
Algorithms for Sequential Decision Making

Michael Lederman Littman

Ph.D. Dissertation

Department of Computer Science

Brown University

Providence, Rhode Island 02912

CS-96-09

March 1996

Algorithms for Sequential Decision Making

by

Michael Lederman Littman

B.S., Yale University, May 1988

M.S., Yale University, May 1988

Thesis

Submitted in partial ful�llment of the requirements for the

Degree of Doctor of Philosophy in the Department of Computer Science

at Brown University

May 1996

Abstract of \Algorithms for Sequential Decision Making"

by Michael Lederman Littman, Ph.D., Brown University, May 1996.

Sequential decision making is a fundamental task faced by any intelligent agent in

an extended interaction with its environment; it is the act of answering the question

\What should I do now?" In this thesis, I show how to answer this question when

\now" is one of a �nite set of states, \do" is one of a �nite set of actions, \should" is

maximize a long-run measure of reward, and \I" is an automated planning or learning

system (agent). In particular, I collect basic results concerning methods for �nding

optimal (or near-optimal) behavior in several di�erent kinds of model environments:

Markov decision processes, in which the agent always knows its state; partially observ-

able Markov decision processes (pomdps), in which the agent must piece together its

state on the basis of observations it makes; and Markov games, in which the agent

is in direct competition with an opponent. The thesis is written from a computer-

science perspective, meaning that many mathematical details are not discussed, and

descriptions of algorithms and the complexity of problems are emphasized. New re-

sults include an improved algorithm for solving pomdps exactly over �nite horizons, a

method for learning minimax-optimal policies for Markov games, a pseudopolynomial

bound for policy iteration, and a complete complexity theory for �nding zero-reward

pomdp policies.

c Copyright 1996

by

Michael Lederman Littman

Vita

Michael Littman was born August 30th, 1966, in Philadelphia, Pennsylvania. He began

working with computers when his parents bought him a TRS-80 for his 13th birthday

and has not stopped since. After graduating from Plymouth-Whitemarsh High School

in Plymouth-Meeting Pennsylvania in 1984, Michael attended Yale University. He

graduated summa cum laude with B.S. and M.S. degrees in Computer Science in 1988,

and was granted the computer science department's highest undergraduate honor. His

Master's thesis, advised by M. Chen and performed in collaboration with C. Metcalf,

discussed research on massively parallel computers.

Michael worked in T. K. Landauer's Cognitive Science Research Group at Bell-

core for 4 years following graduation. He worked under the direct mentorship of D.

Ackley, and collaborated extensively with several other researchers in the group. He

co-authored many papers during this period, including papers on computer simulations

of arti�cial life, social elements of human language understanding, an optimization al-

gorithm for telephone switchport assignments, a system for automatically generating

3-dimensional views of data, and the computer analysis of bilingual text databases. The

work on multilanguage analysis culminated in the joint issuing of U.S. patent 5,301,109

on April 5, 1994 with T. K. Landauer.

Michael was admitted to Bellcore's Support for Doctoral Education program, and

began graduate school in 1992. He spent a year in Carnegie Mellon University's School

for Computer Science and completed his graduate requirements before transferring to

Brown University. By the time he began his work at Brown under L. P. Kaelbling, his

research interests were fairly well developed. He co-authored a series of papers that

formed the basis of his doctoral dissertation, including work on learning in Markov

games, the complexity of algorithms for solving Markov decision processes, and a new

algorithm for solving partially observable Markov decision processes.

ii

Acknowledgments

It is possible that there are scientists that do not need the support and encouragement

of other people to accomplish their goals; I am not such a scientist. I would like to

acknowledge some of the people who have helped me do what I do, and have encouraged

me to do it to the best of my ability. I extend my deepest gratitude to:

� My downward nuclear family. My spouse, Lisa, supports me and inspires me

and makes my life more enjoyable by sharing hers with me. My son, Max, slept

through more of my thesis than I hope anyone will do again. If he didn't have

such a sweet personality and a strong constitution, I am sure that this thesis

would have come out quite di�erently, if at all. I look forward to the day when

he appreciates the irony of his name with respect to my research interests!

� My upward nuclear family. My parents, Howard and Phyllis, made it possible

for me to say \Now I am a computer scientist" on my 13th birthday when they

bought me my TRS-80|to this day, it is the only computer that I have ever

owned. They taught me about striving and succeeding and working hard. During

the preparation of this document, my mother completed her bachelor's degree

and much of her master's degree, and my father taught himself how to surf the

internet. Everything that I am began with them. My sister, Jill, and brother,

Marc, put up with more than their share of my o�-the-wall ideas when we were

growing up. I am sure that my strong desire to be a teacher stems from the

enjoyment I felt being their older brother.

� My in-law family. My mother-in-law, Gloria, father-in-law, David, and sister-

in-law, Jenn, have always treated me with respect and love. The time that they

spent caring for Max made it possible for me to work on some of the most di�cult

portions of this document. Their support was invaluable throughout this whole

iii

process; I only wish they could have earned \frequent driver miles" for schlepping

back and forth to Rhode Island.

� My role models while growing up. Erwin Margolies, Phil Braun, Carol Dormuth,

and others epitomized to me what it meant to be bright and well educated. I

would not have thought of graduate school as a worthwhile goal if not for their

inuence.

� My college associates. In college, my classmates stimulated and inspired me, and

continue to do so through their impressive accomplishments: Pratik Multani,

Christopher Metcalf, Peter Schi�er, Aephraim Steinberg, Reyna Marder, Richard

Katz, Steve Barkin, Riley Hart. I �nd myself hearing the wise words of my

college professors whenever I try to teach myself something new: Richard Gerrig,

Sandeep Bhatt, Alan Perlis.

� My friends and colleagues during my time at Bellcore. My fellow applied re-

searchers always made me feel that I had something to contribute: Debby Swayne,

Dan Ketchum, Tom Landauer, Mike Lesk, Mike Bianchi, Susan Dumais, Debo-

rah Schmitt, Elaine Molchan. Dave Ackley's creativity, energy, openness, and

presence astound everyone who knows him, and astound me even more because

I feel I know him better than most. He was a powerful constructive force in my

early research and I like to think of myself as his �rst graduating Ph.D. student.

George Furnas could teach me simply by letting my watch him think; he is a

good friend and an impressive role model. I believe that Rich Sutton, more than

anyone, makes the �eld of reinforcement learning a nice place to work.

� My friends and colleagues throughout graduate school. I continue to turn to my

CMU friends for their advice, encouragement, and skills: Justin Boyan, Shumeet

Baluja, Geo� Gordon, Robert Driskill, Darrell Kindred, Lonnie Chrisman, Sven

Koenig, Avrim Blum, Steven Rudich, Merrick Furst, Danny Sleator. My friends

and colleagues at Brown helped my a great deal in carrying out this research: Jak

Kirman, Mitch Cherniack, Eugene Charniak, Glenn Carroll, Ann Nicholson, Mike

Brandstein (and his CTY friends), Kathy Kirman, Susan Platt, Dawn Nicholaus,

Jos�e Casta~nos, Hagit Shatkay-Reshef, Sonia Leach, Jim Kurien, Shieu-Hong Lin.

� My support network. The women and babies of playgroup helped to broaden my

perspective at a time when it was much easier to become overly focused: Lauren

iv

and Molly, Anne and Jonah, Tracey and Olivia, Sarah and Caitlin, Amy and

Rachel, Kristen and Madeline, Miriam and Jared, Donna and Ross, Andrea and

Benjamin, Betsy and Samantha, and Emily and James. Pearl Pena has given

loving care to my family, especially Max; and Sarah Fallowes-Kaplan and Andy

Kaplan contributed to my mental health and, to a lesser extent, my research.

Justin Boyan is an excellent friend as well as a model-rival.

� My extended collection of research associates. Many people made direct contribu-

tions to my research through our discussions: Leemon Baird (extraneous solutions

to the Bellman equation), Avrim Blum (the complexity of enumerating solutions

to NP-hard problems), Justin Boyan (games and reinforcement learning), Anne

Condon (solving alternating Markov games quickly), Stuart Geman (real analy-

sis, types of convergence), Spike Hughes (generating random numbers over simpli-

cies), Tommi Jaakkola (stochastic approximation), Daphne Koller (games and in-

formation), Harold Kushner (convergence issues), Andrew McCallum (tree-based

methods for pomdps), Ron Parr (solving information-state mdps via reinforce-

ment learning), Loren Platzman (pomdps and �nite-memory methods), Martin

Puterman (quadratic convergence of policy iteration), John Rust (practical algo-

rithms for mdps), Ross Schachter (pomdps, indirectly), Csaba Szepesv�ari (gen-

eralized reinforcement learning), John Tsitsiklis (complexity and applied math).

Other colleagues were kind enough to respond to questions about their work via

email: Craig Boutilier, Peter Dayan, Geo� Gordon, Mance Harmon, Matthias

Heger, William Lovejoy, Jean-Luc Marion, Lisa Meeden, Mark Ring, Satinder

Singh, David E. Smith, Benjiman Van Roy, Chip White.

� Those who contributed directly to this document. My thesis committee did their

level best to keep me from putting my foot in my mouth: Tom Dean, Philip Klein,

John Tsitsiklis. Tony Cassandra was my closest collaborator for this work; his

competence and diligence made him an excellent collaborator, and will serve him

well throughout his research career. Tony also deserves credit for creating the

initial versions of several of the �gures I used: Figures 2.1, 7.1, and especially 7.5.

