
Some problems in topology 

By J. W. Alexander, Princeton, N. J. 

Broadly speaking, we may say that analysis situs, or topology, deals with the 
properties of geometrical figures that remain invariant when the figures are sub
jected to arbitrary continuous transformations. There are, however, several distinct 
kinds of analysis situs, because there are several distinct ways of interpreting the 
physical notion of continuity in mathematical language. For example, there is what 
we call point theoretical analysis situs which is different in spirit as well as in content 
from the sort of analysis situs originally proposed by Leibnitz. This branch of the 
science is essentially an outgrowth of function theory, whereas what Leibnitz had in 
mind was a new and independent type of mathematics, especially designed to 
avoid the complications of function theory and to deal directly with the purely 
qualitative aspects of geometrical problems. No doubt combinatorial analysis situs 
is more nearly a development of Leibnitz's original idea. 

The vogue for point theoretical analysis situs seems to be due, in large part, to 
the predominating influence of analysis on mathematics in general. Nowadays, we 
tend, almost automatically, to identify physical space with the space of three real 
variables arid to interpret physical continuity in the classical function theoretical 
manner. But the space of three real variables is not the only possible mathematical 
model of physical space, nor is it a perfectly satisfactory model for dealing with 
certain types of problems. Whenever we attack a topological problem by analytic 
methods it almost invariably happens that to the intrinsic difficulties of the problem, 
which we can hardly hope to avoid, there are added certain extraneous difficulties 
in no way connected with the problem itself, but apparently associated with the 
particular type of machinery used in dealing with it. Consider, for example, our old 
friend, the problem of the knotted string. In physical terms, what we have is this. 
We take an ordinary piece of string, tangle it up in an arbitrary manner, and seal 
its two ends together. We then ask ourselves whether we have really tied a knot in 
the string or whether the twists can all be disentangled without breaking the seal 
that holds the ends together. Now, to solve this problem it is evidently immaterial 
to know the exact shape of the string. We merely need to know something about the 
way in which the various branches lace over and under one another, all of which 
can be described with sufficient accuracy by a rough picture (fig. l a ) , with some 
device (such as the system of dots shown in the figure), to distinguish the ,,upper" 
from the ,,lower" branch at each apparent crossing point. Moreover, all the really 
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essential features of the knot picture may in turn be described by a table, or matrix : 
in this case, the matrix 

a b c d e 
1 
0 

- 1 

- 1 
1 
0 

0 
- 1 

1 

1 
1 
1 

- 1 
- 1 

- 1 , 

where each row is associated with an apparent crossing point, and where the signs 
of the terms in the row determine the ,,upper" and „under" branches at the point 
in question. In other words, the problem of the knotted string is essentially a com
binatorial one, reducible to a problem in the manipulation of matrices. We might, 
however, be tempted to attack the problem analytically; for example, we might 
represent the string by a simple closed curve and ask ourselves whether or not the 
curve could be deformed into a circle without acquiring a multiple point at any stage 
of the process. Unfortunately, this would, at once, introduce all the complications 
associated with the mathematical notion of a simple, closed curve, some of which 
are so clearly brought into evidence by the well known curve of Antoine. Worse than 
this, unless special precautions were taken, the analytic procedure would lead to an 
incorrect mathematical formulation of the problem. For it is easy to see that every 
sufficiently smooth simple, closed curve can be deformed continuously into a circle 
without ever acquiring a multiple point, even though the curve may be one which 

Fig. l 

ought to be regarded as knotted. In figure 1, for example, we have a series of self-
explanatory diagrams showing a trefoil knot in the process of being deformed into 
a circle. It will be noticed that the curve acquires no multiple point even at the 
moment when it becomes a circle. The moral of all this is that it is often better to 
avoid the artificial subtleties of analysis by using a more simple minded type of 
machinery. 

In view of the above remarks, I am going to speak about three different kinds 
of analysis situs and to bring out, as far as I can, their relation to one another. 
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At one extreme, there will be point theoretical analysis situs, in which a space is 
regarded as a set of points, in which the structure of the space is expressed in terms 
of the notion of limit point, and in which a continuous transformation is merely a 
transformation preserving limit points. In this theory, two spaces are homeomorphic 
if there exists a one-one bi-continuous point transformation between them preserv
ing limit points. At the other extreme will be combinatorial analysis situs, in which 
a space is not regarded as a set of points at all, but as something which may be cut 
up into a mosaic, or complex, of blocks called cells. These cells are not sets of points 
but primitive undefined entities. In the applications to physical geometry they will 
ordinarily represent „chunks" of space. Two complexes are congruent if there 
exists a one-one correspondence between the cells of the first and the cells of the 
second such that the correspondence preserves incidence relations between pairs of 
cells. The notion of a continuous transformation between two complexes is arrived 
at in some such way as the following. Certain operations are defined which allow us, 
according to specified rules, of course, to replace a cell of a complex by a cluster of 
inter-related cells or a cluster of inter-related cells by a single cell1). 

