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The conventional approach to estimation problems has been to
optimize an objective function with or without constraints. The
solvability of the resulting optimization problem is definitely a
central issue and may lead 10 the selection of an unrealistic
objective function and severe limitations in the incorporation of
available information. Consequently, the reliability of the solutions
becomes questionable, as they may violate known constraints about
the problem. Set theoretic estimation is governed by the notion
of feasibility and produces solutions whose sole property is to be
consistent with all information arising from the observed data and
a priori knowledge. Each piece of information is associated with a
set in the solution space and the intersection of these sets, the fea-
sibility set, represents the acceptable solutions. The practical use
of the set theoretic framework stems from the existence of efficient
techniques for finding these solutions. Many scattered problems in
systems science and signal processing have been approached in
set theoretic terms over the past three decades. The purpose of
this paper is to synthesize these various approaches into a single,
general framework, to examine its fundamental philosophy, goals,
and analytical techniques, and to relate it to conventional methods.
Better understanding of the set theoretic approach will result in
more applications in sciences and engineering and will stimulate
further theoretical research.

I. INTRODUCTION

Most estimation techniques are based upon solving an
optimization problem. The signal that achieves the mini-
mum mean-square error, the spectrum with the maximum
entropy, the estimate which is the most likely, or the
parameter that maximizes the posterior probability den-
sity are often regarded as desirable solutions for various
problems. These formulations most frequently guarantee a
single solution by proper choice of the cost function, eg.,a
quadratic form. It is comforting to claim that “the” solution
has been found. However, users whose interpretation of
the best way to solve the problem differ may obtain
different solutions. In addition, even in relatively simple
problems, relating a practical aim to a precise mathematical
optimization criterion is a difficult task [55], [100]. As
pointed out in [222], our insistence on optimal solutions
often leads to arbitrary decisions because the selection
of a criterion of performance is inherently subjective and
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solving the problem may require oversimplifications in its
formulation. For instance, the Wiener filter that is based
on the squared estimation error is often used in image
restoration only because of its mathematical simplicity,
ignoring the properties of the human eye, which is known
not to be an optimal least-squares detector. Moreover,
despite a great many controversies they create among
statisticians, the philosophical and theoretical problems
associated with conventional estimation techniques, their
performance measures, and their interpretation are usually
ignored. From a practical standpoint, because of the uncer-
tainty that surrounds the specifications of most problems,
providing a region of acceptability for a solution rather than
a single point seems more realistic. Of course, the question
arises, “What is acceptable?”

An objective judgement on the acceptability of a solution
must be based on the observed data sample as well as
on all a priori knowledge about the problem. Follow-
ing the definition Kant gave in 1781 in his Kritik der
reinen Vernunft, a priori knowledge is knowledge that is
independent of experience, i.c., knowledge that does not
arise from the particular body of observed data currently
being analyzed. Most estimation problems are accompanied
with some a priori knowledge. Each piece of a priori
information can only reduce our ignorance about the object
to be estimated and is therefore valuable in increasing
objectively the precision of the estimate. To a large degree,
the amount of a priori knowledge available depends on our
ingenuity and the extent of our theoretical and practical
understanding of the physical system under study. The
wide range of a priori knowledge frequently encountered in
engineering applications includes information on the object
to be estimated such as nonnegativity in image processing,
properties pertaining to the system that generated the data
such as stability of the system that produced speech sam-
ples, or information relative to external elements such as
probabilistic attributes of the measurement noise.

The most straightforward way to obtain acceptable so-
lutions is to incorporate all available information in the
problem formulation. Conceptually, many conventional es-
timation techniques are capable of incorporating various
types of information [152], [162]. However, the resulting
constrained optimization problem may not be solvable by
any known method. For instance, a major problem in any
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Bayesian analysis is specifying a prior distribution that is
sophisticated enough to incorporate all a priori knowledge
but simple enough to make the problem algebraically
tractable. Generally, computational considerations dominate
the formulation of conventional estimation problems and
little regard is paid to the rational selection of a cost
function and the incorporation of a priori information, es-
pecially when it is nonstatistical. This may lead to estimates
which are not consistent with a priori knowledge and whose
reliability can therefore be questioned.

A close look at the signal processing and system theory
literature of the past three decades reveals a number of
isolated studies in which the sole property imposed on the
solutions was to agree with all available information about
the problem, be it arising from a priori knowledge or from
the observed data. The approaches used in these studies can
be labeled as set theoretic because each piece of information
is conveniently represented by a set in the solution space
and the intersection of such sets constitutes the family
of solutions, i.e., the feasibility set. Consequently, the
mathematical methods involved in the description, the
analysis, and the solution of such problems rest heavily on
the formalism of set theory. To capture the essence of these
scattered approaches, we can define set theoretic estimation
as an estimation framework in which consistency of a
solution with the observed data and all a priori knowledge
serves as the criterion of acceptability. The basic principle
that more reliable estimates can be obtained through the
incorporation of all available information can actually be
implemented in the set theoretic framework for there exist
techniques to compute feasible solutions for a large variety
of practically important families of sets.

The wide spectrum of problems that have been ap-
proached in the set theoretic setting include control, signal
restoration, signal reconstruction, image coding, speech
processing, system identification, spectral estimation, array,
and filter design. To date, however, there has not been
any effort to synthesize these various approaches into a
single general framework and to examine its fundamental
philosophy, goals, and analytical techniques. The purpose
of this paper is to address these issues and to establish set
theoretic estimation on firm foundations in order to promote
its use in proper applications as well as to stimulate further
theoretical research. Although most of the discussion will
focus on estimation problems, it must be noted that the
set theoretic approach is also of great interest in design
problems. In this context, each requirement, constraint, or
desiratum on the solution is associated with a set in the
solution space. The feasibility set is the family of objects
that satisfy all the requirements, i.e., the intersection of all
the sets. Examples of set theoretic design problems will be
given in Section V-D.

The paper is organized as follows. Section II focuses on
the general structure and the principles of the set theoretic
framework and discusses the methodology involved in
the construction of property sets in the solution space
from various types of information. Section III addresses
in its full generality the problem of the synthesis of a set
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theoretic solution from a family of property sets. Section IV
discusses the connections between the presented framework
and other estimation frameworks. Section V is a survey of
applications fitting in the set theoretic framework. Further
discussions and concluding remarks appear in Section VI. A
relatively extensive list of references is included at the end
of the paper, some of which are very specialized. Readers
interested primarily in material addressing broad aspects
of set theoretic estimation are referred to [24], [50], [60],
[103], [104], [187], [200], [201], [207], and [221].

The prerequisite for most of the mathematical aspects
of this paper is introductory analysis. Readers unfamiliar
with the notions of metric space, closedness, compactness,
convexity, norm, Hilbert space, and convergence should
refer to the Appendix, where basic definitions and notations
are provided, or to standard texts such as [68]. In those
few places where more advanced notions are needed, the
necessary definitions and background will be given in
footnotes. Some knowledge of elementary statistics is also
assumed.

All the terms that belong to the vocabulary of set theoretic
estimation will be underlined the first time they appear in
the text. Moreover, the following notations will be used
throughout the paper. N is the set of nonnegative integers,
Z the set of integers, R the set of real numbers, C the set
of complex numbers, R* the set of real k-tuples, and EF
the k-dimensional euclidean space (i.e., R* equipped with
the euclidean distance). (=) is the family of all subsets
of a space = and (S the complement of a set S. In a metric
space, S° is the interior of S and S its closure. The scalar
product of a Hilbert space will be denoted by (-{-) and its
norm by || - ||.

II. SETS TO DEFINE SOLUTIONS

A. Classification of Information

In most problems, information to be used in determining
the acceptability of a proposed solution can be classified
into three groups, namely information about the solution, in-
formation about the system, and information about external
factors.

Information about the solution represents our direct
knowledge about the properties of the result and it explicitly
defines the acceptability of a proposed solution. Examples
for this type of information include signal intensity ranges
in signal processing, nonnegativity of pixels in image
processing, region of support in spectral estimation, rank
or structure of a matrix in array processing, and stability
of a system in system identification. Information about
the system is mainly information relative to the properties
of the physical system that generated the data and to the
data generation model that establishes the relation between
the solution and the recorded data. Generally, this type
of information is incorporated indirectly in the problem
formulation. As an example, if the recorded data z is related
to the true solution h by the signal formation operator T’
i.e., = T(h), the corresponding acceptability criterion for
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a proposed solution a will be T'(a) = , incorporating both
recorded data and the data generation model. The last group
of information pertains to external factors. In many cases,
the results of an experiment are affected by unmeasurable
factors such as model uncertainty and observation or
recording noise. If these factors are totally unknown, it
will not be possible to find a scientific estimate for the
solution. In general, it is reasonable to assume the existence
of some kind of information about various properties of
these factors, e.g., bounds or partial statistical description
of their stochastic nature. The incorporation of this type
of information is mostly accomplished in an indirect
form, similar to modeling system-related information. For
instance, if the data generation model is © = T(h) + u,
where u is the noise, an acceptability criterion for a
proposed solution a will be that the residual z — T(a) be
consistent with the known properties of .

Besides stochastic information, uncertain or imprecise
information that does not have a frequentistic interpreta-
tion is common in many practical problems. Consider the
following examples. Motion in sequential images is limited
by physical constraints but the exact limits are unknown.
For a lossless system, the measured energy of the output
is close to that of the input. In signal recovery, signals
may be described by vague attributes such as impulsiveness,
smoothness, high energy, or similarity to a reference signal.

B. Fuzzy Information Modeling

The need for modeling all available information to de-
termine the acceptability of a solution and, on the other
hand, the large variety of possible available information
necessitate the use of a very flexible information modeling
technique. In this respect, the formulation with the most
latitude is a list of statements where each statement indi-
cates the acceptability of a proposed solution based on a
particular piece of information. Combining each statement
with an action in a precedent/antecedent format of a rule-
based expert system may be the most straightforward
solution approach for finding an acceptable solution. For
example, in modeling the nonnegativity constraint on pixel
values in image processing, one may impose a rule stating
that if the result has negative values, they must be truncated
to zero. Although it is possible to construct such expert
system-based estimators, there is no general technique to
define the actions that lead to a solution consistent with all
the rules.

The fuzzy formalism provides a general framework to
model precise or imprecise as well as certain or uncertain
information.! In this framework, a piece of information is
represented by a mapping ¥, : = — 0. 1], called fuzzy
proposition, which assigns to every point @ in the solution
space Z a grade of consistency W,(a). The larger the
grade, the stronger the belief that a satisfies the information
represented by W,. The statement ¥, (a) > 1, means that
the grade of consistency of a with U, is at least P,.

"No particular knowledge of fuzzy set theory will be required. One who

wishes to see an explicit development of this matter can turn to [69] or
[11).
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The range of a crisp (nonfuzzy) proposition ¥, reduces to
{0,1}, ie., ¥, (a) = 1 if ¥, is true for ¢ and U, (a) =
0 otherwise. Such propositions are also called Boolean
propositions. As an example, let = be a space of signals
and let [|a||? denote the energy of a signal ¢ in Z. Consider
the information “The energy of the original signal is 10.”
This precise information can be associated with the crisp
proposition

L, ifflef?=10
0, otherwise.

(Va € 5) U,(a) = { ()

Now suppose that the information pertaining to 1R|? is
given as “The energy of the original signal is close to 10.”
This imprecise information can be associated with the fuzzy
proposition

1

Y = U, =
e €2 ) = i

@

It is noted that in both (1) and (2) WU, (a) = 1 only when
llal|* = 10. However, when [ja|? # 10, (1) is identically 0,
whereas (2) decreases smoothly to 0 as ||a[|> moves away
from 10.

Let (¥,),e; be the family of fuzzy propositions represent-
ing the corpus of information available about the problem.
It will be assumed that all the VU, s are defined on the same
solution space Z. Our basic objective is to find a point
consistent with all the available information. A functional
approach to this problem is to combine the ¥, s into a single
fuzzy proposition ¥ via some aggregation operator [70]
and then find a point which yields the largest value of V.
Because the underlying goal is to satisfy all the information
simultaneously, a fuzzy intersection operation is suitable.
Although conceptually attractive, this strategy would un-
fortunately face obstacles similar to those encountered
in the conventional estimation setting: rational selection
of a meaningful intersection operator and computational
tractability of the resulting optimization problem.?

In the set theoretic approach, each proposition ¥, is
associated with a set S, in Z. The intersection of all the
S,s is the set of acceptable solutions. The main advantage
of this approach stems from the existence of methods for
the synthesis of set theoretic estimates, which make the set
theoretic framework a very flexible and practical approach.
We shall now formalize this framework around the concept
of set theoretic formulation.

2To illustrate the wide variety of fuzzy intersection operators and the
potential complexity of maximizing an intersection of fuzzy propositions,
consider the problem of intersecting two fuzzy propositions ¥, and W,
via the Yager operator. The Yager intersection operation is given by [70]

T =1 —min{1 (1~ 9,)" 4 (1 = &,)") /)
where () < w0 < 4.