Leslie Kaelbling, my mentor and advisor, has taught me dozens of things about

research and writing that I didn't even know that I didn't know. If I'm lucky,

her inuence will be felt in my work for a very long time.

v

Contents

Vita ii

Acknowledgments iii

List of Figures xv

1 Introduction 1

1.1 Sequential Decision Making . 3

1.1.1 The Agent . 4

1.1.2 The Environment . 4

1.1.3 Reward . 6

1.1.4 Policies . 7

1.1.5 Problem Scenarios . 8

1.2 Formal Models . 10

1.3 Evaluation Criteria . 14

1.3.1 Policies . 14

1.3.2 Planning Algorithms . 18

1.3.3 Reinforcement-learning Algorithms 20

1.4 Thesis Summary . 20

1.5 Additional Remarks . 23

1.6 Related Work . 24

1.7 Contributions . 24

2 Markov Decision Processes 25

2.1 Introduction . 25

2.2 Markov Decision Processes . 26

vi

2.2.1 Basic Framework . 26

2.2.2 Acting Optimally . 27

2.3 Algorithms for Solving Markov Decision Processes 30

2.3.1 Value Iteration . 30

2.3.2 Policy Iteration . 31

2.3.3 Linear Programming . 32

2.3.4 Other Methods . 34

2.3.5 Algorithms for Deterministic mdps 34

2.4 Algorithmic Analysis . 36

2.4.1 Linear Programming . 36

2.4.2 Value Iteration . 38

2.4.3 Policy Iteration . 40

2.4.4 Summary . 43

2.5 Complexity Results . 44

2.6 Reinforcement Learning in mdps . 44

2.6.1 Q-learning . 45

2.6.2 Model-based Reinforcement Learning 46

2.7 Open Problems . 47

2.8 Related Work . 48

2.9 Contributions . 49

3 Generalized Markov Decision Processes 50

3.1 Introduction . 50

3.2 Generalized Markov Decision Processes 51

3.2.1 Acting Optimally . 53

3.2.2 Exploration-sensitive mdps . 57

3.3 Algorithms for Solving Generalized mdps 58

3.3.1 Value Iteration . 58

3.3.2 Computing Near-optimal Policies 59

3.3.3 Policy Iteration . 61

3.4 Algorithmic Analysis . 62

3.4.1 Value Iteration . 62

3.4.2 Policy Iteration . 63

3.5 Complexity Results . 66

vii

3.6 Reinforcement Learning in Generalized mdps 66

3.6.1 A Generalized Reinforcement-Learning Method 66

3.6.2 A Stochastic-Approximation Theorem 68

3.6.3 Generalized Q-learning for Expected Value Models 69

3.6.4 Model-based Methods . 71

3.7 Open Problems . 72

3.8 Related Work . 73

3.9 Contributions . 75

4 Alternating Markov Games 76

4.1 Introduction . 76

4.2 Alternating Markov Games . 77

4.2.1 Basic Framework . 77

4.2.2 Acting Optimally . 78

4.2.3 Simple Stochastic Games . 79

4.3 Algorithms for Solving Alternating Markov Games 79

4.3.1 Value Iteration . 80

4.3.2 Policy Iteration . 80

4.3.3 Polynomial-time Algorithms for Simple Games 84

4.3.4 Other Algorithms . 87

4.4 Algorithmic Analysis . 87

4.4.1 Value Iteration . 88

4.4.2 Policy Iteration . 88

4.4.3 Linear Programming . 89

4.5 Complexity Results . 91

4.6 Reinforcement Learning in Alternating Games 92

4.6.1 Simple Minimax-Q Learning . 93

4.6.2 Self-play Approach . 94

4.6.3 Non-converging Update Rules . 95

4.7 Open Problems . 96

4.8 Related Work . 96

4.9 Contributions . 98

viii

5 Markov Games 99

5.1 Introduction . 99

5.2 Markov Games . 100

5.2.1 Basic Framework . 100

5.2.2 Acting Optimally . 100

5.3 Algorithms for Solving Markov Games 101

5.3.1 Matrix Games . 101

5.3.2 Value Iteration . 103

5.3.3 Policy Iteration . 104

5.4 Algorithmic Analysis . 105

5.4.1 Matrix Games . 105

5.4.2 Iterative Algorithms . 106

5.4.3 Linear Programming . 106

5.5 Complexity Results . 106

5.6 Reinforcement Learning in Markov Games 107

5.6.1 Minimax-Q Learning . 107

5.6.2 Solving Matrix Games by Fictitious Play 108

5.6.3 Solving Markov Games by Fictitious Play 109

5.7 Open Problems . 111

5.8 Related Work . 113

5.9 Contributions . 114

6 Partially Observable Markov Decision Processes 115

6.1 Introduction . 116

6.2 Partially Observable Markov Decision Processes 116

6.2.1 Basic Framework . 116

6.2.2 Acting Optimally . 117

6.3 Algorithms for Solving pomdps . 120

6.3.1 Complexity Summary . 120

6.3.2 Deterministic pomdps . 121

6.3.3 Stochastic Transitions . 128

6.4 Algorithmic Analysis . 129

6.5 Complexity Results . 129

6.5.1 In�nite Horizon . 130

ix

6.5.2 Polynomial Horizon . 130

6.5.3 In�nite Horizon, Deterministic 131

6.5.4 Polynomial Horizon, Deterministic 131

6.5.5 Complexity Summary . 131

6.6 Reinforcement Learning in pomdps . 133

6.6.1 Model-free Methods, Memoryless 133

6.6.2 Model-free Methods, Memory-based 134

6.6.3 Model-based Methods . 135

6.7 Open Problems . 136

6.8 Related Work . 138

6.9 Contributions . 141

7 Information-State Markov Decision Processes 142

7.1 Introduction . 142

7.2 Information-state mdps . 143

7.2.1 Computing Information States 144

7.2.2 Basic Framework . 145

7.2.3 Acting Optimally . 145

7.3 Algorithms for Solving Information-state mdps 146

7.3.1 The Policy-Tree Method . 146

7.3.2 A Note on Implementation . 150

7.3.3 Useful Policy Trees . 150

7.3.4 The Enumeration Method . 154

7.3.5 Lark's Filtering Algorithm . 155

7.3.6 The Witness Algorithm . 156

7.3.7 Other Methods . 161

7.4 Algorithmic Analysis . 163

7.4.1 Enumeration Algorithms . 164

7.4.2 The One-pass Algorithm . 164

7.4.3 Extreme-point Algorithms . 164

7.4.4 The Witness Algorithm . 165

7.5 Complexity Results . 165

7.6 Reinforcement Learning in Information-state mdps 167

7.6.1 Replicated Q-learning . 167

x

7.6.2 Linear Q-learning . 168

7.6.3 More Advanced Representations 169

7.6.4 A Piecewise-linear-convex Q-learning Algorithm 171

7.7 Open Problems . 171

7.8 Related Work . 172

7.9 Contributions . 174

8 Summary and Conclusions 176

8.1 Comparison to Arti�cial Intelligence Planning 176

8.1.1 Deterministic Environments . 176

8.1.2 Stochastic Environments . 177

8.1.3 Partially Observable Environments 179

8.2 Comparison of Game Models . 180

8.3 Complexity Summary . 181

8.4 Contributions . 183

8.5 Concluding Remarks . 184

A Supplementary Introductory Information 185

A.1 Computational Complexity . 185

A.1.1 Complexity classes . 186

A.1.2 Reductions . 188

A.1.3 Optimization Problems . 188

A.1.4 Other Complexity Concepts . 190

A.2 Algorithmic Examples . 191

A.3 Linear Programming . 192

B Supplementary Information on Markov Decision Processes 193

B.1 Comparing Policy Iteration and Value Iteration 193

B.2 On the Quadratic Convergence of Policy Iteration 195

B.3 Deterministic mdps as Closed Semirings 197

C Supplementary Information on Generalized mdps 200

C.1 Summary Operators . 200

C.2 Contractions in the All-policies-proper Case 205

C.3 Monotonicity of Several Operators . 207

xi

C.4 Policy-Iteration Convergence Proof . 208

C.5 A Stochastic-Convergence Proof . 209

D Supplementary Information on Alternating Markov Games 212

D.1 Equivalence to Strictly Alternating Markov Games 212

E Supplementary Information on Markov Games 216

E.1 A Deterministic Markov Game with an Irrational Value Function 216

F Supplementary Results on pomdps 218

F.1 Hardness of Deterministic pomdps . 218

F.2 Hardness of Stochastic pomdps . 221

F.3 A Di�cult pomdp For Q-learning . 226

G Supplementary Results on Information-state mdps 229

G.1 Computing the Bellman Error Magnitude 229

G.1.1 An Exact Method . 230

G.1.2 A Bound . 230

G.2 Identifying Useful Policy Trees . 233

G.3 Example One-stage pomdp Problems . 235

G.3.1 Exponential Number of Useful Policy Trees 238

G.3.2 Exponential Number of Vertices in a Region 239

G.4 Solving One-stage pomdp Problems is Hard 240

G.5 Proof of the Witness Lemma . 243

Bibliography 263

xii

List of Tables

1.1 Relationships among several Markov models. 13

1.2 Choices for the components of the objective function. 17

1.3 Several popular objective functions. 17

2.1 Computing the value function for a given policy. 29

2.2 The value-iteration algorithm for mdps. 30

2.3 The policy-iteration algorithm for mdps. 32

2.4 Solving an mdp via linear programming. 33

2.5 Solving an mdp via the linear programming dual. 34

2.6 Computing the value function for a deterministic mdp. 35

3.1 Examples of generalized mdps and their summary operators. 53

4.1 The policy-iteration algorithm for alternating Markov games. 81

4.2 Computing the value function for a given pair of policies. 81

4.3 Computing improved policies for both players. 83

4.4 Computing optimal counter-strategies 83

4.5 Incorrect linear program for alternating Markov games. 90

5.1 The matrix game for \Rock, Paper, Scissors." 101

5.2 Linear constraints on the solution to a matrix game. 102

5.3 Solving a matrix game via linear programming. 102

5.4 The policy-iteration algorithm for Markov games. 104

5.5 Computing improved policies for both players. 104

5.6 Computing the optimal counter-strategy for a �xed policy. 105

5.7 Approximating the value of a matrix game by �ctitious play. 108

5.8 Approximating the value of a Markov game by �ctitious play. 110

xiii

6.1 Summary of pomdp complexity results in this chapter. 122

7.1 Value iteration using the policy-tree method. 150

7.2 A list of operations needed for policy-tree-based algorithms. 151

7.3 Subroutine for removing duplicate policy trees from G. 152

7.4 Subroutine for returning the useful policy trees in G. 153

7.5 Subroutine for �nding where a policy tree dominates trees in G. 153

7.6 Value iteration using the enumeration method. 154

7.7 Subroutine for �nding a useful policy tree at x. 157

7.8 Lark's method for computing the useful policy trees in G. 157

7.9 Value iteration using the witness algorithm. 158

7.10 Computing a useful policy tree at x, given action a. 159

7.11 Computing the set of useful t-step policy trees for action a. 162