These operations represent the abstract formulation of the physical operation 
of cutting up a portion of space into smaller pieces or of amalgamating a number 
of smaller pieces to form a larger one. Two complexes A and B are equivalent if we 
can transform the complex A into a complex A' congruent to B by a sequence of 
operations of the type alio wed. The notion of equivalence plays a similar role here to 
the notion of homeomorphism in point theoretical analysis situs. Finally, there is a 
third type of analysis situs, which I shall call flat analysis situs, and which will serve 
as a sort of connecting link between the other two types. Here again, we shall be deal
ing with complexes of cells, but the cells, instead of being undefined abstractions, 
will be ordinary simplexes in the sense of analytic geometry. An allowable trans
formation of a complex will be one in which each simplex is cut up in an arbitrary 
manner into smaller ones, and two complexes A and B will be flat homeomorphic 
if they can be cut up into two complexes A' and B' such that these last two are 
congruent. The significance of flat homeomorphism in terms of general continuous 
transformations is obvious. If the complexes A and B are flat homeomorphic, the 
correspondence between the cells of A' and B' determines a one-one transformation 
between the points of A and of B which is not only continuous but linear in patches 
(more specifically, linear over each cell of A' and B'). I t is easy to verify that , con
versely, if a one-one transformation, linear in patches, exists between the points of 
A and of B then A and B are flat homeomorphic. 

-1) In some formulations of the theory, operations of a more general type are allowed. Cf. Newman: 
„On the Foundations of Combinatory Analysis Situs", Proc. of the Royal Acad, of Amsterdam, vol. 29, 
pp. 610—641. 
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Just a word, now, as to the relation between the three types of analysis situs 
described above. I say, first of all, that flat analysis situs, in which we are dealing 
with collections of ordinary flat simplexes, can be re-formulated in purely combina
torial terms, so as to become completely independent of analytic geometry. Suppose, 
for example, we are dealing with a complex of ^-simplexes. Then, if we denote the 
vertices of the complex by the letters 

ai9 (i= 1, 2, 3, . . . ) , 

we can conveniently denote the complex itself by a homogeneous form of degree 
n + 1 with unit coefficients, 

(1) <£*<.,«<, • • • aim 

such that each term of the form represents a simplex of the complex with vertices 
corresponding to the letters ai appearing in the term. Conversely, every such form 
in which there are neither repeated terms nor repeated vertex symbols within the 
same term represents a class of congruent complexes, one member of which may 
always be effectively constructed in a space of sufficiently many dimensions. Now, 
it would, no doubt, be very difficult to give a direct combinatorial formulation of 
the general operation of subdividing a simplex into smaller simplexes. There is one 
very special type of subdivision, however, which offers no such difficulty; namely, 
the one where we introduce a new vertex 6 on an edge ai aj and subdivide all sim
plexes of the complex with the edge at aj into pairs of simplexes with the edges ai b 
and baj respectively. In this simple case the combinatorial analogue of the sub
division is merely to pick out all terms of the form (1) containing both ai and aj and 
to replace every such term by a pair of terms, in the first of which the letter b re
places the letter ai and in the second the letter ay Let us call this symbolic opera
tion and its inverse (when the inverse is possible) elementary transformations, and 
regard these elementary transformations as the allowable moves of combinatorial 
analysis situs. I t is then possible to prove the following theorem which brings out 
at once the complete parallelism between the flat and combinatorial theories : 

A necessary and sufficient condition that two complexes of simplexes be flat homeo
morphic is that their symbols be equivalent in the sense of combinatorial analysis situs. 

We now come to the much more difficult problem of the relation between point 
theoretical analysis situs and flat. One main branch of point theoretical analysis 
situs deals with the theory of abstract spaces. I shall have very little to say about 
abstract spaces, in general, beyond remarking that one of the clearest way** of 
dealing with a large class of these spaces is to regard them as limiting cases of com
plexes in the sense of flat analysis situs, as is done, for example, by Alexandroff. By 
far the most important spaces are the ones of the so called manifold type, and on 
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these I shall concentrate my attention. An ^-dimensional manifold arising in the 
course of an ordinary investigation will probably be given in some such form as this. 
We shall first obtain a portion of the manifold, say an n-cell cx\ then, by some process 
analogous to analytic extension, a second w-cell c2 overlapping a part of cx\ then a 
third n-ceW c3 overlapping a part of cx -f- c2, and so on. With each cell ĉ  let us asso
ciate a coordinate system, 