The value of 1/« determines the strength of the intersection performed.
Thus, for w0 = 1, one obtains the aggregation ¥, = max{0.¥, +
W, — 1}, which corresponds to the highest demand for simultaneous
membership. On the other hand, as « — +c, one obtains the weakest
aggregation, U1 = min{W¥,. ¥, }, in which the lowest grade dictates
the overall grade.
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C. Set Theoretic Formulation

Let us consider a general estimation problem where the
object to be estimated, h, belongs to a space =. We shall call
h the true object or estimandum,® = the solution space, and
a proposed solution, a, for the problem an estimate of h.

A formal definition of the set theoretic formulation can
be given as follows. Let (¥,).cr be the family of fuzzy
propositions on = representing all information available
about the problem (information arising from the data and
a priori knowledge) and let (v,).cr be real numbers in
10, 1] representing the strength of the beliefs that the true
object satisfies these propositions. Then, a family (S)wer
of subsets of = can be constructed as follows:

(Veel) S ={acE¥,(a)>p} 3)

Each S, will be called a property set. Thus, S, is the set of
all estimates that are consistent with the information carried
by ¥, at level 9,. The pair (£,(S.).cr) will be called a
set theoretic formulation of the problem. The subset of Z
of objects consistent with all available information is the

feasibility set

S = ﬂ S,. @

eI

S will be called the solution set. Any point in S will be
called a set theoretic estimate. The set theoretic formulation
will be said to be consistent if S # @, fair if h € S,
and ideal if S = {h}. Fig. 1 depicts various set theoretic
formulations.

In the jargon of fuzzy set theory, ¥, is the membership
function of a fuzzy set S,; ¥, (a) is the grade of membership
of a in S, and the set S, in (3) is called the v~ cut of S, [69],
[111].If ¥, is a crisp proposition, S, = {a € E|¥,(a) = 1}
and ¥, is simply the indicator function of S, i.e., ¥, = 1s,.

Before closing this section, the reader should be advised
that (3) is the formal definition of a property set, not
necessarily a constructive one. In many concrete instances,
the actual construction of property sets will be done in a
more straightforward fashion without explicitly invoking
any fuzzy formalism. Examples will be given in Sections
II-E and II-F.

D. The Solution Space and the Property Sets

The first fundamental component of a set theoretic formu-
lation, the solution space, can take many forms, e.g., a field
of scalars, a space of matrices, functions, or distributions.
The primary criterion in selecting the solution space is
being able to model all available information easily and
accurately. A rule of thumb is to use a solution space
that contains those objects directly described by most of
the available information. For example, in a digital image
restoration problem, if most of the information about the
restoration result describes it as a spatial domain sampled
and quantized image, the solution space must contain digital
images of a given size as its main elements. On the other
hand, in an ARMA estimation problem, if most of the

31n statistics, h is often called the true state of nature.
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(©)

Fig. 1. Set theoretic formulations: (a) inconsistent; (b) unfair; (c)
fair.

available information is on the coefficients of the system,
a solution space whose elements are vectors of system
coefficients will be more suitable.

In many cases, all available information does not describe
the solution in the same space. The simplest example for
this may be the band-limited extrapolation problem where
the available information describes the properties of a signal
in both time and frequency domains. In such cases, the
information that describes the solution in a space other than
the solution space must be formulated so that an equivalent
description in the selected solution space is provided. For
the above example, if the solution space is selected to
be that of discrete-time-domain real signals of length k,
R*, and the frequency domain information states that for
1| > B,H(l) = 0, where H(l) is the Ith DFT frequency
coefficient of h, then the information must be modeled
using a set of time-domain signals such as

S, = {a e R¥|A(l) =0 for || > B}. 5)

After determining the type of the basic elements of the
solution space, its structure must be defined. In mathemat-
ics, there exists a large number of classes of spaces which
can be hierarchized according to their structure and their
properties, from basic topological spaces to Hilbert spaces
[13], [218]. As will be seen in Section III, the algorithms
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for generating set theoretic solutions that display the best
convergence properties require a highly structured space,
namely a Hilbert space in which all the property sets are
closed and convex. Therefore, although algorithms exist for
other cases, it is preferable to construct such set theoretic
formulations whenever possible.

Theoretically, even in abstract estimation problems, find-
ing a hilbertian solution space does not pose a major
difficulty since there exist very general Hilbert spaces to
which the estimandum can be assumed to belong (examples
of a variety of Hilbert spaces can be found in [13] and
[218]). For instance, a useful Hilbert space is the space
L2(Q, F, ) of (classes of equivalence of) square-integrable
functions on an abstract space 2 with respect to a measure
;% in this space, the metric is given by d(a, b)=(Jyla—
b|*dp)!/2 [6]. The space £2 of square-summable infinite
complex sequences and the k-dimensional euclidean space
E* are particular cases of the space L2(Q2, F, i) [6]. Other
particular cases of £2(€2, F, 1) of interest are the space of
complex matrices equipped with the Frobenius norm, which
has been used in signal enhancement problems [24], and
the space L2 of Lebesgue square-integrable functions on
R™ commonly used in n-dimensional signal recovery {221]

E:Lﬁ:{a:R"—»R|
oo w)Pdeyde, < o). (6
Another important family of Hilbert spaces are Sobolev-

type spaces, such as those employed in [186] for restoring
two-dimensional vector fields

={a=(az.0,) : R* x R - R|
/ da, 2+ da, 2
R \ Oz Oy

da, z day 2
+ W + B‘U d:t,dy<+oo}. 0

In [130], the Hilbert space

[n

E= {(gn)nell(vn €12)gn € L%
and > lgall? < 400} ®)

nel

was used to reconstruct a signal from wavelet transform
information. At any rate, since in applied work many prob-
lems are eventually formulated in R* via parametrization
or discretization, a readily available Hilbert space is the
euclidean space E¥ whose metric is given by d(a,b) =
(St las = bi 2172,

The condition that the sets be closed? is not too restrictive
since the closure of a set S, is given by 5, = {a €
Zld(a,S,) = 0}, where d is the underlying metric. In other

“The definitions of a measure space (§2. F. ) and of the integral with
respect to a measure u can be found in [6).

SIn the engineering literature, proofs of closedness are often unduly
complicated. Since sets are often specified in the form S, = {a €
Zlg(a) < &} = g7"(] — 20.4,]), where g, : = — R, notice that
closedness of S, will follow at once (by definition) from the lower
semicontinuity (in particular, continuity) of ¢,, which is usually easily
verified.
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words, by replacing S, by its closure in the set theoretic
formulation, one merely adds points that are at distance
zero from the points in S,, which will have no significant
effect on the solution of a practical problem.

On the other hand, convexity may be more difficult to
achieve since many constraints lead to nonconvex sets
in the natural solution space. For instance, the set of
stable autoregressive filters of order greater than two is
not convex in the space of regression coefficients [10]; in
signal recovery, the sets of signals whose energy is bounded
from below [42], that of signals with a given number of
levels [42], or that of signals with a prescribed Fourier
transform magnitude [126] are not convex in the spatial
domain (with the usual vector space structure). In such
instances, one may replace all the nonconvex sets by their
convex hull. This naive approach is seldom satisfactory, as
it often leads to sets that are too large and therefore useless.
For example, in discrete signal restoration, the convex hull
of the (nonconvex) set of all nonnegative signals possessing
no more than a given number of nonzero points is the whole
space [49]. A better approach is to seek a new solution
space where every piece of information yields a convex set.
This strategy was adopted in the signal recovery problems
of [34] and [36], where the vector space structure (addition,
scalar multiplication) and, consequently, the scalar product
of the Hilbert solution space were modified. It must be
stressed that, in general, such an option may not be available
for there may not exist a workable hilbertian solution
space in which all the information can be associated with
convex sets. For example, the property of stability for
autoregressive filters can be associated with a (convex)
hypercube in the space of reflection coefficients [114],
but other sets in the formulation that were convex in the
regression space (e.g., those discussed in (48] and [50]) may
no longer be convex in the reflection space. The problem
of maintaining the convexity of convex property sets in a
change of solution space is also encountered in the context
of two-dimensional phase retrieval [36].

It must be noted at this point that the selection of a
solution space can also be considered an implicit way of
modeling information. In selecting a space containing the
coefficients of an ARMA system for the spectral estimation
problem, one is implicitly enforcing a maximum order
ARMA model on the signal generation mechanism.

E. Property Sets Based on Crisp Propositions

Some pieces of information can be modeled by crisp
propositions, i.e., propositions which are either true or false
for every object a in Z. From (3), for every 1, in ]0,1], the
property set S, associated with such a piece of information
has the conceptual form S, = {a € Z|¥,(a) = 1}. We
now give examples of such sets.

As was seen earlier, a commonly used solution space in
one-dimensional signal recovery is the space L? of (6). In
this space, the set of nonnegative signals is

S, = {a € L}|(Vx € R)a(z) > 0}, ®
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and the set of band-limited signals is
S, = {a € L}(Vv € R) A(v) = 0if[v| > B} ~ (10)

where A denotes the Fourier transform of a.
In the context of time series, consider the autoregressive
model of order k&

k
(Viel) Xi=) hiXi;+Us. (11)

i=1

The problem is to estimate h = (hy,- - -, hy). The property
set based on the information that the process (X;)icz is
causal and stationary is [20]

k
S, ={acRF(VzeC) 2*= Zajzk“j = |z] < 1}.
=1

12)
Now suppose that the driving process (U;)icz is known
to be uniformly bounded, say (Vi € Z) |U;| < A. Then,
if n + k data points (z;)1<i<nt+k Of (Xi)icz have been
observed, an estimate a that is consistent with the bound-
edness information will place the residual samples (xx.4.; —
Zle @jTkri—j)i<i<n in the interval [—A, A]. This leads
to the property set

n k
S, = ﬂ{a ERF||zppi — D a;mppiy| <AL (13)

i=1 j=1

Let us note that noise boundedness information has been
utilized in several set theoretic problems and forms the
basis for the broad family of so-called “bounding-ellipsoid”
algorithms [175] to be discussed in Section V-A.

F. Property Sets Based on Fuzzy Propositions

Fuzzy propositions are necessary to model pieces of in-
formation involving properties that do not change abruptly
but according to a continuum of grades over the solution
space. Statistical information and vaguely defined deter-
ministic information fall in this category. The use of fuzzy
propositions to define the sets in (3) provides a general
methodological framework for the construction of property
sets in terms of consistency levels with respect to such
information.

In fuzzy set theory, there is no general technique for
defining membership functions (fuzzy propositions) in an
objective and systematic way and many guidelines have
been proposed [69]. Ideally, a fuzzy proposition ¥, should
be defined so that its value for the true object is close to
one and so that its selectivity is high in the sense that ¥,
attains large values only over a small region of the space.
The higher the selectivity, the smaller the ,-cut set in
(3) for a given 1,. The selectivity of a fuzzy proposition
is a function of the precision with which the properties
characterizing the underlying information are known.

COMBETTES: FOUNDATIONS OF SET THEORETIC ESTIMATION

1) Statistical Information: In general, statistical con-
straints arise from the knowledge of probabilistic properties
of the stochastic processes present in the data formation
equation, e.g., noise or model uncertainty. In most
cases, the construction of property sets based on such
information is handled via statistical confidence theory.
In this framework, one constructs a set S, of estimates
consistent with a given piece of information to within a
certain confidence coefficient. For example, let us go back
to the autoregressive model (11) and let us now assume
that the noise sequence (U;);cz is zero mean, white, and
Gaussian, with power o2. For a proposed solution a, let
m(a) be the sample mean of the residual based on the
observations (z;)1<i<n+k Of (Xi)icz, that is

n

k
m(a) = (1/n) Z Thii — Zaj$k+i-j . 1d
=1

i=1

The true sample mean obtained for ¢ = h is normal
with mean zero and variance ¢’ = o2/n. Thus, the
acceptability of an estimate a with respect to the available
information on (U;);ez can be tested by the value of
|m(a)|. If a 95% confidence coefficient is chosen, the set
of estimates yielding a sample mean consistent with the
available information on (U;);ez is

S, = {a € R*||m(a)| < 1.960"}. (15)

Similar sets based on noise properties were used in signal
restoration in [201]. In [47], this approach was modified
to also incorporate probabilistic information relative to
random blurring kernels. In [50], it was demonstrated how
numerous noise properties can be exploited to construct
property sets via statistical confidence theory in a wide class
of set theoretic estimation problems. The general form of
the resulting property sets is

S, = {a € E|s(a) € C,} (16)

where, for an estimate a, s(a) is the observed value of the
statistic of the residual associated with a certain property of
the noise, and C, the confidence region based on a desired
confidence coefficient. This approach was further extended
in [44] to also incorporate information relative to model
uncertainty.