8.1 Comparison of various models . 181

8.2 Summary of complexity results for �nding optimal policies. 182

A.1 Example subroutine. 192

E.1 The optimal pair of stochastic policies. 217

G.1 Computing the exact Bellman error magnitude. 231

G.2 Computing a bound on the Bellman error magnitude. 233

xiv

List of Figures

1.1 An embedded agent interacting with its environment. 5

1.2 A collection of sequential decision-making scenarios. 9

1.3 Creating objective functions. 16

1.4 Some complexity classes. 19

1.5 An illustration of a simple environment. 24

2.1 An mdp models interaction between agent and environment. 26

2.2 Bad example for value iteration. 40

2.3 Bad example for simple policy iteration. 42

4.1 Bad game for linear programming. 90

6.1 An example partially observable environment. 117

6.2 Generic structure of memory-based solutions to pomdps. 118

6.3 Optimal in�nite-horizon policy for a deterministic pomdp. 126

6.4 An abstract summary of complexity results for pomdps. 132

7.1 Decomposition of a pomdp agent. 143

7.2 A simple pomdp example. 144

7.3 A t-step policy tree. 147

7.4 The optimal t-step value function. 148

7.5 A value function in three dimensions. 149

7.6 Some policy trees may be totally dominated by others. 152

7.7 Q functions can be more complex than value functions. 161

7.8 A pomdp with an optimal policy that is not linearly representable. . . . 169

8.1 Plan for a partially observable environment. 179

xv

E.1 A deterministic Markov game with irrational optimal value function. . . 217

F.1 Transitions for the \start" action. 225

F.2 Transitions for the tog(x2) action. 225

F.3 Transitions for the challenge(y1; t2; �x2) action. 226

F.4 A hard pomdp for Q-learning. 227

G.1 Upper bound on maximum di�erence between value functions. 232

G.2 An illustration of some of the quantities used in Theorem 7.3. 244

xvi

Chapter 1

Introduction

This thesis document was submitted to the Graduate School at Brown Uni-

versity on February 27th, 1996. This technical report (version 2.0) contains

only minor modi�cations from the original.

A frog jumps around a barrier to get to a delicious mealworm. A commuter tries an

unexplored route to work and ends up having to stop and ask for directions. A major

airline lowers prices for its overseas ights to try to increase demand. A pizza-delivery

company begins a month-long advertising blitz. These are examples of sequential de-

cision making; the purpose of this thesis is to explore automatic methods for choosing

the best action in situations such as these.

The essence of sequential decision making is that decisions that are made now

can have both immediate and long-term e�ects; the best choice to make now depends

critically on future situations and how they will be faced. In this thesis, I explore algo-

rithms, or automated procedures, for making the right decision in di�erent sequential

decision-making problems. Each chapter of the thesis presents a speci�c formal model

and various algorithms for �nding optimal behavior in that model. In the remainder of

this chapter, I discuss sequential decision-making problems at a high level and explore

what it means to solve them.

Some of the solution algorithms presented are extremely complicated. In the re-

mainder of this section, I give some example sequential decision-making scenarios for

which choosing the optimal or nearly optimal decision can be di�cult; this should pro-

vide motivation for the importance of automatic sequential decision making, as well

as help reveal why these problems require complicated algorithms. The examples are

1

2

meant to be interesting problems worthy of additional study; none has yet been im-

plemented as a large-scale system. For some example problems being solved in science

and industry, along with estimates of how many millions of dollars their automated

solutions are saving, see Puterman's recent textbook [126].

Budget Setting You are in charge of setting the budget for a large organization.

Unfortunately, poor planning and bad management has left your organization with a

huge amount of debt. It is your job to decide how to get the organization back in the

black. You know that over the next few years some amount of spending must be cut,

but cutting too much too soon will result in severe hardship for some members of your

organization, while cutting too slowly will result in no budget balancing at all, because

interest on the massive debt continues to compound.

Making things even more di�cult are the e�ects on the budget of unpredictable

factors, such as the precise amount of your organization's income over the next few

years, its overall productivity, world-wide ination, and the introduction of innovations

that might help the organization save or even make money. On your side, you have

detailed and accurate economic models for predicting the result of various budget-

cutting options. The models can be used to reveal the probability that innovation will

be curtailed by a 5% decrease in the budget, for example. Of course, simply knowing

the probability of various events does not allow you to predict the future with certainty,

but it gives you the ability to gauge the probability, over all possible futures, that the

budget will eventually be balanced.

How can you use your knowledge of economic models and the current state of your

organization to construct a budget-cutting plan for the next decade or so that brings

down the debt with high probability as quickly as possible without destroying the

organization in the process?

Baseball Pitching Now you are a professional pitcher facing a batter you know

quite well. He hits .342, which makes him a high average hitter, but worse, he is well

known for being a great home-run hitter. He is a lefty and you a righty, so you will

not be able to get a curve ball to break away on him. There is one runner on second,

and your team is ahead by 1 in the �fth inning.

A fast ball gives you the best chance of a quick strikeout, but it is likely that the

batter is ready for it, and therefore that he has a good shot at hitting the ball out of

3

the park. An inside slider might be a good idea, except that if it is o� by even a little,

he will belt it. What pitch do you throw to maximize your team's chances of winning

the game, since you know the opposing batter will try to prevent you from winning?

Network Monitoring As an electrical engineer, it is your responsibility to design

a piece of equipment that plugs into the telephone network to monitor and correct

faults in a speci�c section of the network. The network consists of a set of switching

computers and cables that connect the switching computers to one another. At any

moment in time, the switching computers can be up or down and lightly or heavily

loaded, and the cables can be transmitting or not transmitting information.

The monitoring equipment has access to various signals and alarms emitted by the

switching computers, and it can send its own query signals to the switching computers

to elicit feedback on their status. However, it is not possible to know with certainty

the state of the network at any moment; for example, if a switching computer fails

to respond to a query, is this because it is overloaded, because it has gone down, or

because one of its incoming cables has stopped transmitting data?

In spite of the unreliable and sometimes inaccurate information, the monitoring

equipment must keep the network running as smoothly as possible. To do this, it can

send query and reset signals to the switching computers and can call for a repair person

to physically examine any of the switching computers or cables. Of course, sending out

a person can be expensive, especially late at night, but this expense is small when

compared to the revenue lost due to the failure of a switching computer. Because of

the di�culty in assessing when a switching computer has gone down, this can be an

extremely di�cult decision. How do you design the monitoring equipment to make this

trade-o� properly?

1.1 Sequential Decision Making

In this section, I begin to lay the groundwork for a formal model of sequential decision

making. I describe the decision maker or agent, the environment with which it interacts,

the behavior it exhibits, and the problems it might face.

4

1.1.1 The Agent

Through overuse, the word \agent" has come to mean very di�erent things to di�erent

groups of people. In the context of this work, an agent is simply the system responsible

for interacting with the world and making decisions. In the examples in the previous

section, the agents are the budget director, the pitcher, and the network monitoring

equipment. Agents can also be robots or software programs or medical equipment.

The agents \live" in an environment: a particular economic model, a baseball game,

a telephone network, the oor of an o�ce building. The state of the environment is a

description of everything that might change from moment to moment. In the baseball

example, the state would include the position of the runners, the score, the inning, the

identity of the current batter, and the number of balls and strikes. It probably would

not include the color of the �eld, the number of bases, or the shape of home plate.

Figure 1.1 depicts a generic embedded agent [72] interacting with its environment.

