing the strength of the reject criterion permits the rise of the 
factor σ normalizing the RBF kernel. By this, the efficiency of the classifier will increase, too. 
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Figure 12: Result of the reject criterion for MAG32 

Evaluating the tested features shows that no feature is always better than the two other ones. For a demand 
of a FAR below 15% using MAGVVHH32 is more favorable than using MAG32 or ALL32. However in 
case of a FAR above this level MAG32 is the best choice. 
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Figure 13: Result of the reject criterion for MAGVVHH32 

The ROC curve of ALL32 is always positioned below the ROC curves of either MAG32 or 
MAGVVHH32 indicating a poorer performance of this feature. By this, the ranking of the features 
presented in the preceding section is confirmed. 
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Figure 14: Result of the reject criterion for ALL32 

6.0 CONCLUSION 

In this paper we introduced classification methods for the processing chain of ATR in high-resolution 
SAR images. Kernel machines as robust classification methods are the basis of our approach. A novel 
kernel machine was presented that controls the trade-off between classification quality and computational 
effort, i.e. number of relevance vectors. The multi class classification capability is given by an efficient 1-
to-1 decision heuristic. An adaptive feature extraction based on Fourier coefficients enables the module for 
real time execution. 

The investigations have taken place for the MSTAR public database. Tests with a ten-class problem have 
been analyzed. For example the RVMG25 machine with a pre-classifier using 500 Fourier coefficients is 
116 times faster than the original nearest neighbor. The classification quality has been improved from 
CCNN=88.17% to CCRVMG25_500=93.23%. 

Further investigations have used the fully polarimetric QinetiQ dataset with nine classes. The tests carried 
out indicate that the most favorable polarimetric features for the depicted hard targets are the magnitude 
based ones. Especially the two coplanar polarizations embody the essential information for the class 
distinction, e.g. the SVM result of MAGVVHH32 with CC=87.79% is similar to MAG32 with 
CC=87.59%. But the crossplanar channels cause a better generalizability, e.g. the SVM gives SV=82.06% 
for MAGVVHH32 and SV=71.71% for MAG32. On the other side complex features like those based on 
the Pauli decomposition are off the discussion because of their weak performance. 

An important property of a classifier used in the ATR framework is the capability to reject objects not 
belonging to one of the trained classes. Therefore the QinetiQ data have been divided into two class 
systems: the training and test classes and the confusion objects. The classification module with reject 
criterion is controlled by the reject parameter and the kernel parameter of the RBF. To determine ROC 
curves we have varied both parameters. For example the SVM with MAGVVHH32, reject parameter 
r=0.25, and RBF parameter σ=0.1 yields a very low FAR=2.9% and a classification quality of 
CC=77.73%. 
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By the way classification quality of CCNN=91.83% was achieved for the nine class QinetiQ data by the 
nearest neighbor classifier with MAGVVHH32 and a simple pre-filtering. This single result also approves 
the well selected polarimetric feature for hard targets. 

This paper has shown that polarimetric data is also useful for ATR tasks in high-resolution SAR data. 
Future work should deal with a more physically founded analysis of polarimetric features. Especially the 
whole complex information should be made available in a proper way for the classifiers. This could lead 
to a better generalizability of SAR image catalogs. 
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SUMMARY 

The development of ATR algorithms and the comparison of different classification schemes is one of the 
main goals of the SET-053 group. The group mainly focuses on SAR images of stationary ground targets, 
in which the targets are detected. These single image chips form a databank for ATR evaluation and 
identification to which the classification schemes can be applied. Because of the inhomogeneous measured 
and modelled datasets of the different nations we start our evaluation with the public MSTAR dataset, 
which is used since many years for ATR evaluation and identification. 

In most of the publications dealing with the MSTAR dataset [1,2,3]  classification rates between 97% and 
100% could be reached due to the good quality of the chip images (good adjustment, centered, good 
signal/noise ratio, nearly exact scaling).But these results should not be overestimated because the image 
quality can decrease having real applications with targets in battlefield situations.  

We investigate the performance of simple classification approaches when the quality of the MSTAR 
dataset was degraded by adding noise, decentering the targets and introducing errors in the crossrange 
scaling. In addition we used a dataset from real field measurements which was made available to the SET-
053 group by QinetiQ,UK. As anticipated, the classification rates dropped considerable in all mentioned 
cases. Consequently changes in the feature extraction schemes were investigated which were able to 
improve the classification rates again.  

Additionally we analyze the influence of clutter and target shadow on the classification rate. In both 
datasets the classification rate decreases when we separate the target from clutter and shadow. This is a 
hint, that a strict separation and segmentation of target and clutter is necessary to classify the real target. 
Therefore the targets should be measured independently and, if possible, at different locations, so that the 
clutter doesn’t correlate between the test and training data. The target shadow can be used for additional 
information dependent on the depression angle.   

By comparing different classifiers (Nearest neighbour, different types of SVMs, HNet…) we can conclude 
that the main work is not choosing and applying the classifier, but concentrate more on the data 
collection, preprocessing and feature extraction process.  

Therefore in this paper the results of the different investigations concerning the preprocessing of the 
datasets will be presented. Main topics are the target centering, segmentation, clustering and the 
influence of the image resolution on the classification rate.  

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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1.0 INTRODUCTION 
Because ATR has become more important during the last years it is essential to develop robust 
classification schemes, which can be applied reliably in military operations.  Especially the identification 
of ground targets in battlefield situations is one of the most difficult tasks, because in relation to the 
identification of air targets [5, 6] the general conditions are much more unfavorable. The major problems 
are the clutter (which is not present in air), the unknown target orientation (aspect and elevation angle), 
high variability of the target scatterers and the possible multiple variants of the target.   

2.0 DATASETS 

For our investigations we use two different datasets: the public release of the MSTAR dataset and a 
dataset which was provided from QinetiQ (UK) to the NATO-SET-053 group. Both datasets consist of 
single target SAR image chips and are divided into test and training data. The following section gives a 
more detailed description of both databases.     

2.1 MSTAR (“Public release”) 
The Moving and Stationary Target Acquisition and Recognition (MSTAR) was a joint Defense Advanced 
Research Projects Agency (DARPA) and Air Force Research Laboratory (AFRL) effort to develop and 
evaluate anadvanced ATR system. The program began in June of 1995 and ended in 1999. The public 
release of the MSTAR dataset provides approx. 20.000 SAR image chips covering 10 target types from 
the former Soviet Union. MSTAR has conducted three data collections in September 95, November ’96 
and May ’97. The target images were collected near Huntsville, Alabama by the Sandia National 
Laboratory (SNL) using the STARLOS sensor. The imagery used here was collected as part of the 
MSTAR data collection #1, Scene 1 and as part of the Data Collection #2, Scenes 1,2 and 3. The targets 
contain three T72 Main Battle Tanks (MBT) three BMP2 Armoured Personnel Carriers (APC), a BTR70, 
2S1, BDRM2, D7, T62, ZIL131, ZSU23/4 (see table 3). 

The data consist of X-band SAR images with 1 foot by 1 foot resolution measured in spotlight mode. The 
targets have been measured over the full 360° azimuth angles with 1°-5° increments and over multiple 
depression angles (15°, 17°, 30° and 45°). The target data is presented as subimage chips centered on the 
target with a standard chip size per target type, usually 128px x 128px. Table 1 gives an overview of the 
dataset used in our experiments. Data collected at 15° depression angle were used for testing (3423 
images) and 17° for training (3451 images). 

2.2 QinetiQ SAR data  
The imagery, which was kindly provided from QinetiQ (UK) to the NATO-SET-053 group, was collected 
from a measurement campaign in November 2001. The fully polarimetric X-band data of nine targets was 
recorded with the Enhanced Surveillance Radar (ESR) from QinetiQ in spotlight mode. The resolution of 
the images is 0.4m x 0.4m, the pixel spacing 0.3m x 0.3m, respectively. Two different circles around the 
target area were flown to collect training and test data separately and independently. The low depression 
angle of 6° caused long shadows in the images in range direction behind the targets. The squinted 
processing allows obtaining 360° coverage in the azimuth direction for the image dataset. Table 1 and 2 
show the aspect coverage of all targets in the test and training data. Here the number of measured images 
is shown for an aspect interval of 10° (Asp. 1 means the interval from 0 to 9°, Asp. 2 stands for the aspect 
interval 10-19° and so on). The underlying colour is a measure for data density (black: no data, red: some 
data and white: data every 1°). We see that the training data was measured nearly completely over the 
whole azimuth, but the test dataset shows some gaps in the aspect angle distribution because it was 
measured only in some segments of the flown circle. The total ratio of train and test data is nearly 3 to 1 
(330:110 for each class). In our studies we used only the HH-channel representative. 
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Table 1: number of images separated in 10° aspect interval (Asp. Int.) for QinetiQ training data 
(black: no data, red: some data, white: 1° data); Cl=target class 

Asp
Int. 

 
Cl 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 9 10 10 10 9 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 5 10 10 10 10 10 10 10 10 8 2 10 10 10 
2 9  10 3 10 10 10 10 10 10 10 10 10 3 7 10 10 10 10 10 10 10 4 8 10 10 10 10 10 10 10 10 10 10 10 10 10 
3 1 10 10 10 10 10 10 10 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 4 10 10 10 10 10 10 10 10 9 
4 9  10 10 10 10 8 2 10 10 10 10 10 10 10 9 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 5 10 10 10 
5 9 10 10 10 10 10 10 10 10 10 10 10 8 5 10 10 10 10 10 10 10 10 8 2 10 10 10 10 10 10 10 9 3 10 10 10 
6 9 10 10 10 10 10 10 10  10 10 10 10 10 10 10 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 3 10 
7 3 9 10 10 10 10 10 10 10 10 4 6 10 10 10 10 10 10 10 5 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 
8 4 10 10 10 10 10 10 10 10 9 1 10 10 10 10 10 10 10 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 
9 9 10 10 10 10 10 10 10 10 10 10 6 7 10 10 10 10 10 10 10 10 6 4 10 10 10 10 10 10 10 7 5 10 10 10 10 

 

Table 2: number of images separated in 10° aspect interval for QinetiQ test data 

Asp 
Int. 

 
Cl 

1 
 

2 3 4 5 6 7 8 9 10 11 
 

12 
 

13 14 15
 

16 17
 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 

36

1   1 10 5  6 10 10  3 10 8  4 5          10 6       5 10 7 
2      5 10 1       10 10 2   6 10  1 10 10 5   8 10 3  9    
3  4 10 8    10 6  5 10 10 1  2 10 9  3 6         9 7      
4 5       5 10 7   1 10 5  6 10 10   3 10 8  4 5         10
5   3 10 8  4 5         10 6       5 10 7   1 10 5  6 10 10
6  8 8       3 10 9    9 7  4 10 10 2  1 10 10  2 7        
7    4 10 2       9 10 3   5 10 1  10 10 6   7 10 4  8 1     
8    9 7       4 10 8    10 6  5 10 10 1  2 10 9  3 6      
9  5 10 6  6 3        2 10 4       7 10 5   3 10 3  8 10 8  

 

2.3 Comparison of the MSTAR and QinetiQ dataset 
Comparing the 10-class-MSTAR with the 9-class-QinetiQ dataset (Fig. 1 and 2, Table 3), the total number 
of images in the MSTAR train and test case are nearly the same (3671 training and 3203 test images). 
Each target class has approximately 300 training and 200-280 test images, which are distributed over the 
complete 360 azimuth homogenously. Only class 1 (BMP2) and 3 (T72) consist of trice more images 
because here three different serials are integrated. The training QinetiQ dataset (table 1) consists of 
slightly more images (330 images with nearly 1° aspect increment), but in contrast to MSTAR the test 
dataset (tab.2) comprises only one third of the training data (110 images per class). The aspect angle 
distribution of this test data is very inhomogeneous compared to the training data. 

As an example for the quality of the images we see in fig. 2 a sample image from the MSTAR dataset 
(left) and one from the QinetiQ dataset (right). The differences between these datasets are: The MSTAR 
image is centered a priori and has a good signal to clutter ratio. Furthermore the clutter is distributed very 
homogeneously. The QinetiQ data are not centered a priori, and the S/C ratio is lower than in the MSTAR 
data. The target shadows in the MSTAR dataset are pronounced in contrast than the longer target shadows 
in the QinetiQ data.             
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Figure 1: total number of training (red) and test (blue) images in 10° aspect interval for the 

MSTAR 10-class data (l.) and the 9- class QinetiQ data (r.) 

Table 3: number of images per class for the MSTAR and QINETIQ dataset 

Class 
Type 

1 
BMP2 

2 
BTR70 

3 
T72 

4 
BTR60 

5 
2S1 

6 
BRDM2 

7 
D7 

8 
T62 

9 
ZIL131 

10 
ZSU23/4 

Sum 

Train  
17° dep 698 233 691 256 299 298 299 299 299 299 3671 

M
ST

A
R

 

Test 
15° dep 587 196 582 195 274 274 274 273 274 274 3203 

Class 1 
- 

2 
- 

3 
- 

4 
- 

5 
- 

6 
- 

7 
- 

8 
- 

9 
- Sum 

Train 
Circ 1 330 335 335 335 335 335 335 335 335 3015 

Q
in

et
iQ

 

Test 
Circ 2 110 110 110 110 110 111 110 110 110 
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Figure 2: Sample images from datasets MSTAR (l.) and QinetiQ (r.)  

3.0 DATA PREPROCESSING SCHEMES 

Because we want to classify the target (and not the clutter) it is not much meaningful to take the complete 
original images as input for the classifier. The main work before doing classification is the preprocessing 
and feature extraction of the data. In order to standardize the information of each image to be classified 
some degree of preprocessing is required, so that the images are adjusted for the used classifier. For our 
further investigations we used the following processing scheme: 
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Figure 3: Data Preprocessing scheme (COM=Center of MASS; CLA=Classifcation) 

Starting from the original datasets we have on the one side the centered MSTAR images (B) and the 
uncentered QinetiQ images (A). The image sizes are 128px x 128px for the MSTAR and 150px x 100px 
for the QinetiQ data. Because we use for our classification a pixelbased minimum distance Nearest 
Neighbour classifier (section 5.1) we have to center the data as accurately as possible. 

To illustrate the preprocessing steps (fig. 4) we take an uncentered image of the QinetiQ data (fig. 2). The 
first step is to center the image. This can be done in three steps: first we determine a threshold to detect  
the target (step 1a). This threshold is adjusted on the image dimensions and the estimated ratio of target to 
background area. In our calculations we have used a 95%-median on the amplitude data, so that the 5% 
highest amplitudes are selected for further processing. In a second step we remove single pixels and 
clusters, which have less than 8 connected pixels. From the remaining large clusters we choose the largest 
one and replace the amplitudes with ones (step 1b, clipping) to eliminate the amplitude variations on the 
target. On this binary image we calculate the Center of mass “COM” (step 1c) with the indices im and jm, 
where i and j are the pixel indices in range (R) and crossrange (CR) respectively and x are the amplitudes 
of the image data. 
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At last the image with the original amplitudes is shifted according to the COM and the centering process is 
finished.  

Step 2 is optional. If the azimuth orientations of the targets with respect to the sensor are known (ground 
truth or tracking information), they can be used to rotate the images so that all targets point in the same 
direction. Because of the different direction of rotation in both datasets the MSTAR images have to be 
rotated clockwise and the QinetiQ images counter clockwise. If no information about the aspect angle is 
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available, we ignore this step and proceed with step 3. Here a “cutting” step is introduced with a resulting 
concentration on the (centered) target. In our processing the clipped image has the dimension of 64px x 
64px in both datasets. 

A: decentered SAR image 
 (150 x 100)  

 

1a. Thresholding f. COM 
(150 x 100) 

 

1b. Clustering f. COM (bin) 
(150 x 100) 

 
1c. COM 
(150 x 100) 

 

3. Cutting 
(64 x 64) 

 

4a. Thresholding (bin) 
(64 x 64) 

 
4b. Clustering (bin) 

(64 x 64) 

 

4c. Clustering 
(64 x 64) 

 

5. reducing resolution 
(16 x 16) 

 
 Figure 4: example for image processing before classification 

In the fourth step we have the option doing image segmentation. This can be done in different ways: the 
normal way is to separate the target from the background clutter. Beside this we investigate cases of 
separating target shadow from image and clutter separately so that we can determine the influences of 
these parts of the image on the classification rate. In Fig. 4 the usual target segmentation is shown. 
Comparable to the COM calculation the thresholding (step 4a) and clustering (step 4b) of the image is 
done. The threshold T is adapted from a clutter level defined by a box around the target with 
T=Cmean+3*Cstd from the mean Cmean and standard deviation Cstd of the clutter. After that connected pixels 
above this threshold are clustered, whereas little clusters and single pixels are removed. Additional 
clusters which are far away from the largest target cluster are eliminated (step 4c).    

Step 5 of the preprocessing allows data reduction by reducing the image resolution. The clipped 64px x 
64px image can be smoothed by a factor 2 or 4 so that the input image for the classifier has a size of 32px 
x 32px or 16px x 16px respectively. 
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To achieve a comparable set of preprocessed images the image is normalized to the image power of the 
preprocessed image finally (Step 6). 

4.0 CLASSIFIER 

For our investigations we used a simple pixel based Nearest Neighbor Classifier, which calculates the 
minimum distance between the amplitudes x of the test and the training images.  

( )
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This means that all test images TE are compared with all replica images TR and the class of the test image 
C(TE) with the minimal distance ∆(TE,TR) to the replica TR is assigned. This minimum distance is 
equivalent to the correlation coefficient between the two images. The advantage of using a Nearest 
Neighbor classifier is on the one hand the simplicity of such a classifier (no parameters) on the other hand 
the missing training phase combined with its versatility of changing combinations of exspected targets. So 
this kind of classifiers is very simple and easy to use. Its drawback can be found in the bigger database and 
a somewhat longer decision time.  

In the following section we applied this classifier on three different identification problems: a 5-class 
MSTAR, 10-class MSTAR and 9-class QinetiQ problem. Usually all test data are tested against all 
reference data (replica). A rejection class was not installed. The complexity of the three identification 
problems (number of test images and replicas, target classes) can be extracted from table 3. 

To evaluate our results we compare the classification rates achieved with the NN-Classifier with other 
classifiers (linear and polynomial SVM, RBF).   

5.0 CLASSIFICATION RESULTS 

For our investigations we used three kinds of problems: 5-class MSTAR (M5), 10-class MSTAR (M10) 
and a 9-class QinetiQ (Q9) problem. We used forced decision classifiers with no rejection class. The test 
data is tested against all replicas.In our investigations we quantify the influence of the following key 
aspects on the classification rate:   

• Target centering (using COM algorithms)  

• Image segmentation (target, clutter, shadow) 

• NN compared to different types of SVM classifiers  

• Image resolution 

• Target orientation (knowledge of the aspect angle) 

Depending on computer power restrictions we sometimes worked with a reduced dataset. Especially for 
extensive calculations (decentering and shifting) we used the M5 instead of M10 dataset.  

5.1 Target centering 
Because we applied in our studies a pixel based classifier it is very important to adjust the image by target 
centering. This is indispensable when using the uncentered QinetiQ dataset, in contrast to this the original 
MSTAR dataset is centered already. Generally it cannot be assumed that the target images are centered in 
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a consistent format. To demonstrate the effect of classifying decentered and centered data we use the 5-
class MSTAR (M5) dataset. First we make a random decentering of the target by ±10 pixel (V001), after 
that we decrease the misalignment to ±5 pixel (V002) and then we use our COM-algorithm to center the 
target (V003). When we finally allow additional shifts of ±1 pixel around the COM (V004), we get 
classification rates (97.9%) comparable to those of the original MSTAR centered data (V005, 98.1%). The 
results for these different centering studies are shown in table 4. Additional to our NN classifier the results 
of other classifier are demontrated (linear, polynominal, and RBF SVMs). The confusion matrices of the 
M5 (V004) and additionally of M10 and Q9 are given in fig. 5. 

Table 4: Classification rates CLR [%] for centering studies V001-V005 with M5, 32px x 32px 
images with NN classifier (left table) and different types of SVM classifiers (right) 

No 
 
V001 

Case 
 

±10 pix 

CLR [%] 
 

62.5 

V002 ±5 pix 80.2 

V003 ±10 / COM 96.1 

V004 ±10 / COM / 
shift 1 97.9 

V005 Original 
MSTAR 98.1 

62,5

80,2

96,1 97,7 98,1

63,0

77,4

93,8

0,0

97,4

63,8

80,0

95,9

0,0

98,2

61,7

77,5

94,7

0,0

97,7

54,4

0,0
10,0
20,0
30,0
40,0
50,0
60,0
70,0
80,0
90,0

100,0

V 001 V 002 V 003 V 004 V 005

C
LR

 [%
]

NN SVM linear SVM poly 3 SVM poly 5 SVM RBF

  

 96.0  0.5  0.2  0.0  1.5

 0.3  97.5  0.0  1.1  0.0

 0.3  0.0  98.8  0.0  0.4

 1.3  2.0  0.5  98.9  0.0

 2.0  0.0  0.5  0.0  98.1

Pd = 0.97862

 out class

 in
 c

la
ss

1 2 3 4 5

1

2

3

4

5

 

 88.2  1.4  2.6  0.6  1.4  0.4  0.7  1.2  0.8  1.0

 1.0  80.7  0.0  3.0  1.4  2.0  0.0  1.2  2.3  0.0

 2.9  0.0  89.9  0.6  3.2  0.4  2.4  4.0  4.2  2.4

 1.6  6.8  0.7  86.6  1.4  2.7  1.0  1.6  1.1  1.4

 2.7  2.9  0.7  2.4  80.9  1.2  0.3  1.6  1.1  1.4

 1.3  4.8  0.5  4.9  1.8  90.6  0.0  0.8  1.9  0.7

 0.0  1.0  0.3  0.0  0.0  0.4  90.1  0.4  0.0  1.0

 0.8  0.0  3.1  0.6  3.9  0.8  3.1  86.2  1.5  3.5

 1.0  2.4  1.0  0.6  5.0  1.2  1.7  0.8  86.8  0.7

 0.6  0.0  1.0  0.6  1.1  0.4  0.7  2.0  0.4  87.8

Pd = 0.86775

 out class

 in
 c

la
ss

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

 

 69.6  1.0  0.0  1.0  1.0  0.9  15.1  0.0  0.0

 3.2  88.6  0.0  5.9  0.0  0.0  5.6  0.0  0.0
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Figure 5: confusion matrices for SAR images of M5 (V004), M10 and Q9, 32px x 32 px  

By applying this COM-centering algorithm on the 10-class MSTAR (M10) and 9-class QinetiQ (Q9) 
dataset (± 0 shifts) we get classification rates from 86.8% and 79.0% respectively (fig. 5). 

5.2 Image segmentation 
In section 5.1 we have calculated the classification rate of the complete SAR images by neglecting the 
influence of the clutter and the target shadow on the classification rate. In a next step we quantify this 
effect by separating and segmenting different parts of the image. So we are able to compute the real target 
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classification rate and analyze the influence of the surrounding clutter and target shadow. Fig. 6 shows 
different analyzed cases of segmented images, which were used as inputs for the NN-classifier. While the 
original image has a classification arte CLR of 97.9% the separated target classification rate drops down to 
93.6%. Thus the target shadow and the clutter contribute to the classification of the SAR image. 
Quantifying this we get the CLR of the separated target shadow of 58.8% and a classification rate of the 
clutter of 99.4%. The evidence is that the clutter of the test and training images is highly correlated. To 
analyze this effect in detail, we put a defined zerobox over all targets and calculate the dependence of the 
clutter classification rate on the dimension of the box (which is a measure for the image clutter content 
ICC, fig. 7).       
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Figure 6: Segmentation of images for the M5 case; original, only target, only shadow, only 
clutter (from left to right) 
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 Figure 7: Clutter Classification rates CLR [%]  for different image clutter content (ICC) for M5  

The results are shown in fig. 8. Here we see the dependence of the clutter classification rate on the image 
clutter content for the two datasets M5 and Q9 classified with the NN-classifier and with a SVM-RBF 
classifier. In general the course of each case (M5 and Q9) is typical for the dataset, so the M5 lines are 
slightly convex curved, whereas the Q9 lines are more linear. The classification rate calculated with the 
NN classifier is much higher compared to the SVM-RBF classifier for the M5 case (up to 40%) and less 
high for Q9 case (4-10%). In all cases we get a significant classification rate only due to the clutter and the 
pixelbased minimum distance NN classifier seems to be more sensitive than the SVM classifier. This fact 
underlies a requirement on the used test and training dataset: To become independent from the clutter the 
targets in the test dataset have to be measured in different clutter environments than the training data. 

To avoid this difficulty we separate the target from the clutter (step 4 in fig.3) resulting in a target 
classification rate of 82.7% for the M10 and 70.9% for Q9. The confusion matrices are shown in fig. 9.   
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Figure 8: Classification rate CLR [%] of clutter for M5 and Q9 dataset dependent on the image 
clutter content 
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Figure 9: Confusion Matrix for M10 (l.) and Q9 (r.) for centered targets (without clutter) 

This result can be optimized by shifting the COM-centered image by some pixels to compensate possible 
variations in the COM-calculations. A maximal target classification rate of 77.5% can be reached with an 
additional shift of ±4 pixels for the Q9 case (fig. 10). This fact points to the problem of the uncertainty in 
calculating the COM. The COM centering is only a coarse method, the fine adjustment has to be done in 
an additional step, for example with possible little shifts as applied here. 

5.3 Classifier, image resolution and azimuth angle 
Finally we compared exemplarily the identification results from the NN-classifier with different types of 
SVM-classifiers (linear, polynomial and RBF kernels). For these investigations (see fig. 11) we used the 
Matlab OSU Support Vector Machine Toolbox V.3 [4]. Because we know in both datasets the azimuth 
orientation of the target it is useful to rotate the images, so that all targets point in the same direction (step 
2 in fig.3). 
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Figure 10: Classification rate for Q9 (NN, 32x32) with additional shifts on COM-centered targets 

With this option the classification rates can be increased in all cases (4%-10%). The differences in the 
classification rate between the classifiers are marginal except the SVM with linear kernel, which produces 
15-20% lower classification rates. In the M10 case we get maximal classification rates of 85-90%, in the 
Q9 case approximately 75%-82%. Additionally in fig. 11 the dependence of the image resolution (16, 32 
and 64 pixel) is shown. In nearly all cases the best rates can be achieved using the 32 pixel (corresponding 
to 2ft (MSTAR) and 60cm (QinetiQ) resolution). So we cannot support the (often heard) statement that the 
highest resolution gets the best identification results.       
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Figure 11: Classification rate [%] for different classifiers and different image resolutions (blue: 
without azimuth rotation, red: same azimuth orientation) for the M10 (l.) and Q9 (r.) case 

6.0 CONCLUSION  

Recapitulating we can conclude with the following results:  

• Because of reasons of simplicity and the variety of parameters in other classifiers we used in our 
investigations in general a simple NN-classifier. Because our “features” are the image pixels 
target centering is essential. With a Center of Mass algorithm this can be done in a coarse way. 
Here we get target classification rates of 96.1% for the M5 case. Allowing additional shifts for a 
fine adjustment the classification rate can be increased to 97.9%. 
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• The clutter around the target and the target shadow has non negligible influence on the target 
classification rate. Of course the target must be separated from the clutter. This statement is true in 
general to reduce the S/C ratio as far as possilble. Doing this with the data under consideration in 
this report the classification rates drop from 87.3% to 82.7 (M10) and from 78.2% to 70.9% (Q9). 
With allowing shifts for fine adjustment classification rates of 77.5% can be reached for Q9. This 
surprising result can be explained by the “non-independence” between the test and replica images 
and underlies again the requirement for statistical independence of test and training data.   

• For the M5 case the separated target shadow alone leads to a classification rate of 58.8%. Using 
only the clutter area of the images after removal of the target and shadow still classification rates 
varying from 52% to 99% (depending on the image clutter content ICC) were achieved, again 
highlightning the pronounced clutter correlation between test and training data. For clarification 
the dependence of the image clutter area on the classification rate was analyzed. For the Q9 case 
the clutter classifies the targets with 29%-65% depending on the ICC.   

• By comparing the NN classifier with other classifiers (SVMs with different kernels) we get 
comparable results in the target classification rate.  

• Dependent on the dataset best results can be reached with an image resolution of 32 pixels which 
correspond to 2ft (MSTAR) and 60cm (QinetiQ) pixel resolution. 

• The classification rate can be tuned knowing the aspect angle of the target. Then the images can 
be oriented in the same direction, which increases the classification rate. 

All these investigations show that the preprocessing of the data has extreme significance in the 
identification process. The applied classifier is then the last step with less importance. The requirements 
on the datasets are the strict independence of the measured test and training data. 
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ABSTRACT 

This paper investigates a template-matching approach to automatic target recognition (ATR) for SAR for 
the case in which positive identification of a single known target type is required. ATR schemes are 
necessarily supported by databases of training imagery and of particular interest in this study was the 
impact on performance of using a database of simulated imagery to match against real in situ SAR 
imagery. Assessments have been made using 30cm resolution, X-band, spotlight imagery to provide the in 
situ test data and training databases firstly based on different examples from the same in situ data to 
provide an idealised baseline and secondly using simulated imagery. The impact on performance for both 
single channel and polarimetric data is reported and discussed.  

1. INTRODUCTION 

A particularly important automatic target recognition (ATR) task for synthetic aperture radar (SAR) 
targeting applications is that of single target identification which requires the positive identification of a 
single known target type within a relatively confined area. A database of previously generated training 
images will be available which may contain previously collected in-situ data, images of the target on a 
turntable in a controlled environment (ISAR) or images generated through the use of signature prediction 
tools. In this paper, a template-matching approach to the single target identification problem has been 
considered rather than a feature-based approach as discussed in Section 2. The robustness of template-
matching to variations in aspect angle, measurement day and use of different vehicles of the same type has 
been studied using 30cm resolution, X-band, ISAR data of a military vehicle as discussed in Section 3. 
This natural within-class variation has been used to quantify confidence bounds in the matching process. 
The performance of the resulting ATR scheme has then been assessed in the ideal case in which 
independent training and test sets derived from the same 30cm resolution, X-band, spotlight imagery data 
source are used. However, in an operational system, the training database will be non-ideal in that it will 
have been obtained under different circumstances to the operational imagery against which the ATR is to 
be used. Performance assessments using a training database of simulated target signatures and a test set of 
spotlight SAR imagery have thus been performed to investigate the impact on performance of using such 
non-ideal training data. The results are presented in Section 4 and conclusions are drawn in Section 5.  

Several data-sets have been used to support this study consisting of in situ images of targets in spotlight 
SAR imagery, turntable ISAR imagery of a target and simulated target images. These are described in 
more detail in the Appendix.  

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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2. TARGET CLASSIFICATION SCHEMES 

Target classification is achieved using a database containing previously generated imagery of targets from 
a variety of different classes of interest. This is called the training set. The target image under test is 
compared to the images in the database and the closest match is established in some manner. If a 
sufficiently close match is found, then the target is declared to belong to the same class as the closest 
match. However, if the match is insufficiently close, then the target is declared as being unrecognised. The 
fundamental characteristic of different classification algorithms is how they establish the closeness of the 
test image to the target classes represented in the training set. There are many possible ways in which this 
can be achieved but they basically divide into two different types of approach, namely template-matching 
and feature-based classification.  

In template-matching, the test image is compared with every image in the training database on a pixel-by-
pixel basis to find the closest match. This comparison will normally be achieved by some form of 
correlation operation with the classification being declared on the basis of the highest correlation value 
found. One of the main drawbacks with template matching is that searching through each image in the 
training database can be extremely computationally expensive since the training database must contain 
representative images of every target in every possible configuration. This can require a very large number 
of images given that SAR images of the same vehicle at different aspect angles can look very different, 
together with the fact that a particular vehicle can assume many different configurations depending on the 
articulation of moving parts, such as the turret of a main battle tank, and the attachment of objects such as 
oil drums. Nevertheless, the template-matching concept provides a basic, robust approach to classification.  

The alternative feature-based approach to classification alleviates the problem of searching through every 
image in the training database by characterising the targets of a particular class in terms of particular 
properties termed ‘features’. Features can be based on obvious physical characteristics of the target such 
as length and width or may be more abstract such as statistical measures of the variation in pixel 
brightness across the target. The idea is that a single set of features can be used to characterise many of the 
target images from a particular class. This means that, rather than comparing a particular test image with a 
large number of training images, the feature values measured for the test image can be compared with the 
single set of feature values which characterise a whole set of training examples. Feature-based approaches 
are thus potentially much more efficient than temple-matching approaches. However, the problem comes 
in defining an appropriate set of features and defining the method of comparison with features measured 
for the training examples.  

For the targeting application considered in this study, the classification problem is to detect and recognise 
one particular target type within a SAR scene. For example, the mission may be to find a missile launcher 
based on collateral information that one or more are likely to be present in a particular area. In this case, 
the training database will require examples of only one target type and so the use of a template-matching 
approach may be appropriate. For this reason, the classification scheme developed in this study has taken 
the template-matching approach. 

3. WITHIN-CLASS SIMILARITY 

3.1 Introduction 
SAR imagery can be presented in a number of forms. The initial SAR image produced from the raw data 
consists of complex-valued pixels which constitute the complex SAR image. The complex image can then 
be used to form the amplitude image, by taking the modulus of the complex values, or the intensity image, 
by taking the square of the modulus of the complex values. Either of these can be displayed as greyscale 
images to the operator although, because of the large dynamic range of SAR imagery, it is found that the 
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amplitude image is the more suitable of the two for display. For template-matching, it is necessary to 
establish which form of SAR image it is most appropriate to use. The determining factors on which this 
decision should be made are the degree to which targets from the same class are assessed as being similar, 
i.e. the similarity within class, and the degree to which targets from different classes are assessed as being 
different, i.e. the classification performance. An additional consideration is that a different form of SAR 
image may be even more appropriate for classification based on template matching. For example, if an 
appropriate threshold is applied to the target images to give a binary output such that pixels on the target 
are assigned a value 1 and pixels in the background are assigned a value 0 then a true template of the 
target results. Whether this form of image provides better template-matching performance needs also to be 
considered. 

3.2 Correlation measures 
The standard measure of correlation is given by the correlation coefficient 
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where x and y are pixel values in the images to be correlated, N is the number of pixels and i enumerates 
the pixels in the image. The correlation coefficient can take values between –1 and 1 where a value of 1 
indicates perfect correlation, a value of 0 indicates that the variables (i.e. images in this case) are 
uncorrelated and a value of –1 indicates perfect anti-correlation (e.g. one image will be the negative of the 
other image).  This measure is the best estimate of the correlation assuming that both variables are subject 
to additive, Gaussian noise. For SAR images, the noise process is multiplicative speckle [1] and so the 
correlation coefficient given above will not provide the most accurate estimate. However, the calculation 
of this measure can be implemented extremely efficiently using Fourier transforms and this advantage far 
outweighs the disadvantage of some loss of accuracy. In this section, the variation of the correlation 
coefficient over example images for a particular target class is investigated. The objective is to establish 
that the correlation coefficient can be used to determine that the images are of the same target.  

3.3 Self-correlation 
The ISAR turntable imagery used for this investigation provides images of the target at every degree over 
360° of aspect angle. Each of these images can be correlated with the same full set of 360 images to 
produce 360×360 values of the correlation coefficient. In the following results, the HH polarimetric 
channel was used.  

The self-correlation properties using SAR images in the complex, intensity, amplitude and binary forms 
have been investigated. Figure 3.1 shows the averaged correlation coefficient variation is shown as a 
function of angular difference. In these graphs, the fitting procedure has smoothed the spike at 0° angular 
difference and the fact that all the graphs rise to a value of 1.0 at this point is not clear. However, the 
important point is that the value of the correlation coefficient drops off at different rates for different 
image forms. This drop-off rate is most for the complex image and least for the amplitude image. In terms 
of classification, it is desirable that the procedure should be robust to small changes in aspect angle 
otherwise the training database would need to be populated using images at a very fine sampling of the 
aspect angle. From this point of view, it is thus clear that the amplitude image is to be preferred. The “de-
correlation” length for the amplitude image, measured in this case by a drop in the correlation coefficient 
to 0.8, is about 5° for the amplitude image which is an important consideration when forming the training 
database.  

Use of Non-Ideal Training Data in SAR ATR for Targeting 
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Figure 3.1: Plots of average correlation coefficient as a function of angular difference for the 
complex image (black), the intensity image (blue), the amplitude image (red) and the binary 

image (yellow).  

3.4 Cross-correlation between different days 
It is now necessary to investigate the robustness of the correlation coefficient to variations in the imaging 
circumstances. Firstly, if the same target is imaged on two different days, a robust classification scheme 
should still recognise it as the same target.  

It is to be expected that, due to noise variations in imaging between the two days, the maximum 
correlation for an image at a particular aspect angle on one day will not necessarily be obtained using the 
image at exactly the same aspect angle on the other day. However, it should be the case that the angular 
difference between the best matching images will be small. Given the de-correlation length of 5° observed 
earlier, it is thus reasonable to search for the maximum correlation value within ± 5° of the matching 
angle.  

Figure 3.2 shows graphs of the maximum correlation values found within this interval as a function of 
aspect angle. In other words, for images at each aspect angle on the first day, the maximum correlation 
with images on the second day within an angular difference of ± 5° was found and plotted on the graph. It 
can be see that the amplitude image produces the highest maximum values whilst the complex image 
produces the lowest maximum values.  

The mean and standard deviation of these maximum values as they vary over aspect angle have been 
calculated and are presented in Table 3.1. This quantifies the observation that correlation applied to the 
amplitude image provides the greatest robustness to image variations between different days.  
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Figure 3.2: Plots of the maximum correlation within an angular difference of ± 5° from the corresponding 
aspect angle for target images obtained on different days for the complex image (black), the intensity image 

(blue), the amplitude image (red) and the binary image (yellow). 

Image form Mean Standard deviation 

Complex 0.49 0.15 

Intensity 0.84 0.07 

Amplitude 0.90 0.02 

Binary 0.78 0.03 

 

Table 3.1: Mean and standard deviation of maximum correlation values over aspect angle for 
plots shown in Figure 3.2.  

3.5 Cross-correlation between different examples of same vehicle 
A similar exercise can now be undertaken to investigate robustness to image variations which result when 
the correlation measure is applied to images of two different vehicles of the same type, i.e. it is only the 
registration numbers that are different.  

Figure 3.3 shows graphs of the maximum correlation values found within the angular difference interval 
of ± 5°. Once again it can be seen that amplitude image correlation provides the highest maximum values 
whilst complex image correlation provides the lowest maximum values.  
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Figure 3.3: Plots of the maximum correlation within an angular difference of ± 5° from the 
corresponding aspect angle for target images obtained using a different vehicle of the same 

type for the complex image (black), the intensity image (blue), the amplitude image (red) and the 
binary image (yellow). 

These observations are quantified in Table 3.2 using the mean and standard deviation of the maximum 
correlation value as before. It is clear that amplitude image correlation provides the greatest robustness to 
variations between different examples of the same target type. It should be noted that the mean maximum 
correlation coefficient in this case is significantly lower than the value obtained for variation between 
different days. Essentially the experiment for variation between different days involves taking a single 
example of the vehicle type, driving it onto the turntable, imaging it, driving it off, driving it on again and 
imaging it a second time. However, the experiment for different examples of the same vehicle type 
involves exactly this process together with the replacement of the vehicle with another of the same type 
between imaging runs. Thus it is to be expected that the loss in correlation observed for different days will 
be incurred together with an additional loss associated with use of different examples of the vehicle. These 
results are thus consistent with expectation. 

Image form Mean Standard deviation 

Complex 0.36 0.06 

Intensity 0.72 0.07 

Amplitude 0.83 0.02 

Binary 0.71 0.02 

Table 3.2: Mean and standard deviation of maximum correlation values over aspect angle for 
plots shown in Figure 3.3. 
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4. PERFORMANCE RESULTS 

4.1 Introduction 

The aim of this section is to assess the performance of the template-matching approach to target 
recognition. On the basis of the discussions in section 3, the amplitude image has been used in the 
experiments. Furthermore, since the trials data which has been used to support these experiments is fully 
polarimetric, the amplitude of the polarimetric span image has been used.  

Whilst it has been argued earlier that template-matching is not appropriate for many-class problems due to 
the computational effort required, it is valid to explore the performance experimentally when computation 
time is not a critical issue. In particular, it is important to introduce the concept of an unrecognised class 
and also to investigate the impact on performance of the presence of targets not represented in the training 
database (termed “confusers”). These issues will be addressed in this section under the discussion of 
classification results.  

The main problem to be addressed by this study was identified as that of single target identification which 
is of particular relevance for targeting applications. This can be viewed as an extreme example of the 
classification problem with confusers when everything other than the single target of interest can be 
considered to be a confuser. The results for the single target identification performance assessment are 
also presented in this section and follow naturally from the discussion of more general classification.  

4.2 Classification results 

For a classifier to be effective, it must not only be able to classify targets of interest, but it must also be 
able to declare targets as being unrecognised if there is insufficient confidence that the target belongs to 
one of the known classes. The correlation coefficient provides an effective means of assessing confidence 
since it provides a normalised measure lying between 0 and 1 which quantifies the goodness of the match 
between a test image and a training image. Thus it is simply necessary to define a threshold on the 
correlation coefficient values such that positive classification declarations are only made when the 
coefficient exceeds this threshold and otherwise the target is declared to be unrecognised.  

Previous discussions regarding similarity within class in section 3 have shown that the maximum 
correlation coefficient generally exceeds 0.8 for targets from the same class which have been imaged 
under different circumstances. This value thus provides a suitable threshold value to be considered. In the 
following results, a threshold values of 0.8 will be used together with 0.0 to illustrate the performance 
when there is no unrecognised class.  

 A B C D E F G H I U 

A 79 1 0 5 1 1 14 0 0 0 

B 0 96 0 2 2 0 0 0 0 0 

C 4 8 74 3 5 2 5 0 1 0 

D 8 1 0 85 0 4 3 0 0 0 

E 5 1 0 5 86 0 3 0 1 0 

F 6 10 0 5 8 65 5 0 0 0 

G 0 0 0 2 3 1 95 0 0 0 

H 3 16 0 7 2 0 5 59 8 0 

I 1 13 0 1 5 0 3 0 78 0 

Table 4.1: Confusion matrix for 9 class problem with correlation threshold defining 
unrecognised class set to 0.0.  

Use of Non-Ideal Training Data in SAR ATR for Targeting 



32 - 8 RTO-MP-SET-080 

 

 

 A B C D E F G H I U 

A 68 1 0 0 1 1 12 0 0 17 

B 0 94 0 1 2 0 0 0 0 4 

C 0 0 0 0 0 0 0 0 0 100 

D 8 0 0 77 0 4 2 0 0 9 

E 4 0 0 0 58 0 1 0 0 38 

F 0 0 0 4 2 14 0 0 0 81 

G 0 0 0 2 3 1 93 0 0 2 

H 0 0 0 0 0 0 0 5 0 95 

I 0 0 0 0 0 0 0 0 0 100 

Table 4.2: Confusion matrix for 9 class problem with correlation threshold defining 
unrecognised class set to 0.8. 

Tables 4.1 and 4.2 show confusion matrices including an unrecognised class using the correlation 
coefficient thresholds of 0.0 and 0.8 respectively. The entries show the percentage of test examples 
classified as a particular target class. When there is no unrecognised class, the average correct 
classification rate is close to 80%. However, it is interesting to note that., when the unrecognised class is 
introduced, a number of images fail to produce correlation values exceeding 0.8 despite being represented 
in the training data. Indeed, almost all test examples of target types C, H and I are declared as being 
unrecognised as well as significant numbers of target types E and F. It should be noted that target types C, 
H and I are the decoy targets in the scene whilst E is a tractor with trailer and F is a water tower, i.e. none 
are true military vehicles. In fact, the only vehicles for which the classifier is confident , i.e. A, B, D and 
G, are precisely the military vehicles in the scene. This appears to suggest that the characteristics of 
military vehicles appear to make them more easily distinguishable than non-military objects.  

 A B C D E F G H I U 

A 70 1 0 0 0 0 12 0 0 17 

B 0 95 0 1 0 0 0 0 0 4 

C 0 0 0 0 0 0 0 0 0 100 

D 9 1 0 79 0 0 2 0 0 9 

E 4 1 0 0 0 0 3 0 0 93 

F 4 0 0 7 0 0 4 0 0 85 

G 1 1 0 2 0 0 95 0 0 2 

H 0 0 0 0 0 0 0 0 0 100 

I 0 0 0 0 0 0 0 0 0 100 

Table 4.3: Confusion matrix for 4 class problem with 5 confusers and correlation threshold 
defining unrecognised class set to 0.8. 
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In an operational ATR system, it is likely that the training database will contain comprehensive examples 
of military vehicles but that other objects will not necessarily be represented. Thus it is important to 
understand the performance of a classifier when the training set is restricted to military vehicles but 
confusers are present in the test set. Table 4.3 shows the classification results when only target types A, B, 
D and G are represented in the training database but an unrecognised class is included with a threshold of 
0.8. It can be seen that the classifier rejects all the decoys (C, H and I) as being unrecognised as well as 
most of the tractor with trailer images (E) and water tower images (F). Confusers which are classified as 
military targets  are false alarms and these represent 4.4% of the total in this experiment. For the military 
vehicles, 8% are declared as being unrecognised so that 92% can be considered to have been detected as 
being military vehicles. These concepts of detection and false alarm rates within a classifier will be seen to 
be of great relevance in the single target identification case. Finally, the correct classification rate for the 
four military vehicles is 85% in this case.  

4.3 Single target identification results 
Single target identification is essentially a classification problem in which the training database contains 
only one class of military target. A suitable confidence threshold must be set, i.e. a threshold on the 
correlation coefficient value in this case, and then a test target image is declared as either being the target 
of interest or unrecognised. The concepts of detection and false alarm rates are then entirely appropriate to 
this classification problem. Detections occur when an example of the target class is correctly recognised 
whilst false alarms occur when a confuser is incorrectly declared to be a member of the target class. It is 
thus possible to plot the probability of detection against the probability of false alarm as the correlation 
threshold is varied to produce the so-called receiver operating characteristic (ROC) curves most usually 
associated with target detection assessments.  

ROC curves have been produced for each of the nine targets in the in situ trial set. In each case, the 
training database contains only images of the particular class of interest. All the images in the test set are 
classified as either belonging to this class or as being unrecognised. The correlation threshold is varied 
from 0 to 1 and the resulting variation of probability of detection against probability of false alarm is 
plotted. Figure 4.1 shows the resulting curves for Targets A to I excluding Target G whilst the first graph 
in Figure 4.2 shows the ROC curve for Target G. It is interesting to first consider the decoy targets C, H 
and I. The curves for these essentially follow the line of equal probabilities for detection and false alarm. 
This indicates that no useful performance is being achieved since, for any given threshold, the same 
proportions of detections and false alarms are being obtained. In other words, the classification is 
essentially random. At the other end of the scale, the military vehicles (A, B, D and G) are showing a level 
of classification performance in that relatively high probabilities of detection can be achieved for 
relatively low probabilities of false alarm. The ROC curves for the tractor with trailer (E) water tower (F) 
lie between these extremes. These results are consistent with the observation made in section 4.2 that the 
military vehicles appear to be more easily distinguishable than the non-military objects.  

 Probability of detection Probability of false alarm 

Target A 0.80 0.11 

Target B 0.95 0.09 

Target D 0.89 0.10 

Target G 0.98 0.14 

Table 4.5: Summary of probabilities of detection and false alarm for military vehicles using a 
correlation threshold of 0.8.  
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Target H Target I 

Figure 4.1: ROC curves showing probability of detection versus false alarm as correlation 
threshold is varied for Targets A to I excluding Target G.  

Target G Target G using simulated training images 

Figure 4.2: ROC curves showing probability of detection versus false alarm as correlation 
threshold for Target G using training database from in situ trial data(left) and from simulated 

signature predictions (right).  

The performance against the military vehicles will now be examined more closely. Operationally, a single 
correlation threshold needs to be set and the results of section 3 suggest that a value of 0.8 is a suitable 
choice since within-class variations still produce values exceeding this. Using this threshold, the 
probabilities of detection and false alarm shown in Table 4.5 are obtained.  

It can be seen that the probabilities of false alarm are all around 0.1 (although that for Target G is a little 
higher than the rest) whilst the probabilities of detection vary from 0.8 to 0.98 reflecting the varying 
degrees to which each target is distinguishable from the others. From an operational perspective, this 
means that  to achieve a detection probability of between 80% to 100%  a false declaration will be made 
10% of the time. It should be noted that, from the results of section 4.2, it can be concluded that most of 
the false declarations will arise from other military vehicles since the non-military objects were easily 
classified as being unrecognised.  
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An important operational factor for classification algorithms is the question of how the training database 
of imagery is populated. In these experiments, the test and training images were all obtained form exactly 
the same experimental trial. However, in practice, the training imagery may have to be obtained using 
turntable ISAR imaging or through the use of signature predictions using CAD (computer aided design) 
models of the vehicles of interest [2]. The impact of this disparity between the training data source and the 
operational data needs to be investigated.  

A limited assessment of this issue has been made under the current study. For Target G, a training set 
consisting of signature predictions was generated at the appropriate resolution and geometry. The single 
target identification performance was then assessed as before using all the in situ trial test images and 
resulted in the ROC curve shown in the right of Figure 4.2. It is very encouraging that a significant level 
of classification performance has been achieved in this case. However, it is clear that the performance is 
also significantly worse than when test and training data are from the same data source as in the ROC 
curve on the left hand side of Figure 4.2. Using a correlation threshold of 0.8, the probability of false 
alarm in this case is 0.09 whilst the probability of detection is 0.55. Thus, in comparison to the results 
above for the same data sources, the false detections have been maintained at around 10% whilst the 
correct declarations have fallen substantially to 55%.  

The performance results presented in this section have demonstrated that single target identification can be 
achieved using a template-matching approach but that the achievable performances are limited by the 
practical consideration that the training database will be populated using a different data source than that 
which will be used operationally. The conclusion is that improved performance needs to be achieved using 
algorithms which are, in particular, robust to the use of data from different sources, e.g. ISAR turntable 
imagery or signature predictions.  

5. CONCLUSIONS 

The results of various performance assessments have been reported using a set of four military vehicles 
and five non-military objects acting as “confusers”. It has been found that detection rates for a specific 
military vehicle within this target set ranges from 80% to 98% depending on the vehicle type with a false 
classification rate of about 10%. These results were obtained using training and test imagery from the 
same experimental data source. However, in practice the training database will be populated beforehand 
using, for example, ISAR turntable measurements or signature predictions. A limited experiment using 
training data for one vehicle generated from a signature prediction model revealed a drop in performance 
to 55% for a false alarm rate of about 10%.  

The performance results which have been obtained have demonstrated that single target identification can 
be achieved using a template-matching approach but that the achievable performances are limited by the 
practical consideration that the training database will be populated using a different data source than that 
which will be used operationally. The conclusion is that improved performance needs to be achieved using 
algorithms which are, in particular, robust to the use of data from different sources, e.g. ISAR turntable 
imagery or signature predictions. A possible avenue of future research is thus the use of a classification 
approach which exploits understanding of the physics of the radar interaction with the target [2].  
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APPENDIX 
The data sets used in this study all consisted of fully polarimetric, 30cm resolution X-band imagery. 
The first data set was obtained at a Regular Army Assistance Trial (RAAT) on Salisbury plain in which 
spotlight imagery of targets in open ground were obtained every degree over 360° at an incidence angle 
of 5°. An example image is shown in Figure A.1 with labels showing the targets of interest in this 
study. The second data set consisted of ISAR turntable images of Target G formed every degree over 
360° at an incidence angle of 35°. The images at every 10° are shown in Figure A.2. The third data-set 
consisted of images generated from signature predictions for Target G at 5° for direct comparison with 
the RAAT trial imagery. These simulated images at every 10° are shown in Figure A.3. 

TargetA

TargetI

TargetH

TargetG

TargetF

TargetE
TargetD

TargetC

TargetB

 

Figure A.1: An example image from the RAAT trial data-set. 
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Figure A.2: Images of Target G at 10° intervals from the ISAR turntable data-set 

 

Figure A.3: Images of Target G at 10° intervals from the simulated data-set. 

Use of Non-Ideal Training Data in SAR ATR for Targeting  



  

RTO-MP-SET-080 33 - 1 

ATR Performance within an Extended X-Band Tower-Turntable 
Database of Highly Resolved Relocatable Targets 

Timo Kempf, Markus Peichl, Stephan Dill, Helmut Süß 
DLR (German Aerospace Center) 
 Microwave and Radar Institute 

P.O.-Box 11 16, 
82230 Wessling 

Germany 

ABSTRACT 

By means of data from highly resolved tower-turntable ISAR measurements this paper investigates the 
ATR robustness of small changes in the articulation of targets (e.g. military vehicles) and changes in the 
incidence angle. The recognition process is based on a template matching method. The two-dimensional 
templates are generated by extracting the most robust scatterers from the RCS image. 

1.  INTRODUCTION 

Global and reliable reconnaissance using remote sensing techniques requires weather and daytime 
independent detection, recognition, and identification of interesting objects. Thus a spaceborne high 
resolution synthetic aperture radar (SAR) system in a spotlight mode can be an appropriate instrument. On 
this basis we undertook X-band ISAR-measurements on a tower-turntable arrangement to get highly 
resolved two-dimensional signatures of military and civilian relocatable targets for adequately steep 
depression angles. Our work is focused on the military vehicles, and we use civilian vehicles as confusers.  

Since typical military vehicles consist of several ideally behaving scattering centers which show some 
robustness to aspect variations, we established a recognition method based on the extraction of these point 
scatterers. Furthermore, with a demanded declaration time that is sufficiently long, we have the freedom to 
perform classification via a computationally intensive template matching process. Moreover this method 
ensures a sufficient inner class robustness, while simultaneously yielding efficient inter class separability. 

This paper shall give an overview of the performance of the introduced ATR method using the tower-
turntable database, which includes several thousand templates. The classifiers are evaluated by ROC-
curves and confusion matrices. To examine the robustness of this recognition method we focus on 
different articulations of the targets. The articulations were realized by changing the position or pose of 
movable vehicle parts such as hatches, turrets, and assemblies, or by using camouflage. Additionally, we 
used small variations of the elevation angle or a modified ground. The results should also provide insight 
into how many different realizations and poses of one target type have to be stored in a database. 

In [1] we already described an attempt to introduce a kind of fingerprint analysis as a situation-optimized 
tool for reliable target recognition. 

The development and investigation of our method is based on ISAR measurements in X band carried out 
on military vehicles for different steep depression angles realized by a suitable tower-turntable 
arrangement as shown in fig. 1. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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a)                b)  

Figure 1: Tower-turntable setup for ISAR measurements, a) four platforms on the tower  
allow different incidence angles, b) the turntable was covered with soil and grass  

for a realistic ground, having 9m in diameter and a payload up to 100t.  

These data have been used to develop a tomographical processing scheme that delivers a filtered and 
digitized radar image of those target scatteres, which behave strongly like ideal point scatterers and which 
are robust to aspect angle variations as illustrated in fig. 2. 

In a practical use of a military reconnaissance operation such digitized images of an actual scene of 
interest can be compared successively to similarly processed image templates of a database. In principle, a 
type specific classifier correlates the current digitized test image with each training image, delivering the 
highest of the generated correlation values. In the following this value is also used as ‘discrimination 
value’. Our first results indicated that this kind of fingerprint analysis can deliver reliable recognition 
results with a feasible amount of computational effort. 

In order to assess the robustness of this recognition method many ISAR measurement campaigns have 
been undertaken in the past with focus on small variations of the targets or the scene. The results should 
also provide an idea how many different realizations of one target type have to be stored in a database, or 
which poses could be neglected, respectively.  

a)    b)    c)  

Figure 2: Example of a tomographically processed image, a) RCS after sidelobe  
suppression, b) a filtered version with the most reliable scatterers for use in ATR,  

c) an incoherent superposition of single images for a whole 360° rotation of the turntable.  
The turret and the gun were turned by 40° compared to the vehicles  main axis.  

The target list of our last campaign included military and civilian vehicles, whereas the intention of the 
ATR system design is focused on the military targets and the civilian vehicles are mainly used as 
confusers. Variants have been realized by changing the position or pose of movable vehicle parts like 
hatches, turrets, and assemblies, for instance, or by partially covering the targets with natural obstacles. 
Additionally small variations of the elevation angle or a modification of the ground have been used. 
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For the evaluation of the ATR results, the commonly used receiver operating characteristic (ROC) curves 
and confusion matrices are computed.  

2.  CLASSIFICATION RESULTS 
The vehicles used are two battle tanks of different type (BTa and BTb), a lorry (LOR), a military all-
terrain vehicle (ATV), a VW bus (VWB), a tractor (TRA), a weapon-carrier (WCA), and an optical 
mockup of the weapon-carrier (MWC).  

2.1 Test data and training data with different polarization 
Measurements were undertaken in HH polarization as well as in VV polarization. In order to demonstrate 
our approach applied to military targets the data set was divided into VV training data and HH test data. If 
the target provides enough "ideal" scattering centers like corners, we can expect a satisfying recognition 
performance. Each data set includes 72 templates corresponding to images in 5° azimuthal steps. 

In detail the HH test data includes 12 data sets, 4 sets of battle tank ‘a’ as shown in Fig. 3 by no. 1 to no. 4 
along the horizontal axis, 4 sets of battle tank ‘b’ labeled by no. 5 to no. 8, 1 set of the lorry labeled by no. 
9, 1 set of the all-terrain vehicle labeled by no. 10, and 2 sets of the VW bus labeled by no. 11 and no. 12. 
The VV training data includes the same targets with identical articulations and identical measurement 
geometry. Thus, for each test class a classifier could be established. It should be noted, that the SNR of the 
HH data was about 15dB less than that of the VV data due to technical reasons. 

Fig. 3a) shows the discrimination behaviour of the BTa classifier (fed with the VV data set) for each test 
template from the 12 HH test data sets. A discrimination value dBTa=1.0 would signify perfect identity of 
test and training template. Fig. 3b) shows the discrimination results of the BTb classifier, fig. 3c) that one 
of the LOR classifier, fig. 3d) that one of the ATV classifier, and fig. 3e) the discrimination results of the 
WCA classifier.  

a)

 
dBTa data set

BTa BTb LOR 
ATV

VW B

  b)

 
dBTb data set

BTa BTb LOR 
ATV 

VW B

 

c)

 
dLOR data set

BTa BTb LOR 
ATV

VW B

  d)
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dVW B data set

BTa BTb LOR 
ATV
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Figure 3: Discrimination results of the classifiers, for a description see text. 
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The dotted horizontal line represents the decision line for generating the confusion matrix as described 
below. The discrimination values of the classifiers for the battle tanks are well above this decision line and 
the discrimination values of the confuser vehicles.  

A common tool to represent the property of a classifier is the ROC curve as shown in fig. 4. It relates the 
percentage of correct classification PCC to the percentage of false alarms PFA. This means, for a well 
adopted classifier the ROC curve will start at the point {1,1} in the graph, then move with a rising 
threshold close to the ideal point {0,1} corresponding to 100% of correct classification and no false alarm, 
and finally it drops down to the point {0,0} [2]. 

 
PCC 

PFA

C.BTa 
C.BTb 
C.LOR 

C.ATV
C.VWB 

 
Figure 4 : ROC curves for the classifiers of fig. 3.  

The squares mark the threshold points for the confusion matrix. The ROC curves for the battle tank 
classifiers are close to the ideal point. This confirms our assumption, that a method based on the highly 
resolved local distribution of robust scatterers applied to these types of vehicles would enable ATR. 
Additionaly the ROC curve of the lorry classifier shows the same performance, while the ROC curves of 
the ATV classifier and the VW bus classifier perform worse, since these targets deliver a far less number 
of robust scatterers. 