Although the fuzzy propositions need not be explicitly
specified, it is underlying in the construction of such sets
based on confidence theory and can be obtained from the
distribution of the statistic defining the set. In the above
example, suppose that a fuzzy proposition ¥, is constructed
via the probability density normalization technique sug-
gested in [69]. Since the true sample mean is normal with
mean zero and variance 0’2, we get

¥, (a) = exp(—|m(a)[*/(20"%)). (17)

The property set (15) is now seen to be of the conceptual
form of (3) by letting v, = exp(—1.962/2). In general, the
grade of consistency 1, is directly related to the confidence
coefficient. Naturally, as the sample size increases, o’ 2 goes
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to zero and the support of ¥, undergoes a contraction,
which increases selectivity. In the limit, ¥, approaches a
crisp proposition. This simply translates the fact that the
uncertainty surrounding the value of m(h) has decreased,
for the sample mean is computed from a larger sample. In
general, the grade of consistency %, is directly related to
the confidence coefficient. Finally, it should be mentioned
that other techniques have been developed to specify fuzzy
propositions based on probability densities according to
certain criteria [41].

2) Vaguely Defined Deterministic Information: As previ-
ously discussed, instances of vaguely defined deterministic
information are common in estimation problems. In the
context of signal restoration, fuzzy propositions associated
with various vaguely defined signal attributes were
proposed in [42]. For example, a soft upper bound on the
energy of a discrete signal in R* was modeled with a fuzzy
proposition of the form

k
U, (a) = exp (—az |allz) a>0. (18)

i=1

The knowledge that the true signal is in the neighborhood of
a prototype signal, 7, was modeled with a fuzzy proposition
of the form

k
¥, (a) = exp (~ Za,»|a,- - T,‘|2>. a; > 0. (19)
=1

Fuzzy propositions modeling smoothness and signals with a
finite number of levels were also given in [42]. As another
example, consider a problem with a matrix solution space.
The information that the true matrix is near-Toeplitz can
be modeled by

¥, (a) = exp(—alla — Toep(a)|)). a>0 (20)

where || - || is a suitable norm and where Toep(a) is the
best Toeplitz approximation of a (obtained by replacing
each entry of a by the average value of the entries along
its diagonal in the case of the Frobenius norm). While the
above propositions are of the exponential type, other forms
are possible, e.g., (2).

Of course, in practice, the sets can often be constructed in
a more straightforward fashion, which by-passes the spec-
ifications of a fuzzy proposition ¥, and of a consistency
level v,. For instance, upon combining (3) and (20), we
obtain the set

S, ={a € Z| |la — Toep(a)|| < &,} 1)

where 6, = —a~! In ¢,. This set could have been
obtained directly, by specifying a bound 8, in accordance
with the user’s confidence in the near-Toeplitzness of the
estimandum.

G. The Analysis of Set Theoretic Formulations

Once a set theoretic formulation (2,(5.).e1) has been
constructed, several questions arise vis a vis its properties,
its informational content, and its intrinsic value.
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In point estimation theory, the estimators are usually
accompanied by an estimate of their accuracy. Of course,
any criterion of accuracy is arbitrary; a typical one is
the mean-square error, which reduces to the variance in
the unbiased case. The question of the accuracy of set
theoretic estimates was briefly touched upon in [175], where
suggested criteria for the ellipsoidal approximation {a €
R¥|(a — ag)!M~Y(a — ag) < 1} of the exact feasibility set
are trM, detM, the largest eigenvalue of M, and v! My, v
being a direction of interest. In the context of digital signal
restoration, the diameter of the solution set is used in
[42], [113], and [201] as a criterion of quality. In [9], the
accuracy of a set theoretic estimator in R* is defined as its
measure.

Let /. be the estimandum and let (Z, (S,),¢;) be a fair
set theoretic formulation with S = N.erS.. Intuitively, the
accuracy of (2, (S,),er) should be evaluated by a monotone
function of S, which attains its minimum value when the
formulation is ideal, i.e., § = {#}. These requirements were
formalized in [45] by introducing the notion of mensuration.
Let & be a o-algebra of subsets of = containing (S,),cr
(g, & = P(Z)) and let &, = {A € G|h € A}. Then
a mensuration for (Z.(S,),c;) is a monotone set function
v : 6, — [0.4oc] that does not vanish on any of the
S,s. The accuracy of (Z.(S,),es) is then defined to be the
number (.S). Note that the lowest value is achieved in the
case of an ideal set theoretic formulation. In this case, the
available information describes uniquely the true object.
Generally speaking, &, can be thought of as the family
of (measurable) sets representing all possible information
about h; only the subfamily (S,),c; of &, is available to
characterize the acceptability of an estimate. Assuming that
(E.4d) is a metric space, specific examples of mensurations
of a set A in & are the diameter of A; the thickness of
A (ie., the diameter of the largest open ball contained in
A); j(A). [ 6adp, and pi-ess sup{é4(a)|la € =}, where
fuis a measure on & that puts mass on the S,s and &4
a proper deviation function [45]. For instance, in E¥, the
diameter, thickness, and Lebesgue measure of an ellipsoid
are, respectively, its major and minor axes, and its volume.
These basic mensurations are shown in Fig. 2.

Before utilizing a set theoretic formulation, one should
remove those property sets that bring little or no original
information for they will have little qualitative effect on a
solution but will add burden to its computation. In order
to identify those sets which carry significant information
relative to the other sets present in the formulation, a useful
notion is that of contribution. Given a mensuration » on Sy,
the contribution of S, (x € I) to (Z.(S,),¢;) is defined as
(45]

p(Sy) =v

N s *z/(ﬂs,). 2)

tel—{x} el

It can be viewed as the degradation in the accuracy of the
set theoretic formulation incurred by the removal of Sk.
The smaller this number, the smaller the contribution. In the
extreme, suppose that there exists a set Sy(\ € I) such that
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Fig. 2. Mensurations in E2: (a) diameter; (b) thickness; (c) area.

Sy C S,. Then, the information carried by ¥, is redundant
in the presence of U, and the contribution of S, is null:
p(Sx) = 0. In some problems, sets with little innovative
information may be identifiable directly. For instance, in
the bounded noise ARMA estimation problems of [59] and
[103], each data sample gives rise to a property set and the
resulting feasibility set is approximated by an ellipsoid; a
test is developed to discard the sets that do not help and
reduce the ellipsoid. Redundancy tests for various noise
properties and data models are discussed in [50].

An important characteristic of (=, (S,).er) is its consis-
tency, i.e., whether or not S = N,¢rS, = 0. Inconsistent
set theoretic formulations may arise if one unadvertedly
includes mutually exclusive crisp propositions in (¥,),cr
or specifies v,-levels in (3) that are too high. They may
also be knowingly constructed when the goal is to obtain an
approximate feasible solution (e.g., see [89] and [133]). In
Section III-V, algorithms that yield approximate solutions
for inconsistent set theoretic formulations will be discussed.
In general, consistency is difficult to check analytically
and is often revealed by the convergence behavior of the
solution algorithm.

There are other properties of set theoretic formulations
that may be of interest. For instance, if S is balanced and
a is a feasible solution, then so is any down-scaled version
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aa, where |a| < 1. If S is convex, averaging feasible
solutions will still yield a feasible solution. Finally, let us
note that in some problems the property sets or even the
feasibility set may be disconnected. A pictorial description
of a disconnected property set is given in [50] and problems
with disconnected feasibility sets are discussed in [155].

III. MATHEMATICAL METHODS

The purpose of this section is to address the general
problem of the computation of set theoretic estimates, i.e.,
the problem of finding a point in the solution set (4). The
material will be exposed in a relatively detailed and rigorous
manner. Several algorithms and results that have been
recently proposed in the applied mathematics literature will
be made available to the engineering community. In partic-
ular, attention will be drawn to parallel methods. Although
no mention will be made of any particular application at
this point, the reader should constantly bear in mind the
geometrical interpretation of the results and should make
the natural connection with potential applications. Figures
will be provided to visualize some concepts.

A. Feasibility Problem

Let (Z,(S.).cr) be a set theoretic formulation where I
is finite, say I = {1,---,m}.% It will be assumed that Z
is a metric space with distance d and, unless otherwise
stated, that the set theoretic formulation is consistent.
Generating a set theoretic estimate is tantamount to solving
the feasibility problem

Find a € S =[] S.. (23)
el

This basic problem has a long history and various solution
methods have been proposed, which depend on the metric
and geometrical properties of the sets (S,).cr and the
structure of the underlying space =. Because (23) can usu-
ally not be solved in one step, most feasibility algorithms
are iterative and consist of building a sequence (@n)n>0
converging in some sense to a point in S according to the
general recursion

(Vn € N) any1 € Ra(an) 24

where (Ry)n>0 is a sequence of set-valued operators from
= into B(Z) and ag a point in =. In words, the update is
performed by selecting any point in the set R,(a,) that is
computed in terms of the current iterate a,. If, for every
a in Z and every n in N, R,(a,) reduces to a singleton,
then (24) takes the form

(YneN)  any1 = Ra(an). (25)

The following convergence properties of (24) will be of
interest:

P1): For every ag in E, (an)n>0 converges to the pro-
jection of ag onto S.

6Some of the results shall remain true with an infinite number of sets.
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P2): For every ag in =, (@n)n>0 converges to a point
in S.
P3): For every ag in Z, (@n)n>0 converges weakly to a
point in S.
P4): For every ag in =, (@ )n>0 possesses at least one
cluster point and all of its cluster points are in S.
In general, we have (P1) = (P;) = (Py). If S is a
normed vector space, the convergence in (P1) and (P,)
is understood to be strong convergence and (P,) = (P3);
moreover, if its dimension is finite (e.g., = = E*), then
(P2) & (P3).
At each iteration, (24) uses the constraints associated with
the sets to form the update. The algorithm is said to be serial
if only one set is activated at each iteration, i.c.,

(Yn € N) R,=R,, (26)
where (¢n)n>0 is @ sequence of indices in I, called control
sequence. The control sequence dictates the order in which
the property sets are activated. The most remote set control
scheme consists of letting «,, be the index of the set the
farthest from a, in terms of the metric of =. If (Vn €
N) ¢, = n (modulo m) + 1, the control is said to be cyclic.
It is said to be chaotic if each index ¢ in T appears infinitely
often in (¢, )n>0. On the other hand, the algorithm is said to
be parallel if several sets are activated simultaneously, i.e.,

(Vn e N) R, =R, , where 0 #£1,cCI. (27)
The control sequence (In)n>0 is said to be static if, for
every nin N, I,, = I, almost cyclic if there exists a positive
integer M such that, for every integer n, I C U;:’:?)ll,,+k.,
and chaotic if each index ¢ in I is contained in infinitely
many I,s.

We now proceed to introduce feasibility algorithms for
increasingly complex set theoretic formulations. It is re-
called that in a metric space (Z.d) the distance from a
point a to a nonempty subset S, is defined as d(a.S,) =
inf{d(a,b)|b € S,} and that a projection of « onto S, is
any point b in S, such that d(a. S,) = d(a.b). Such a point
is also called a best approximation of « by a point in S,. If
Z is a Hilbert space and if S, is closed and convex, every
point a admits a unique projection onto S, [13], [128] that
will be denoted by P, (a); the point 2P, (a)—a will be called
the reflection of a with respect to S,.

B. Sets Defined by Affine Subspaces

In this section, the focus is placed on set theoretic
formulations consisting of closed convex sets defined by
affine subspaces in a Hilbert space. Let 7, : = — R
be a nonzero continuous linear functional and ¥,. 0, real
numbers. It is recalled that the sets {a € Z|7, (a) = 6, 1
{e € E|T,(a) < 6,}. and {0 € Z|y, < T, (a) < 6,} are
called a closed affine hyperplane, half-space, and hyperslab,
respectively. First of all, suppose that the set theoretic

formulation consists of affine hyperplanes in E*, namely

(Veel) S ={aeR(alb) =20} (28
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Fig. 3. Kaczmarz's algorithm.

where b, is a nonzero vector in R¥, and 6, is a real number.
The first feasibility algorithms based on projections were
proposed by Kaczmarz in 1937 [109] and Cimmino in
1938 [39] for solving systems of linear equations.” These
fundamental algorithms are of great importance, for all the
projection methods to be discussed hereafter can be viewed
as extensions of one or the other. Kaczmarz’s method is
serial and satisfies (P;). It proceeds by cyclic projections
onto each hyperplane as follows:

{Vn € N)
where ¢, = n(modulo m) + 1. (29)

Un41 = R,” (an)-,

On the other hand, Cimmino’s method is parallel and
satisfies (P;). It takes as the next iterate the average of
the reflections of the current iterate with respect to all the
hyperplanes, i.e.,

(Ve N) Unt1 = (2/m)ZP,(an) —a,. (30)

el

A pertinent discussion of Kaczmarz’s and Cimmino’s meth-
ods can be found in [82] and a pictorial description of
their operation is shown in Figs. 3 and 4. Halperin [93]
has shown that (29) also satisfies (P}) in the general case
where the S;s are arbitrary closed affine subspaces and =
any Hilbert space.® In this case, it is established in [160]
that (Py) is also satisfied by the parallel algorithm

n41 = ZIIULR,(GYL) (31)

el

(Vn € N)

where the weights on the projections satisfy

Zw, =1. and (Ve e ) w, > 0. (32)
el

Kaczmarz’s method is further investigated in [195] and
a generalization of Cimmino’s method to solve integral
equations of the first kind in L*[a,b] is given in [110].
Cimmino-like algorithms have also been shown to be
related to the Landweber iteration [202].

