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Demand / surplus scenarios

Heating / solar heat
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Cooling / ambient air

Demand / surplus scenarios
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Heating / waste heat 
from power generation
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Underground thermal energy storageUnderground thermal energy storage
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bearing beds)
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bearing beds)
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Mode of functioning
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Principally, aquifers (groundwater-bearing beds) which are 

intended for thermal energy storage should come up to the 

following requirements:

• Max. depth of 1000 m:  
At present, a depth of up to 200 m represents the  most
favourable variant for the installation of low-enthalpy stores
in terms of cost.

• Covered (confined) groundwater-bearing bed:
On condition that adequate  technological storage
parameters are selected, even phreatic aquifers can be used
according to most recent studies. 

Geological conditions



• Max. effective reservoir thickness approx. 30 m:
If thicker, special production techniques would be required
due to the horizontal propagation of the thermal front.

• Homogeneous aquifer structure:
Strong interstratification may result in a smaller coefficient
of recovery. 

Geological conditions



• Geometrical aquifer structure:
Major differences in level relative to the aquifer top may lead
to problems when re-producing the fluid accumulating in the
top sections. 

• Low regional base flow or detailed knowledge on the regional 
groundwater flow parameters: 
Appropriate siting of the wells can influence the propagation
of the thermal front which is important for long-term
operation. 

Geological conditions



• Appropriate chemical composition of reservoir fluid (heat
transfer medium) and matrix:
Changes of the state in the working section of the reservoir
must not affect reinjection. 

• Store installation out of groundwater catchment areas:
Interference and quality impairment must be avoided. 

Geological conditions



Geological potentials
of aquifer thermal 
energy storage

Geological conditions



• Depending on the state of the geological knowledge, at least 
two exploratory wells should be drilled down on the site, 
followed by geophysical logging giving evidence on: 

* depth and thickness of the aquifers
* existence of aquicludes in the under- and overlying      

sections of the aquifer intended for thermal energy 
storage 

* non-homogeneities in the aquifer 

• Pump and injection tests – duly recording the changes of the
water level in the water and oberservation wells - are to 
determine  the productivity and injectivity of the water well.

Site assessment



• Objectives of the laboratory analysis of matrix and fluid: 
* Mineralogical investigations of the matrix to describe 

potential damages to the reservoir caused by 
precipitation or intrastratal solution caused by 
temperature changes

* Determination of the grain size distribution to 
characterise the reservoir 

Site assessment



* Geochemical investigation of the groundwater to 
identify the water components with regard to their
reaction behaviour in changed temperature
conditions

* Determination of the actual microbiological state of 
the groundwater to identify the sensitivity of the
reservoir to temperature increases 

Site assessment



* Isotope-hydrogeological analysis to determine 

the hold-up time of the groundwater and to 
derive a potential geohydraulic communication 
among neighbouring wells

• As the geometrical aquifer structure is especially
important, shallow seismics proved to be an efficient
method to enhance the state of hydrogeological
knowledge 

Site assessment



two directionsone directionDirection of flow

discontinuouscontinuousFlow

seasonalcontinuous
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Technical dimensioning

Technical requirements on the wells



Type 1 

(down to a depth of approx. 400 m)

Type 2 

(down to depths from approx. 400 to 1,000 m)
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Technical dimensioning



• The most important parameter is the well diameter
which depends on several criteria to be observed: 

* laminar flow in order to prevent the precipitation 
of ochre and incrustations in the screen section 

* non-overspeeding of the critical flow velocity 
against the screen

Technical dimensioning

Technical requirements on the wells



• the diameter required for installation of the
submersible pump 

• resistance of the equipment to thermal 
shocks and corrosion

Technical dimensioning

Technical requirements on the wells



Principle scheme of the surface storage loop (when charging)

Technical dimensioning

Warm well Cold well

Slop tank

Heat exchanger for direct
heat transition and heat pump 
condenser

coarse filter

Pressure maintenance

Fine filter

Integration 
of more
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Integration 
of more
warm

wells



Principle scheme of the surface storage loop (when discharging) 

Warm well Cold well

Slop tank

Heat exchanger for direct
Heat transition and heat pump condenser

Coarse filter
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Technical dimensioning



Design and present view

ATES Rostock-Brinckmanshöhe
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ATES Rostock-Brinckmanshöhe

Technical concept of solar energy storage



Energy balance of heat production

ATES Rostock-Brinckmanshöhe
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Siting of the heat store wells

ATES Rostock-Brinckmanshöhe
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• geological formation: Quaternary

• depth: 13 m - 27 m

• store temperature: 11 °C

• porosity: ~20 %

• permeability: 0.25- 0.5 µm²

• number of wells: 2

• internal distance: 55 m

• production and injection 

flowrate: 20 m³/h

• injection temperature: 50 °C

• charging heat: 234 MWh/a

• discharging heat: 222 MWh/a

ATES Rostock-Brinckmanshöhe



Technical concept of solar energy storage

ATES Rostock-Brinckmanshöhe
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External view of the
warm well cellar

Collector roofs during
construction
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Heat exchangers for charging
and discharging (left) and heat
pump (right)