Table 1a) below shows the corresponding confusion matrix, enabling the comparison of different 
classifiers on fixed values [3]. The rows represent the test data sets, and the columns denote the training 
data sets. The column 'OUT' includes the case, where the test target was not part of the training data, 
respectively. The numbers in the confusion matrix state how many templates of the current test data set 
yield a discrimination value in the classifier higher than a fixed threshold and higher than the values of the 
other classifiers. If no other classifier exceeds the threshold, the template is counted to the ’OUT’ class.  

As a common practice the threshold is chosen to a value that forces the classifiers to declare PD = 0.9. 
Then the confusion matrix can be reduced to the percentage of correct classification as given by the 
numbers in the diagonal, and related to the number PCC|D of contributing templates for the fixed PD. Here it 
is 98.46%. Table 1b) shows these percentages within the rows of the confusion matrix. 

The results for the two battle tanks and the lorry show nearly ideal results, and the ATV and the VW bus 
show a high rejection rate. However, there is a low misclassification rate as indicated by the high PCC|D .In 
principle this indicates a high performance of this ATR method. 
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Table 1a). Confusion matrix for the VV trained classifiers on HH test data. 

 C.BTa C.BTb C.LOR C.ATV C.VWB OUT 

BTa 287 1 0 0 0 0 

BTb 0 288 0 0 0 0 

LOR 0 0 71 0 1 0 

ATV 2 0 0 37 4 29 

VWB 1 1 1 1 83 57 
Table 1b). Confusion matrix with normalized rows for the VV trained classifiers on HH test data. 

 C.BTa C.BTb C.LOR C.ATV C.VWB OUT 

BTa 99.7 0.3 0 0 0 0 

BTb 0.0 100.0 0.0 0.0 0.0 0.0 

LOR 0.0 0.0 98.6 0.0 1.4 0 

ATV 2.8 0.0 0.0 51.4 5.6 40.3 

VWB 0.7 0.7 0.7 0.7 57.6 39.6 
 
2.2 Test data and training data of different articulations or measurement geometry 

The list in table 2a) gives an overview of the training data. The test data consist of the sets listed in table 
2b), which almost all are given in VV-polarization*. This list describes first the target type, then the 
incidence angle, and finally some special articulations. 

Table 2a). List of the training data (set number, type, incidence angle, polarization).  

1. BTa 45° HH + VV 
2. BTb 50° HH + VV 
3. LOR 50° VV 
4. ATV 45° HH + VV 
5. VWB 50° HH + VV 
6. WCA 45° VV 
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Table 2b). List of the test data (set number, type, incidence angle, special articulations). 

1. BTa 45° no snow crosses 
2. BTa 45° no snow crosses, 

hatches         open 
3. BTa  45° turret heading 20° 
4. BTa 45° turret heading 40° 
5. BTa 42.5° 
6. BTa 47.5° 
7. BTa 50° 
8. BTa 45° turret heading 90° 
9. BTa 45° turret heading 180° 
10. BTa 45° metal plates on ground 
11. BTb 42.5° 
12. BTb 45° 
13. BTb 47.5° 
14. BTb 50° turret heading -45° 
15. BTb 50° turret heading -90° 

16. BTb 50° metal plates on ground 
17. BTb 50° natural camouflage 
18. LOR 42.5° 
19. LOR 45° 
20. LOR 47.5° 
21. ATV 47.5° 
22. ATV 50° 
23. VWB 47.5° *(HH-polarization) 
24. VWB 47.5° 
25. TRA 45° 
26. WCA 42.5° 
27. WCA 47.5° 
28. WCA 50° 
29. WCA 45° natural camouflage 
30. MWC 45° 

Fig. 5 shows the discrimination results of the classifiers. The discrimination graphs show that the 
classifiers produce different results for different target articulations. Therefore a closer look on the 
corresponding ROC curves and confusion matrices shown in fig. 6 is helpful. Fig. 6a) shows a perfect 
ROC curve for test data set no. 1 and no. 2 where the difference between the test and training data are 
mounted or dismounted snow crosses or closed or opened hatches. Even though these variations have 
stronger influences on the radar images as a whole, they offer quite enough redundancy for our ATR 
approach. 
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Figure 5: Discrimination results of the classifiers. a) BTa classifier, b) BTb classifier, c) LOR 
classifier, d) ATV classifier, e) VWB classifier, f) WCA classifier. 
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A stronger impact on the ATR performance is visible for the case of covering the natural grassy ground 
with metal plates, as it has been done in the test data sets no. 10 and no. 16 shown in fig. 6a) and fig. 6b). 
The PCC drops down to values below 0.9 and 0.8 for a PFA=0 value.  

Similar results can be observed for targets covered with natural camouflage as in the cases of test set no. 
17 shown in fig. 6b) and no. 29 shown in fig. 6j). Even though the radar images as a whole show serious 
differences, a satisfying recognition rate can be achieved. Here only the surface of the targets was covered, 
but much more information is given by the wheels and chassis structures at the sides of these vehicles. 

In another test series the turret heading of the battle tanks was varied. Fig. 6c) and 6d) show the 
corresponding ROC-curves with a very high and thus impressive robustness. This results again from the 
fact that the most important information is derived from the chassis. The highest degradation of the ATR 
performance can be observed for test set no. 8. Here the tank has a rather big turret covering a lot of the 
lower located scatterer centers in this position. The turret structure of the BTb is smaller, and so we don’t 
see such a strong influence on the ROC curve for a similar heading in set no. 15. 

Stronger impacts on the ATR performance are visible for differences in the incidence angle between 
training and test data, even for small variations. Fig. 6e) illustrates the results for a difference of 2.5° in 
incidence angle for the set no. 5 and no. 6, and 5° for set no. 7). Fig. 6f) shows the corresponding graphs 
for an incidence angle difference of 7.5°, 5° and 2.5° corresponding to nos. 11, 12, 13. In this case the 2.5° 
difference between training and test has less impact on the ROC-curve, but the 5° case gives worse results. 
In general it can be stated, that there is very much information available from the chassis parts of the 
tanks, which is relevant for our ATR approach. Due to the steep elevation angles as pretended by space-
borne radars, the overlay effect in the SAR imaging can distort the relative location of the scatterers in the 
templates [4].  
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Figure 6: ROC curves for different classifiers and data sets of table 2. See text for further information. 

The graph in fig. 6g) for the LOR confirms the above observed tendency. The reason that the results of the 
ATV in fig. 6h) don’t fit into this behaviour was a SNR problem in the first part of data set no. 21. The 
worse SNR of the HH data also causes the wide spread of the ROC-curves in fig. 6i), where identical 
geometrical conditions of the target have been used. 

Some additional information about the classifiers may be extrcated from the confusion matrices listed in 
table 3. The PD is again chosen to 0.9, but here without the confuser data sets of the TRA and the MWC. 
The corresponding PCC|D is 0.83. The mostly high numbers of the battle tank classifiers confirm the results 
of fig. 6. Note the very low number of misclassifications of the other battle tank, the other non-tank-like 
targets, and the confusers. However, this performance could easily be optimized by an adaption of the PD 
value to the exclusive characteristics of the battle tank classifiers. 
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Table 3a). Confusion matrix for the data of table 2. 

 C.BTa C.BTb C.LOR C.ATV C.VWB C.WCA OUT 

BTa 649 2 1 1 11 23 33 

1.+2. 144 0 0 0 0 0 0 
3. 72 0 0 0 0 0 0 
4. 70 0 0 0 0 1 1 

5.+6. 115 0 0 0 4 16 9 
7. 59 2 0 0 2 3 6 
8. 56 0 1 0 1 3 11 
9. 64 0 0 1 3 0 4 
10. 69 0 0 0 1 0 2 

BTb 5 399 1 0 17 39 43 
11. 2 21 1 0 9 25 14 
12. 3 27 0 0 7 9 26 
13. 0 72 0 0 0 0 0 
14. 0 70 0 0 0 2 0 
15. 0 69 0 0 0 3 0 
16. 0 70 0 0 1 0 1 
17. 0 70 0 0 0 0 2 

LOR 0 3 113 2 22 29 47 
18. 0 1 16 2 14 13 26 
19. 0 2 36 0 5 16 13 
20. 0 0 61 0 3 0 8 

ATV 0 0 1 117 6 11 9 
21. 0 0 0 53 4 6 9 
22. 0 0 1 64 2 5 0 

VWB 0 0 0 1 74 0 69 
23. 0 0 0 0 18 0 54 
24. 0 0 0 1 56 0 15 

WCA 0 1 0 0 15 269 3 
26.+27. 0 0 0 0 5 136 3 

28. 0 0 0 0 1 71 0 
29. 0 0 0 0 9 62 1 

TRA 0 2 2 2 9 19 38 
MWC 0 0 1 1 6 9 55 
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Table 3b). Corresponding confusion matrix with normalized rows. 

 C.BTa C.BTb C.LOR C.ATV C.VWB C.WCA OUT 

BTa 90.1 0.3 0.1 0.1 1.5 3.2 4.6 

1.+2. 100.0 0.0 0.0 0.0 0.0 0.0 0.0 
3. 100.0 0.0 0.0 0.0 0.0 0.0 0.0 
4. 97.2 0.0 0.0 0.0 0.0 1.4 1.4 

5.+6. 79.9 0.0 0.0 0.0 2.8 11.1 6.3 
7. 81.9 2.8 0.0 0.0 2.8 4.2 8.3 
8. 77.8 0.0 1.4 0.0 1.4 4.2 15.3 
9. 88.9 0.0 0.0 1.4 4.2 0.0 5.6 
10. 95.8 0.0 0.0 0.0 1.4 0.0 2.8 

BTb 1.0 79.2 0.2 0.0 3.4 7.7 8.5 
11. 2.8 29.2 1.4 0.0 12.5 34.7 19.4 
12. 4.2 37.5 0.0 0.0 9.7 12.5 36.1 
13. 0.0 100.0 0.0 0.0 0.0 0.0 0.0 
14. 0.0 97.2 0.0 0.0 0.0 2.8 0.0 
15. 0.0 95.8 0.0 0.0 0.0 4.2 0.0 
16. 0.0 97.2 0.0 0.0 1.4 0.0 1.4 
17. 0.0 97.2 0.0 0.0 0.0 0.0 2.8 

LOR 0.0 1.4 52.3 0.9 10.2 13.4 21.8 
18. 0.0 1.4 22.2 2.8 19.4 18.1 36.1 
19. 0.0 2.8 50.0 0.0 6.9 22.2 18.1 
20. 0.0 0.0 84.7 0.0 4.2 0.0 11.1 

ATV 0.0 0.0 0.7 81.3 4.2 7.6 6.3 
21. 0.0 0.0 0.0 73.6 5.6 8.3 12.5 
22. 0.0 0.0 1.4 88.9 2.8 6.9 0.0 

VWB 0.0 0.0 0.0 0.7 51.4 0.0 47.9 
23. 0.0 0.0 0.0 0.0 25.0 0.0 75.0 
24. 0.0 0.0 0.0 1.4 77.8 0.0 20.1 

WCA 0.0 0.4 0.0 0.0 5.2 93.4 1.0 
26.+27. 0.0 0.0 0.0 0.0 3.5 94.4 2.1 

28. 0.0 0.0 0.0 0.0 1.4 98.6 0.0 
29. 0.0 0.0 0.0 0.0 12.5 86.1 1.4 

TRA 0.0 2.8 2.8 2.8 12.5 26.4 52.8 
MWC 0.0 0.0 1.4 1.4 8.3 12.5 76.4 

In addition, table 3 shows less performance for the WCA. The column of the WCA classifier shows 
several cases of misclassifications for other targets. This behaviour could be compensated by a scaling-
down procedure for the discrimination values of the WCA classifier. However, we would not get the high 
performance of the battle tank classifiers as the WCA cannot deliver as much robust information due to its 
lower size. 

Note that the confusion matrix shows a low number of misclassifications for the mock-up MWC by the 
WCA classifier, which could also be reduced by a corresponding raise of the decision threshold. 



ATR Performance within an Extended X-Band 
Tower-Turntable Database of Highly Resolved Relocatable Targets 

RTO-MP-SET-080 33 - 11 

3.  CONCLUSION 

Based on data sets of ISAR tower-turntable measurements, this paper showed the high performance of our 
specific template matching method for the automatic recognition of battle tanks using a high resolution 
imaging radar. Special attention was given to the robustness of this method against small changes of the 
target articulation and pose. Even though the number of data for the special articulations was relatively 
small and the estimated statistics for the shape of the ROC curves and confusion matrices has therefore 
only a limited confidence, some concise tendencies could be observed. 

In general, it can be recommended that for a training data base, regardless of using measured or synthetic 
data, more effort should be payed in different realisations of the sensor-target geometry like incidence and 
aspect angle than in many various articulations of the target. However, the application of our method on 
other targets than tanks has still to be evaluated. 
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5.  GLOSSARY 

ATR Automatic Target Recognition 
ATV All-Terrain Vehicle 
BTa,BTb Battle Tank type a/b 
C.(BTa) (Battle Tank type a)-Classifier 
HH Horizontal transmit/receive polarization 
ISAR Inverse SAR 
LOR Lorry 
MWC Mock-up of the Weapon Carrier 
PCC Percentage of Correct Classification 
PCC|D PCC for a fix PD 
PD Percentage of Declaration 
ROC Receiver Operating Characteristic 
SAR Synthetic Aperture Radar 
SNR Signal to Noise ratio 
TRA Tractor 
VV Vertical transmit/receive polarisation 
VWB Volkswagen Bus 
WCA Weapon Carrier 
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ABSTRACT 

We discuss range and Doppler processing for FMCW radar using only a single pulse or frequency sweep. 
The first step is correlation processing, for which the range and Doppler resolution are limited by the 
ambiguity function. We show that this resolution can be optimized with an additional inverse filtering step. 
The method is demonstrated for sinusoidal FMCW radar measurements. Several regularized inverse 
filters were compared and the non-adaptive pseudo inverse filter gave the best results. 

1. INTRODUCTION 

In this paper we discuss a technique for simultaneously obtaining range and Doppler information with 
FMCW radar, using only a single pulse or frequency sweep. The single sweep approach contrasts with the 
multi sweep approach, where the range info is obtained from the pulse delay and the Doppler info from the 
phase changes in the range cells from pulse to pulse. 
 
An advantage of single sweep processing is that for a given observation time T the unambiguous range is 
considerably larger than for the multi sweep approach. The reason is that for multi sweep processing, N 
sweeps of duration T/N are required to obtain a Doppler axis with N different Doppler cells. A 
disadvantage of single sweep processing is that the range and Doppler resolutions are generally worse, as 
we discuss in chapter 2. In this paper we focus on the range and Doppler resolutions for single sweep 
radar, and in chapter 3 we show how these resolutions can be optimized using inverse filtering. The 
method is applied to actual measurements of a sinusoidal FMCW radar, as discussed in chapter 4. 
 

2. CORRELATION PROCESSING 

2.1 Transmitted and received signals 
The transmitted signal is an FM signal around a carrier frequency fc. The phase of the transmitted signal is 
given by 
 
 )(2)( 0 ttft mc ϕ+π+ϕ=ϕ , 
 
and the instantaneous frequency is found as 
 

 )(
2
1

2
1)( tff

dt
d

f
dt
dtf mc

m
c +≡

ϕ
π

+=
ϕ

π
≡ . 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
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The boundaries of fm(t) determine the bandwidth B of the modulation. Ignoring the initial phase ϕ0, the 
complex transmitted signal reads: 
 
 )2exp()()2exp()](exp[)](exp[)( tfittfititit ccmT πµ≡πϕ=ϕ≡ψ . 
 
It follows that the transmitted signal can be written as a CW signal times a complex envelope µ(t). We 
also need an expression for the received signal of a number of targets k at ranges Rk and with radial 
velocities urk. We will use the following approximation, holding for most practical cases [1]: 
 
 ∑ ν+πτ−µ=ψ

k
kckkR tfitVt ])(2exp[)()( , 

 
where τk = 2Rk/c is the delay and νk = 2fcurk/c is the Doppler frequency. The complex factor Vk contains the 
attenuation and a possible phase shift. 
 

2.2 The ambiguity function 
The objective is to extract the amplitude |Vk|, the delay τk and the Doppler frequency νk for each target k 
from the received signal ψR(t). An ideal approach would be to perform such an operation on ψR(t) that we 
arrive at a function of the following form: 
 
 ),(),( kkk

k

VZ ν−ντ−τδ=ντ ∑ . 

 
This would be ideal because this function Z(τ,ν) shows sharp peaks at τ = τk and ν = νk with amplitude |Vk| 
for all targets k. An attempt to arrive at this ideal Z(τ,ν) is to correlate ψR(t) with the following reference 
signal [1]: 
 
 ])(2exp[)(),( tfitt cF ν+πµ=νψ . 
 
This results in 
 
 ∑∫ ν−ντ−τχ=ντ−ψψ≡ντ

k
kkk

t
FR VdtttZ ),(),()(),( * , 

 
where the function χ(τ,ν) is defined as 
 
 ∫ πν−τ−µµ=ντχ

t

dttitt )2exp()()(),( * . 

 
The function χ(τ,ν), which is completely determined by the modulation µ(t), is known as the ambiguity 
function [3]. In case χ(τ,ν) = δ(τ,ν), correlation processing would be perfect. Indeed for a (quasi) random 
modulation, the expectation of the ambiguity function is a delta function [1]. This for instance means that 
correlation processing is ideal for FM radio signals. More generally, the response Z(τ,ν) to a collection of 
point targets k contains a shifted copy χ(τ–τk,ν–νk) for every target k. The range and Doppler resolutions 
of the targets is described by the sharpness of the central peak at χ(0,0). 
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3. OPTIMIZING CORRELATION PROCESSING 

3.1 Inverse filtering 
The previous chapter may suggest that the ambiguity function χ(τ,ν) gives the ultimate range and Doppler 
resolution for a given modulation µ(t). However, correlation processing as described in chapter 2 is only 
optimal for (quasi) random signals. In this chapter we show how the resolution and the signal to noise 
ratio of the correlation result Z(τ,ν) can be improved using the well-known technique of inverse filtering 
[4]. We recall the correlation result: 
 
 ∑ ν−ντ−τχ=ντ

k
kkkVZ ),(),( . 

 
We now interpret χ(τ,ν) as a point spread or blurring function. Because χ(τ,ν) is exactly known from µ(t), 
the blurred shape can be focused to a point with an inverse filter derived from χ(τ,ν). The inverse filter is 
most conveniently described in the Fourier domain, and therefore we introduce the following Fourier 
transformations: 
 
 )},({),( ντ=ζ ZFqp pq , 
 )},({),( ντχ=ξ pqFqp . 
 
In the Fourier domain the correlation is given by 
 
 ∑ ξν−τ−=ζ

k
kkk qpiqipVqp ),()exp()exp(),( . 

 
Note that in this representation the blurring function ξ(p,q) can be taken out of the summation. This 
suggests elimination of the blurring with the following filtered version of ζ(p,q): 
 

 ∑ ν−τ−=ζ
ξ

≡ζ≡
k

kkk iqipVqp
qp

qpqpHqpG )exp()exp(),(
),(

1),(),(),( . 

 
Here, H(p,q) is the inverse filter, which is the inverse of the Fourier transform of the ambiguity function. 
Via an inverse Fourier transform we obtain: 
 
 ∑ ν−ντ−τδ==ντ −

τν
k

kkkVqpGFg ),()},({),( 1 . 

 
Thus we eventually arrive at the ideal point target response. 
 

3.2 Pseudo inverse filtering 
For the application of inverse filtering in practice, regularization of the inverse filter is necessary. One 
possibility is the pseudo inverse filter [4]: 
 

 
),(

1),(
qp

qpH P ξ
= , for |ζ(p,q)| > KσN, 

 0),( =qpH P ,  for |ζ(p,q)| < KσN. 
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Here σN is the noise level and K > 1 is a threshold parameter. We see that for (p,q) values where ζ(p,q) 
does not sufficiently dominate the noise, HP(p,q) is cleared. This means that for these (p,q) values, ζ(p,q) 
does not contribute to the resulting G(p,q) and g(τ,ν). 
 
For noisy signals, noise outliers will be more abundant, and this is particularly devastating at (p,q) values 
where |ξ(p,q)| is very small. The influence of such outliers can be largely suppressed with a non-adaptive 
approach, where the filter is cleared where |ξ(p,q)| is small rather than |ζ(p,q)|. This leads to the non-
adaptive pseudo inverse filter: 
 

 
),(

1),(
qp

qpH PN ξ
= , for |ξ(p,q)| > K', 

 0),( =qpH PN ,  for |ξ(p,q)| < K'. 
 
Here K' is a new threshold parameter. Possibly, one can avoid the discontinuities at the edges of the 
regions where the filter is cleared with the following modification: 
 

 
22

*

'),(
),(),(
Kqp

qpqpH PN
+ξ

ξ
= . 

 
This can be regarded as a smoothed version of the non-adaptive pseudo inverse filter. 
 

3.3 The Wiener filter 
Similar to the pseudo inverse filter is the Wiener filter [4], which is the optimal filter in the sense of 
minimizing the expected least square error in the resulting g(τ,ν): 
 

 222

*

),(/),(

),(),(
qpqp

qpqpH
N

W
ζσ+ξ

ξ
= . 

 
The Wiener filter is also an adaptive filter requiring the estimation of σN. One can introduce an artificial 
threshold parameter by multiplying σN with a factor K, leading to a smoothed version of the pseudo 
inverse filter HP(p,q). 

4. APPLICATION TO SINUSOIDAL FMCW RADAR MEASUREMENTS 

4.1 Sinusoidal FMCW radar 
We have applied correlation processing and subsequent inverse filtering on actual measurements of a 
sinusoidal FMCW radar. For this modulation, we have the following transmitted signal [2]: 
 
 )2exp()2cosexp()2cos2exp()( tfitfiatfiatfit cmmcT ππ=π+π=ψ , 
 
with the following instantaneous frequency: 
 

 )2sin(
2
1)( tfaff

dt
dtf mmc π−=
ϕ

π
= . 
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We see that the instantaneous frequency variation of the transmitted signal is sinusoidal with bandwidth B 
= 2afm. The ambiguity function is found as 
 
 ∫

><

πν−πτπ−πτπ−=ντχ
T

mmmm dttitffiatffia )2exp(]2sin2sin2cos)2cos1(exp[),( . 

 
Here the integral is only carried out over one modulation period T = 1/fm. Normally the delay τ will be 
small compared to the modulation period T, so that the latter expression can be simplified by a first order 
approximation of sin(2πfmτ) and cos(2πfmτ). This leads to 
 
 ∫

><

πν−πτπ−≅ντχ
T

mm dttitffia )2exp()2sin2exp(),( . 

 
We now borrow the following expression from the theory of Bessel functions: 
 

 ∑
∞

−∞=

θ=θ
s

s iszJiz )exp()())sin(exp( , 

 
where s runs over all integers. Substitution in the previous expression gives 
 

 ∫∑
><

∞

−∞=

ν−πτπ−=ντχ
T

m
s

ms dttsfifaJ ])(2exp[)2(),( . 

 
For the computation of Z(τ,ν) one can freely choose a set of ν values. Choosing ν = nfm with integer n, the 
integral in the latter expression simplifies to δns and we get 
 
 )()1()(),( τπ−=τπ−=τχ BJBJnf n

n
nm . 

 
This ambiguity function is shown in figure 1. The range, which is proportional to τ runs vertically. In this 
and all following image plots, darker pixels have higher values. The cross section χ(τ,0) is described by 
J0(πBτ), with its global maximum at τ = 0 and its oscillations along the τ axis. Cross sections for different 
ν = nfm are described by nth order Bessel functions. The general behaviour of Jn(x) for n ≠ 0 is that Jn(0) = 
0, and that Jn(x) slowly increases when x approaches n. Around n, it subsequently arrives at its global 
maximum and first non-trivial zero and then starts oscillating. This explains the bowtie shape of figure 1. 
 
The Fourier transform ξ(p,q) of the ambiguity function χ(τ,ν) is shown in figure 2. The non-adaptive 
pseudo inverse filter HPN(p,q) following from it is shown in figure 3. Note the interchange of darker and 
lighter regions between figures 2 and 3, illustrating that figure 3 is the inverse of figure 2. Also note the 
white regions with sharp edges where HPN(p,q) is cleared because |ξ(p,q)| < K'. Figure 4 shows the inverse 
filter hPN(τ,ν) in the range Doppler domain. 
 

4.2 Inverse filtering for actual measurements 
We now discuss the application of inverse filtering on measurements of a ground based sinusoidal FMCW 
radar observing airborne targets. The range and Doppler resolutions are about 1km and 200Hz 
respectively. Inverse filtering was carried out with |Z(τ,ν)| and |χ(τ,ν)|, which gave better results than 
when we worked with Z(τ,ν) and χ(τ,ν). We tried the three different regularized filters discussed in 
chapter 3 and we found that all of them worked very well for targets dominating the noise. Figure 5 shows 
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Z(τ,ν) for a strong target and figure 6 shows the resulting g(τ,ν) after successive inverse filtering. We only 
show one figure, because the different regularized filters performed equally well for this case. 
 
For noisy targets, we expected the non-adaptive pseudo inverse filter to work best. This is illustrated by 
figures 7-10. Figure 7 shows Z(τ,ν) for a weaker target, and figures 8 to 10 show g(τ,ν) for HPN(p,q), 
HP(p,q) and HW(p,q) respectively. For the pseudo inverse filter, the value K = 2 was chosen. The noise 
level σN was estimated from (p,q) regions where no target contribution to ζ(p,q) was expected. Clearly, the 
resulting g(τ,ν) is not extremely good for any of the inverse filters, but HPN(p,q) focuses most of the 
energy in a relatively small region. In addition, the background is smoother, containing fewer outliers. 
 
Figure 11 shows an interesting measurement with 2 targets. The range runs from about 0 to 100km and the 
Doppler frequency from about –20kHz to 20kHz. Ground clutter is suppressed with a band filter around 
0Hz, which is visible as a slight depression in the centre of the figure. The image shows two clear bowtie 
shapes with different range and different Doppler frequency. Apparently, one target is an incoming target, 
while the other is an outgoing target. Note that the target on the right hand side of the plot is accompanied 
by a bowtie at the same range, but with higher Doppler and with lower intensity. This may well be due to 
JEM (Jet Engine Modulation) of the main target. Figure 12 shows the compression achieved by inverse 
filtering using HPN(p,q). Figures 13 and 14 show the same information in surface plots. 
 

5. CONCLUSIONS 

In the above chapters we discussed the possibilities of optimizing the range and Doppler resolutions of 
single sweep FMCW radar processing by an additional inverse filtering step after correlation processing. 
As discussed, the inverse filter can be derived from the ambiguity function of the chosen modulation, and 
we have given a number of regularized inverse filters for application in practice. 
 
We have demonstrated the technique for actual measurements of a ground based sinusoidal FMCW radar 
observing airborne targets. We have compared the results of different regularized inverse filters, and found 
that all filters performed well for targets dominating the noise. For noisy targets the non-adaptive pseudo 
inverse filter performed best. 
 
For future research it would be interesting to compare the performance of deterministic modulations to 
(quasi) random modulations. For random modulations, the expectation of the ambiguity function is 
already a delta function without inverse filtering, but one may expect more noise outliers. 
 
It might be added that after inverse filtering, the range and Doppler resolutions of single sweep processing 
can in principle be as good as for multi sweep linear FMCW processing. Then, however, the single sweep 
radar will need a much high sampling frequency, a much larger data buffer and much faster data 
processing than the multi sweep FMCW radar. Instead, one will rather use single sweep radar for its 
potential of a large unambiguous range and Doppler frequency, while the observation time can be short. 
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Figure 2: Modulus of ξ(p,q). The 
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Figure 3: Modulus of HPN(p,q). The 

centre of the plot is HPN(0,0). 
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Figure 4: Modulus of hPN(τ,ν). The 

centre of the plot is hPN(0,0). 
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Figure 5: Modulus of Z(τ,ν) for a 

strong target. 
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Figure 6: Modulus of g(τ,ν) for the 

target of figure 5. 
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Figure 7: Modulus of Z(τ,ν) for a weak 

target. 
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Figure 8: Modulus of gPN(τ,ν) for the 

target of figure 7. 
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Figure 9: Modulus of gP(τ,ν) for the 

target of figure 7. 
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Figure 10: Modulus of gW(τ,ν) for the 

target of figure 7. 
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Figure 11: Modulus of Z(τ,ν) for a 

case of multiple targets. 
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Figure 12: Modulus of gPN(τ,ν) 

corresponding to figure 11. 
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Figure 13: Surface plot 

corresponding to figure 11. The 
range axis points towards the reader. 

 
Figure 14: Surface plot 

corresponding to figure 12. The 
range axis points towards the reader. 
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ABSTRACT 

We generate simulated (I)SAR imagery of a number of ground vehicles with the program Spectre [1] and 
validate these against turntable (I)SAR imagery from trials. Spectre employs a Physical Optics / 
Geometrical Optics (PO-GO) or shooting-bouncing-ray high frequency physics model. This approach is 
employed as standard for high-frequency electromagnetic scattering calculations from large complex 
bodies, so it is thought that the results have wide relevance. The effects of CAD model complexity and 
simulation convergence are considered. We evaluate the suitability of the simulated data for use in a 
database for various kinds of ATR methodologies. There are difficulties in achieving real-time simulations 
for ATR so we discuss the alternative route of pre-forming a scattering amplitude data-dome for forming 
monostatic imagery in real-time. 

 
1.0  INTRODUCTION 

To form robust Automatic Target Recognition (ATR) algorithms extensive training databases are required. 
Simulation is seen as a possible route to obtaining a database containing a large variety of imaging 
scenarios for a wide variety of targets in a wide variety of situations, for a modest cost [2]. The work 
reported here addresses the generation of a large database of vehicle signature predictions and the 
comparison of these predictions with real Inverse Synthetic Aperture (ISAR) data for the purposes of 
validation. The vehicles are modelled ex-situ and are compared with measurements of corresponding 
vehicles on a Radar Absorbent Material (RAM) covered turntable. The argument in favour of simulation 
becomes even more favourable if one accepts the point that if the present trend of increasing computer 
power for a fixed cost continues, it is likely that the possibility of real-time simulation would preclude the 
need for an imagery database. A database could then consist solely of vehicle Computer Assisted Design 
(CAD) models which can be articulated by the ATR-simulation software. 

The scattering simulation software and the CAD models are discussed in section 2.0. Simulation 
approximation, convergence and CAD model fidelity dependence have been studied and are described in 
section 3.0. Detailed feature analysis is described in section 4.0. Validation has been performed through 
comparison of both simulated and real imagery with the common CAD model to establish that the 
observed scattering can be jointly associated with structures on the vehicle. Further validation through the 
use of correlation measures has been undertaken, and is described in section 5.0. 

The construction of a database of simulated SAR imagery is greatly facilitated by the pre-calculation of a 
fully polarimetric K-space representation of the Electromagnetic (EM) scattering. Development of this 
“datadome” concept to support database generation and image formation research has also been 
undertaken and is described in section 6.0.  

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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2.0 FORMATION OF SIMULATED RADAR IMAGERY 

2.1 Scattering Software 

The EM-simulations were performed for monostatic scattering and a number of runs were carried out at 
X-band with the QinetiQ prediction code Spectre [1]. The physics models incorporated are the Physical 
Theory of Diffraction (PTD), the Physical Optics (PO) and Geometrical Optics (GO) approximations [3]. 
The PO-GO approximation is often called the “shooting-bouncing ray” model. The PTD calculation takes 
edge effects into account, and PO-GO approximate ray scattering from flat faceted surfaces. In the latter 
case rays can bounce from a number of surfaces, and if a ray bounces N-times before scattering back to 
the radar, then this is known as an Nth order scattering effect, or a Multi-Bounce-N event (MB-N). This 
approach is employed as standard for electromagnetic scattering calculations from large complex bodies at 
high frequency, so it is thought that our results have wide relevance. 

The scattering amplitude as a function of frequency, azimuth and elevation is obtained and is employed to 
form radar imagery via interpolation, window weighting and the Fourier transform. We have investigated 
the effects of the various approximations. 

2.2 CAD Models 

Seven CAD models were obtained for EM-simulation. Here we discuss the T72 main battle tank. These 
were obtained as part of the CEPA collaboration [4] with three levels of fidelity, to investigate simulation 
convergence. The low and medium fidelity models in Figure 1 have 9611 and 24808 facets respectively. 
The high fidelity model in Figure 2 has 37701 facets. Note that both the medium and high fidelity T72 
models have high fidelity wheels and tracks but that the low fidelity model does not. At high radar 
frequency we find this affects the scattering properties a great deal and, in particular, the convergence of 
scattering amplitude as a function of multi-bounce order. 

 

Figure 1: T72 CAD models. Left: low level of fidelity with 5307 vertices and 9611 faces. Right: 
medium fidelity model  with 21561 vertices and 24808 faces. The low fidelity model has highly 
simplified tracks and wheels. 

3.0 APPROXIMATION AND CONVERGENCE  

3.1 Reciprocity 

Polarimetric radars can transmit and receive two orthogonal polarisations. In the linearly polarised case the 
polarisations are labelled H for horizontal and V for vertical. In this way four transmit-receive 
combinations are possible (HH, HV, VH and VV). This additional data allows a more detailed examination 
of the scattering mechanisms. 
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The results from Spectre are generally not reciprocal. In the monostatic case this implies that HV 
simulation results erroneously differ from the VH results. This is not the case in reality. This is due to a 
failing of high frequency approximation physical models. The PO approximation is not reciprocal [5] and 
this problem is further exacerbated by having to employ PO-GO. This is where in order-N interactions, the 
first N-1 are modelled with GO reflections and only the last interaction is modelled with PO scattering. 
This is a standard high frequency modelling technique. For complex bodies there is very little alternative 
to applying PO-GO given the exponential increase in required computing power with scattering interaction 
order, which would occur for full PO scattering prediction. 

3.2 Further Numerical Approximations 

Beyond the underlying high-frequency ray-tracing approximation upon which the Spectre physics model 
is based, and the fact that the CAD-model is also approximated, other approximations were employed to 
reduce the computational run-time. Among these was a frequency sweep approximation. Here the 
fundamental scattering amplitude of any given facet is assumed to remain independent of frequency so 
that all variation within the band is solely due to the ray-path length difference in units of wavelength, and 
due to interference between scatterers as a result of this. This is found to be a very good approximation at 
HF. Various other approximations were employed, including an azimuth interpolation and a truncation of 
the scattering when it is away from the specular reflection direction by more than 30º. These are described 
in [6]. 

3.3 Convergence 

Simulated radar imagery results for the low and medium fidelity T72 models were decomposed into pure 
edge diffraction contributions and pure N-bounce ray components [1][3][6]. This was done to help 
understand the origin of features and to estimate whether the imagery has converged as a function of 
increasing ray-bounce. The imagery has a resolution of 10cm. In Table 1 we see how the simulated 
imagery for the low fidelity model converges reasonably well by MB-4. The tables show imagery in the 
two polarization channels HH and HV. The rows 1-3 in Table 1 show increasing MB components from 
order 4 to order 6. The bottom row consists of all the components added together coherently. We see that 
very few dim scattering centres are apparent for the MB-4 events image (NB: the colour-scale is reset in 
each image). The same cannot be said for the medium fidelity T72 for which the corresponding 
component can be found in Table 2. We see that convergence is not achieved. This is due to the higher 
complexity of the wheels and tracks on this model (see Figure 1). However the sum-total images are more 
realistic than in the lower fidelity simulation in that the wheels and tracks are now much more prominent 
than in the imagery for the low fidelity model (see for example [7]). 

Investigation has shown that for the medium and high fidelity models, for some aspect angles back 
scattering only reduced considerably after 5 or 6 bounces. Because of the complex nature of the high 
fidelity targets, some features may remain bright for even higher bounces, possibly with no convergence 
as a function of multibounce. This can certainly be the case for general cavity back-scattering [8][9]. 
Furthermore, in a complex target, even after we have seemingly obtained convergence with MB-N0, 
where N0 is any positive integer, we could never be sure that there would not occur a bright response at 
MB-N, where N>N0. Indeed we could purposefully contrive a simple target consisting of N mirrors, and 
seemingly obtain what looks like convergence with MB-N0 where N0<N, and yet if we have arranged the 
mirrors correctly, have a very bright response at MB-N. This could be done for any positive integer N. 

For the simulated image database we have settled for the combination of diffraction and multibounce up to 
and including third order scattering events (MB-3). Higher order events were not calculated due to the 
computational cost involved in calculating the full azimuthal dataset over the full 360º. 
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Table 1: Simulation multibounce (MB-N PO) component and sum-total images, showing convergence 
of scattering response with increasing multibounce, for the low fidelity T72 in the polarization channels 
HH and HV. The bottom row shows all components added together coherently. Resolution is 10cm (NB: 
the colour-scale is reset in each image). 
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Table 2: Simulation multibounce (MB-N PO) components and sum-total images, showing convergence 
of scattering response with increasing multibounce, for the medium fidelity T72 in the polarization 
channels HH and HV. The bottom row shows all components added together coherently. Resolution is 
10cm (NB: the colour-scale is reset in each image). 
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Figure 2, Left: High fidelity T72 Radar Point of View (POV) in the centre of the azimuthal imaging 
aperture used to form the radar imagery portrayed in Figure 3. Azimuth angle az=120° and 
elevation el=10°. Right: High fidelity T72 projection corresponding to that in Figure 3. The extent 
of the azimuthal imaging aperture is portrayed with the green and blue lines, and that the red 
line corresponds to the central POV. This aperture is required for the formation of 10cm 
resolution imagery at X-band. The illumination on the model is from the intended radar direction, 
thus giving an indication of the location of possible scattering hot-spots. 

 

Figure 3: Diffraction plus multibounce up to order 5 (PTD + MB-1 +… MB-5) simulated radar image of 
high fidelity T72 with CAD wire-frame superimposed. Three lines represent radar POV azimuth aperture 
extent and centre. 
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4.0 FEATURE ANALYSIS 

A feature analysis was carried out consisting of overlaying a partially transparent CAD wire-frame model 
onto the corresponding radar image, and comparing with radar Point of View (POV) CAD projections. 
This has greatly helped us to identify radar scattering hot-spots, their origins and their subsequent 
scattering centres in the imagery. 

In Figure 2 on the left we see the high fidelity T72 central POV CAD projection corresponding to the 
radar image in Figure 3. In Figure 2 on the right we see the CAD projection corresponding to that in the 
associated radar image. A partially transparent projection of the wireframe is superposed onto the radar 
image and we can see how well they correspond. Note that this latter projection is not a top projection, but 
is at 10º from the vertical in the appropriate direction. This is because the radar elevation is at 10º. This 
distinction seems small here, but helps to explain the minutiae of overlay effects. The distinction becomes 
crucial for higher elevation angle imagery interpretation. We note that the track and wheel scattering 
responses are not in a straight line, but are slightly arced in the radar imagery. This is a layover effect 
which is readily understood through application of the wireframe overlay. 

Note that the extent of the azimuthal imaging aperture is portrayed with the green and blue lines both in 
the radar image and in the corresponding CAD projection (Figure 2, right). The red lines correspond to the 
central POV, and the green and blue lines correspond to the azimuth aperture extent limits (necessary for 
10cm resolution). Analysis of the variation of POV within a single image has helped us to identify 
unstable scatterers. For example those which become obscured during part of an aperture. Scattering 
centres which correspond to unstable scatterers lead to cross-range smearing. An example is provided by 
the wheel to the rear and left of the T72. Note that the imaging geometry described here was also 
employed in the formation of the imagery in Table 1 and Table 2. 

The feature analysis was carried out both for simulated and trials imagery of various vehicles at 30cm 
resolution. Generally the corresponding scatterer locations were found to have been predicted correctly, 
however often the predicted brightness of these scattering centres was incorrect. This type of observation 
and others like it guide the appropriate choice of feature extraction algorithm to be applied in simulated 
database ATR. In the following section we do not describe feature extraction procedures, but merely apply 
normalised image correlations between real and simulated datasets and discuss results. 

 
5.0 CORRELATION OF SIMULATED AND TRIALS ISAR IMAGERY 

5.1 Correlation Procedure 

Here we describe the results of correlating the simulated and the trials imagery. Before correlating, the 
polarimetric span was taken 

222 2 VVHVHHSpan ++=  Equation 1 

where HH, HV and VV are the images in these respective polarimetric channels and the sum is carried out 
on a pixel-by-pixel basis. Taking the span generally gave rise to more consistent correlation results. Next 
the images were normalized as follows: the mean was subtracted and the result was divided by the 
standard deviation. For the image F, the normalized image Fn is 
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where the over-bar indicates the mean value of the image.   
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Depending on the goal one wishes to achieve, one may scale the images in different ways. For example to 
enhance the bright peaks, one could square the images, or to bring out the overall structure one could take 
the square root of the image, or take the logarithm. Prior to normalizing the images we have chosen to take 
the logarithm and to take a threshold from below at 45dBm2 from the image maximum value. This is not 
appropriate for some types of imagery and this depends upon the noise threshold amongst other things. 

The image correlation C is defined as follows 

( )[ ]∑∑ =−−=
' '

)','()','(),(
i j

GconjFIFTjjiigjifjiC  Equation 3 

where f and g are the images to be correlated, F and G are their Fourier transforms, IFT[⋅] is the inverse 
Fourier transform and conj(⋅) is the complex conjugate. Because the images have been normalized, the 
values of C vary only from 0 to 1. From the correlation image C one can extract the maximum correlation, 
and its position, which indicates to where one of the images should be shifted for the best template match. 

5.2  Correlation Results 

Polarimetrically-calibrated X-band turntable trials imagery at 30cm of a military vehicle was obtained. 
The corresponding CAD model was at very high fidelity, with just under 100000 facets. Even though the 
model was at high fidelity, it was still noticeable that particular details did not match. We should note 
however that this is also the case between different real vehicles of the same type. We are forced to take 
the view that any robust ATR algorithm must compensate for this inherent variation. The database for 
each consisted of 360 images at 1° intervals in all polarisations. The simulations only took into account 
edge diffraction and first to third order multibounce interactions. Due to run-time considerations no higher 
interactions were calculated here. 

In Figure 4 on the left we see maximum correlation results between the experimental and numerical 
imagery of vehicle 1 as a function of aspect angle. The average correlation is about 0.8. On the right of 
Figure 4 we see the shift distance of image 1 for maximum correlation with image 2. This distance roughly 
follows a cosine curve which simply reflects the fact that the centre of rotation of the trials vehicle is not 
exactly collocated with that of the simulated vehicle. 

In Figure 5 we see maximum correlation results between the experimental vehicle 1 dataset and a 
simulated vehicle 2 dataset. The average correlation decreased to about 0.7, which is lower than for the 
same type vehicle case. Although we indeed find that correlations are now lower, the difference is only 
around 0.1. We conclude that simple template matching is not sufficient to make optimal use of simulated 
imagery databases. It is likely that feature extraction based on scatterer position may be a better approach. 
In Figure 5 on the right, we see the template shift for maximum correlation. We see that a sinusoid of the 
appropriate period can no longer be fitted, supporting the conclusion that the vehicles being matched are 
of different types. 
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Figure 4, Left: Equal-angles maximum correlations as a function of azimuth (equal aspect image. Right: 
Template shift distance to maximum correlation for equal aspect image comparisons. The points follow 
a sinusoid. 

 

Figure 5, Left: Equal-angles maximum correlations as a function of azimuth (equal aspect image 
comparisons). Right: Template shift distance to maximum correlation for equal aspect image 
comparisons. The points do not follow a sinusoid with the expected period. 

 

6.0 SCATTERING AMPLITUDE DATADOME 

The practicality of avoiding the need to generate large databases of simulated imagery for many possible 
imaging geometries and platform trajectories can be addressed by the introduction of the “data-dome” 
concept. 

In constructing an image database for ATR, various factors such as the introduction of radar resolution as 
a variable, or the “angle of squint” variable in SAR squint mode imaging can have a drastic impact on the 
size of the image database. Clearly there are many other factors which can have a significant impact on 
imagery and these include elevation angle, centre frequency of image support, pixel spacing, windowing 
type for side-lobe suppression to name but a few. For this reason we argue the case for the pre-calculation 
of a frequency wide-band fully polarimetric scattering amplitude data-dome, which can be employed in 
forming imagery to the exact required specifications quickly. The other point is that potentially, the 
imagery can be formed with the data-dome in real-time. 
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The scattering amplitude datadome is a K-space or Fourier domain spherical shell of scattering amplitude 
values. Frequency is represented as distance from the origin and both azimuth and elevation in this space 
represent the radar-pulse direction towards the target azimuth and elevation angles. If one requires say a 
maximum of 5cm resolution for a ground vehicle, such a data-dome can be voluminous and can occupy 
storage space of the order of 90Gb. However this quantity easily fits onto a single modern, fast and 
inexpensive hard-disk. 

We have formed such data-domes for simple test objects, consisting of collections of cubes however it was 
soon realised that forming a high resolution data-dome for a large ground target would be highly non-
trivial in terms of computational expense. To continue our preliminary investigation we have obtained an 
unclassified datadome corresponding to a civilian digger vehicle (JCB or Backhoe), known as the 
“Backhoe datadome” [10]. This data was created with the simulation tool X-Patch [11]. This software also 
employs the high-frequency PO-GO approximation. The data has a frequency bandwidth of 6GHz with a 
centre frequency of 10GHz and an angular sampling in azimuth and elevation of 0.07°. The data-dome 
allows very high resolution imaging, potentially down to 3cm, for a target of about 15m in length. 

Initial investigations have shown that 2-D image formation from such a dome is rapid and provides a 
feasible way forward to overcoming the present inability to perform scattering predictions in real-time. 
Clearly, for complex targets this is the case because simulation run-time is simply replaced by data 
retrieval-time plus data interpolation-time. Specifically, if the data dome is stored upon a fast data access 
medium and if the target CAD model is of a medium to high level of fidelity, then the ratio of simulation 
run-time plus image formation time, to data-dome data retrieval plus data-interpolation plus image 
formation time, may be of the order of 1000. This is certainly the case if high resolutions are required. 

Due to the ease in obtaining the Fourier domain image support, the data-dome approach has allowed us to 
perform timely investigations of non-trivial effects such as varying overlay, lighting, obscuration and 
multipath effects in 2-D imagery. These should all be thoroughly understood to allow the formation of an 
effective ATR template matching scheme. Further studies of 3-D radar image formation were also 
undertaken with relative ease. 

7.0 CONCLUSION 

Our ISAR image comparisons consisting of feature analysis and correlation have shown that simulated 
imagery is broadly similar to trials imagery, although there are always specific differences. Scattering 
centres generally exhibit different relative brightnesses and additionally trials imagery is subject to the 
appearance of random scatterers. These differences are partly due to differences between the CAD models 
and the real vehicles, and also due to the high-frequency scattering approximations implemented. One can 
go on to argue that the differences are partly due to environmental effects and to inherent instabilities in 
the equipment. Additionally real vehicle surface roughness and coatings affect EM-responses. Although in 
the trials Radar Absorbent Material (RAM) coatings were employed on the turntable surface, there are still 
likely to be significant multi-path ground interactions, due to the turntable base disk being neither large 
enough nor perfect enough. 

There is of course always some variation between the vehicles of the same class, which cannot be 
accounted for in any one CAD model. For example on the day of the trials some of the cam baskets were 
filled or covered, some of the wing-mirrors were in position, others not. The periscope mirrors were at 
different orientations, and of course the tracks and wheels could never be deployed in any exact way. One 
could not for example expect even trials imagery of the same vehicle, taken on different days to be the 
same [12]. 
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Many approximations are carried out for the EM-simulations. We have described some of these 
approximations, convergence issues and even the effect of employing different CAD fidelities. It was 
found that higher detailed wheels and tracks give more realistic imagery, however they are less likely to 
converge as a function of ray-bounce. 

From our detailed feature analysis we have come to the conclusion that we are able to predict the location 
of prominent scatterers, although they are often of a brightness different to that seen in actual trials 
imagery. It is our opinion that for successful ATR we will need to extract robust and prominent features 
automatically and we will need to emphasise the positional information over the brightness information. 
This work is ongoing and we have not been discouraged by our results. It may well be the case that 
converged EM-simulation (which are often not possible [7][8][9]) may not be required for ATR. 

Data-dome studies have shown that tailored image formation is extremely rapid, sometimes of the order of 
1000 times more rapid, depending upon the specific situation, when compared to the time taken for 
simulation plus image formation. For example, the specific relative speed would depend upon CAD model 
complexity, the simulation approximations employed and on the required resolution. We can see that this 
must be the case because simulation run-time is simply replaced by data-retrieval followed by data-
interpolation time. 

All possible imagery databases for a given target could be replaced by a data-dome with a suitable image 
formation algorithm. For example, for ATR using a database of pre-formed imagery one must be careful 
to employ the appropriate image database to the corresponding imagery. For example, in squinted imagery 
it can be shown that layover always occurs in one direction for images formed with data from any part of a 
straight radar platform track, whereas for ISAR imagery it always occurs towards the imaging platform 
instead. For a broadside elevation angle of more than 20° this difference can be clearly seen, when 
comparing images from equal illumination directions. 

In the case of wide-aperture imaging, which is required for high resolution SAR and even more-so at low 
frequency bands, ISAR and SAR can also be very different at such elevations. This is because, whereas in 
ISAR imaging the elevation angle remains constant, in the case of SAR, the elevation angle is actually 
changing along the course of the aperture. Thus in the case of complex target imaging where scattering 
amplitude can change considerable for small elevation angle changes, the image type itself (SAR, ISAR, 
Squint mode SAR) can have a large impact on the imagery. The availability of a data-dome allows one to 
accommodate all these imaging scenarios in real time and can also reduce the overall size of an ATR 
database. 
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SUMMARY 

Simulation techniques offer very often the only realistic methods of signal processing quality assessment. 
Standard approach to signal simulation needs prior definition of signal model before construction of 
signal simulation algorithm. Sufficient number of signal data are necessary for definition of good signal 
model. Signal data available are not always satisfactory numerous. An approach is proposed to cope with 
this problem by simulating signal realizations as modifications of real, registered signal. Methods of 
modification of real signals in time-space domain as well as in frequency domain are proposed. Results of 
simulation experiments are presented. 

1.0 INTRODUCTION 

Simulation of an object or phenomenon consists in generation of their replicas similar in a sense with the 
original. Simulation of a signal x should produce an artificial signal s having the same probabilistic 
characteristics as simulated signal. In the case of a stationary signal the probabilistic criterion of 
comparison is most frequently defined on the basis of marginal probability distribution (MPD) and 
autocorrelation function (ACF) or equivalently power spectral density (PSD). Simulation of a signal can 
though be looked at as a generation of a random process of given MPD and ACF. Such an approach 
requires prior definition of a signal model before a simulation algorithm design. Reliable modelling needs 
sufficient number of real signal data collected during open-air experiments. This condition is usually 
difficult to be satisfied in the case of ground target radar signals for technical as well as economic reasons. 
The difficulties mentioned above are even more serious in the case of air-borne radar systems. The 
efficient use of available real signal data is of primary importance. 

Simulation of a signal is usually a processing of a sequence of independent random samples of appropriate 
probability distribution. The processing should be such as to produce the output signal of desired 
properties i.e. MPD and AFC. Thus any simulation experiment generates a signal realization that should 
be positively verified by successful estimation of both functions. Such an approach is a classical 
simulation of a signal. The proposed approach to signal simulation is based on an idea that simulation by 
independent random samples processing can be replaced by real signal samples processing that is the 
white noise signal processing is replaced by the processing of real signal. It means that in the latter case 
the processing should be an appropriate modification of real signal producing a new signal realization on 
the basis of a real one. 

2.0 PROBLEM DEFINITION 

The two approaches to simulation are presented schematically on Fig.1. If we assume that a signal x(t,A) 
depends on time t and a random variable A then the result of any simulation is its realization x(t,α). 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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Looking at a real signal (real is used here in a sense physical, registered in a physical experiment for 
example) as a realization x(t,α1) of the signal x(t,A) we want to produce its new  hypothetical realization 
x(t,α2) by a modification of the real signal (i.e. the realization x(t,α1)). The  

 

 

a) standard scheme of simulation 
 

 

b) proposed scheme of simulation 

Fig.1 Two schemes of signal simulation 

time t is used for simplicity of simulation idea presentation. In a case of 2-d signals (like SAR signals) t 
should be replaced by two variables t and u [Sou] representing range and cross-range signal dependence. 
In discrete case the signal realizations takes on the form x(m,n,A) with m=1,2,…M and n=1,2,…N. It is 
necessary that the modification algorithm be of nondeterministic character. It will enable to generate many 
new realizations x(m,n,αn) on the basis of one real signal and to cope with the problem of limited number 
of data available. As mentioned earlier the modified version of the signal is a hypothetical realization. To 
be sure that such a hypothesis can be accepted it should be verified which needs a definition of appropriate 
criteria. 

The basic difference between the two approaches lies in the role played by the simulated signal model. In 
the first case the signal model ought to be defined on the basis of signal data in order to design the 
simulation algorithm and in the second one the signal model is hidden in the internal structure of the 
available signal data and need not to be defined. So the problem of number of signal data necessary for 
reliable model definition looses its importance and instead the problem of appropriate algorithm of real 
data modification arises. The modification algorithm should preserve the  MPD and ACF. While defining 
the algorithm of modification one should consider signal structure. The problem will be presented below.  

The verification of simulation results should allow to found the similarity of MPD and AFC of the real and 
simulated (modified) signals. The principal rule adopted for all simulation algorithms was that signal 
modification should not change its ACF and if so the changes produced should be of minor importance. In 
effect only the MPD needed to be verified and typical goodness of fit test T were applied. 
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where: K – number of equal subintervals in the range of real signal variation [xmin, xmax], 
 {si; i=1,…K} set of numbers describing how many samples of the simulated signal s belong to  

i-th subinterval, 
 {xi; i=1,…K} set of numbers describing how many samples of the real signal x belong to i-th 

subinterval. 

simulation 
algorithm 

white 
noise 

simulated
signal 

modification 
algorithm 

real 
signal 

simulated
signal 



Ground Target Signal Simulation by Real Signal Data Modification 

RTO-MP-SET-080 36 - 3 

The hypothesis that the real and simulated signals MPD functions were identical was rejected if the 
statistic T known as Pearson’s test statistic was greater than the critical value c defined by the equation 

α=≥ }{ cTP  

If the hypothesis on goodness of fit of MPD functions is sustained and the assumption of AFC invariance 
is made the result of simulation by real signal modification can be accepted at the α significance level. 

3.0 SIMULATION ALGORITHMS 

The real signal x( ) can be modified either in the time-space domain or in the frequency domain. The 
modification should guarantee invariance of typical signal properties or insignificant changes of them. In 
the case of SAR signal its inherent property is a spherical phase modulation [Sou]. The information on 
signal phase is contained in in-phase and quadrature components of complex SAR signal. The available 
signal data used in simulation experiments were all in base-band form. Examples of image representation 
of real and imaginary parts, magnitude and phase as well as amplitude and phase spectra of a base-band 
SAR signal used for simulation experiments are shown on Fig.2. The rectangles on the magnitude image 
represent windows for analysis of an object (red) and noise background (blue) properties. This colour 
convention will be used for verification result presentation. Considering complex nature of SAR signal it 
is necessary to define the modification algorithm of its complex form or equivalent simultaneous 
modification of its components. An inspection of the signal data and an analysis of the processes 
generating the real signal in SAR systems lead to a conclusion that modification algorithm should change 
the signal in such a way that the relation among arguments of samples whose pixels are situated in one line 
of image signal representation will not undergo significant variations. This conclusion defines an 
important constraint on a strategy of phase value manipulation. Taking this into account three types of 
modification algorithms were proposed for numerical simulation experiments. In all algorithms 
modifications are introduced to both signal components individually. It is especially convenient in the case 
of discrete Fourier transformation because the spectra of signal components (both composed of real 
elements) are symmetric. 

3.1 MODIFICATION OF REAL SIGNAL COMPONENT PHASE SPECTRA ON 
LINE-BY-LINE BASIS – ALGORITHM NO 1 

The assumption made for the algorithm was that the phase spectra of analogous lines in both signal 
components can be slightly changed independently. Generally any change in phase spectrum does not 
influence the ACF. However, it affects the MPD and the changes produced depend on an intensity of 
phase modification. As was supposed earlier the modifications should not destroy the phase relations 
among signal samples in each component as well as between both components. Signal data in xre(m,n) and 
xim(m,n) define set of complex samples arranged in M lines each having N elements. Each line of both 
components can be modified according to the scheme presented on Fig.3 provided that the power of 
additive phase noise is not too great. In the simulation experiments the value of its variance σ2

Noise was 
chosen such as to assure a positive verification of simulation results. The results of simulation verification 
are presented on Fig.4. Pearson’s test statistic for K=20 intervals is shown as a function of ratio of 
variances of additive noise component σ2

Noise and phase spectrum variance σ2
Ph. Green line represents 

critical value c=30,14 equal chi-square percentile χ2
0.95(19). Particular simulated background and object 

were obtained for variance ratio equal 0,16. 
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3.2. MODIFICATION OF REAL SIGNAL COMPONENT VALUES ON LINE-BY-
LINE BASIS – ALGORITHM NO 2 

The assumption made for the algorithm was that the values of elements of analogous line in both 
components can be slightly modified provided that the modifications will not change the argument of the 
complex signal elements. In contrast to the algorithm No 1 the modification of both signal  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig.3 Algorith No 1 

components are not independent. The algorithm proposed is presented schematically on Fig. 5. The 
procedures of simulation and verification were the same as in the case of algorithm No 1. The result of 
simulation are shown on Fig. 6. Particular simulated background and object were obtained for variance 
ratio equal 0,30. 

 
 
 
 
 
 
 
 

Fig.5 Algorithm No 2 

3.3 MODIFICATION OF 2-D PHASE SPECTRUM – ALGORITHM NO 3 
Two previously described modification algorithms used 1-d processing that utilize the relations among the 
signal samples that form lines of the image signal representation. A 2-d processing of the whole signal 
image seems interesting as a more advanced form of processing. In the case of 2-d spectrum the 
modification of phase spectrum does not influence the ACF too. The changes of the signal form and 
changes of the MDP in consequence are fine if the phases of the dominating spectrum components rest 
untouched. The problem is how to induce phase changes and not to destroy the spherical phase modulation 
structure. It can be done if chosen at random spectrum elements are modified in such a way that their 
phases are interchanged with the nearest neighbours of the same spectrum line. The chosen elements 
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should not be dominant elements of the spectrum which means that a threshold value should be defined. It 
can easily be done by defining an appropriate region of great spectrum elements that are clustered due to 
the low pass character of the baseband SAR signal. The proposed algorithm is presented schematically on 
the Fig.7. The choice of random position consist in making m equal to an integer out of {2,3,…M} and n 
equal to an integers out of {2,3,…N-1}. The result of simulation are shown on Fig. 8. Particular simulated 
background and object were obtained for KK=200 modification iterations. 

 

                                                                                                                                                             

 

 

 

 

 

 

 

 

 

Fig.7 Algorithm No 3  

The algorithm No 3 has 2 parameters: the radius rr of circular exclusion region around constant 
component of real signal spectrum and the number of iterations KK. The first enables to eliminate an 
eventual choice of a position of a dominant spectrum component, the second determines the number of 
phase changes done during the simulation experiment. Both parameters make it possible to simulate an 
object on the noise background with different signal to noise ratio. Pearson’s test statistics in function of 
number of iteration for different radii rr are shown on Fig.9. As is clearly seen the dynamics of Pearson’s 
test statistics becomes greater for smaller radii due to involvement of strong spectrum elements in the 
process of signal modification. Similar results can be obtained by making greater the number of iteration 
KK. Signal images with different signal to noise ratios obtained for different numbers of iterations are 
shown on Fig.10.  