7Hislorically, the first alternating projection algorithm seems to have
been developed by Schwarz around 1870 in connection with the integration
of partial differential equations [172] (see also [58]).

®Halperin's proof is given for vector subspaces but it can be extended
routinely to affine subspaces. The case 1 = 2 is known as Von Neumann's
Alternating Projection Theorem |206] (see also [210]). For generalizations
to nonhilbertian spaces. see [79]. The case of inconsistent formulations is
discussed in [117].
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Fig. 4. Cimmino’s algorithm.

The relaxation method of Agmon-Motzkin-Schoenberg
[2], [141] extends Kaczmarz’s method to formulations in
which the property sets are closed affine half-spaces, that
is

(Meel) S, ={a€cR*(alb) <6} (33

In this algorithm, the sets are activated serially according
to the iteration

(Vn € N) Ant1 = an + AP, (an) — an) (34)

where the relaxation parameter X lies in ]0, 2]. As illustrated
in Fig. 5, the case A = 2 corresponds to a reflection,
1 < A < 2 to an overprojection, A = 1 to a projection
(unrelaxed iteration), and 0 < A < 1 to an underprojection.
In other words, a,41 is located on the open segment
between a,, and its refiection with respect to S, . Algorithm
(34) satisfies (P2) in the cases of cyclic and most remote
set controls. Discussions of its rate of convergence in terms
of A can be found in [87] and [132]. The fact that it satisfies
(P2) in the general case where the S,s are arbitrary closed
affine half-spaces and = a general Hilbert space is proved in
[92].° In [31], a modified least-squares algorithm satisfying
(Py) is proposed for formulations of type (33). It contains
as a special case the parallel projection method

(Yn € N) Ang1 = Gn + An (Z w,P,(a,) — an
el

(35)
where the weights satisfy (32) and where, for every integer
n and a fixed number « in ]0, 2[, the relaxation parameter
is given by

a/ Y w, i p(ln) > 2
An = el
a, otherwise
with I, ={. € Ile, ¢ S.} (36)

where p(1,) is the number of points in I,,. In the method
proposed in [215] for Z = E*, the half-spaces are utilized
in a different manner. At iteration n, a surrogate constraint

%In (34), the direction of movement towards the half-space S, is
orthogonal to S,. Let us mention that there exist so-called ellipsoidal
methods where the direction of movement to the next iterate is determined

by a variable metric matrix updated at each step. The convergence
properties of such schemes are discussed in [88].
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Underprojection
P(a,): Projection

Overnoiedii
erprojecton 2P(a,)-a.: Reflection

Fig. 5. Relaxed projection onto S.

is derived from a group of violated constraints and a,41
is obtained by relaxed projection of a, onto the hyper-
plane defined by this constraint. Although this method is
serial, the determination of the surrogate constraint can be
performed in parallel.

Set theoretic formulations involving closed affine hy-
perslabs can be handled by the previous algorithms since
such sets can be written as the intersection of two affine
half-spaces. Alternatively, in E* one can employ the serial
automatic relaxation algorithm proposed in [28], which
takes advantage of the interval structure of the sets.

C. Convex Sets in Hilbert Spaces

It is assumed that Z is hilbertian and that all the S,s are
closed and convex.

1) Projection Methods: Let us first consider the serial
projection scheme

(Vn eN) ant1 = P, (an). 37

Brégman has established that this algorithm satisfies (P3)
under most remote set and cyclic controls [17].1° Moreover,
it satisfies (Pz) if the control is cyclic and one of the sets is
boundedly compact!! [192]. (P) also holds in the case of
chaotic control provided that one of the sets is compact [21].
A more general serial projection method can be obtained
by introducing relaxation parameters

(Vn € N) Ap41 = G + )‘n(PLn (an) - an) (38)

where the sequence (A,)n>0 lies in an arbitrary but fixed
interval {e1,€2] C 10, 2[. Moreover, it is assumed that
the sets are activated under most remote set or cyclic
control. Algorithm (38) was first proposed in E* as a
direct generalization of the Agmon-Motzkin-Schoenberg
relaxation method and shown to satisfy (P2) in [74].
In arbitrary Hilbert spaces, it is known to satisfy (Ps3)
[92], [221]. It also satisfies (P2) if any of the following
conditions holds [92]:
1) The dimension of = is finite.
2) All, with the possible exception of one, of the S,s
are §-uniformly convex: there exists a nondecreasing
10Br2gman also gives a version of this result for arbitrary topolog-

ical vector spaces in [18] by introducing so-called D-projections that
generalize metric projections.

ITA set in (Z,d) is said to be boundedly compact if its intersection
with every closed ball is compact [16]. It is noted that every closed subset
of E¥ is boundedly compact.
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o

Fig. 6. Hyperplane H separating the point « from the convex
set S.

function 6 : R — [0, 4oc] that vanishes only at 0
such that (Ve € E)(Y(a,b) € S?)||lc ~ (a + b)/2| <
(lle = b)) = ¢ € 8,.

3) (mLeISL)O 5’é f.

4) All the S,s are closed affine half-spaces.

In the literature, the cyclic version of (38) is often
referred to as POCS, for projections onto convex sets. When
direct projections onto some property sets are difficult to
perform, an alternative scheme is to replace P, by the
projection onto a hyperplane separating a, from S, in
(38) whenever a,, ¢ S, (Fig. 6 illustrates the concept
of separating hyperplane). This approach was adopted in
[3], where convergence property (P,) was established for
chaotic control in E* under the provision that, for every ¢
in I, a point in S° # § be known.

The basic parallel algorithm for convex sets in E* con-
sisting in averaging the projections onto all the sets, that
is

(Yn € N) tnt1 = (1/m) Z P, (ay) (39)

el

was shown to satisfy (P,) in [7]. In [65], it was shown that
the more general algorithm

(VTL € N) Unt1 = Gn + A (Z w, I)l,(an) - ”‘71)

€71
with 0 < A < 2 (40)

and where the weights conform to (32), satisfies (P3) in
general and (P;) if one of the S,s is compact or if all
of the S;s are closed affine half-spaces.'? This algorithm
can be further extended by allowing varying relaxation
coefficients, namely

(Vn e N) nil = Gn + Ay (Z w, D (an) — a,
el
(41)

In E*, if the sequence (A\n)n>0 lies in e, ¢5] C 10. 2], then
(41) satisfies (P3); in addition, if each An is determined
in terms of a, as in (36) with o = 1, the algorithm still
satisfies (P2) and accelerated convergence is achieved since
the A, s can now attain large values [105]. In [154] (see also

12 Particular cases of this scheme are also discussed in [54], [133], and
[160].
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[153]), Pierra establishes an interesting connection between
cyclic and parallel projection algorithms in Hilbert spaces
by showing that some parallel algorithms in = yield simple
cyclic algorithms in the cartesian product space =™, This
formalism leads to extrapolated relaxation coefficients with
which (41) is reported to converge efficiently. In this case,
(41) satisfies (P3) in general and (P) if any of conditions
1)-3) holds [154]. Naturally, the static recursion (41) can
be extended to a more flexible parallel algorithm in which
the subfamily of property sets to be acted upon varies at
each iteration. This leads to the general recursion

(Vn € N) Upil = ap + Ay (Z w, nPay,) — an>
€L,

(42)
where (1,,),>0 is a sequence of nonempty subsets of I and
((we,n).er, Jn>0 a sequence of weight vectors such that for
every n in N

Z w,, =1, and (Vi€ 1) Wy > 0. 43)
€1,

It is clear that this recursion encompasses all the previous
ones. For instance, letting I, = {¢,} in (42) yields (38)
whereas letting I,, = T yields (41). Now assume that
(An)n>0 C [e1.€2] C]0,2[. It is proven in [4] that (42)/(43)
satisfies (P2) in EX under chaotic control provided that

Z W, = +00. (44)

n>0

(Ve el)

Under similar assumptions, (P») still holds in E* if P, is
replaced by the projection onto a hyperplane separating a,,
from S, in (42) whenever a,, ¢ S, [76). This generalization
simplifies computations whenever direct projections onto
the Ss are not easily obtained. In arbitrary Hilbert spaces,
(42)/(43) satisfies (P3) under almost cyclic control provided
that the w, »s stay bounded away from 0 [46]. In [147],
general conditions on the set theoretic formulation [in
particular 1)-4)] are given for strong convergence of the
method under several control schemes (almost cyclic, most-
remote set, chaotic). This study also considers extrapolated
relaxation coefficients, as in [154]. An interesting geomet-
ric interpretation of (42)/(43) with nonnegative relaxation
coefficients is that the search direction at iterate a,, belongs
to the convex cone of vertex a, generated by the points
(P.(an)).er,. This is illustrated in Fig. 7.

2) Projection Methods for Closest Feasible Solution: It was
seen in Section III-B that in the case of affine subspaces
the algorithms (29) and (31)/(32) satisfy (P1). For general
convex sets, the algorithms of Section III-C1) are guaran-
teed to satisfy only (P, ), not necessarily (P ). For instance,
Fig. 8 depicts a simple situation when POCS does not yield
the closest feasible point. This is not a problem since in the
set theoretic framework any feasible point is an acceptable
solution. Nonetheless, in some applications, a bound § on
the variations of the true object A from some reference point
7 may arise from physical considerations. This constraint
confines estimates to lie in the ball of center 7 and radius
4. If a useful value of & cannot be determined reliably, one
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Fig. 7. Update region for a general convex projection algorithm.

r

d
RS

Fig. 8. The method of cyclic projections converges to either a;
or ay. The closest feasible point is a*.

&

Fig. 9. The best feasible approximation a* of r is always in
S’ = 5N B, where B is any ball centered at r and intersecting
with S.

can still exploit the constraint by choosing as a solution
the feasible point that lies nearest r, i.e., the projection of
r onto S. Indeed, such a point will be guaranteed to lie
in S and in any ball centered at r and intersecting with S
(see Fig. 9).

Direct projection onto an intersection of closed and
convex sets can be achieved via the serial algorithms of
[15], [80], and [94] and the parallel algorithm of {106],
which all satisfy (P;). These algorithms are closely related
to the feasibility algorithms of Section III-C1), to which
they add little computational complexity. In [43], they are
further discussed and applied to set theoretic signal recov-
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ery by best feasible approximation of a reference signal.
The problem can also be approached via the extrapolated
parallel method of [153].

3) Other Schemes: A shortcoming of projection methods
is the numerical tedium sometimes involved in computing
the projections at each iteration. A projection of a point a in
(E,d) onto S, is a point in S, that yields a global minimum
the function d(a, -). It is obtained by solving

mind(a,b) subjectto b € S,. 45)

In some cases, this constrained minimization problem is
easily solved. For instance, the euclidean projection opera-
tor onto the hyperplane (28) is simply given by [82]

6. — {alb.)
(b.|b.)

Algorithms are also available for special cases such as
polyhedrons [5], cones [67], or polytopes [214]. Now,
suppose that = = E* and that an equation is known for
the boundary of S,, e.g., 3S, = {a € R¥|g,(a) = 0}. Since
the projection of a point a in [S, onto S, belongs to 35,
(45) can be put in the form

(Va € RF) P(a)=a+ b,. (46)

min |ja — b||? subject to g,(b) = 0. 47)
This problem can be approached via the method of La-
grange multipliers [128]. Oftentimes, (47) must be solved
iteratively (e.g., [52], [185], and [201]). An alternative
iterative scheme to compute approximate projections is to
define a sequence of simpler sets (S, x)x>0 converging
to S, and such that each projection P,x(a) is easily
determined. Then, under certain condition, (P, x(a))k>0
will converge to P,(a) [171].

As was seen in Section III-C1) the problem of computing
exact projections can be circumvented in some cases by
projecting serially [3] or simultaneously [76] onto sepa-
rating hyperplanes rather than directly onto the sets. In
addition, methods that do not require projections exist for
set theoretic formulations of the form

(Veel) S, ={acR'g(a)<0}  (48)
where (g.).c; are convex functions on R*. A method
consists of moving in the direction of the subgradient' of
each g, evaluated at the current iterate, in a cyclic manner
[33]. A modified version of this method that finds a solution
in a finite number of steps is proposed in [66] and its parallel
counterpart, in which the update consists of a convex linear
combination of the subgradients of each g,, is proposed in
[107]. Other schemes exist for set theoretic formulations of
type (48), as discussed in [27].

13 A vector t in R¥ is said to be a subgradient of a function g, : R* — R
at a point a if

(Vb € R¥) (t]b — a) < g.(b) — g.(a).