The agent is represented by a robotic �gure and the environment as a blob. Although

the agent is a decision-making entity, it is not enough for it simply to make decisions;

it needs to turn these decisions into a selection of an action a to be taken to inuence

the state of the environment. The transition function T controls how actions alter the

state s of the environment. In all but the most trivial environments, the agent's action

choice should be a function of its perception z of the state. The component labeled O in

the �gure represents the agent's perception function, which transforms the environment

state into a perception. For many environments, O is the identity function; that is,

the agent has access to the true state of the environment. In others, such as in the

network-monitoring example, the state of the environment is only partially observable

to the agent. The function that maps perception to action choice is labeled in the �gure

with a B (for \behavior"). The component R is the agent's reward function and r the

agent's reward; these are discussed in more detail in Section 1.1.3.

1.1.2 The Environment

Roughly, the environment is anything external to the agent. For the purposes of this

thesis, I assume that environments are neither capricious nor malicious, but are instead

oblivious of the agent and its goals. More concretely, I assume that the environment

changes from state to state in response to the actions of the agent according to a �xed

set of rules. The transitions might be stochastic; that is, it is not necessary that the

5

a

T

s
z

r
B

O
R

Figure 1.1: An embedded agent interacting with its environment.

same transition occur every time the agent takes a particular action in a particular

state. However, the probabilities that govern these stochastic transitions must remain

constant over time.

This de�nition of environment is somewhat restrictive and deserves a bit of elab-

oration. In most real-world problems, it is possible to identify the quickly changing

aspects of the environment that constitute the state and the �xed aspects that are the

environment. However, there are often aspects of the problem that change slowly over

time. These can be modeled as part of the state, often with a large increase in com-

plexity of the state description, or can be approximated as being static and made part

of the �xed environment. A more accurate perspective would consider the environment

to be non-stationary. Such environments are of interest because they make it possible

to consider a broader range of sequential decision-making problems; however, they are

more complex mathematically and few formal models have been proposed [42]. For

this reason, previous attempts at handling non-stationary environments have focused

almost exclusively on empirical studies [93, 156]. In this thesis, I am most concerned

with the theoretical analysis of algorithms, and therefore restrict the discussion to

environments that do not change over time.

Although I focus exclusively on time-invariant environments, I do not always assume

that the agent has access to a complete environmental description. When this is the

case, it is often possible for an agent to discover the time-invariant properties and

exploit them; these problems are modeled in the reinforcement-learning framework

described below.

Elements external to the agent that obey their own (not necessarily �xed) rules can

sometimes be modeled as independent agents. For example, in the idealized baseball

example, the players on the �eld follow the coaches' orders to the best of their abilities;

6

they are part of the environment. The opposing batter, however, is making decisions in

a way that is purposely unpredictable and combative; for this reason, the environment

can best be described as containing multiple agents.

1.1.3 Reward

To describe a sequential decision-making problem, it is not enough to specify the agent

and the environment alone. The agent's actions need to serve some purpose: in the

problems I consider, their purpose is to maximize reward . In a sense, reward is external

to both the agent and the environment. It constitutes a speci�cation of the problem

the agent is to solve in the course of its interaction with the environment. In many

sequential decision-making situations, there is a designer who can say for sure which

actions and states are good and which are bad, and thus can explicitly specify the

reward.

In the network-analyzer situation, for example, the rewards to the agent could be

tied to the money spent and earned by the owners of the network: this information

would be built into the agent by the designer. In the baseball example, the runs

themselves would not be considered rewards, as they are not good or bad in and of

themselves; the only true reward comes from winning the game. In the budget example,

the reward criterion would need to be very complex and would probably be a source

of considerable disagreement among the organization's management.

An important aspect of rewards is that they are the basis of the objective crite-

rion used to judge agents' performance; however, for rewards to have any inuence

on behavior, agents must have subjective access to them. In the abstract models of

environments considered in this thesis, rewards can be predicted by agents using their

perception of the environment; this is a de�ning property of these models.

An interesting issue is whether there can be a notion of rewards in the \undesigned"

environments faced by biological agents. In particular, the only true reward signal

in a biological system is death, which is perceptible by the agent too late to be of

use. Simulation experiments [3] have shown that, over the span of many generations,

arti�cial agents can evolve their own proximal reward functions that are useful in

predicting the relative goodness and badness of situations; in principle, even biological

agents can compute their own reward functions. There is also evidence that speci�c

structures in the brain of some animals are reward centers [110] that behave much like

7

the reward functions used throughout this thesis. Of course, such analogies must not

be taken too literally.

1.1.4 Policies

A policy is an agent's prescription for behavior. In general, an agent's policy is very

complicated, including changes in behavior conditioned on events in the distant past.

However, when the structure of the environment is known in advance, an agent can

sometimes behave successfully with a much simpler policy.

A plan is the name for a particularly simple kind of policy in which the agent

carries out a �xed sequence of actions \with its eyes closed;" that is, it takes the same

sequence of actions regardless of what it perceives. Plans are important in completely

predictable environments when the initial state of the agent is known in advance, as is

the case, for example, with manufacturing robots.

A conditional plan admits a small amount of variation in the sequence of actions

selected. For example, a part-painting robot might be built to work successfully even if

it receives a part upside down. Its plan might have the form: gather part, check paint

level in sprayer, request more paint if paint level too low, check orientation of part,

use painting procedure A if part rightside up, use painting procedure B if part upside

down.

An extreme form of conditional plan is a stationary policy , sometimes called a

\universal plan" [138]. This type of policy has no speci�ed sequence at all; instead,

the agent examines the entire state at each step and then chooses the action most

appropriate in the current state. For an agent to follow such a plan, it must have

access to some function that returns an action choice for every possible state. A partial

policy [43] can be used to overcome the di�culty of constructing and manipulating

complicated universal plans; however, few theoretical tools are available to assess the

success of a partial policy.

Stationary policies have several important properties that make them extremely

important. First, in highly unpredictable environments, nearly any state can follow

any other state, so any partial list of contingencies would be inadequate. Second, for

the complex success criteria I discuss in this thesis, it is hard to imagine �nding optimal

behavior without reasoning about action choices in all possible states. Because of their

central importance to algorithms for sequential decision making, we often use the word

8

\policy" as an abbreviation for \stationary policy."

Policies can also be stochastic if the agent must ip a weighted coin to decide

which action to take. This can be especially useful in competitive situations when it is

important for the agent to be somewhat unpredictable; see Chapter 5.

1.1.5 Problem Scenarios

My purpose in this thesis is to examine methods for producing policies that maximize

a measure of the long-run reward to an agent following it in a speci�c environment.

These policies can be produced under two di�erent problem scenarios that di�er in the

information available for constructing the policy: planning and reinforcement learning .

Planning In planning, a complete model of the environment is known in advance.

This makes it possible to separate the decision-making problem into two components:

the planner and the agent. The planner is responsible for taking a description of the

environment and generating a policy, typically a stationary policy. This policy is then

\downloaded" into the agent for execution in the environment. The task faced by the

planner has a well-de�ned input and output, which makes it relatively easy to analyze

from a traditional computer-science perspective. I undertake this type of analysis

throughout the thesis.

Planning has been one of the primary subject areas in arti�cial intelligence since

the development of the STRIPS system [53]. Early work on planning focused on the

generation of plans for reaching some goal state in a deterministic environment. A more

recent trend has been to consider decision-theoretic planning, in which more complex

environmental models and optimality criteria are the norm. My interest in planning

stems from this later work; I compare my work to relevant work in decision-theoretic

planning in Section 8.1.

Reinforcement Learning The reinforcement-learning scenario is closely related to

planning, although the two frameworks di�er with respect to the information available

about the environment. For a planner to function, it must have a complete description

of the environment's states, actions, rewards, and transitions. Reinforcement learning

can be used when a model of the environment is unknown or di�cult to work with

directly. The only access a reinforcement-learning agent has to information about

its environment is via perception and action, making reinforcement learning a fairly

9

plannermodel policyPlanning

Simulated RL simulatormodel experience learner policy

experience modeler

Reinforcement learning experience learner policy

Model-based RL plannermodel policy

Figure 1.2: A collection of sequential decision-making scenarios.

di�cult problem. Reinforcement learning removes the distinction between planner and

agent: a reinforcement-learning agent is responsible for gathering information about

the environment, organizing it to determine a policy, and behaving according to the

policy.

An ideal reinforcement-learning agent chooses each action to maximize its long-

term reward, perfectly selecting between actions to gain information about the envi-

ronment and actions to gain reward. This goal is extremely di�cult to achieve, and

most reinforcement-learning algorithms focus on gathering information so that, over

time, an optimal stationary policy can be generated. From this perspective, reinforce-

ment learning and planning are closely related: a reinforcement learner carries out its

planning in the context of direct interactions with the environment.

Hybrid Scenarios Although reinforcement learning is de�ned by the absence of an

a priori model of the environment and planning by the presence of such a model, the

techniques used to solve reinforcement-learning problems are useful for planning and

vice versa. Figure 1.2 illustrates some of the various ways techniques can be combined

to generate policies.

In model-based reinforcement learning , an agent uses its experience with the en-

vironment to construct an approximate model, which can be used as the input to a

planning algorithm. This approach makes excellent use of available experience, which

is often very expensive to gather, at the cost of invoking a full-edged planning system

whenever the agent needs to update its policy. An intermediate approach is to plan

incrementally as new experience is encountered [155, 111, 119].

10

In simulated reinforcement learning , a reinforcement-learning agent is introduced

into an environment with a known structure, but is forced to behave as if the structure

is not known. Although this approach seems wasteful|how could throwing away infor-

mation make decision making easier?|it can actually be a good idea if the environment

is complex and building a complete universal plan is infeasible. Using a reinforcement-

learning algorithm in such an environment can help the agent �nd appropriate behavior

for the most common and important states [9, 43]. The most noteworthy example of

this technique remains one of the biggest successes of reinforcement learning|Tesauro's

backgammon-learning program [159], which is now reliably ranked as one of the world's

best players.