Well head during construction

ATES Rostock-Brinckmanshöhe
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Model area and grid, store section - red
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Simulated temperature distribution when charging at a depth of 17 m, 
early September 2000
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May 2000

September 2000
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Calculated temperature, model layers and velocity arrows along the 
track of intersection



ATES Rostock-Brinckmanshöhe

Calculated (red) and measured (black) temperature behaviour 
at the measuring-lance M3 in 2000 
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Calculated (red) and measured (black rhombs) discharging 
temperature, end of 2000 (days since 1st May)
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Essential figures

2001 2002 2004

•Solar fraction 32 % 43 % 49 %

•ATES recovery factor 36.5 % 64.5 % 48,5 %

•COP of heat pump 4.1 4.3 4,5
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Geothermal Heating Plant and 
low-temperature heating network

(12 MW, 80°C / 45°C)

Gas and Steam Cogeneration Plant  
and high-temperature heating
network (200 MW, 130°C / 60°C)

Neubrandenburg aquifer heat store

District heat supply networks of the Neubrandenburger Stadtwerke
GmbH (Public Utilities)
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Neubrandenburg aquifer heat store

Characteristics of the heat demand of the town of 
Neubrandenburg 
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well construction

Neubrandenburg aquifer heat store



•Production horizons: Hettangian and

Upper Postera

•Depth: 1,105 m – 1,172 m

1,237 m – 1,271 m

•Flowrate: 200 m3/h

•Production temperature: 50 °C and 54 °C

•Mineralisation: 118 g/l and 133 g/l

Parameters of the geothermal resource

Neubrandenburg aquifer heat store



Behaviour of the temperature when discharging
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Working on the well Gt N 4/86 in 2002

Neubrandenburg aquifer heat store



Balance of generation in the district heat supply network
„Rostock Street“

Heat store

Waste heat arising from the 
cogeneration plant
Peak-load boiler

Neubrandenburg aquifer heat store



Installation of the submersible pump 
in the well  Gt N 4/86 in 2002

Neubrandenburg aquifer heat store



Gt N 4/86 well head

Neubrandenburg aquifer heat store



Gt N 4/86 well head

Neubrandenburg aquifer heat store



Heat exchanger for heat discharge

Neubrandenburg aquifer heat store



Coarse filtration of the thermal water at the cold well

Neubrandenburg aquifer heat store



Cold store

Heat store

Aquifer thermal energy stores 
in the Berlin Spree river curve 

(Parliament District)



Parliament buildings supplied
by ATES  

Aquifer thermal energy stores 
in the Berlin Spree river curve 

(Parliament District)



Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)

Drilling fields



Drilling of a heat store well

Aquifer thermal energy stores 
in the Berlin Spree river curve 

(Parliament District)
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Aquifer thermal energy stores 
in the Berlin Spree river curve 

(Parliament District)



•Geological formation: Hettangian

•Depth: 285 m- 315 m

•Store temperature: 19 °C

•Mineralisation: 29 g/l

•Porosity: 30.4 %

•Permeability: 2.8- 4.2 µm²

•Number of wells: 2

•Internal distance: 400 m

•Production/injection flowrate:  100 m³/h

•Injection temperature: 70 °C

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)

Heat store parameters



•Geological formation: Quaternary

•Depth: 30 m- 60 m

•Store temperature: 10 °C

•Porosity: ~30 %

•Permeability: >1 µm²

•Number of wells: 12 in 2 groups

•Internal distance: 400 m

•Production / injection flowrate: 300 m³/h

•Injection temperature:

in winter 5 °C

in summer 28 °C

Cold store parameters

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)

Installation of the twin pipes in a heat store well



Heat store well chamber

Installation of a  heat store well head

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



Summer Winter
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Technical concept of the storage of waste heat arising from
a  cogeneration plant

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)
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Energetic benefit from a heat store
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Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



• Until autumn 2002: Charging only
• First regular annual cycle: Completed by discharging in 

winter 2002/2003 

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)

Charging the heat store: Annual curve



600 m

300 m

Operational data: 
Quantities and charging
temperature

Operational data: 
Quantities and charging
temperature

Temperature distribution in the
underground

Temperature distribution in the
underground

• 3-dimensional Finite-Element model grid
with 9 model layers from 100 m to 400 m 
below ground

• Flow and  propagation of the heat front

Numerical model of the heat store: Structure
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Numerical model of the heat store: Validation
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Summer Winter

Technical concept of the storage of ambient cold

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



Borehole grid in the Spree river curve

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



Cold store
Heat storeSiting of the wells

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)
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Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



Simulated temperature
distribution, March 2003

Simulated temperature
distribution, March 2003

Simulated cooling-down 
since  March 2002

Simulated cooling-down 
since  March 2002

Numerical model of the heat store



Cold store well head Heat store well head

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



Surface loop of the cold store

Surface loop of the heat store

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



Filter in the cold store loop

Heat exchanger in the cold
store loop

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



Arrangement of the technical units

Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)



Aquifer thermal energy stores in the Berlin Spree river curve 
(Parliament District)