If g, is differentiable, its gradient Vg, (a) is the only subgradient at a.
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a,

7

Fig. 10. Cyclic projections may fail to converge to a feasible
point in the presence of nonconvex sets. Here, the subsequences
(a2n+43)n>0 and (@25,44), >0 are constant and do not belong to
5 = 2

D. Towards Arbitrary Sets

The feasibility algorithms described above apply only to
set theoretic formulations such that = is a Hilbert space in
which all the S,s are closed and convex. Feasibility algo-
rithms applicable to more general set theoretic formulations
are needed, since, as was seen in Section II-D, there may
not always exist a hilbertian solution space in which all the
information can be associated with closed and convex sets.

1) Projection Methods: In the presence of nonconvex sets
and/or nonhilbertian spaces, the methods of Section III-
C are no longer guaranteed to satisfy (P2) or (P3) for
any initial point ag. For instance, Fig. 10 shows a simple
example in E? when the basic cyclic projection scheme
(29) fails to produce a feasible point for a particular choice
of ag (it is easily seen that other schemes in Section II-C
would face the same problem).

The informal use of cyclic projections in the presence of
nonconvex sets in E* is reported in several places in the
literature, e.g., [23], [96], [102], [126], [164], and [189], and
a local convergence statement of type (P,) appears in [24].
A rigorous convergence analysis of the cyclic projection
algorithm in arbitrary metric spaces is provided in [49].'

When dealing with projections in a metric space (=, d), it
must be borne in mind that a point in = may admit several
Or no projections onto a given set. By the projection map
onto a subset S, of =, we mean the set-valued map

I : 2= P(F)
a {be S |d(a,b) = d(a.S,)}. (49)

Thus, the set of projections of a onto S, is II, ().

14 A review of [24] and [49] is proposed in [104].

SLet us clarify some points about existence and uniqueness of pro-
jections that are often misunderstood in the engineering literature. A
nonempty subset .S, of (=.d) is said to be proximinal if (Va e Z)(3Ib e
Si)d(a.b) = d(a.S,) [i.e, I, (a) # @] and is said to be a Chebyshev set
if (Va € Z)(3 € S, )d(a.b) = d(a.S,) [i.e, T, (a) is a singleton]. S,
is necessarily closed to be proximinal since no pointin S, NCS, admits a
projection onto S, . In finite-dimensional normed vector spaces, closedness
is also sufficient to ensure proximinality. This is no longer true in infinite
dimension (see [173] for an example of nonempty, bounded, and closed set
that is not proximinal). As was seen earlier, in Hilbert spaces, nonempty
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In [49], it is shown that if the sets (S,),c; are approx-
imately compact,'® if one of them, say S, is boundedly
compact, and if S is nonempty and bounded, then the serial
algorithm

(V’IL (S N) Any1 € HL.,, (lln),
where ¢, = n(modulom) + 1 (50)

satisfies (P2) or (Py) locally, i.e., if ao lies in a certain
region of the space; in addition, if = = E*, the above
conditions are simply equivalent to all the S,s being closed
and S bounded. The above recursion can be regarded
as a set-valued version of (29). Similar local (P2)/(Ps)
convergence properties can be established for the set-valued
versions of some of the parallel projection algorithms of
Section III-C1), which take the general form (24) where
R, is an affine function of the II,s [46].

For particular set theoretic formulations in which all
the sets have the form S, = {u € R*|g,(a) = 0}, the
locally convergent algorithms discussed in [136] and in the
references therein are of interest.

2) Random Search Method: A method for generating set
theoretic estimates in R*, which circumvents all the theoret-
ical (e.g., convexity, local convergence) and computational
(e.g., computation of projections) limitations of the above
techniques, is the adapted method of random search pro-
posed in [51]. In this Monte Carlo method, points are
generated at random over an adaptively reduced search
region until a feasible point is found. The main advantage
of this approach is its basic simplicity and the lack of
assumptions about the geometrical complexity of the sets.
It should however be borne in mind that, because of
computational cost, this method is not suited for large-scale
applications.

3) Approximation of the Feasibility Set: Set theoretic esti-
mation methods have been developed, in which one does
not seek to obtain a feasible point but an approximation of
the exact feasibility set S by a simpler set, e.g., an ellipsoid
or a hyperparallelepiped. It will be seen in Section V-A that
this approach has become extremely popular in the area
of systems theory. In the case of the “bounding-ellipsoid”
algorithm, the approximating set is an ellipsoid containing
S whose center is usually chosen as a solution. It should be
stressed that, theoretically, such a solution is not guaranteed
to be feasible, especially if the ellipsoid does not tightly
approximate S. Besides the applications of Section V-A,
the bounding-ellipsoid approach has also been utilized in
signal restoration [113].

closed and convex sets are Chebyshev sets. In E , the converse is true.
However, in general, Chebyshev sets need not be convex, even in a pre-
Hilbert space |108]. In a nonhilbertian space, closed and convex sets need
not be Chebyshev sets: in the Banach space obtained by endowing R?
with the norm ||a]| = |ay| + |as], take S, = B[0.1] and @ = (1.1).
Then IT, (¢) = {(a.1—a)j0 < o < 1}. For more details on proximinal
and Chebyshev sets, see |16] and [49)].

15 A subset S, of (=. d) is said to be approximately compact if, for every
@ in =, every sequence (b, ), > of points in .S, such that (d(a. b)), >0
converges to d(«. S, ) possesses a cluster point in S, . For nonempty sets,
compactness = bounded compactness = approximative compactness =
proximinality = closedness [16], [49].
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E. Inconsistent Set Theoretic Formulations

It was remarked in Section II-G that in some problems
the set theoretic formulation may be inconsistent. It is
therefore of interest to know which of the above feasibility
algorithms converge in such instances, and, if they do,
what are the properties of the limit point. As we shall see,
some serial algorithms converge cyclically to a point in
one of the sets while some parallel algorithms converge to
a weighted least-squares solution. Throughout this section,
Z is a Hilbert space, and the S,s are closed and convex.

Let G be the set of global minimizers of the functional

®: 2 — [0, +o0]
a Zde(a, S,)? 5D

el

where the weights (w, },¢1 satisfy (32). The set G is closed,
convex, and possibly empty. It is clear that if S # 0, then
G = S since
(Va € B) ®a) =0 Meelac 8. (52)
On the other hand, if S = 0,G can be viewed as the
set of weighted least-squares solutions of the inconsistent
feasibility problem. For convenience, we introduce three
additional convergence properties.
P5): For every ag in E, (an)n>0 converges to the pro-
jection of ag onto G.

P6): For every ap in Z, (an)n>0 converges to a point
in G.

P7): For every ag in Z, (a,)n>0 converges weakly to a
point in G.

Thus, (P5)—(P;) coincide with (P;)-(P3) in the consis-
tent case and generalize them otherwise.

1) Serial Methods: A serial algorithm such as (38) cannot
converge if § = @ since it will oscillate indefinitely.
However, in the case of set theoretic formulations of type
(28), for every . in I, the subsequence (@mn.)n>0 Of
(an)n>o generated by (38) satisfies (Ps) (with w, = 1/m)
provided that A, goes to zero [30]. Now assume that
(an)nzo0 is a sequence generated by (37) under cyclic
control with arbitrary convex sets. If m = 2 and S,
is either compact or finite dimensional, the subsequence
(@2n)n>0 Of (@n)n>0 converges (strongly) to a point that
minimizes d(-,S1) over Sy [37].'7 For a generalization
of this result, we now follow [92]. Suppose that one
of the S,s is bounded. Then there exists at least one
m-tuple (a,).er in E™ such that Py(a,) = a; and,
for every ¢ in {2,---,m}, P,(a@,—1) = &, The a,s are
called stationary points. Moreover, for every ¢ in I, the
subsequence (@mn+.)n>0 Of (@n)n>o converges weakly to
a,; the convergence is strong is any of the conditions 1)-4)
of Section III-C1) holds. This result is illustrated in Fig.
11(a).

2) Parallel Methods: For set theoretic formulations of
type (33), the parallel algorithm (35) with (32) and (An)n>0
in [e1, €2] C]0,2] satisfies (Ps) [64]. For arbitrary convex

17 This problem is also considered in [89] and [220].
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(b)

Fig. 11. Convergence with inconsistent set theoretic formula-
tions: (a) serial algorithm: the subsequence (@3n4.)n>o of the
sequence of cyclic projections (ar ), >o converges to the stationary
point @,.1 < ¢ < 3; (b) parallel algorithm: the sequence of
averaged projections (an),>»o converges to a point @ which
minimizes the average of the squares of the distances to the sets.

sets, (40) with (32) satisfies (P;) if one of the S,s is
bounded; in addition, it satisfies (Pg) if one of the S,s
is compact or if all of the S,s are closed affine half-spaces
[65]. This convergence behavior is depicted in Fig. 11(b).
For @ = 1 and £ = E¥, the parallel algorithm (35)/(36)
satisfies (Ps) locally [105]. Finally, (P;) is satisfied by the
parallel algorithm of [106] discussed in Section III-C2).

F. Selection of an Algorithm

Given the relatively large number of methods relevant to
the synthesis of set theoretic estimates, it is necessary to
establish some guidelines for the selection of a feasibility
algorithm.

The first step in the selection of an algorithm is to
determine whether or not the set theoretic formulation
consists of closed convex sets in a Hilbert space, say E*
in practice. If so, the algorithms of Section III-C (and of
Section III-B if the sets are defined by affine subspaces) are
guaranteed to produce a feasible solution. If seeking a direct
projection onto the feasibility set is justified, one should
turn to the algorithms of Section III-C2). The methods of
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Section III-C3) do not rely on projections and are of interest
in instances when (45) cannot be solved efficiently for all
the sets.

In choosing a serial—as opposed to parallel—algorithm,
several factors need be considered. As regards to conver-
gence rate, studies pertaining to specific algorithms are
available [87], [92], [99], [105], [115], [132], [154]. The
unrelaxed POCS algorithm (37) is probably not the best
choice although, to date, it has been the most widely used in
applications. Despite the fact that, in certain specific prob-
lems, faster convergence of serial methods can be achieved
by introducing relaxations, as in (38), parallel methods such
as (42) are inherently more versatile and have a higher
potential for fast convergence if the relaxation parameters
are properly adapted. Moreover, as was seen in Section I11-
E2), in the case of inconsistent set theoretic formulations,
they possess the remarkable property of converging to an
approximate solution which satisfies all the constraints in a
least-squares sense. This behavior is much more satisfactory
than that of serial methods which, at best, converge to a
point that is guaranteed to lie only in one of the sets [see
Section III-E1)]. Another advantage of parallel methods is
that they lend themselves naturally to implementations on
concurrent processors. They are however more demanding
than serial methods in terms of storage requirements, which
may constitute a drawback in some applications. Recent
developments in the parallel implementation of some of
the algorithms of Section 11I-B with applications in medical
imaging can be found in [29].

If the set theoretic formulation does not meet the above
requirements (e.g., at least one of the sets is not convex),
one should employ one of the methods of Section III-D.
It should be noted that the projection methods of Section
I1I-D1) guarantee only local convergence. Thus, they may
not produce a feasible point if the initial estimate where
the iterations are started is not sufficiently close to S. If
the number of parameters to be estimated is not too large,
this limitation can be circumvented by using the method of
random search of Section I1I-D2).

IV. CONNECTIONS WITH OTHER ESTIMATION PROCEDURES

Generally speaking, an estimation procedure can be
viewed as a mapping 7 which assigns to the observed data
x a subset 7 (x) of the solution space =, that is,

T:A - P(5)
x— T(r) (53)

where A is the observation space, i.e., the space to which
the mathematical object representing the observed data
belongs.'® The set of points T(x) r'eprescnls our guess of
the value of the true state of nature A given the data & and
some a priori knowledge. In the set theoretic estimation
framework proposed in this paper, 7 () = S is defined by

"8For completeness, it should be noted that in statistics the data model
is probabilistic. If (©2..4.P) denotes the underlying probability space,
the observed data are regarded as a realization » = X(«) of a random

element X' : @ — A and a set theoretic estimator is a measurable map
M=ToX:Q— &, where Gisa o-algebra of subsets of = [9].
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(4). We shall now examine how other estimation methods
proceed in the determination of 7 () and how they relate
to the present framework.

A. Point Estimation

The result of a point estimation procedure is a point
a(z) rather than a set. This point is typically obtained by
optimizing some preset objective function. In most cases,
the optimum is unique and, therefore. the set of solutions
is a singleton T (x) = {a{wx)}. Various optimality criteria
have been proposed for point estimates, e.g., maximum like-
lihood, minimax, maximum entropy, maximum « posteriori
and other Bayesian criteria [9], [11], [112], [168].

Conceptually, the Bayesian approach shares with the
present set theoretic framework its attempt to exploit the
observed data as well as a priori knowledge to carry out the
decision process. Indeed, the posterior distribution involved
in the computation of a Bayesian estimate comprises a
prior distribution, which reflects the a priori information
on the true state of nature h, and a likelihood function,
which reflects sample information. The introduction of
a prior distribution on =, which is the basis for the
Bayesian viewpoint, has caused extreme disagreements
among statisticians and the reader is referred to [11], [72]
and the references therein for recent developments on the
controversy. In our opinion, a major concern vis a vis
the incorporation of a priori knowledge in the Bayesian
approach is that h is regarded as a realization of a random
element and, therefore, a probability theoretic modeling of
prior information is required. Unfortunately, not all a priori
information can be conveniently described in probabilistic
terms. Moreover, the resulting prior distribution is usually
too complex to yield a tractable optimization of the resulting
conditional expectation.