1.2 Formal Models

So far, I have been very casual in discussing environments and their models. To explore

methods for automatically �nding optimal behavior for environments, however, I must

now be very speci�c about the models I am concerned with and what we mean by

optimal behavior.

Russell and Norvig [132] argue that any problem in arti�cial intelligence can be

viewed as a situation faced by an agent interacting with some environment. Following

their example, I list below some dimensions along which environments may vary, and

where the environments I address in this thesis fall on these dimensions.

� �nite vs. continuous states

Is there a �nite collection of states in which the environment can be, like the

board positions in a game of chess, or are the states better viewed as lying in a

continuum, like the position of the sun in the sky? Continuous state-space envi-

ronments can be turned into �nite state-space environments by discretizing the

state space, although this can make them di�cult to solve. I will focus on �nite

state spaces; however, in Chapter 7 I will show how to reason about a continuum

of possible beliefs that result from a particular �nite-state problem. I also con-

sider a particular limiting case of �nite state spaces, that of an environment with

a single state. Other authors [112] have addressed environments with continuous

state spaces.

� �nite vs. continuous actions

11

The set of action choices can also be either �nite or continuous; again I will be

mainly concerned with the �nite case, although Chapter 5 examines a model in

which the selected actions are actually continuous probability distributions over a

�nite set of choices. Continuous actions can also be discretized, although speci�c

algorithms [8] can solve this type of environment more e�ectively.

� episodic vs. sequential

In an episodic environment, the agent faces the same problem over and over again.

I am more concerned with sequential environments, in which the agent makes a

sequence of interrelated decisions without necessarily being reset to a starting

state. Episodic environments can be viewed as a degenerate type of sequential

environment.

� accessible vs. inaccessible

The agent makes its decisions on the basis of its perception of the environment.

If the observations it makes are su�cient to reveal the entire state of the envi-

ronment, the environment is accessible, or completely observable; otherwise it is

inaccessible, or partially observable. Partially observable environments in which

the perception of the agent does not change over time are unobservable. I consider

both accessible and inaccessible environments in this thesis.

� Markovian vs. non-Markovian

In a Markovian environment1, the future evolution of the system can be predicted

on the basis of the environment's state. In non-Markovian environments, such

as the non-stationary environments mentioned earlier, it is often important to

remember something about earlier states to predict the future accurately. My fo-

cus is on Markovian environments because of their relative tractability, although I

also consider environments that appear non-Markovian because they are partially

observable.

� �xed vs. dynamic

1Markov was a Russian mathematician whose work made use of the assumption that history is
completely disregarded. Gilbert Strang, feeling this assumption provided a pessimistic view of human
existence, commented [152], \Perhaps even our lives are examples of Markov processes, but I hope
not." In fact, all the Markov assumption really says is that anything about a system's history that is
relevant to how it will develop in the future is somehow present in the description of the current state,
an assumption most physicists are willing to make about our universe.

12

An agent in a dynamic environment must contend with the fact that the state

may change while it is deliberating on a choice of action. I focus exclusively on

the simpler �xed environments, although they less accurately reect the problems

faced by real agents. This class of environments is de�ned by the assumption that

the agent can make decisions fast enough that the state does not change between

perception and action.

� deterministic vs. stochastic

As mentioned earlier, it is important for algorithms to deal with the possibility

that the environment contains stochastic transitions. I sometimes narrow the

focus to situations in which all transitions are deterministic|there is exactly one

next state for each combination of state and action|to help understand how

decision making is simpli�ed in this case.

� synchronous vs. asynchronous

In the synchronous environments I consider, time advances only when the agent

takes an action. Put another way, precisely one state transition in the environ-

ment occurs for each action the agent takes. In asynchronous or continuous-time

models, the environment does not \wait" for the agent to take an action but

instead changes continually; the actions serve as synchronizing events during

which the agent and environment interact. Asynchronous environments are more

general, although assuming a synchronous environment is weaker than assuming

that each action takes a �xed amount of time. It is possible to approximate an

asynchronous environment by a synchronous one by discretizing time [61].

� single vs. multiple agent

For simplicity, I consider environments with either one or two agents. Environ-

ments with more agents are worthy of study but can be extremely complicated

to analyze because of the many ways the goals and experiences of the di�erent

agents can interact.

In summary, the environments covered in this thesis share the properties of being

�nite state, �nite action, sequential, Markovian, �xed, and synchronous, can be com-

pletely or partially observable, stochastic or deterministic, and can contain one or two

agents.

13

single agent multiagent

state known mdp Markov game
state observed
indirectly

pomdp
incomplete-information

game

Table 1.1: Relationships among several Markov models.

In later chapters, I examine six related models in detail: Markov decision processes,

generalized Markov decision processes, alternating Markov games, Markov games, par-

tially observable Markov decision processes, and information-state Markov decision

processes. To illustrate the relationships among these models, Table 1.1 arranges sev-

eral of them into a 2 � 2 grid. Markov decision processes (mdps) are �xed, stochastic

environments in which a single agent issues actions given knowledge of the current

state. Markov games generalize this model to allow a pair of agents to control state

transitions, either jointly or in alternation. A partially observable Markov decision

process (pomdp) consists of a single agent that must make decisions given only par-

tial knowledge of its current state. In incomplete-information games, multiple agents

control the transitions in the environment and the agents have incomplete and perhaps

di�ering knowledge of the environment's state.

To date, mdps have been the most actively studied of these models. They have

received nearly 40 years of attention from the operations-research community, and are

a current favorite topic among reinforcement-learning and decision-theoretic planning

researchers. Markov games were developed in the economics and game-theory commu-

nities and predate even mdps. Reinforcement-learning researchers have studied these

models in some detail. pomdps have recently been the focus of much excitement in the

arti�cial-intelligence and machine-learning communities. Although their study dates

back to the early 1960s, they have not received nearly the attention enjoyed by mdps,

in part because of their complexity. I do not address incomplete-information games;

although these model are of great interest to individuals studying, for example, the

coordination of multiple robots, only one group of researchers has explored algorithms

for incomplete-information games [85], and only for a subset of these models.

14

1.3 Evaluation Criteria

The previous section began a formal treatment of environment models that I will ex-

pand upon in the coming chapters. In this section, I describe how policies, planning

algorithms, and reinforcement-learning algorithms can be evaluated and compared.

1.3.1 Policies

A policy induces a probability distribution over the set of all possible sequences of

states and actions for each possible initial state of the environment. This means that,

in principle, it is possible to take a description of a policy, an environment, and an

initial state, and compute the probability that a given sequence of states and actions

will occur.

An objective function takes the set of possible state and action sequences and their

probabilities and produces a single number, called a value. Planning and reinforcement-

learning algorithms seek an optimal policy, one that maximizes the objective function,

so the choice of objective function is a critical part of the statement of the problem to

be solved. In this section, I present a set of objective functions that can be used to

evaluate policies. Many of these objective functions have found their use in applications,

others have not. My classi�cation is intended not to exhaust cover the range of possible

objective functions, but to provide a vocabulary for expressing the objective functions

appearing in later chapters.

Many important objective functions can be constructed using the general framework

in Table 1.2, which shows how a value can be de�ned as a set of transformations on

the set of all possible sequences of states and actions.

1. Starting with the set of all possible state and action sequences, the objective

function replaces each transition with a transition value, which is a representation

of its \goodness." For an objective function measuring rewards, each transition

is replaced by its reward value. For an objective function measuring steps, each

transition is assigned a constant value, say �1. For an objective function sensitive
only to goals, all transitions are assigned a value of zero unless the transition is

to a goal state.

2. The sequence of transition values can be truncated according to the horizon;

15

�nite-horizon criteria cut o� the sequence at a prespeci�ed length, while goal-

based criteria cut o� each sequence when it �rst enters a goal.

3. Each sequence of remaining transition values is then summarized. Undiscounted

criteria compute a simple sum of transition values, discounted criteria compute

a sum in which later terms are scaled down according to the discount factor �,

and average-reward criteria compute an average of the transition values.2

4. At this point, each possible sequence of states and actions has been reduced to

a single summary value. The sequence values now need to be summarized to

compute a single summary value for the policy. Under expected-reward criteria,

this involves taking an average of the sequence values weighted by the probabil-

ity of the associated sequence. Best-case and worst-case criteria are de�ned by

summarizing according to the largest and smallest sequence values, respectively.

5. In multiagent environments, an additional step must be introduced. It is possible

that the other agents can modify the probability of various sequences of states

and actions. In a cooperative environment, other agents act so as to maximize

the objective function, whereas in a competitive environment, they act so as to

minimize the objective function.

The elements of Table 1.2 make it possible to evaluate a �xed policy. An optimal

policy is one that maximizes the value.

Two hundred forty-three objective functions can be constructed by combining one

element from each category. Although all these combinations appear to be meaningful,

several deserve special mention because of the attention they have received in the

literature. Table 1.3 lists several combinations and a sample of references that have

used them.

The algorithms in this thesis �nd policies that maximize or minimaximize expected

discounted reward over the in�nite horizon. I chose these objective functions because

they have mathematical properties that make them easy to work with. In addition,

all the other objective functions can be viewed as special cases of the in�nite-horizon

expected discounted reward objective function,3 although specialized algorithms are

almost always more e�cient in these cases.