4.0 REMARKS AND CONCLUSIONS 

A common feature of  the simulation algorithm presented in this paper is the role played by the real signal 
which is treated as a sort of template. But it should be taken into consideration, that the real signal takes on 
one of many possible forms and can be treated as a realization of the signal we want to simulate. For this 
reason Pearson’s test statistic can be assessed less rigorously. It seems possible to simulate successfully 
signals of interest in spite of  greater than acceptable values of Pearson’s test statistic. This remark is valid 
for all three algorithms. The results of numerical experiments show qualitatively the properties of the 
algorithms. The numerical values of algorithm parameters should be determined experimentally. 

Algorithm No 3 seems to be the most efficient because of relative computational simplicity and lesser time 
consuming. 
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Fig.2 SAR signal 
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Fig.4 Results of simulation – algorithm No 1. 
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Fig.6 Results of simulation – algorithm No 2. 
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Fig. 8 Results of simulation – algorithm No 3.
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Fig.9 Pearson’s test statistic for different radii of circular exclusion region rr 
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Fig.10 Signal images of different signal to noise ratio s/n obtained for different number of 
iteration KK and constant radius of circular exclusion region rr=14 – algorithm No 3 
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ABSTRACT 

In this paper, we introduce the basic concepts of some state-of-the-art classification methods, including 
independent component analysis (ICA), principal component analysis (PCA), Bayes method, and support 
vector machine (SVM) or kernel machine.  We discuss their function in the classification and evaluate their 
performance for different applications. 

1 STATISTICAL CLASSIFICATION 

 Classification means to resolve the class of an object, e.g., a ground vehicle vs. an aircraft.  
Recognition means to determine whether the ground vehicle is a truck, a school bus, or a tank.  Identification 
means to identify the type or model of the target (T72 tank or M60 tank).  Statistical classification utilizes the 
statistical pattern recognition method for classification, recognition and identification [1].  A pattern is a 
characteristic of an observation, such as a speech signal or a human face image.  A structural characteristic 
extracted from a pattern is called a feature.  It can be a distinctive measurement, a transformation, or a 
structural component.  The process of converting a pattern to features is called feature extraction.  Each 
pattern can be viewed as a point (or a vector) in the feature space.  The best features are selected using a 
feature selection algorithm.  The selected features should best represent the classes or best represent the 
distinction between classes.  The dimensionality of the selected feature space can also be greatly reduced 
compared to the full feature space.   
 The statistical classification process based on the probability distributions of the feature vectors can 
be described as follows: 

(1) First, define the classes of patterns: 
),...,( 21 MCCC  

(2) Then, extract and select the best features from a pattern: 
),..,( 21 Nxxxx =  

(3) Then, specify or learn the conditional probability function of a feature vector x belonging to class Ci: 
p(x| Ci) 

(4) Then, chose a decision rule (Bayes rule, maximum likelihood rule, Neyman-Pearson rule, or other 
rules). 

(5) Finally, find the decision boundaries. 
 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
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 The complete statistical classification process, as shown in Figure 1, includes pre-processing of 
observed or sensed data (such as segmentation, noise removal, filtering, spatial or temporal localization, and 
normalization of patterns), feature extraction, feature selection, learning, and classification.  Feature extraction 
is accomplished with the principal component analysis (PCA) or independent component analysis (ICA).  
Then, in feature selection, the methods used include branch and bound search (B & B), sequential forward 
selection (SFS), sequential backward selection (SBS), sequential forward floating search (SFFS) and 
sequential backward floating search (SBFS).  Finally, learning and classification are accomplished with Bayes 
classifier, k-nearest neighbor (k-NN) classifier, linear discrimination classifier (LDC) and support vector 
machine (SVM) as indicated in Figure 1. 

Figure 1. Basic stages of the statistical classification process. 
 

2 FEATURE EXTRACTION 

2.1 Feature Extraction and Dimensionality Reduction 
 
 Feature extraction converts data patterns to features, which are condensed representations of patterns 
and contain only salient information (as shown in Figure 2).  The converted features should represent patterns 
with minimal loss of the information required for best classification.  Features include non-transformed 
structural characteristics, transformed structural characteristics, and structures (such as lines, slopes, corners, 
or peaks).  Non-transformed structural characteristics are obtained directly from sensor observations such as 
amplitudes, phases, time durations, or moments. Transformed structural characteristics are obtained from 
transformations such as the Fourier transform, wavelet transform, time-frequency transform, singular value 
decomposition, or Karhunan-Loeve transform.   
 Linear transforms, such as PCA and linear discrimination analysis (LDA), are widely used for feature 
extraction and dimensionality reduction.  PCA is the best-known unsupervised linear feature extraction 
algorithm; it is a linear mapping which uses the eigenvectors with the largest eigenvalues.  LDA is a 
supervised linear mapping based on eigenvectors, and it usually performs better than PCA for classification.  
ICA [2-4] is also a linear mapping but with iterative capability, which is suitable for non-Gaussian 
distributions.  ICA decomposes a set of features into a basis whose components are statistically independent.  
It searches for a linear transformation WICA (or weight matrix) to express a set of feature vectors X = (x1, x2, … 
xN) as a linear combination of statistically independent vectors Y = (y1, y2, … yN), so that the transformed 
components XWY T

ICA=  are independent, that is, knowledge of the value of yi provides no information on 
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the value of yj for i ≠ j.  There is no closed form solution for finding the weight matrix WICA .  Therefore, 
iterative algorithms have been proposed to search for a weight matrix.  PCA only requires that the coefficients 
yi and yj be uncorrelated, i.e.  

0}{}{},{),cov( =−= jijiji yEyEyyEyy  
However, independence is a stronger requirement, because independent components are uncorrelated, but 
uncorrelated components may not be independent.  Thus, the ICA accounts for higher order statistics and 
provides a more powerful data representation than PCA.   
 Kernel PCA is a nonlinear feature extraction method based on eigenvectors, which maps input 
patterns into a new feature space through a nonlinear function, and then performs a linear PCA in the mapped 
space.   
 

Figure 2. Feature extraction converts data pattern space to feature space. 
 
 

2.2 PCA vs. ICA 
 
 PCA is a classical projection method used in signal analysis.  ICA was originally used for separating 
mixed signals into independent components; this process is called blind source separation (BSS).  The goal of 
PCA is to minimize the projection error, but the goal of ICA is to minimize the statistical dependence between 
basis feature vectors.  Recently, ICA has been applied to image analysis.  Some results show that ICA 
outperforms PCA, and others show that there is not much performance difference between ICA and PCA.  We 
should realize that the nature of our classification task affects the evaluation.  For some classification tasks, if 
the global properties such as width and length are more important, then they are more easily extracted by PCA 
than ICA.  If features such as time-frequency signatures are more spatially localized, ICA is better than PCA.  
For small ship classification, the global features are more important than localized spatial features, as 
illustrated in Figure 3.  Thus, PCA is good enough for feature extraction.  However, for micro-Doppler time-
frequency signatures, the localized spatial features are more important, and the ICA should be used in feature 
extraction as illustrated in Figure 4. 
 
 
 
 

Data space Feature spaceData space Feature space
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Figure 3. Using PCA for small ship feature extraction. 

 

 
 

Figure 4. Using ICA for micro-Doppler time-frequency signatures discrimination. 
 

 
 

3 FEATURE SELECTION 

The purpose of feature selection is to determine a subset within the set of features in order to minimize 
the classification error based on various criteria [1].  A straightforward method of feature selection is the 
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exhaustive search that selects the best features and minimizes the classification error.  Another efficient 
feature selection method is the sequential forward and backward selection (SFBS).  Forward selection means 
a bottom up process that begins with an empty set and selects the first feature that is the best feature.  Then, at 
each step, it selects the best feature from the remaining set, which, combined with the features already 
selected, gives the best value under the selection criterion.  Backward selection is a top down process which 
removes features from the feature set.  However, it cannot re-select those removed features even if they would 
be useful for further processing.   

Suppose there is a set of N features represented by Y and M features of a subset represented by X.  Let 
J(X) to be a criterion function for selecting X from Y.  Then, the selection procedure can be summarized as (1) 
searching to find all possible subsets of size M from N features and (2) selecting the subset X with the largest 
value of J(X) as the optimal subset.  Most selection methods use the classification error of a selected feature 
subset to evaluate the effectiveness of the selection method. 

The searching methods include: 
(1) Exhaustive search. 
(2) Branch and bound search (B & B): The criterion function is monotonic and the performance of a 

subset can be improved when adding a feature to it. 
(3) Sequential forward selection (SFS): Evaluate a feature set by adding one feature at a time.  Once a 

feature is added, it cannot be discarded. 
(4) Sequential backward selection (SBS): Evaluate a feature set by deleting one feature at a time.  Once a 

feature is deleted, it cannot be re-entered into the feature subset. 
(5) Sequential forward floating search (SFFS) and sequential backward floating search (SBFS): 

Backtrack as long as there are improvements of the current feature set compared to the previous 
feature set.  Performance is comparable to the B & B method with a lower computational cost. 

 
 

4 LEARNING AND CLASSIFIER 

 The effectiveness of the feature space depends on how well different classes can be separated in the 
space.  The objective of classification is to find decision boundaries between classes in the feature space that 
can best separate different classes.  These decision boundaries are determined by the probability distributions 
of the patterns associated with each class.  The probability distributions can be either specified or learned, i.e., 
boundaries can be found by either specifying the parametric format of the boundaries (such as linear or 
quadratic) or by finding them by learning through a training process.   
 The performance of a classifier depends on the number of available training samples.  Learning 
includes supervised learning and unsupervised learning.  Supervised learning requires that the training 
samples be labelled by their classes.  Unsupervised learning does not require labelled training samples and the 
number of classes must be learned. 
 Classical classification methods include the Bayes, k-NN, LDC, and others.  Support vector machine 
(SVM) is a modern classification method with a nonlinear classification function using an iterative method [5-
7].  It can maximize the margin between the classes by selecting a minimum number of support vectors.  
  
 
4.1 Bayes Classifier 
 
 The Bayes classifier assigns a pattern to the class that has the maximum estimated posterior 
probability.  Given a pattern x, the posteriori conditional probability that the pattern belongs to the class C is 
determined by 
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)(
)()|()|(

xP
CPCxPxCP = , 

where P(x) is the a priori probability that a pattern is x, P(C) is the a priori probability that a pattern belongs to 
class C, and P(x|C) is the conditional probability that a pattern is x if the pattern belongs to class C. 
 According to the Bayes rule, assign a pattern x to class Ci if the risk function, given by 

∑
=

=
M

j
jjii xCPCClxCrisk

1

)|(),()|(  

is minimum, where l(Ci,Cj) is the loss function when Ci is chosen if the true class is Cj, and P(Cj |x) is the 
posterior probability of Cj.  The Bayes classifier has the minimum classification error when the probability 
density functions are known. 
 
4.2 k-Nearest Neighbor (k-NN) Classifier 
  
 The 1-Nearest Neighbor rule assigns a pattern to the class of the nearest training pattern without a 
training process.  The classifier using the k-NN rule assigns a pattern to the majority class among k nearest 
neighbor. 
 
4.3 Linear Discrimination Classifier (LDC) 
 
 Assume xi is a feature vector with d dimensions, and X = (x1, x2, … xN) is the training set with N 
classes.  Given a transformation matrix W, the original feature vector is transformed to a projection feature 
vector Y = (y1, y2, … yN) with a reduced dimension of d1 ( d1 < d ): 

XWY T= . 
Define a scatter matrix S: 
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where µ is the mean target feature vector.  The LDC uses the transformation matrix WLDC that satisfies 
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where the between-class scatter matrix is defined by 
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and the within-class scatter matrix is defined by 
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where Ni is the number of training samples in class i, K is the number of distinct classes, µi is the mean vector 
of samples that belongs to class i, and Xi is the set of samples that belongs to class i.  To reduce the 
dimensionality, the LDC should apply the PCA first. 
  
4.4 Support Vector Machine 
 
 SVM is an unsupervised approach based on statistical learning theory.  It estimates the optimal 
boundary in the feature space by combining a maximal margin strategy with a kernel method; this process is 
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called a kernel machine.  The machine is trained according to the structural risk minimization (SRM) criterion 
[5,6].  The decision boundaries are directly derived from the training data set by learning.  
 The SVM maps the inputs into a high-dimensional feature space through a selected kernel function.  
Then, it constructs an optimal separating hyper-plane in the feature space.  The dimensionality of the feature 
space is determined by the number of support vectors extracted from the training data (see Figure 3).  The 
SVM can locate all the support vectors, which exclusively determine the decision boundaries.  To estimate the 
misclassification rate (risk), the so called leave-one-out procedure is used.  It removes one of Ni training 
samples, performs training using the remaining training samples, and tests the removed sample with the newly 
derived hyperplane.  It repeats this process for all of the samples, and the total number of errors becomes the 
estimation of the risk.   
 

 
Figure 3. Optimal boundary serached by the SVM. 

 
 
4.5 Classifier Evaluation 
 
 Pattern recognition software packages and toolboxes are widely available [8].  To evaluate different 
classifiers, we create a 2 dimensional dataset generated with 100 samples for each class.  Among the 100 
samples, 20 samples are used for training and 80 samples are for testing.  Four classifiers (LDA, k-NN, Bayes, 
and SVM) are compared.  Note that here the data is generated by a random generator.   
 In the first example, two classes of samples are overlapped in the 2-D feature space.  Figure 4 shows 
the decision boundaries found by (a) LDC, (b) Bayes, (c) k-NN and (d) SVM.  Figure 5 shows classification 
error rates or the receiver operation curve (ROC) of the corresponding four classifiers.   
 
 

Feature space

xi

xj
Class 1 Class 2

Support 
vector

Nonsupport 
vector

Feature space

xi

xj
Class 1 Class 2

Support 
vector

Nonsupport 
vector



Evaluation of Bayes, ICA, PCA and SVM Methods for Classification 

37 - 8 RTO-MP-SET-080 

 

Figure 4. Classifier boundary found by (a) LDC, (b) Bayes, (c) k-NN, and (d) SVM for two overlapped 
classes in 2-D feature space. 

 

 
Figure 5. Two classes' classification error rates for the four classifiers. 
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Figure 6. Classifier boundary found by (a) LDC, (b) Bayes, (c) k-NN, and (d) SVM for eight overlapped 

classes in 2-D feature space. 

 
Figure 7. Eight classes' classification error rates for the four classifiers. 
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 The second example is eight mixed classes of samples overlapped in the 2-D feature space.  Figure 6 
shows the decision boundaries found by (a) LDC, (b) Bayes, (c) k-NN and (d) SVM.  Figure 7 shows the 
classification error rates of the corresponding four classifiers.   

From the above two examples, we see that SVM can find more complicated decision boundaries, and 
the classification errors of k-NN and SVM are considerably lower than others.  

 

5 SUMMARY 

We have introduced the basic concept of ICA, PCA, Bayes, and SVM, and we have discussed their 
functions in classification and evaluated their performances for different applications.  If global properties are 
more important, then these features are more easily extracted by PCA than ICA.  If the features are more 
localized, ICA is better than PCA.  For small ship classification, where global features are more important 
than localized spatial features, PCA is good enough for feature extraction.  However, for micro-Doppler time-
frequency signatures, the localized spatial features are more important, and ICA should be used in feature 
extraction.  From two simulated examples, we see that SVM can find more complicated decision boundaries, 
and the classification errors of k-NN and SVM are considerably lower than the others.  
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ABSTRACT 
An adaptive neural-network approach to target- and clutter-modelling is introduced. A key novelty of this 
approach is that both targets and clutter can be modelled within the same neural network, so that 
detection and recognition can take place simultaneously within an integrated framework. The approach 
can therefore be applied across the spectrum of ATR discrimination levels, e.g.: detection of unknown 
targets in clutter; detection of specific designated targets in clutter; recognition of target subclass post-
detection. The approach is designed to be generically applicable, to data from a variety of sensors, 
including HRRPs, SAR intensity imagery, complex SAR imagery, visible and EO imagery, and burst-
illumination LIDAR. This generic applicability is attributable to the fact that the algorithm adaptively 
models training-exemplar data of arbitrary type and dimensionality. Unlike many current approaches to 
target detection, this approach can exploit a wide range of cues for discriminating targets from clutter 
objects, including detailed grey-level shape information and, for RF sensors, complex/phase information. 
Furthermore, the approach is quick to use in operation, and has been designed with hardware 
implementations in mind.  Successful results are presented for a target (designated building) detection and 
identification problem using real SAR imagery. The approach has been designed to have the future 
potential to offer other very significant new capabilities, e.g. the potential for reducing false-alarm rate in 
urban clutter and improving robustness to extended operating conditions. 

1.0 INTRODUCTION 

1.1 Integrated approach to target detection and recognition 
This paper concerns an adaptive neural-network approach to target- and clutter-modelling. A key novelty 
of the approach is that both targets and clutter can be modelled within the same neural network, so that 
detection and recognition can take place simultaneously within an integrated framework. The approach 
can therefore be applied across the spectrum of ATR discrimination levels, e.g.:  

• Detection of unknown targets in clutter; 
• Detection and recognition of specific designated targets in clutter; 
• Recognition of target subclass post-detection.  

The proposed approach is designed to be generically applicable to data from a variety of sensors, including 
HRRPs, SAR intensity imagery, complex SAR imagery, visible and EO imagery, and burst-illumination 
LIDAR. This generic applicability is attributable to the fact that the algorithm adaptively models training-
exemplar data of arbitrary type and dimensionality. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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When used for target detection, the approach exploits the kind of knowledge of the signature of the target 
that would conventionally be used only at the post detection identification stage, in order to influence the 
detection decision.  This allows potentially crucial signature information (e.g. detailed grey-level shape 
information and, for RF sensors, complex/phase information) to be used at the earliest stages of target 
detection.  This offers the potential to mitigate the false-alarm rate of the detection process very 
significantly.  The resulting “identify-for-detect” principle is analogous to the “track-before-detect” 
principle well known in the context of tracking algorithms [8]. The key to this unified approach to 
automatic target detection and recognition lies in the use of a technique with the ability to: 

• Model targets with varying degrees of specificity and generalisation, depending on the scenario; 

• Model varied and complicated clutter with a high degree of generalisation. 

Many potential approaches for modelling both targets and clutter cannot be used for simultaneous target 
detection and recognition, because of the computational expense involved in conducting the comparisons 
at each location.   In contrast, the proposed algorithm is quick to use in operation, and has been developed 
with hardware implementations in mind. 

1.2 Background 
The developed approach is the result of neural network research into transformation-robust pattern 
recognition.  The motivating aim has been to develop techniques that enable target detection and 
recognition to be robust to both continuous and discontinuous complex transformations (where complex 
transformations are defined to be transformations of individual objects within the sensor image, as 
opposed to simple perspective transformations of the whole image).  In the ATR context, continuous 
complex transformations include 3-D rotation and articulation (e.g. the rotation of a tank’s turret with 
respect to its hull).  Examples of discontinuous complex transformations include the replacement of one 
type of vehicle with another of similar type, partial occlusion, differences in equipment fit, and change in 
operational configuration. 

Complex transformations are intimately associated with ill-defined properties of the objects to be 
recognised.  It is likely that characterisation of these properties will require reference to a complex, 
nonlinear, hierarchical pattern recognition technique, with the ability to adapt to training data that is 
characteristic of those ill-defined properties.  A neural network is such a technique. 

In the neural network literature, the term “invariance” is used to refer to what the military user or systems 
designer would term “robustness”; neural network papers generally adopt the mathematical terminology of 
group theory rather than the terminology of the ATR application domain.  A neural network (or some part 
of it) is said to be invariant under a transformation of the data if its recognition output response does not 
change (or changes only gradually) as the transformation is applied to the data.  This property of the 
recognition response is clearly what is desired if one wishes to build a neural network based ATR system 
that is robust with respect to variation in the sensor data. 

1.3 Outline 
The structure of this paper is as follows. Section 2 outlines the concepts behind the adaptive neural 
network algorithm, by discussing neural network approaches to transformation invariance.  Section 3 
briefly discusses the approach implemented within algorithms to date.  Section 4 presents experimental 
results for detection and recognition of a particular building within SAR imagery of an urban area. 
Conclusions and future work are in Section 5. 
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2.0 ALGORITHMIC CONCEPTS 

2.1 Discussion of neural network approaches to transformation invariance 
Whether explicitly acknowledged or not, many neural networks capable of transformation invariance are 
symmetry networks [10]. These are neural networks in which some synaptic weights are equal (or 
approximately equal) to others.  Put in another way, these are networks whose configuration of synaptic 
weights is symmetric (invariant) under certain groups of permutation transformations.  This is illustrated 
graphically in Figure 1.  The recognition outputs of neurons that possess this symmetry property are 
consequently invariant under corresponding groups of transformations on their input data.  This 
conclusion is related to the group-invariance theorem of Minsky & Papert [5], and is explained more fully 
by Webber [16]. 
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Figure 1: Illustration of a symmetry network.  The permutation transformation in the data shown 
in the top half of the diagram is matched by a permutation in the synaptic weights (the templates 

in the hierarchy  W) shown in the bottom half.  

“Weight-sharing” [5][10][11] provides a trivial example of synaptic-weight symmetry in a symmetry 
network, although this does not begin to exemplify the full potential of synaptic-weight symmetry as a 
means of achieving transformation robustness.  In a weight-sharing architecture, an array of neural 
network recognition nodes (“neurons”) is forced to generate an output recognition response that is 
invariant with respect to global 2-D translations of the whole image.  This is achieved by constructing the 
architecture of the network so that neighbouring neurons in the array share neighbouring input connection 
weights (neighbouring “synaptic weights”) in common, i.e. the architecture is constructed so that 
neighbouring synaptic weights of neighbouring neurons are equal.  The result is that as objects are 
translated across the sensor image, the recognition responses of the neurons are correspondingly just 
translated across their array rather than being changed entirely beyond recognition. This trivial example of 
a symmetry network therefore exhibits the same translation invariance property as the standard template 
correlator. More sophisticated forms of synaptic weight symmetries than simple globally translation-
invariant weight-sharing can be designed into neural network architectures.  The rotation-invariant 
network of Fukumi et al [1] (applied to coin recognition), the handwritten zip-code recogniser of Le Cun 
et. al. [4] and the Neocognitron [2][3] all use built-in weight equalities implicitly to achieve their 
transformation robustness.  

In all the examples in the previous paragraph, the weight symmetries are designed into the architecture at 
the outset (a priori) and are not derived by learning.  Such static or “hard-wired” weight symmetries are 
rarely sufficient for handling transformations more sophisticated than simple global transformations of the 
whole sensor image such as 2-D translation, rotation and scale magnification.  This is because prior 
knowledge of the transformation properties of individual objects is generally insufficient or too ill-defined 
to allow the neural network’s designer to understand how to hard-wire appropriately sophisticated and 
complex weight symmetries into the network’s architecture; in other words, object/model-dependent 
weight symmetries will be necessary for true robustness to articulation and changes in operational 
configuration.  
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Some improvement on hard-wiring fixed symmetries in this way may be obtained by constraining the 
network learning algorithm’s equations to enforce and maintain particular groups of simple weight 
symmetries throughout the learning process. An example is provided by Rumelhart et al. [7], in which 
weight sharing constraints on the learning equations were used to distinguish T and C shapes in simple 
synthetic images, independently of 2-D translation and 90o rotation.  This approach still has the 
disadvantage that the network designer must understand exactly what groups of symmetry transformations 
are to be imposed on the learning equations, and how to do so. 

In each of the approaches outlined above, the algorithm’s designer imposed onto the neural network a 
particular, known, well-defined group of transformation invariances.  In the case of ill-defined, complex, 
object-dependent transformations such as articulation or changes in operational configuration, the designer 
generally has insufficient understanding of how to impose the ill-defined invariances onto the network in 
the form of supervisory knowledge.  To address this problem, one needs a data-driven means of acquiring 
robustness/invariance under these transformations, through unsupervised learning of real data 
representative of the particular objects that undergo these object-dependent transformations. 

2.2 Symmetry-preserving networks  
Our solution is based on Webber’s discovery that a new class of unsupervised neural networks 
(“symmetry-preserving” networks) can detect invariances/symmetries in the probability distribution 
function (PDF) of their training data, and exploit that new functionality to develop robust response with 
respect to precisely those transformations. In other words, this new class of algorithms can preserve the 
symmetries of the data’s PDF, in the form of matching symmetries in the trained configuration of synaptic 
weights and consequently in the form of matching invariances in the network’s recognition output. In 
principle, such networks can acquire robustness with respect to all manner of ill-defined complex 
transformations of objects in their training data, both continuous and discontinuous discrete 
transformations, simply through exposure to training data containing sufficient (but far from exhaustive) 
numbers of exemplars of the transformed objects. These claims are proved algebraically in Webber [16].  
That paper also demonstrates this new functionality using real images having the full statistical complexity 
of natural scenes and shows that, through exposure to natural scenes, symmetry-preserving networks can 
derive and explain the translation-invariance properties of the complex cells of the visual cortex.  
Webber [17] goes on to demonstrate that, through exposure to natural scenes, symmetry-preserving 
networks can generate fully translation-, rotation- and scale-invariant codes for natural images.  
Symmetry-preserving network algorithms tend to be algorithmically simple, with the advantage that fast 
hardware implementations are feasible. 

2.3 Componential coding, aka combinatorial, multiple-cause or factorial coding 
The unsupervised neural network learning algorithms applied here to integrated target detection and 
recognition are capable of adaptively deriving componential codes to encode/model their training data.  
Componential coding has been alternatively called constituent coding, multiple-cause coding, 
combinatorial coding and factorial coding by various papers that have illustrated the concept using 
simplified synthetic data, e.g. [13][9].  It has since been applied to real data, e.g. for modelling 
handwriting [14] and for modelling sensor signals for the purpose of machine condition 
monitoring [15][6].  The idea is that sensor data having enormous variability may nevertheless be 
modelled effectively, by factorizing the variability down into its constituent building blocks, or 
components.  Thus, one attempts to model the various exemplars of data as variable combinations of the 
building-block components, in the same way that the many tens of thousands of words in the English 
language may be represented as various combinations of 26 letters.  The adaptive learning property of the 
algorithm is needed to derive the appropriate building blocks from the data, because these are generally 
not known a priori.   
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Componential coding is the approach used here to model the combinatorial complexity of urban clutter.  
We introduce a classifier that can distinguish designated targets from clutter by comparing the sensor 
image against a clutter model that combines building block components according to a statistical 
framework.  (Figure 4 will show a few examples of the building blocks we derive from an urban clutter 
training set.)  This is a much more sophisticated approach than simply attempting to compare the sensor 
image directly against a library of target exemplars and a library of clutter exemplars, by measuring which 
library fits the sensor image best. Indeed, attempting simply to compare the sensor image directly against a 
library of clutter exemplars could never produce robust performance, because one would need an 
effectively infinite number of exemplars to catalogue the enormously variable complexity of possible 
urban clutter scenes.  This is the main reason why conventional correlation-filter or template-matching 
methods have not been effective in discriminating targets from urban clutter.  In contrast, an adaptive 
clutter model that can interpolate between training exemplars by attempting to model them as 
combinations of building-block components has a far better chance of being able to model the enormous 
variability of urban clutter sufficiently well to be useful as part of an effective classifier.  

3.0 USE OF THE APPROACH 

3.1 Single-layer implementation 
Learning algorithms capable of symmetry preservation have been incorporated into a Bayesian density 
estimation framework, and can be used to produce a likelihood distribution for the training data.  To date 
only a single-layer implementation of these algorithms has been developed and assessed for radar target 
detection applications.  A multi-layer implementation that will perform hierarchical feature extraction is 
under development.  Such a multi-layer implementation is likely to be necessary for ATR that is robust to 
extended operating conditions (EOCs).  

3.2 Clutter and target likelihoods 
For the problem of recognition of target subclass post-detection, these algorithms are trained on exemplars 
of each target subclass. This would allow any subsequent unseen training data to be compared against each 
trained subclass model in order to generate a separate likelihood for each target subclass.  After specifying 
prior subclass probabilities, Bayes’ theorem can then be used to classify new objects by means of posterior 
subclass probabilities in the conventional Bayesian manner, e.g. [12].   

For the problem of integrated target detection and recognition in clutter (identify-for-detect), a likelihood 
distribution is learned for the clutter as well as the target.  This allows target detection in clutter to be 
performed, by comparing the relative likelihoods with which the image chip around any given location in 
a SAR scene matches the target and clutter models.  In such cases, training the algorithm produces:  

• A set of parameters cθ  that define the likelihood map for the clutter; 

• A set of parameters tθ  that define the likelihood map for the target.   

For a scene x , these can be used to produce a clutter likelihood map )|( cc xl θ , and a target likelihood map 
)|( tt xl θ .  Using Bayes’ theorem these can be combined to provide a map of the posterior target class 

probability: 
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where 0>tπ  and 0>cπ  are the prior probabilities for target and clutter respectively, subject to 
1=+ tc ππ .  Target-versus-clutter decisions can then made by comparing the posterior target class 

probability against a pre-specified threshold, and the value of this threshold may be varied in order to trace 
out a receiver-operator characteristic (ROC) curve.  Note that an identical ROC curve may be produced by 
fixing the threshold for the posterior probability at some nominal value (say 1/2) and instead varying the 
ratio ct ππ / , i.e. the ratio of the prior probability for targets against the prior probability for clutter. 

4.0 EXPERIMENTAL RESULTS 

4.1 Introduction 
The proposed approach has been applied to the problem of recognising a particular building within SAR 
imagery of an urban area.  Detection of specific building types could have many military uses, such as: 

• Detection and identification of terrorist training facilities.  
• Detection and identification of complexes associated with the development and storage of 

Weapons of Mass Destruction (WMD).   
• Detection and identification of civilian buildings that define exclusion areas for weapon 

engagement, such as hospitals and schools. 

The main purpose of the example is, however, to provide an initial proof of principle for the application of 
these new techniques to the generic problem of target detection and identification in urban clutter using 
SAR imagery. These techniques will in future be applied to the more specific problem of detecting 
military vehicles in urban clutter.  In the mean-time, several factors must be taken into account when 
considering the relevance of the building identification results to the problem of military vehicle detection 
and identification.  Firstly, the selected target building is larger than most military vehicles; thus, more 
“pixels on target” are available than is usual, which it could be argued may make the task of detecting and 
identifying a particular building type easier than the task of detecting and identifying a particular military 
vehicle type.  However, a counter-argument is that size information cannot be exploited as a discriminant 
between the target and the clutter when the target is a building of similar size to the surrounding clutter 
buildings; this factor makes detecting building types more challenging than detecting vehicle types for 
methods that (unlike this method) rely only on size discriminants.  Another counter-argument is that the 
target building is likely to have more features in common with the surrounding clutter buildings than a 
military vehicle would have in common with the surrounding clutter buildings.  Thus, some features that 
could be used to distinguish a vehicle from a building (perhaps related to different radar cross-sections 
from different types of material) can no longer be exploited as discriminants when distinguishing 
buildings from other buildings.  

4.2 Experiments 
The dataset used for this demonstration consists of high-resolution SAR imagery of a built-up area.  
Specifically, the dataset consists of 18 SAR images of the urban scene, from a range of different aspect 
angles.  All 18 images were 512512× -pixels in size.  10 of these were used for training, with the 
10 successive training images separated by 4-degree intervals in aspect angle, and the other 8 were used 
for testing, with the 8 successive test images separated by 4-degree intervals in aspect angle. Alternate 
aspect angles were used for training and testing to ensure a proper test of generalisation over aspect angle, 
i.e. no test image was closer than 2 degrees in aspect angle to any training image.  

Examples of the SAR imagery are shown in Figure 2, with the designated (target) building ringed.  It is 
clear that there are many clutter objects that have returns of similar size and intensity to those from the 
selected target.  Figure 3 displays extracted ( 6464× -pixel) image chips, centred on the target. 
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Figure 2: Examples of the SAR imagery of an urban scene, with the designated (target) building 
ringed in yellow. The left-hand image is view A and the right-hand image is view B. 

   

Figure 3: Examples of extracted target chips from the SAR imagery. The left-hand chip is 
extracted from view A and the right-hand chip is extracted from view B. 

Training data for the target model were obtained by manually locating the target in each of the training 
images and, for each training image, extracting a 6464× -pixel image chip centred on the target.  This 
produced 10 target-model training chips.  Training data for the clutter model was obtained by sliding 

6464× -pixel input windows over the entire set of training imagery.  Some of the building blocks that 
constitute the trained clutter model are displayed in Figure 4.   

Input windows that contained the target were not removed from the training data for the clutter model.  
The motivation for not removing the targets from the clutter training data is that it allows the clutter model 
to be trained on large areas of surveillance imagery, without human intervention to edit out targets.  This 
introduces the potential to train the clutter model in situ, at the same time as the sensor platform surveys 
the area in which targets are to be detected. This mode of operation allows the clutter model to be refined 
so as to model the target’s local environment optimally.  The inclusion of targets in the clutter training 
data has minimal effect on the properties of the trained clutter model, and so does not cause significant 
degradation in the performance of the target-versus-clutter likelihood comparison.  This is because the 
clutter model is trained in order to derive building blocks that best model the average properties of the 
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bulk of the clutter training data, so the inclusion of a few targets amongst the clutter training data will bias 
this average insignificantly.  This is in marked contrast with the effect that including targets among the 
clutter exemplars would have on traditional template-matching classifiers (correlation-filters); for 
template-matching classifiers, any target chips that pollute the clutter training data would match as would 
the exemplars of the target.  This is another advantage of the componential coding approach over 
traditional template-matching classifiers, over and above the combinatorial complexity issue discussed 
earlier.  

  

Figure 4: A subset of the building blocks that define the trained clutter model. 

4.3 Results 
The trained target and clutter models are used to produce target and clutter likelihood maps for each test 
scene. Once the target and clutter prior probabilities are specified, these likelihood maps can be used to 
produce a map of the posterior target class probabilities for each scene, using equation (1).  Figure 5 
displays the posterior class probabilities for views A and B, using a low ratio for the prior probability of a 
target versus the prior probability of clutter. Grey boxes have been centred on the locations for which the 
posterior class probabilities are higher than 0.5.  For view A, the only detection box is centred on the 
target.  For view B, there are two areas in which the posterior class probability is higher than 0.5.  The 
upper area corresponds to the target, while the lower area is the result of a clutter false alarm. 
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Figure 5: Posterior target class probability maps.  The left-hand image is for view A and the 
right-hand image is for view B.  Detections are surrounded by grey boxes. 

Increasing the ratio of the prior probability for targets to the prior probability for clutter results in plots for 
the posterior target class probability that display more false alarms. (Increasing the ratio of the prior 
probabilities for a fixed value of the detection threshold on the posterior target probability is 
mathematically equivalent to reducing the detection threshold on the posterior target probability for a 
fixed value of the ratio of prior probabilities, as has been explained earlier.)  Consequently, either varying 
the ratio of the prior probabilities for a fixed value of the detection threshold on the posterior target 
probability or varying the detection threshold on the posterior target probability for a fixed value of the 
ratio of prior probabilities will trace out an identical Receiver Operating Characteristic (ROC) curve for 
the target detection probability as a function of the false alarm rate. This ROC curve is provided in Section 
4.5. 

4.4 Baseline results 
As an indicator of algorithm performance, two sets of baseline results are presented.  Namely: 

• Application of a correlation-filter (template matching). 

• Application of a correlation-filter to the areas identified as anomalous by a Constant False Alarm 
Rate (CFAR) filter. 

The templates for the correlation-filter were the same training target chips that were used to train the target 
model of the adaptive neural network algorithm.  The same image chips as were used to train the clutter 
model of the neural network algorithm cannot be used as negative exemplars by the correlation-filter.  
This is because, for any correlator-filter classifier to function, the target would have to be manually edited 
out from the clutter training data, and this requirement would remove the operational potential for 
collecting the training data for the clutter model in-situ.  More significantly, it would in general be 
impractical to use clutter chips as negative exemplars for a correlation-filter classifier, because an 
effectively infinite library of such negative exemplars would be required in order to provide robust 
generalisation to unseen clutter configurations.  In contrast, the adaptive neural network algorithm 
presented in this paper avoids this problem, by using an adaptive interpolating clutter model to extract the 
building-block components of the clutter, and thus to model unseen clutter configurations as variable 
combinations of these building-block components.   
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The CFAR-filter assumed a Gaussian background noise distribution for the logarithms of the amplitudes 
of the complex-valued SAR returns. 
 
Figure 6 displays the correlation-filter maps (i.e. the maximum correlation values over all target templates, 
as a function of image location) for views A and B.  Both images are displayed using the same grey-scale 
map (i.e. the same relationship between correlator output value and pixel brightness). Comparison with the 
target locations in Figure 2 reveals that there is a (local) peak corresponding to the target in the correlation 
map for each of the two views; however, many clutter objects also give large correlation values. 
 

  

Figure 6: Maps of the outputs from a correlation-filter.  The left-hand image is for view A and the 
right-hand image is for view B. 

For the same views A and B, Figure 7 displays the outputs obtained by applying a correlation filter to the 
areas identified as anomalous by a CFAR filter; thus, the template-matching identification capability of the 
correlation filter is used to mitigate the initial false-alarm rate of the CFAR filter.  Again, both images are 
displayed using the same grey-scale map.  Comparison between the plots in Figure 7 with those in Figure 
6 shows that one is able to remove many of the correlation peaks caused by clutter objects by combining 
the CFAR and correlation filters.  Moreover, this does not seem to be at the expense of peaks at the target 
location.  However, there are still considerably more false alarms than from the neural network algorithm 
(see Figure 5).  The relative performances are quantified in ROC curves in Section 4.5. 
 

4.5 ROC curve comparison 
Visual comparison of Figure 5, Figure 6 and Figure 7 indicates that the adaptive neural network algorithm 
provides lower false alarm rates than the CFAR-filter/correlation-filter chain, which predictably provides 
lower false alarm rates than the correlation-filter alone.  A more rigorous assessment of algorithm 
performance is possible by comparing ROC curves. 
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Figure 7: Maps of the output from a correlation-filter applied to the areas identified as 
anomalous by a CFAR filter.  The left-hand image is for view A and the right-hand image is for 

view B. 

To calculate these ROC curves, binary decisions between target and clutter are made for the pixels in a 
processed image, by applying a simple threshold to the image.  If a pixel value lies above the threshold, 
then the pixel is declared to be a target, while if a pixel value lies below the threshold, the pixel is declared 
to be clutter.  Targets are only counted once; exclusion zones around the targets have been applied in order 
to avoid counting the extremities of targets as clutter. By altering the threshold a ROC curve of target 
detection probability versus false alarm rate is obtained.   For the adaptive neural network algorithm the 
processed image is the map of the posterior target class probabilities.  Selection of the threshold therefore 
corresponds to a threshold on the posterior class probability.  For the two baseline algorithms the 
processed images are the correlation filter outputs (applied to areas identified as anomalous by the CFAR-
filter in the second case).  The obtained ROC curves are display in Figure 8. 
  

  

Figure 8: ROC curve comparison.  Target detection probability along vertical axis,  Log10 of false 
alarm rate per square km along horizontal axis.  The black (solid) line is for the adaptive neural 
network algorithm, the blue (dashed) line is for a correlation-filter applied to the areas identified 

as anomalous by a CFAR filter, and the red (dotted) line is for a correlation-filter alone. 

The curve for the adaptive neural network algorithm is closer to the top-left corner than the curves 
obtained using the two baseline techniques, indicating that better target detection and identification 
performance is being obtained.  However, two caveats must be borne in mind when interpreting the results 
from this single experiment: 
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• Each target is only counted once, so the jumps in target detection probability are very coarse. 

• No post-processing has been applied to cluster the detections, so there is some double counting of 
false alarms (visual inspection indicates that this double counting is likely to have more of an 
adverse effect for the correlation-filter baseline algorithm than the other algorithms).  Clustering 
detections in urban clutter can be a very difficult exercise because, with so many clutter detections 
in the close vicinity of the target, it can be far from obvious how to design a clustering algorithm 
to deduce where the target detections end and the clutter detections begin.  

5.0 CONCLUSIONS 

This paper has introduced an adaptive neural-network approach to target- and clutter-modelling.  The 
approach is such that both targets and clutter can be modelled within the same neural network, so that 
detection and recognition can take place simultaneously within an integrated framework. The algorithms 
can therefore be applied across the spectrum of ATR discrimination levels, e.g.: detection of unknown 
targets in clutter; detection of specific designated targets in clutter; recognition of target subclass post-
detection.  The approach builds on the unsupervised neural network principle of symmetry-preservation.  
Symmetry-preserving networks can detect invariances/symmetries (under complex transformations) in the 
PDF of their training data and exploit that functionality to develop robust responses with respect to 
precisely those transformations.  We believe that such networks could ultimately offer the potential for 
target recognition with robustness to EOCs, although this has not been addressed in this paper.  The paper 
provides an initial proof of principle for the application of componential coding to target detection and 
identification, using real SAR imagery in urban clutter; componential coding offers a new handle on 
modelling the combinatorial complexity of urban clutter.  This demonstration concerned recognition of a 
particular building within SAR imagery of an urban area.  Superior performance (in terms of target 
detection probability at a given false alarm rate) was obtained, compared to two baseline approaches based 
on a correlation-filter (template matching), one of which also exploits a CFAR filter as an initial detection 
stage.  Planned future work will more fully assess the componential coding approach for target detection 
in urban clutter, and investigate the symmetry-preserving functionality with the aim of improving 
robustness to EOCs.  
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ABSTRACT 

This paper addresses the detailed analysis of full polarimetric radar images, obtained from real data, by 
using the Polarimetry theory parameters. 

The experimental ground based radar station MERIC has been designed at ONERA to perform full 
polarimetric measurements on non-cooperative in flight airplanes.  

The first promising results of an analysis carried out from a MERIC full-polarimetric ISAR image of a 
liner are presented. 

1.0 INTRODUCTION 
The theory of polarization has been studied [1] for several decades. However, its implementation has been 
delayed while waiting for technological progress.  At present, experimental high resolution radar can 
provide full-polarimetric data with the required magnitude and especially phase accuracy. 

Some full polarimetric airborne SAR radars have already been developed. Full-polarimetric SAR images 
analysis (produced from RAMSES data, for example), has shown promising results regarding the 
vegetation classification and the analysis of motionless ground targets. 

For In-flight target studies, 2D-ISAR radar imaging is a well-established method giving the reflectivity 
distribution of target scatterers. Full-polarimetric ISAR imaging will be introduced and discussed.  It will 
be shown that Polarimetry provides additional information about scatterers electromagnetic behaviour.  

The full-polarimetric ground based radar station MERIC has been designed to measure in-flight targets 
[4], in order to create full-polarimetric data base. The analysis of a civilian aircraft is presented to illustrate 
Polarimetry potentiality. 

2.0 ISAR FULL-POLARIMETRIC IMAGING 

2.1. Radar images 
Radar targets can be split into two main classes depending on how elementary mechanisms add in the 
resolution cell.  

• If they add incoherently, scattering mechanisms are represented by random variables and the 
statistical (or general) theory of polarization is applicable. This is the case for large natural areas 
like forests, fields, meadows....  

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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• If they add coherently, electromagnetic scatterings are coherent and the deterministic theory of 
polarization is applicable. This is mainly the case for man-made or artificial targets like 
aeroplanes, trucks, railways ... Radar images of these targets are characterized by a small number 
of bright scattering centres. 

2.2.   Point Object Model 
• A common assumption for radar artificial radar targets is the ‘Point Object Model’ (POM). 

According to this model, any target is described by a collection of isotropic point scatterers.  
• Polarimetric measurement give access to the target backscattered matrix [S]. 
In the POM frame, this matrix can be represented by a sum on N elementary scattering matrices [si], 
phase shifted according to the scatterers locations ixr : 
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Assuming the elementary matrices [si] do not vary with frequency and orientation, the image is given by: 
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where )(xrδ  is the Dirac distribution. 

In practice, measurements are recorded over a limited frequency bandwidth and over a bordered incidence 
domain. Therefore, the Point Spread Function (PSF) )( ixxG rr

−  replaces the Dirac distribution: 
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This equation shows that the resulting image can be considered as the complex sum of each point scatterer 
image. Bright scattering centres are no longer point centres. They have a stretch in space characterized by 
the PSF. The same elementary scattering matrix is associated with all pixels in the vicinity of a point 
scatterer with a strength given by the PSF. If the scatterers are far enough from each other, their PSF do 
not interfere and the true elementary matrices ][ is  are obtained at locations ix

r . A target is therefore 
described by a set of point scatterers whose elementary scattering matrices and locations are known. 

In practice, the scattering matrix of a given scatterer is always more or less distorted by the scattering 
matrix of the other scatterers. The higher is the resolution, the smaller is the PSF and the less distorted are 
the elementary scattering matrices.  

A 2D ISAR image is a projection of the 3D scatterer distribution onto a 2D plane. Some different 
scatterers can then be confused. This problem increases for the 1D representation: a range profile being the 
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projection on the line of sight of the 3D distribution of scatterers. So in this case a larger number of 
scatterers can be mixed together. 

2.3 ISAR imaging 
To build the ISAR image of a moving target with the required transversal resolution, the radar has to track 
the target in order to acquire measurements during a sufficiently long duration. Each complex range 
profile thus acquired must be aligned with the preceding profile using a complex correlation method.  

Phase distortion due to the translation motion of the moving target is compensated using the DSA 
(Dominant Scatterer Algorithm) method. The principle of this method is to select the bright scatterer 
showing the least amplitude variation as a reference point,   

At radar wavelengths, the returned signal is dominated by backscattering from features like corners, edges 
and surface discontinuities… The objective of radar classification based on classical ISAR imaging is to  
consider rather the locations and RCS level of scatterers than target shape. Full polarimetric radar data 
makes it possible to also use electromagnetic mechanisms creating the scatterers.  

3.0 POLARIMETRIC PARAMETERS 

The nature of deterministic mechanisms can be characterised by several sets of polarimetric parameters. 
These sets are globally equivalent. However their sensitivity to electromagnetic properties can be 
different. 

3.1. Sets of polarimetric parameters 
It is well known that deterministic mechanisms are described by a 2 by 2 complex matrix: the scattering 
matrix. Under the reciprocity postulate and given its absolute phase is ineffective for describing the 
physical mechanism, it depends on five independent parameters. Several sets of parameters have been 
proposed in the literature:  

• The Fork parameters set:  

According to [1] the back-scattering matrix of any deterministic mechanism can be mathematically 
represented by several operators:  
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It depends on the five Polarization Fork angles:  µνγτψ ,,,,  The variation ranges of the Polarization 
Fork parameters are as follows: 

22 πψπ <<−  44 πτπ <<−   44 πνπ <<−             40 πγ <<  

The orientation angleψ gives the tilt of the target versus the horizontal polarization, in the plane 
perpendicular to the radar line of sight. The symmetry angleτ indicates the symmetry rate versus an axis 
or a plane (if τ is low the scatterer is symmetric and if it is high it is not symmetric).  The skip angle ν  
gives information about the parity of the number of scatterings (if ν is low this number is even, if ν is 
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high it is odd). The polarizability angle γ provides information about the ability of the scatterer to polarize 
the waves on a particular polarization (if γ is low the scatterer is polarizing and if γ is high it is not). 

• The Huynen parameters set: 

This set contains nine real parameters [1]: 

the orientation angle ψ  and the disoriented (orientation extracted) Muller matrix parameters:  

GFEDCBBBBA ,,,,,,,2 000 −+  

In the deterministic case, these parameters are linked by four relations: 

22
00 DC)BB(A2 +=+     DGEA =02     2

00 )(2 GBBA =−      CGFA =02  

All these parameters are homogeneous to a power. The span is an invariant quantity (independent of any 
polarization base change) representing the total RCS back-scattered by the target: 

)()(2 000

2222
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A feature vector valid for identification (independent of total power information) is obtained through the 
unit span normalization:                      1)()(2 000 =−+++ BBBBA  

The Huynen parameters can be written [1] as a function of the Fork parameters. Then, it is easy to 
maximise each Huynen parameter. Figure 1 a, b, c, d, e, f, g contains the combs obtained when 
parameters ,,2 00 BBA + GFEDCBB ,,,,0 −  are respectively maximised. One can notice that 

maximising any generator parameter ,2 0A  BB +0  and BB −0 leads to a comb with only one peak (1a, b, 
c). The maximum of any other parameter corresponds to a comb with three equal peaks (1d, e, f, g, h). 

Therefore, the unit span constraint leads to a set of eight characteristic feature combs (figure 1) with either 
one peak (equal to 1) or three equal peaks (equal to ½). The very good continuity from one feature comb 
to another is an important advantage for a classification algorithm based on correlation between measured 
and reference combs.  

In practice, most of the analysed scattering centres are symmetrical ( 0≈τ ). Therefore, we often have: 
0=== GFE .  

Only the five first combs of figure 1 are frequently found. The main electromagnetic mechanisms are:  

• Specular reflection on a smooth surface locally spherical or on a plate. In this case the dominating 
parameter is 02A  (figure 1a).  

 

• Scattering on a sharp edge or on a long and thin wire described by a comb looking like figure 1d.  
A maximum value of parameter C corresponds to three equal peaks for 02A , BB +0 and C.  
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B0 +B =B0 -B =F=1/2 

2A 0  =1 

B 0  +B=1 

B 0  -B=1 

2A0 =B0 +B =D=1/2

2A0  =B0 -B =G=1/2

B0 +B =B0 -B =E=1/22A0  =B0 +B =C=1/2

 

Figure 1 : the eight characteristic combs 

• A difference between the two local curvatures is characterized by an increase of parameter D. A 
maximum value of D corresponds to three equal peaks for 02A , BB +0 and D (figure 1e). It 
describes the quarter-wave dephasors according the sign of D. 

• The maximum of parameter F is described by three equal peaks (figure 1g). It corresponds to 
helices according the sign of F. 

4.0 POLARIMETRIC ANALYSIS OF AN AIRCRAFT 
A specific software has been designed at ONERA to assist polarimetric analysis of full-polarimetric radar 
images. In particular, it can be used to calculate and show the image of any polarimetric parameter for any 
selected area. Several recognition methods can be used to improve the analysis (based on a comparison 
between either scattering matrices or combs of Huynen parameters…). 

As an example, results obtained from a full-polarimetric analysis of a civilian aircraft measured by 
MERIC radar, are presented. The chosen aircraft is a Mac Donnel Douglas MD 82 in take-off phase. A 
photo (figure 2) gives an idea of the aircraft presentation with regards to the radar during the 
measurements. 

The RCS images of the four r(eceive)/T(ransmit) polarizations hH, hV, vH and vV are given in figure 3. 
About ten main bright spots appear very clearly. The great similarity between the hV and vH images (in 
accordance with the reciprocity postulate) can be seen. These four images show that co and cross polarized 
images must be taken into account. 

The bright spot areas are defined by selecting all pixels with span greater than a given level. In figures 4 to 
7, the eliminated pixels are indicated in light green. 

Images of the Huynen parameters 2A0 (Figure 4) and B0+B (Figure 5) show that these parameters are 
very discriminating. The higher values (in warm colours) of parameter 2A0 indicate the surface 
mechanisms locations. On the other hand, the higher values (in warm colours) of parameter B0+B show 
the double-bounce areas. The analysis can be refined by calculating the comb of Huynen parameters for 
various selected variable size areas. This kind of analysis allows us to identify numerous scatterers.  

Automatic recognition algorithms can be applied on each pixel to obtain a classified image: a set of 
mechanisms are stored in the reference memory. The most likely mechanism of the reference memory 

(1a) 

(1b) 

(1c) 

(1d)

(1g) 

(1f) 

(1e)

(1h) 
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(according to an appropriate rule of comparison) is allocated to each pixel. The algorithm can be based 
equally well on either a comparison between scattering matrices [2] or on a comparison between Huynen 
parameters combs. A classified image is presented on the right part of Figure 6 and Figure 7. 

The mechanisms are represented by a specific colormap: Surface mechanism ("S") in blue, Double-bounce 
or dihedral type mechanisms ("Dd") in red. The dipole type mechanisms indicating lengthened targets 
("Dp") are referenced in yellow. Positive or negative quarter-wave dephasors devices ("Q± ") in purple 
and mauve colours. Two intermediate mechanisms are introduced: cylinder ("C") between surface 
mechanism and dipole; lengthened dihedral corner ("DdL") between dihedral and dipole.  Among non-
symmetrical targets, the right and left helices ("H± ") are associated with white and black. The light grey 
("X") or dark grey ("Y") colours indicate symmetric and non-symmetric unrecognized mechanisms 
respectively. 

Numerous scatterers generating surface (right part of figure 6) and double-bounce mechanisms (right part 
of figure 7) have been recognized. On the left part of figures 6 and 7, identified mechanisms locations are 
indicated.  

Surface scatterers are identified in blue and green on figure 6. They are located on:  

• the end of the tail flat (1),  

• the left (2) and right (3) engines,  

• the fuselage (4), (6), (8),  

• the end of the wing (5),  

• the opposite part of the fuselage  (7). 

 

Double-bounces are identified on figure 7. They indicate the following interactions: 

• rudder - right part of the horizontal tail flat (1), 

• rudder - left part of the horizontal tail flat (2),  

• back of right engine (3), 

• trailing edge flap control systems casing - underside of right wing (4),(5),(6),  

• fuselage - back of the right wing (7), 

• fuselage - front of the right wing (8),  

• fuselage – antennas (9),(10), (11). 

5.0 CONCLUSION 
Like all man-made targets, aircraft radar images are characterized by a collection of bright scatterers. 
Conventional 2D-ISAR imagery can determine their location and RCS. Full-polarimetric ISAR imaging 
provides access to extra information about the electromagnetic mechanisms that creates them.  

This study, carried out on real data provided by MERIC full-polarimetric radar, shows that a lot of 
information can be obtained using Polarimetry. Mechanisms like specular reflection on plate or on curved 
surface, edge diffraction, double-reflection, surface waves, surface discontinuity…. can be recognized.  

Future measurements that will be provided by MERIC station can be used to build a full-polarimetric 
database of air targets.  From this database, suitable methods of automatic target recognition will be 
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proposed and tested on fully or partially real polarimetric data, in order to assess the usefulness of 
Polarimetry. 
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7.0 GLOSSARY 

MERIC : Moyen Expérimental pour la Reconnaissance et l’Identification des Cibles 

RAMSES : Radar Aéroporté Multi Spectral d’Etude des Signatures 
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Figure 2 : MD82 picture in taking off phase 

 

Figure 3 : four-polarimetric RCS ISAR images 
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Figure 4 : 2A0 parameter image  

 

Figure 5 : B0+B parameter image  
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Figure 6 : surface mechanisms analysis 

 

 

 

Figure 7 : double-bounce mechanisms analysis 
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ABSTRACT 

The scattering properties of a radar target can only be fully characterized by measuring a scattering 
matrix in which the elements represent the combinations of transmit and receive polarization states. The 
amount of information gathered by a traditional single polarization radar may therefore be even very 
limited, for example when the single polarization response is near zero while the cross polarized return is 
at a maximum. By polarimetric processing, different scatterers, i.e., scattering mechanisms, can be 
completely and coherently separated, even if they are located within the same resolution cell of the radar 
image. This is particularly important in relation to non-cooperative target identification and recognition. 
Nevertheless, the practical utilization of polarization for optimizing information content has not gained 
more widespread interest until very recently. This is mainly due to a lack of proper technology in the past, 
but also due to negative conclusions drawn from early experiments with polarimetric radar. At the 
moment, significant efforts are put into the development of techniques for efficiently and conveniently 
handling polarimetric data. Such techniques differ considerably from techniques known from traditional 
single polarization target imaging, since one has to deal with a matrix for each resolution cell instead of 
just a single scalar. In this paper, some of the advances and advantages of polarimetric radar techniques 
will be reviewed and presented in an application-oriented perspective, emphasizing the potential of 
utilizing the information contained in the polarization transforming properties of radar targets.  

INTRODUCTION 

The vectorial nature of the electromagnetic fields, on which any radar system is based, implies that the full 
amount of potentially available information can only be exploited by employing polarimetric radar 
systems, i.e., systems capable of measuring all four combinations of two orthogonal polarizations. For 
simplicity and cost-effectiveness, however, traditional operational radar systems have been single-
polarization systems employing one and the same polarization on both transmission and reception. Such 
systems have obviously served many needs satisfactorily, but for modern high resolution applications, 
such as target classification, identification and recognition, the properties and capabilities of polarimetric 
systems cannot be ignored without a severe loss of useful target information. This was realized rather early 
in civilian remote sensing applications using high-resolution SAR (Synthetic Aperture Radar) systems, 
and single-polarization systems would simply not be able to produce the classification results that are 
delivered by modern polarimetric SAR systems.  

In the military community, however, the issue of polarimetric radar has been surrounded by skeptics and 
opposition, largely based on claims that the money could be spent more efficiently on other performance 
parameters, like range resolution. One reason for this, of course, is the obvious fact that the polarimetric 
techniques could not readily be implemented as upgrades to existing radars. Nevertheless, with the 
technological developments that have taken place in recent years, the implementation of full polarimetric 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 



Advances of Techniques for Utilizing 
Polarimetric Features of Radar Targets  

40 - 2 RTO-MP-SET-080 

 

 

capability should no longer be considered as an unrealistic sophistication that the military does not need. 
On the contrary, the additional information provided by such systems could be crucial for satisfactorily 
solving the complex tasks required in today's battlefields. Therefore, a relevant question is rather: Can the 
military of the future afford to continue ignoring the additional information that can be accessed by 
polarimetric radar systems only? In the following, the basic properties and characteristics of polarimetric 
radar data will be reviewed in an application-oriented perspective. 

POLARIMETRIC PROCESSING TECHNIQUES 

The first systematic studies of the utilization of the polarization of radar waves were carried out by 
Kennaugh in the early 1950's. During these studies, the eigenvalue problem associated with the 2x2 
scattering matrix was considered, and it was later treated in great detail by Huynen, who rigorously 
formulated the existence of maximum and minimum (null) polarizations. He pointed out how these can be 
made to form the so-called Huynen-fork on the Poincaré sphere, and he presented an elegant mathematical 
formulation of how the scattering matrix can be represented by a set of five independent real parameters, 
the so-called Huynen-Euler parameters. In these early days of radar polarimetry, the handling and analysis 
of the multi-channel data posed quite a challenge, and original geometrical representations and 
interpretations were developed alongside with the underlying mathematical formulations. Undoubtedly, 
this contributed to scaring away many a radar engineer from considering any practical utilization of such 
techniques.  

With the advent of the digital computer, polarimetric data can be visualized and handled without 
mastering the complex mathematics and the associated geometrical constructions. Once the algorithms are 
implemented, the digestion is taken care of by the computer, and the results are presented in easily 
interpretable graphical outputs. General classification algorithms may take virtually any raw data and 
convert the information contents to useful end-results. Nevertheless, the compact forms from the early 
days should not be forgotten, and could in fact contribute to making the processing more efficient. A good 
example of this is the aforementioned Huynen-Euler parameters, and this is where we shall take the outset 
for a review of the fundamental properties of polarimetric radar data.  

NULL-POLARIZATIONS AND HUYNEN-EULER PARAMETERS 

The complex-valued scattering matrix with the four combinations of transmit and receive polarization 
(horizontal and vertical in the most common, linear polarization basis), containing a total of six 
independent parameters, 

[ ] HH HV
S

VH VV
 

=  
 

, 

can be transformed to a diagonal form (with no cross-polarization terms) and represented by another six 
real parameters in the following form, 

[ ]
2( )

2 2(ν-ζ)

0
0 tan

j ν ζ

j

e
S m

γe

+

−

 
=  

 
, 

which is the scattering matrix that would be measured by transmitting and receiving the associated 
optimum polarization (in general elliptical). 