The point estimation approach differs fundamentally from
that of the present set theoretic framework since a point,
rather than a set, is selected as the solution to the problem.
Theoretically, the former can nevertheless be regarded as
set theoretic, the set of solutions being that of all points
that satisfy the chosen optimality criterion. From a more
practical viewpoint, the implicit set theoretic nature of
point estimates can be brought to light by noting that,
except in the rare cases when a closed-form solution is
available, point estimates are computed iteratively. Unless
convergence can be achieved in finite number of steps,
a stopping rule R must be specified to terminate the
iterations. This procedure leads implicitly to the set of
solutions

S = {u € Z|asatisties R}. (54)

It is noted that if R is a purely analytical criterion this
set, and hence the properties of a solution, may not be
well defined;'® on the other hand. stopping rules based on
physical constraints can lead to a well defined set [127],
[194], [199], [205].

' For instance, a widespread stopping rule for an algorithm generating
4 sequence (ay, ), > in a metric space (. d) is d(a,, . ayy1) <e.
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B. Confidence Regions

In statistics, confidence regions constitute a well-
established set theoretic method of estimation [9], [19],
[168]. Let (2, A, (Py)re=) be the underlying statistical
model and let w be the elementary event giving rise to the
observation X (w) = z of the data process. A confidence
region is a subset 7 (z) = 7 (X (w)) of = such that®

(Vh € E) Pr{w e Qhe T(X(w))} 2 a.  (55)
The theory of confidence regions provides a means to
construct property sets, S, = 7(z), based on probabilistic
information. Therefore, although the set theoretic estimation
framework is nonstatistical in the sense that is does not
require a probabilistic data model, it can effectively utilize
statistical theory if such a model is assumed.

Besides the observed data, the construction of a confi-
dence region requires some a priori knowledge. The most
common procedures exploit the distribution of a point
estimator of the estimandum [19]. For sake of simplicity,
consider the problem of estimating a real parameter h (a
similar procedure applies to the multidimensional case). Let
a(z) be the observed value of an asymptotically normal and
relatively unbiased estimator of h with variance o (under
certain conditions, the maximum likelihood estimator will
satisfy these assumptions). Then, for large sample sizes, a
confidence region is 7 (z) = [a(z) — o, a(x) + o], where
~ can be obtained from the tables of the normal distribution
in terms of « [19]. This example also demonstrates that
statistical point estimators can play an active role in set
theoretic estimation by providing sets to be added to the
set theoretic formulation. Confidence regions need not be
based only on point estimators of the estimandum. They
can be based on more general statistics, as was done in
Section II-F1) to construct property sets from stochastic
information.

C. Set-Valued Bayesian Estimation

A notorious shortcoming of conventional Bayesian es-
timation is the lack of robustness of the end result with
respect to the specifications of the problem, i.e., the prior
distribution and the loss function [11]. Thus, the spec-
ification of a prior constitutes a critical step in which
one is required to choose a single distribution that will
properly model all a priori knowledge. A way to relax
this requirement while remaining faithful to the Bayesian
philosophy is to consider a set of prior distributions, each
of which is an equally acceptable candidate to model the
uncertainty surrounding the true state of nature. An estimate
is obtained for each prior distribution and 7 (z) is therefore
a set. Such a generalization of classical Bayesian inference
has been proposed in the 1960s (e.g., see [63]). It is also
discussed in [193] and applied to Bayesian filtering in [140],
where a set-valued Kalman filter based on convex sets of
distributions is developed.

20Let us stress that the inequality in (55) concerns the probability that
the random set 7 (.\") contains a given point h.
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V. APPLICATIONS

The set theoretic framework has been applied, in various
forms, to a vast number of engineering problems. The early
applications are found in the area of control in the 1960s
[175] and then in image reconstruction in the 1970s [99].
From the mid-70s to the mid-80s, applications in other
areas of signal recovery were reported [187]. Since the
mid-80s, one witnesses a steady increase in the number
of applications in fields as diverse as filter design [1], array
signal processing [24], electron microscopy [26], speckle
interferometry [71], antenna array design [73], topography
[137], spectral estimation [148], neural networks [181], and
color systems [200].

A large number of problems treated within the set theo-
retic framework is surveyed in this section. The emphasis
is placed on showing the great versatility and the generality
of set theoretic formulations rather than on the technicali-
ties regarding particular implementations.?' For a detailed
account of the latter, the reader is referred to the cited
references.

A. Systems Theory

In the engineering literature, the set theoretic approach
seems to have been first applied to systems theory as a
nonstatistical way to incorporate uncertainty in modeling,
analysis, estimation, and control problems. In this context,
the basic idea of an estimation scheme that yields a set
based on available information, rather than a single point,
can be traced back to [174], and related concepts can be
found in [176} and [213].

In the state estimation problem of [174], the main in-
formation used in constructing the feasibility set is that the
noise, or more generally the various disturbances on the sys-
tem, is bounded in amplitude. This work initiated a series of
bounded-noise set theoretic methods that have been applied
to various state estimation [169], [175], control [86], [116],
[119], filtering [197], and identification [78], {103], [144],
[159] problems. These methods are time recursive in that
the feasibility set is updated with every new observed data
sample, thus giving an iterative set theoretic algorithm. As
regards to implementation, so called “bounding-ellipsoid”
algorithms have been proposed to avoid the time-consuming
computation of the exact feasibility set at each iteration by
approximating it by the ellipsoidal superset

Sp={aeR*|(a—an)'R ' (a—a,) <1} (56)

characterized by its center a,, and the positive definite
matrix R, [175]. The attractive features of these algo-
rithms are their simplicity, their recursive nature, and their
selective update strategy, which uses only data samples
with sufficiently innovative information [57], [59], [78],
[103]. However, the ellipsoidal approximation being some-
what loose, tighter approximations have been proposed for

2In passing, however, it should be pointed out that there are a few
instances when POCS is wrongly invoked to justify the convergence of
algorithms in that either the underlying norm is not hilbertian [(A10) is
not satisfied] or the operators involved are not projections.
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specific problems involving linear models, e.g., a hyper-
parallelepiped approximation in [138] and [150], and an
exact polyhedral approximation in [208]. Since the mid-
80s, bounded noise set theoretic identification has become
a major area of research in system identification. A detailed
account of recent developments can be found in [62] and
[207]. A tutorial review of some aspects of the field is
proposed in [60].

Because they employ very specific information, namely
noise boundedness, these set theoretic methods lead to very
simple set theoretic formulations where exact or approxima-
tive descriptions of the feasibility set are available and can
be efficiently updated with new data samples. This feature
makes them applicable to “on-line” problems such as those
encountered in system identification. Nonetheless, although
the noise boundedness assumptions is quite reasonable in
many applications, a tight bound may not be available. In
these instances, given that the methods rely primarily on
this piece of information, the solution set will not be very
restrictive, especially if the data record is short.

Time-recursive set theoretic algorithms similar to those
discussed above have also been developed from an
energy—rather than amplitude—constraint on the noise
[12], [77]. In [140], time-recursive set-valued filtering and
smoothing is developed in a generalized Kalman filtering
context based on the framework of Section IV-C.

B. Spectral Estimation and Related Fields

The spectral estimation problem is to estimate the spec-
tral distribution of a stochastic process (X;)icz from a
finite number of observations. This basic problem and its
offsprings are of great importance in many branches of
statistical sciences [20] and engineering [114]. As will be
seen shortly, the introduction of the set theoretic formalism
in spectral estimation is relatively recent.

In a variety of applications, the data are modeled as a
sum of unknown sinusoids in additive noise, namely

P
(Vi€Z) X;=Y hyjsin(@rhaji+hy;)+U,. (57)

j=1

In [51], a set theoretic formulation for estimating the
vector A = (hy1,---, hs,) of parameters (amplitudes,
frequencies, phases) is proposed. The solution space is R3?
and the set theoretic formulation comprises sets based on
parameter bounds as well as on noise properties. Because
the analytical complexity of the sets precludes the use
of projection techniques, the method of random search
of Section III-D2) is utilized to generate a set theoretic
estimate.

A different set theoretic approach to the problem of
recovering the frequencies of the p sinusoids in (57) is pro-
posed in [24]. This approach exploits the fact that, ideally,
an appropriately formed data matrix should satisfy certain
constraints (Toeplitz, Hankel, maximum rank). Property
sets based on these constraints are constructed in a matrix
solution space. A set theoretic estimate is found by applying
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(50)% with the noisy data matrix as an initial estimate and
the frequencies are obtained by Fourier transforming the
resulting feasible data. In [24], set theoretic formulations
involving matrix solution spaces and similar matrix con-
straint sets (Toeplitz, Hermitian, maximum rank) are also
shown to be effective for applications involving exponential
modeling of data as well as in array signal processing.2* In
the latter case, a sample covariance matrix consistent with
rank g (g being the number of sources impinging on the
array) and Hermitian-Toeplitz constraints is obtained via
(50) and the MUSIC bearing estimation method [170] is
then applied to it.

A parametric model of great interest in spectral esti-
mation is the autoregressive model (11). It reduces the
estimation of the spectral distribution of the underlying
process to that of the vector h = (hy.---, hy) in R¥. Sev-
eral standard methods proceed by minimization of various
estimates of the prediction error power in the regression
space (autocorrelation, covariance, and modified covariance
methods) or in the reflection space (Burg’s method) [114].
In the time-recursive set theoretic approach of [103], an
optimal bounding ellipsoid algorithm is developed in the
space of regression coefficients under the assumption that a
uniform bound on the driving process (U;);cz is available.
In [438], the set theoretic formulation incorporates more
information. It consists of (12) and of sets constructed
from various properties assumed to be known a priori
about (Uj)iez, e.g., mean, power, whiteness. The more
general problem of autoregressive moving average spectral
estimation is formulated in a matrix solution space in [148],
where sets based on various structural and spectral matrix
properties are utilized.

C. Signal Recovery

Generally speaking, the term signal recovery refers to a
large class of inverse problems where an original signal
is 1o be estimated from data consisting of one or more
signals physically related to it. To date, signal recovery
is undeniably the field that has seen the largest number
of applications of set theoretic estimation. This can be
explained by the fact that, because most recovery problems
are ill-posed, the incorporation of available information will
greatly improve their solutions. Signal recovery problems
fall into two main categories: signal restoration and signal
reconstruction. The goal of signal restoration is to estimate
an original signal from measurements of the signal obtained
by some sensor, the measurements being taken directly on
the signal to be restored. On the other hand, in the case
of signal reconstruction, the data is indirectly related to
the form of the signal. For example, the term restoration
would apply to the case of estimating an original image
from measurements of a blurred and noisy version of it; the
term reconstruction would apply to estimating an original
image from measurements taken of its Fourier transform.

22 The set of matrices of rank ¢ or less is not convex.

' A detailed review of such applications can be found in [104].
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Signal recovery problems are particularly amenable to
the set theoretic approach because there is a great deal of
qualitative information about the original signal that is not
easily expressed in purely statistical terms, which is the
only form conventional estimation methods can exploit. For
instance, suppose that a portion of an image to be recovered
is known. While it is possible to construct conditional
probability distributions that include this knowledge, such
a strategy is not practical for images of realistic sizes [204].
On the other hand, the corresponding property set is easily
constructed as

S, = {a € Elalg = hlg} (58)

where 1k is the indicator function of the region K over
which the true image h is known. Likewise, subjective qual-
ities such as smoothness can be included by using a bound
on the spatial derivative of the image. Finding an appropri-
ate bound for such a set can be based on edge information
[182] or statistical deviation from a smooth prototype [184].
Impulsiveness, as might be found in astronomical images
or X-ray fluorescence spectra, can be defined in a set
theoretic sense by limiting the number of nonzero values
within a given area. The constraints on the original signal
that are often encountered in recovery problems include
band limitedness, space limitedness, intensity range, energy
boundedness, nonnegativity, sparsity, piecewise constancy,
and partial knowledge of the Fourier transform (examples of
other properties of physical significance and their associated
sets can be found in [180], [185], [187], and [221]).

In n-dimensional signal recovery, the natural solution
space is L2 for continuous models, e.g., [221] and Rk
for discrete models (by representing a tensor as a vector
via stacked vector notations), e.g., [201]. The structure
of the natural solution space can be modified in order to
render some property sets convex. This is done in [36]
where the set of discrete signals with a prescribed Fourier
transform magnitude, which is not convex in 2, is made
convex in a new sequence space, £*, obtained by redefining
both addition and scalar multiplication. Likewise, the set
of sequences with prescribed bispectrum value at a given
frequency pair, which is not convex in £2, can be shown
to be convex in £* [34]. A set theoretic formulation can
also be posed in a solution space different from the natural
signal space by using alternative signal representations. For
instance, in {130}, the reconstruction of an L2-signal from
the zero crossings of its wavelet transform is posed in the
solution space (8). Other example are found in [166], where
an image is restored in a singular value solution space,
and in [211], where an L'f’-signal is reconstructed from its
general bilinear time-frequency representation in LZ.