Then, if two cells ci and c, have a point P in common, the coordinates of the points 
of ci neighboring to P will be expressible in terms of the coordinates of the same 
points regarded as points of Cj by relations of the form 

(2) x€ = F€J (xn, . . , xJn), (i=l, 2, ..., n), 

where the functions F{J are continuous. Two questions now arise which it would be 
very desirable to answer: (a) Can every manifold M be cut up into a complex of 
cells, thus making it possible for us to regard it as the image of a complex S con
sisting of flat simplexes? (ß) If two manifolds Mx and M2 are the images of the 
simplicial complexes S± and S2 respectively, can the complexes Sx and S2 (and, 
therefore, the manifolds M± and M2) be homeomorphic without being flat homeo
morphic? An affirmative answer to these two questions would enable us to refor
mulate the general theory of manifolds in terms of the flat theory and, therefore, 
ultimately, in terms of the combinatorial theory. If, by good fortune, the functions 
FiJ in relations (2) are all analytic, or even if they are sufficiently smooth, it is 
merely a matter of honest toil to show that the manifold M can be cut up into cells, 
thus answering the first question; but if the functions FtJ are merely continous the 
problem is of quite another order of difficulty. I believe that questions (a) and (ß) 
both reduce, without too much difficulty, to the solution of the following hypo
thetical lemma: 

Consider an n-simplex S and a one-one continuous transformation x carrying the 
simplex S into a region R of Euclidean n-space. Then we can approximate the trans
formation x as closely as we please by a one-one analytic transformation xx (or by a 
one-one continuous transformation r2, linear in patches)2). 

The essential difficulty in proving the lemma is to obtain a transformation xx 

(or T2) which is one-one. Let 

x/ = F{ (xl9 ..., xn), (i=l, 2, ..., n), 

be the equations of the transformation x. Then, by the classical methods of Weier-

2) The existence of the transformation rx can be shown to imply the existence of the transformation 
r2, and vice-versa. 
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strass, we may approximate the functions Fi as closely as we please by analytic 
functions G{ and thus obtain an approximating analytic transformation 

Xi = bri (xl3 x2, . . . , wn)-

Unfortunately, there is nothing to guarantee that the approximating transfor
mation shall be one-one. When we confine our attention to manifolds of one and 
two dimensions the lemma can be solved without excessive difficulty; consequently, 
it is possible to reduce the general theory of these manifolds to combinatorial terms. 

As soon as we go beyond two dimensions, even the combinatorial theory of 
manifolds is in a very incomplete state. I should, therefore, like to say a few words 
about some of the unsolved problems for the case of manifolds of dimensionality 3 -
the simplest outstanding case. In the following discussion, it is always to be under
stood tha t we are dealing with figures that are so smooth as not to involve us in 
point theoretical difficulties of a pathological nature. 

Suppose we have a closed surface S of genus p situated in ordinary 3-space 
and in the canonical shape of a sphere with p exterior, tubular handles. The interior 
of the surface S is then a region of a very special type, characterized by the property 
that it can be oriented and that it can be made simply connected by cutting it 
along p suitably chosen 2-cells (2-cells cutting across the respective handles, for 
example). We shall call such a region a canonical region of genus p. The significance 
of canonical regions in the theory of manifolds has been brought out by Heegaard 
who has shown that in every orientable manifold (of the compact, non-bounded 
type) there is always at least one surface S of suitable genus p separating the mani
fold into two such regions. Let us call the surface S a canonical surface of the mani
fold. Then, the minimum value of the genera p of all canonical surfaces in the mani
fold is a theoretical invariant of the manifold which we are unfortunately unable to 
calculate effectively in our present state of knowledge. We shall call this invariant 
the genus of the manifold. If the genus of the manifold is zero, for example, it means 
tha t there exists a surface of genus 0 separating the manifold into a pair of 3-cells. 
In other words, the manifold is a 3-sphere. If the genus of the manifold is 1 it means 
that the manifold can be constructed by taking the interiors and boundaries of two 
anchor rings in 3-space and piecing the two domains together by setting their 
boundaries in one-one bi-continuous correspondence with one another. The mani
folds of genus 1 are relatively simple in structure and their Poincaré groups are 
always of the cyclic type, yet no complete classification of them has ever been 
carried through. I t has been shown that there are two distinct manifolds with the 
same cyclic groups of order 5 and, therefore, with the same Betti numbers and 
coefficients of torsion. There appear to be two distinct manifolds with cyclic groups 
of order 7, but the proof that they really are distinct has still to be given. When we 
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come to manifolds of genus 2, examples of so-called Poincaré spaces arise. These are 
manifolds with the same Betti and torsion numbers as a 3-sphere, yet which are not 
simply connected. 