The following interpretations are commonly assigned to the individual parameters: 

m (m≥0), the maximum polarization, i.e., the maximum attainable response from the target, which 
would be obtained if the optimum polarization were used by the radar. 
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. (-180Ε<.#180Ε), the absolute phase of the scattering matrix. 
 
< (-45Ε<<#45Ε), the skip angle, related to the number of times a return signal has been reflected 

within the target; if the return signal is predominantly due to scattering mechanisms with an odd 
number of reflections (or bounces), < will be close to zero; for this reason, < has also been 
referred to as the degree of double bounce, but it should be noted that targets can have <=45Ε 
even when only a minor part of the reflected signal is due to even-bounce scattering. 

 
( (0Ε#(#45Ε), the characteristic angle, also denoted the polarizability angle (Holm), the latter 

referring to the fact that targets with (=45Ε do not repolarize the incident wave while targets 
with (=0Ε completely determine the polarization of the returned wave. 

 
The last two of the six parameters characterize the associated optimum polarization: 
 
Ρ (-90Ε<Ρ#90Ε), the orientation angle of the target, determining the orientation angle of the 

optimum polarization for the target. 
 
ϑm (-45Ε#ϑm#45Ε), the helicity angle, which represents the ellipticity of the optimum polarization 

for the target. 

The advantage of these parameters is that they are invariant descriptors and therefore can be determined 
independently of the polarization basis (e.g., linear or circular) that was used to measure the raw data of 
the scattering matrix – provided that the data have been properly calibrated. 

POLARIMETRIC DECOMPOSITION 

To illustrate the significance of such a characterization, let us consider the measured radar response from a 
dihedral (also referred to as a diplane in the following), which is an important type of scatterer in practical 
applications. It is characterized by the following scattering matrix, 

[ ] cos2 sin 2
sin 2 cos2dihedral( )

HH HV
mS

VH VV
   

= =   −   θ

θ θ
θ θ

 
 

 
The true strength (radar cross section) of such a scatterer is given by m, but evidently, the RCS value 
which is measured by a traditional radar system (e.g., HH-polarized) will depend heavily on the actual 
orientation angle of the scatterer. In contrast, a polarimetric radar will be able to tell the true strength, and 
in addition, the orientation angle, θ, can be determined.  

From this simple example, it is clear how a polarimetric radar can provide useful target information, which 
could never be extracted by a non-polarimetric radar, and which could be of decisive importance for 
correct classification of complex targets. 

Another unique advantage of a polarimetric radar system is the ability to distinguish between different 
types of scatterers, notably between even- and odd-bounce scattering contributions. To illustrate this, let us 
consider the combined scattering from a sphere and a dihedral located within the same resolution cell.  
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Fig. 1: Combined scattering from odd-bounce reflector and even-bounce reflector. Sum and difference  
of the diagonal elements of the scattering matrix separate sphere and diplane contributions  
completely, whereby interference between these two scattering mechanisms is eliminated. 

The individual unity scattering matrices are given by, 

1 0
S

0 1

cos2 sin 2
S

sin 2 cos2

sphere

diplane( )

[ ]

[ ] θ

θ θ
θ θ

 
=  

 
 

=  − 

 

 
while the combined scattering from a sphere of strength a and a diplane of strength b can be expressed as 
follows, provided that the phase centers are at the same range (∆r = 0 in Fig. 1), 

1 0 cos2 sin 2
S

0 1 sin 2 cos2sph dipl( )

HH HV
[ a b]

VH VVθ

θ θ
θ θ+

     
= = +     −     

 

 
By the simple operation HH + VV, the sphere contribution can be completely and coherently separated 
from the corner reflector contribution. This means that the interference between the two contributions, 
which is unavoidable in the single polarization case, can be eliminated, so that the true intensity of the 
scattering centres can be determined. For high-resolution ISAR imaging, where the required motion 
compensation is usually based on a single, dominating scattering contribution, this is of great significance, 
because a more stable phase history can be obtained if interference between scattering constituents can be 
avoided or reduced. 

PAULI SPIN MATRIX DECOMPOSITION 

More generally, the above decomposition is expressed by the Pauli decomposition, based on the Pauli spin 
matrices, as follows, 

1 2 30 45S S S Ssphere diplane( ) diplane( )[ ] = [ + [ + [] ] ]k k k° °  
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where the coefficients are given by, 
 

[ ] [ ]1 2 3
1 2
2

T
HH VV HH VV HVk k k k S S S S S= = + − . 

 
This is a so-called coherent decomposition, in which the elements are complex values, i.e., they have an 
absolute phase term associated with them and have to be added as complex (voltage related) quantities, 
unlike the incoherent formulations which operate on real (power related) quantities. The three involved 
component matrices (sphere, 0° rotated diplane, and 45° rotated diplane) form an orthogonal set which is 
often used as the outset for further incoherent, statistical processing in terms of covariance and coherency 
matrices. However, in this review of the more fundamental properties of polarimetric radar data, we leave 
these approaches out of consideration.  

The coefficients of the Pauli decomposition (k1, k2, k3) can be used as features for automatic classification 
algorithms as an alternative to the direct use of the HH, HV, VV elements. Likewise, the magnitudes of the 
elements are frequently used to generate RGB images from high-resolution SAR/ISAR data. The Pauli 
components have a closer relation to the underlying physical scattering mechanisms than the raw elements 
of the scattering matrix, and hence are more suited for interpretation of the data. However, the components 
still depend on the measurement basis, i.e., the orientation of the scatterer relative to the radar. Moreover, 
the fact that two of the components effectively represent double-bounce scattering renders the 
interpretation somehow ambiguous.  

SPHERE, DIPLANE, HELIX DECOMPOSITION 

In an attempt to remedy these deficiencies, the sphere, diplane, helix decomposition was developed, based 
on the observation that any given symmetric scattering matrix can be represented in terms of the 
elementary scattering matrices for a sphere, a dihedral (diplane), and a helix, 

S { S S S }sj j
s d hsphere diplane( ) helix( )[ ] = [ + [ + [] ] ]e e k k kϕ ϕ

θ θ  
 

2

1 0
S

0 1

cos2 sin 2
S

sin 2 cos2

11S
12

sphere

diplane( )

j
helix( )

[ ]

[ ]

j
[ e]

j

θ

θ
θ

θ θ
θ θ

 
=  

 
 

=  − 
± 

=  ± − 
m

 

 
In terms of the elements of the scattering matrix in a circular polarization basis, the parameters of this 
decomposition are given as follows, 

1
2
1
4

1
2

; ;

;

( )
( )

( )

s RL d LL d RR

h RR LL h LL RR

RR LL

RR LL

s RL RR LL

k S k S k S

k S S k S S

ϕ ϕ ϕ π
θ ϕ ϕ π
ϕ ϕ ϕ ϕ

+ −

+ −

= = =

= − = −

= + −

= − +

= − +
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The transformation from the linear polarization basis to the circular polarization basis is simply given by 
these formulas, 

RR HV HH VV

LL HV HH VV

RL
j

HH VV

S   j S ( S S )

S   j S ( S S )

S  ( S S )

= + −

= − −

= +

1
2
1
2

2

 

The advantage of this orientation invariant representation is that a pure even-bounce scatterer always 
shows up in just one component. On the other hand, if two or more even-bounce scatterers are present 
within the same resolution cell, this may result in both diplane and helix components in the polarimetric 
decomposition. Mathematically, this is because the diplane and helix matrices are not orthogonal. In 
practical applications, the helix component may be considered as a measure of the purity of the diplane 
component, which may be of importance for determining suited dominant scatterers for motion 
compensation in high-resolution SAR/ISAR imaging. 

APPLICATION EXAMPLES 
An illustrative comparison of the Pauli and the SDH representations is shown in Fig. 2 and Fig. 3. These 
figures show part of a scene with Copenhagen Airport at L-band and a resolution of 1.5 m. Note how 
double bounce reflections stay green in the SDH representation, while they fall in the red and green 
channel of the Pauli representation, depending on the incidental orientation angle. 

In Table 1, an extract of some classification experiments is shown, based on data from the German E-SAR 
system operated by the German Aerospace Centre (DLR). The classification performance of three 
different feature sets has been compared for a scene at the Oberpfaffenhofen test site [8]. The training 
areas were classified into the following categories: water, houses, roads, trees, grass, field 1 and field 2. 
The overall accuracy is summarized in Table 1 for two different algorithms: maximum likelihood and 
minimum distance. A detailed discussion of the results may be found in [8] and [9], and is not within the 
scope of the present paper. However, some main observations are in order. The SDH set of parameters 
clearly results in the best classification performance, while the Pauli coefficients, rather surprisingly, do 
not result in a better performance than using the raw scattering matrix elements. It should be noted, 
however, that not all the available information in the scattering matrix (5 relevant independent parameters 
per pixel) has been used in the above sets of parameters. In fact, only the magnitudes of the complex 
coefficients have been used. The results therefore seem to indicate that the SDH decomposition is an 
efficient way of confining as much information as possible in only three parameters, which is of 
importance in relation to efficiency of automatic algorithms. The classification performance if only one of 
the polarimetric channels, e.g. HH alone, had been used, was not included in these tests.  

Despite the fact that the above classification results were obtained for classification of extended ground 
targets using SAR data, similar results should be expected for classification of air targets using 2D ISAR 
data as well as 1D HRR data. 

CONCLUSIONS 
The basic properties and capabilities of polarimetric radar were reviewed in an application oriented 
perspective. It was demonstrated how target characteristic features, which cannot be determined from 
traditional single-polarization data, can be easily extracted from fully polarimetric radar data. Such 
information could be of decisive importance for successful radar target identification and classification, 
but also other applications, such as weather radar, greatly benefit from the extra information provided by a 
fully polarimetric capability. 

"Any radar should be polarimetric."  – Dr. Richard Huynen 
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Fig. 2: Part of Copenhagen Airport. L-band, SDH: red=sphere, green=diplane, blue=helix. 

 

Fig. 3: Part of Copenhagen Airport. L-band, Pauli: red=HH-VV, green=HV+VH, blue=HH+VV. 
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Table 1: Accuracy estimates of classification tests (15x15-pixel averaging window) 

Classification algorithm
Polarization parameters 

Maximum likelihood 
Ov. Acc. (%) 

Minimum distance 
Ov. Acc. (%) 

HH, HV, VV magnitudes 57.03 50.96 

Characteristic null-polarisations 66.24 64.41 

Pauli coefficients 57.61 52.27 

SDH coefficients 87.37 77.04 
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ABSTRACT TITLE 
We present a new tool for extracting robust and stable polarimetric scatterers from ground target SAR 
data with applications to Automatic Target Recognition (ATR). This combination of signal processing 
algorithms enables us to synthesize the fully polarimetric scatterers information contained in a collection 
of adjacent SAR images (i.e. looks) and derives the probabilities for individual (or groups of) scatterers to 
be active and stable over a certain observation angle for the target under test. It is based on an autofocus 
polarimetric version of the CLEAN-RELAX algorithm, which is followed by a tracking on both the 
position and polarimetric information of the extracted scatterers over some angular extension (or 
separate looks). A sub-pixel autofocus and a local relaxation is embedded in the algorithm to achieve a 
better extraction. Residual translations between focused looks are then estimated through a simple 
correlation scheme or using the following scatterers tracking. Individual extracted scatterers are tracked 
from one look to another using a matching criteria based both on the distance and the fully polarimetric 
magnitudes. We then derive the most probable target signature, which may be used as template for 
classification purposes. This process may also be very useful when working with target variants, in order 
to define which part of the target may remain stable and potentially useful for the classification stages. 
Moreover, this makes a tremendous information compression, which becomes mandatory when working 
with large data collections. We show an application of the technique on a real dataset that was provided 
by Qinetiq to Nato SET 053 group for ATR evaluation purposes. 

1.0 INTRODUCTION 

Synthetic Aperture Radar (SAR) images are highly dependent on target aspect, they contain speckle and 
not clear edge maps, all of which makes traditional classifiers that compare target signature intensities 
with references not very efficient. Intensity variations cause significant changes in the image correlation 
between test and train set. Some studies have worked on the use of local maxima (peaks or elementary 
scatterers) as classification features, but such features seem quite sensitive to target variations and, 
furthermore, different targets may have very similar peaks distribution. The four channel polarimetric 
peaks information can be added to better characterize and separate the target signatures among each other 
[9]. We propose to increase the robustness of these features by working on “stable” peaks that remain 
active on a wide angular aspect angle with almost unchanged polarimetric properties. Such peaks bear a 
stronger probability to be characteristic of the scattering of major parts of the target, which makes them 
less sensitive to targets variants and, by definition, to aspect angle errors that could be made in the a priori 
target orientation detection for instance.  

We propose to find these stable scatterers by applying several signal processing algorithms to a collection 
of SAR images (or “looks”) representing the target signature over a wide aspect angle (typically up to 
10°), each look being coherently formed over a smaller angular aperture. This may correspond to the 
situation where a radar does some spotlight imaging over a given target.  

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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Most of these algorithms are original or give polarimetric extensions to existing ones. The analysis is 
made in three major steps. First, we extract the peaks location and their polarimetric information in each 
look. This first stage separates the target elementary scatterers from the clutter response: a polarimetric 
extension of the CLEAN/RELAX peak extraction algorithm is derived to extract both the position and 
polarimetric magnitudes of elementary peaks within the resolution cells. This iterative processing also 
includes an embedded “autofocus” to compensate for any sub-pixel residual error done while forming the 
SAR image. We call “hyperlook” the result of this extraction, i.e. the spatial positions Xi ,Yi( )i=1:N

and 
polarimetric magnitudes1 Ai = Ai

HH ,Ai
HV ,Ai

VH ,Ai
VV( )i =1:N

 of the N  extracted peaks. Each hyperlook forms a 
concise description of the polarimetric target signature at a specific aspect angle. In a second step, we 
apply a feature-matching algorithm on pairs of hyperlooks through a graduated assignment technique that 
we have adapted to take into account both the spatial and a “polarimetric” distance between peaks. This 
algorithm finds the possible connection between a peak Xi ,Yi ,Ai( ) in one hyperlook and a peak X j ,Yj ,Aj( ) 
in another; this matching scheme is optimized on a one to one basis while preserving the possibility for an 
“unstable” peak not to connect. In this procedure, we also estimate the residual translation between the 
different looks and compensate for it. Then, the result of this matching procedure enables us to derive the 
stability of the individual extracted scatterers by looking at the connection map for each peak and build the 
most stable peaks distribution that can be used as template for classification purposes. 

We will show the application of the major steps of the proposed analysis scheme on real SAR data and its 
evaluation on a simple classification test. 

2.0 POLARIMETRIC STABLE SCATTERERS EXTRACTION 

2.1 Autofocus Polarimetric CLEAN/RELAX algorithm 
In classical radar imaging, the basic assumption lays in the ideal bright points model (or canonical peaks) 
of elementary scatterers that compose the scene to be imaged: the discrete data model is usually written as 
a set of N  complex sinusoids with “frequencies” (Xk ,Yk )k=1, ..., N  and amplitude Ak in noise e . 

H(Kx ,K y ) = Ak  e
j(Kx Xk +KyYk )

k=1

N

∑ + e(Kx ,K y )  (1) 

and the image I(X,Y)  is then the 2D spectra of the formatted radar data H(Kx ,Ky )  with Kx = 4πf sinθ /c  
and Ky = 4πf cosθ /c , with frequency f  in the radar bandwidth ∆f  and observation angle θ  within ∆θ . In 
Synthetic Aperture measurements the angle θ  is linked to the observation time T  through the relative 
motion of the target and the radar. 

Under this assumption, the extraction problem matches the signal processing formulation of super-
resolution. An extended analysis of the various spectral estimation methods that can be used is given, from 
a signal processing view in [1], and applied to SAR imaging in [2]. However, most of the methods require 
an a priori knowledge or estimation of the number of reflectors, which deeply limits their application to 
SAR imaging and features extraction.  

Unlike these, the CLEAN/RELAX algorithm [3][4][5] is an asymptotically statistically efficient estimator 
that minimizes the following nonlinear least squares criterion: 

C(Xk ,Yk ,Ak ,M)k=1, ..., M =| H - ˆ H M |2  (2) 

with ˆ H M = Ak e
j Kx Xk +KyYk( )

k=1

M∑ .  

                                                      
1 H stands for horizontal polarisation, V for vertical ; first letter for emission second for reception 
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One advantage is that the number of elementary peaks is estimated within the algorithm. CLEAN belongs 
to a family of iterative methods, which, within each iteration, search for the biggest peak in a complex 
image and subtract its complex contribution in its corresponding Fourier spectrum. RELAX basically 
extends the CLEAN algorithm with a relaxation step. See [3][4][5] for a more detailed description of both 
algorithms and their implementation. 

2.1.1 CLEAN/RELAX architecture 

CLEAN is a deconvolution technique that can be summarized in the following steps : 

• Find the brightest point in the image 

• Measure the complex amplitude and the location of the brightest point 

• Form a new image by subtracting ("cleaning") the complex contribution of this point in the 
Fourier spectra of the image 

• Repeat the procedure on the next brightest peak, and so on. 

• Stop the procedure when the power of last extracted scatterer is below a chosen level or the noise 
(clutter) level is reached.  

The RELAX algorithm simply add a secondary CLEAN cycle to each peak close to a newly estimated 
one: each peak contribution is then estimated taking into account its neighbourhood by forgetting (“un-
cleaning”) previous estimations and re-estimating them one by one. This adds some robustness to the 
extraction at the price of an increased computer load.  

Adaptation of the CLEAN algorithm to polarimetric data is rather straightforward. Rather than using 
CLEAN on each polarimetric channel, which would need to reconnect extracted peak between channels, 
we propose to work on the polarimetric span image Ispan  to first estimate the location of the brightest peak 
at each step: 

Ispan = (I HH I HH * + I HV I HV * + I VH I VH * + I VV I VV * )  (3) 

with I *  being the complex conjugate of I . 

Then, the peak magnitude can be measured in each channel separately, and so is done the cleaning 
process. 

2.1.2 Adding autofocus to the peak extraction 

Refined image focusing is often neglected although it deeply influences the extraction quality. The image 
patches we are dealing with are often extracted from larger scene for which an average focusing has been 
done (presumably up to the radar resolution cell). But small residual motion errors create phase shifts that 
may slightly distort the peaks response: these errors will eventually be cumulated through the cleaning 
stage of the CLEAN/RELAX algorithm. In the presence of such errors δR θ( ), the data model equation (1) 
becomes: 

H(f,θ ) = Ak e
j4 πf (Xk sinθ +Yk cosθ +δR (θ )) /c

k=1

N

∑ + e(f,θ )  (4) 

For rather small frequency bandwidth, angular aperture, and residual errors, this can be approximated at 
first order to: 
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H(Kx ,K y ) = Ak e
j(KxXk +KyYk )e jϕ (Kx )

k=1

N

∑ + e(K x ,K y ) (5) 

This shows that residual errors will mainly distort the cross-range components of the image 
I(X,Y) = FT H K x ,Ky( )[ ]. 

The least square criterion (2) has then to be changed to: 

C(Xk ,Yk ,Ak ,M,ϕ)k=1, ..., M =| H(K x ,K y ) e-jϕ (Kx ) - ˆ H M (K x ,K y ) |2  (6) 

The solution of this problem can be wrapped into the CLEAN/RELAX architecture as shown in [6] and 
[7]. At each CLEAN extraction step, we obtain an estimation of the phase distortion via: 

e-j ˆ ϕ (Kx ) =  H* (K x ,K y )
Ky

∑  ˆ H (K x ,K y )  (7) 

which we use to correct the entry data for a completely new CLEAN/RELAX cycle.  

When working with polarimetric data, the focusing can be done on each channel separately in case of 
phase centre mismatch between the different channels. 

The autofocus is turned off when the induced changes or the estimated phase variations fall below a 
certain level. 

2.1 Graduated assignment algorithm and softassign 
We have applied the polarimetric CLEAN/RELAX extraction on a set of L  successive SAR looks. As a 
result we now have L  sets of extracted scatterers described using their position and polarimetric 
magnitude Xi

l ,Yi
l , Ai

l[ ]i=1:N l ;l=1:L
 which we call “hyperlooks”. We know want to link the scatterers information 

over the various aspect angles. But even at nearby aspects, features may shift, disappear or appear: we 
wish to find a correspondence between two sets of extracted scatterers where some may be missing, added 
or displaced, in the presence of a global residual translation between the two sets. We also wish a one to 
one matching. Note that a coarse estimation of the global translation can be found through the spatial 
correlation of the two reconstructed images once we have applied the known relative rotation between 
looks. We will use a matching algorithm proposed by Meth in [11] which use a method developed by 
Gold & al. in [12] and [13] called graduated assignment, which is based on works made in [14][15] and 
called “softassign”. 

The graduated assignment technique is a specialized method of efficiently finding good suboptimal 
solutions for optimization problem that use a match matrix to explicitly denote an assignment between one 
set of objects and another. Match matrix is a 0-1 matrix with 1 denoting that a given point in one set is 
assigned to a given point in the other set. Graduated-nonconvexity is used to turn these discrete variables 
into continuous ones in order to reduce the chances of getting trapped in local minima. Technique is 
iterative, where at each step, an estimate of the match matrix is made and then “softassign” is used to 
ensure that the match matrix remains the continuous analog of a true assignment. Softassign is a method 
employed to satisfy assignment constraints: one feature in one image can match to at most one feature in 
the other. In practice, one can show that it can be done by an iterative process of alternatively normalizing 
the rows and columns. 

Let us consider two hyperlooks Xi
1,Yi

1, Ai
1[ ]i=1:N1

and  X j
2 ,Yj

2 , Aj
2[ ]j=1:N 2

 corresponding up to a translation 
tx ,ty( ). A match matrix Mi ; j  is defined such that Mi ; j =1 if point i  in first look corresponds to point j  in 
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the second look, and 0 otherwise. Up to this point note that the match matrix is a kind of permutation 
matrix. An extra row and column are added to the match matrix Mi ; j  to hold the slack variable in order to 
handle spurious or missing links: Mi ;N 2+1 =1 if peak i  is an outlier, 0 otherwise and MN1+1; j =1 if point j  is 
an outlier, 0 otherwise. Mi ; j  is then a N1 +1 by N 2 +1 matrix. 

An objective function is then formulated [11]&[12]: 

E Mi ; j ,tx ,ty( ) = Mi ; j × Di ; j t x ,ty( )
j=1

N 2

∑
i=1

N1

∑ −α Mi ; j
j=1

N 2

∑
i=1

N1

∑

+ µi Mi ; j
j=1

N 2+1

∑ −1
 

 
 

 

 
 

i=1

N1

∑ + ν j Mi ; j
i=1

N1+1

∑ −1
 

 
 

 

 
 +

1
β

Mi ; j log Mi ; j −1( )
j=1

N 2+1

∑
i=1

N1+1

∑
j=1

N 2

∑
 (8) 

With Di ; j = Xi
1 − X j

2 − tx( )2
+ Yi

1 −Yj
2 − ty( )2

 the square Euclidean distance. We modify this distance to take 
into account the polarimetric dimension. Let us define the normalized polarimetric scalar product as: 

PSP A1, A2( )=
(A1

HH A2
HH * + A1

HV A2
HV * + A1

VH A2
VH * + A1

VV A2
VV * )

A1
span A2

span
 (9) 

PSP is closed to 1 if peaks have similar polarimetric response and 0 if the polarimetric scattering 
mechanisms are completely uncorrelated. Then we can replace Di ; j  by Di ; j /PSP Ai

1, Aj
2( ) in (8) to get an 

objective function that takes both the spatial distance and polarimetric distance into account. Then peaks 
that are spatially close may not connect if their polarimetric response is very different. The first term in the 
cost function (8) is then a spatio-polarimetric distance measurement of connected peaks once they have 
been compensated for the residual translation. The second term is added to encourage the match within a 
tolerance distance controlled by parameter α . The third and fourth terms contain Lagrange multipliers for 
the raw and column sums: this imposes the two-way constraints for one to one matching. Last term 
permits the translation of the problem from a binary formulation to a continuous [0,1] interval: it is similar 
to a barrier function. This smoothing function pushes the minimum of the objective away from discrete 
local minimal points by making the objective more convex, with the convexity control parameter β  
(similar to a relaxation temperature) that may be adjusted to slowly move the matrix closer to 0-1 values. 

Minimum of the objective function may then be found by choosing a sequence of increasing β  and 
minimizing the objective at each step. Minimization is done with respect to the matrix elements Mi ; j  and 
Lagrange multipliers µi  and ν i  by setting the respective partials to zeros. Minimization with respect to 
Lagrange parameters is called softassign, which turns to be a simple alternate normalization of the rows 
and columns of the estimated objective function ˆ M i , j = exp −β × Di ; j Xi

1, X j
2 ,Yi

1,Yj
2 , ˆ t x , ˆ t y( )/PSP Ai

1, Aj
2( )−α( ). 

Please refer to [11] and [12] for a more detailed description of the algorithm implementation. 

3.0 AUTOMATIC TARGET RECOGNITION APPLICATION 
We will go through the steps described in the first section and see how it can be applied to real SAR data 
that were provided by QINETIQ UK.  

For the demonstration matter, we have taken 3 sets of SAR images, composed each of 5 looks 
corresponding to the observation of two different targets at the same angular aspect (azimuth and 
depression angle), target 1 being observed twice in two sets artificially named “test set” and “train set” 
(see figures 1 to 3). Looks are separated by 2° so the overall rotation is about 10°. Note that the two targets 
have almost the same size and look roughly similar to the eye. 
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Figure 1: Target 1 test set raw looks (HH: red; HV/VH: green; VV: blue). 

 

Figure 2: Target 1 train set raw looks. 

 

Figure 3: Target 2 train set raw looks. 

We then have extracted the elementary scatterers for each look (see figures 4 to 6). Please note that super-
resolution by factor 2 was used when reconstructing the images in figures 4 to 6 to allow a better 
distinction of the individual extracted peaks. Using the graduate assignment we have found the connection 
maps between peaks of each set. We then have looked for the peaks that were connected in at least three 
looks over the five, and we have rebuilt their corresponding image (figure 7): we clearly see the 
similarities of polarimetric stable peaks in the first two sets, while the third one has a quite different 
distribution. If we finally try to match the stable peaks between the three different sets, we have a 70 to 
80% matching  (depending on the polarimetric distance level we choose) between the first two, i.e. from 
same class, and only 15 to 20% matching with the third one (other class). 
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Figure 4: Target 1 test set: hyperlooks (polar. peaks extraction result of figure 1) . 

 

Figure 5: Target 1 train set: hyperlooks of figure 2. 

 

Figure 6: Target 2 train set: hyperlooks of figure 3. 

 

Figure 7: Most stable peaks for target 1 test set (left) target 1 train set (middle) & target 2 train 
set (right). 

We have repeated this experiment using four different targets with about 25 separated “5 looks test sets“  
(360° round) per target. Each set being tested against all the other targets for the similar observation 
angles. We are then able to build ROC curves giving the Percentage of Correct Classification against the 
Percentage of False Alarm obtained using different classification features. We have tested two features: 
the first one is the maximum of the raw looks image correlation and the second one is the stable 
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polarimetric scatterers matching percentage obtained using our algorithms. Results are shown figures 8 
and 9 and show the advantage of using the stable scatterers rather than the raw image correlation: mean 
behaviour (dash curve) is almost 20% higher at any PFA level. 

 

Figure 8: ROC curve for classification using maximum of raw look image correlation (X-
coordinate: Percentage of False Alarm; Y-coordinate: Percentage of correct classification). 

 

Figure 9: ROC curve for most stable polarimetric scatterers matching (X-coordinate Percentage 
of False Alarm; Y-coordinate Percentage of correct classification). 

4.0 CONCLUSION 

We have presented some new signal processing tools that can be applied to polarimetric SAR images of 
targets. The autofocus polarimetric CLEAN/RELAX algorithm is useful to precisely extract the 
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elementary scatterers from the clutter background. Then an assignment method is able to achieve a fine 
peak matching taking polarimetry into account. We have shown their possible application to extract the 
most stable polarimetric scatterers from a sequence of SAR raw images, which can be used as a 
characteristic template for classification purposes. We guess they can have many other usages, such as 
target analysis, SAR image enhancement … A more extensive analysis of the scatterers stability within the 
possible target variants could be investigated using such algorithms. 

 

The author would like to thank QINETIQ for the excellent polarimetric data provided.  
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ABSTRACT  

 

We have studied the effect of feature enhanced processing on the discrimination of targets in high-
resolution polarimetric ISAR and SAR images. This is done by comparing feature-based classification 
results for original images and images which have been pre-processed to enhance target features. The 
data comprised four military targets: T72, ZSU23/4, T62, and BMP2. Images at a resolution of 10 cm 
have been extracted from the ISAR data for a complete aspect range of 360 degrees. The SAR images were 
taken from the MSTAR database with a resolution of 30 cm.  

These images have been processed in order to enhance the geometrical delineation of the targets or to 
enhance point scattering. We have composed feature vectors out of individual features, which were 
extracted from the original and the enhanced images. The feature vectors are divided into three 
categories: radiometric, geometric and polarimetric. A maximum likelihood classifier was used to obtain 
discrimination results.  

Knowledge about the aspect angle allows target discrimination per aspect angle interval, which will 
improve classification results. We have investigated the effect of feature enhanced processing on pose 
estimation. Pose estimation was obtained from the Radon transform of the original and enhanced 
imagery.  

We found that the features extracted from enhanced images give slightly better results compared to 
features extracted from the original images. For the high-resolution enhanced ISAR data reasonable 
discrimination (about 80%) was obtained compared to the enhanced MSTAR data (about 60%), when 
radiometric and geometric features are used. Using the polarimetric features the discrimination results 
could be improved to 85%.  

For aspect angle determination using the Radon transformation and for target discrimination per aspect 
angle interval no significant improvement was obtained using feature enhanced processing. The aspect 
angle could be determined up to an accuracy of 10-15 degrees, depending on the target. Discrimination 
per aspect interval using radiometric and geometric features shows results of 90% for the ISAR and 75% 
for the MSTAR images. Polarimetric information improves the results up to 97% for the ISAR images. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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1. INTRODUCTION 

 

With the increasing use of UAVs for RSTA purposes also the interest in SAR imaging systems is growing, 
because of their unparalleled all-time and all-weather capability. In this context a study for the Dutch 
MOD was defined in which the role of SAR for ground surveillance is investigated. This study is carried 
out within the framework of the NATO/SET/TG14 research group, which focuses on robust acquisition of 
relocatable targets with advanced millimetre wave techniques. By participating in the group we have 
access to a database with high resolution SAR and ISAR data for various targets and scenes. This database 
was created and is maintained by the group to study automatic target recognition techniques in the 
millimetre wave domain. The US Army Research Laboratory (ARL) has contributed to the database with 
high-resolution (10cm) polarimetric ISAR data of four military targets at 35 Ghz. These data comprised 
two main battle tanks (T72, T62) an air defence unit (ZSU-23-4) and an infantry-fighting vehicle (BMP2). 
In a previous paper Van den Broek et al. [1] have studied the robustness of features against aspect 
variability for the purpose of target discrimination. They have shown that individual features show a 
strong variability as a function of aspect angle and cannot be used to discriminate between the targets 
irrespectively of the aspect angle. The use of feature vectors, which combine radiometric, geometric and if 
available polarimetric information, gives reasonable results. They also showed that the aspect angle could 
be determined sufficiently accurate using the Radon transformation, so that target discrimination per 
aspect interval is possible. Discrimination results per aspect interval are significantly higher up to 20% 
compared to results irrespective of the aspect angle. We study here the influence of feature enhanced 
processing using the same data set and method as in Van den Broek et al. [1] by comparing the results 
from the original images and from the feature-enhanced images. The paper is organised as follows. In 
section 2 we describe the data. In section 3 we discuss feature enhanced processing. In section 4 we 
describe the features and the classification method followed by results. In section 5 we focus on pose 
estimation and in section 6 we give a summary. 

2. DESCRIPTION OF THE DATA 

 

2.1 High resolution polarimetric ISAR data 
The ARL-ISAR measurements were performed with a fully polarimetric stepped frequency radar. The 
measured data are in the frequency domain and the spatial domain image is obtained through a 2-D inverse 
FFT [4]. Hamming weighting was applied to reduce the sidelobes of the impulse response. The following 
table summarizes the main properties of the data and images. 

Table 1. ARL-ISAR data parameters 

Band Ka Angle sampling interval 0.015º 
Centre frequency 34.25 GHz Nr. of samples (azimuth) 160 
Bandwidth 1511.64 MHz Resolution (azimuth) 10 cm 
Frequency step 5.928 MHz Polarisations HH, HV, VH, VV 
Nr. of samples (range) 256 Depression angle 10º (BMP2, T72, T62) and 12º (ZSU23-4) 
Resolution (range) 10 cm Incidence angle 80º (BMP2, T72, T62) and 78º (ZSU23-4) 
Coherence interval 2.4º Number of looks Single Look 
 
 



In this way a set of 397 fully polarimetric 10 cm resolution images was created covering the complete 
range of 360 degrees of aspect. This implies one image for every 0.9 degree of aspect. In figure 1 we show 
10 cm ARL-ISAR images for the T62, T72, BMP and ZSU targets for one aspect angle. 

 

Figure 1. ARL-ISAR 10 cm resolution images for the T62, T72, BMP and ZSU targets. 

 

2.2 MSTAR data 
MSTAR data from the public database were used for comparison. These data were taken from data 
collection 1 (September 1995) and data collection 2 (November 1996). Data were collected at X-band, HH 
polarisation with about 30 by 30 cm resolution for various aspect angles covering the complete circle of 
360 degrees. The depression angle of the selected data was 15 degrees. The MSTAR data comprised 275, 
195, 196 and 276 aspect angles for the T62, T72, BMP and ZSU targets respectively. See Table 2 for 
further details. 

Table 2. MSTAR data 

Target MSTAR data collection Type 
T62 data collection #2, scene 1 T62 
T72 data collection #1 T72 variant SN_812 
BMP data collection #1 BMP-2 variant SN_9563 
ZSU data collection #2, scene 1 ZSU 23/4 

 
 

We use the results from the MSTAR data for comparison with the results from the ARL-ISAR data. The 
comparison is not straightforward since there are differences in elevation angle (15 degrees versus 12/10 
degrees) and the frequency band (Ka band versus X-band) used. In Figure 2 we show MSTAR data for the 
T62, T72, BMP and ZSU targets for one aspect angle. 
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Figure 2.  MSTAR 30 cm resolution images for the T62, T72, BMP and ZSU targets. 

 
 

3. FEATURE ENHANCED PROCESSING 

 

Following Çetin et al. [3] feature-enhanced image formation is achieved through an optimization process. 
The objective of this optimization is to find an estimate of the SAR reflectivity field f from the 
measurement g by minimizing the objective function: 

( ) .21
2

2

k

k

k

k
J fDfTfgf λλ ++−=                                              (1) 

Here k

k
⋅ , denotes the kl norm, T is a complex-valued SAR observation operator, D  is a 2-D derivative 

operator, f  denotes the vector of magnitudes, and 1λ , 2λ are scalar parameters. The first term in the 
objective function is a data fidelity term. The second and third term introduce prior information regarding 
the field f into the optimization problem. Each of these terms aims at enhancing a particular feature. The 
second term can be interpreted as an energy type constraint on the solution. This term enhances dominant 
point-like features and suppresses artifacts. The derivative term results in a variability constraint on the 
solution and as a result leads to reduction of the variability in more or less homogeneous regions of the 
field. The parameters 1λ and 2λ can be chosen such that their relative magnitude emphasizes a particular 
feature. In this case we straightforwardly have chosen 1λ =1, 2λ =0 for point enhancement and 1λ =0, 

2λ =1 for region enhancement. The choice k  determines the properties of the prior function (the kl -
norm). For the first case k =1 and for the second case k =1.5 is chosen. The point enhanced processing 
obviously aims at enhancing the point features in the images and can be used to get a better separation of 
point scattering versus background scattering and if a finer grid is used to enhance the resolution 
(superresolution). The region enhanced processing aims at enhancing homogeneous regions in the image 



and can be used to better extract the target outline, and to obtain homogenous backscatter within the target 
box. It also suppresses the background backscatter so that a complete separation of target and backscatter 
pixels is possible. Figure 3 shows an example of the result before and after feature enhanced processing of 
the T72 target in the MSTAR database. 

 

Figure 3. MSTAR data of T72 before (left) and after feature enhanced processing (centre: region 
enhanced, right: point enhanced). 

 

4.0 TARGET DISCRIMINATION METHOD 
 
 

4.1 Feature extraction 
We selected three classes of features: radiometric, geometric and polarimetric. For each class three 
features were identified, which are expected to give independent information and are characteristic for the 
class they belong. Table 3 summarises the features used.  

 

Table 3. Categories of features used 

 
Radiometric Geometric Polarimetric 
MEAN mean intensity AREA area of target HHHV polarimetric 

(HH/HV) 
power ratio 

CVAR coefficient of 
variation 

NN neighbour 
number 

EVEN percent odd 

WFR Weighted rank 
fill ratio 

LAC or FF lacunarity 
index or  
fill factor 

ODD percent even 

 
 

As a basis to calculate the feature values we first used a CFAR detector [7] to detect target pixels. To 
obtain so-called CFAR masks we used dB scaled imagery and the CFAR constant was chosen halfway the 
maximum and the average background of the dB scaled images. Separate results for the CFAR were 
obtained for the original and feature enhanced processed images. Figure 4 shows examples of the CFAR 
masks and the corresponding images. For the original imagery obviously only one kind of CFAR mask is 
available while for the feature enhanced imagery two additional masks are available. In the latter case the 
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CFAR mask from region enhanced imagery is used, except for the feature NN, where the CFAR mask for 
the original imagery is used and for the feature WFR, where the CFAR from the point enhanced imagery is 
used. In case of enhanced imagery the LAC feature is replaced by the FF feature (see below). 

 

 
Figure 4. Top: ARL-ISAR T72 image (original: left and region enhanced: right). Bottom: 

corresponding detected CFAR masks. 

 
 
Below we give a short description of the features. 

 

MEAN: The mean (µ) of the power of the detected target pixels, which indicates how bright the target 
appears in the image. 

CVAR: The normalized variance of the power of the detected target pixels indicates how smooth or not the 
scattering is distributed over the target and is defined by 

2

2

µ
σ

=cv .           (2) 

WFR: This measure is defined as the ratio of the sum of the power of the N brightest pixels, and the sum 
of power of all detected pixels [6]. For the 10 cm resolution images we took N=75 and for the 30 
resolution images we took N=10. This feature measures the relative amount of scattering due to ‘hot 
spots’.  

AREA: The number of detected target pixels. This feature clearly indicates the geometric extent of the 
target. 

NN: The neighbour number is a measure for the spatial distribution of the CFAR detected target pixels [2]. 



The number is defined by total number of neighbour pixels of all detected pixels normalized by the total 
number of detected pixels. This feature is a kind of texture measure indicating how well detected pixels 
are lumped together.  

LAC: The lacunarity index is a textural feature that can discriminate between differently appearing 
surfaces with the same fractal dimension [8]. It is calculated by counting the number of detected pixels 
within an n × n moving window (we use here n=3). For the resulting moving-widow filtered image the 
coefficient of variation is calculated following Equation 2, only for non-zero values of the detected pixels. 
This figure gives the lacunarity index and is a measure of the variation in lumpiness of the detected pixels. 
In other words the feature measures whether the detected pixels form a regular pattern (low value) or an 
irregular pattern (high value).  Obviously, this feature only gives significant information when enough 
pixels are detected and the resolution is high enough.  

FF: The fill factor indicates the fraction of pixels within the CFAR mask from the region enhanced 
imagery that belong to the CFAR mask of the original images. This feature is used in stead of the 
lacunarity index in case of feature enhanced imagery.   

HHHV: This polarimetric measure is defined as the ratio of total power from the detected pixels in the HV 
image and the HH image. Note that the pixels are detected on using the HH image. A similar quantity 
using the HH and VV image is less useful since the HH and VV power are usually strongly correlated. 
     

ODD and EVEN: These polarimetric measures refer to odd and even bounce scatteringand are defined by 

2
)Re(2 ρσσ ++

= vvhhOdd ,         (3) 

hv
vvhhEven σ

ρσσ
2

2
)Re(2
+

−+
= ,        (4) 

where σ  is the backscattering coefficient for the various polarisations and ρ is the correlation coefficient 
of the HH and VV polarisation.  The feature percent odd is defined as the percentage of detected pixels for 
which odd bounce scattering dominates. A pixel is said to be dominated by odd bounce scattering when 
the odd bounce scattering is at least twice as large as the even bounce scattering. The feature percent even 
is similar, but now with the even bounce scattering dominating. 

  

Using the method described in the previous section we have produced a database of 9x397 features for the 
4 targets in the ARL-ISAR data for both the images without and with feature enhanced processing. For the 
non-polarimetric MSTAR data only 6 features (radiometric and geometric) could be extracted for the 
original and the feature enhanced imagery. In Figure 5 we show as example the AREA feature as a 
function of aspect angle for ARL-ISAR images without (left) and with (right) region enhanced processing.  
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Figure 5.  AREA feature as function of aspect angle for ARL-ISAR images (left) without and 
(right) with feature (region) enhanced processing. 

 

4.2 Classification method 

It is clear from figure 4 that the individual features can vary significantly especially near aspect angles of 
0°, 90°, 180°, and 270°. These aspect angles coincide with observing the targets head-on, sideways or 
from behind. The capability to discriminate the targets irrespective of the aspect angle is generally low. 
Either there is large variation, or the more stable features are not very distinctive. This means that one 
individual feature is never capable of discriminating a target from the other targets irrespective of the 
aspect angle. In order to study how well we can discriminate the four targets from each other we compose 
feature vectors with the features extracted in the previous section as the constituting elements. The 
following 5 categories of feature vectors are used: 

radiometric: =   [MEAN, CVAR, WFR]T 

geometric: =   [AREA, NN, LAC]T 

polarimetric: =   [HHHV, EVEN, ODD]T       

generic: =   [MEAN, CVAR, WFR/FF, AREA, NN, LAC]T 
generic_pol: =   [MEAN, CVAR, WFR/FF, AREA, NN, LAC, HHHV, EVEN, ODD]T. 

 

The feature vector containing the geometric and radiometric features is called generic since it can always 
extracted from SAR data, regardless whether the data are polarimetric or not. Of course these geometric 
and radiometric features only contain significant information when enough pixels can be found over the 
geometric extent of the target, implying that the resolution should be sufficiently high. The generic_pol 
feature vector obviously only applies to fully polarimetric data.  

For the four targets we have constructed multi-variate target distributions where the elements of the 
distribution are the feature vectors at the various aspect angles. The number N corresponds to the number 
of aspect angles in the data-sets. The dimension of the multi-variate target distribution equals the number 
of elements in the feature vector used.  

For each target distribution we calculated the mean feature vector and also the covariance matrix 
according to 
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where N is the number of aspects used and j indicates the T62, T72, BMP or ZSU target. Using these 
quantities we can now for each target and each aspect image calculate discriminant functions such as  

|)log(|)()()( 1
jjij

T
jiij xxxd Σ+−Σ−= − µµ rrrrr

,      (7) 

where i is the aspect angle index and j is the target index. The discriminant function is derived from the 
Bayes’ decision rule, which also takes into account the a priori probability. Since this probability is the 
same for each target, the a priori probability has been omitted here. This is called maximum likelihood 
discrimination [5]. Note that the discriminant function is only working well under the assumption of 
normal distributions. Using a feature vector for the 4 targets, we assign the target for which the 
discriminant function is a minimum. This procedure is repeated for every aspect angle. Next, we compute 
confusion matrices indicating percentages of correctly and erroneously classifications. Using this method 
we have produced results for all 5 categories of features vectors.  

In table 4 we show the confusion matrices for the generic feature vector for the ARL-ISAR and MSTAR 
data, both for the original and feature enhanced images. In table 5 we give the average percentages of 
correction classification (PCCs) for all feature vectors and the four cases (ARL-ISAR original, ARL-ISAR 
enhanced, MSTAR original, MSTAR enhanced). Since the MSTAR data are not polarimetric only three 
categories of feature vectors has been studied for these data. 

Table 4. Confusion matrix for feature vector category generic 

  
ARL-ISAR  MSTAR  

Original image Original image 
  T62 T72 BMP ZSU   T62 T72 BMP ZSU 
   T62 80 18 1 1    T62 15 23 27 35 
   T72 34 66 0 0    T72 7 42 37 13 
   BMP 0 0 86 14   BMP 1 4 91 4 
   ZSU 0 0 20 80    ZSU 9 8 5 78 

Average Pcc  78 Average Pcc  57 
  

Feature enhanced  Feature enhanced 
  T62 T72 BMP ZSU   T62 T72 BMP ZSU 
   T62 80 18 1 1    T62 25 34 4 36 
   T72 31 69 0 0    T72 8 66 18 9 
   BMP 0 0 93 7   BMP 1 12 85 3 
   ZSU 0 0 12 88    ZSU 14 15 1 70 

Average Pcc  82 Average Pcc  61 
  

The Role of Feature Enhanced Processing for Automatic 
Target Recognition using High Resolution Polarimetric SAR Data 

  

RTO-MP-SET-080 42 - 9 



The Role of Feature Enhanced Processing for Automatic 
Target Recognition using High Resolution Polarimetric SAR Data   

42 - 10 RTO-MP-SET-080 

 

Table 5. Average PCCs 

 
 ARL-ISAR MSTAR 
 Original 

image 
Feature 

enhanced 
Original 
image 

Feature 
enhanced 

Radiometric 54 50 36 32 
Geometric 63 69 48 51 
Polarimetric 38 41 - - 
Generic 78 82 57 61 
Generic_pol 85 86 - - 

 
 
If we inspect the confusion matrices for the ARL-ISAR data we find that regardless of the feature 
enhanced processing most of the confusion is between the T72 and T62 targets, which is not surprising, 
since both are main battle tanks. For the MSTAR data most confusion is found between T62 and ZSU, and 
between T72 and BMP. Here, feature enhanced processing helps to reduce the confusion between T72 and 
BMP. The average PCCs in table 5 indicate that only the geometric feature vector gives a reasonable 
discrimination between the targets with an average PCC of 69% and 51% for the ARL-ISAR and MSTAR 
data, respectively. Feature enhanced processing helps to improve the results, especially for the ARL_ISAR 
data. The generic feature vector gives an average PCC of 82% and 61% for the ARL-ISAR and MSTAR 
data, respectively. Again, feature enhanced processing helps to improve the results, although this 
improvement is small. Best results (86%) are obtained when polarimetric information is included. In this 
case no significant improvement is found when feature enhanced processing is applied.   

5.0 ASPECT ANGLE DETERMINATION 

5.1 Radon transformation 
For the goal of aspect determination we consider the Radon transformation of an image (the Radon 
transform). The Radon transformation of an image f(x,y) is defined as 

∫ ∫ −−= dxdyyxyxfg )sincos(),(),( θθρδθρ ,      (8) 

where δ denotes the Dirac delta function, θ is the rotation angle and ρ is the spatial axis parameter. Ideally 
a target in an image can be considered as a rectangular shape. The Radon transformation of an image 
containing such a shape will show a band, with peaks at the angle, for which the rectangle is seen along its 
long axis. Determination of the maximum in the Radon transformation image therefore gives the aspect 
angle. This method works well when the backscatter in the target box is homogeneous. However strong 
point scattering will also give strong peaks in the Radon transform and can hamper an accurate 
determination of the aspect angle. Also strong sidelobes due to strong scatterers will give erroneous 
values, typically 0 (180) or 90 (270) degrees. We use therefore images in log (dB) scaling, which suppress 
variation in backscattering. Figure 6 shows an example of a 10 cm ARL-ISAR image and its Radon 
transform. Using the method described here we determined the aspect angle for the four targets in original 
and feature enhanced imagery. For the latter case we used the region enhanced imagery. We also used the 
CFAR masks obtained from the original and region enhanced imagery to determine the aspect angle. 
Within the scope of method these masks have the advantage that they are homogeneous but on the other 
hand are lacking many other target characteristics (see figure 6).  



 
Figure 6.  ARL-ISAR image (top left) and its Radon transform (top right), CFAR mask (bottom 

left) mask and its Radon transform (bottom right). 

Note that with this method of aspect angle determination we cannot make distinction between head and 
rear of the targets. The values therefore are always between 0 and 180 degrees. In figure 7 we have plotted 
the values found against the actual values for the T72 target in the ARL-ISAR and MSTAR images. This 
is done for the four cases: original image dB scaled (image Radon), region enhanced image dB scaled 
(region enh. Radon), CFAR mask from original image (image CFAR Radon), and CFAR mask from 
region enhanced image (region enh. CFAR Radon). Comparison is done at about every 5 degrees in the 
complete 360 degrees of angle range. 

 

 
Figure 7. Aspect angles determined with Radon transforms versus the true aspect angle for the 

T72 target and the four cases. Top: ARL-ISAR and bottom: MSTAR. 
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To compare the results we calculated the root mean square (RMS) error between the values found and the 
actual values for the aspect angles. These are summarized in table 6 for the T62, T72, BMP and ZSU 
targets and the four cases considered.  

Table 6. RMS errors in aspect angle determination using Radon transforms 

 
 ARL-ISAR MSTAR 
 image 

Radon 
region 

enhanced 
Radon 

image 
CFAR 
Radon 

region 
enhanced 

CFAR  
Radon 

image 
Radon 

region 
enhanced 

Radon 

image 
CFAR 
Radon 

region 
enhanced 

CFAR  
Radon 

T62 31 9 6 14 37 26 20 14 
T72 16 9 10 13 19 19 17 17 
BMP 15 9 11 9 24 16 8 12 
ZSU 15 17 13 21 36 30 15 22 

         
Average 19 11 10 14 29 23 15 16 

 
Inspection of the average RMS values in table 6 shows that the MSTAR values are larger compared to 
those for the ARL_ISAR data. This is confirmed by figure 7 where more spread in the data is visible for 
the MSTAR case. The most accurate aspect angle determination is found when CFAR masks are used. 
Both CFAR masks based on original and region enhanced imagery are suitable for this purpose with slight 
better results for the original images. Using CFAR masks the aspect angle can be determined with an 
accuracy of somewhat larger then 10 degrees for the ARL-ISAR data and about 15 degrees for the 
MSTAR data.  From table 6 it is clear that also target characteristics play a role. For example, aspect angle 
determination of the ZSU target is less accurate compared to the BMP target, probably due to strong 
specular reflections which have an effect on the location of the maximum in the Radon transform. 

5.2 Target discrimination per aspect interval 
In the previous section we have shown that aspect determination is possible with an accuracy of 10-15 
degrees. This allows target discrimination per aspect interval, with dimensions in the order 30 degrees or 
more. In small aspect angle intervals feature values are more stable as a function of aspect angle, so that 
we overcome the variability of the features against aspect angle and can increase the percentage of correct 
classification. We divided the full aspect range of 360 degrees into 8 following aspect angle intervals (see 
figure 8):  

                    
 

Figure 8. Overview of aspect angle intervals used. 



 
These aspect intervals are chosen such that we can separate high backscatter (vehicle viewed head-on, 
sideways or from behind) and lower backscatter (vehicle viewed obliquely). Following section 4.2 we use 
feature vectors and covariance matrices and compute the discriminant functions following equation 7, but 
now per aspect interval. We obtain confusion matrices for the four targets per aspect interval and for the 
four cases considered in section 4.2 cases (ARL-ISAR original, ARL-ISAR enhanced, MSTAR original, 
MSTAR enhanced). Like in table 5 we give in table 6 the average percentages of correct classification 
averaged over the 8 intervals for the different feature vectors. Figure 9 shows the behavior of the feature 
vector generic as function of aspect interval.  

  
Table 7. Average PCCs  

 
 ARL-ISAR 

Original image 
ARL-ISAR 

Feature enhanced 
MSTAR 

Original image 
MSTAR 

Feature enhanced 
Radiometric 69 63 50 43 
Geometric 79 68 61 61 

Polarimetric 51 56 - - 
Generic 90 91 74 75 

Generic_pol 96 97 - - 
 

 
 

Figure 9.  Average PCCs using the generic feature vector. To the left the results for the ARL-
ISAR data and to right the results for MSTAR data are shown. The solid line is for the original 

images and the dotted for the feature enhanced images 

 
The results in table 7 show that the average PCCs are significantly higher those in table5, both for the 
ARL_ISAR data as well as for the MSTAR data. The increase is typically 10%. There is no significant 
difference when feature enhanced processing is applied. The generic feature vector, which can be used for 
non-polarimetirc data now gives a PCC of 90% for ARL-ISAR data and 75% for the MSTAR data. 
Especially when the resolution is high enough (10 cm ARL-ISAR data) and when also polarimetric 
information is used almost complete separation is obtained between the targets (97%). The results for the 
generic feature vector as a function of aspect angle in figure 9 show somewhat lower PCCs when the 
targets are viewed head-/tail-on or sideways. This is especially true at 270 degrees for the MSTAR data. 
This may be due to higher double bounce scatter between target and the ground, which is less 
discriminative. Again the difference between the results from original and feature enhanced imagery is 
small as a function of aspect angle interval.  
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6.0 SUMMARY 

In this study we have evaluated the role of feature enhanced processing for the discrimination of targets in 
high-resolution SAR images. The feature enhanced processing aims at enhancing the point features in the 
images to get a better separation of point scattering versus background scattering (point enhancement), and 
at enhancing homogeneous regions in the image to better extract the target outline (region enhancement). 
We used four military targets: T62, T72, BMP and ZSU and images from 2 data-sets: ARL-ISAR (10 cm 
resolution) and MSTAR (30 cm resolution). We evaluated the discrimination of targets using feature 
vectors consisting of three categories: radiometric, geometric and polarimetric, extracted from two kinds 
of images: original and feature enhanced. To obtain results we used a maximum likelihood classifier.  

As a first case we studied discrimination of targets irrespective of the aspect angle. Best results are 
obtained when all feature vector categories are combined, i.e. the radiometric and geometric category, and 
if available the polarimetric category and when feature enhanced processing is applied. In case of the 
combined radiometric and geometric feature vector, percentages of correct classification of about 80% 
could be obtained for the ARL-ISAR data and 60% for the MSTAR data. The use of feature enhancement 
helps to improve the percentages of correct classification by about 5%.  

As a second case we have studied target discrimination per aspect angle interval. In practice this implies 
that the aspect angle has to be determined. We used the Radon transformation for this purpose. We found 
that the best way to do this is the use of  target CFAR masks as input for the Radon transformation. We 
found typical accuracies of 10-15 degrees. In this case feature enhanced processing does not substantially 
improve the results. Discrimination results per aspect interval are significantly better compared to 
discrimination irrespective of aspect angle. We found percentages of correct classification up to 97% when 
radiometric, geometric and polarimetric features are used for ARL-ISAR data. When only radiometric and 
geometric features are used typical average percentages of correct classification of 90% for the ARL-
ASAR data and 75% for the MSTAR data are found. Also, in this case feature enhanced processing did 
not have much effect on the results.  

Concluding we can say that feature enhanced processing helps to improve discrimination results when no 
pose estimation is available. However, in this study feature enhanced processing does not help to obtain 
more accurate aspect angle information or to obtain better discrimination results per aspect interval. For 
this study we have chosen one particular way to extract and to process features. Feature enhanced 
processing opens more possibilities to handle features and this comparative study was not intended to 
optimize feature extraction and processing using feature enhanced imagery. Also, feature enhanced 
processing enables the enhancement of point scatterers, target extent, while reducing the background, 
which is clearly an advantage for visual inspection and interpretation. 
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ABSTRACT 

Distortion in the ISAR image of a target is known to cause by non-uniform rotational motion of the target 
during image formation. The conventional explanation describes the image distortion as a quadratic phase 
distortion effect. This quadratic phase distortion effect is significant only when the target image is integrated 
over an extended period of time; i.e., over a large angular rotation by the target. In many measured ISAR 
images such as those from in-flight aircraft, the distortion can be quite severe; but the image integration time 
is only a few seconds in duration and the target’s relative rotational displacement is only a few degrees at the 
most. Quadratic phase distortion is not adequate in explaining the severe blurring in many of these 
observations. Furthermore, time-frequency analysis of the distorted images often reveals that the Doppler 
frequency of the target is fluctuating randomly in nature and displays no quadratic phase behaviour 
temporally. A numerical model based on a time-varying target rotation rate has been developed to model the 
observed distortion. It has successfully modelled the severe distortion with all the observed characteristics. 
The model’s simulated results have been validated by experimental data. The severe distortion is attributed to 
the phase modulation effect where a time-varying Doppler frequency provides the smearing mechanism. It has 
been shown that the quadratic phase distortion can be considered as a special case of the phase modulation 
effect. The distortion in ISAR images can be refocused by signal processing techniques. Time-frequency 
methods, in particular, are quite effective in refocusing distorted (or blurred) ISAR images. In time-frequency 
processing, an ISAR image of a target is extracted at a particular instant of time; a focused image is thus 
obtained because the target’s motion can be considered as relatively uniform over a short duration. However, 
there are a large number of time instants to deal with in time-frequency processing. It is impractical to 
examine all refocused ISAR images to search for the best images. An efficient ISAR refocusing procedure has 
been developed. An optimum refocused image can be obtained quickly without having to process 
systematically a large number refocused ISAR images. Examples of refocused ISAR images are given using 
measured data.          

1.0 INTRODUCTION 

Inverse Synthetic Aperture Radar (ISAR) imaging provides a 2-dimensional radar image of a target. A 2-
dimensional picture can potentially offer crucial distinctive information about the features of the target that 
can lead to more accurate target identification in Non-Cooperative Target Recognition application. An ISAR 
image is generated from the target’s rotational motion. This motion can sometimes be quite complex, such as 
the motion of a fast, maneuvering jet aircraft. As a result, severe distortion can occur in the ISAR image of the 
target [1]. An illustration is shown in Figure 1. Two ISAR images of an in-flight aircraft were taken in a 
consecutive sequence in time. The image on the left (a) is severely blurred; the image on the right (b) is well 
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focused.  It has been recognized that a time-varying perturbed motion in the rotation of the target is 
responsible for the image blurring [2]. Figures 2a and 2b show the azimuth displacements of the same aircraft 
in Figure 1 as a function of time as recorded independently by a ground-truth instrument mounted on-board of 
the aircraft. In addition, the temporal phase history of a scattering centre on the aircraft for both the blurred 
and focused ISAR images also display the same behaviour as the azimuthal motion of the aircraft; this is 
illustrated in Figures 2c and 2d. It can be seen clearly that there is a direct correspondence between the 
distortion in the ISAR image and the temporal motion of the target. 

Conventional ISAR model attributes the ISAR image distortion to a quadratic phase effect. This quadratic 
phase is a consequence of a circular motion of target with respect to the radar, resulting in a non-constant 
Doppler velocity introduced along the radar’s line of sight due to acceleration of the target from the circular 
motion [3]. Quadratic phase distortion does not provide an adequate account of the severe blurring in many of 
the observations from real targets. Furthermore, time-frequency analysis of the distorted ISAR images often 
reveals that the motion of the target is fluctuating randomly in nature and displays no quadratic temporal 
behaviour. In order to obtain a better understanding of the severe distortion in ISAR images, we have 
developed a numerical model that is based on a time-varying target rotational motion. It will be shown that 
this model provides a very accurate representation of the distorting mechanism. The model links the distortion 
phenomenon to a phase modulation effect in the returned radar echo from the target. 

In this paper, a description of the ISAR distortion model based on the phase modulation effect will be 
presented. It will be shown that the quadratic phase distortion can be seen as a special case of phase 
modulation. An experiment is set up to study the ISAR distortion. Controlled experiments are performed to 
demonstrate the severe distortion. The experimental data are used to compare and validate the model’s 
simulated results, showing that the phase modulation effect is a reasonable model. An efficient procedure has 
also been developed, based on the insights gained from the modelling work, to allow a distorted image to be 
restored quickly. The restoration of distorted ISAR images is relevant and useful in target recognition 
applications that exploit ISAR imagery. 