Comparative studies of conventional and set theoretic
signal recovery methods can be found in [146] and [196].

1) Reconstruction of Fourier Transform Pairs: Let h
z +— h(z) denote a signal and H : v — H(v) its
Fourier transform.?* A common problem in many fields is
the reconstruction of a Fourier transform pair (h, H) from

24 For convenience, the notations refer to the one-dimensional case.

COMBETTES: FOUNDATIONS OF SET THEORETIC ESTIMATION

partial information on either or both functions [75], [95]. A
set theoretic interpretation of this problem is to find a point
in the intersection of the sets representing the temporal (or
spatial) and spectral information.

Several methods have been proposed in the literature to
recover h iteratively by enforcing time and Fourier domain
constraints in an alternating fashion, one of the earliest
being [122]. In [83], the underlying physically problem is
to reconstruct an object from intensity measurements in the
image plane (spatial information) and the diffraction plane
(spectral information). The proposed reconstruction method
is to alternate resubstitutions of the known magnitude data
in both domains. Set theoretically, this can be interpreted
as a cyclic projection algorithm onto the sets

S1 = {a € L}|(Vz € R) |a(z)| = g(2)} (59)
and
Sy ={a € L}(Ww eR)|[A(W)| = G(v)}  (60)

where g and G are known functions. Almost at the same
time, a method of alternating projections onto the property
sets S; and

S3 = {a € L?|(Yv € R)|A(v)| = G1k(v)} 61

(where K is a known frequency support, and G is a known
constant) was applied to kinoform design [81]. According
to the results of Section III-D1), convergence of such
schemes is guaranteed only locally since the set theoretic
formulations are not convex. In [84], a finite extent object is
extrapolated from limited diffraction data (i.e., a prescribed
portion of the Fourier transform) via what can be interpreted
as an application of unrelaxed POCS (37) to the affine
subspaces

Sy ={ac L}(Vz €R)a(z) =0if |z| > b}  (62)
and
S5 = {a € L?|(Vv € R) A(v) = G(v) if [v| < B} (63)

where G is a prescribed function. The same method is
applied to the dual problem of extrapolating a band-limited
signal known on a compact support in the time domain in
[149]. A more general signal recovery framework involving
alternating projections onto affine subspaces of Hilbert
spaces is proposed in [219]. In that abstract approach, the
recovery problem is posed as that of recovering a signal
h knowing that h belongs to a closed subspace of Z and
that the observed data consist of the projection of A onto
another closed subspace of =. This framework found further
extensions and additional applications in set theoretic signal
recovery from spatial and spectral information [188], [221].

In [125], the relaxed POCS method (38) was used to
reconstruct a time-limited signal from a prescribed Fourier
phase with the sets S; and

Se = {a € L?|(Vv € R) LA(v) = ¢(v)} 64

where ¢ is a prescribed function. A relaxed version of
(50) was employed in [126] to reconstruct a time-limited
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signal from a prescribed Fourier magnitude, leading to a
nonconvex set theoretic formulation consisting of Sy and
S4. Such phase retrieval problems were approached in [8]
with parallel projections techniques similar to (41). In [36],
a Hilbert solution space was constructed by modifying
the natural vector space structure in order to render So
convex. This made possible the use of POCS to reconstruct
a minimum phase signal from the knowledge of its Fourier
magnitude and phase at a finite number of frequencies.

2) Image Reconstruction from Projections: The problem
of image reconstruction from projections® is to estimate a
multidimensional function from recorded values of its line
integrals, usually obtained by passing energy rays through
an object. This problem arises in a large number of fields,
e.g., nondestructive testing, seismology, satellite remote
sensing, and, most notably, diagnostic medicine, where
cross-sectional images of the human body are reconstructed
from measurements of the attenuation of X-rays along lines
through the cross section [99].

With proper discretization, the reconstruction problem
can be posed as a system of linear equations and gives
rise to an affine set theoretic formulation of type (28). The
original approach based on this formulation is the so-called
algebraic reconstruction technique (ART) of [90] that uses
Kaczmarz’s method (29) (see also [91]). An alternative
method to solve this formulation [the Cimmino-like parallel
algorithm of (39)] is proposed in [85] under the name
simultaneous iterative reconstruction technique (SIRT) and
reported to perform better the original ART of [90] in noisy
environments. Because a linear set theoretic formulation
ignores noise and other uncertainty sources, it may be unfair
or even inconsistent. A more realistic approach is discussed
in [98] in which the property sets are hyperslabs of the form
{a € R¥|6, —€, < (alb,) < 6,+¢,}, where ¢, is a tolerance
factor. This leads to a set theoretic formulation of type (33)
solved by the Agmon-Motzkin-Schoenberg algorithm (34)
(1981, [99], [101]).

Reconstructions must often be performed with limited
view data, i.e., with inaccurately measured projections
and/or an insufficient number of projections, which will
typically result in severe artifacts such as streaking and geo-
metric distortion [158]. In such instances, the set theoretic
approach has proven particularly well suited to incorporate
a priori knowledge and thereby improve the reconstruction.
Thus, a convex set theoretic formulation is used to extrapo-
late tomographic images reconstructed from a limited range
of views in [124] and [177). In [178], the formulation of
[177] is modified to account for noisy data. In [179], POCS
is combined with the method of direct Fourier tomography
to reconstruct an image from limited-yiew projection data.
Strictly speaking, these approaches are not set theoretic
reconstruction methods per se but, rather, syntheses of
a reconstruction method and a set theoretic restoration
method. In that sense, they should not be regarded as
extensions of ART (or SIRT). In ART, the property sets
simply translate the requirement that the reconstruction

2 The term projection here refers to a line integral projection, not to be
confused with the projection onto a set.
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be consistent with the observed projections. In [145], a
more sophisticated convex set theoretic formulation was
developed by incorporating additional constraints such as
known object support and energy boundedness. Other types
of constraints can also be imposed, such as consistency of
the error between the recorded projection data and the data
obtained by reprojecting the reconstructed image with the
uncertainty caused by the numerical approximations of the
reprojection method [203].

In all of the above studies, the solution space is that of
the reconstructed image. In [120], a different set theoretic
approach is proposed in which the solution space is the
space of Radon transforms of images. A complete set of
line integrals consistent with a priori knowledge and the
measured line integrals is first obtained by POCS and then
used to reconstruct the image via ordinary convolution
backprojection. In [209], POCS is used to synthesize the
projection matrix from noisy measurements made by a mov-
ing array of detectors and the image is then reconstructed
by filtered backprojection.

3) Signal Restoration: The most common signal restora-
tion problem is to estimate the original form % of a blurred
and noise-corrupted signal x. A general degradation model
assumes that the blurring opertor 7T is linear and that the
noise  is additive, which yields the data formation equation

r=T(h)+u. (65)

Besides the properties of the original signal, the available
information in such a problem may consist of information
about the blur and the noise. If such information is not
known a priori, it can often be estimated from the data
[183]. In [201), it is demonstrated how a wide variety
of convex property sets could be constructed from noise
properties. In [42], some of these sets are reexamined in
the context of fuzzy set theory. The stochastic nature of
some blurring functions such as atmospheric turbulence and
camera vibration has also been addressed using set theoretic
methods [47]. Set theoretic restoration in the presence of
bounded kernel disturbances and noise was considered in
[53]. Sets based on locally adaptive constraints [121] as
well as on smoothness constraints [190] have also been
proposed. In addition, set theoretic restoration has been
used with other statistically based methods. Since a Wiener
estimate is commonly computed for image restoration prob-
lems, the estimate can be used to define a convex set [182],
[ 184]. The bounds for this set can be determined from the
standard statistics available for the Wiener filter [184].

In many cases, set theoretic restoration techniques have
been demonstrated on one-dimensional signals. These sig-
nals usually model some physical process. A typical one-
dimensional (1-D) example is data from X-ray fluoroscopy
[42], [49], [201]. This signal has many properties that make
it an ideal candidate for set theoretic methods; it is sparse,
impulsive with only a few nonzero points. In [49], the im-
pulsiveness property is modeled by limiting the number of
nonzero values in the signal. This resulted in a nonconvex
set and (50) was used to obtain a solution. Other types of
signals that have been restored with set theoretic methods,
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including multiband satellite images [38], character images
[123], echographic images [129], diffraction wave fields
[139], optical flow fields, and electromagnetic fields [186].
In order to best exploit specific a priori information, the
set theoretic restoration problem of [166] was posed in a
singular value space rather than in the natural image space.

4) Other Recovery Problems: Besides the problems men-
tioned, set theoretic estimation can also be credited for
applications in problems such as signal reconstruction from
level crossings [56], [223], signal reconstruction from the
zero crossings of the wavelet transform [130], signal re-
construction from multiscale edges [131], signal recon-
struction from the bispectrum [34], signal reconstruction
from bilinear time-frequency representation [211], signal
reconstruction from Q-distributions [212], acoustic signal
reconstruction from auditory representations [216], signal
reconstruction from nonuniform samples [167], [217], re-
covery of the angular energy spectrum of an object imaged
through a turbulent atmosphere [71], reconstruction of
images remotely sensed by image-plane detector arrays
[191], image reconstruction from digital holograms [133],
image reconstruction in emission computerized tomography
[32], signal recovery in electron microscopy [26], and
inversion of eddy current data and reconstruction of flaws
in composite materials [163].

D. Design Problems

The problems described so far can be labeled as estima-
tion problems for they consist in guessing the value of an
object that, for a given a model, actually gave rise to the
observed data. The set theoretic framework has also proven
very useful in solving design problems. In this context,
design constraints or requirements on the object to be
synthesized are associated with fuzzy propositions and, via
(3), with a set theoretic formulation. It should be noted that
inconsistent set theoretic formulations are more frequent
in design problems than in estimation problems. Indeed, a
design formulation is primarily based on the desirata of the
user, which may be conflicting. In this respect, the methods
of Section III-E2), which converge to a weighted least-
squares solution, are valuable tools to generate a design
that best approximates uncompatible constraints.

A common synthesis problem is that of digital filter
design and several studies have been devoted to its set
theoretic treatment. In the set theoretic design of two-
dimensional (2-D) FIR linear phase filters of [1], a family
of property sets in the solution space of filter coefficients is
constructed by constraining the amplitude of the frequency
response at specified frequency points to lie within some
neighborhood of the desired response and a solution is
obtained via (38). In [35], the same problem is revisited by
imposing constraints in both time and frequency domains.
Other set theoretic formulations in the FIR coefficient
space involving time and frequency domains constraints
for specific problems have also been investigated [40],
[143], [151]. In [25], a matrix solution space is proposed to
recursively approximate an ideal 2-D frequency response.
Alternating projections onto property sets of nullity one and
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block Toeplitz matrices are used to synthesize a feasible
excitation-response matrix from which the recursive filter
coefficients are computed. Finally, let us note that in
the somewhat more recent field of color systems, several
approaches for the set theoretic design of scanning filters
are proposed in [200].

Various other design problems have been treated in
the set theoretic framework. In the area of optics, let
us mention cohoe design [102] and phase grating design
[189]. A set theoretic design of data windows for spectral
estimation in the presence of inconsistent requirements
is proposed in [89]. In [142] and [164], set theoretic
projection methods are used to design (construct) images in
connection with the problem of compensating for various
distortion processes. The set theoretic approach has also
been employed in various antenna [157] and antena array
[22], [23], [73], [156] design problems. The set theoretic
synthesis of ambiugity functions is discussed in [212].

E. Miscellaneous

There are several set theoretic studies that do not fit
directly in the main categories discussed above. These
include [61], where an optimal bounding ellipsoid algorithm
(see Section V-A) is developed for linear speech prediction;
[134], [135], and [181], where a set theoretic framework
and the formalism of projections are used to analyze
vrious aspects of the dynamic behavior of neural networks;
[200], where set theoretic methods are applied to various
problems in color science; [137], where POCS is utilized
to interpolate topographic profiles, topographic maps, and
physical properties of the earth; [161], where POCS is
applied to optical pattern recognition; [165], where image
coding is posed as a set theoretic problem; [96], where
cyclic projections are used to suppress the artifacts caused
by patient motion in magnetic resonance imaging; [97] and
[198], where POCS is used in analog-to-digital conversion;
and [118], where the estimation of the parameters of a
multipath channel is based on a set theoretic formulation.

VI. FURTHER DISCUSSION AND CONCLUSIONS

In the tradition of recent decades, a good solution to an
estimation or design problem has been one that is optimal in
some sense. However, as “optimal” estimators for “exact”
models can rarely be implemented, some reservations can
be expressed vis a vis this estimation setting. Of primary
concern are the facts that the selection of the objective
function is generally driven by computational tractability
rather than rational considerations and that limitations are
imposed in the incorporation of available information. As a
result, the actual properties of such estimates are seldom
related to physical realities and are somewhat elusive.
Moreover, given the inherently uncertain environments in
which most estimation problems are posed, the practical
value of optimality claims is questionable.