2In the case of in�nite-horizon average reward, it is necessary to compute the average as a limit.
3For example, the �nite-horizon criterion can be constructed by making copies of the states, and

optimal average-reward policies can be found by setting the discount factor close to 1.

16

q1: s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 s6 a6 s7 a7 …→,→,→,→,→,→,→,

q2: s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 s6 a6 s7 a7 …→,→,→,→,→,→,→,

q3: s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 s6 a6 s7 a7 …→,→,→,→,→,→,→,

…

state/action sequences

q1: +0.2, +0.1, -9.0, +0.0, +7.1, +5.0, -2.2, -8.7, +3.9,…

q2: +2.8, +4.0, +4.8, +2.9, +7.4, -2.4, -2.8, +0.4, +4.0,…

q3: +3.3, -3.7, +5.0, +6.2, +0.0, +6.9, -3.6, -1.9, -5.7,…

…

transition values

horizon truncation

q1: +0.2, +0.1, -9.0, +0.0, +7.1, +5.0, -2.2, -8.7, +3.9,…

q2: +2.8, +4.0, +4.8, +2.9, +7.4, -2.4, -2.8, +0.4, +4.0,…

q3: +3.3, -3.7, +5.0, +6.2, +0.0, +6.9, -3.6, -1.9, -5.7,…

…

sequence summary

q1: -2.38

value summary

q2: +11.45 q3: 6.13 …

 -16.13

Figure 1.3: Creating objective functions.

17

transition values

reward rt := reward function for state st and action at
steps rt := �1
goals rt := +1 if st+1 is a goal, +0 otherwise

horizon truncation

�nite k := �xed value
in�nite k :=1
goal k := �rst step into goal

sequence summary

discounted v(q) :=
Pk

t=0 �
trt

undiscounted v(q) :=
Pk

t=0 rt
average v(q) := limk

l=0

Pl
t=0 rt=l

value summary

expected
P

q v(q) Pr(q)
worst case minq v(q)
best case maxq v(q)

other agents

none {
cooperative maximum
competitive minimum

Table 1.2: Choices for the components of the objective function.

maximum expected discounted reward over the in�nite horizon (Chapter 2)
minimax expected discounted reward over the in�nite horizon (Chapter 5)
maximum worst-case discounted reward over the in�nite horizon [62]
minimax expected average reward over the in�nite horizon [183]
maximum expected average reward over the in�nite horizon [102]
maximum expected undiscounted reward until goal (cost-to-go) [29]
minimax expected undiscounted goal probability [36]
maximum expected undiscounted goal probability [87]
maximum multiagent discounted expected reward [22]

Table 1.3: Several popular objective functions.

18

Under the discounted objective, the discount factor 0 < � < 1 controls how much

e�ect future rewards have on the decisions at each moment, with small values of � em-

phasizing near-term gain and larger values giving signi�cant weight to later situations.

Concretely, a reward of r received t steps in the future is worth �tr to the agent now.

Mathematically, the discount factor has the desirable property that if all immediate

rewards are bounded, then the in�nite sum of the discounted rewards is also bounded.

From an applications perspective, the discount factor can be thought of as the prob-

ability that the agent will be allowed to continue gathering reward after the current

step, or, from an economic perspective, as an inverse interest rate on reward [126].

1.3.2 Planning Algorithms

When is one planning algorithm better or worse than another? There is no unique

best choice of evaluation criterion for comparing algorithms. In fact, any of the criteria

from the previous section for evaluating the possible sequences of rewards gained by

a policy could be used to evaluate the possible sequences of policies produced by a

successive-approximation planning algorithm.

As a �rst cut, algorithm A is better than algorithm B if A can �nd an optimal

policy and B cannot, or if A is more likely than B to �nd an optimal policy. I am

mainly interested in algorithms that are guaranteed to �nd an optimal policy, although

sometimes it is important to tolerate a �xed margin of error.

When both algorithms can �nd optimal policies, the better algorithm is the one

that can do so more quickly. Of course, not all algorithms perform well on all problems

and some algorithms use randomization, so once again it is important to decide how

to summarize the run time of algorithms over a class of environments. As in the

previous section, algorithms can be summarized according their average performance

over all environments or on one that makes them perform the worst, and by average

or worst-case run times.

In this thesis, an algorithm's run time is measured by its worst-case expected run

time; that is, the average run time of the algorithm on the worst possible problem

instance. This measure is very popular in theoretical computer science because it

captures the reality that the algorithm has no control over the problem instance it

must solve.

More concretely, the complexity of a planning algorithm is its worst-case average run

19

intractable

presumed intractable

presumed tractable

tractable

EXPTIME-complete
PSPACE-complete
NP-complete
NP co-NP

P
NC

RP

∩

Figure 1.4: Some complexity classes.

time expressed as a function of the size of a description of the environment, primarily the

number of transition probabilities and rewards. For most of the problems in this thesis,

I use a very coarse measure of complexity that is relatively insensitive to the details of

how environments are described. For present purposes, an algorithm is e�cient if its

complexity can be bounded above by some polynomial function, for example n5 where

n is the size of the environment description. If an exponential function is a lower bound

on the complexity of an algorithm, the algorithm is ine�cient.

For many problems, it can be shown that it is unlikely that any e�cient algorithm

exists by appealing to results from complexity theory, which classi�es problems by their

di�culty. Figure 1.4 summarizes some of the most important classes used in this thesis.

Of these, the problems in RP, P, and NC are the only ones known to be solvable in

polynomial time. For the other classes, the best known algorithms take exponential

time. However, the range of di�culty among these classes is large: problems in NP\co-
NP might be solvable in polynomial time by the best algorithm; NP-complete problems

can often be approximated in polynomial time; PSPACE-complete problems are often

quite di�cult to approximate; and EXPTIME-complete problems are known not to be

solvable in polynomial time in the worst case.

Much of the uncertainty here derives from the famous open problem \Does P equal

NP?" If P=NP, then all the classes in Figure 1.4 from NP-complete down to NC have

e�cient algorithms. If P6=NP, then the classes from NP-complete up to EXPTIME do

not have e�cient algorithms. Additional background information on complexity classes

can be found in Papadimitriou's textbook [115] and the summary in Section A.1.

20

1.3.3 Reinforcement-learning Algorithms

In a reinforcement-learning scenario, the agent must solve the same basic problem faced

in planning, but must do so without a correct description of the environment. As a

result, the range of choices for evaluating reinforcement-learning algorithms are quite

large; it is reasonable to measure the complexity of the per-experience computation,

the number of experiences needed to identify a near-optimal policy, and the value

attained by a policy learned after a particular number of experiences. A truly optimal

reinforcement-learning agent would take actions to maximize the objective function

under the restriction that its knowledge of the environment is incomplete. Such an

approach can be formalized [108], but is believed to be intractable except in the simplest

case in which there is only one state: see Gittins' groundbreaking work on this topic [56].

In the interest of simplicity, other measures are typically used to compare reinforce-

ment-learning algorithms. One approach is to measure the regret , the amount of ad-

ditional reward an algorithm would have received had it behaved according to the

optimal policy all along. This model seems quite appropriate for evaluating reinforce-

ment learning, but has received little formal attention.

An even simpler approach is to compare reinforcement-learning algorithms by ignor-

ing the learning phase altogether and asking whether an agent will, in the limit, discover

optimal behavior. This is the best-studied approach and the one I use here. It basically

categorizes reinforcement-learning algorithms as \good" if they can be used to produce

a sequence of policies that become arbitrarily close to optimal, and \bad" otherwise.

While this is an important and useful way to categorize algorithms, a better categoriza-

tion would be based on how quickly algorithms identify near-optimal policies; because

such convergence-rate analyses can be quite complex, very little theoretical work has

been done in this direction.

1.4 Thesis Summary

A main concern of researchers in arti�cial intelligence is how to formalize real-world

problems. This translates to the search for models that trade o� two conicting forces:

models should be simple enough to permit e�cient computer manipulation and complex

enough to capture the relevant aspects of the real world. Although I do not propose any

novel models of real-world problems, the new results I present extend the understanding

21

of several existing models. In particular, I show how several existing models can be

manipulated more easily, analyzed more precisely, and viewed more generally than was

possible previously.

Each chapter of the thesis examines a particular model in detail. They are, by

chapter,

2. Markov decision processes

Completely observable, single-agent environments. The most basic sequential

decision-making problem. This chapter provides much of the conceptual frame-

work for the remainder of the thesis. A new result in this chapter is an analysis

of the complexity of the policy-iteration algorithm.

3. Generalized Markov decision processes

A set of models with a common mathematical framework. Includes all the other

models discussed in the thesis. This model is new, as is the convergence proof for

reinforcement learning in this model. The chapter itself is very mathematically

oriented.

4. Alternating Markov games

Completely observable, two-agent zero-sum environments. Each agent takes some

number of actions and then turns control over to the other agent. I present the

�rst convergence proof for reinforcement learning in games.

5. Markov games

Alternating games in which agents take actions simultaneously. I present a

method for �nding optimal stochastic policies in this class of games.

6. Partially observable Markov decision processes

Partially observable, single-agent environments. Very di�cult to solve. The focus

in this chapter is on complexity results and I give the �rst proof of intractability

for this class of models.

7. Information-state Markov decision processes

A type of continuous state-space Markov decision process derived from partially

observable environments. I present a new algorithm for solving �nite-horizon

22

problems, along with theoretical results that show it is the most e�cient algorithm

of its kind.