One or two general remarks about the classification of manifolds according to 
Heegaard's program may, perhaps, be worth making. The problem divides itself 
naturally into two parts : (i) to determine in how many essentially different ways 
two canonical regions of genus p can be matched together to form a manifold; 
(ii) to determine in how many essentially different ways a canonical region can be 
traced in a manifold. The first part of the problem does not seem hopelessly difficult; 
it is closely related to the problem of the number of essentially different one-one 
mappings of one surface of genus p on another. As to the second part of the problem, 
I have a strong suspicion that if S and S1 are two canonical surfaces of the same genus 
in a manifold M then there is always a continuous deformation of the manifold M 
into itself carrying the surface S into the surface S1. I t would be interesting to have a 
proof of this hypothetical theorem even for the case where the manifold M is a 
hyper sphere. The theorem for a general manifold M seems to be reducible to this 
special case. 

Poincaré once proposed the problem of determining whether the 3-sphere is the 
only 3-dimensional manifold such that its Poincaré group reduces to the identity -
that is to say, such tha t every closed curve traced in the manifold can be deformed 
continuously into a point. This problem is a special case of the following more 
general one : is it always possible to map the universal covering space of a 3-dimen
sional manifold on a 3-sphere or on a portion of a 3-sphere ? For the case of a 2-dimen-
sional manifold, we know that the universal covering surface is always either a cell 
or a sphere. This simple theorem does not generalize, however, as the following 
example will show. We take the closed domain consisting of a region R of 3-space 
bounded by two concentric spheres together with the spheres themselves, and form 
a manifold out of this domain by matching each point P of the outer sphere with the 
point P1 on the inner sphere in which the ray from the common centre of the spheres 
to P cuts the inner sphere. I t is then easy to see tha t the group of the manifold thus 
obtained is the infinite cyclic group and that the universal covering space is homeo
morphic with a finite portion of 3-space bounded by two spheres, such as the 
region R itself. The covering space may, however, be mapped on a portion of a 
3-sphere, so that this example does not invalidate the theorem suggested above. 

I t would be interesting to have a complete census of all 3-dimensional manifolds 
with finite Poincaré groups. The covering space of a manifold of finite group is 
always a Poincaré space such that its group reduces to the identity. Very possibly 
this covering space is always a hypersphere. Let us assume that this is the case. 
Then the problem reduces to the determination of all the finite groups of transfer -
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mations of a 3-sphere into itself such that no one of the transformations leaves 
invariant a point of the 3-spheres. If our assumption about the covering space is 
false we can, at all events, obtain in this way an important class of manifolds with 
finite Poincaré groups. 

The theory of 3-dimensional manifolds seems to be closely dependent on the 
theory of knots and linkages in ordinary spherical 3-space. I t can be shown, for 
example, that every orientable 3-dimensional manifold can be represented by a 
suitable w-sheeted Riemann space (in the sense of a generalized Riemann surface) 
with a finite number of simple, non-intersecting branch curves about which the 
various sheets of the space are permuted. What makes this mode of representation 
so complicated is the fact that the branch curves can be arbitrarily knotted and 
inter-linking. A number of useful knot invariants have been discovered in recent 
years which make it possible to distinguish between all the simpler knots and, in 
particular, to determine whether an alternating knot can be reduced to an un-

Fig. 2 

knotted curve3). Every knot can be reduced to a simple semi-canonical form (fig. 2), 
which is unfortunately not unique. I t consists of two arcs: an arc J. BC in the form 
of a plane spiral and an arc G D A in the form of a 3-dimensional curve weaving 
over and under the turns of the spiral in such a way that as a variable point x moves 

3) For a connected account of modern knot theory the reader is referred to Reidemeister's genial 
monograph: Knoten théorie, Springer (1932). 
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along the arc from C to A the radius vector ZX from the centre of the spiral to A' 
turns continually in the same direction around Z. If the arc C D A goes straight. 
across from C to A without doubling back on itself (as it doubles back, for instance, 
a t X , X ' , X " and D in the figure) we can easily see that the curve is unknotted, no 
matter how C D A weaves through the turns of the spiral. Perhaps it can be shown 
that if the arc C D A does double back on itself, then, either the curve has a knot in 
it or else there is an obvious transformation which reduces the representation to one 
in which the arc G D A no longer doubles back. 

In conclusion, my main regret is that it has been so much easier to make up 
mathematical knots than to untie them. 

17 Mathematiker-Kongress 257 