In this paper, we have presented a synthetic view of set
theoretic estimation. In order to lay a secure foundation for
further theoretical research and build a common framework
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for all existing set theoretic approaches, some formalization
was necessary. Fuzzy propositions were employed to model
the wide range of information encountered in estimation
problems. In this context, a property set was defined as the
cut of the fuzzy set whose membership function is the fuzzy
proposition modeling a particular piece of information.
This conceptual definition has the advantage of being
quite general and flexible. Nonetheless, it was pointed out
that it should not be taken literally as a constructive one
since, in practice, the fuzzy formalism is often by-passed
in the process of defining property sets. A set theoretic
formulation for the problem was defined as the family of
all property sets in a given solution space. It provides a
complete description of a set theoretic estimation problem
and constitutes a valuable tool in connection with various
theoretical and practical questions, from the analysis of the
problem to the synthesis of a solution.

The basic philosophical motivation for the set theoretic
approach is that more reliable solutions can be obtained
by exploiting known information rather than imposing
an often subjective notion of optimality. Thus, in the
set theoretic framework, the emphasis is placed on the
feasibility of a solution rather than its optimality, as in
done in the conventional approach. The goal is not to
produce a “best” solution but one that is consistent with
all available information. In set theoretic estimation, all
the members of the feasibility set are acceptable solutions.
They can be regarded as the objects that, in light of all
available information, may have given rise to the observed
data. The only way to restrict objectively the feasibility set
is to incorporate more information in the formulation. If
some of the feasible solutions are not acceptable, then it
must be the case that the formulation fails to include some
constraint that has not been identified. Once the set based
on this constraint is incorporated, any point in the feasibility
set should be acceptable; if not the cycle is repeated.
Usually, there is more than one solution, which may be
counterintuitive from the standpoint of conventional point
estimation theory where, to extract a single solution, an
objective function with a unique extremum is employed. On
the other hand, because of the arbitrariness in the selection
of such an objective function, the result is, at best, nothing
but a qualitative selection of a feasible solution.

From a practical standpoint, the main asset of set theoretic
estimation is the availability of mathematical methods to
solve the basic feasibility problem (23). In fact, historically,
the level of sophistication of set theoretic formulations,
which reflects not only the complexity of the incorporated
information but also the refinement of the underlying data
model, has always been limited by the availability of
feasibility algorithms. This point can be illustrated by
considering the evolution of set theoretic formulations
in signal recovery. The early set theoretic formulations
were limited to linear varieties and solved by Kaczmarz
or Cimmino-like algorithms [85], [90]. With the Agmon-
Motzkin-Schoenberg algorithm, they evolved to include
half-spaces [98]. As the POCS algorithms of Brégman and
Gubin et al. became known in image processing circles, the
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restriction to half-spaces disappeared, allowing the use of
more general convex set theoretic formulations [124], [221].
More recently, a theoretical analysis of the convergence of
cyclic nonconvex and nonhilbertian projections rationalized
the inclusion of nonconvex property sets [49]. At present,
though, nonconvex set theoretic formulations remain a sig-
nificant difficulty, and the development of better feasibility
algorithms than those discussed in Section III-D remains a
critical step towards broadening even further the scope of
set theoretic estimation.

At this point, it should be remarked that set theoretic and
conventional estimation theory can be used jointly to solve
a problem. Indeed, even if it is sometimes at the expense of
rationally posing the estimation problem, a definite advan-
tage of some conventional estimation methods is to yield
simple problem formulations and, in some cases, closed-
form solutions (if necessary, one can always have recourse
to standard cost functions and assumptions to simplify the
problem). This expedient approach has at least the merit of
leading to a solution. On the other hand, although there
are methods for computing set theoretic estimates for a
wide class of problems, setting up a tractable set theoretic
formulation may not always be possible. Even if it is,
the use of whatever conventional estimation method seems
appropriate should not be precluded, especially if a solution
can be computed efficiently. This solution can then be
tested for feasibility with respect to available information,
which represents a relatively easy and computationally
inexpensive task. If it is feasible, it must be accepted; if
not, one should expect a set theoretic solution to bring
improvement.

Certainly, set theoretic estimation is not immune from
criticism. Its principles are often criticized on the grounds
that the end result is not a unique object. We believe that
enough has been said in this paper to dismiss such a claim.
A more serious criticism is that the construction of the
property sets is subjective since the choice of the fuzzy
propositions (¥,),¢; and, more importantly, of the grades
of beliefs (¢, ). in (3) are eventually left to the user. First,
it should be noted that this problem arises only in the case
of information that is not modeled by crisp propositions.
In the other cases, there is no doubt that %, may indeed
be interpreted as the user’s personal degree of conviction
that the estimandum is consistent with the information
modeled by ¥,. On that score, our contention is that
any estimation procedure that allows the incorporation of
information will be exposed to some degree of subjectivism.
This inherent subjectivism can, however, be mitigated by
using experience as a guide to determine realistic values
for the ,s.

As demonstrated in Section V, set theoretic estimation
has been applied successfully to a wide spectrum of prob-
lems. Based on the trend of the past twenty years and
the on-going research in the field, on both theoretical and
applied questions, it can safely be anticipated that the
number of applications will keep growing in increasingly
varied areas. Nonetheless, set theoretic estimation is still in
its infancy and has yet to be accepted in many scientific
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disciplines. In this regard, it is hoped that this paper will
contribute to consolidate its position as a reliable alternative
to the conventional framework of optimization that has
traditionally ruled over estimation problems in sciences and
engineering.

VII. APPENDIX

The purpose of this appendix is to provide the basic
definitions of mathematical analysis needed in the paper.
Standard references on this topic are Dieudonné [68],
Schwartz [173], and Yosida [218]. Readers interested in an
authoritative account of set theory, its history, and its rdle
as a basic structure in modern mathematics are referred to
Bourbaki [14].

A. Set Theory

The quantifiers, V, 3, and 3! mean “for all,” “there exists
at least one,” and “there exists exactly one,” respectively.
{ denotes the set with no elements (empty set). Let = be
a nonempty set called space thereafter. The family of all
subsets of = is denoted by PB(Z). The elements of = are
called points. The relation ¢ € = means that a is an element
of Z. Its negation is written a ¢ =. The relation S C =
means that every element of the set S is an element of
=; S is then called a subset of Z, and = a superset of S.
{a € E|a satisfies ¥} is the set of all points a in the space =
that satisfy a given property ¥. Let / C R be an nonempty
index set and let (S,),cr be a family of subsets of =. Set
union, intersection, and complementation are, respectively,
defined as

ULEIS" = {a’ € E’l(al' € I)a € SL}
NerS: ={e€Z(Veel)ac S} (Al)
CS,={a€=lag S}

The indicator function of the set S is the function 1, which
takes value 1 on S and O on [S. The Cartesian product of
two spaces = and Z is E x E' = {(a,a')|a € E,d’ € Z'}.
The expressions T': = — =’ and T : a — T'(a) mean that
T is a mapping from Z into Z’ and that T assigns T'(a) to
a, respectively. Let & denote a family of subsets of =. A
function v : & — [—00, +00] is said to be monotone if

(V(S,8) €62 SC8=uS)<u(S) (A2

B. Metric Spaces

A function d(-,-) : £ x Z — [0, 4o00][ is called a distance
(or metric) on = if

D (V(a,b) € E)d(a,b) =0 a=1b

2) (¥(a,b) € Z2)d(a,b) = d(b,a)

3) (¥(a,b,c) € =2)d(a,c) < d(a,b) + d(b,c)
The pair (Z,d) is called a metric space. The diameter
of a nonempty subset S of Z is defined as 6(S) =
sup{d(a,b)la € S,b € S}. S is said to be bounded if
6(8) < 4o00. The distance from a point a to S is defined
as d(a,S) = inf{d(a,b)|b € S}.

Let ¢ € E and r €]0, +o0[. The open and closed balls of
center ¢ and radius r are, respectively, defined as Blc,r[=
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{a € E|d(c,a) < r} and Blc,7] = {a € E|d(c,a) < r}.
S C Z is open if

(Va € S)(3r €]0,+00[) Bla,r[C S, (A3)

and closed if CS is open. Any intersection of closed sets is
closed. The interior of S is the largest open set S° contained
in S; the closure of S is the smallest closed set S containing
S.

Let (an)n>0 and a be points in =. Then (a)n>0 converges
10 a if (d(an,a))n>0 converges to 0, ie.,

(Vr €10, +oo[)(Ip € N)(Vn € N|n > p) an, € Bla,r].

(A4)
S C Eis closed if every convergent sequence with elements
in S has its limit in S. It is said that @ is a cluster point of
(@n)n>0 if there exists a subsequence (an, k>0 Of (Gr)n>0
converging to a. S C Z is compact if every sequence
with elements in S admits at least one cluster point in S.
We call (a,)n>0 a Cauchy sequence if (d(am,an))mn>0
converges to 0 as m and n go to +oo, i€,

(Vr €]0, +o0[)(Ip € N)(Vm € N|m > p)
-(Vn € N|n > p)d(am,a,) <. (A5)

(Z,d) is called complete if every Cauchy sequence in =
converges to a point in Z.

C. Normed Vector Spaces

A vector space(Z, +,-) over a field K is a space =
of object called vectors endowed with an operation + :
= x Z — Z called addition such that

1) (V(a,b) €Z2)a+b=0b+a

2) (V(a,b,c) €Ea+(b+c)=(a+b)+c

3) (M0z€E)(VaeE)a+0==a

4) (Va € 2)(3(—a) € E) a+ (—a) = 0=
and an operation - : K X £ — Z called scalar multiplication
such that

5) (YaeK)(Y(a,b) €Z2)a-(a+b)=a-a+a-b

6) (V(a,f) eK*)(Ya€eZ) (a+fP)-a=a-a+P-a

7) (V(e.f) € K*)(Va € E) (af) -a=a-(B-a)

8 WVa€eZ)l-a=a
where 1 is the unit element of K. From now on, the symbol
- will be omitted in scalar multiplications and K will be R or
C. Let =’ be another vector space. An operator T : 2 — Z/
is said to be linear if

(Yo € K)(Y(a,b) € E%) T(aa + b) = aT(a) + T(b)

(A6)
and is called a functional if =’ = K. Let S be a nonempty
subset of =. S is a vector subspace if

(Vo € K)(Y(a,b) € S?) aa+be S (A7)

and an affine subspace if S = {a + bla € V'}, where V
is a vector subspace and b a vector in =. S is balanced if
(Va € K}(Va € S)|a] £1= aa € S, and convex if

(Yo €]0,1))(Y(a,b) € S?) aa+ (1 —a)b€ S. (A8)
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Any intersection of convex sets is convex. The convex hull
of S is the smallest convex set containing S. A norm on =
is a function || - || : £ — [0, 4-0c[ such that

D (Va€E)|la]l =0 ¢ a=0=

2) (Ya € K)(Va € B) ||laa|| = |a| - |ja]|

3 (V(a,b) € 22) Jla +b]| < [laf| + |ib]
(E1I-11) is called a normed vector space (NVS). A norm
Il - || induces a distance via the relation

(V(a,b) € Z)d(a.b) = ||a - b]| (A9)

Thus, every NVS is a metric vector space. A linear func-
tional T': = — K is said to be bounded if sup{|T(a)| |a €
B[0,1]} < +oc. In a NVS, (a,,),>0 converges strongly to
aif (|lan — al|)n>0 converges to 0 and weakly if (T(a, —
a))n>0 converges to 0 for every bounded linear functional
T on E. If a sequence converges strongly to a point, it
converges weakly to that point. In finite dimensional spaces,
the converse is also true. A Banach space is a complete
NVS. Every finite dimensional NVS is a Banach space. A
scalar product on Z is a function (|-} : Z x = — K that
satisfies

1) (Va€Z) a#0z= (aa) >0

2y (Va € K)(¥(a,b) € Z2) (aalb) = a{alb)

3) (V(a,b.c) € Z*) (a+blc) = (alc) + (blc)

4) (Y(a.b) € Z%) (bla) = (a|b)
where z denotes the complex conjugate of z in 4) above. A
pre-Hilbert space is a vector space = endowed with a scalar
product. In a pre-Hilbert space (Z, (-|-)), the scalar product
induces a norm as follows: (Ya € Z) |a|| = /{a]a).

Moreover, the norm is characterized by

(V(a,b) € Z%) Jla +bl* + fla = b]|* = 2(Jja]]? + [|b]]?).

(A10)
Thus, a pre-Hilbert space is a NVS. Two vectors a and
b are said to be orthogonal if (a|b) = 0. A Hilbert space
is a complete pre-Hilbert space. If (Z,(-|-)) is a Hilbert
space, (an)n>o converges weakly to « if and only if
({an — a|b))n>0 converges to 0, for every b in =.
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