2.0 ISAR DISTORTION EXPERIMENTS 

An ISAR experiment is designed and set up to examine distortion in ISAR images due to time-varying 
rotational motion. There are a number of reasons why data from a controlled experiment are desirable. In a 
controlled experiment, the locations of the scattering centres of the target are known precisely and the 
rotational motion of the target can be programmed to produce the effects that are sought for analysis. 
Moreover, experiments of a given set of conditions can be repeated to verify the consistency of the results. 
These are not always possible with real target such as an aircraft. 

A delta-wing shaped apparatus, the Target Motion Simulator (TMS), has been built for the ISAR distortion 
experiments. A picture of the TMS target is shown in Figure 3. The target measures 5 m on each of its three 
sides. Six trihedral reflectors are mounted on the TMS as scattering centres of the target. A time-varying 
rotational motion can be introduced by a programmable motor drive. ISAR images of the TMS are collected 
using a stepped frequency radar waveform at X-band (8.9 GHz to 9.4 GHz). Figure 4 shows a schematic of 
the experimental set-up. A sequence of ISAR images of the TMS apparatus are shown in Figure 5 as the target 
makes a transition from a constant rotation to a time-varying rotational motion. The ISAR image is well 
focused with the 6 reflectors shown clearly when the target is rotating with a constant motion of about 2.0 
degrees/s; this is illustrated in Figure 5a. The ISAR images then become distorted when a fluctuating motion 
is added to the motion of the target as seen in Figures 5b and 5c. This fluctuating motion is shown in Figure 6 
and is extracted from the distorted ISAR using time-frequency method [5].    
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3.0 ISAR DISTORTION MODEL 

A numerical model has been developed to simulate the distorting effect of a multi-scatterer target. To simplify 
the problem, we will consider just one scatterer on the target in describing the model to bring out the basic 
mechanism more clearly without any loss of generality. The phase of the radar return signal from a scatterer 
on a moving target is given by, 

 

( ) 4 f
 =   R  vt  X  (t)

c

π
φ − −  (1)                                                     

 
where f is the transmitting radar frequency, R is the initial distance of the scatterer on the target from the radar 
at the on-set of the radar imaging scan, v is the radial velocity of the target and X(t) is the displacement due to 
the rotation of the target along the radar’s line of sight. For simplicity, we consider either a stationary target or 
perfect translational motion compensation; i.e., v is set to zero. In other words, we focus only on the rotational 
aspect of the target in forming the ISAR image. Moreover, we assume the rotational axis of the target is 
perpendicular to the radar line of sight to simplify the geometry. 
 
Consider a scatterer on a 2-dimensional target with a pair of coordinates (x 0 , y 0) with respect to the target’s 
rotational axis. This is shown in Figure 7. A change in the scatterer’s coordinates due to rotation at a later time 
t is given by 
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Hence, the displacement along the radar’s line of sight X(t) = x(t) - x 0 due to a rotation of the target is given by 
 

( )  x  t) (t) ( y  t) (t) (   x  = (t) X 0 00 sincos −− ωω  (3) 
 
A fluctuating motion can be described, in general, by a Fourier series; i.e., 
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where ω0 is the constant rotational rate of the target in the absence of any extraneous fluctuating motion, an , 
bn and Ωn can be considered as the random variables for fitting ω(t) to any fluctuating motion.  
 
An ISAR image is generated using a sequence of HRR profiles. The HRR profile of a scatterer is given by [4], 
 

4
exp ( ( ))c

n n
f

H A j R X t
c
π

= − 
 
 

  (5) 

 
where An is the amplitude of the HRR profile , n is the range-bin index, fc is the center frequency of the radar 
bandwidth. R and X(t) are defined in Equation (1). A Fourier transform is performed at each of the range bins 
over the sequence of HRR profiles to generate an ISAR image; i.e., 
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where m is the cross-range bin index, m = 0, …, M-1. M is the number of HRR profiles used in the generation 
of the ISAR image. Effectively, the Fourier transform converts the HRR variable at each range bin from the 
time domain into the frequency domain. Hence, the cross-range axis of the ISAR image represents the 
Doppler frequency as observed by the radar. The term that is of interest in the analysis of the ISAR image is 
the factor containing the temporal rotational motion in Equation (6); i.e., 
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where X(t) = x(t) – x0 is the change in range of the scatterer with respect to the radar along the radar’s line of 
sight. Normally, the ISAR image of a target is captured during a relatively small rotation of the target; for 
example, the ISAR images generated in Figure 1 correspond to a rotation of about 3 degrees, as indicated in 
Figure 2. Thus, a small rotation approximation can be assumed (i.e., ω(t)t << 1), to simplify the mathematical 
description. This helps to bring out the phase modulation effect a bit more clearly. Equation (7) then becomes  
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0 0
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  (8) 

 
It can be seen from Equation (8) there are two components that affect the phase due to a time-varying rotation, 
a first order term, ω(t)t and a second order term (ω(t)t)2. A further simplifying step is made by considering a 
time-varying rotational rate, 
 

0( ) sin(2 )rt tω ω ω π= + Ω   (9) 
 
where ωr is the rotational amplitude of the fluctuating motion and is a function of Ω, the oscillation frequency 
of the time-varying motion. This is equivalent to taking the first two terms of the Fourier series as given in 
Equation (4).  
 
Consider a time instant when the scatterer is located (0, y0 ), the scatterer’s motion is parallel to the radar’s line 
of sight; see Figure (7). Thus this will have the largest Doppler effect as seen by the radar. Substituting 
Equation (9) into Equation (8), 
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The first factor corresponds to a constant rotation of the target. This factor provides a Doppler shift that allows 
the placement of the scatterer along the cross-range axis to form an undistorted ISAR image of the target in 
the absence of any fluctuating motion. The second factor describes the phase modulation effect due to a small 
fluctuating motion of the scatterer that can introduce distortion. To see how the phase modulation effect 
comes about more clearly, the second phase factor in Equation (10) can be rewritten as, 
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and the Jn are the Bessel functions of the first kind of order n. It can be seen from Equation (11) that the phase 
of a time-dependent rotational motion consists of many higher order sideband components. These higher order 
sideband components are a consequence of phase modulation arising from the fluctuating motion and they 
generate a smear in the image as a result. 
 

4.0 NUMERICAL ANALYSIS OF ISAR DISTORTION 

Figure 8 shows the distorted ISAR image computed by the numerical model, using the experimental time-
varying target motion as shown in Figure 6 as input. The target has rotated about 8 degrees over a 4-s imaging 
period. It can be seen from Figure 8 that the computed distortion in the ISAR image compares quite well with 
that in the experimental image in Figure 5c. 

A more physical description of how phase modulation leads to distortion can be seen as follows. It is well 
known that a scatterer will migrate along the cross-range axis in the ISAR image if the scatterer’s Doppler 
frequency fD is changed during the imaging period [3]. The number of cross-range bins migrated is given by, 
 

, 0 ,
1 ( )D t D t T

D

K abs f f
f = =

 
= − ∆ 

  (12) 

   
for a monotonically changing fD , where ∆fD is the cross-range resolution. As a result, there will be a “smear” 
in the ISAR image of the scatterer along the cross-range axis when there is a change in the Doppler frequency 
during the imaging period. The radar line of sight Doppler frequency of a scatterer on the target will have an 
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oscillating behaviour due to the time-varying input that drives the target. Figure 9a shows the computed 
Doppler frequency of scatterer #1 from the distorted ISAR image in Figure 8. The amount of distortion 
generated at scatterer #1 is the same as the amount of change in the Doppler frequency; this is clearly seen in 
Figure 9. In this case, the amount of change in the Doppler frequency is (fD, max -  fD, min) over the imaging 
duration. This result is expected since the cross-range dimension of the ISAR image is effectively the Doppler 
frequency as explained in Section 2. 
 
Note that scatterer #6 in the ISAR image in Figure 8 has hardly any distortion. It corresponds to a scatterer 
located at (x0, 0); see Figure 7. The phase of scatterer #6, according to equation (8), is given by, 
 

2

0

4 ( ( ) )
( ) exp

2
cf t t

t j x
c
π ω

ψ = −
 
 
 

  (13) 

 
That is, the phase is quadratic in ω(t)t. The Doppler frequency of scatterer #6 is illustrated in Figure 10a. 
Comparing with scatterer #1 (Figure 9a), the change in the Doppler frequency of scatterer #6 is very small; 
hence there is no noticeable distortion. Thus, the second order term (ω(t)t)2 has negligible distorting effect 
compare to the first order term ω(t)t in Equation (8). To summarize briefly, a scatterer with a changing 
Doppler frequency due to the target’s time-varying motion provides the physical basis for the large distortion 
in the ISAR image. The model’s simulated results are validated by the experimental data, demonstrating that 
phase modulation provides an accurate picture of the distortion mechanism.      
 
The conventional quadratic phase distortion effect [3] can be considered as a special case of the phase 
modulation effect. The quadratic phase distortion assumes a target’s rotational motion is constant during the 
imaging period; that is, ω(t) = ω0 in Equation (9). Any change in the Doppler frequency by any of the 
scatterers on the target is due to a non-linear Doppler velocity introduced along the radar’s line of sight as a 
result of acceleration from the rotational motion. This can be seen by substituting ω(t) = ω0 into Equation (8). 
The phase of the rotating scatterer becomes 
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  (14) 

 
Examining a scatterer located at (0, y0) on a target as shown in Figure 7, Equation (14) becomes, 
 

0 0
4

( ) exp cft j y t
c
π

ψ ω=  
  

  (15) 

 
That is, ψ(t) is a perfect linear phase in time. Therefore, the Doppler frequency is a constant. In other words, 
for scatterers that have motions nearly parallel to the x-axis, their Doppler frequency will have very little 
change and thus there will be very little distortion according to Equation (12). For a scatterer located at (x0, 0), 
Equation (14) becomes 
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Equation (16) displays a phase with a quadratic dependence in time. Hence the Doppler frequency will be 
changing with time, resulting in a blur in the ISAR image according to Equation (12).  

To see how much a distorting effect the quadratic phase would have on the ISAR image, a constant ω0 value 
corresponds to the maximum value of the experimental rotational rate, |ωmax | = 3.9 deg./s as given in Figure 6, 
is used to run the numerical model for the TMS target. The resulting ISAR image is shown in Figure 11. The 
amount of distortion in the image is much less than that of the case when a time-varying rotational rate ω(t) is 
used. This is quite evident by comparing Figure 11 with Figure 8. 

Another interesting observation that is worthy to note is that in the quadratic phase distortion case, the largest 
distortion occurs at scatterer #6 of the target as seen in Figure 11. The large distortion at scatterer #6 can be 
explained by the fact that the rate of change of the Doppler frequency is maximum for a scatterer that is 
located near the x-axis in a rotational motion as depicted in Figure 7. At the location (x0 , 0) and using 
Equation (2), the movement of scatterer #6 parallel to the x-axis is given by 

 
0 0cosx(t) = x    ( t) ω   (17) 

 
Its velocity parallel to the x-axis is 
 

0 0 0
( ) sin( )x

dx tv x t
dt

ω ω= = −   (18) 

 
Hence, vx = 0 at the initial position (x0, 0) and time t = 0. The velocity of scatterer #6 is perpendicular to the x-
axis. This is intuitively obvious as shown in Figure 7.  However, the rate of change of  vx  
 

2
0 0 0cos( )xdv x t

dt
ω ω= −   (19) 

 
is maximum at (x0, 0) because cos(ω0 t) = 1 at t = 0.This implies that the Doppler frequency of scatterer #6 has 
the largest change along the x-axis; therefore a large distortion occurs as a result. 

To illustrate the quadratic phase distortion’s dependence on (ω0 t)2, the ISAR image in Figure 11 is generated 
using a generously large ω0 value; i.e., ω0  = 3.9 degrees/s. This corresponds to a target rotation of 15.6 degrees 
over a 4-second imaging time. In the time-varying rotating case (Figure 8), the target rotation is only 8.2 
degrees over the 4-second duration. Using a ω0 value corresponds to a target rotation of 8 degrees, the 
quadratic phase case is computed again using a lower ω0 value of 2 degrees/s. The resulting ISAR image of 
the target is shown in Figure 12. It can be seen that none of the scatterers on the target shows any distortion in 
the image, even scatterer #6 which should display the most distortion. This result is consistent with the 
experimental ISAR image shown in Figure 5, where scatterer #6 displays no noticeable distortion. In 
summary, it is seen from the above analysis that the quadratic phase distortion effect is not adequate for 
describing the ISAR distortion that is seen in the experimental images. The quadratic phase effect is a second 
order effect (i.e,. (ω0 t)2 ) and it produces a much smaller distortion than that from the phase modulation effect. 
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5.0 RESTORATION OF DISTORTED ISAR IMAGES 

For target recognition applications, ISAR images of targets must have adequate spatial resolution. According 
to the principles of ISAR imaging, a long image integration time is required to produce fine image resolution. 
However, a long image integration time does not always guarantee good cross-range resolution. This is 
illustrated in the discussion above where it is found that the amount of blurring caused by non-uniform target 
motion over the imaging period can be quite severe. 

Time-frequency techniques have been used to “refocus” blurred ISAR images [5]. As seen from the 
discussion above, the blurring of ISAR images is a consequence of a time-varying Doppler frequency 
resulting from non-uniform motion of the target. By extracting an ISAR image of the target at a particular 
instant of time, a better-focused image can be obtained because the target’s motion can be considered as 
relatively uniform over a short duration. However, there will be a large number of time instants to deal with in 
most time-frequency processing. Thus, a large number of refocused ISAR images will emerge, corresponding 
to the number of time instances. For fast, efficient target recognition, it is desirable to make use of only the 
best refocused image. It is impractical to examine all available refocused ISAR images. Visual inspection 
manually over a large number of images, or even using an automated image search algorithm only adds 
complexity to the target recognition process. 

A more efficient way to determine the optimum refocused ISAR image is possible, based on the insights 
obtained from the image distortion analysis conducted above. That is to say, it is found from the experimental 
and numerical analyses that the blurring is directly related to the amount of change in the Doppler frequency 
of the target during the imaging duration. This fact is used in the refocusing process. Figure 13 shows another 
distorted ISAR image of the TMS target. This image is chosen for its varied Doppler frequency over the 
imaging period. The corresponding temporal Doppler history of the target is shown in Figure 14. 

Before discussing how an optimum refocused ISAR image can be determined, it is useful to take a look at 
samples of the refocused images at various time instants. A refocused ISAR image is reconstructed from the 
spectrograms of all the down-range bins of the distorted ISAR image at a chosen time instant. The 
spectrogram is computed using Short Time Fourier Transform (STFT) with a 0.4 s image integration time 
window. This is illustrated by the duration T in Figure 14. In other words, each time instant represents a 0.4s 
time segment. Thus it is more accurate to describe a time instant as a short duration of time rather than a 
precise point in time. Figure 15 shows the refocused ISAR images of the target at 6 time instants as indicated 
in Figure 14. The ISAR image at time t a corresponds to the instance when the target has an uniform rotational 
motion. This image serves as a reference image for comparing with the refocused images at other time 
instances. Using a 0.4s STFT, the resolution is just barely adequate to resolve the scatterers on the target in the 
cross-range direction for the uniform rotation case at t a. A quick inspection of Figure 15 reveals that the best 
refocused image is at the time instance t e and the worst images are at t c, t d  and t f. 

By understanding why the images are the worst at t c and t d and why the image is the best at t e, we can 
develop an objective methodology on how to reconstruct the optimum refocused ISAR image. The ISAR 
image at  t c appears compressed. This is due to the small Doppler frequency (i.e., small angular rotational rate) 
of the target at this time instant. It is even smaller than the uniform rotation case at t a; this is illustrated in 
Figure 14. The Doppler motion is too small to separate the scatterers adequately in the cross-range direction. 
The ISAR images at time t d and t f still appear blurry, with some of the scatterers still not properly focused. 
This is attributed to the fact that the Doppler motion of the target is going through a large temporal rate of 
change within these time instants, i.e.,  f /∆t is large. 
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The ISAR image at t e has all six scatterers on the target clearly resolved and provides the best-refocused 
image. There are two reasons why the best image quality is found at time instance t e. Firstly, the Doppler 
motion is large, significantly larger than the uniform rotational rate case at the time instant t a (see Figure 14). 
Hence the scatterers are much better separated by the large angular rotational rate in the cross-range. 
Secondly, the temporal rate of change of the Doppler motion in the time interval at t e is small; i.e., f /∆t is 
small. Therefore, the blurring to the image of the scatterer is kept to a minimum. The STFT window T for 
time instant t e is indicated in Figure 14. It can be seen that the Doppler motion varies very little within time 
instant t e. 

Based on the analysis of the refocused images shown in Figure 15, we have deduced a few simple physical 
rules that will enable us to extract a relatively well focused image from a  blurred ISAR image: 

1. From the blurred image, locate a down-range bin where it contains the most severe blurring in the 
cross-range. 

2. Produce a time-frequency spectrogram at the chosen down-range bin, using Short-Time Fourier 
transform or time-frequency distribution functions [6]. 

3. From the spectrogram, select a time instance when the variation of the Doppler motion is small ( i.e., 
small  f /∆t) and the value of the Doppler motion is large (i.e., as far away from the zero Doppler frequency as 
possible). 

4. Construct spectrograms at all down-range bins from the blurred ISAR image that contain the target. 
Recombine the same time instance from all spectrograms to reconstruct a focused ISAR image. 

This procedure provides a much faster means of constructing an optimum refocused image. This is because 
once the appropriate time instance is determined, only one ISAR image needs to be reconstructed. This is 
obviously much more efficient than extracting ISAR images at all time instances from all spectrograms 
because the number of time instances is usually very large. Another interesting note is that having a large 
amount of blurring in the ISAR image may actually be better than having just a small amount of blurring for 
restoring a focused image. A more severe blurring means that at some time instant, there is a large Doppler 
motion that can be exploited to get a better-resolved image. 

6.0 CONCLUSIONS 

From the results of the numerical analysis and the comparison with experimental data, it can be concluded that 
phase modulation effect can be modelled properly by including the temporal variation of the target’s motion 
in its angular rotational rate. That is to say, the angular rotational velocity must be described as a function of 
time; i.e.,ω(t) so that an instantaneous Doppler velocity can be ascribed at any given time. The conventional 
quadratic phase distortion is shown to be a special case of phase modulation and it is a second order effect. 
The quadratic phase distortion is much smaller than that from phase modulation where a target displaces only 
a few degrees in angular rotation during the ISAR imaging period. The distorted image can be refocused using 
time-frequency analysis methods. An efficient procedure to find the best refocused image from a severely 
blurred image has been developed and demonstrated. 
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Figure 1  Measured ISAR images of an in-flight aircraft. a) distorted image, b) focused image. 
 

  

  
Figure 2  Azimuthal displacements of the aircraft in Figure 1 during imaging period: 

a) distorted image, b) focused image. 
Temporal phase history of a scattering centre on the aircraft: c) distorted image, d) 
focused image. 
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Figure 3  The Target Motion Simulator (TMS) 

experimental apparatus. 
Figure 4  Schematic of the ISAR imaging 

experimental set-up.  
 
 

  

 
Figure 5  A sequence of measured ISAR images of the TMS target. a) constant rotation at 2 

degrees/s, b) oscillating motion introduced to the target’s rotating motion, c) target with 
oscillating motion at a later time, d) the TMS target’s orientation with respect to the radar 
for ISAR image in c). The target is rotated in the counter-clockwise direction.  
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Figure 6  Measured temporal motion of the 

Target Motion Simulator. 
Figure 7  Schematic of a rotating target with 

examples of two scattering centres 
illustrated. 

 
 

 
Figure 8  Computed distortion in the ISAR image using the phase modulation model. See and 

compare with the experimental image in Figure 5c. 
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Figure 9 a) Computed Doppler frequency of scatterer #1 of the TMS target during the imaging period, b) 
Computed ISAR image of the TMS target with scatterers #2 and #4 removed in the computation. The 
amount of distortion of scatterer #1 corresponds to the amount of change in the Doppler frequency. 

 

Figure 10  a) Computed Doppler frequency of scatterer #6 of the TMS target during the imaging period, b) 
Computed ISAR image of the TMS target with scatterers #2 and #4 removed in the computation. 
The amount of distortion of scatterer #6 corresponds to the amount of change in the Doppler 
frequency. 
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Figure 11  ISAR image of the TMS target using a 

constant rotational rate of 3.9 
degrees/s. 

Figure 12  ISAR image of the TMS target using a 
constant rotational rate of 2 
degrees/s. 

 
 
 

  
Figure 13  Distorted ISAR image of the TMS 

target (experimental). 
Figure 14  The temporal motion of the target 

corresponding to the distorted 
ISAR image in Figure 13. T is the 
STFT duration. 
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Figure 15  Refocused ISAR images from the distorted image in Figure13 at different time instants as 
indicated in Figure 14. 

 
 



 

RTO-MP-SET-080 P3 - 1 

Experimental Facility for Measuring Aircraft  
Inlet/Engine Radar Cross Section 

S. Wong, E. Riseborough and G. Duff 
Defence R&D Canada − Ottawa 

3701 Carling Ave., Ottawa, Ontario 
Canada  K1A 0Z4 

 

K. K. Chan 
Chan Technologies Inc., 

15 Links Lane, Brampton, Ontario 
Canada  L6Y 5H1 

ABSTRACT 

A full-size aircraft engine-duct mock-up experimental apparatus has been built to collect cavity radar cross 
section (RCS) data on aircraft engine inlets. The engine-duct structure is made up of a cylindrical duct with a 
single fan stage consisting of 30 generic straight fan blades. Experimental results indicate that the azimuthal 
RCS patterns from the engine-duct are quite complex. Numerical computations using a commercial RCS 
prediction code are compared with the measured data. The comparisons between measured and computed 
data have highlighted some of the problems and difficulties currently encountered in cavity RCS modelling. 
These results indicate that engine-duct RCS modelling is a very challenging problem.  

1.0 INTRODUCTION 

A recent research effort in Non-Cooperative Target Recognition within the Combat ID community involves 
the development of a synthetic target signature database for target classifiers. For various technical reasons, a 
synthetically generated database is regarded as the most practical way of fielding an operational target 
classifier system [Ref. 1]. Synthetic target signatures are computed using high frequency electro-magnetic 
radar cross-section (RCS) prediction codes. There has been a great deal of research activities in recent years 
focusing on cavity RCS modelling of aircraft inlet/engine interface.  It has been known that the inlets of 
aircraft produce a significant RCS contribution to the overall RCS of an aircraft [Ref. 2]. Therefore, cavity 
RCS computation should be an integral part of the synthetic signature generation process of aircraft.  

Although there are many in-depth cavity modelling efforts being conducted in the Combat ID community 
[Ref. 3], there is still a lack of readily available experimental data to validate the numerical analyses. 
Moreover, there is virtually no experimental data on full-size engine-duct model available, even in the open 
literature. In order for the numerical modelling results to be deemed as credible and reliable, they must be 
validated by experimental data. Sub-scale inlet model data have been found to be unreliable as a predictor of 
full-scale results [Ref. 4]. Hence for practical aircraft inlet RCS modelling, full-scale experimental data are 
desirable and pertinent to synthetic target signature generation.  Furthermore, we are developing a numerical 
model for aircraft engine/inlet RCS based on the modal method [Ref. 5, 6, 7]. This modal approach in

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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modelling the radar backscattering permits computations on full-size engine-duct structure. To overcome the 
shortage problem of measured data, we have designed and built a full-size generic aircraft engine-duct mock-
up for collecting cavity RCS data.  

Computations from a commercial RCS prediction code are compared with the measured data. This permits an 
assessment of the capability of the current high frequency electro-magnetic RCS computational technology for 
predicting cavity RCS from targets. 

2.0 EXPERIMENTAL SET-UP OF THE ENGINE-DUCT MOCK-UP 

All components in the engine-duct mock-up are made of simple geometrical shapes. The inlet duct is a 
metallic cylinder with a 0.7 m diameter. The length of the duct can be varied up to 2m. The roundness of the 
cylindrical duct is reinforced by mounting the duct in a wooden circular brace structure. The “engine” is 
represented by a single fan stage consisting of 30 fan blades. The fan blades are simple, flat metal stripes and 
have dimensions of 24.6 cm in length, 10.4 cm in width and 0.16 cm in thickness. They are cut using a stencil 
to ensure all the fan blades are identical. The fan shaft and the nose cone are machined out of solid metal 
blocks for symmetry and structural rigidity. Great care has been exercised in mounting the fan blades onto the 
fan shift so that the fan stage is as symmetrical as possible. Each blade is set at a 45-degree angle with respect 
to the axial axis of the duct. An exposed view of the engine-duct CAD (Computer Aided Design) model is 
shown in Figure 1. The simple geometry of the engine-duct structure allows measured data to be compared 
with numerical results in a meaningful and definitive manner. Moreover, the simple geometry of the engine-
duct mock-up permits the structure to be built with a greater degree of symmetry. It will be seen later that the 
symmetry of the experimental apparatus is crucial to collecting meaningful measured data. 

The engine-duct mock-up is mounted on a rotating platform. A computer controlled stepping motor is used to 
drive the rotating platform. The rate of rotation can be varied but is nominally set at 1 degree/s for the RCS 
measurements. The rotational rate is consistent to within 2 seconds over a 180-second duration over many trial 
runs. With the stepping motor controlled by the computer, the position of the rotating platform can be reset to 
the original position almost perfectly. Any positional error in the re-setting of the turntable comes from the 
backlash of the gearing system. But the backlash error is very small and it takes many runs before a 1 to 2-
degree re-setting error is noticed.  RCS measurements of the engine-duct mock-up are collected at X-band 
radar frequencies. The radar frequency can be varied from 8.9 GHz to 9.4 GHz. The radar pulse repetition rate 
(PRF) is operated at 1kHz (i.e., 1000 measured data points per second) and the received radar signals have a 
HH polarization.  

To ensure that the backscattered radar signal collected is returning from inside the duct only, the exterior of 
the engine-duct mock-up is covered by radar absorbing material (RAM). A photo of the engine-duct mock-up 
is shown in Figure 2. The RAM tiles are effective in the 8 to 10 GHz radar frequency region. A background 
check is conducted to verify that no spurious radar return is detected from the engine-duct. This is done by 
covering the duct entrance with RAM tiles and a RCS measurement is made by rotating the engine/inlet 
mock-up from –60 to +60 degrees in the azimuth direction (i.e., horizontally). The background RCS 
measurement is shown in Figure 3. It can be seen that the radar return is fairly constant over the 120- degree 
scanned azimuth angle, indicating that there is no spurious reflection from the engine-duct structure. 

3.0 RCS MEASUREMENTS AND COMPUTATIONS FROM A SIMPLE DUCT 

The duct is initially terminated with a flat plate only; i.e., no fan assembly inside the duct.  As a first step, the 
flat plate termination offers a simpler engine duct geometry that makes it easier for comparing the RCS results 
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between measured and numerical data. This helps to establish a definitive reference to determine whether the 
basic scattering processes are being modelled reasonably in the numerical RCS code. An azimuthal RCS 
measurement of the engine duct is made, scanning from –60 to +60 degrees. The terminating flat plate is 
located 1m from the duct entrance. The radar frequency is at 8.9 GHz. Figure 4 (solid curve) shows the 
measured RCS of the engine duct as a function of azimuth angle. The flat plate is then moved back to 1.9m 
from the duct’s entrance and another RCS measurement is made. The azimuthal RCS scan is shown in Figure 
5 (solid curve). In both Figures 4 and 5, the RCS peaks on both sides of the zero azimuth-angle can be viewed 
as side lobes of the circular aperture Airy function of the flat plate, modified by reflections off the wall of the 
duct.  Note that the measured RCS scans are quite symmetrical with respect to the zero azimuth-angle. The 
signal-to-noise ratio of the measured RCS signal is quite good. The signal is as much as 30dB above the noise 
floor in comparing with the background noise scan as shown in Figure 3.    

A commercial electromagnetic RCS prediction code is used to compute the backscattered RCS from the duct. 
The RCS code employs the shoot-and-bounce ray tracing technique to compute the backscattered RCS from 
an object. The dashed curves in Figures 4 and 5 show the computed RCS of the duct with a terminating flat 
plate as a function of azimuth angle. It can be seen that the computed RCS patterns compare quite well with 
the measured data up to the first couple of major side lobes on both the positive and negative sides with 
respect to the zero azimuth-angle. As the azimuth angle is becoming more oblique, the RCS drops abruptly by 
more than 10dB in both the measured and computed RCS and the RCS patterns in these regions are no longer 
in agreement between the measured and computed data. However, it does not seem likely that the mismatches 
at large oblique azimuth angles are due to signal-to-noise issue in the measured data. The measured RCS 
values at large azimuth angles are still at least 10 dB above the noise floor as evident by comparing the 
measured RCS scans in Figures 4 and 5 to the noise floor reference as shown in Figure 3. Thus, the 
comparative results indicate that the computed RCS at large azimuth angle is becoming less accurate. 

4.0 RCS MEASUREMENTS AND COMPUTATIONS WITH FAN ASSEMBLY 

The fan assembly, i.e., fan blades and nose cone, is inserted in the cylindrical duct and is placed 1.9m inside 
the duct. The duct is still terminated with a flat plate as the last element inside the duct. RCS measurements 
are taken at a radar frequency of 8.9 GHz. The results are shown in Figure 6. Figure 6a shows the RCS of the 
engine-duct mock-up with the fan assembly placed at an arbitrary initial position. The fan assembly is then 
rotated 10 fan blades over in a clockwise direction. Another RCS measurement is made and the RCS result is 
shown in Figure 6b. Figures 6c, and 6d correspond to RCS measurements with the fan assembly rotated 20, 
and 25 blades with respect to the initial position as given in Figure 6a. These experimental results reveal that 
the azimuthal RCS patterns with the fan stage in the duct are much more complex than a simple duct and the 
RCS amplitude scintillates very rapidly as the azimuth angle of the engine-duct is changed by only a very 
minute amount. Furthermore, the results displayed in Figure 6 also indicate that the RCS patterns are 
somewhat different when taken at different fan positions.  

Intuitively, one would expect that these RCS patterns to be identical since the fan assembly is supposed to be 
symmetrical upon rotation. But the differences in the RCS patterns persist despite diligent efforts trying to 
make the fan assembly as symmetrical as possible mechanically. However, the RCS pattern is readily 
reproducible when the fan assembly is returned to any of the four previous specific positions. Thus, it appears 
that the backscattered RCS pattern from the engine-duct is very sensitive to the symmetry of the fan assembly. 
In spite of the apparent differences among the four RCS plots in Figure 6, all the RCS peaks occur at the same 
positions among the four different fan positions. Only the amplitudes of the RCS peaks fluctuate when the fan 
assembly is rotated. This is shown in the superposition of the four RCS plots in Figure 7 (light solid curves). 
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The experimental results also reveal that the measured RCS patterns are asymmetric in the azimuth scan. 
There are more peaks recorded between –60 to 0 degrees than between 0 to +60 degrees. This asymmetry may 
be attributed to a couple of factors. Firstly, the elevation angle of the engine-duct’s azimuthal plane may not 
be horizontal with respect to the radar transmitter/receiver (i.e., elevation angle is not zero). In other words, 
the engine-duct may be slightly tilted upward or downward. It is very difficult to align the engine-duct 
perfectly to the radar. In fact, non-zero elevation angle will be the norm in virtually all real data from in-flight 
aircraft. Secondly, the fan stage may not be as symmetrical as we would like it to be. The air gaps between the 
tips of the fan blades and the wall of the duct may not be uniform among the 30 blades. At 9 GHz, the 
tolerance for any spatial non-uniformity is about 0.002m (i.e., 1/16 λ). This amount of tolerance has not likely 
been met during the mounting of the fan blades onto the fan shaft. In addition, because the fan blades are 
made out of long, thin metal strips and they are anchored only at one end (e.g., at the fan shaft), some of the 
fan blades may be warped slightly due to gravity, by more than the 0.002m tolerances. 

Numerical computations of the fan assembly in the duct are performed using the same parameters as the 
experimental set-up. The computed RCS as a function of azimuth angle is shown by the dashed curve in 
Figure 7. It can be seen that the computed RCS scan does not agree well at all with the measured data. The 
computed RCS amplitude tapers off steadily with increasing azimuth angle in both positive and negative 
directions. The failure in predicting the RCS amplitude correctly, especially at large oblique azimuth angles is 
a consequence of the shoot-and-bounce ray (SBR) tracing method employed in many of the RCS prediction 
codes. At large oblique azimuth angles, some of the input rays in the SBR method are lost in the duct and 
never contribute to the backscattering RCS [Ref. 8]. This is confirmed by monitoring the ray tracing statistics 
in the numerical computations. It is found that a large percentage of the input rays are lost in the computation 
as the azimuth angle becomes more oblique.        

RCS measurements are also conducted at three different radar frequencies, 8.9 GHz, 9.1 GHz and 9.4 GHz. 
These are shown in Figure 8. The measured data reveal that the RCS patterns are quite different, indicating 
that radar backscattering from the engine-duct is very dependent on the radar frequency. The computed RCS 
at 9.4 GHz is shown in Figure 9. It can be seen that it does not match well with the measured one (i.e., Figure 
8c). Furthermore, the RCS scan computed at 9.4 GHz looks very similar to the one that is done at 8.9 GHz as 
shown in Figure 7 (dashed curve). There is virtually no frequency dependence in the computed outputs. These 
results indicate that the current RCS prediction technology may still need more developmental efforts. 

5.0 CONCLUSIONS 

Cavity RCS measurements are conducted using a full-size engine-duct experimental mock-up. These RCS 
measurements indicate that the backscattering of radar radiation inside a engine-duct cavity structure is very 
complex. Experimental results reveal that the RCS is very sensitive to even a small change in the azimuth 
angle and to small mechanical asymmetry of the engine components. The RCS is also dependent on the radar 
frequency used. These factors pose some interesting challenges to the numerical modelling of engine-duct 
cavity RCS. 

RCS prediction codes based on the shoot and bounce ray tracing method do not appear to be adequate for 
computing cavity RCS of complex structures such as aircraft engine inlets. Better numerical methods will 
have to be developed to model the cavity RCS accurately. This could be a critical area in the pursuit of 
developing realistic synthetic target signatures for target identification/recognition. 
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Figure 1 An exposed view of the engine-duct CAD model. From left to right: duct, nose-cone, fan stage and fan 
shaft, flat plate. 

 

 
Figure 2 A picture of the full-size engine-duct mock-up with RAM tiles covering the exterior of the experimental 

set-up. 
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Figure 3 Background RCS measurement of the engine-duct mock-up. Radar frequency = 8.9 GHz. 
 

 
Figure 4 RCS as a function of azimuth angle for a cylinder with a terminating flat plate located 1m inside the 

duct. Solid curve = measured; dashed curve = computed. 
 

 
Figure 5 RCS as a function of azimuth angle for a cylinder with a terminating flat plate located 1.9m inside the 

duct. Solid curve = measured; dashed curve = computed.  
 



Experimental Facility for Measuring 
Aircraft Inlet/Engine Radar Cross Section 

P3 - 8 RTO-MP-SET-080 

 

 
Figure 6 Measured RCS as a function of azimuth angle. Fan assembly is 1.9 m inside duct: a) reference 

position, rotated  b) 10 fan blades, c) 20 fan blades, d) 25 fan blades counter-clockwise from 
reference position. Radar frequency = 8.9 GHz. 

 

 
Figure 7 Light solid curve: superposition of the four RCS scans in Figure 6. Dashed curve: computed RCS as 

a function of azimuth angle. Radar frequency = 8.9 GHz. 
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Figure 8 RCS as a function of azimuth angle measured at radar frequency:  a) 8.9 GHz, b) 9.1 GHz, c) 9.4 GHz.  

 
Figure 9 Computed RCS as a function of azimuth angle at 9.4 GHz. 
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ABSTRACT 

In this paper, we introduce the concept of 3-D radar signatures in a slow time-range-Doppler, fast time-
range-Doppler and frequency-range-Doppler.  Then, we describe how to utilize 3-D time or frequency-range-
Doppler signatures to extract information for detecting, relocating and re-focusing moving targets.  Finally, 
we use AN/APY-6 X-band radar data for the demonstration of ground moving target detection.   

1 INTRODUCTION 

The returned signal from an object to be imaged can be represented as the integration of the 
contributions from all scatterers in the object [1]: 
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where ρ(x,y,z) is the reflectivity function of a point scatterer P at (x,y,z), f0 is the carrier frequency, c is the 
speed of electromagnetic wave propagation, RP(t) is the distance from the radar to the point scatterer P, and 
TPRI is the pulse repetition interval of the transmitted signal.  

After transmitting a sequence of N pulses, the received baseband I/Q signals are organized into N 
pulses and M range-cells.  Thus, a 2-D complex I/Q data array sR(rm , tn) can be obtained, where  m = 0,1,…, 
M-1; n = 0,1,…, N-1.  The M range-cells are represented in the time-domain, also called the fast time.  At each 
range cell, the data across the N pulses constitutes a time history series, also called the slow time. 

After range tracking and Doppler tracking, the range aligned profiles become ),( nm tRG , (m = 0, 
1,…, M-1; n = 0, 1,…, N-1).  The two-dimensional range profiles are expressed in a range and slow-time 
domain. 

The conventional image formation takes the fast Fourier transform (FFT) for the new time history 
series and generates an N-point Doppler spectrum called the Doppler profile.  By combining the N-point 
Doppler spectrum at each range cells for all M range profiles, the M-by-N image is formed 

)},({),( nmntnm tRGFFTfRI =                                                            (2) 

where FFTtn denotes the FFT operation with respect to the variable tn. Therefore the radar image I(Rm,fn) is a 
target's 3-D reflectivity mapped onto a two dimensional range-Doppler or range and cross-range plane. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
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 All information about the object is contained in the two-dimensional complex array sR(rm , tn), called 
the fast time and slow time domains.  To further exploit the information, the generation of a three-dimensional 
(3-D) feature space is useful.   

2 3-D FEATURE SPACE 

A 3-D feature space can be generated by using a 2-D time-frequency transform [2] on one of the data 
dimensions.  In the case of SAR imaging, the time-frequency transform can be applied directly to the slow 
time or the fast time domain, or applied to the Fourier transform of the slow time or fast time domains. 

 
Figure 1. Approaches to generate 3-D feature space. 

 
Figure 1 illustrates some general approaches to generating a 3-D feature space.  From a 2-D data space 

in the fast time and the slow time domains, a 2-D time-frequency transform is necessary to generate a 3-D 
feature representation.  The 3-D feature space can be (a) a fast time-slow time-Doppler space by applying a 
time-frequency transform to the slow-time domain, (b) a slow time-range-Doppler space by first applying a 1-
D FFT to the fast time domain, then applying a time-frequency transform to the slow time domain, and (c) a 
slow time-fast time-Doppler space by applying a time-frequency transform to the fast time domain, or other 
combinations. 
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3 SLOW TIME-RANGE-DOPPLER SPACE 

 
Figure 2. Generate a slow time-range-Doppler feature space. 

 
When the data is formed as a complex 2-D array ),( nm tRG , (m = 0, 1,…, M-1; n = 0, 1,…, N-1) with 

M slow time history series, each having the length of N pulses, the 3-D space processing takes a time-
frequency transform for each slow time history series and generates an N×N slow time-Doppler distribution.  
By combining the N×N time-Doppler distributions for all M range cells, the N×M×N slow time-range-Doppler 
cube Q1(tn , Rm,, fn) can be formed:  

)},({),,(1 nmnnmn tRGTFfRtQ = ,                                       (3) 
where TFn denotes the time-frequency transform with respect to the variable n.  At each sampling time ti 

(i=0,1,2..N-1), only one range-Doppler image frame Q1(Rm,fn,tn=ti) can be extracted from the N×M×N slow 
time-range-Doppler cube.  According to the frequency marginal condition, the slow time-range-Doppler 
feature space and the 2-D range-Doppler image space is related by [1] 
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which means that the 2-D range-Doppler image is just a 2-D slice of the 3-D slow time-range-Doppler space.   
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Figure 2 shows the typical block diagram of the slow time-range-Doppler processing to generate a 3-D feature 
space.  In short, to retrieve the range information, the FFT is applied to the fast time domain.  The complex 
I/Q 2-D data array becomes a 2-D (slow time and range) array of range profiles.  By taking the time-frequency 
transform in the slow time domain, the slow time-range-Doppler feature space is generated.   
  

4 FREQUENCY-RANGE-DOPPLER SPACE 

 

 
Figure 3. Generate a frequency-range-Doppler feature space. 

 
 

The 2-D complex I/Q data array sR(rm , tn), (m = 0,1,…, M-1; n = 0,1,…, N-1) in the fast time and slow 
time domain is used to generate a range-Doppler feature image by applying a 2-D FFT: 

)},({2),( nmRnm trsFFTfRI =                                         (5) 
Then, a time-frequency transform is applied to each range profile generating an M×M range-frequency 

distribution.  By combining the M×M range-frequency distributions at N Doppler cells, the M×M×N 
frequency-range-Doppler cube Q2(ωm,Rm,fn) can be formed:  

)},({),,(2 nmmnmm fRITFfRQ =ω ,                                     (6) 
where TFm denotes the time-frequency transform with respect to the variable m.  At each sampling frequency 
ωi(i=0,1,2..M-1) , only one range-Doppler image frame Q2(ωm=ωi,Rm,fn) can be extracted from the M×M×N 
frequency-range-Doppler cube.   
 Figure 3 shows the typical block diagram of the frequency-range-Doppler processing for generating a 
3-D feature space.  To retrieve the range-Doppler information, the 2-D FFT is applied to the complex I/Q data 
array to generate a 2-D range-Doppler image.  By taking the time-frequency transform at each Doppler 
frequency cell along the range domain, the frequency-range-Doppler feature space is generated.   
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5 DETECTION OF MOVING TARGETS IN SAR SCENE 

Traditional SAR processing cannot simultaneously produce clear images of stationary targets and 
moving targets.  Moving targets appear as defocused and spatially displaced objects superimposed on the SAR 
scene [3,4].  In these cases, an important issue is the ability to detect and focus images of moving targets. 
 Given a radar velocity v and an initial range from the radar to a moving target R0, the Doppler rate of 
the moving target is determined not only by its geometric location (x0,y0) but also by its velocity and 
acceleration.  If the Doppler rate cannot be compensated in the data, then the image of the moving target 
becomes defocused. 
 When the SAR platform is moving along the azimuth direction at an altitude, and the target  is moving 
with a velocity vy and an acceleration ay in the radial direction, and a velocity vx and an acceleration ax in the 
azimuth direction, then the Doppler shift of the returned signal consists of two parts: the part due to the radar 
motion 
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where the first term is the Doppler centroid and the second term is the Doppler rate induced by target motion. 
 The quadratic phase variation between the target and the radar causes de-focusing of the moving 
target's image.  When stationary objects are well focused, the image of moving targets become de-focused and 
shifted in the cross-range direction.   
 In order to detect moving targets, estimate the targets' velocities, and relocate mis-located moving 
targets, multiple-antenna (such as interferometry, planar apertures, or antenna array) approaches are used.  
Ground moving target indicator (GMTI) using multiple- antenna is used to reject radar returns from clutter 
and to detect moving target.   
 The 3-D slow time-range-Doppler feature space provides moving target features.  These features 
include the target's time-varying Doppler spectrum in the 2-D slow time-Doppler slices and targets' motion 
trajectories in the 2-D range-Doppler slices.  Therefore, for the conventional single channel SAR imaging, 
moving targets can be detected using these features.  In particular a chirp response, indicated by a sloped line 
in the slow time-Doppler domain, is an indication of a moving target in the scene. 
 Figure 4 shows a spotlight SAR image with a moving vehicle as indicated.  AN/APY-6 radar [5] was 
used to collect the spotlight SAR data.  Because of the target motion, the image of the moving vehicle 
becomes a smeared strip line in the Doppler (cross-range) domain.  There are several other strip lines in the 
image which may not necessarily be moving targets.  To verify that the above indicated strip line is a moving 
target, let us start with the complex I/Q data and perform the slow time-range-Doppler processing.   
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Figure 4. SAR image with a moving vehicle. 
 

  
 

    
Figure 5. 3-D slow time-range-Doppler processing for moving target detection. 
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Figure 5 (a) shows the 3-D slow time-range-Doppler cube, (b) shows a 2-D time-Doppler slice which 
has a sloped time-varying spectrum caused by target motion, and (c) shows a 2-D range-Doppler slice which 
illustrates the response of the vehicle moving along the cross-range direction.  Figure 6 shows the re-focused 
image of the moving vehicle compared with the unfocused image. 
 
 

 
Figure 6. (a) The unfocused image of the moving vehicle; (b) the re-focused image of the moving vehicle by 

using the slow time-range-Doppler processing. 
 
 

6 SUMMARY 

Using the joint time-frequency transform, a time series can be transformed into a 2-D joint time and 
frequency space, and a 2-D complex I/Q radar data can be transformed into a 3-D feature space.  The 3-D 
feature spaces can be derived from various combinations of time-frequency transform applied to the fast time 
and the slow time domains.  In this paper, we discussed the 3-D slow time-range-Doppler space and its 
application to moving target detection and re-focusing.  A SAR scene with a moving vehicle generated from 
AN/APY-6 radar data is used to demonstrate the usefulness of the slow time-range-Doppler feature space for 
detecting and focusing ground moving targets. 
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ABSTRACT 

This paper considers an automatic target recognition (ATR) application in which a targeting sensor is 
used to guide a seeker-equipped weapon to an area containing high-value relocatable targets. The 
weapon seeker then needs to engage the high value targets, while minimising collateral damage.  A 
Bayesian approach is proposed that enables the weapon seeker to exploit the targeting information before 
making its final decision.  Specifically, the approach matches the scenes in the seeker domain with those 
from the targeting sensor, while taking into account uncertainty and data latency. The proposed solution 
utilises a Bayesian technique known as particle filtering.  This paper outlines the approach, and presents 
results for a synthetic example. Future work will conduct a performance assessment using scenarios 
derived from real long-range and short-range SAR imagery. 

1.0 INTRODUCTION 

1.1 General 
This paper considers the problem of using a targeting sensor to guide a seeker-equipped weapon to an area 
containing high-value relocatable targets.  The aim is for the seeker-equipped autonomous weapon to 
exploit targeting information before making its final decision.  This is illustrated in Figure 1, where 
targeting data at time 0t  is used to aid classification of the weapon seeker data at time 1t . The generic 
problem addressed is one where two sensor images, separated in time, are available to classify relocatable 
targets in a scene.  Issues to be addressed include: 

• Uncertainty in the targeting identifications. 

• Change in the target layout configuration during weapon fly-out (i.e. staleness of the targeting 
information).  

• Differing imaging geometry between the targeting sensor and the seeker. 

A particularly adverse effect of the last two items is that a target designated correctly by the targeting 
sensor may have both a different location and an altered signature by the time that the weapon has reached 
the targeted area.  This will have a significant effect on the ability of the weapon to engage the pre-
selected target, especially in typical scenarios where collateral damage must be minimised. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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Figure 1: Exploitation of targeting information by a weapon seeker. 

1.2 Bayesian approach 
A Bayesian approach is proposed which uses a Particle Filter [4] to draw samples from the posterior 
distribution for the target locations and classes, given the information derived from the targeting sensor 
and weapon seeker.  Since the posterior distribution contains the relevant information on the target 
locations and classes, the samples can be used as inputs to the final decision making process of the 
weapon. Successful production of this information will improve the ability of the weapon to engage the 
targets designated on launch of the weapon, while minimising collateral damage. The proposed approach 
fits within a larger framework detailed in an accompanying paper [17]. 

1.3 Bayesian approach  
The main motivation behind a Bayesian approach [11] to the problem lies in the unique ability of Bayesian 
statistics to handle limited and possibly conflicting pieces of information in a fully consistent manner. In 
particular, Bayesian statistics provides a consistent mechanism for manipulating probabilities assigned to 
observed data.  Further advantages to the use of Bayesian techniques include the ability to cope with 
additional prior information, perhaps elicited from expert knowledge, and the production of confidence 
intervals and other statistics for the parameters estimated. 

1.4 Outline of the paper  
The structure of this paper is as follows. Section 2 specifies the problem being examined.  Section 3 
proposes a Bayesian solution. Section 4 presents the results for a synthetic example. Conclusions and 
future work are given in Section 5. 

2.0 PROBLEM SPECIFICATION 

2.1 Introduction 
In the considered scenario, an image from a targeting sensor is obtained at time 0t .  Target detection 
techniques are then applied to obtain a set of targeting detections.  An image chip is obtained for each 

Bayesian Approach to Exploiting prior  
Targeting Information within a Weapon Seeker  

P5 - 2 RTO-MP-SET-080 



detected object/target by centring an input window (of sufficient size to cover expected targets) at the 
location of each detection. ATR algorithms [16] are then applied to estimate the class of the object leading 
to each detection.  If the target classes correspond to high value targets a seeker-equipped weapon is 
launched to engage the targets. 

The weapon seeker reaches and images the highlighted area at a later time, 1t .  Similarly to the targeting 
sensor processing, target detection algorithms are then applied to obtain a set of seeker detections, along 
with associated image chips (centered on the locations of the detections). The task is to determine the 
locations and classes of the targets at time 1t , utilising both the seeker information and the targeting 
information.  The solution to this task lies in determining the posterior distribution of the locations and 
classes at time 1t . For the purposes of this paper it is assumed that we are only interested in the targets 
detected in the targeting image. 

2.2 Related work 
Work by Gordon and Salmond [8] tackles the problem of matching target detections from a targeting 
sensor with a missile seeker, but assumes that no ID information can be inferred from the seeker or 
targeting measurements. Gaussian models for bulk and individual target motion during weapon fly-out 
were introduced, and a closed form solution was obtained.  Work by the same authors on group and 
extended object tracking [13] hints at a non-linear approach to the same problem using particle filters [4], 
but does not take into account object characteristics.  

The work described in this paper differs from previous approaches to matching target detections through:  

• Estimation of full class probabilities, utilising the targeting and seeker sensor measurements of the 
objects/targets. 

• Potential for modelling complicated target motion during the time-gap between the seeker 
measurements and the targeting measurements. 

• No assumption that a target is correctly designated in the targeting image. 

Work by Gordon et al [6] has developed a Bayesian approach to joint tracking and identification, which is 
relevant to the problem addressed within this paper.  The focus within that work was ensuring efficiency 
for multiple sensor returns. 

2.3 Targeting detections  

The number of targeting sensor detections at time 0t  is denoted by tN .  The locations of the detections 
and associated image chips (ID sensor measurements) are denoted by 

tNll ,,1 K  and 
tNrr ,,1 K  

respectively.  For notational ease we define ),( iii rlT =  for tNi ,,1 K= . 

Assuming that there are J  possible target classes, the ID sensor measurements are used to obtain J -
dimensional class probability vectors iψ  for each detection, where ji ,ψ  is the estimated probability that 
the i -th detection is the j -th class, for tNi ,,1 K=  and Jj ,,1 K= .  Such class probabilities would be 
estimated using Bayesian ATR algorithms, or possibly via human intervention. 

The measurement errors for the target locations are assigned Gaussian distributions, so that ),(~ txNl Σ  
where x  is the actual target location, and tΣ  is the covariance matrix for the measurement errors.  The 
covariance matrix should be determined by considering the sensor performance characteristics along with 
the imaging conditions. 
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2.4 Seeker detections  
The number of seeker detections at time 1t  is denoted by sN .  Since the targeting sensor indicates that 
there are tN  targets present, the threshold for detecting objects within the seeker image is assumed to be 
set so that ts NN ≥ . Adaptation of the proposed approach to cope with ts NN <  would be trivial. The 
locations of these seeker detections are denoted 

sNyy ,,1 K , and the associated image chips (ID sensor 
measurements) are 

sNzz ,,1 K . For notational ease we define ),( iii zyD =  for sNi ,,1K= . 

An example of a DBS seeker image is provided in Figure 2. Input windows have been placed on the 
locations of an example set of seeker detections. The windows are colour-coded so that red indicates an 
actual target and green indicates the type of background clutter that might pass through the initial target 
detection stage. These input windows define the image chips that are extracted to provide ID sensor 
measurements.  

 

Figure 2: Example of a DBS seeker image (range along the horizontal axis, cross range along the 
vertical axis).  Red boxes highlight targets, green boxes highlight background clutter. 

It is assumed that density models (conditional on class) can be estimated for the ID sensor measurements. 
Estimating these distributions given only limited training data for the weapon seeker is covered in the 
accompanying paper [17]. These distributions can be represented by )|( jCzp = , where z  is the image 
chip and j  is the index of the class C  of the object.  

In addition to probability densities for target image chips, it is assumed that a probability density has been 
estimated for image chips that correspond to the sort of background noise and clutter that will pass through 
the target detection algorithm. This density is denoted by )0|( =Czp . 

If the class of a target is unassigned, a mixture distribution is used for the ID sensor measurements: 
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=

=−+==
J

j
j jCzpCzpzp

1
00 )|()1()0|()( πππ   (1) 

where Jππ ,,1 K  represent the prior class probabilities excluding background clutter, and 0π  is the prior 
probability for background clutter.  Note that the prior probability for background clutter will be related to 
the false alarm probability of the detection algorithm, rather than the ratio of background clutter to targets.  
This reflects the fact that the initial detection stage will already have eliminated most of the background 
noise. 

The measurement errors for the object locations are assigned Gaussian distributions, so that ),(~ sxNy Σ  
where x  is the actual object location, and sΣ  is the covariance matrix for the measurement errors.  As 
with the targeting sensor, the covariance matrix should be determined by considering the sensor 
performance characteristics together with the imaging conditions. Locations of any additional targets and 
background clutter are assumed to be distributed uniformly over the surveyed region. 

3.0 BAYESIAN SOLUTION 

3.1 Posterior distribution  
The actual classes and locations of the targets detected by the targeting sensor at time 0t  are denoted by 

),,( 1 tNcc K  and ),,( ,01,0 tNxx K  respectively.  By time 1t  the new locations are represented by 
),,( ,11,1 tNxx K .  This reflects the fact that the targets may have relocated during the weapon fly-out time 

01 tt − . The actual classes are of course unchanged. Using the definitions in Section 2 the posterior 
distribution of interest at time 1t  is: 

),,,,,|,,,,,( 111,11,1 sttt NNNN DDTTccxxp KKKK   (2) 

3.2 Prior Evolver 
A Prior Evolver is used to update the information from the targeting sensor to allow for target motion 
during weapon fly-out. Specifically, this consists of predicting how the detections gleaned from the 
targeting sensor at time 0t  will have changed by the time 1t  that the weapon seeker views the targeted 
area. The Prior Evolver can be represented by a distribution: 

),,,,,|,,( 1,01,0,11,1 ttt NNN ccxxxxp KKK   (3) 

In the tracking literature [2] the Prior Evolver corresponds to the system model for the state.  

The simplest non-trivial form for the Prior Evolver consists of independent Gaussian perturbations for 
each detection. Bulk motion of targets (perhaps reflecting the motion of a convoy) can be included easily, 
using a global Gaussian translation [7]. More complicated motion, incorporating knowledge of the terrain 
and likely target behaviour, is also possible. For example, targets can be predicted to follow a road 
network [1][10]. This is done by perturbing the locations using a Gaussian distribution with covariance 
matrix chosen so that the variance along the road is much higher than the variance orthogonal to the road. 
This has the effect of making the uncertainty along the road more than the uncertainty orthogonal to the 
road, which fits with the road motion constraints. Various rules can then be applied for targets near road 
junctions and for entry/exit conditions from roads. A further possibility is the construction of a potential-

Bayesian Approach to Exploiting prior  
Targeting Information within a Weapon Seeker 

RTO-MP-SET-080 P5 - 5 



field constraint, to bias predicted target motion in the direction of assumed desired target locations (such 
as potential hide locations) and away from impenetrable terrain (such as rivers). The tracking literature 
[12][15] contains examples of such an approach. 

3.3 Particle Filter 
Analytical calculation of the desired posterior distribution is feasible only for the simplest of measurement 
distributions and Prior Evolver. Thus, a Particle Filter is used to obtain the samples from the posterior 
distribution. The particle filter is an extension of importance sampling [5][14] to sequential sampling. For 
clarity, we now (briefly) describe the underlying idea behind importance sampling.  

Suppose that we have a set of n  independent samples, )()1( ,, nφφ K , from a probability distribution with 
density function proportional to )(φg , but we are actually interested in making inference on a probability 
distribution with density function proportional to )(φf . If a set of unnormalised importance weights:  

)(/)( )()()( sss gfw φφ= ,   (4) 

is defined, the expectation of a function )(φa  with respect to the distribution defined by )(φf  can be 
estimated by:  

∑∑
==

=
n

s

s
n

s

ss
f wawa

1

)(

1

)()( )(φ .  (5) 

Consider now, the special case where the distribution defined by )(φf  is the posterior distribution for a 
likelihood function )|( φxl  and prior distribution )(φπ , while the distribution defined by )(φg  is the prior 
distribution )(φπ . Then, the importance weights defined in (4) become:  

)|( )()( ss xlw φ= .  (6) 

Thus, we have a mechanism for making inference on a posterior distribution by sampling from the prior, 
and weighting the samples by the likelihood function. This forms the basis for the particle filter solution to 
our problem. For fuller details of particle filters the reader is referred to the book by Doucet et al [4].  

3.4 Application of the Particle Filter 

Initialisation of the filter requires a set of  pN  equally weighted particles )),(,),,(( )()(
,0

)(
1

)(
1,0

s
N

s
N

ss
tt

cxcx K  from 
the joint posterior distribution for the classes and locations at time 0t . The locations at time 0t  can be 
sampled according to the distribution for the targeting sensor measurement errors. Using definitions from 
Section 2.3 we set ),(~,0 tii lNx Σ , for tNi ,,1K= . The initial class samples for each detection are drawn 
probabilistically according to the class probability vectors iψ .  

The Particle Filter algorithm works by passing samples through the Prior Evolver (defined in Section 3.2). 
Specifically, for pNs ,,1K=  we:  

• Sample },,{ )(
,1

)(
1,1

s
N

s
t

xx K  from ),,,,,|,,( )()(
1

)(
,0

)(
1,0,11,1

s
N

ss
N

s
N ttt

ccxxxxp KKK , the Prior Evolver 
distribution (defined in Section 3.2). 
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• Evaluate the importance weights ),,,,,|,,( )()(
1

)(
,1

)(
1,11

)( s
N

ss
N

s
N

s
tts

ccxxDDpw KKK=  using the 
measurement likelihoods to be defined in Section 3.5.  

The weighted samples )),(,),,(( )()(
,1

)(
1

)(
1,1

s
N

s
N

ss
tt

cxcx K  (with weights )(sw ) can then be used to approximate the 
required posterior distribution.  

If the scenario were to be extended to a full tracking problem in which a time series of seeker images is 
obtained, this procedure would need to be altered to prevent degenerate weights (i.e. a few particles with 
very large weights, and the rest with small weights) [6].  

3.5 Likelihood 

Before the likelihood of the seeker measurements can be calculated, the images from the seeker and 
targeting sensors need to be registered. Various techniques for image registration could be used [3], such 
as those that extract and then match lines in the images [18]. In the example presented in this chapter the 
registration (and the uncertainty in this registration) is incorporated into the Prior Evolver.  