To help highlight the similarities and di�erences among the algorithms for solving

these models, each chapter follows the same organization:

1. Introduction

Describes the relevant aspects of the model, how it is similar to and di�erent from

other models, and its relation to real-world problems.

2. The model

The formal de�nition of the model, what it means to act optimally in the model,

and foundational mathematical results.

3. Algorithms for solving the model

Describes the major approaches to solving the model along with enough analysis

to clarify the basic structure of the approaches.

4. Algorithmic analysis

Analyses of the computational complexity of the algorithms.

5. Complexity results

Analyses of the di�culty of �nding optimal policies in the model and its varia-

tions.

6. Reinforcement learning in the model

Description of relevant reinforcement-learning algorithms and convergence re-

sults.

7. Open problems

List of outstanding unresolved questions pertaining to planning and reinforcement

learning in the model.

8. Related work

Summary of relevant contributions from other researchers.

23

9. Contributions

Summary of the new results presented in the chapter.

In addition, each chapter has an associated appendix with important results whose

formal arguments are too complex or otherwise unenlightening to be included in the

main text.

1.5 Additional Remarks

The focus of this thesis is on algorithms, and there are important mathematical de-

tails that are left unproven. Wherever possible, I refer to other sources for additional

mathematical background. Similarly, a great deal of relevant information is left unsaid

regarding the e�cient implementation of these algorithms on existing computer sys-

tems using existing computer languages. In nearly all cases, I provide \pseudocode"

implementations of the important algorithms; that is, I describe the algorithms in a

computer-language-like notation that, with some work, could be made to run on a com-

puter. The conventions I use for describing algorithms are explained in Section A.2.

The mathematical sophistication assumed is roughly at the level of basic analysis.

However, even the most mathematical of the results can be appreciated without this

background. The rest of the material should be accessible to a typical computer scien-

tist. One possible exception is that I assume a familiarity with linear programming. A

brief overview of this topic is given in Section A.3.

I present example environments throughout in a graphical notation of which Fig-

ure 1.5 is a simple example. The circles are the states of the environment, with their

\names" written inside. Each arrow that leaves a state is an action and is labeled

with its name. The numerical label on the action is the immediate reward; I write

immediate reward values with a leading sign to help distinguish them from transition

probabilities. Arrows sometimes split; this represents a stochastic transition, with the

individual transitions labeled with their probability. Thus in Figure 1.5, action a2 from

state s1 results in an immediate reward of +1 and a transition back to state s1 with

probability 0:2.

24

a1

s1

100–

+10

a1 s0s2

s3

+5

a2

a2

0.2a2

+1 0.8

a1

Figure 1.5: An illustration of a simple environment.

1.6 Related Work

The baseball example was inspired by a passage in a book by pitcher Tom Seaver [142];

the hypothetical batter is Babe Ruth. The network-monitoring example was inspired by

conversations with my colleagues at Bellcore; a simple study of reinforcement learning

in a di�erent telecommunications domain was undertaken by Boyan and Littman [27].

Additional applications are described in Puterman's textbook [126].

Kaelbling's book [72] provides a philosophical discussion of agents, along with an ex-

ploration of several kinds of sequential decision-making problems. Russell and Norvig's

introductory textbook [132] views all of arti�cial intelligence from an agent perspective.

Interrelationships between the undiscounted-reward and the discounted-reward cri-

teria were discussed by Blackwell [19]. A survey of results concerning the average-

reward criterion was written by Arapostathis et al. [4]. Fern�andez-Gaucherand, Ghosh

and Marcus [52] explored combinations of discounted and average reward as a way

to better trade o� short-term and asymptotic reward. In the area of reinforcement-

learning, the average-reward criterion was studied �rst by Schwartz [141] and later in

detail by Mahadevan [102].

1.7 Contributions

This chapter introduced the core concepts used in the remainder of the thesis: agents,

environments, rewards, policies, planning and learning. I showed where the problems

I address fall on a categorization of environments inspired by a similar categorization

described by Russell and Norvig [132]. I explained how algorithms and policies are

evaluated in my work, and presented a novel categorization of objective functions that

includes those used in my work as well as those used by many other researchers.

Chapter 2

Markov Decision Processes

Portions of this chapter have appeared in earlier papers: \Planning and act-

ing in partially observable stochastic domains" [73] with Kaelbling and Cas-

sandra, \An introduction to reinforcement learning" [74] with Kaelbling and

Moore, and \On the complexity of solving Markov decision problems" [96]

with Dean and Kaelbling.

Consider the problem of creating a policy to guide a robot through an o�ce build-

ing. The robot's actions take it from hallway intersection to intersection, but are not

completely reliable. Sometimes an action fails, overshoots, or results in the robot turn-

ing too far. Fortunately, perfect sensors allow the robot to perceive the e�ects of its

error-plagued actions.

The assumption of perfect sensors is central to this chapter. Because the agent can

directly perceive all aspects of its current state that might be necessary to predict the

probability of the next state given its action, it is not necessary for the agent to retain

any history of its past actions or states to make optimal decisions.

2.1 Introduction

In this chapter I address the problem of choosing optimal actions in completely ob-

servable stochastic domains. The robot problem described above can be modeled as

a Markov decision process (mdp), as can other problems in robot navigation, factory

process control, transportation logistics, and a variety of other complex real-world sit-

uations.

25

26

AGENT

ActionsStates

Environment

Figure 2.1: An mdp models the synchronous interaction between agent and environ-
ment.

The problem addressed is, given a complete and correct model of the environment

dynamics and a goal structure, �nd an optimal way to behave. Versions of this problem

have been addressed in the arti�cial-intelligence literature as planning problems, where

the focus is on goal-oriented problems in large, deterministic domains. Because we

are interested in stochastic domains, we must depart from the traditional model and

compute solutions in the form of policies instead of action sequences.

Much of the content of this chapter is a recapitulation of work in the operations-

research literature [126, 15, 44, 46, 68, 13] and the reinforcement-learning literature [153,

173, 10, 145]. The concepts and background introduced here will be built upon in all

the succeeding chapters.

2.2 Markov Decision Processes

Markov decision processes are the simplest family of models I will consider. Later

chapters depend on the results and concepts introduced here to address more complex

generalizations of mdps. An mdp is a model of an agent interacting synchronously

with its environment. As shown in Figure 2.1, the agent takes as input the state of

the environment and generates as output actions, which themselves a�ect the state of

the environment. In the mdp framework, it is assumed that, although there may be

a great deal of uncertainty about the e�ects of an agent's actions, there is never any

uncertainty about the agent's current state|it has complete and perfect perceptual

abilities.

2.2.1 Basic Framework

A Markov decision process is a tuple M = hS;A; T; R; �i, where

27

� S is a �nite set of states of the environment;

� A is a �nite set of actions;

� T : S � A ! �(S) is the state transition function, giving for each state and

agent action, a probability distribution over states (T (s; a; s0) is the probability

of ending in state s0, given that the agent starts in state s and takes action a);

� R : S � A ! R is the reward function, giving the expected immediate reward

gained by the agent for taking each action in each state (R(s; a) is the expected

reward for taking action a in state s); and

� 0 < � < 1 is a discount factor.

In this chapter, I consider mdps with �nite state and action spaces. Many of the

important results apply to in�nite-state mdps as well. Chapter 3 examines these results

from a more general perspective.

2.2.2 Acting Optimally

Agents should act in such a way as to maximize some measure of the long-run reward re-

ceived. Section 1.3.1 presented several objective functions, including discounted �nite-

horizon optimality, average-reward optimality, and discounted in�nite-horizon optimal-

ity. I focus on algorithms for the discounted in�nite-horizon case with some attention

to the simpler �nite-horizon case. Most of the results for in�nite-horizon discounted

mdps apply to undiscounted problems in which agents are guaranteed to reach a zero-

reward absorbing state regardless of policy, the all-policies-proper case (see Chapter 3

for more details).

A policy is a description of the behavior of an agent. I consider two important

kinds of policies: stationary and non-stationary. A stationary policy , � : S ! A,
speci�es, for each state, an action to be taken. The choice of action depends only on

the state and is independent of the time step. A non-stationary policy is a sequence of

state-action mappings, indexed by time. In the non-stationary policy � = h�t; : : : ; �1i,
the mapping �t is used to choose the action on the tth-to-last step as a function of the

current state. In the �nite-horizon model, there is rarely a stationary optimal policy|

the way an agent chooses its actions on the �nal step is generally di�erent than the way

28

it chooses them when it has a large number of steps left. In the discounted in�nite-

horizon model, the quantity 1� � can be viewed as the probability that the agent will

cease to accrue additional reward; therefore, it is as if the agent always has a constant

expected number of steps remaining: 1=(1� �). Because the expected distance to the

horizon never changes, there is no reason to change action strategies as a function of

time|there is a stationary optimal policy [15].

Given a policy, we can evaluate the expected long-run value an agent could expect

to gain from executing it. In the �nite-horizon case, let � = h�k; : : : ; �1i be a k-step
non-stationary policy and let V �

t (s) be the expected future reward starting in state s

and executing non-stationary policy � for t steps. The value of the �nal step is the

immediate reward V �t
1 (s) = R(s; �1(s)). For t > 1, we can de�ne V �t

t (s) inductively by

V �t
t (s) = R(s; �t(s)) + �

X
s02S

T (s; �t(s); s
0)V �t

t�1(s
0):

The t-step value of being in state s and executing non-stationary policy � is the im-

mediate reward, R(s; �t(s)), plus the discounted expected value of the remaining t� 1

steps. To evaluate the remaining steps, we consider all possible resulting states s0, the

likelihood of their occurrence T (s; a; s0), and their (t � 1)-step value under policy �,

V �
t�1(s

0).