Evaluation of the likelihood function is complicated by the need to associate the seeker 
measurements/detections with the targets. This association requires definition of the set of feasible 
association hypotheses θ . Each hypothesis associates a subset dθ  of seeker measurements with the 
detections from the targeting sensor. The cardinality of dθ  is denoted 

dNθ , and for each di θ∈  we define 

iλ  to be the target (from the targeting sensor) to which that measurement is assigned. The remaining 

da NsN N θθ −=  seeker measurements (defined by the indices di θ∉ ) are taken to correspond to additional 
targets or clutter measurements. Using the association hypotheses, the likelihood function can be 
expressed as:  

)},,,,,|(

),,,,,,|,,({),,,,,|,,(

1,11,1

1,11,111,11,11

tt

ttstts

NN

NNNNNN

ccxxp

ccxxDDpccxxDDp

KK

KKKKKK

θ

θ
θ

×

= ∑
  (7) 

Assuming independence between measurements/detections, the likelihood conditioned on the association 
hypothesis is given by:  









×







= ∏∏

∉∈ dd

iitts
i

ii
i

iiNNN zypcxzypccxxDDp
θθ

λλθ ),(),|,(),,,,,,|,,( ,11,11,11 KKK   (8) 

where using notation defined in Section 2.4:  

)(),(

)|(),|(),|,(
1

,1,1

isii

iisiii

zpAzyp

cCzpxyNcxzyp
iiii

−=

=Σ= λλλλ   (9) 

where sA  is the area of the surveyed region.  

Following Gordon et al [7], the prior probabilities for the association hypotheses are expressed as: 
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The first term of equation (10) models the number of additional target or clutter detections in the 
processed seeker image by a Poisson distribution with mean sAρ . Here, additional target refers to a target 
that was not detected by the targeting sensor, but which is never-the-less a proper target. A clutter 
detection corresponds to an object that does not belong to any of the J  specific target classes.  The second 
term of equation (10) is a Binomial distribution ),;(Bin dtN pN

d
θ  for the number of detected targets 

dNθ .   
Specifically, each target from the targeting sensor is assumed to be detected in the seeker image with 
independent probability dp  (more complicated models would alter dp  according to the class of the 
target). Given 

dNθ , it is assumed that the allowable associations between targets and seeker measurements 
are equally likely.  This produces the third term of equation (10).  Allowable associations given 

dNθ  are 
obtained by selecting the 

dNθ  detected targets (the number of such subsets is )!)!/((!
dd NNtt NN θθ− ), and 

then assigning these targets to the seeker measurements (the number of possible assignments for each 
subset is !/!

aNsN θ ).   

In practical use, many of the association hypotheses will contribute only a negligible amount to the 
likelihood in (10), and can therefore be removed by a gating procedure based on thresholds for the class 
probabilities and location measurement errors. The gating procedure works by examining the associations 
between seeker measurements and Prior Evolver predictions. The procedure is best illustrated with an 
example. Suppose that it is proposed to associate a Prior Evolver prediction with class jC =  and location 
x  with a seeker detection with location y  and image chip z . A gating based on the class probabilities is 
obtained by comparing the posterior class probability based upon the seeker image chip:  

∑ =
=

=
== J

j j

j

jCzp

jCzp
zjCp

1' ' )'|(

)|(
)|(

π

π
  (11) 

with a pre-specified threshold. If the probability falls below the threshold then the association is rejected. 
A gating based upon the location can be obtained by using the seeker location measurement error 
distribution to set a threshold on the allowable distance between x  and y .  

3.6 Use of the particles 
Numerous quantities of interest can be determined using the particles. These include such quantities as the 
class probabilities, mean target locations and the most likely association hypotheses for each of the seeker 
detections. The most likely association hypotheses would be relevant if a specific target is designated in 
the targeting data as being of interest. The most likely association hypothesis would then indicate which 
object detected by the seeker is most likely to correspond to the designated target. In this paper we 
concentrate on the target classes and locations.  

The posterior probability that the i -th targeting detection is an object of class j  is approximated by: 

∑
=

=∝=
p

ts

N

s

s
i

s
NNi jcIwTTDDjCp

1

)()(
11 )(),,,,,|( KK  ,  (12) 

where I  is the indicator function (so 1)( == yxI  if yx =  and 0  otherwise). The mean locations of the 
targets at time 1t  can be approximated by: 
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for tNi ,,1K= . Note, however, that estimation of the target locations by the mean of the location posterior 
distribution might not be appropriate. If the target locations have multi-modal distributions then the mean 
values might be away from the actual target locations. Ideally, we would examine the full distribution of 
possible target locations.  

4.0 SYNTHETIC EXAMPLE 

4.1 Description 
The performance of the approach is illustrated with a synthetic example, in which there are three classes of 
target. Detections in a subset of the x-y plane, along with corresponding image chips were generated 
randomly to represent the targeting information after application of initial target detection algorithms. The 
number of targets detected was sampled from a Poisson distribution with restricted range:  

)52()4(Poisson~ ≤≤× tt NIN   (14) 

The targeting sensor detections were restricted to the region }0.10.0 ,0.10.0{ <<<< yx . The covariance 
matrix of the Gaussian targeting sensor measurement error was given by:  









=Σ

2

2

025.00.0
0.0025.0

t    (15) 

Thus the standard deviation of the targeting sensor measurement error was 0.025 along each axis. For the 
purposes of the documented experiments all targeting detections belonged to the set of three classes (i.e. 
there were no clutter objects in the targeting detections).  

For demonstration purposes, the image chips were replaced by samples from 2-dimensional Gaussian 
distributions, whose parameters depended on the class of the target. These ID measurements could 
correspond to length and width, for example.  Denoting the mean measurement vectors for class 1, 2 and 3 
by 1µ , 2µ  and 3µ  respectively, and the corresponding covariance matrices by 1Σ , 2Σ , 3Σ  we used: 
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321321 µµµ  (16) 

The mean vector clutterµ  and covariance matrix clutterΣ  for the clutter class were: 
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0.40.0
0.00.4

   ,
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5.0

clutterclutterµ   (17) 

These measurement distributions were selected to have considerable overlap between the classes. Thus, 
there will be a non-trivial error rate if classification is attempted using just a single image chip 
measurement.  
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Target relocation during weapon fly-out was simulated via a global Gaussian shift of the targets, followed 
by independent local Gaussian perturbations. Specifically, a global shift of ),( globalglobalN Σµ  was applied 

equally to each target position, followed by an independent perturbation of ),( locallocalN Σµ . The 
parameters were given by:  
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05.00.0
0.005.0
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0.0
0.0

 ,
2.00.0
0.02.0
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0.0
0.0

locallocalglobalglobal µµ   (18) 

To simulate the seeker detections, the relocated targets have been detected with independent probabilities 
8.0=dp . Additionally, extra detections in line with a restricted Poisson distribution have been generated. 

Specifically, extra detections have been generated according to a Poisson distribution with mean 2=ρ  
but subject to 7≤≤ st NN . The extra detections were restricted to the region }0.10.0 ,0.10.0{ <<<< yx , 
and were equally likely to be from any of the target classes and the background clutter class. The 
covariance matrix for the Gaussian seeker measurement error was set to:  









=Σ

2

2

025.00.0
0.0025.0

s    (19) 

Thus the standard deviation of the seeker measurement error was 0.025 along each axis.  

The image chips for the seeker detections were simulated by sampling from 2-dimensional class-
conditional Gaussian measurement distributions. The same Gaussian measurement distributions as for the 
targeting sensor have been used. Although having the same measurement distributions for the targeting 
sensor and seeker may appear unrealistic, it does not bias the results, because the actual ID measurements 
are not compared within the Bayesian combination algorithm. Instead, only the likelihood values are 
combined, via Bayes’ theorem.  

The Prior Evolver was set to be a global Gaussian perturbation ),( PE
global

PE
globalN Σµ , followed by independent 

local perturbations ),( PE
local

PE
localN Σµ . If the image chips are ignored, such a specification allows analytical 

calculations to be made, using Kalman Filters [7]. It is likely that alterations could be made so that the 
Kalman Filter could be used for the full problem. However to keep the approach generic (i.e. applicable to 
more complicated Prior Evolvers) the full particle filter was used. The parameters used were: 
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Note that the standard deviations of the Gaussian perturbations have been set to be slightly larger than 
those used to generate the synthetic data, to simulate uncertainty in our knowledge about target relocation. 
Furthermore, note that the relatively unrestricted target motion is actually making the problem harder, 
since the lack of constraints means that more particles are needed to ensure that all the possible target 
behaviour is accounted for.  

Within the particle filter algorithm, the parameters of the location and sensor measurement distributions 
were all set to the same values used to generate the synthetic data. Similarly, the seeker detection 
probabilities 8.0=dp  and the mean 2=ρ  of the Poisson distribution for extra target detections in the 
seeker image (ignoring the restriction on the number of seeker detections) were all set to the same values 
used to generate the synthetic data. In real use this would not be possible, and these parameters would 
need to be estimated, or assigned using expert knowledge. 

Bayesian Approach to Exploiting prior  
Targeting Information within a Weapon Seeker  

P5 - 10 RTO-MP-SET-080 



4.2 Monte Carlo assessment  
A Monte Carlo assessment of performance has been conducted. The presented results are based on 200 
random simulations, each using 5000 particles. On average there were 3.7 targets detected by the synthetic 
targeting sensor, and 5.0 objects detected by the seeker.  

Two indicators of performance are presented. The first (Table 1) presents the average classification rate 
for the targets using the Bayesian combination procedure, with the classifications determined according to 
the maximum class probability calculated using (12). As baseline performance indicators the targeting 
sensor and seeker sensor classification rates are also presented (for the seeker sensor we treat missed 
detections as wrong classifications). Both the targeting and seeker sensor results assume that the target 
relocations are known (i.e. we correctly associate the detections with the actual targets). We can see that 
the Bayesian approach has been able to maintain the classification rate from the (idealised) targeting 
sensor, where-as the seeker sensor is penalised for the missed detections. Indeed, the Bayesian approach 
has actually been able to improve the classification performance over that of the targeting sensor only. 
This is presumably a result of combining the classification probabilities from the targeting sensor and the 
seeker.  

Targeting sensor only Seeker only Bayesian combination 
72.5% 59.0% 74.6% 

Table 1: Classification rates 

The second set of results (Table 2) gives an indication of the performance in determining target locations. 
In each case the quoted figure is the percentage of detections for which the actual target lay within a circle 
centred on the detection, with radius equal to three times the average sensor measurement error standard 
deviation. The detection locations used in the Bayesian combination results were the means of the 
posterior locations. The performance from the targeting sensor alone is very poor, due to the relocation of 
targets during weapon fly-out. The idealised seeker is penalised for its missed detections, but overall 
performs well since the true associations between measurements and targets have been used.  

Targeting  Seeker Bayesian Bayesian with s.d. 
8.2% 80.9% 52.8% 84.5% 

Table 2: Performance estimating location 

The Bayesian combination algorithm suffers from the fact that only the mean of the posterior distribution 
has been used, rather than the full posterior distribution. Thus, no account is being made of the estimates 
of the uncertainty in target location that are inherent within the posterior distribution. To show the effect 
of this, the percentage of detections for which the actual locations fell within a circle centred on the 
posterior mean, with radius equal to twice the estimated average posterior standard deviation of the 
location, is presented to the far right of Table 2. As can be seen by examining the two right-hand columns, 
taking this uncertainty into account produces much better performance. A factor of two has been used 
around the average standard deviation, rather than the factor of three used earlier, to penalise the 
potentially larger (compared to the sensor measurement errors) estimated standard deviations. Specifically, 
there is a trade-off between correctly estimating the possible variation in the target locations and having 
such a large spread in the posterior distribution locations that the particles fail to pin-point the targets 
efficiently (which would negate the military utility of the algorithm).  

5.0 SUMMARY AND FUTURE WORK 
This paper has successfully developed a Bayesian procedure to enable exploitation of targeting 
information by a weapon seeker. The aim has been to use a targeting sensor to guide a seeker equipped 
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weapon to an area containing high-value relocatable targets. The weapon seeker then needs to engage the 
high value targets, while minimising collateral damage. A Bayesian particle filter based solution has been 
developed. The procedure has been demonstrated successfully on a synthetic problem. Current work is 
applying the approach to more realistic scenarios. These scenarios include:  

• Complicated target motion during weapon fly-out.  

• Use of automated target detection algorithms applied to real data.  

• Use of real data chips for the ID sensor measurements of targets.  

• Use of more appropriate (and realistic) sensor measurement distributions.  

Although, on the face of it, such extensions would be expected to make the problem harder, this is not 
necessarily the case. For example, real targets might actually be more separable than the overlapping 
multivariate Gaussian distributions used in the synthetic example. Furthermore, taking into account more 
sophisticated target motion should improve performance, since it has the effect of constraining the 
possible target relocations. 
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ABSTRACT  

This paper presents a framework for target acquisition. The targets of interest are relocatable ground 
vehicles imaged at time t=t0 by a long range targeting sensor and then at a later time t=t1 by a weapon 
platform. The framework must handle several key issues: changes in scene (vehicle movement between t0 
and t1); incorporation of domain knowledge (terrain and vehicle type); image registration errors; 
differences in viewing angle; uncertainty in vehicle type, and location. A modular approach is presented 
in which the key quantities of interest are probability density functions. There are many technical issues 
that must be addressed and two in particular are highlighted: the development of generalisation 
procedures between sensors that enable training data gathered with one sensor to be used to classify data 
obtained from a different RF sensor (specifically, a procedure to enable ISAR data to be exploited); and 
the development of techniques that use prior knowledge from a targeting sensor to aid a weapon seeker 
(the use of targeting information to support acquisition). A Bayesian methodology is adopted and the 
research is set in the target acquisition context. 

1.0 INTRODUCTION 

1.1 Target Acquisition 
This paper is concerned with the classification of relocatable ground vehicles in weapon seeker data. The 
overall aim is to develop techniques for target detection and acquisition using data from sensors that differ 
from the targeting sensors. A Bayesian framework is presented that allows target-specific information 
acquired by additional (different) sensors, together with domain knowledge of terrain and target 
properties, to be exploited within the automatic target recognition (ATR) framework for the weapon 
seeker sensor. There are two sources of additional sensor information that influence the weapon seeker 
classifier.  

1) Targeting data. This is illustrated in Figure 1. A scene of interest is observed at time t0 by a long 
range targeting sensor (e.g. SAR). At a later time, t1, the (evolved) scene is imaged by a weapon 
seeker. The targeting sensor provides prior knowledge as to the nature and location of target data 
that may be exploited in the weapon seeker algorithm.  

2) Classifier training data. One of the main aims is to enable objects imaged by a weapon's seeker to 
be classified using ATR systems trained on more readily available ground-based sensor data. The 
exemplar application used here is to use ATR systems trained on readily available Inverse 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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Synthetic Aperture Radar (ISAR) data to classify objects imaged by a Doppler Beam Sharpened 
(DBS) radar seeker. This is a non-trivial problem since key differences between the measurements 
from different platforms arise from differences in sensor technology, spatial resolution, 
polarisation, frequency, imaging geometry and target motion. 

 

Figure 1: Exploitation of targeting information by a weapon seeker 

Among the many issues that must be addressed are: 

1) Differing imaging geometry between the targeting sensor and the seeker. 

2) Change in the configuration of targets during weapon fly-out (i.e. staleness of the targeting 
information). 

3) Deployment of countermeasures by the targets subsequent to imaging by the targeting sensor. 

4) The difficulty (and expense) of obtaining sufficient training data for a weapon seeker ATR 
system. 

5) Uncertainty in target positions and type. 

6) Image registration errors. 

A particularly adverse effect of items two and three is that a target designated correctly by the targeting 
sensor may have both a different location and an altered signature by the time that the weapon has reached 
the targeted area. This will have a significant effect on the ability of the weapon to engage the pre-selected 
target, especially in typical scenarios where collateral damage must be minimised. 

♦ 
  ♦

♦ ♦ 
  

♦  

Targeting 
data 

Weapon 
seeker 
data 

t=t
0 

t=t1



Bayesian Approach to Recognising Relocatable Targets 

RTO-MP-SET-080 P6 - 3 

1.2 Aim and Outline of paper 
The aim of this paper is to describe a framework for target acquisition that addresses the above issues. 
Two specific technical issues are highlighted:  

1) The development of generalisation procedures between sensors that enable training data gathered 
with one sensor to be used to classify data obtained from a different RF sensor. 

2) The development of techniques that use prior knowledge from a targeting sensor to aid a weapon 
seeker.  

A Bayesian methodology is adopted. The main motivation behind a Bayesian approach is the ability of 
Bayesian statistics to handle limited and possibly conflicting pieces of information in a fully consistent 
manner. Further generic arguments in favour of Bayesian techniques include the ability to cope with 
additional prior information, perhaps elicited from expert knowledge, and the production of confidence 
intervals and other statistics for the parameters of interest.  

Section 2.0 describes the target acquisition framework, with Section 2.1 summarising the technical issues 
that such a framework must handle and Section 2.2 presenting a framework. Section 3.0 describes the 
approaches to the two problems above where data from additional sensors is used in the weapon seeker 
classifier. Finally, we conclude with a summary of the approach. 

2.0 A FRAMEWORK FOR TARGET ACQUISITION 

2.1 Technical Issues 
The following subsections summarise some of the main technical issues that a target acquisition frame-
work must address. 

2.1.1 Uncertainty in Vehicle Type 

There is uncertainty in vehicle type both within the targeting data and the weapon seeker data. This may 
be reduced by using contextual information or prior knowledge, but the decision making process must be 
able to ‘fuse’ both sources of information concerning target type. 

2.1.2 Vehicle Movement 

The target acquisition procedures must be designed to cope with possible changes in target configuration 
during weapon fly-out, and possible distortion of signatures due to the deployment of countermeasures. 
Information that may be exploited includes terrain information, vehicle properties and intelligence 
information. 

2.1.3 Different Sensors 

In many applications of pattern classification, including target recognition, the operating conditions for the 
classifier differ from those used to gather data for training the classifier [6]. Thus, the training conditions 
are not representative of the expected operating conditions. These differences can be due to a number of 
factors. The specific aspect that this programme has addressed is the difference of sensors between 
training and operating conditions. A Bayesian inverse imaging procedure has been developed which 
allows the seeker data to be classified using ATR systems trained on more readily available (and cheaper) 
data from a second sensor (in the exemplar application, an ISAR processor). The sensors differ in range 
and cross-range resolution. By utilising larger amounts of training data covering more varied extended 
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operating conditions, this procedure is likely to lead to an improved autonomous classification ability for 
the weapon seeker, that should enable the seeker to identify and react to changes in the configuration of 
targets during weapon fly-out. 

If the ATR system for the sensor providing the training data has some degree of robustness to 
countermeasures, the proposed seeker ATR system will inherit this robustness, provided that the effects of 
the countermeasures are similar for the two sensors. However, the caveat has to be added that design of an 
ATR system that is robust to countermeasures is a current research area in itself.  

Proposed approaches to target classifier design currently under investigation include Gaussian mixture 
models [3], [5], non-linear dimensionality reduction techniques [9], unsupervised ``symmetry-preserving'' 
neural network techniques [11], [12], and unsupervised encoder networks.  

2.1.4 Platform Motion 

Uncertainties in platform motion lead to additional differences between training and operating conditions. 
The inverse imaging procedure above must take account of this through simultaneous auto-focus/super-
resolution (see Section 3.2.2).  

2.1.5 Different Imaging Geometries 

The imaging geometries between the targeting sensor and the weapon seeker will differ. The scene will be 
observed from different elevations and directions of view. Thus, radar shadow will be different between 
the two measured scenes leading to a possible source of error in the image registration process. 

2.1.6 Registration 

In order to fuse the targeting predictions (estimates of target location and type) with the weapon seeker 
predictions, it is necessary to have a model for the image registration errors. These errors will depend on 
such factors as the position of the targets in the field of view, the imaging geometries, sensor resolution 
and target movement. 

2.1.7 Vehicle Classes 

One of the problems with ATR is the definition of the classes. Vehicles of the same basic type are used for 
different military purposes and therefore the importance of classifying a vehicle correctly depends on its 
role. It is not the decision, but the expected utility of the decision that matters classifier design. Therefore, 
costs of misclassification should be taken into account in the decision making process. The usual criterion 
of error rate as a means of assessing a classifier is deficient in that it treats all misclassifications equally.  

Conversely, vehicles of different type (or the same type with different equipment fits) are used for the 
same military function leading to radar returns that can vary significantly within the class. Designing 
classifiers that are robust to intra-class variability can be an important problem to address. 

2.1.8 Contextual information 

In addition to the information on target type that may be gained from radar measurements of the target, 
further clues as to target type may result from contextual information and domain knowledge. The type of 
contextual information that could be incorporated could include the proximity of other potential targets or 
the type of terrain in which the vehicle is operating. The technical issue to address here is the specification 
of the domain knowledge and the description of a framework that handles such knowledge, together with 
target measurements, in a consistent manner. 
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2.2 Framework 
The overall framework proposed by this programme is outlined in Figure 2. A pragmatic Bayesian 
approach has been proposed in which the various aspects of the problem are treated in a modular fashion, 
with the outcomes of each module being descriptions of probability distributions that can be combined 
under a Bayesian probabilistic formalism. An advantage of the modular approach is that existing 
techniques (such as those developed for registering images from different sensors) can be used where 
appropriate. In particular, the green boxes in Figure 2 relate to processes where we have relied on current 
state-of-the-art techniques with minimal customisation. Since many of these processes require further 
research to provide satisfactory solutions, the formalism is designed in such a manner that new techniques 
can be incorporated as they reach maturity. 

We now consider the main modules in Figure 2 in turn. 

 

Figure 2: Framework for the exploitation of targeting information by a weapon seeker 

2.2.1 Long-range Sensor 

The long-range sensor, depicted as the green box on the left-hand side of Figure 2, captures image data, IL, 
at time t=t0 and processes the data to produce target detections and identifications. This processing may be 
performed manually, or by some semi-automatic process. The output of this process is an estimate of the 

Gather image, IS

Process image: 
detections

Detections ->
classifications

seeker sensor
IS

P(L,C| IS)

t=t1

Prior Evolver 

Terrain and target  
database 

P1(L,C| IL) 

IL

Gather image, IL 

Process image:  
detections 

Detections -> 
classifications

Long range sensor 

t=t0 

IL 

? 

Registration

Distribution over 
registration errors

Prior -> posterior

Designated target in seeker
frame of reference 

P(L,C| IL) 

Adjust location PDFs

P0(L,C| IL) 

IL 



Bayesian Approach to Recognising Relocatable Targets  

P6 - 6 RTO-MP-SET-080 

number of targets present, with their locations and types. This is represented by the probability density 
function, p0(L, C | IL) where L represents the vector of target locations and C represents the vector of target 
classes. This captures the uncertainty in the quantities L and C at time t=t0. 

2.2.2 Prior Evolver 

The prior evolver is used to update the information from the targeting sensor to allow for target motion 
during weapon fly-out. This consists of predicting how the detections gleaned from the targeting sensor at 
t=t0 will have changed by the time t=t1 that the weapon seeker views the targeted area. This evolution of 
the probability density function can be modelled to include bulk motion of targets (perhaps reflecting the 
motion of a convoy) and more complicated behaviour incorporating knowledge of the terrain and likely 
target behaviour. The result of this process is the probability density function, p1(L, C | IL), which is the 
original distribution evolved to time t=t1. Contextual information and domain-specific knowledge can be 
incorporated within this density [4].  

2.2.3 Seeker Sensor 

The seeker sensor box performs a similar operation to the long-range sensor. Image data, IS, is gathered 
using the seeker sensor, this time at time t=t1, and processed to produce p(L, C | IS), the distribution over 
locations and classes of target given the seeker data. Note that in this case, the dimensionality of L and C 
may differ from the long-range sensor case since the seeker detection process may estimate a different 
number of targets to be present. Also, the locations are measured in the seeker frame of reference.  

The on-board classifier that produces the classifications is designed using training data. An approach that 
uses ISAR data to train a classifier that is applied to DBS images is outlined in Section 3.2.2. 

2.2.4 Registration 

Registration of the targeting sensor image, IL, to the frame of reference of the seeker produces a 
translation, with associate errors, expressed as a probability density function.  

2.2.5 Adjust Location PDFs 

The registration information enables the updated targeting information (expressed in the form of 
probability density p1(L, C | IL)) to be adjusted to the seeker frame of reference. This is denoted in the 
figure by the probability density function, p(L, C | IL). 

2.2.6 Prior -> Posterior 

The incorporation of uncertain targeting information, expressed in terms of the probability density 
function p1(L, C | IL), with uncertain seeker detections, described by p1(L, C | IS), occurs in the (blue) box 
labelled ``Prior -> posterior'', and is outlined in Section 3.2. The output of this procedure is the updated 
information (in terms of target class probabilities) for the objects within the seeker frame of reference. 
This information will improve the ability of the weapon to engage the targets designated on launch of the 
weapon while minimising collateral damage. 

3.0 INCORPORATING ADDITIONAL SENSOR INFORMATION 

3.1 Introduction 
The previous section described a framework for target acquisition. A modular approach was proposed in 
which the key quantity of interest was a probability density function. Manipulation of these pdfs by each 
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module resulted in a description of the designated target of interest in the seeker frame of reference. There 
are two main areas where information from different sensors has to be combined or fused. One is where 
the prior targeting information from the long-range sensor is combined with information from the seeker 
(the ‘prior->posterior’ box in Figure 2). This is reported in detail in [1]. The second area is where training 
data from an ISAR sensor is used to train a classifier applied to DBS imagery (the ‘Detections-> 
classifications’ box in the seeker sensor). This is reported in [2] and [8]. The approaches are summarised 
below. 

3.2 Exploiting Targeting Information 

3.2.1 Targeting detections 

The number of targeting sensor detections at time 0t  is denoted by tN . The estimated locations of the 
detections and associated image chips (ID sensor measurements) are denoted by 1 tNl … l, ,  and 1 tNr … r, ,  

respectively. For notational ease, we define ( )i i iT l r= ,  for 1 ti … N= , , .  

Assuming that there are J  possible target classes, the ID sensor measurements are used to obtain J -
dimensional class probability vectors iψ  for each detection, where i jψ ,  is the estimated probability that 

the i -th detection is the j -th class, for 1 ti … N= , ,  and 1j … J= , , . Such class probabilities could be 
estimated using a standard ATR system or possibly via human intervention.  

The measurement errors for the target locations are assigned Gaussian distributions, so that ),(~ txNl Σ  
where x  is the actual target location, and tΣ  is the covariance matrix for the measurement errors. The 
covariance matrix should be determined by considering the sensor performance characteristics along with 
the imaging conditions. 

3.2.2 Seeker detections 

The number of seeker detections at time 1t  is denoted by sN . Since the targeting sensor indicates that 
there are tN  targets present, the threshold for detecting objects within the seeker image is assumed to be 
set so that s tN N≥ . Adaptation of the proposed approach to cope with s tN N<  would be trivial.  

The locations of these seeker detections are denoted 1 sNy … y, , , and the associated image chips (ID sensor 

measurements) are 1 sNz … z, , . For notational ease we define ( )i i iD y z= ,  for 1 si … N= , , .  

It is assumed that density models (conditional on class) can be estimated for the ID measurements. 
Estimating these distributions given only limited training data for the weapon seeker is the subject of 
current research. These distributions can be represented by ( )p z C j| = , where z  is the image chip and 
j  is the index of the class C  of the object. Ideally, each density estimate should incorporate the 

uncertainty in the centre of each detected object. Mixture model densities meet many of the requirements 
for these class-conditional densities.  

In addition to probability densities for target image chips, it is assumed that a probability density has been 
estimated for image chips that correspond to the sort of background noise and clutter that will pass through 
the target detection algorithm. This density is denoted by ( 0)p z C| = .  
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If the class of a target is unassigned, a mixture distribution is used for the ID sensor measurements:  

 0 0
1

( ) ( 0) (1 ) ( )
J

j
j

p z P z C p z C jπ π π
=

= | = + − | =∑  (1) 

where 1 J…π π, ,  represent the prior class probabilities excluding background clutter, and 0π  is the prior 
probability for background clutter. Note that the prior probability for background clutter will be related to 
the false alarm probability of the detection algorithm, rather than the ratio of background clutter to targets. 
This reflects the fact that the initial detection stage will already have eliminated most of the background 
noise.  

The measurement errors for the object locations are assigned Gaussian distributions, so that ),(~ sxNy Σ  
where x  is the actual object location, and sΣ  is the covariance matrix for the measurement errors. As with 
the targeting sensor, the covariance matrix should be determined by considering the sensor performance 
characteristics together with the imaging conditions. Locations of any additional targets and background 
clutter are assumed to be distributed uniformly over the surveyed region. 

3.2.3 Bayesian solution 

The actual classes and locations of the targets detected by the targeting sensor at time 0t  are denoted by 

1( )
tNc … c, ,  and 0 1 0( )

tNx … x, ,, ,  respectively. By time 1t  the new locations are represented by 

1 1 1( )
tNx … x, ,, , . This reflects the fact that the targets may have relocated during the weapon fly-out time 

1 0t t− . The actual classes are of course unchanged. The posterior distribution of interest at time 1t  is:  

 1 1 1 1 1 1( ),
t t t sN N N Np x … x c … c T … T D … D, ,, , , , , | , , , , ,  (2) 

 

the distribution of the locations and types of the targets given seeker and targeting data. In [1], a Bayesian 
technique based on particle filtering [7] is used to obtain samples from the posterior distribution. 

3.3 Generalising Classifiers 
We now turn to the problem of designing a classifier for the seeker (DBS) data. We denote measurements 
in the training (ISAR) conditions by the variable x  and measurements in the operating (DBS) conditions 
by the variable z . We suppose that we have a training set },,1,{ NixD i K==  of samples gathered under 
the training conditions.  This training set is used to design a Bayesian classifier (i.e. a classifier based on 
probability distributions for the sensor measurements) [10], which outputs posterior class probabilities for 
each ISAR measurement of an object to be classified.  The posterior class probabilities estimated by the 
classifier for an ISAR measurement x  are denoted by ),|( DxjCp = , for Jj ,,1K=  where J  is the 
number of target classes. 

In accordance with our operational scenario, during operational use we only have access to a DBS 
measurement z  (rather than the ISAR measurement x ) so cannot use the Bayesian classifier directly.  To 
proceed we require a model )|( zxp  for the relationship between an operational sensor measurement and a 
training sensor measurement. Then, we can consider the expectation of the posterior class probabilities 
given the operational sensor measurement: 
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  ∫ === dxzxpDxjCpzDxjCpE )|(),|(]|),|([       (3) 

In this manner, given a model for the conditional density )|( zxp  we can use the training sensor classifier 
to classify an operational sensor measurement.   
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Figure 3: Imaging framework 

We assume a radar sensor measurement process as shown in Figure 3.  

For the specified sensor measurement processes, the conditional density )|( zxp  can be expressed as:  

)|()|()|,()|( zpxpdzxpdzxp σσσσσ ∫∫ ==      (4) 

The term )|( σxp  represents the forward sensor measurement process for the training sensor, i.e. 
generation of a training sensor image from an underlying cross section σ  (temporarily suppressing the 
defocus parameters within our notation). The term )|( zp σ  is the restored cross section given the 
operational sensor measurement. Determination of )|( zp σ corresponds to a super-resolution problem. 

Thus, Equation (4) states that to find the distribution of ISAR measurements that correspond to a DBS 
image, z , we find the distribution of underlying cross sections, σ , that give rise to z , and then pass these 
through an ISAR imaging model. The resulting conditional distribution, )|( zxp , is then substituted into 
(3) to classify z . Since (3) cannot be evaluated analytically for the majority of sensor models, samples are 
drawn from the relevant posterior distributions and inference is based on those samples. In [8], a Bayesian 
approach to simultaneous auto-focus/super-resolution is described. In [2] results of this classification 
procedure on synthetic data are presented. 

4.0 SUMMARY 

This paper has described a framework for target acquisition that has the following features 

1) It presents a modular approach in which the key quantities of interest passed between modules are 
probability density functions; 

2) It handles uncertainty in target locations and classes; 

3) Prior targeting information is combined with seeker data in a consistent manner; 

4) A classifier trained on ISAR data may be used to provides estimates of target type for DBS data 
using a Bayesian auto-focus/super-resolution approach; 

σ  Scattering cross section 

f  Scattered field 

θ  Defocus parameters 
g  Image - either x for ISAR 

or z for DBS 
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5) Knowledge of the properties of vehicle and terrain type may be included in a ‘prior evolver’; 

6) Registration errors are treated probabilistically. 

The approaches to two particular aspects of the target detection problem have been outlined, namely 

1) the combination of prior targeting data with seeker detections to produce posterior estimates of 
target locations and classes; 

2) the use of a previously trained classifier on data recorded from a different sensor. 

5.0 REFERENCES 

[1] Copsey, K.D., Lane, R.O., Manchanda, S. and Webb, A.R. (2004). Bayesian Approach to 
exploiting prior targeting information within a weapon seeker. NATO RTO SET Symposium SET-080. 
Target Identification and Recognition Using RF Systems. Oslo, Norway. 

[2] Copsey, K.D., Lane, R.O. and Webb, A.R. (2004). Designing NCTR algorithms when operating 
sensor conditions differ from training conditions. Radar 2004. International Conference on Radar 
Systems, Toulouse, France. 

[3] Copsey, K.D. and Webb, A.R. (2000). Bayesian approach to mixture models for discrimination. 
Advances in Pattern Recognition, F.J. Ferri, J.M. Inesta, A. Amin and P. Pudil (eds). Springer Lecture 
Notes in Computer Science 1876, 491-500. 

[4] Copsey, K.D. and Webb, A.R. (2002). Bayesian networks for incorporation of contextual 
information in target recognition systems. In T. Caelli, A, Amin, R.P.W. Duin, M. Kamel and D. de 
Ridder (editors) Structural, Syntactic and Statistical Pattern Recognition, Proceedings of the Joint IAPR 
International Workshops SSPR2002 and SPR2002, Windsor, Canada, August 2002. Lecture Notes in 
Computer Science 1876, 709-717, Springer. 

[5] Copsey, K.D. and Webb, A.R. (2003). Bayesian gamma mixture model approach to radar target 
recognition IEEE Transactions on Aerospace and Electronic Systems. 39(4), 1201- 1217. 

[6] Copsey, K.D. and Webb, A.R. (2004). Classifier design for population and sensor drift. Structural, 
Syntactic and Statistical Pattern Recognition, Proceedings of the Joint IAPR International Workshops 
SSPR2004 and SPR2004, Lisbon, Portugal, August 2004. Lecture Notes in Computer Science, Springer. 

[7] Doucet, A., de Freitas, J.F.G. and Gordon, N.J. (2001). Sequential Monte Carlo Methods in 
Practice. New York: Springer-Verlag. 

[8] Lane, R.O., Copsey, K.D. and Webb, A.R. (2004). A Bayesian approach to simultaneous 
autofocus and super-resolution. Proc. SPIE 5427. Algorithms for Synthetic Aperture Radar Imagery XI. 
E.G. Zelnio and F.D. Garber (eds). Orlando, FL, USA. 

[9] Maskall, G.T. and Webb, A.R. (2002). Nonlinear feature extraction for MMW image classifica-
tion: a supervised approach. Proc. SPIE 4726, 353-363. Automatic Target Recognition XII. Firooz A. 
Sadjadi (ed). 

[10] Webb, A.R. (2002). Statistical Pattern Recognition. Second edition. John Wiley and Sons, 
Chichester. 



Bayesian Approach to Recognising Relocatable Targets 

RTO-MP-SET-080 P6 - 11 

[11] Webber, C.J. (2000). Self-organisation of symmetry networks: transformation invariance from the 
symmetry-breaking mechanism. Neural Computation, 12(3), 565-596. 

[12] Webber, C.J. (2001). Predictions of the spontaneous symmetry-breaking theory for visual code 
completeness and spatial scaling in single-cell learning rules. Neural Computation, 13(5), 1023-1043. 

6.0 ACKNOWLEDGEMENT 

This research was sponsored by the UK MOD Corporate Research Programme. 



Bayesian Approach to Recognising Relocatable Targets  

P6 - 12 RTO-MP-SET-080 

 



  

RTO-MP-SET-080 P7 - 1 

DRFM-Modulator for HRR-Jamming 

Øyvind Thingsrud 
FFI – Norwegian Defence Research Establishment 

Division for Information Management 
P.O. Box 25, NO-2027 Kjeller 

Norway 

oyvind.thingsrud@ffi.no 

ABSTRACT 

The Digital RF Memory (DRFM) is a key component in modern radar jamming systems. To introduce 
false targets in a High-Range-Resolution (HRR) radar and other high-resolution imaging radars, a new 
generation DRFM-system is being developed with far better range resolution and modulation properties. 
The DRFM also needs better performance in the D/A-converter than in the systems used today, because of 
the high fidelity jamming signal. This paper is a part of a Master thesis [6] and describes a new type of 
DRFM-modulator that uses digital signal processing in the frequency-domain for generation of false 
targets [1]. The modulator is able to produce a radar scene with a number of complex false targets 
constructed of many single reflectors with individual modulation and with a credible background. Some of 
the different strategies for the modulator topology will be introduced and discussed. The modulator is 
being implemented using parallel digital logic in a number of Field Programmable Gate Arrays (FPGA) 
on a single printed circuit board (PCB) for use in FFIs experimental radar jammer named EKKO II [4].  

1.0 BACKGROUND 

High-resolution imaging radar is of increasing importance in numerous tasks, both civilian and military. 
This has resulted in a requirement for research on Electronic Countermeasures (ECM) against this class of 
radar. Over the last five years one main task in a research program at FFI has been to demonstrate the 
capability of introducing false information in a controlled, programmable manner in high-resolution radars 
of various kinds [2]. The work has included theoretical studies, computer modelling, field tests using 
existing hardware, and development of a whole new system, named EKKO II, designed with the above 
mentioned task in mind. Figure 1 shows the EKKO II system in X-band configuration. 

 

Figure 1: EKKO II in X-band configuration 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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2.0 PROBLEM TO BE ADDRESSED 

In the EKKO II experimental radar jammer the synthesis of false targets are realised with direct 
modulation and are implemented in FGPA. Direct modulation is a method where range delay, frequency 
and amplitude changes for each false point scatterer are generated in dedicated digital branches, as an 
imitation of the physical reflection process in the nature. This method is easy to understand and 
synthesises credible targets, but the hardware complexity increases as the number of targets increases.   

Thus, new methods for synthesising false targets that are independent of the number of targets are of 
interest. This paper describes a new type of DRFM-modulator that uses digital signal processing in the 
frequency-domain. The method is sketched in [1] and presents a possibility to achieve large numbers of 
false targets without an increasing hardware complexity.  

The new DRFM-modulator should produce a radar scene with a number of complex false targets 
constructed of many single reflectors with individual modulation and with a credible background. The 
modulator is to be used for synthesis of high-resolution range profiles, as illustrated in Figure 2 and for 
synthesis of Synthetic Aperture Radar (SAR) / Inverse Synthetic Aperture Radar (ISAR) images.   

Figure 2 contains a SAR image of a cultivated landscape that is overlaid a high-resolution range profile. 
For synthesising a SAR scene, new high-resolution range profiles with different appearance have to be 
generated continuously.   

 
Figure 2: SAR image of cultivated landscape with high-resolution range profile drawn 

 

3.0 INTRODUCTION 

A system designed to present false credible information in an arbitrary high-resolution radar system 
should be designed as a repeater that is able to store the radar signal, for modulation and retransmission. 
The central component of such a system is the storage device, the Digital Radio Frequency Memory 
(DRFM), ref Figure 3.  
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Figure 3: A DRFM radar jamming system 

 
The retransmission of a perfect replica of the radar signal will generate a point target response in the radar. 
To generate false credible information in a high-resolution radar image though, a target or a scene with 
spatial extent must be created. Basically this can be done in the time-domain by a digital Finite Impulse 
Response (FIR) filter [3], shown in Figure 4.  

FIR
DIGITAL FILTER
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=
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Figure 4: A digital FIR-filter 

 
If the radar signal is the input sequence xn and the point targets are the filter coefficients in the impulse 
response hn , the output sequence yn is the convolution between sequence xn and hn . Sequence yn is then the 
desired jamming signal.  

The structure in Figure 5 is a parallel realisation of a digital FIR-filter, where the branches with filter 
coefficients equal to zero are omitted. Here, the output sequence is generated by adding a number of radar 
signal replicas, each with individual modulation in time, amplitude and phase. This capability is made 
possible by modern high-speed digital electronics using multiple Field Programmable Gate Array (FPGA) 
circuits. Figure 5 illustrates the parallel time-domain realisation.  
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Figure 5: Time-domain realisation of time overlapping radar replicas 
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Alternatively the convolution between the radar signal and the point targets can be calculated using the 
Fast Convolution Process (FCP) algorithm, which make use of the Fast Fourier Transform (FFT) 
implementation of the Discrete Fourier Transform (DFT). The FCP-convolution is much more efficient 
with respect to computational requirements than the standard convolution, especially with long sequence 
lengths, ref [5].  

Table 1 shows a computational comparison of number of additions and multiplications for FCP-
convolution versus standard convolution. N is the length of the two sequences and L is a legal FFT size 
(L=2m, where m is an integer) that is greater or equal to N1+N2-1, where N1 and N2 are the two sequences.  

Table 1: Computational comparison for FCP-convolution versus standard convolution 

   
 # Complex additions # Complex multiplications 

   
Standard convolution (N-1)2 N2 

FCP-convolution 3Llog2L 3L/2log2L+L 

 

Figure 6 gives a graphical illustration of the equations in Table 1 for some data set sizes of N.  
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Figure 6: Graphical illustration of the computational loads from Table 1 

 
Using FCP-convolution the total response can be computed fast and directly, rather than implementing the 
individual delays and modulations in hardware. This can be done by transforming the radar signal and the 
targets to the frequency-domain, performing calculations, and transforming the combination back to the 
time-domain. This concept is referred to as Computed ECM in [1].  

There is a potential for achieving a considerably higher number of radar resolution cells using this 
approach. Whereas in the direct time-domain implementation the number of targets or resolution cells 
achieved is limited by the space within the FPGAs, in the Computed ECM case the limiting factors are 
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system dynamic range, number of sampling bits, calculation speed etc. This is a planned future capability 
for the EKKO II radar jammer [4]. Figure 7 illustrates the concept of the frequency-domain realisation.  

FFT
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IFFT

Range
profile

Radar
Rx

Radar
Tx

 

Figure 7: Frequency-domain realisation of time overlapping radar replicas 

 
The advantage of frequency-domain realisation is that the jammers complexity is nearly constant with 
increasing number of targets in the jamming scene. On the other hand, the complexity does increase with 
increasing number of samples in the radar signal and with increasing size of the radar scene.  

4.0 COMPUTER MODEL 

To examine the proposed DRFM-modulator structures, a computer model of the modulator, the target and 
the high-resolution radar is used. Figure 8 gives a brief description of the simplified computer model.  
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Figure 8: Schematic description of the computer model 

 
Figure 9 gives an example of a HRR profile generated in the computer model. An aircraft with marked 
reflection points in red is illuminated from a selected angle and with a chosen waveform. In this case the 
pulse compression leads to range cell size of approximately 4 samples and a total of 125 range cells over 
the aircraft. Different compression waveforms and factors are supported.  
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Figure 9: Example of a HRR range profile generated in the computer model 

 
In this paper the computer model is configured with a simplified complex reference target constructed of 
twelve single point reflectors. Each of the reflectors has different position, amplitude and phase. A chirp 
radar signal with Time-Bandwidth product (TBW) of 127 is then applied to the modulator and the jamming 
signal is calculated. The last step in the computer model is the pulse compression stage and the generation 
of the HRR range profiles. Figure 10 shows the simplified complex reference target.  
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Figure 10: The simplified complex reference target with twelve single point reflectors 
 

For verification of the proposed realisation concepts, the modulator structures and their corresponding 
range profiles from the computer model are compared and discussed. 

5.0 PROPOSED CONCEPTS FOR FREQUENCY-DOMAIN DRFM-
MODULATOR REALISATIONS 

The following DRFM-modulator realisation concepts are developed for generation of credible targets on 
HRR-radar, but the conclusions will also be valid for the more advanced SAR and ISAR as well, since a 
lot of the fundamentals are common to all imaging radars.  

The goal for the development is a modulator design with minimum insertion delay and maximum 
coverage in range. It is desirable to synthesise the complex reflections from each of the targets, and to 
manage the generation of the background scene. The acceptable values for insertion delay and range 
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coverage are strongly dependent of the actual radar system. Since the modulator is planned used against 
different type of radars, the modulator design will make use of the reconfigurable structure of the FPGA.  

5.1 FCP-convolution structure 
A single FCP-convolution structure is the simplest modulator realisation found using frequency-domain. 
This structure has however limited throughput and will introduce some delay in the signal flow through 
the modulator. The throughput is dependent of the implementation of the FFT and the inverse FFT (IFFT), 
which can be supplied as Intellectual Property (IP) cores from for example the FPGA manufacturer. 
Xilinx CoreGen IP-library supports FFT / IFFT up to 16384 data points at ~170 MHz clock speeds. 
Specialised manufactures deliver state of the art pipeline IP-cores for high performance transformations 
for more than 131072 data points at 400 MHz clock rate.  

When using FCP-convolution, the length of the FFT transforms i.e. the number of data points in the 
transform, determine the range extent of the covered scene since the FFT length equals the sum of the 
number of samples in the radar signal and the covered scene. The available calculation time is usually 
equal to the radar’s Pulse Repetition Interval (PRI), but it varies depending of the actual radar system.  

Figure 11 shows a simplified schematic for a modulator using a single FCP-convolution.  
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Figure 11: FCP-convolution realisation 

 
The modulator structure is examined using the data model described in chapter 3.0. Figure 12 gives a 
simulated HRR range profile of the simplified complex target. The range profile in Figure 12 is identical 
to range profiles generated in the modulator using time-domain realisation.  
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Figure 12: Simulated HRR range profile after pulse compression of example target generated with FCP-
convolution 
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Figure 12 also shows that the pulse compression process generates side lobes at both shorter and longer 
ranges than the targets reflectors. If the coded radar waveform had better performance on side lobe 
suppression, the spurious signals in the range profile would have been lower.    

5.2 FCP-convolution structure with separate synthesis of object and background 
In some instances, a possibility for separate synthesis of object and background is preferable. Figure 13 
shows a simplified schematic for a modulator that covers this approach. The complexity grows compared 
to a modulator without separate synthesis, but the insertion delay is almost the same.  
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Figure 13: FCP-convolution realisation with separate synthesis of object and background 

 
This modulator realisation is examined in the same manner as last structure by using the data model 
described in chapter 3.0. Figure 14 shows the simulated high-resolution range profile containing both the 
simplified complex target and a background profile. The synthesised target is identical to the target in the 
last structure and the generated background has a uniform and almost constant reflection level throughout 
the range scene.  
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Figure 14: Simulated high-resolution range profile after pulse compression of example target generated with 
FCP-convolution and separate synthesis of object and background 

The background profile in Figure 14 is synthesised with an artificially ideal appearance for demonstration, 
but with use of other reflection coefficients a credible background can be generated.  
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5.3 Distributed FCP-convolution structures with parametric generator for background 
profile 

This structure is an example of a versatile, fast and complex modulator realisation. It contains several 
parallel FCP-convolutions, for higher speed and less insertion delay, connected in a distributed 
configuration for less complexity. The structure includes a parametric generator for the background 
profile, which gives a high level description of the appearance over time (mean level, smoothness, 
distribution, sample rate) throughout the range profile. Usually the background synthesis requires huge 
amount of reflection coefficients, but with the parametric generator the requirements for configuration 
data is greatly reduced.  

The last feature included in the proposed structure is a set of dual-port memory circuits that separate the 
high-speed convolution circuits and the modulation coefficient generation process. The circuit separation 
makes it possible to update the modulation coefficients at a lower sample rate than the convolution-
processing rate. In some instances this reduction in update rate gives noticeable improvements. Figure 15 
and Figure 16 show a simplified schematic for an extended modulator using multiple FCP-convolutions 
and a parametric generator for background synthesis.  
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Figure 15: Distributed FCP-convolution realisation with parametric generator for background profile 

 
Because of the separate synthesis of object and background, and the multiple convolution circuits, the 
complexity increases a lot. Specially the Range profile scheduler, FFT and Combiner block grows, as seen 
in Figure 16.  
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Figure 16: Detail schematic of Range profile scheduler, FFT and Combiner in Figure 15 

 
Figure 17 shows the simulated high-resolution range profile synthesised with the parametric background 
generator. The generated background has sections with different mean reflective level and smoothness, 
and some minor areas with highly reflective objects. In the middle of the range profile, a typical shadow 
can be seen – an area with low reflection. Figure 17 demonstrates of the possibilities and versatility of the 
parametric generator.  
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Figure 17: Simulated high-resolution range profile after pulse compression of example background profile 
generated with parametric generator 

 
To illustrate how the parametric background generator can be used to synthesise credible landscape, a 
SAR image is used with a high-resolution range profile drawn on top, ref Figure 2. For synthesising a 
whole SAR scene, the background generator has to be supplied new parameters regularly.  

5.4 Future developments 
Input parameters for the proposed DRFM-modulator structures have been a radar waveform that has 
relatively short duration in time and hence short extension in range, and a covered scene with long 
extension in range. This is not always the case; sometimes the radar waveform has an extension in range 
as long as the covered scene or even longer. To deal with this situation, the modulator structures have to 
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be further developed. In the proposed structures only the covered scene is divided in different 
convolutions, but maybe in the future both the radar waveform and the covered scene have to be divided in 
individual convolutions.  

6.0 DISCUSSION 

A single FCP-convolution structure is the simplest modulator realisation and with large FFT/IFFT 
transformations the covered scene can be large in range as well. On the other hand the processing speed 
for large FFT/IFFT transformations is quite slow, which result in large insertion delay. Usually, the actual 
requirements for processing time limits the available range extent of the false radar scene.   

An FCP-convolution structure with separate synthesis of object and background is convenient, specially 
when processing of the two are generated with different processing tools. Separate handling of object and 
background lead to higher complexity, but not to larger insertion delay. All the other advantages and 
disadvantages are inherited from the single FCP-convolution structure.  

A distributed FCP-convolution structure with parametric generator for background profile is a complex 
modulator realisation, but it will handle different radar systems and scenes very well. The structure is 
unique since it generates a credible background profile based on only a parametric description of the 
background.   

7.0 CONCLUSION 

All of the proposed structures are suitable for a DRFM modulator realisation, but they are dependent on 
the actual radar system and the desired range coverage. A distributed FCP-convolution structure with 
parametric generator for the background profile is the most general construction for different operations, 
but also the most complex.    
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SUMMARY 

Moving targets within SAR scenes are distorted depending on the particulars of the target motion. For 
small motions, the uncompensated phase of a point reflector is a sum of a term proportional to the range 
component of the target motion, and a more complicated term depending on the azimuth motion. The 
resulting phase may be analysed with time-frequency techniques since the motion effect may alternatively 
be seen as a time dependent Doppler frequency. An experiment performed with a moving target within a 
scene collected by the German E-SAR system gave a signature that agrees well with theoretical 
predictions. Time-frequency analysis, using the smoothed pseudo Wigner-Ville method, gave a linear 
chirp with superimposed oscillations as predicted from the theory and the target motion. 

1.0 INTRODUCTION 

Synthetic aperture radar (SAR) is a useful radar technique to generate images of a scene with fairly high 
resolution from standoff ranges. SAR imaging of stationary scenes is well understood theoretically [1], 
and the major issue is the speed and accuracy of the SAR processor. For a moving target within the scene, 
the situation is more complicated. On the one hand, it is easier to detect the target using techniques 
different form SAR [2]. On the other hand, target motion results in image distortion in the SAR image of 
the target itself. A well known example is the azimuth displacement of a target with a small constant range 
rate. More complicated motion leads to other effects. Vibrations and rotations cause micro-Doppler [3], 
and azimuth smearing may result [4]. 

We analyse the effect of general target motion on the SAR signal phase. For reasonably small motions, the 
residual uncompensated phase of a moving point target after the SAR processor consists of two terms, one 
proportional to the range component of the motion, and one containing the product of the platform motion 
and the target azimuth motion. This phase can be complicated, and time-frequency methods are useful for 
the analysis. 

An experiment was performed in Lillestrøm, Norway, using the DLR E-SAR from Germany as SAR 
platform. A moving target with a known motion was present at the time of data collection. The motion 
was an approximately constant range rate, with an oscillation in the range direction superimposed. Results 
obtained with time frequency methods agreed well with theoretical predictions. 

2.0 MOVING TARGETS IN SAR IMAGES 

SAR processors usually assume that the scattering centres within the SAR scene are stationary during the 
time of data collection. Each point within the scene is then characterized by a unique phase history, and 
the SAR processor exploits the uniqueness to place the point within the scene. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”, 
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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2.1 General Motion 

We consider a SAR platform moving along a straight line with constant platform velocity pv . We define 
the straight line as the x-axis in a cylindrical coordinate system as in [1]. At the time 0t =  the radar 
antenna phase centre is at the origin. At the same time, a target is exactly broadside at the range 0d r= . 
The target has a general motion described by its cylindrical coordinates ( )s t  as given in fig. 1. 

 

Figure 1: Geometry of a SAR system with a moving target. 

Accordingly, the range from the radar to the target at a general time is given by 

 
2 2( ) ( ) ( )pd t v t x t r t = − +  . (1) 

The usual hyperbolic expression for the point target range history is obtained for ( ) 0x t =  and 0( )r t r= . 
Note that the cylindrical angle θ  does not enter the equations as it does not affect the range when the 
platform trajectory is a straight line. The phase history of the target may then be obtained from 

 4( ) 2 ( ) ( )t kd t d tπϕ
λ

= = . (2) 

Ideally, the SAR processor focuses the target using the phase history 

 2 2 2
0 0 0

4 4( ) ( ) pt d t v t rπ πϕ
λ λ

= = + . (3) 

Accordingly, the uncompensated phase may be found as 

 0( ) ( ) ( )t t tϕ ϕ ϕ∆ = − . (4) 

Depending on the particulars of the motion, the uncompensated phase may result in a wide range of 
phenomena, from a simple shift in position of the target to a smearing making the target impossible to see. 

2.2 Small Motions 
Equations (1) to (4) give the general results, but are difficult to analyse directly.  If the synthetic aperture 
is sufficiently short as compared to the distance to the scene, and the target motion is slow as compared to 
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the platform velocity, the square roots may be approximated by parabolas in the usual way [1]. The results 
are 
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≈ + − + ∆

≈ +

 (5) 

Here, 0( ) ( )r t r t r∆ = − , which is much smaller than 0r  under the stated conditions. Accordingly, the 
phase residual is given by 

 
0

4 ( )4( ) ( ) px t v t
t r t

r
ππϕ

λ λ
∆ ≈ ∆ − . (6) 

Note that for 0( )x t x= , a constant, the expression corresponds to the azimuth shift linear phase ramp to 
move the reflector to the new position when ( ) 0r∆ = . On the other hand, when neglecting the second 
term and setting ( ) rr t v t∆ = , we get an azimuth phase ramp corresponding to the well known azimuth 
shift of a target with a moderate constant range rate rv . A target moving with a constant azimuth rate will 
however introduce a quadratic phase term, resulting in smearing of the target. 

3.0 TIME-FREQUENCY ANALYSIS 

The phase residual as calculated in the previous section, given in eq. (6), may alternatively be seen as a 
Doppler shift. The basis is to define the corresponding Doppler frequency as 

 
t

f d d
d

2
1 ϕ
π

= . (7) 

We see then that a linear phase ramp becomes a constant frequency, while the quadratic phase 
corresponding to constant azimuth rate becomes a linear chirp. For complicated frequency dependencies, 
time-frequency methods can be used for analysis. 

3.1 Quadratic Time-Frequency Methods  
There is a large number of different time-frequency methods that may be applied to a particular problem, 
and it is not always obvious which one to choose. The Cohen’s class of quadratic time-frequency methods 
[5] offers some attractive alternatives due to the potential for high resolution. This must be balanced 
against the interference between signal components inherent in such methods. The class is described by 

 ∫∫ −−Ψ= vufvtuvuWftC dd dd),(),(),( , (8) 

with W  the baseline Wigner-Ville distribution given by 
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Various instances of Cohen’s class are generated by choices of the kernel function Ψ . 

We use two  methods, the smoothed pseudo Wigner-Ville (SPWV) [6] and the adaptive optimal kernel 
(AOK) [7]. Both methods use a kernel that is essentially a low-pass filter, smoothing away high frequency 
interference, while retaining low frequency signal content. The SPWV is fairly simple and 
computationally efficient due to the simple separable kernel. The AOK method is more sophisticated as it 
adapts the kernel to some extent to the underlying signal.  

4.0 EXPERIMENTAL RESULTS 

A test was performed at Lillestrøm, Norway, 2 Jun 2003, using the German E-SAR system. 

4.1 Description of Test 
SAR scenes were collected over the test area at X-, L- and C-band. Several experiments were set up at the 
time. For the present study, a car was used as a moving target. A corner reflector was placed on the roof of 
the car as shown in fig. 2. The corner reflector was oriented to give maximum reflection in the general 
direction of the radar. 

 

Figure 2: A standard civilian car with a corner reflector on the roof used as a moving target. 

The position of the car was measured using a GPS receiver.  The car path was chosen as a small road 
nearly in the azimuth direction. The road was in the middle of a uniform farming field to minimize clutter 
problems for the relevant data area. The car path was a fairly slow azimuth motion, about 5 m/s, combined 
with a side-to-side oscillation covering the width of the road. The aim was a linear motion in azimuth 
combined with a sinusoidal motion in range. 

4.2 SAR Results 
Fig. 3 shows a part of an X-band image collected over Lillestrøm. The image is processed by DLR e.V, 
Germany. Clutter is reduced using multi-look processing and the resolution is approximately 2m. Azimuth 
is along x-axis and range along y-axis. The bright parts in the left part of the image correspond to 
buildings at the site of the Norwegian Defence Establishment (NDRE) and some other institutions. The 
uniform part to the right corresponds to farming fields. The red rectangles show the location of the bright 
signature resulting from the moving target and a comparable bright signature from a building. 
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Figure 3: An X-band SAR image of an area close to Lillestrøm.   
The regions within the rectangles are shown in greater detail in Fig. 4. 

Fig. 4 shows close-ups of the rectangles of fig. 3.Both signatures are seen to be smears nearly in the 
azimuth direction as discussed in section 2.2. Taking an azimuth slice through the single-look complex 
representation of the signature and inverse Fourier transforming, we obtain a complex time series that may 
be analysed with time-frequency methods.  Time-frequency signatures, calculated with the AOK method 
are shown in fig. 5. 

     
Figure 4: Close ups of the moving target and a building. 

Since the ground target motion was approximately linear in azimuth, with a range oscillation 
superimposed, we expect the signature to be a linear chirp with sinusoidal modulations. The moving target 
signature in fig. 5 seems to agree well. In comparison, the building signature is different, containing 
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constant components, as well as wide-band time-limited components. The constant components are 
probably small reflectors along the edge of the building, while the time-limited wide-band components 
probably correspond to specular reflections. It is clear that the time-frequency signature can be used to 
discriminate between the staionary building and the moving target. 

          
 

An animation of the time-frequency cube obtained by processing a number of azimuth slices shows the 
focused moving target moving in azimuth, in agreement with ground truth. 

5.0 CONCLUSIONS 

Moving targets in SAR images can be analysed and focused using time-frequency techniques. Results 
from a test show that the time-frequency signatures of a moving target is significantly different from the 
signature of a stationary building, even when the SAR image of the two are similar. Accordingly, time-
frequency techniques are useful in the general problems of moving target detection, focusing and 
relocation. 
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ABSTRACT 

This paper has been produced in the frame of research group for Automatic Target Recognition (ATR), 
NATO SET 053 TG 29. One of the biggest challenges for automatic target recognition (ATR) methods is 
the accurate and efficient extraction of features from synthetic aperture radar (SAR) images. The aim of 
this work is to evaluate the recognition-oriented properties for 2D modified covariance Super-Resolution 
technique[1]. Recognition-oriented properties in order to enhance features in the scene that are important 
for recognition purposes. Performances of the technique are evaluated in this paper by testing robustness 
of preserving and enhancing features extraction. Results indicate that 2D modified covariance Super-
Resolution technique formation method provides images with higher resolution of scatterers, and better 
separability of different regions as compared to conventional SAR images. 

1.0 INTRODUCTION 

In order to exploit an automatic recognition based on a SAR imagery system, we need to extract certain 
features from the reconstructed images. These feature extraction can be difficult when based on SAR 
images formed by conventional Spectral Analysis methods (Specan), such as the two-dimensional 
matched filter (2D-MF) for reconstruction of the image of the scene sensed from the SAR. A scheme for 
such a system is represented in Figure 1 (view of the SAR-SPECAN processing scheme) where the 2D 
dechirping operation is applied to the hologram to remove the frequency modulation introduced on the 
echo reflected by the single point scatter by the chirped waveform (along the fast-time axis) and by the 
changing distance from the moving radar receiver (along the slow-time axis). One challenge is that the 
resolution of the formed images is limited by the SAR system bandwidth. This complicates point scatterer 
localization, the images suffer from speckle, and in addition this complicates region segmentation for 
shape-based recognition. The slant range resolution of a SAR transmitting chirp signals of bandwidth B is 

( )δ r c B= 2 , where c  is the speed of light, whereas the cross-range (i.e. azimuth) resolution is 
approximately (for small observation angles) ( )δ λa = 2∆θ , where λ  is the transmission wavelength and 
∆θ  is the angle under which a generic point is observed during the formation of the synthetic aperture. To 
improve the resolution beyond these limits (usually denoted as Rayleigh limits) it would be necessary to 
increase the bandwidth of the transmitted signal and the duration of the observation interval. In both cases, 
besides the associated cost, there are severe constraints on the instrumentation stability and on the 
knowledge of the relative motion between the radar and the scene, which has to be compensated for to 
form the synthetic aperture. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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Figure 1. Conventional SAR-SPECAN processing Scheme 

Using the 2D-Covariance on SAR images, the resolution can be improved without acting nor on the 
bandwidth neither on the duration of the observation interval. The improvement of resolution is achieved 
by finding an adequate parametric model (specifically setting the model orders for the considered 2D AR 
model) and estimating the parameters of the model.  

This method produces images which appear to enhance point-based features (e.g. scatterer locations), and 
region-based features (e.g. object shapes), such features are important for recognition purposes[2][3][4][5].The 
AR models are used in this work because they fit well the scattered signal from point reflectors and, to 
some extent, also the signal from extended scenes. High resolution spectral analysis tools have the 
advantage, over the conventional FFT, that their spectral resolution improves with increasing SNR. 
Fourier transform methods obtain a frequency resolution which is constant at about the inverse of the 
observation time, or, for imaging systems, an angular resolution constant at about the ratio of wavelength 
to aperture size. The signal backscattered from the scene and captured from SAR has enough signal-to-
noise power ratio to exploit for resolution improvement. On the other hand, it is known that the FFT 
processing is very robust, while super-resolution methods may be sensitive to model errors. A requirement 
for the application of super-resolution is therefore, that the system accuracy is significantly better than 
necessary for conventional SAR processing.  

In this paper, we use quantitative criteria for evaluating the images produced by this Super-Resolution 
Spectral Analysis (SR-SPECAN) technique for SAR image formation. Experiments has been done on the 
Moving and Stationary Target Acquisition and Recognition (MSTAR) public target data set to compare 
the SAR images formed by the regularized method to conventional images in terms of these quantitative 
measures. The criteria we use regarding point-based features are target-to-clutter ratio, main-lobe width, 
peak matching accuracy and average associated peak distance. The metric of peak matching accuracy is 
particularly useful for testing the super-resolution properties of an image formation technique. The criteria 
we use for region-based features are segmentation accuracy, and separability of different regions models. 
The results of this study show that SR-Technique method yields images with higher resolution and better 
dominant scatterer localization than conventional images, also in considerably reduced amounts of data 
conditions. In addition when the method is used for region-based extraction, results in enhanced anomaly 
and speckle suppression in homogeneous regions, and hence, easier-to-segment images. 

2.0 SUPER-RESOLUTION OF A SINGLE IMAGE 

We now briefly summarize the super-resolution technique developed in [1], [6] and [7]. After having 
dechirped the SAR hologram, each point scatterer in the SAR scene is encoded into a 2D complex 
exponential embedded in the white Gaussian noise (WGN), corresponding to the mixture of ground clutter 
and thermal noise. A conventional spectral analysis (SPECAN), i.e. 2D-FFT, is able to focus at the same 
time all the point targets in the scene with a resolution equal to the so called Rayleigh limits. Since the 
dechirped signal backscattered from point targets is made of complex sinusoids with unknown parameters, 
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super-resolution spectral analysis (SR-SPECAN) techniques can also be applied to extract complex 
sinusoids embedded in WGN[8]; resolution higher than the conventional SPECAN based on the FFT can 
be gained. A better discrimination of the point targets in a SAR image is thus obtained by replacing the 
2D-FFT with SR-SPECAN techniques. The 2D covariance method[7] estimates the power spectral density 
of a 2D AR signal via the linear prediction. The AR spectrum depends on the region of support of the 
processed data. Four regions of supports can be singled out from the grid over which the data are 
available, namely: the first (upper right hand side), the second (the upper LHS), the third (lower LHS), and 
the fourth (lower RHS) quarter planes. Thus, four quarter planes (or quadrants) AR spectra are calculated 
separately; they are combined to form a single unbiased, with circular response (i.e.: with equal resolution 
along the two orthogonal axes of the data grid), AR spectrum P combined  which is derived as follows: 

1 1 1 1 1

1 2
1

1 2 1 2 1 2 1 2P f f P f f P f f P f f P f fcombined 2 3 4( , ) ( , ) ( , ) ( , ) ( , )
= + + +  

 
where f f1 2 and  are the spatial frequencies along the two orthogonal axes (in the SAR case, the range and 
azimuth axes) and P P P P1 2 3 4, , ,  and are the four quarter planes AR spectra. To calculate the single 
quarter plane AR spectrum the mathematical procedure is the following: 

• determine the orders p1 and p2, in range and cross-range directions respectively, of the 2D AR 
model of the data (this step requires a “try and see” procedure and some heuristics; note that the 
maximum order value is a half of the available data length), 

• estimate the 2D AR covariance matrix from the available data, 

• write the 2D Yule-Walker equations to find the coefficients of the linear prediction estimator, 

• apply the 2D Levinson algorithm to efficiently solve the 2D AR Yule-Walker equations (resort is 
made to QR decomposition to have a mathematically stable solution). 

Because of the computational cost of the technique and of the assumption of a small number of point 
scatterers against WGN, the above SR-SPECAN technique cannot be applied in one shot to a large SAR 
image, unlike the 2D-FFT. The practical application of the technique to a SAR image requires the splitting 
of the image into small sub-images via 2D passband filtering operation, the application of the technique to 
each sub-image and finally the recombination of the sub-images into the complete super-resolved SAR 
image.  

 

Figure 2. Proposed SR-SPECAN Scheme for SAR images 

3.0 FEATURE-BASED CRITERIA FOR EVALUATION OF IMAGE QUALITY 

In this section we propose measures for evaluating the quality of images formed by the method outlined in 
Section 2.  Many of these criteria have appeared in the literature before, and they are mostly directed 
towards images to be used in target recognition tasks. 
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3.1 Criteria for Point-Enhanced Images 

3.1.1 Target-to-clutter ratio 

As a measure of accentuation of the target pixels with respect to the background, we will use the target-to-
clutter ratio (TCr) in dB, defined as: 
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where 
∧

jif ,  is the reconstructed image, with the pair (i, j) denoting the pixel indices, Ω denotes a clutter 
patch in the image, and Nc denotes the number of pixels in that patch. 

3.1.2 Main-lobe width 

As one of the measures of the effective resolution of an image, we will use the 3-dB main-lobe width. To 
obtain an estimate of the main-lobe width, we concentrate on the target region. In each row and column in 
the target region of the reconstructed image, we find the first point near the maximum where the 
reflectivity magnitude is more than 3 dB below the maximum value. We then obtain a better estimate of 
the 3-dB distance by means of a linear interpolation between pixels. Finally, we average the distances 
obtained from each row and column in the target region to find an overall estimate of the 3-dB lobe width 
for a particular image. 

3.1.3 Peak matching accuracy 

Locations of dominant point scatterers extracted from a target image are important characteristics for 
recognition. Loss of resolution manifests itself by merging and moving such characteristic points, and this 
makes the accurate localization of these points in the scene more difficult. Thus, we evaluate the super-
resolution properties of our method by measuring how well the dominant scatterers are preserved when we 
use reduced-resolution data to form the image. For this purpose, we extract the locations of the brightest 
scatterers from the conventional and the proposed reconstructions using the same reduced-resolution data, 
and compare these to the “reference” locations of the scatterers. These “reference” positions may be 
obtained either from the ground truth, in case that is available, or from locations of the scatterers extracted 
from a higher resolution image otherwise. In order to extract the scatterer locations, we first find the peaks 
in the reconstructed image. The peaks are taken to be the points where the discrete spatial derivatives of 
the reflectivity magnitude in both the x and the y directions change sign from positive to negative. Once 
the peaks are found, we order them based on their magnitude. Once the peaks are extracted, we evaluate 
how well the coordinates of these peaks match those of the “reference” peaks. This method allows a match 
declaration between two peaks, if the estimated peak location is within a radius r of the “reference” peak 
location. Hence it is more powerful than counting only the exact matches, with r used as a variable 
parameter (r=0 corresponds to counting the exact matches). A one-to-one association of the peaks is made 
such that the sum of the squared distances between the locations of the “reference” peaks and the 
corresponding matched peaks from the image is minimized. We can then count the number of matched 
peaks, to see how well the peaks are preserved. 

3.1.4 Average associated peak distance 

Another criterion based on peak locations that we will use is the average distance between the two sets of 
peaks coordinates. To compute this measure, we relax the matching radius r of Sect. 3.1.3, so that each of 
the peaks from the reconstructed image is matched to a “reference” peak. We then find the average of the 
distances between these associated peaks. 
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3.2 Criteria for Region-Enhanced Images 

3.2.1 Segmentation accuracy 

It is of interest to obtain accurate segmentations of SAR images for effective use of region-based shape 
features in target recognition. Recently there has been much interest in the development of segmentation 
algorithms for conventional SAR images. Our region-enhanced images provide easier-to-segment regions 
as compared to conventional SAR images. We will demonstrate this property by segmenting our 
reconstructions to target, shadow and background regions by simple adaptive thresholding. To determine 
the threshold, we find the mean µ and the standard deviation σ of the dB-valued pixel magnitudes in the 
image. Then, we apply the following decision rule at each pixel: 

Equation 2. Segmentation Decision Rule   

( ) Sfcf jiji ∈→⋅−<⋅ ,1,10
ˆˆlog20 σµ  

( ) Bfcfc jiji ∈→⋅+<⋅≤⋅− ,2,101
ˆˆlog20 σµσµ  

( ) Tffc jiji ∈→⋅≤⋅+ ,,102
ˆˆlog20σµ  

where T,S,B denote the target, shadow and background regions respectively, and c1,c2 are two constants 
that are fixed beforehand. From a statistical standpoint, it would make more sense to develop a decision 
metric based on statistics of particular regions. However, our objective here is not to develop the best 
decision metric, but rather to show that we can obtain reasonable segmentations of the region-enhanced 
images even by simple suboptimal processing. 

4.0 EXPERIMENTAL RESULTS 

4.1 Experimental Setup 
We use images of T72 (sn 132) tanks, BMP2 (sn c21) tanks, and BTR70 (sn c71) armored personnel 
carriers from the MSTAR public target data set to evaluate the performance of our reconstructed images in 
terms of the criteria described in Sect. 3. We use 8 images for each vehicle type, all at 17 depression angle, 
and evenly spaced in azimuth (approximately 45°) to cover 360°. As we will describe, we also carry out 
synthetic scene reconstruction experiments to make some evaluations where ground truth is exactly 
known. In order to apply our algorithm, we need the phase histories (or the range profiles). We obtain the 
phase histories from the 128 × 128 complex-valued MSTAR images, by undoing the final steps of 
MSTAR image formation. We first take the 2-D Discrete Fourier Transform (DFT) of the images, then we 
remove the zero-padding to obtain 100 × 100 phase history samples and next we remove the windowing 
applied. From the MSTAR file headers, we know that a 35 dB Taylor window has been used. Then we 
divide the phase history samples by a 2-D Taylor window.  

4.2 Super-Resolution Imaging from Full-Resolution Data 
We now use the 100 × 100 phase history samples to form Super-Resolved images. We will form 
interpolated images of a factor 8 over a patch of 64 x 64 centered on target, obtaining a 512 x 512 samples 
image. Therefore, in order to have conventional SAR SPECAN images of this size for comparison, we 
first form interpolated 512 × 512 Taylor-windowed Fourier images. Images for both conventional and SR 
techniques applied for T72, BTR70 and BMP2 are in Figure 3, Figure 4 and  Figure 5, the SR images with 
an AR order determined by a ‘’Try and See’’ procedure, used for both axis, are at the right column. The 
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dominant scatterer appears to be accentuated as compared to the conventional images at the left column. 
We do not apply any windowing to the data before processing, since our method is able to suppress 
sidelobes considerably even with rectangular weighting. However, if desired, the method can be used with 
windowing. Each image is normalized to their maxima to remove the different scaling factors and finally 
fused together on a pixel by pixel basis: a non linear fusion law is applied by setting the pixel value of the 
final image equal to the maximum value of the 25-normalized SR-SPECAN images[9]. This fusion law will 
yield a final image with the highest number of target scatterers but at the same time will provide the worst 
background suppression capabilities. See Figure 6 (T72 and BTR70) and Figure 7 (BMP2) for Super-
Resolved SPECAN Fused image with maximum technique. 
 

T72 BTR70 BMP2 Target 
Azimuth Filename Best Order Filename Best Order Filename Best Order 

0° HB04025.015 27 HB03973.004 28 HB03893.002 27 
45° HB04034.015 28 HB03982.004 25 HB03901.002 29 
90° HB03852.015 29 HB03988.004 28 HB03909.002 30 

135° HB03802.015 28 HB03995.004 25 HB03917.002 30 
180° HB03809.015 28 HB03938.004 29 HB03926.002 29 
225° HB03935.015 28 HB03947.004 29 HB03875.002 27 
270° HB03824.015 25 HB03956.004 28 HB03876.002 28 
315° HB04016.015 28 HB03964.004 29 HB03884.002 25 

Table 1. Best AR order for each 64x64 SR-SPECAN image 

Best AR order for each SR-SPECAN image target elaboration are described in Table 1, and taking into 
account that the maximum order value is a half of the data length (32 in this case for a 64x64 available 
data), it is clear to see that high AR values (from 25 to 30) are preferred in order to enhance Super-
Resolution capabilities. 
 

  
Figure 3. Tank T72 (315° azimuth angle) Left: Specan, Right: SR-Specan with AR order 27 for 

both axis. 
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Figure 4. BTR70 (90° azimuth angle) Left: Specan, Right: SR-Specan with AR order 28. 

  
Figure 5. BMP2 (225° azimuth angle) Left: Specan, Right: SR-Specan with AR order 27. 

  
Figure 6. Super-Resolved SPECAN Fused image with MAX technique. Left: Tank T72 (315° 

azimuth angle) Right: BTR70 (90° azimuth angle)   
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Figure 7. Super-Resolved SPECAN Fused image with MAX technique. BMP2 (225° azimuth angle) 

4.2.1 Target-to-clutter ratio 

We will quantify the enhancement of the target pixels in the full-resolution data reconstructions by means 
of their target-to-clutter ratio. We compute the target-to-clutter ratio (TCr(dB)) as defined in  Equation 1, 
by using the bottom 20 rows (2000 pixels) of the reconstructed 100x100 images as the clutter region. Final 
TCr value is the average over the AR orders SR-SPECAN processing, the AR-values are from 7 to 31. 
Figure 8, Figure 9 Figure 10 shows the TCr values versus the AR orders for T72, BTR70 and BMP2 
respectively, evaluated with an azimuth target angle of 270°. This region is big enough to give a reliable 
estimate of the mean reflectivity magnitude, and is safe to use, since target and shadow appear to be 
located outside this region for the entire data set. Table 2 shows the average target-to-clutter ratio achieved 
by the conventional and the proposed methods over the 8 reconstructed target azimuth variation images for 
each target type. Last row represent the mean value expressed in dB of the linear TCr evaluated for each 
azimuth angle.  These results indicate a clear improvement of the target-to-clutter ratio by our proposed 
image formation method. 
 

T72 BTR70 BMP2 Target 
Azimuth SR Conventional SR Conventional SR Conventional

0° 47.0011 32.1083 54.0255  36.4485 69.3866 42.2303 
45° 43.2853 29.2631 34.9206 23.1271 43.912 31.1764 
90° 55.2862 35.5263 56.7158 34.2177 64.8596 41.9121 

135° 66.1575 41.3393 39.4638 25.3764 42.2591 28.8165 
180° 56.4607 36.0822 68.8944 45.3622 55.8789 37.3171 
225° 54.6906 36.94 38.7378 27.4282 42.489 30.129 
270° 58.4797 36.0718 58.2052 32.8596 61.0104 35.2174 
315° 48.633 33.61199 36.9852 22.0673 43.5977 30.581 

Average 56.4244 35.7657 56.0766 34.3262 58.8564 36.1692 
Table 2. Average target-to-clutter ratios of SR-SPECAN and Conventional processing 
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Figure 8. Target to Clutter Ratio vs AR 

order for T72 (270°) 

 

 
Figure 9. Target to Clutter Ratio vs AR order for 

BTR70 (270°) 

 
Figure 10. Target to Clutter Ratio vs AR order for BMP2 (270°) 

 

4.3 Point-Enhanced Super-Resolution Imaging from Reduced-Resolution Data 
In this section, we carry out experiments on two sets of data: those from the actual MSTAR images, and 
those from synthetic point scatterer scenes constructed using the MSTAR images. The reason for using 
synthetic examples is to demonstrate the super-resolution properties of our method in a situation where the 
ground truth is exactly known. We will present the main-lobe width results for the actual MSTAR 
reconstructions only. We will present the peak matching accuracy and the average associated peak 
distance results for both actual and synthetic images. We do not present the target-to-clutter ratio results in 
this section, since they are very similar to the full-resolution target-to-clutter ratio results. For experiments 
on actual MSTAR data, we form images from a 50 × 50 subset of the 100 × 100 phase history samples 
previously used. This results in a two times resolution loss in the range and cross-range directions. All the 
images we will form in this section are composed of interpolated 512 × 512 from the 50 × 50 subset. The 
left image in Figure 11 shows Taylor weighted Fourier images from the tank T72 (315° target azimuth) 
reduced-resolution data. The resolution loss in these images is evident when they are compared to their 
high-resolution counterparts in left image of Figure 3. We now form Super-Resolved image with an AR 
order of 20 for each axes, samples of which are shown in the right of Figure 11. 
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Figure 11. Sample images reconstructed from reduced-resolution (50 × 50) data. Left: 

conventional SPECAN. Right: proposed SR-SPECAN 

The main-lobe-width, as described in  Equation 1, of conventional reduced resolution image (50x50) is 
equal to 0.2650m and 0.0614m for the SR-SPECAN method, a ratio factor of 4.3159 is reached, 
enhancing the width-lobe-reducing capabilities of our proposed method. We now consider the synthetic 
examples. To generate synthetic scenes we find the 13 peaks with the largest magnitude in the tank T72 
(315° target azimuth) 128×128 Taylor-windowed Fourier images, and form a synthetic scene by placing 
simulated point-scatterers at the locations of these peaks, with the original complex reflectivity, and zeros 
in the rest of the scene. An example pixel-plot of the magnitude of such a synthetic scene is shown in 
Figure 12. We then generate simulated phase histories from this scene. The reconstructed conventional 
Taylor-windowed image from 64×64 phase history contour plot is shown at the left side, down row, of 
Figure 13. The average main lobe width is 0.225m, in this case loss of resolution is easy to observe. The 
corresponding Super-Resolution image produced by our method is shown at the right side, with an average 
main lobe width of 0.0812m, and we can visually observe that most of the scatterers that were merged by 
the conventional reconstruction are now resolved. 

 
 

Figure 12. Thirteen points synthetic image from T72 (315° azimuth angle) 
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Figure 13. Synthetic T72 image reconstruction from reduced-resolution data. Up: ground truth.  

 Down: results from 64x64 data, left: SPECAN, right SR-SPECAN 

4.3.1 Main-lobe width 

We compute the average 3-dB main-lobe width (AMLW) as described in Sect. 3.1.2 for all the 8-azimuth-
direction reconstructed MSTAR scenes of each target. The AMLW for the proposed method has been 
calculated as the mean AMLW over the super-resolved images starting from AR order 7, ending to 31 (see  
Figure 14 for an example on tank T72 with 270° target azimuth angle). The results in Table 3 show that 
our proposed scheme is able to reduce the lobe width considerably. To put these numbers in perspective, 
note that the resolution supported by the data is 0.6 m in this experiment. In last row of Table 3 we report 
the Improvement factor calculated as the ratio of mean AMLW for conventional and proposed method. 

 
Figure 14. AMLW for T72 image vs AR order 
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T72 BTR70 BMP2 Target 
Azimuth SR Conventional SR Conventional SR Conventional 

0° 0.1345 0.2144 0.0633 0.1626 0.1368 0.2803 
45° 0.0937 0.1889 0.1292 0.1943 0.0817 0.1548 
90° 0.0852 0.1803 0.1347 0.2463 0.0835 0.2068 

135° 0.0772 0.159 0.1115 0.1745 0.0892 0.2330 
180° 0.1412 0.2473 0.1243 0.1962 0.0789 0.1656 
225° 0.1337 0.2490 0.0761 0.1582 0.0992 0.1929 
270° 0.0574 0.1398 0.0854 0.2780 0.0879 0.3534 
315° 0.0892 0.1702 0.0727 0.1874 0.0747 0.1595 

Average 0.1015 0.1936 0.0997 0.1997 0.0915 0.2183 
I Factor 1.9 2 2.38 

Table 3. Average mail-lobe-widths of images for proposed and conventional methods 

4.3.2 Peak matching accuracy and average associated peak distance (AAPD) 

We now evaluate how the locations of the dominant peaks are preserved in reduced-resolution data 
situations by the conventional reconstructions and by our point-enhanced images. For the MSTAR 
examples, we use the locations of the 13 peaks extracted from tank T72 (315° azimuth angle) Taylor-
windowed synthetic image reconstructed from full data ( 

Figure 12). Figure 15 provides a visual comparison of the peak locating accuracy of the reconstructions 
from 64×64 data, comparing peaks extracted from our images with those from the conventional ones. The 
circles indicate the “reference” locations of the 13 dominant scatterers, and the plus signs indicate the 
peaks extracted from the reconstructed reduced-resolution images. Left side contains results for the 
conventional images, while  right side contains those for the SR images. The clear observation we can 
make out of these results is that, since conventional image formation causes peaks to merge, some of the 
peaks in the target area are lost, and peaks outside this area may become dominant. We will now evaluate 
the peak matching accuracy of our method by using the criterion described in Sect. 3.1.3. In Figure 17, 
Figure 18, Figure 19, we plot the average number of peak matches for the images formed by the 
conventional and the proposed methods as a function of the radius r within which a match declaration is 
allowed, respectively for T72, BTR70, and BMP2. The peak matching accuracy of our images appear to 
be higher than that of the conventional images. Note that our analysis is based on finding peaks all around 
the scene. Alternatively, the search for peaks can be done in a pre-determined target region only. The 
improved accuracy provided by our method is easy to observe in these plots. 

 

Figure 15. Sample peak extraction results for the synthetic reduced 64x64 T72 scenes. Circles 
indicate the scatterer locations in the synthetic scene. Plus signs indicate peaks extracted from 

the reconstructed images. Left: Conventional. Right: Proposed SR method. 
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The average distance between the true synthesized 13 peaks and the 13 peaks extracted from the 
reconstructed images as described in Sect. 3.1.4 is 0.46m for conventional method and 0.088m for 
proposed SR-SPECAN. These results indicate a clear reduction in peak distances by our method. Now we 
evaluate peak matching accuracy of  both conventional and proposed method over reduced resolution 
method. Reduced images are formed from 64×64 reduced synthetic 256×256 image (loss resolution factor 
4). A Taylor-window is applied for conventional method. Table 4, Table 5 and Table 6 show such 
performance results for each target type. It is clear to see how peak matching probabilities of proposed 
SR-SPECAN method is higher than that of conventional one with a reduced averaged associated peak 
distance. The AR order chosen for both axes in SR methods is 3. Figure 16 shows one matching example 
for BTR70 target, with relative average number of peak matches curves for the synthetic scene as a 
function of the radius of match declaration. 

 

T72 
SR Conventional Target 

 Azimuth Matches AAPD(m) Matches AAPD(m) 
0° 12/12 0 6/12  0.0167 

45° 11/11 0 9/11  0.0111 
90° 12/12 0 8/12  0.0530 

135° 14/14 0 7/14  0.0429 
180° 12/15 0.0167 5/15 0.0766 
225° 14/14 0 6/14 0.0471 
270° 19/21 0.1972 10/21 0.0883 
315° 11/11 0 5/11 0.0483 

Average 96.3% 0.0267 52% 0.048 
Table 4. Peak matching accuracy and average associated peak distance (AAPD) performance for 

T72 data 

BTR70 
SR Conventional 

Target Azimuth 

Matches AAPD(m) Matches AAPD(m) 
0° 16/19 0.1207 7/19 0.0866 

45° 12/12 0 8/12 0.0405 
90° 18/18 0.1128 10/18 0.0200 

135° 12/12 0 4/12 0.1377 
180° 10/17 0.0200 4/17 0.0854 
225° 15/15 0 7/15 0.1178 
270° 14/14 0.0706 5/14 0.0400 
315° 10/10 0 8/10 0.1361 

Average 92.8% 0.0405 47.3% 0.0830 
Table 5. Peak matching accuracy and average associated peak distance (AAPD) performance for 

BTR70 data 
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BMP2 
SR Conventional 

Target Azimuth 

Matches AAPD(m) Matches AAPD(m) 
0° 9/9 0 4/9 0.0604 

45° 8/8 0 6/8 0 
90° 12/23 0.1369 6/23 0.1177 

135° 8/8 0 7/8 0 
180° 18/18 0.1063 8/18 0.0427 
225° 11/11 0 8/11 0.0375 
270° 9/19 0.0824 4/19 0.1104 
315° 10/10 0 7/10 0.0143 

Average 87.5% 0.0407 55.1% 0.0479 
Table 6. Peak matching accuracy and average associated peak distance (AAPD) performance for 

BMP2 data 

 

 
Figure 16. BTR70 (90°) Left column: reconstructed image from reduced 64x64 data. 

Right: pixel matching image. Top: Conventional. Bottom: Proposed method. 
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Figure 17. Average number of peak matches 
for the synthetic T72 (180°) scene as a 

function of the radius of match declaration r 

Figure 18. Average number of peak matches 
for the synthetic BTR70 (90°) scene as a 

function of the radius of match declaration r 

 
Figure 19. Average number of peak matches for the synthetic BMP2 (180°) scene as a function of 

the radius of match declaration r 
 

4.4 Region-Enhanced Imaging 
We now compare our region-enhanced images with conventional ones in terms of the criteria described in 
Sect. 3.2.1. Here, we form interpolated images patches (factor 8) from 128 × 128 Taylor-weighted phase 
history samples. In our proposed SR-method, we use an AR order equal to 20 for each target type and both 
axis, we will see that low AR values are preferred in order to enhance regions segmentation.  

4.4.2 Segmentation accuracy 

We segment our region-enhanced images by simple adaptive thresholding as described in Sect. 3.2.1, 
using c1=1 and  c2=2 for both proposed and conventional method. Pictures from Figure 20 to Figure 22  
shows sample reconstructions using the conventional and proposed method for BTR70 target type. In 
contrast to the conventional images, the SR reconstructions reduce variability in homogeneous regions, 
while preserving discontinuities at region boundaries. These results show that segmentation is 
considerably simplified by our reconstruction method. It is clear to see that such thresholding-based 
segmentation applied to conventional images, produce results dominated by fluctuations in homogeneous 
regions. We have also discovered that low AR order values are optimum for best segmentation 
performance. 
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Figure 20. BTR70 (90°). Histogram plot from reconstructed data. Left: Conventional. Rigth: 

Proposed. 

 
Figure 21. BTR70 (90°). SR-Specan: Results post Image Segmentation. Top row: Binary mask. 

Bottom row: Results. 
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Figure 22. BTR70 (90°). Specan: Results post Image Segmentation. Top row: Binary mask. 

Bottom row: Results. 

5.0 CONCLUSION 

We have demonstrated the feature-enhancement properties of Super-Resolution method using 2D 
modified covariance method through a variety of quantitative criteria. The results indicate that the images 
produced by this method exhibit super-resolution and improved localization accuracy for dominant 
scatterers when high AR orders are used, and improved separability for different regions for low AR 
orders. With these properties, the method seems to have the potential for improving the performance of 
ATR systems. At the moment polar and multi-frequency data has been used to “combine multi-domain 
data” with proposed fusion method in order to increase correct classification probabilities. Future work 
will involve running recognition tests on images produced by this technique, and automatic selection of 
AR order (Akaike Information Criteria and Minimum description length). 
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ABSTRACT 

In several circumstances targets at sea are difficult to detect.  This difficulty is intrinsically related to the 
target's physical attributes and its environment (sea and weather conditions). 

The possibility of detecting and scaling the ATR levels from detection up to characterization depends on 
such aforesaid difficulties. In any given situation, are there any physical attributes which might enhance 
and temporarily stabilize the target radar response and/or the background? 

The existence of such attributes could be initially detected by adopting a series of suitable RF radar 
parameters. 

This poster illustrates the results of a technique based on the use of suitable RF parameters, data 
acquisition and processing methodologies in order to improve the probability of success in the detection 
process.  

An agile full polarimetric multi frequency and PWs radar is used to transmit and receive scattered echoes.  

I and Q channels are acquired using four fast, wide BW A/D converters possessing high throughput to 
memory. This allows the acquisition of a complete set of scattered radar responses from portions of sea 
surfaces that probably contain a target. Radar responses (echoes) catalogued in a scattering data bank 
are then used to feed a recursive d & c algorithm employing the polarimetric estimator which indicates 
the likely presence of targets in the area. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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RADAR MMS 300 

 

  
Fig. 1 Fig. 2 

  

 

(Fig.1 and Fig.2) 
MMS300 Radar; 
2-18 GHz, polarization and frequency agile, 
multi PWs. 
 
(Fig. 3)  
4-channels A/D converter; 
Wide analogic and digital bandwidths with high 
throughput to memory. 
 

Fig. 3  
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The polarimetric vector allows the recovery of the scattered radar energy regardless of the depolarization it 
may have suffered. 
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Polarimetric Phase Plane+90°

-90°
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Depolarization increases  in the arrow  direction
+ 90° means no depolarization
-  90° maximum of depolarization  

 

INVARIANCE 

With current technology large and small targets may represent the same threat level as well as having the 
same RCS. 
This implies that all targets must be detected however small their RCS. 
In a detection process, instead of using RCS, the use of different RF parameters might result in a stable 
radar response therefore increasing the probability of survival and the possibility of reaching higher ATR 
levels. 
Doing this depends on the existence of certain physical target attributes – referred to as INVARIANT 
PHYSICAL PROPERTIES - whose radar response is stable. 
 

INVARIANT RADAR QUANTITY
A quantity  (tensor, vector or scalar) obtained by the analytic
combination of some RF quantities giving a radar response which 
remains  stable even if the interrogating frequency, PWs, and time of 
observation are altered. 
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INVARIANT RADAR QUANTITY
A quantity  (tensor, vector or scalar) obtained by the analytic
combination of some RF quantities giving a radar response which 
remains  stable even if the interrogating frequency, PWs, and time of 
observation are altered. 

The need 
 
Detection of targets at sea. 
 

The dynamic estimator 
A procedure based on the use of the RADAR INVARIANT QUANTITY HRP: a scalar which is stable in 
time and space and obtained by the right combination of all the elements of the complete scattering matrix. 
This scalar is not expected to be dependent on frequency and PWs but is very sensitive to changes in 
polarization. 
Its efficacy is related to both the polarization coherence of the target and the polarization incoherence of 
the rough sea. 
 



The Polarimetric Dynamical Estimator HRP 
Improving Success in the Detection Process   

P10 - 4 RTO-MP-SET-080 

 

 

The procedure 
A series of bursts are emitted at various frequencies, PWs and polarizations.  
Received scattered pulses acquired in different range gates build up the complete scattering matrix. 
A recursive algorithm based on a dynamic estimator permits the search for signals compatible with the 
presence of targets in the marked areas. 
Subsequent specialized searches may be conducted in the identified areas by varying transmitted and 
received RF parameters (frequency, PWs). 
Detected targets illuminated with specialized radar RF parameters are then studied in order to scale all 
levels of the "ATR chain" through the use of the dynamic estimator. 
The procedure is not stochastic but deterministic. 
 

Use: Target detection and characterization 
 

 
Fig.4 

 
Sea and Targets are synthesized 
 

 
Fig. 5.  Polarization area synthesis 

 
A technique capable of calming a rough sea. 
Targets are seen as in a calm sea 
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Fig. 6. Detail of photograph of the Fig.4 

 
A 150-mt ship at anchor with tugboat on starboard side. 
Graphs and ISAR radar images presented on right side of poster are referred to this ship. 
The anchored ship avoided the necessity of doing range compensation on data. 
 
Uses of dynamic estimator 
 

 
Fig. 7.  Blue HRP vs down-range (d.r.) - Red Mag of Polarimetric vector vs d.r. 

 
Trailing and leading edges correspond to interfaces sea-target-sea. 
 
Some detail of the above Fig. 7. 
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Fig. 8 

Blue HRP vs d.r. 
Red Mag of Polarimetric vector vs d.r. 

Fig. 9 
Blue HRP vs (d.r.) 
Red Mag of Polarimetric vector vs d.r. 

 
- Targets are easily and automatically detected; 
- The ATR chain can be scaled up to the desired level; 
- Potential applications encompass any situation for which an ATR process has to be primed. 

 

 
Fig. 10.  Upper coloured graphs represent 100 different HRPs vs d.r. 

      Lower green graphs represent 100 different polarimetric vector MAGs vs d.r. 
 
Each single graph was acquired in single shot.  Point-to-point distance on each graph: 7.5 cm. 
Graph-to-graph time distance is 1 msec; total observation time: 100 msec.  
HRP is also sensitive to small MAG values of the target scatterers. 
 
Below graphs are histograms of different detail part of the HRP signal of the above Fig. 10. 
 

Interface Sea-Target 
Mag of Pol. vector 

Sea 
HRP 

Target 
HRP 
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Fig. 11 

HRP histogram performed only on entire target 
echo 

Fig. 12 
HRP histogram performed only on sea radar signal 

 
 

  
Fig. 13 

2D ISAR radar image of circled ship in photograph 
of Fig.6. 
X axis is d.r.; Y axis proportional to elevation 
angle. 
The image is obtained using Magnitude of VV 
channel. 
Down Range spatial resolution (Rayleigh criterium) 
is about 70 cm. 
During observation time the roll angle variation was 
predominant and permitted a resolution in elevation 
range of about 4 mt. 
Data was not focused nor compensated nor 
absolutely calibrated 

Fig. 14 
2D ISAR radar image of the circled ship in the 
photograph of Fig.6, obtained using HRP. 
Target textures, particulars and contours are made 
evident. 
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Fig. 15 

 
2D ISAR radar image of circled ship in photograph of Fig.6. 
X axis is d.r.; Y axis is proportional (not linearly) to the height of the 
scatterer in relation to the sea level. The radar image is obtained using the 
Mag of VV channel. Dedicated processing techniques permitted the 
extraction of the scatterers having different heights in relation to sea level. 

 
 
Some verification 
 

 
Fig. 16 

 
Each Graph represents HRP vs time (down-range).  Raw I & Q data were sampled in single shot.  Elapsed 
time graph-to-graph is 140 msec.  X axis is time (sample-to-sample about 500 psec). 
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Trailing edge of HRP of circled ship in the photograph of Fig.6.  HRP is stable in space and with passing 
time. 
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Abstract
In the continuous-time domain, Maximum-Likelihood (ML) detection of a chirp signal in white Gaussian

noise can be done via the line-integral transform of the classical Wigner distribution. The line-integral
transform is known variously as the Hough transform and the Radon transform. For discrete-time signals,
the Wigner-type distribution defined by Claasen and Mecklenbrauker has become popular as a signal
analysis tool. Moreover, it is commonly believed that ML detection of a discrete-time chirp signal in
white Gaussian noise can be done via the line-integral transform of the Wigner-Claasen-Mecklenbrauker
distribution. This belief is false and results in loss of performance. We derive a Wigner-type distribution
for discrete-time signals whose line-integral transform can be used for ML detection of discrete-time
chirp signals in white Gaussian noise. We provide simulated Receiver Operating Curves for the Wigner-
Claasen-Mecklenbrauker distribution based method and the new ML-equivalent method and demonstrate
the suboptimality of the former.

I. Introduction
For a continuous-time signal r(t), the classical Wigner distribution is defined as [1]

Wr(t, ω) =
∫

r(t + τ/2)r∗(t − τ/2)e−jωτdτ, (1)

where t is time and ω is frequency. In [1], the Wigner distribution was shown to have many properties
that make it a useful signal analysis tool.

Suppose we have observed a continuous-time signal r(t) and want to detect the presence or absence
in r(t) of a chirp signal

s(t) = aej(ω0t+
1
2
mt2), (2)

with unknown parameters a, ω0 and m, and with the background being additive white Gaussian noise.
The classical maximum-likelihood method is equivalent to the hypothesis test

max
ω0,m

∣∣∣∣
∫

r(t)e−j(ω0t+
1
2
mt2)dt

∣∣∣∣2
H1

>
<
H0

γ, (3)

where

• H0 is the Noise-Only Hypothesis r(t) = w(t),
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• H1 is the Signal-plus-Noise Hypothesis r(t) = s(t) + w(t),
w(t) is white Gaussian noise and γ is a threshold whose value is set based on probability of error
considerations. More precisely, if the maximum on the left hand side (LHS) of (3) is less than the
threshold γ then H0 is considered true and if the maximum on the LHS of (3) is greater than the
threshold γ then H1 is considered true.

In [2], the hypothesis test (3) was shown to be approximately equivalent to

max
ω0,m

∫
Wr(t, ω0 + mt)

H1

>
<
H0

γ (4)

for chirp signals of large duration. This equivalence was shown in [3] to be exact and valid even for
finite-duration signals. More specifically, it was shown in [3] that∣∣∣∣

∫
r(t)e−j(ω0t+

1
2
mt2)dt

∣∣∣∣2 =
∫

Wr(t, ω0 + mt)dt, (5)

where the quantity on the right hand side is a line-integral transform of the Wigner-distribution variously
known as the Hough transform and the Radon transform. Detecting a chirp signal via the hypothesis test
(3) is known variously as the correlator method and the dechirp-Doppler method.

A study of the use of time-frequency distributions for detecting signals is found in [4].
For a discrete-time signal r(n), the Wigner distribution defined by Claasen and Mecklenbrauker [5]

has become popular as a signal analysis tool. Their definition of Wigner distribution is

W CM
r (n, θ) = 2

∑
k

r(n + k)r∗(n − k)e−j2kθ, (6)

where n is discrete-time and θ is frequency.
Suppose we have observed a discrete-time signal r(n), for n = 0, . . . , (N − 1), and want to detect the

presence or absence in r(n) of a chirp signal

s(n) =

{
b0e

j(b1n+ 1
2
b2n2) if 0 ≤ n ≤ (N − 1),

0 otherwise,
(7)

with unknown parameters b0, b1 and b2, with the background being additive white Gaussian noise.
Discrete-time chirp signals arise directly in pulse Doppler radars when a target is moving with acceleration
[8]. Discrete-time chirp signals also arise in synthetic aperture radars and inverse synthetic aperture radars.
A discrete-time chirp signal may also arise as a sampled-version of a continuous-time chirp signal. This
is the case, for example, in electronic counter measures to LFM radar and sonar. Many situations where
chirp signals occur in nature are described in [9].

For the above discrete-time detection problem, define

∆r(c1, c2) =

∣∣∣∣∣
N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2)

∣∣∣∣∣
2

. (8)

The classical Maximum-Likelihood (ML) method is then equivalent to the hypothesis test

max
c1, c2

∆r(c1, c2)

H1

>
<
H0

γ, (9)

where
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• H0 is the Noise-Only Hypothesis r(n) = v(n),
• H1 is the Signal-plus-Noise Hypothesis r(n) = s(n) + v(n),

v(n) is white Gaussian noise and γ is a threshold. We shall henceforth refer to the method of (9) as the
correlator method. Appendix I gives a brief derivation of the method of (9).

It is commonly and erroneously assumed that the equivalence of (5) for continuous-time signals carries
over to discrete-time signals as∣∣∣∣∣

∑
n

r(n)e−j(c1n+ 1
2
c2n2)

∣∣∣∣∣
2

=
∑
n

W CM
r (n, c1 + c2n), (10)

where the quantity on the right hand side is the line-integral transform of the Wigner distribution (6).
Based on this assumption, it is claimed, erroneously, that ML detection of the discrete-time chirp signal
s(n) is equivalent to the hypothesis test

max
c1, c2

∑
n

W CM
r (n, c1 + c2n)

H1

>
<
H0

γ. (11)

However, it has been observed in [6] that the W CM
r -based method (11) incurs a 3 dB loss due to non-

linearity.1 In Appendix IV, we provide simulated Receiver Operating Curves for the ML method (9) and
the W CM

r -based method (11) and demonstrate the suboptimality of the latter. Moreover, as we will show,
the range of unambiguosly measurable values of b1 for the W CM

r -based method (11) is half of that of
the correlator method (9).

In this paper, we derive a time-frequency distribution which is optimum for detecting discrete-time
chirp signals in white Gaussian noise, with the optimality being in the sense that ML detection can
be carried out via the line-integral transform of the derived time-frequency distribution. The derived
time-frequency distribution may be considered a Wigner-type distribution.

It turns out that the Wigner-type time-frequency distribution derived in this paper is the same as
that derived by Chan [7] in an effort to solve the problem of aliasing in the Wigner distribution (6).
Nevertheless, the optimality property of this distribution for detection of a discrete-time signal was not
observed in [7]. Therefore, in the context of signal detection, this discrete-time distribution seems new.

II. Three Wigner-type Time-Frequency Distributions for Discrete-Time Signals
In attempting to write ∆r(c1, c2) of (8) as the line-integral of a time-frequency distribution of r(n),

we arrive at three Wigner-type time-frequency distributions of a discrete-time signal. We first describe
these time-frequency distributions and in the next section we describe the actual line-integral transform.

Given a discrete-time signal r(n), we denote rπ(n) = r(n)ejπn. That is rπ(n) is the signal obtained
by frequency-shifting r(n) by π radians/second.

A. Type-I Wigner Distribution

The type-I Wigner distribution W I
r (n, θ) is defined as

W I
r (n, θ) =

∑
k

r(n + k)r∗(n − k)e−j2kθ, (12)

1The ratio between the output SNR and the input SNR is (c.f. equation (13) of [6])
SNRout
SNRin

=
(

N
2

)( NSNRin
NSNRin+1

)
, which

is less than N/2. The ratio approaches N/2 as NSNRin → ∞.
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where n is discrete-time and θ is frequency.
Note that W I

r (n, θ) is the same as W CM
r (n, θ) (c.f. (6)) defined in [5] except for the missing scaling

factor 2 at the front.
For a signal r(n) that is zero outside 0 ≤ n ≤ (N − 1), the type-I Wigner distribution W I

r (n, θ) is
zero outside 0 ≤ n ≤ (N − 1).

The following properties are easy to verify: W I
r (n, θ) is real, W I

r (n, θ) is a periodic function of θ with
period π, W I

rπ
(n, θ) = W I

r (n, θ). Thus W I
r (n, θ) is invariant to frequency-shifting the signal r(n) by π

radians/second.

B. Type-II Wigner Distribution

The type-II Wigner distribution W II
r (n, θ) is defined as

W II
r (n, θ) =

∑
k

r(n + k + 1)r∗(n − k)e−j(2k+1)θ, (13)

where n is discrete-time and θ is frequency.
For a signal r(n) that is zero outside 0 ≤ n ≤ (N − 1), the type-II Wigner distribution W II

r (n, θ) is
zero outside 0 ≤ n ≤ (N − 2).

The following properties are easy to verify: W II
r (n, θ) is real, W II

r (n, θ) is a periodic function of θ
with period 2π, W II

r (n, θ+π) = −W II
r (n, θ), W II

rπ
(n, θ) = −W II

r (n, θ). Thus frequency-shifting of the
signal r(n) by π radians/second causes a sign change in W I

r (n, θ).

C. Type-III Wigner Distribution

The type-III Wigner distribution W III
r (n, θ) is defined in terms of the type-I and type-II Wigner

distributions as follows.

W III
r (n, θ) =

{
W I

r (n/2, θ) for even n,
W II

r ((n − 1)/2, θ) for odd n.
(14)

Note that W III
r (n, θ) is the same as the “non-aliased discrete-time Wigner distribution” derived by

Chan in [7] in an effort to solve the aliasing problem of W CM
r (n, θ) (c.f. (6)) defined in [5].

For a signal r(m) that is zero outside 0 ≤ m ≤ (N − 1), the type-III Wigner distribution W III
r (n, θ)

is zero outside 0 ≤ n ≤ 2(N − 1). However, if we consider even n to correspond to integer values n/2
of time and odd n to correspond to half-integer values n/2 of time, then W III

r (n, θ) is zero outside the
time range 0 ≤ m ≤ (N − 1).

The following properties are obvious: W III
r (n, θ) is real, W III

r (n, θ) is a periodic function of θ with
period 2π. For even n, W III

rπ
(n, θ) = W III

r (n, θ). For odd n, W III
rπ

(n, θ) = −W III
r (n, θ).

III. A Wigner-Distribution Formulation of the ML Detection Problem for a
Discrete-Time Chirp Signal

For a discrete-time signal r(n) that is zero outside 0 ≤ n ≤ (N − 1), we have shown in Appendix II
that

∆r(c1, c2) =
2N−2∑
n=0

W III
r (n, c1 +

1
2
c2n). (15)

Thus we can calculate ∆r(c1, c2) by taking the type-III Wigner distribution W III
r (n, θ) of the discrete-

time signal r(n) and integrating it along the line with intercept c1 (value of θ at n = 0) and slope 1
2c2

(increment in θ per unit increment in n). This property of W III
r (n, θ) was not observed in [7]. Therefore,
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in the context of detection of discrete-time signals, the type-III Wigner distribution W III
r (n, θ) seems

new.
Relationship (15) implies that we can perform ML detection by the test

max
c1, c2

2N−2∑
n=0

W III
r (n, c1 +

1
2
c2n)

H1

>
<
H0

γ, (16)

where γ, H0 and H1 are as defined for the correlator method (9).

A. Advantages of the Type-III Wigner Distribution Based Method

In Appendix III, we have derived the type-I and type-III Wigner distributions for the discrete-time
chirp signal

s(n) =

{
ej(b1n+ 1

2
b2n2) if 0 ≤ n ≤ (N − 1)

0 otherwise.
(17)

If the chirp signal has complex amplitude b0 then the Wigner distributions must be scaled by |b0|2.
Thus, in the absence of any noise or interference, the Wigner distributions W I

r (n, θ) and W III
r (n, θ)

are concentrated along a straight line whose intercept of the frequency axis is b1 and the frequency/time
slope is b2. Therefore, the visual appeal of the W CM

r -based method (11) is retained by the W III
r -based

method (16). Moreover, any method of automatically detecting the line where W CM
r is concentrated can

be used for automatically detecting the line where W III
r is concentrated.

As the W III
r -based method (16) is mathematically equivalent to the correlator method (9), it has the

same Signal-to-Noise (SNR) performance as the ML method.
The properties of the type-I and type-III Wigner distributions stated in Section II show that the range

of unambiguously measurable values of b1 can be doubled by using the W III
r -based method instead of

the W CM
r -based method. More specifically,

• for the W CM
r -based method, the interval of unambiguously measurable values of b1 is [−π/2, π/2],

• for the W III
r -based method, the interval of unambiguously measurable values of b1 is [−π, π], which

is the maximum possible.

IV. Conclusion
In this paper, we considered detecting a discrete-time chirp signal, in the presence of additive white

Gaussian noise, via the line-integral transform of a time-frequency distribution of the observed signal.
We pointed out that the popular method, in which the line-integral transform of the Wigner-Classen-
Mecklenbrauker distribution is maximized, is not equivalent to the maximum-likelihood (ML) method.
We derived a Wigner-type distribution with the property that maximizing its line-integral transform is
equivalent to the ML method. We provided simulated Receiver Operating Curves for the Wigner-Claasen-
Mecklenbrauker distribution based method and the new ML-equivalent method and demonstrated the
suboptimality of the former. The use of the derived Wigner-type distribution also doubles the range
of unambiguously measurable values of the initial frequency parameter b1 of the chirp signal to the
maximum possible [−π, π].
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APPENDIX I

The Maximum Likelihood Method
Suppose we have observed a discrete-time signal r(n), for n = 0, . . . , (N − 1), and want to detect the

presence or absence in r(n) of a chirp signal

s(n) =

{
b0e

j(b1n+ 1
2
b2n2) if 0 ≤ n ≤ (N − 1),

0 otherwise,
(18)

with unknown parameters b0, b1 and b2, with the background being additive white Gaussian noise. The
classical Maximum-Likelihood (ML) method is then equivalent to the hypothesis test

max
c0, c1, c2

Λ(c0, c1, c2)

H1

>
<
H0

η, (19)

where

Λ(c0, c1, c2) =
N−1∑
n=0

|r(n)|2 −
N−1∑
n=0

∣∣∣r(n) − c0e
j(c1n+ 1

2
c2n2)

∣∣∣2 (20)

is the log-likelihood ratio,

• H0 is the Noise-Only Hypothesis r(n) = v(n),
• H1 is the Signal-plus-Noise Hypothesis r(n) = s(n) + v(n),

v(n) is white Gaussian noise and η is a threshold whose value is set based on probability of error
considerations. When H1 is considered true, the values of c0, c1, and c2 that maximize Λ(c0, c1, c2) are
the maximum likelihood estimates of b0, b1 and b2, respectively.

By writing

Λ(c0, c1, c2) = 2�
(

c∗0
N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2)

)
− |c0|2 N, (21)

= N


 1

N2

∣∣∣∣∣
N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2)

∣∣∣∣∣
2

−
∣∣∣∣∣ 1
N

N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2) − c0

∣∣∣∣∣
2

 , (22)

we conclude that for any fixed (c1, c2) pair, Λ(c0, c1, c2) is maximized by

c0 =
1
N

N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2), (23)

and for this choice of c0, Λ(c0, c1, c2) = 1
N ∆(c1, c2), where

∆(c1, c2) =

∣∣∣∣∣
N−1∑
n=0

r(n)e−j(c1n+ 1
2
c2n2)

∣∣∣∣∣
2

. (24)

Therefore, the ML method is equivalent to the hypothesis test

max
c1, c2

∆(c1, c2)

H1

>
<
H0

γ, (25)
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where γ is a threshold (which can be related to η). When H1 is considered true, the values of c1 and c2

that maximize ∆(c1, c2) are the maximum likelihood estimates of b1 and b2 respectively.
Thus the ML method can be implemented as a correlator in the (c1, c2) plane. This method is also

known as the dechirp-Doppler method, i.e., first multiplying by e−j 1
2
c2n2

to obtain a pure complex
exponential, or nearly so, so that there will be little or no loss due to Doppler spreading when estimating
the frequency of the pure complex exponential by the conventional Doppler processing method.

APPENDIX II

Computing ∆r(c1, c2) via the Wigner Distributions
For a discrete-time signal r(n) that is zero outside 0 ≤ n ≤ (N −1), we show how to write ∆r(c1, c2)

(c.f. (8)) as the line-integral of a time-frequency distribution of r(n).
We begin by writing ∆r(c1, c2) as the double summation

∆r(c1, c2) =
N−1∑
n1=0

N−1∑
n2=0

r(n1)r∗(n2)e−j(c1(n1−n2)+
1
2
c2(n2

1−n2
2)), (26)

=
N−1∑
n1=0

N−1∑
n2=0

r(n1)r∗(n2)e−j(n1−n2)(c1+
1
2
c2(n1+n2)). (27)

Then we break the double summation into two double summations - one double summation being
over n1 and n2 where (n1 − n2) is even and the other double summation being over n1 and n2 where
(n1 − n2) is odd. Thus we define

∆I
r(c1, c2) =

∑N−1
n1=0

∑N−1
n2=0

(n1 − n2) is even
r(n1)r∗(n2)e−j(n1−n2)(c1+

1
2
c2(n1+n2)), (28)

and

∆II
r (c1, c2) =

∑N−1
n1=0

∑N−1
n2=0

(n1 − n2) is odd
r(n1)r∗(n2)e−j(n1−n2)(c1+

1
2
c2(n1+n2)). (29)

To compute ∆I
r(c1, c2), we use the change of variables2

n1 + n2 = 2m, (30)

n1 − n2 = 2k, (31)

define l = min(m,N − 1 − m) and obtain

∆I
r(c1, c2) =

N−1∑
m=0

l∑
k=−l

r(m + k)r∗(m − k)e−j2k(c1+c2m), (32)

=
N−1∑
m=0

W I
r (m, c1 + c2m). (33)

Similarly, to compute ∆II
r (c1, c2), we use the variable change

n1 + n2 = 2m + 1, (34)

n1 − n2 = 2k + 1, (35)

2Note that n1 + n2 is even if and only if n1 − n2 is even.

Optimum Time-Frequency Distribution for Detecting 
a Discrete-Time Chirp Signal in White Gaussian Noise 

RTO-MP-SET-080 P11 - 7 



define l = min(m,N − 2 − m) and obtain

∆II
r (c1, c2) =

N−2∑
m=0

l∑
k=−(l+1)

r(m + k + 1)r∗(m − k)e−j(2k+1)(c1+
1
2
c2+c2m),

(36)

=
N−2∑
m=0

W II
r (m, c1 +

1
2
c2 + c2m). (37)

By combining (33) and (37), we obtain

∆r(c1, c2) = ∆I
r(c1, c2) + ∆II

r (c1, c2), (38)

=
N−1∑
m=0

W I
r (m, c1 + c2m) +

N−2∑
m=0

W II
r (m, c1 +

1
2
c2 + c2m), (39)

=
N−1∑
m=0

W III
r (2m, c1 +

1
2
c22m) +

N−2∑
m=0

W III
r (2m + 1, c1 +

1
2
c2(2m + 1)),

(40)

=
2N−2∑
m = 0

(m is even)

W III
r (m, c1 +

1
2
c2m) +

2N−2∑
m = 0

(m is odd)

W III
r (m, c1 +

1
2
c2m), (41)

=
2N−2∑
m=0

W III
r (m, c1 +

1
2
c2m). (42)

Thus we have proved (15) of Section III.

APPENDIX III

Wigner Distributions of a Discrete-Time Chirp Signal
Here we derive the type-I, type-II, and type-III Wigner distributions for the discrete-time chirp signal

s(n) =

{
ej(b1n+ 1

2
b2n2) if 0 ≤ n ≤ (N − 1)

0 otherwise.
(43)

These Wigner distributions are defined in Section II.

A. Type-I Wigner Distribution

The type-I Wigner distribution W I
s (n, θ) is defined as

W I
s (n, θ) =

∑
k

s(n + k)s∗(n − k)e−j2kθ. (44)

The signal product term s(n+k)s∗(n−k) is zero outside the ranges 0 ≤ n ≤ (N −1) and −min(n,N −
1 − n) ≤ k ≤ min(n,N − 1 − n). Thus W I

s (n, θ) = 0 outside 0 ≤ n ≤ (N − 1).
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Define l = min(n,N − 1 − n). In terms of this, for 0 ≤ n ≤ (N − 1),

W I
s (n, θ) =

l∑
k=−l

ej(b1(n+k)+ 1
2
b2(n+k)2)e−j(b1(n−k)+ 1

2
b2(n−k)2)e−j2kθ, (45)

=
l∑

k=−l

ej(b12k+ 1
2
b24nk)e−j2kθ, (46)

=
l∑

k=−l

e−j(θ−(b1+b2n))2k, (47)

which is a sum of a geometric series that can be easily evaluated. To do this, we substitute α = θ −
(b1 + b2n) into the summation

l∑
k=−l

e−j2αk =

{
2l + 1 if α = 0 mod π,
sin[α(2l+1)]

sinα otherwise.
(48)

Thus, for 0 ≤ n ≤ (N − 1),

W I
s (n, θ) =

{
2l(n) + 1 if α(n) = 0 mod π,
sin[α(n)(2l(n)+1)]

sinα(n) otherwise.
, (49)

where l(n) = min(n,N − 1 − n) and α(n) = θ − (b1 + b2n). In a 3-dimensional plot, W I
s (n, θ) has

ridges along the lines given by α(n) = 0 mod π and the common height of these ridges is 2l(n) + 1.

B. Type-II Wigner Distribution

The type-II Wigner distribution W II
s (n, θ) is defined as

W II
s (n, θ) =

∑
k

s(n + k + 1)s∗(n − k)e−j(2k+1)θ. (50)

The signal product term s(n + k + 1)s∗(n − k) is zero outside the ranges 0 ≤ n ≤ (N − 2) and
−min(n + 1, N − 1 − n) ≤ k ≤ min(n,N − 2 − n). Thus W II

s (n, θ) = 0 outside 0 ≤ n ≤ (N − 2).
Define l = min(n,N − 2 − n). In terms of this, for 0 ≤ n ≤ (N − 2),

W II
s (n, θ) =

l∑
k=−(l+1)

ej(b1(n+k+1)+ 1
2
b2(n+k+1)2)e−j(b1(n−k)+ 1

2
b2(n−k)2)e−j(2k+1)θ,

(51)

=
l∑

k=−(l+1)

ej(b1(2k+1)+ 1
2
b2(4nk+2n+2k+1))e−j(2k+1)θ, (52)

=
l∑

k=−(l+1)

e−j(θ−(b1+
1
2
b2+b2n))(2k+1), (53)

= e−j(θ−(b1+
1
2
b2+b2n))

l∑
k=−(l+1)

e−j(θ−(b1+
1
2
b2+b2n))2k, (54)

which is a scaled version of a sum of a geometric series that can be easily evaluated. To do this, we
substitute α = θ − (b1 + 1

2b2 + b2n) into the summation

l∑
k=−(l+1)

e−j2αk =

{
2l + 2 if α = 0 mod π,

ejα
(

sin[2α(l+1)]
sinα

)
,

(55)
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or directly into the scaled version

e−jα
l∑

k=−(l+1)

e−j2αk =

{
e−jα(2l + 2) if α = 0 mod π,
sin[2α(l+1)]

sinα ,
(56)

=




(2l + 2) if α = 0 mod 2π,
−(2l + 2) if α = π mod 2π,
sin[2α(l+1)]

sinα .

(57)

Thus, for 0 ≤ n ≤ (N − 2),

W II
s (n, θ) =




2l(n) + 2 if α(n) = 0 mod 2π,
−(2l(n) + 2) if α(n) = π mod 2π,
sin[2α(n)(l(n)+1)]

sin α(n) otherwise.
, (58)

where l(n) = min(n,N−2−n) and α(n) = θ−(b1+ 1
2b2+b2n). In a 3-dimensional plot, W II

s (n, θ) has
ridges along the lines given by α(n) = 0 mod 2π and the common height of these ridges is 2l(n) + 2.
In a 3-dimensional plot, W II

s (n, θ) also has valleys along the lines given by α(n) = π mod 2π and the
common depth of these ridges is 2l(n) + 2.

C. Type-III Wigner Distribution

The type-III Wigner distribution W III
s (n, θ) is defined in terms of the type-I and type-II Wigner

distributions as

W III
s (n, θ) =

{
W I

s (n/2, θ) for even n,
W II

s ((n − 1)/2, θ) for odd n.
(59)

Define l(n) = min(n
2 , N − 1 − n

2 ) and α(n) = θ − (b1 + 1
2b2n).

For n even and 0 ≤ n ≤ 2(N − 1),

W III
s (n, θ) =

{
2l(n) + 1 if α(n) = 0 mod π,
sin[α(n)(2l(n)+1)]

sinα(n) otherwise.
(60)

For n odd and 0 ≤ n ≤ 2(N − 1),

W III
s (n, θ) =




2l(n) + 1 if α(n) = 0 mod 2π,
− [2l(n) + 1] if α(n) = π mod 2π,
sin[α(n)(2l(n)+1)]

sinα(n) otherwise.
(61)

Combining the above, for all 0 ≤ n ≤ 2(N − 1),

W III
s (n, θ) =




2l(n) + 1 if α(n) = 0 mod 2π,
(−1)n [2l(n) + 1] if α(n) = π mod 2π,
sin[α(n)(2l(n)+1)]

sinα(n) otherwise.
(62)

In a 3-dimensional plot, W III
s (n, θ) has ridges along the lines given by α(n) = 0 mod 2π and the

common height of these ridges is 2l(n) + 1. In a 3-dimensional plot, W III
s (n, θ) also has oscillations

along the lines given by α(n) = π mod 2π; the common period of these oscillations is one and the
common (instantaneous) amplitude is 2l(n) + 1.

Optimum Time-Frequency Distribution for Detecting 
a Discrete-Time Chirp Signal in White Gaussian Noise 

P11 - 10 RTO-MP-SET-080 



APPENDIX IV

Receiver Operating Curve Comparison
Here we present the Receiver Operating Curves (ROCs) obtained by simulation of the Type-I and

Type-III Wigner distribution based methods for the case N = 128 and Output SNR = 7 dB, where
Output SNR is defined as N

( a
σ

)2. For simplicity, the parameters of the chirp signal were assumed to be
known. The suboptimality of the Type-I Wigner distribution based method can be clearly seen.
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Figure 1: ROCs for probability of false alarm ranging from 0 to 1
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Figure 2: ROCs for probability of false alarm ranging from 0 to 0.1
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ABSTRACT 

In this work the author demonstrated a robust and efficient method for implementing Doppler 
classification through the use of Linear Discriminant Analysis (LDA). LDAs were used to reduce 
dramatically the data dimensionality and thereby eliminate redundancy and improve the efficiency of the 
classifier. The performance was assessed on a three-class problem of personnel, tracked and wheeled 
vehicles. Real radar data from a ground based system were used in the design and testing of the classifier. 
The classifier algorithm was optimised by choosing the best set of features that maximised the 
performance and the bootstrap method was used to measure the confidence interval. It was shown that 
only the first few LDA features were relevant. At the very least these were shown to contain information 
regarding the frequency extent of target Doppler sidebands. The classifier was shown to be robust to 
changes in target viewing geometry and speed. Overall, good classification was achieved for personnel 
with some misclassification between tracked and wheeled vehicles. 

1.0 INTRODUCTION 

MTI (Moving Target Indication) radars can provide an all-weather, day/night, surveillance capability. 
Such radar systems provide very efficient location information on moving targets but traditionally have 
limited recognition capability. Automatic recognition algorithms developed for imaging radars, which 
exploit target spatial information, are not applicable for MTI systems because they operate in a low 
resolution mode. However, there is potential for classification based on target Doppler signatures. The 
Doppler signatures are shifted in frequency in proportion to the target radial velocity. Movement or 
rotation of structures on a target may induce additional frequency modulations on the returned radar signal 
and generate sidebands about the Doppler frequency shift of the target’s body. The signature 
characteristics of these Doppler sidebands provide a mechanism for classifying the target of interest. 

The Doppler classifier models each target class as a multivariate Gaussian mixture distribution (GMD). 
The parameters of the GMD model are estimated using labelled training data. The input feature vectors are 
generated from the radar Doppler spectra. It is assumed that each Doppler spectrum provides an 
independent feature vector. Training uses multiple Doppler spectra per target class. Recognition is 
performed using a single Doppler spectrum (feature vector). 

The size (and therefore the dimensionality) of the input feature vector depends upon the number of 
separate frequency bins in the Doppler spectra. Herein lies the limitation of a classification technique that 
uses the Doppler spectra directly for input feature vectors. Doppler spectra can comprise a large number of 
frequency bins (several tens, possibly hundreds) to cover sufficiently the full range of Doppler frequencies 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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at enough resolution to be able to provide meaningful classification performance. High dimensionality 
leads to increased classifier complexity. There are more parameters to estimate per target model which 
results in an increased processing load. Reducing dimensionality makes the classification calculations 
quicker and saves on data storage space. Furthermore, the original set of variables may contain redundant 
and irrelevant information. Redundancy would result in the classifier having extra parameters over and 
above the minimum required to capture the structure within the data. For a finite training set this would 
lead to poorer estimation of the classifier parameters. Therefore, reducing the dimensionality could also 
improve classifier robustness.  

Linear Discriminant Analysis (LDA) is a well established technique for obtaining a reduced-dimension 
representation of the data. LDA defines (a few) new variables as linear combinations of the original ones. 
Evidence from speech recognition has shown that the classification performance improves if features are 
extracted using LDA [1]. There is a key similarity between speech processing and Doppler processing i.e., 
both use the spectrogram as the input measurement. LDA could potentially offer a good approach for 
reducing the number of variables in the Doppler spectra. The technique consists of transforming the 
Doppler spectra variables using linear combination into a set of features (the feature vector) that are 
mutually orthogonal. The individual features are assumed to be independent. The transformation is 
designed to maximise the between-class covariance and minimise the average within-class covariance. 
The transformed features are ranked in order of the class separability. In theory, the classification 
performance should increase monotonically as the number of features increases. This allows simple trade-
offs to be made between complexity (number of features) and viability (classification performance). 

The classification algorithm is developed for a three class problem based on personnel, wheeled vehicles 
and tracked vehicles. Section 2 gives an outline of the algorithm. It describes the pre-processing, the LDA 
feature extraction and the Doppler classification stages of the algorithm. The data sets used in this study 
are described in Section 3. Results are presented in Section 4. Section 5 summarises the conclusions.  

2.0 CLASSIFICATION ALGORITHM 

2.1  Pre-processing 
The objective of Doppler classification is to classify an unknown target as belonging to one of a 
predefined set of classes based on the measured Doppler spectra. The Doppler spectra are obtained by 
Fourier transforming a sequence of samples obtained from a single range cell during the radar dwell. 
Figure 1 compares typical spectra of a wheeled vehicle, a tracked vehicle and a man jogging. The peak in 
the spectra corresponds to the Doppler shift due to the body of the target. The Doppler sidebands, if 
present, are due to any parts of the target which are moving independently of the main body at that 
moment. For the wheeled vehicle there are no Doppler sidebands visible. This can be contrasted with the 
much more complex, but asymmetrical, spectrum of the tracked vehicle, and this can again be 
distinguished from the more symmetrical spectrum of the walking man. 

The information in the Doppler spectra, however, cannot be used directly for classification. This is 
because the Doppler radar signature is affected by certain factors such as the radar gain, noise level, etc., 
that are unrelated to the target class but can confuse the classification process. The data can be 
transformed so that the Doppler signatures are invariant to these factors. This process that is performed 
prior to classification is termed ‘pre-processing’. 

The pre-processing aims to obtain a 2D spectrogram from a long sequence of temporal samples and 
process each individual spectrum to extract a target Doppler-profile that is independent of radar-
calibration and target-velocity. The spectrogram is generated using a short-time Fourier transform. Clutter 
frequency bins are masked and those that contain noise only are clipped to a minimum value. The peak in 
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each Doppler-profile is centred which makes the spectrum invariant to target velocity. Finally, the data are 
normalised with respect to received power and transformed using natural logarithms.  

 

Figure 1: Doppler spectra from land targets 

Figure 2 plots the Doppler signatures shown in Figure 1 following pre-processing. All the spectra have 
equal peak values and are centred on the same Doppler frequency. The pre-processed Doppler signatures 
are now invariant to changes in radar gain and target bulk velocity. 

The pre-processing also partitions the data into five separate velocity bands based on the estimate of the 
target body velocity obtained using the peak in the Doppler spectrum. This is designed to enable the 
algorithm to model some aspects of the velocity dependent data attributes. A separate classifier is trained 
and tested for data from each velocity band.  

 

Figure 2: Doppler spectra from land targets following pre-processing 
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2.2 LDA feature extraction 
The pre-processed Doppler spectra are put through the LDA data reduction process using the 
transformation  

xAy T= (1)

where x  is the log-normalised Doppler spectrum with p variables, y  is the LDA transformed feature 
vector with d variables and A  is the dp×  linear transformation matrix. The latter is the feature 
transformation matrix [ ]daaA K1= , where ja  are the eigenvectors of the generalised symmetric 
eigenvector equation [2] 

aSaS WB λ= (2)

The LDA process obtains the transformation that maximises the ratio of between class covariance to 
average within-class covariance. WS  is the average within-class covariance matrix given by: 

∑ =
=

C

i i
i

W n
n

1
Σ̂S

(3)

where in  is the number of measurements in the i-th class, n  the total number of measurements in the data 

set, C  the number of classes and iΣ̂  is the sample covariance of class i given by: 

( ) ( )( )∑ =
−−= in

q
T

iqiqii n
1

1ˆ mxmxΣ (4)

where qx and im are the measurement vector and the sample mean for the i-th class respectively. Each of 
these is a p-dimension vector. The latter is given by: 

( )∑ =
= in

q qii n
1

1 xm (5)

BS  is the between-class covariance matrix given by: 

( )( )∑ =
−−=

C

i
T

ii
i

B n
n

1
mmmmS

(6)

where m  is the sample mean of the entire data. 

The number of columns (eigenvectors) in the matrix A  defines the size of the LDA feature vector y . The 
upper limit for d is the maximum number of non-zero eigenvalues for (2) given by: 

( )1,minmax −= Cpd (7)

Since the eigenvalues for (2) are ordered in terms of class separability, in theory the classification 
performance should increase monotonically as the size of the LDA feature vector y  is increased. The 
transformation matrix A  is estimated using the same training data that is used for estimating the classifier 
parameters. As pre-processing partitions the data in to Vb (=5) different velocity-bands a separate 
transformation matrix kA , where bVk ,,1K=  is estimated for each velocity-band. Furthermore, the 
estimation process requires that the data are class-labelled. One option would have been to use the three 
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broad-class labels, personnel, tracked vehicles and wheeled vehicles. However, this would have limited 
maxd  to just a maximum of two features. It was felt that this would not have been sufficient to fully exploit 

the structure in the data. For this reason a fine-class labelling mechanism was adopted to increase C and 
thereby allow for a higher value for maxd  for the transformed feature vector y . The fine-class labelling 
was based on the target type, its aspect angle and its nominal speed. It may be possible, although this was 
not proven, that the fine-class categories have some physical justification.  

2.3 Doppler classifier 
The LDA feature vectors are used as inputs to the classifier. A separate classifier is defined for each of the 
velocity-bands V. For C broad classes the class membership is denoted by ikω , 

{ } { }VkCi ,,1 ,,,1 KK ∈∈ . For an unknown feature vector ky  the class membership will be one that 
maximises the posterior probability ( )kikP y|ω . According to Bayes’ rule this is equivalent to:  

( ) ( ) ( )
( ) ( )

( )
( )∑∑

==

i
ikk

ikk

i
ikkik

ikkik
kik P

P
PP

PP
P

ω
ω

ωω
ωω

ω
|

|
|

|
|

y
y

y
y

y
(8)

where )|( ikkP ωy  is the probability of the feature-vector ky  from velocity-band k arising from class 

ikω , and )( ikP ω is the prior probability of class ikω  being present. All the training classes were assumed 
to be equally likely. Thus class membership is based on the probability value )|( ikkP ωy  calculated for 
each broad-class.  

Each broad class probability was modelled as a multivariate Gaussian mixture model with a diagonal 
covariance matrix. The mixture distribution has the same dimensionality as the LDA feature vector. Four 
mixture components were used. The parameters of the model (mean, variance and weights) were estimated 
using training data. Performance was evaluated using independent test data.  

2.0 DATA SET 

Radar data from moving targets were collected using a J-band, horizontal polarisation, short range, ground 
based system using a 4 kHz pulse repetition frequency. The radar measurements were taken with the 
antenna pointing in a fixed direction and a control target moving through the radar swath at a specified 
aspect angle and speed. This constituted a single imaging run and the process was repeated for a number 
of different target types belonging to the three broad classes. The personnel data were obtained from a trial 
where two subjects were imaged walking and jogging either towards the radar or moving directly away 
from it. The vehicle data were obtained from a separate trial where three tracked and two wheeled vehicle 
types were imaged along 9 different aspect angles travelling at a nominal constant speed. This provided 53 
different imaging runs from which data were extracted. 

For each imaging run, a number of independent target signature files of four seconds dwell were generated 
by processing data from different locations along the range swath. The processed range resolution was 
chosen such that it was wider than the dimensions of the largest target in the data set. All the data files 
were pre-processed and partitioned into velocity bands. There was an uneven distribution of classes over 
the velocity bands. The lowest two velocity bands contained mainly personnel targets. All three target 
classes were represented in the next two highest velocity bands. Velocity band V (targets with velocity 
12mph and above) on the other hand had only vehicle targets. The data files were given two different 
types of labels. Fine labels were used in the estimation of the LDA transformation matrix. A total of 53 
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fine-class labels were defined as summarised by Table 1. Only broad class labels were used in the training 
and testing of the classifier. 

Broad Class Target Type Aspect Angle Speed Total per broad 
class 

Personnel 2 2 2 8 

Tracked Vehicles 3 9 1 27 

Wheeled Vehicles 2 9 1 18 

Total 53 

Table 1: Breakdown of fine-class categories for the entire database 

3.0 RESULTS 

 

Figure 3: LDA transformation matrix eigenvalues plotted for each velocity-band 

Figure 3 shows the comparison of the eigenvalues for the different velocity-band data. The eigenvalues 
provided some indication of the class separability. As the LDA theory stated, the eigenvalues were 
monotonically decreasing. Eigenvalues with values close to zero can be assumed to be irrelevant. 
Velocity-band I and II had data primarily just from the personnel class and therefore there was just one 
single dominant eigenvalue. Velocity-band III and IV also had a relatively high first eigenvalue. This 
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suggested that the first eigenvector should provide good class separability. For velocity-band V there were 
no dominant eigenvalues, however, the first few eigenvalues were non-zero. This suggested that just a few 
features would probably be sufficient for optimum classification. 

Further useful insight into the class separability can be obtained using 2-dimensional scatter plots of the 
feature vectors. Figure 4 compares the results obtained for plotting the first two LDA features for two 
different velocity-bands. The left-hand result is for velocity-band III which had data for all three target 
classes and the right hand result is velocity-band V that had only vehicle data. The feature values are 
labelled d0 and d1 respectively. Each point in the scatter plot is data from one feature vector. 

   

      

Figure 4: Scatter plot for the first two LDA features. (left image) Velocity-band III (right image) 
Velocity-band V 

From Figure 4 it can be seen that for velocity-band III the personnel class separated completely from the 
vehicle classes. The vehicle classes also showed some degree of separation but there was some overlap 
between the tracked and wheeled vehicles. The same result for velocity-band V showed that there was a 
relatively small region of the feature space occupied by both tracked and wheeled classes. However, this 
was contrasted by a significantly larger region of the feature space that was occupied exclusively by the 
tracked class. 

It is not trivial to interpret the eigenvectors in a physical manner. One possible method for determining 
what information is captured by an eigenvector (and therefore the LDA feature) is to look for evidence for 
any correlation between the LDA feature and ad hoc features that have a physical interpretation. The target 
Doppler sideband extent can be measured as an ad hoc feature. Empirical analysis showed that tracked 
vehicles tended to have broad extent whereas wheeled vehicles generally had a narrow Doppler extent. 
Figure 5 replots the scatter plot of the first two LDA features for velocity-band V highlighting data that 
has broad Doppler extent. It showed that a majority of the region, that separated the tracked from the 
wheeled class, was explained in terms of the Doppler extent. Thus the first two LDA features were 

 Personnel 

 Tracked Vehicles  

 Wheeled Vehicles 
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capturing information regarding the Doppler sideband extent in some way. The LDA features, however, 
cannot exactly represent this ad hoc feature since the latter is a non-linear feature. 

 

Figure 5: Scatter plot for the first two LDA features for velocity-band V. Data points that 
corresponded to a wide Doppler extent are highlighted in purple 

A separate classifier was implemented for each velocity band. The first two velocity bands had only data 
from the personnel class and therefore were excluded from the calculations. The data in each of the other 
three velocity bands were split into training and test sets using a 3-to-1 ratio. Performance results were 
averaged over all three velocity bands. 

Figure 6 plots the percentage correct classification averaged over all three broad classes (personnel, 
tracked and wheeled vehicles) as the number of features was increased. Results are shown for two cases, 
(a) feature vectors based upon only LDA features (black curve), and (b) feature vectors that included 
Doppler sideband extent as an additional ad hoc feature (purple curve).  

From the first result it can be seen that with just two LDA features near maximum performance was 
achieved. For six or higher number of LDA features the performance flattened out. This implies that the 
useful information is contained in just the first few features. A classifier with just six LDA features would 
give optimum performance. This equated to a considerable reduction in the data dimensionality and 
therefore the classifier complexity. Such improvements greatly enhance the viability of the classifier for 
real-time implementation. 

With the addition of the Doppler extent feature, just the first two features alone provided the optimum 
performance. This pointed toward Doppler sideband extent being an important discriminating feature. It 
ties in with the observation from the feature analysis which showed a trend for tracked vehicles to have 
broad extent and wheeled vehicles to have narrow extent. It suggested that the LDA features are capturing 
the same information as in the Doppler extent of the sidebands albeit using more features. Unlike ad hoc 
features which are data specific and would often require lengthy and expansive data analysis, the LDA 
feature extraction process on the other hand would generalise for data with arbitrary attributes. 

 Personnel 

 Tracked Vehicles  

 Wheeled Vehicles 

Data with wide Doppler extent 
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Figure 6: Doppler classification as a function of number of features 

OVERALL Classification Decision (%) 

62.7% [58.3,67.1] Personnel Tracked Wheeled 

Personnel 96.4 
[99.8,93.0] 

2.7 

[0.1,5.3] 

0.9 

[0,2.9] 

Tracked 0.8 

[0.1,1.5] 

51.4 

[41.7,61.1]] 

47.8 

[38.2,57.4] 

 
 
 
Actual 
Class 

Wheeled 0.2 

[0,0.6] 

21.4 

[12.6,30.2] 

78.4 

[69.7,87.1] 
 

Table 2: Confusion Matrix of a Doppler classifier using 6 LDA features. Results averaged over 50 
bootstrap replicates 

Table 2 provides the confusion matrix for the classifier with six LDA features. The results were generated 
using 50 bootstrap replicates. Bootstrap is a statistical inference technique, first proposed by Efron [3], 
which allows a confidence interval to be assigned to the estimated quantity. Table 2 lists the mean of the 
bootstrap replicates along with the 90% confidence interval shown in square brackets. The results for the 
confidence interval were only approximate since far more bootstrap replicates (>1000) would be required 
for a more accurate measure. Nevertheless, the results were useful in determining general performance 
trends. Earlier the selection of the six LDA feature classifier was based on results that were essentially a 
single bootstrap replicate. This choice is lent support by the estimate of the 90% confidence interval for 
this classifier. Since the performance of the other classifiers with fewer LDA features was outside this 
range it can be concluded that the choice of the optimum is statistically significant. 

A per class comparison of the confusion matrix shows that just under half the tracked vehicles are 
misclassified as wheeled. This is not very surprising given the fact that a substantial proportion of the 
tracked vehicle data in the data set did not have the distinctive broad Doppler extent that differentiated it 
from wheeled vehicles. At this stage it can only be hypothesised that the confusion between the two 
vehicle classes is due to the absence of the track returns. The data were collected from vehicles that had 
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skirts covering the tracks. This would make the moving parts of the tracks more likely to be visible when 
viewed front-to-back, and vice versa, but less so at oblique angles. The data supported this inference, with 
far fewer of the measurements taken for vehicles travelling at oblique angles to the radar reporting the 
presence of the broad Doppler extent. This was in contrast to tracked vehicles travelling either directly 
toward or away from the radar, for which the majority of the data had the broad Doppler extent present. 

Unlike the two vehicle classes the personnel class separated very well. Some misclassification between 
personnel and tracked class may be expected since both possess broadening of the Doppler spectra. 
However, the manner in which the vehicle data were collected (constant velocity with aspect changing 
between measurements) meant that the personnel class was only being classified against vehicles that were 
travelling at very oblique angles. From the data it was observed that track returns were often absent when 
the vehicles were imaged at oblique angles. This may therefore explain the very good separation between 
the personnel and vehicle classes. More representative data that contains data from slowly moving 
vehicles with visible tracks would enable a better measure of the true performance. 

4.0 CONCLUSION 

For the three-class problem the classifier had no difficulty in recognising the personnel class but produced 
some degree of confusion between the wheeled and tracked classes. The classifier algorithm was 
optimised by choosing the best set of features that maximised the performance and the bootstrap method 
was used to measure the confidence interval. It was shown that only the first few LDA features were 
relevant for Doppler classification. At the very least these were shown to contain information regarding 
the frequency extent of target’s Doppler sidebands. 

The classifier was shown to be invariant to target aspect angle and speed and was able to model multiple 
target types. Models for additional classes that have distinct Doppler characteristics, like helicopters, can 
be easily incorporated into the algorithm. The LDA feature extraction represents a considerable reduction 
in data dimensionality and therefore is able to provide for very efficient implementation of the 
classification algorithm. The LDA based classifier, therefore, offers a very powerful tool for the automatic 
classification of moving targets from their Doppler signatures. 
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SUMMARY  
Elaboration of a new approach to solving of a contradictory and challenging problem of through wall 
detection radar design is the main goal of the paper. Two types of radars have been investigated: (1) CW 
radar that uses pseudo-random sequence (PRS) of the maximal length (m-sequence), hereinafter referred 
to as PRS-radar and (2) CW radar with use of the noise waveform at corresponding carrier frequency 
referred to as Noise Radar. Besides, notional design of Software Noise Radar for these applications is 
briefly considered.  

1. INTRODUCTION 
In spite of numerous R&D focused on surface penetrating radar design, e.g. [1-13], nevertheless there is 
no radar which enables reliable detecting of live human beings when performing search and rescue 
operations under conditions of extraordinary situations caused by man-made or natural catastrophes. 
Detection and identification of terrorists, criminals, etc. is an important problem as well. In particular, the 
problem gets more complicated in case of non-authorized penetrating into premises and intentional 
creating conditions which complicate their detection by available means, such as specially trained dogs or 
very sensitive sound receivers. The presence of extraneous smells is the limiting factor for the first case, 
while in the second case it is rather difficult to provide silence for rather long period during salvage 
operations. 

The efforts have been spent [9-13] for design of Doppler radar systems intended for detection of various 
moving objects, including live human beings. The systems created have confirmed applicability of 
Doppler Effect based methods for detection of live human beings, however, they are not able working 
effectively under realistic conditions, for example, when attenuation of sounding signals is so large that 
the signal reflected from the wall exceeds significantly (by factor of many orders) the signal scattered by a 
target behind the wall. Besides, the need of weak signal detection under presence of strong signal reflected 
by the wall and other objects brings also considerable difficulties. For the above and some other reasons 
the known systems are useless for solving the problem of Through Wall Detection and Recognition. 

2. PROBLEM POSING 
In the radar suggested we also use the Doppler phenomenon, but for so small displacements of the object 
to be detected that it causes just an amplitude modulation of the optimal receiver output which is 
essentially a convolution of a broadband sounding signal (the reference) with radar returns, the phase of 
which is slightly modulated by a target performing slow and small enough periodic or non-periodic

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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motions. Such motions can be associated with either human being body displacements or his breathing or 
even his heart beats. Though the body motion is the main factor in the through wall detection of persons, 
however the suggested radar potential will be sufficient for detection of even a nonmoving person because 
of his breathing or even his heart beats. When breathing, the periodic motion of the person’s thorax takes 
place with magnitude of 2-7 mm, while his heart beats may cause periodic motion of the body parts with 
the magnitude not exceeding 0.2-1mm. Usual clothes of a person (if it is dry) is transparent for 
electromagnetic waves in the chosen frequency range, while the human body surface (largely consisting of 
water) is a rather good reflector. Actually separation between Doppler frequencies of breathing and heart 
beats is required for evaluation of his psychophysical status, while the Doppler signal caused by breathing 
is sufficient for detection of non-moving person because it significantly exceeds the Doppler signal 
produced by heart beats. Possible application of the Doppler radar suggested is schematically shown in 
Fig.1. 

 

Fig.1. Possible application of the Doppler radar suggested (schematically). 
 

It is known that the range sensitivity of the method attains 10-9 m in microwave [14]. Capability of a heart 
beats detection of a person located behind a break wall having thickness of 10 cm has been experimentally 
proven in [9]. Despite of an apparent simplicity of the radar, its design is a rather difficult technological 
problem since the hardware of the radar should meet the whole set of tuff requirements stipulated by the 
complicated radar conditions: 

• Strong reflections of sounding signal by walls which can overload/saturate the radar receiver; 
• Strong absorption of electromagnetic energy by walls which cause low levels of radar return; 
• Strong interference signals due to multiple reflections of sounding signal from the operator, other 

rescuers, and other objects; 
• Strong interfering signals due to radiation of the radar transmitter. 

 
Operational frequency of the radar is dictated by two contradictory conditions. On the one hand, the 
shorter the wavelength, the higher sensitivity of the method to the phase modulation and the smaller 
dimensions of receive and transmit antennas. On the other hand, an increase in a central wavelength of the 
probing signal is desirable for enhancing the penetrating capability of electromagnetic waves through 
walls. However, desirable increase of the wavelength is limited, in turn, by two factors: the first one is tied 
with shielding sounding signals by metallic meshes in concrete walls, while the second one decreases the 
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RCS of the target when the wavelength exceeds the sizes of the target. The estimation carried out have 
shown that for conducting of rescue activities in ruins, typical concrete buildings and facilities the most 
optimal is the frequency range 800 – 2000 MHz.  

However, the optimal frequency range chosen according to the above criteria does not allow creating of 
small-sized portable antennas with high enough directivity. In this range it is possible to count for a width 
of the antenna pattern of 20° – 30° having side-lobe level about -20dB in both elevation and azimuth 
planes. It is clear that it is not possible to localize a target using only directivity properties of the antennas. 
It is necessary also to provide a sufficient range resolution. High range resolution capability of the radar 
becomes especially important in case when ground around the area of rescue activities is covered with tall 
grass or bushes, etc. In this case, the radar returns may contain fluctuating components because of their 
motion due to wind. The Doppler spectrum of these fluctuations contains low frequencies and may have 
the same frequency range as the Doppler spectrum of the target. This will essentially increase the false 
alarm probability. Besides, the Doppler spectrum of the signal reflected by the operator, etc. also can fall 
into the same frequency range with a Doppler spectrum of the required target and exceeds significantly 
(by many orders) the signal scattered by the target. It is very important to provide a high range resolution 
for filtering out these signals. This is very important because the signals scattered by persons located in the 
neighborhood of the radar are by factor of many orders higher, as a rule, of the signals scattered by the 
target. 

As it seen from the above, the impulse volume of the radar should be close to the geometrical volume of a 
target to be detected, while the side lobes of both the antenna patterns (AP) and ambiguity function (AF) 
of the sounding signal should be close to zero. In reality, it will not be possible to provide a very low level 
of AP sidelobes in portable transmit/receive antennas having acceptable sizes, while obtaining extremely 
small AF sidelobes that will provide the value of a received signal at the level of the receiver inherent 
noise is a solvable problem. This means that rescue activities are also may be arranged in the way that 
interferences may be outside the resolution cell of the radar and will not degrade its performance.  

The radar should not just detect the presence or lack of a target, but also to point its coordinates as much 
precisely as possible, and also define the type of the target using its Doppler portrait. High angular 
resolution required for target position finding is ensured with application of triangulation method provided 
a high range resolution and a possibility of having two or more measurements. For the radar under 
consideration the required range resolution should be about of 0.5 – 1.5 m (the sizes of the target). The 
maximal working range of the radars under consideration, as a rule, is limited to several tens of meters. 
For applications of the radar inside small premises the minimal working distance should be no more than 1 
– 2 m. 

The listed above requirements to the radar determine in main the type and structure of the probing signal 
to be used. Unfortunately, application of pulsed waveform that provides perfectly zero AF range sidelobes 
is technically impossible in our case because of impossibility to provide simultaneously a very short radar 
blind zone and a sufficient energy potential. Therefore it is necessary to use a CW wideband probing 
signal with a large enough base. Among wide class of such signals, the greatest attention deserves random 
noise and pseudo-noise waveforms in view of sufficient simplicity of their generation and processing. 
Besides in a number of applications the covert operation of the radar under consideration is required that 
also is provided by noise waveform application [ 14-15]. 

In the paper, we shall consider two types of radars: (1) CW radar that uses pseudo-random sequence (PRS) 
of the maximal length (m-sequence), hereinafter referred to as PRS-radar and (2) CW radar with use of 
the noise waveform at corresponding carrier frequency referred to as Noise Radar. Besides, notional 
design of Software Noise Radar for these applications is briefly considered. In all cases correlation 
processing of the radar returns is used. 
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3. THE PRS-RADAR 

The block diagram of the PRS-radar is presented in Fig.2. It operates as follows. A single frequency signal 
generated in the oscillator 6 with high frequency stability is fed into the phase manipulator (±π) 2. The 
phase manipulator 2 executes phase modulation of the signal according to pseudo-random m-sequence 
generated by the oscillator 1. As a result we get a phase-shift keying signal. After its amplification in the 
amplifier 3, the phase-shift keying signal is radiated by the transmit antenna 4. Unfortunately, because of 
not perfect rejection of the baseband signals there are three different signals at the phase modulator output, 
two of which cannot be filtered out from each other: (1) useful sounding signal; (2) spurious baseband 
PRS signals and (3) spurious monochromatic carrier signal. From the listed above signals the second one 
is considerably attenuated by a balanced modulator and its power spectrum density (PSD) is much below 
of probing signal PSD. It is practically completely suppressed in the circuit formed by filter of the 
modulator, the bandpass power amplifier 3 and frequency characteristic of the transmit antenna. In spite of 
the signal (3) is suppressed in the balance modulator by 20 – 30 dB (which is a typical suppression factor 
for realistic broadband modulators), nevertheless it makes the most negative influence onto the radar work 
and performance. The point is that the signal frequency falls into the frequency bandwidth of the sounding 
signal (1) and, therefore, also gets amplified in the power amplifier 3 and is radiated by the transmit 
antenna 4. This mans the sounding signal comprised of two signals: the phase-shift keying signal and 
single (the carrier) frequency one. The latter has no properties of range selection and, consequently, does 
not allow obtaining of AF side-lobes level less than – 20 – 30 dB after signal compression. The signal 
reflected by a target (a person) located behind a concrete wall of width ~ 30 cm apart of 10 m from the 
radar can be 90 dB lower of a signal reflected by the operator. Therefore, for recovery of usefull signal at 
the presence of signals from the operator, the range AF side-lobe level should be no more -110 dB. To 
suppress influence of monochromatic component of the sounding signal in the reference channel of the 
quadrature receiver the additional modulation has been used using signal generated by 8 which has 
meander form with phase 2 pnτ  where pτ  – duration of elementary pulse PRS, n – integer ≥ 1. The 
reference signal in the quadrature correlation receiver is formed as follows. The signal from the high-
stable quartz resonator 6 is fed into the clock frequency generator 5, which starts the generator of delayed 
PRS 11. The delay equals round-trip propagation time of the sounding signal to the target (it is prescribed 
by the operator using PC). Delayed reference PRS is cross-multiplied with the signal of the oscillator 8 in 
the multiplier, representing the "&" circuit. This multiplied signal is fed into the phase manipulators 10 
and 12, while their second inputs are fed by is fed by quadrature components of the carrier oscillator 6. 
Signals from phase manipulators 10 and 12 are fed into the mixers 15 and 16 in the quadrature correlation 
receivers. 
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Fig.2. Block-diagram of the PRS-radar                                                                                       
1 – PRS-oscillator, 2, 10, 12 – phase manipulator, 3 – power amplifier, 4 – transmit antenna,  
5 – clock frequency oscillator, 6 – quartz stabilized oscillator of carrier frequency, 7 – single 
frequency phase shifter (π/2), 8 – quadrature oscillator of additional modulation, 9 – digital 

multiplier, 11 – oscillator of reference PRS, 13 – receive antenna, 14 – LNA, 15 and 21- in-phase 
mixers, 16 and 22 quadrature mixers, 17 and 18 – IF filters, 19 and 20 – IF amplifier, 23 and 28 – 
Doppler amplifiers, 24 and 25 – Doppler filter, 26 and 27 – analog-to-digital converters (ADC). 

The input signal from the receive antenna 13 and low-noise amplifier of power 14, represents itself an 
additive mixture of the following signals: 1 – a leakage signal from the transmitting antenna; 2 – a signal 
from the operator, the maintaining radar; 3 – a clutter signal and signal reflected by the wall; 4 – a signal 
reflected by a target, which the most weak one. The overall number of signals coming to the receiver input 
is at least 8. It is easy to see, that due to correlation processing all signals reflected by objects placed 
outside the correlation volume will be suppressed by factor of  s iff F∆ ∆ , where sf∆  is effective bandwidth 
of the sounding signal, ifF∆  is effective bandwidth of the filters 17, 18. Therefore the letter should be as 
smaller as possible. 

The dynamical range of the signals at the receiver input is to be very large(~100 dB). 

To enlarge dynamical range of conventional receiver the second signal converter has been implemented 
using   mixers 21 and 22, while the amplification  rate of amplifiers 14, 19, 20 is made rather small, just to 
compensate the first down converting losses, and preserving SNR at the IF amplifier output within the 
whole dynamic range of the received signals. The quadrature signals from IF amplifiers are fed into the 
mixers 21 and 22, while the signals of additional modulation generator 8 is fed as the reference signals. 
This allows to suppress all parasitic signals providing high dynamical range of the radar. The signals with 

to PC to PC



Through Wall Detection and Recognition 
of Human Beings using Noise Radar Sensors  

P15 - 6 RTO-MP-SET-080 

no Doppler shift (an echo from wall, parasitic leakage and coupling of antennas), will be outside the 
Doppler filters bandwidths 24 and 25. We have two signals having Doppler shifts: signal reflected by 
target and that scattered by the radar operator. It is important that the signal from the target will pass all 
circuits without losses, while the signal from the operator will be suppressed by s iff F∆ ∆ time after 
compression. The dynamical range of the output signals of Doppler filters is essentially decreased, 
because of suppression of spurious components. After that the main amplification of the received signals 
is performed in the receiver. Narrowband Doppler signals are sampled and sent into PC for further 
computer processing: filtering, target detection and identification. 

For PRS, the AF range side-lobe equals 1 N , where 2 1kN = −  is quantity of elementary impulses in PRS, 
k is an integer number. However, this is valid only for zero Doppler frequency 0Ω = , while for 0Ω >  he 
AF range side-lobe will increase essentially. For instance, in Fig. 3a the range sidelobe level  γ  for  PRS 
as function of  the Doppler frequency period to PRS period ratio is shown for k = 11. In the same figure 
the striped line shows range sidelobe level at the absence of Doppler shift. The more N, the higher 
influence of Doppler frequency shift on to the range sidelobe level. Fig.3b shows Doppler frequency 
period to PRS period ratio as function of PRS length (parameter k ) for which the sidelobe level doubling 
is achieved. 

 

 

 

 

 

Fig. 3а. Sidelobe  level  γ  for  PRS as function of  the 
Doppler frequency period to PRS period ratio : 

Td / Tp      k* = 11;  Number of bits in PRS: N=2k-1 

Fig. 3b. Doppler frequency period to PRS period 
ratio as function of PRS length (parameter k ) for 

which the sidelobe level doubling is achieved 

 

It is seen from the above figure, that for the selected duration of the elementary impulse required for 
providing of the range resolution, we cannot take PRS with an arbitrary number N of elementary impulses 
aiming decrease in range side-lobes just because of increase in its sensitivity to Doppler frequency shift 
which results in the growth of range side-lobes. 

After final processing of the received signals it is possible to achieve rather good ratio of signals from the 
target and from the operator. For instance, for the radar having 1W transmit power, 150MHz frequency 
bandwidth (1m range resolution) of sounding signal, and 65535  N = of PRS length, RF losses in wall 
50dB and a AP side-lobe level  –13dB, the signal from the target located behind the wall at the 10 m 
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distance from the radar exceeds the signal from the operator by 26dB, that it is quite enough for reliable 
detection of the target. 

5. SOFTWARE NOISE RADAR 

Fig.4 shows block-diagram of Software Noise Radar which uses truly noise signal as a sounding one. The 
latter is generated by noise generator 1 which has its central frequency as a carrier one. The frequency 
bandwidth of noise signal has the same value as in case of PRS-Radar.  

  

  

 

Fig.4. Block diagram noise radar  
 1 – noise waveform generator; 2 – power 

amplifier; 3 – directional coupler; 4, 9 – 
analog-to-digital converters; 5 – transmit 

antenna; 6 – receive antenna; 7 – RF filter; 
8 – low-noise amplifier 

Fig. 5. Number of ADC bits required 
as a function of signal losses in wall. 

 

 

The important feature of this radar is that the generator 1 produces sounding waveform with a required 
bandwidth which supposes no need in such unit as modulator, and therefore, all the problems related to its 
characteristics influence on to the radar performance are solved in this way. The noise signal gets 
amplified in the power amplifier 2 up to the required level and is fed into the transmit antenna 5. 

As it is known, the delayed copy of sounding signal is necessary when performing correlation reception of 
noise radar returns. Because in our case the frequency spectrum of sounding signal can be centered in 
vicinity of 800±(50÷75) MHz, the usage of a fast analog-to-digital converter became feasible. Now days 
8-bit ADC with clock frequency up to 2GHz are commercially available at this frequency range. The 
signal from ADC 4 is fed directly into РС where digital processing enables required delaying of sounding 
signal to generate the reference.  

Block-diagram of the Software noise radar is very simple. In particular, there is no need in quadrature 
channel since quadrature processing is performed in РС. However, one faced some limitations when 

to PC

to PC 

Signal Losses in Wall 
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designing such radar. For instance, the signal from receive antenna 6, should go directly to the ADC input 
9 just after RF-filter 7 and LNA 8 in the whole dynamical range and frequency bandwidth of the sounding 
signal. For this purpose the LNA 8 should amplify this signal up to the level r (typically:  ±5 V) required 
for normal operation of the ADC . Besides The number of ADC bits should be high enough to sample the 
received signal without distortions in the whole dynamical range. For 10mW transmitted power the 
amplifier gain should be about 55dB that is affordable today, while required number of ADC bits is a 
challenge for available hardware. In our case the dynamical range of radar returns is mainly dependent on 
signal absorption in the wall. Fig.5 shows number of ADC bits required as a function of signal losses in 
the wall in case of 10m distance between radar and the wall. As it is seen from Fig.5 in order to detect a 
target using Software Noise Radar one has to apply 16-bit ADC with clock rate ~ 500MHz, which should 
be available in the future. Nevertheless, fast 8-bit ADCs available today (for example, Analog Input Card 
for PCI Bus “CompuScope 82G” from GaGe corporations) enable design of Software Radar capable of 
detecting live persons behind brick walls having thickness of 1 4  brick from distance ~ 10m. A low 
averaged power of RF radiation with very low power spectral density ( 117 10−⋅  W/Hz) of the sounding 
signal allow to use this radar with no ill effect on people and no electromagnetic interferences for other RF 
devices that may be used at the same time in the same area. 

Fig. 6-8 shows the output signals obtained via computer simulation of the radar under consideration. 
Fig.6a shows the signal of heart beat of a non-moving person who is delaying his breathing, while Fig.6b 
shows its frequency spectrum of this signal. The average signal-to-noise ratio is about 10 dB. As it is seen 
from the figures, detection of a live person is possible even due to detection of his heart beat. Fig. 7 shows 
the signal from both breathing and heart beats of non-moving person, while Fig.7b shows Doppler spectra 
of these signals. It is seen, that the related spectra are easily distinguishable. With other things being equal 
– the signal due to breathing exceeds considerably signal due to hear beats. Received signal from a 
randomly moving person with maximal amplitude of the motion ~ 1/6 wavelength of center frequency and 
its Doppler spectrum are presented in Fig.8a and Fig.8b respectively. This signal is dominant above 
remaining, and on his background signals from breathing and palpitation practically are completely 
masked. 

Obviously, that on the basis of the character of signals and their spectrums one may forecast emotional 
and physical status of the person located behind an obstruction. For example, when person does not move, 
but is strongly agitated he will speed up his breathing and heart beats. Motion of the person with big 
amplitude – will tell us that he has enough room to do that. His lasting motions can tell about his quite 
good physical status and a that he is doing some   operations, etc 



Through Wall Detection and Recognition 
of Human Beings using Noise Radar Sensors 

RTO-MP-SET-080 P15 - 9 

 

Signals of the radar after processing Spectrums from these signals 

PRS-radar 

 

Fig. 6a. Signal scattered by non-moving and non-
breathing person. SNR = 10 dB  

PRS-radar 

 

 

Fig. 6b. Doppler Frequency Spectrum of signal 
scattered by non-moving and non-breathing 

person: (1)- first harmonic of  the signal;  
(2)- second harmonic of a signal;  

(3) -receiver noise floor  

 
PRS-Radar 

 

Fig. 7a. Signal scattered by:   (1) - non-moving, but 
breathing person; (2) - heart beat of a person;  

(3) - receiver noise  

PRS-Radar 

 

Fig. 7b. Doppler Frequency Spectrum of signal 
scattered by:   (1) - non-moving, but breathing 

person; (2) - heart beat of a person.  
(3) - receiver noise  
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Fig. 8a. Signal scattered by random 
motion of the person with amplitude 

about 1/6 of the wavelengths s 

 

 

Fig. 8a. Signal scattered by random 
motion of the person with amplitude 

about 1/6 of the wavelength 

CONCLUSIONS 

Radar for Through Wall Detection and Recognition of Human Beings is to be designed on the basis of 
broadband RF signals with large base. Random Noise and Pseudo Noise waveforms are the most 
appropriate signals for that radar. Random Noise waveform is more appropriate one when covert 
operations or/and electromagnetic compatibility with other radar sensors are required. The first waveform 
is the most applicable one when the highest radar potential is needed, while the second waveform is the 
best one for those applications where rather low averaged power of RF radiation (having very low power 
spectral density) is required. For instance, when one has to provide no ill effect on people and no 
electromagnetic interferences for other RF devices that may be in use at the same time in the same area.. 
Possibility of detection of a live person behind a thick enough wall is shown when probing signal 
attenuation rate does not exceed ~ (50-60)dB that corresponds to (25-30)cm of a concrete wall or (40-
50)cm of a brick wall. Using temporal and spectral characteristics of the detected signals one can estimate 
psychophysical status of the person and his activity. 
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SUMMARY 

Most of the industrial software codes used for the prediction of the radar cross-section (RCS) of aircrafts are 
based on ray tracing. While ray based methods give useful scattered fields from the skin of the aircraft 
illuminated by an incident plane wave, they largely fail to predict the returns from cavities onboard. As a 
possible enhancement to these ray-tracing programs, an auxiliary program based on the modal method was 
developed to predict the scattering of electrically large and complex jet inlets and engines. It is assumed here 
that these structures can be approximated by a series of rectangular, circular, coaxial and sectoral waveguide 
sections. Field matching technique is used to give the generalized scattering matrices of the junctions between 
these waveguide sections. By combining the scattering matrices of the waveguide sections representing the 
inlet and engine, an overall S-matrix is obtained. Knowing the modes induced at the inlet aperture by the 
incident wave, the scattered fields from the inlet and engine can be readily predicted in all directions. Such 
software has been developed. Monostatic RCS measurements of a 0.706m diameter test cylinder containing 30 
skewed blades mounted on a centre shaft with a conical hub have been performed at X-band. The dimensions 
of the structure, the number and orientation of the blades are consistent with existing jet engines. Good 
agreement between predictions and measurements verify the developed software and analytical method used. 
This software could generate the database of RCS returns for a given engine over a wide range of aspect 
angles. 

1.0 INTRODUCTION 

High range resolution and inverse synthetic aperture radar are promising imaging methods that may be used 
for non-cooperative recognition of air targets. Both of these methods rely on comparing an observed target 
return with that from a signature database. It is not practical to generate such a database just from 
measurements simply because of the large number target types and configurations that have to be tested at a 
wide range of aspect angles. Further, hostile targets will not willingly submit to such measurements. Hence 
there is a need for a signature database that is computer generated. Current computer codes are able to predict 
the electromagnetic scattering from models of aircrafts with varying degree of accuracy that depended very 
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much on the precision of the input CAD models. However, none is capable of simulating the significant RCS 
produced by jet inlets and engines that show up prominently in both HRR and ISAR signatures from in-flight 
measurements. To rectify this problem, auxiliary software capable of predicting the scattering from jet inlets 
and engines has been developed. The analysis method used is based on mode or field matching and 
generalized scattering matrices. Such an approach has been successfully used to treat simple inlet and engine 
models [2, 4, 5]. The computed scattered fields from the engines can be combined with those from the rest of 
the aircraft that are calculated using current computer codes to improve on the overall target response. A short 
description of the method employed is given in section 2. Comparisons of predictions and measurements are 
carried out in section 3 for a number of configurations. Good agreement is found in most of test cases and 
conclusion is drawn in section 4. 

2.0 MODELLING OF JET INLETS AND ENGINES 

A typical scattering problem is shown in Fig. 1 where the inlet is illuminated by an incident plane wave. The 
waveguide modes induced at the aperture Sg of the inlet are found by field matching [1]. The coefficient, bli

(g), 
of the i th guide mode induced by the l th space mode is given by 

 
This integral can be evaluated analytically for the four combinations between the TE and TM guide mode 
functions, ei

(g), and the TE and TM space mode functions, el
(s). The mode impedance is given by η. 

 
Once the induced modes are found, they are propagated into the inlet, which is approximated by a series of 
uniform waveguide sections. The stepped junctions and waveguide sections are characterized by their 
generalized scattering matrices, which are cascaded together to give a complete scattering description of the 
inlet. For a slanted or offset inlet, it is approximated by a series of partially overlapped waveguide sections as 
shown in Fig. 1. An efficient way of treating the partially overlap stepped junction, which consists of an input 
waveguide 1, an output waveguide 2 and the in-between common aperture represented as waveguide 0, is to 
consider all three waveguides together to give a S-matrix characterization of the junction. 

 

 
[P(0,1)] and [P(0,2)] are the mode coupling matrices between wg. 0 & 1, and wg. 0 & 2 respectively. The 
coefficients of these matrices are given by the inner products of their mode vectors kk h,e  as 
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where there are K modes in waveguide 0, M modes in waveguide 1, and N modes in waveguide 2. These 
integrals may be evaluated analytically. [U] and [I] are unit matrices. The number of modes used in each 
waveguide section is set by the maximum cutoff wave number specified. 

 

 

Fig. 1 Plane wave illumination of jet inlet   Fig. 2 S-shape Inlet 

The general waveguide software was used to analyze the S-shape inlet of Fig. 2. Very good correlation is 
found between theory and measurement as demonstrated in [2]. Displacement steps between waveguide 
sections no larger than 0.1λ are sufficient to model a smooth curve inlet. At the end of the rectangular inlet, it 
transitions into a circular conical cylinder where the engine is located. Modal characterization of the 
rectangular to circular transition has also been developed. For the present paper, we will concentrate on the 
modelling of the engine with skewed blades. 

The circular cylinder of the engine with the centre shaft is treated as a coaxial waveguide. Both the centre and 
outer conductors may be varying to represent a conical engine compartment. The centre hub is modelled by a 
series of stepped centre conductors. The blades mounted on the centre shaft, as shown in Fig. 3, are inclined at 
an angle with the axis of the engine.  

Fig. 3 Skewed blades and centre hub   Fig. 4 Coaxial guide – blade junction 

The generalized S-matrix characterization of the junction between coaxial waveguide and sectoral waveguides 
is found by field matching. This formulation is given by Chan [3]. The channel between a pair of skewed 
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blades is approximated by a slanted or curved sectoral waveguide, which is divided into a number of axially, 
translated and azimuthally rotated short straight waveguide sections. The S-matrix between two displaced 
sectoral waveguide sections are defined by the same matrix equations given above for partially overlapped 
rectangular waveguides. The difference here is the coupling integral can be evaluated in close form only for 
the azimuthal Φ variable. The integration along the radial direction must be done numerically. Recursive 
combination of this junction S-matrix and that of the adjacent straight section yields the resultant S-matrix of 
the slant blade channel. Thus a single stage of blades can now be characterized by the back-to-back 
combination of a coaxial waveguide to multiple sectoral waveguide junction interconnected by sections of 
slanted sectoral waveguides. 

The S-matrix of the blades need only be computed once. If the blades are rotated, the resultant S-matrix is 
obtained through a transformation of the non-rotated matrix. A local coordinate system is attached to the 
blades and it rotates with them. For a complete representation of the fields both the V- and H- sets of modes in 
the local coordinate system are required. The analysis of the blades is carried out with these local sets of 
modes. A global coordinate system is placed at the aperture of the engine. The modes resulting from the plane 
wave illumination are expressed in the global coordinate system. The local system is rotated with respect to 
the global system by an angle φ0. Because of mode orthogonality, the global TE (TM) V- or H- mode is 
resolved only into the local V’- and H’- types of TE (TM) mode. The transformation between the global 
incident modes (aV, aH) and the local incident modes (aV’, aH’) is simply given by 
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Here C11 and C22 are diagonal matrices with diagonal elements given by cos (mφ0), where m is the mode first 
index. C12 and C21 are rectangular matrices because certain modes are present in the V- set and not in the H- 
set. For instance, the TE0n modes belong to the H-set only while the TM0n modes are in the V-set only. The 
non-zero entries of C12 are given by sin (mφ0) for TM modes and -sin (mφ0) for TE modes. The non-zero 
elements of C21 are given by -sin (mφ0) for TM modes and sin (mφ0) for TE modes. If the reflection matrix of 
the blades in the local coordinate system is denoted by S11, then the corresponding matrix in the global system 
is obtained from the transformation CT S11 C, where T indicates transposition. 

The S-matrices of various stages of blades and the inlet are combined to give the overall scattering parameters 
characterizing the jet engine. It should be mentioned that both propagating and evanescent modes are used in 
the field matching to model accurately each junction or structural change. However, only those accessible 
evanescent modes above a specified threshold are used for the S-matrix combination of the various junctions. 
This reduces significantly the order of the matrices involved in the computations. Knowing the S-matrix of the 
engine and the incident modes, the reflected modes at the inlet aperture are readily obtained. Using Kirchoff’s 
diffraction integral, the scattered fields of the aperture modes in all directions are determined analytically. 

3.0 VALIDATION OF MODEL 

A test cylinder of 0.706 m diameter was fabricated out of metal ventilation duct. A centre shaft of diameter 
0.224 m carrying 30 equally spaced blades that are inclined at 45° (stagger angle) to the longitudinal axis is 
placed inside the cylinder. The axial length of the blade region is 7.62 cm. At the back, the shaft extends 7.30 
cm beyond the blade region and terminates into a circular shorting plate, which also forms the supporting 
structure. At the front of the shaft, a smooth conical hub of 0.164 m axial length is attached. There is an air 
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gap of 0.5 cm between the end of the blade and the cylinder wall. This facilitates the rotation, axial translation 
and placement of the blade assembly in an off circular enclosure. The blades are made out of 0.159 cm thick 
aluminum plates. The blades in the actual fabricated assembly are not identical and they are not normal to the 
shaft surface. A picture of the cylinder and blade assembly mounted for measurement is shown in Fig. 5. 
Absorbers were placed around the supporting structure to reduce external reflections. 

 

Fig. 5 Test cylinder with skewed blade assembly 

In our idealised approximation of this blade assembly, the blades extend all the way to the wall i.e. there is no 
air gap, and the blades are always normal to the shaft surface and cylinder wall. The constant thickness of the 
blade is replaced by a sectoral wall of included angle 0.373°. A sectoral guide of angle 11.627° then 
represents the blade channel. The twist angle of the blade, defined as the difference in the projected azimuthal 
φ-angles of the front and back edges of the blade, is 39.01°. 

All the measurements reported here were taken at the DRDC outdoor test facility [7] using a pulsed radar with 
200ns pulse width and 1KHz PRF. The cylinder was placed 125m away. The illuminating beamwidth was 2° 
AZ x 6° EL. The transmitting and receiving beams were horizontally polarized and only azimuth cuts were 
made. Hence all the measured monostatic scattered responses are for TM incidence. First, a conducting flat 
plate was placed at 1 m and 1.91 m inside the cylinder. The measured H-H RCS of the cylinder terminated 
with a flat plate is plotted in Figs. 6 and 7 for the two plate locations together with the predictions at 8.9 GHz. 
The data, normalized to the peak at boresight, are shown from -60° to +60° in the azimuth plane. As can be 
seen, the agreement between measurement and prediction is very good in both cases. There is extraneous 
reflection from the side or mounting support at the near-in angles and the test article is not symmetrical. 

Next, the cylinder with the blade assembly is modelled and tested. In modal analysis, sufficient number of 
modes must be used to obtain result convergence. To treat the slanted blade channel, 2664 sectoral waveguide 
modes are used, with the highest approximating mode cutoff wavenumber kc = 6.5k0 where k0 is the operating 
wavenumber. To represent the fields in the circular waveguide and coaxial waveguide regions, it is found that 
only modes with mode cutoff wavenumber less than 1.3k0 need be used. This is demonstrated in Fig. 8, where 
the RCS of the cylinder with the blade assembly is shown for the cases with 1.3k0 and 1.7k0 highest mode 
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cutoff wavenumber. Only small differences are observed between them. Plotted in Fig. 9 is the RCS at 8.9 
GHz of the cylinder and blades with two different types of nose cones, 4-step and 6-step hubs of axial lengths 
0.21m and 0.164m. These responses are for TE incidence and are more or less the same with minor changes. 

Fig. 6 RCS of cylinder with flat plate at 1m Fig. 7 RCS of cylinder with flat plate at 1.91m 

Fig. 8 RCS convergence of cylinder with Fig. 9 RCS of blades with different centre hubs 
different number of modes 

Very often in the RCS modelling of the aircraft, the complexity of the blades in the engine is replaced by a flat 
plate at the same location. The consequences of this simplification can be seen in Figs. 10 and 11. Here the 
RCS of the cylinder with flat plate, flat plate with nose cone and skewed plates located 1m and 1.91m from 
the aperture are plotted for comparison at 8.9 GHz. At boresight, where there is a peak value for the flat plate 
with and without the nose cone, a null is observed for this particular inclined blades configuration. This is 
caused by the conversion of the lowest order TE11 mode, which carries the most power, into the propagating 
higher order modes by the single stage of blades. These higher order modes have maximum radiation in 
different off boresight directions. As a result, the peak backscatter field off axis for the blade assembly is 
approximately 14 dB below the on-axis maximum of the flat plate, which has been confirmed through 
measurement. The RCS of the skewed blades is also lowered by approximately the same amount at the other 
off normal aspect angles. Thus there is substantial error in the simplified model of this engine. Addition of a 
centre hub to the flat plate causes change only at the near-in aspect angles. 
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Fig. 10 RCS of cylinder with obstacle at 1m          Fig. 11  RCS of cylinder with obstacle at 1.91m 

The RCS of the cylinder containing the blade assembly with a smooth conical center hub was measured at 8.9, 
9.1 and 9.2 GHz for TM incidence. The blades were placed at two locations, 1m and 1.91m from the aperture. 
The test data are normalized to the peak response and are plotted in Figs. 12 to 17 for azimuth aspect angles 
ranging from -60° to +60°. Shown on plots are the predicted RCS for comparison. The center conical hub of 
0.163m axial length is approximated by a 6-section center conductor. The diameter of each section is 0.045m, 
0.113m, 0.155m, 0.184m, 0.206m and 0.224m.  For the circular guide and coaxial guide discontinuities, the 
highest cutoff wavenumber of the field approximating modes is 1.7k0. To represent the fields, the number of 
circular waveguide modes used is 6268. The number of coaxial guide modes in the respective hub section is 
6252, 6108, 5964, 5852, 5744 and 5648. The blade channel field distribution is approximated by 2664 sectoral 
guide modes. The total memory requirement by the program is 3.6 GB. Each frequency run for any number of 
aspect angles and polarization states takes about 23 hours on a Sunblade 2000 running at 900MHz. It is 
possible to reduce the run time by decreasing the number of modes in the various regions with some impact on 
the computed scattered fields. It should be mentioned that this execution time is at least one to three orders of 
magnitude faster than existing ray-based or finite element based cavity analysis programs [6] that produce 
results with questionable accuracy for complex blade arrangement. 

When comparing the measurements with the predictions, one should bear in mind that the measured data is a 
lot noisier due to a drop of 14 dB in the scattered power from the cylinder with the blades. At the test facility, 
the cylinder is mounted on an azimuth turntable. It is not possible to align the cylinder in elevation with the 
transmit/receive antenna. This misalignment will cause the two lobes on either side of the boresight direction 
to become asymmetrical, which is clearly evident here. Further, the computer model is an approximate 
representation of the test article, in that the air gap at the tips of the blades is ignored and all the blades are not 
the same. The computed results deal solely with the internal scattering of the cylinder and do not include the 
reflected fields from the outside of the cylinder or support structure, which is covered by flat absorbing sheets.  
Such external reflections cannot be eliminated from the measurements. Still, with the coincidence of the major 
lobes in both amplitude and direction, it can be said that there is fairly good agreement between the test and 
computed data. 
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Fig. 12  RCS of cylinder with blades at 1m - 8.9 GHz Fig. 13  RCS of cylinder with blades at 1.91m - 8.9 GHz 
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Fig. 14  RCS of cylinder with blades at 1m - 9.1 GHz Fig. 15  RCS of cylinder with blades at 1.91m - 9.1 GHz 
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Fig. 16  RCS of cylinder with blades at 1m - 9.2 GHz Fig. 17 RCS of cylinder with blades at 1.91m - 9.2 GHz 
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4.0 CONCLUSION 

A procedure based on modal analysis has been presented for the analysis of jet inlets and engines. The 
complex geometry of a center hub and shaft with inclined blades is successfully treated. A test cylinder with a 
skewed blade assembly has been built and tested at X-band. Dimensions of the cylinder and blades are similar 
to those of the present day jet engines. The measured amplitudes of the backscatter fields agree well with the 
computer simulations. Even though a large number of modes are required for field representation in the 
cylinder and blade assembly, present day desktop computers can readily handle the computation workload and 
memory requirement. In this development, canonical waveguide sections are utilized to model the engine so 
that internal fields can be approximated by analytical modes. Similar modal approach may also be applied to 
non-standard engine and inlet cross-sections, where numerical modes that meet the boundary conditions are 
employed instead to provide efficient calculation of their RCS. 
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