Let V �(s) be the expected discounted future reward for starting in state s and

executing stationary policy � inde�nitely. The in�nite-horizon value is recursively

de�ned by

V �(s) = R(s; �(s)) + �
X
s02S

T (s; �(s); s0)V �(s0):

The value function for policy � is the unique solution of this set of simultaneous linear

equations, one for each state s. A subroutine for �nding the in�nite-horizon value

function for a given policy appears in Table 2.1; it will be used later in more complex

algorithms. The system of linear equations can be solved by Gaussian elimination or

any of a number of other methods [40].

Now we know how to compute a value function, given a policy. We can also de�ne

a policy based on a value function. Given any value function V , the greedy policy with

respect to that value function, �V , is de�ned as

�V (s) = argmax
a

2
4R(s; a) + �

X
s02S

T (s; a; s0)V (s0)

3
5 :

29

evalMDP(�; hS;A; T;R; �i) := f
Solve the following system of linear equations:

�nd: v[s]
s.t.: v[s] = R(s; �(s)) + �

P
s02S T (s; �(s); s

0)v[s0], for all s 2 S
return v

g

Table 2.1: Computing the value function for a given policy.

This policy is obtained by taking the action in each state with the best one-step value

according to V .

It is not hard to �nd the optimal �nite-horizon policy for a given mdp, ��k =

h��k; : : : ; ��1i. For 1 � t � k, we can de�ne ��t as follows. On the �nal step, the

agent should maximize its immediate reward,

��1(s) = argmax
a

R(s; a):

We can de�ne ��t in terms of the value function for the optimal (t� 1)-step policy V
��
k

t�1

(written for simplicity as Vt�1):

��t (s) = argmax
a

2
4R(s; a) + �

X
s02S

T (s; a; s0)Vt�1(s
0)

3
5 ;

it need not be unique.

In the discounted in�nite-horizon case, given an initial state s, we want to execute

the policy � that maximizes V �(s). Howard [68] showed that there exists a stationary

policy �� that is optimal for every starting state. The value function for this policy,

written V �, is de�ned by the set of equations

V �(s) = max
a

2
4R(s; a) + �

X
s02S

T (s; a; s0)V �(s0)

3
5 ; (2.1)

and any greedy policy with respect to this value function is optimal [126].

The presence of the maximization operator in Equation 2.1 means the system of

equations is not linear|Gaussian elimination is not su�cient to solve it. In the next

section, I explore algorithms that solve the mdp problem; they �nd an optimal policy

and value function for an mdp, given its description in terms of T , R, and �.

30

ValueIterationMDP(hS;A; T;R; �i; �) := f
foreach s 2 S V0(s) := 0
t := 0
loop

t := t+ 1
foreach s 2 S f

foreach a 2 A
Qt(s; a) := R(s; a) + �

P
s02S T (s; a; s

0)Vt�1(s
0)

�t(s) := argmaxaQt(s; a)
Vt(s) := Qt(s; �t(s))

g
until maxs jVt(s)� Vt�1(s)j < �
return �t

g

Table 2.2: The value-iteration algorithm for mdps.

2.3 Algorithms for Solving Markov Decision Processes

There are many methods for �nding optimal policies for mdps. In this section, I

describe several of the more basic approaches. All of these can be found in Puterman's

textbook [126].

2.3.1 Value Iteration

Value iteration proceeds by computing the sequence Vt of discounted �nite-horizon

optimal value functions, as shown in Table 2.2. It makes use of an auxiliary function,

Qt(s; a), which is the t-step value of starting in state s, taking action a, then continuing

with the optimal (t � 1)-step non-stationary policy; these state-action value functions

are also known asQ functions . The algorithm terminates when the maximum di�erence

between two successive value functions, the Bellman error magnitude, is less than some

predetermined �.

It can be shown that there exists a t�, polynomial in jSj, jAj, logmaxs;a jR(s; a)j,
and 1=(1� �), such that the greedy policy with respect to Vt� is an optimal in�nite-

horizon policy [162]. Rather than calculating a bound on t� in advance and running

value iteration for that long, we can use the Bellman error magnitude to decide when

our current value function is good enough to generate a near-optimal greedy policy. To

31

state this precisely, if jVt(s)� Vt�1(s)j < � for all s, then the value of the greedy policy

with respect to Vt does not di�er from V � by more than 2��=(1��) at any state. That
is,

max
s2S

jV �Vt (s)� V �(s)j < 2�
�

1� �
:

This result [180] is discussed in more detail in Section 3.3.2. Tighter bounds may often

be obtained using the span semi-norm on the value function [126].

2.3.2 Policy Iteration

In the version of value iteration discussed in the previous section, each value function

Vt can be interpreted as an approximation of the value function of the optimal in�nite-

horizon policy ��, or as the value function for the optimal non-stationary policy for a

t-step discounted �nite-horizon mdp. This second interpretation comes from the fact

that the initial value function, V0, is de�ned to be zero for all states.

A di�erent interpretation is possible when we de�ne V1 as follows: let �0 be the

greedy policy for the zero value function, V0, and let V1 = V �0 , the value function

for policy �0. De�ne a sequence of in�nite-horizon non-stationary policies where �t =

h�t; : : : ; �1; �0; �0; �0; : : :i, that is, �t is the in�nite-horizon policy that follows �t, then

�t�1, and so on down to �0, which is repeated inde�nitely. We can view Vt, the value

function obtained on the tth iteration starting from V1, as the in�nite-horizon value

function corresponding to �t.

This revised value-iteration algorithm shares the convergence properties attributed

to the algorithm in Table 2.2 (see Section 3.3.1), and possesses a few special properties

of its own. Since Vt is the value function for the non-stationary in�nite-horizon policy

�t, and V � is the optimal in�nite-horizon policy, then V �(s) � Vt(s) for all s. This

is because no in�nite-horizon policy, stationary or not, can have a higher expected

discounted reward from any state than that given by the optimal value function [15].

As a result, Vt converges to V � from below.

A more useful fact is that by adopting the state-action mapping �t as a stationary

in�nite-horizon policy, an agent is guaranteed total expected reward that is no worse

than it would obtain following �t [126]. That is, V �t(s) � V t(s), for all s 2 S.
Combining these insights leads to an elegant approach to solving mdps, due to

Howard [68]. Like value iteration, policy iteration (Table 2.3) computes a sequence of

value functions, Vt. In policy iteration, however, each value function Vt is the value

32

PolicyIterationMDP(M = hS;A; T; R; �i) := f
foreach s 2 S V0(s) := 0
t := 0
loop

t := t+ 1
foreach s 2 S and a 2 A f

Qt(s; a) := R(s; a) + �
P

s02S T (s; a; s
0)Vt�1(s

0)
�t(s) := argmaxaQt(s; a)
Vt := evalMDP(�t;M)

g
until Vt�1(s) = Vt(s) for all s
return �t

g

Table 2.3: The policy-iteration algorithm for mdps.

function for the greedy policy with respect to the previous value function Vt�1.

Puterman [126] shows that the sequence of value functions produced in policy it-

eration converges to V � no more slowly than the value functions produced in value

iteration; this result is discussed in some detail in Section B.1. Policy iteration can

converge in fewer iterations than value iteration; however, the increased speed of con-

vergence of policy iteration can be more than o�set by the increased computation per

iteration.

Another fundamental di�erence between value iteration and policy iteration is the

stopping criterion. Whereas value iteration can converge to the optimal value function

very gradually, policy iteration proceeds in discrete jumps. In particular, each value

function generated in policy iteration is associated with a particular policy (of which

there are jAjjSj), and each value function Vt is strictly closer to V � than is Vt�1 [126].

Putting these facts together tells us that policy iteration requires at most jAjjSj itera-
tions to generate an optimal value function.

2.3.3 Linear Programming

We saw earlier that the in�nite-horizon value function for a policy � can be expressed

as the solution to a system of simultaneous linear equations. Table 2.1 shows how

this mathematical equivalence can be exploited to derive an e�cient algorithm for

computing V � .

33

mdpLP(hS;A; T; R; �i) := f
Solve the following linear program:

minimize:
P

s v[s]
s.t.: v[s] � R(s; a) + �

P
s02S T (s; a; s

0)v[s0], for all s 2 S and a 2 A
variables: v[s] for all s 2 S

return v
g

Table 2.4: Solving an mdp via linear programming.

We also saw that the optimal value function V � can be expressed as the solution

to a system of simultaneous equations, given in Equation 2.1. Unfortunately, the

maximization operators in these equations render them non-linear, so nothing as simple

as Gaussian elimination will su�ce to solve them.

The V � equations can be expressed in the more descriptive mathematical language

of linear programming . A linear program consists of a set variables, a set of linear

inequalities over these variables, and a linear objective function. D'Epenoux [45] showed

how to solve an mdp by expressing the system of equations de�ning the optimal value

function as a linear program (Table 2.4).

The intuition here is that, for each state s, the optimal value from s is no less than

what would be achieved by �rst taking action a, for each a 2 A. The minimization

ensures that we choose the least upper bound (the maximum, in other words) for each

of the v[s] variables.

An important fact from the theory of linear programming is that every linear pro-

gram has an equivalent linear program in which the roles of the variables and the

constraints are reversed. The resulting linear program, known as the dual , can also be

used to solve mdps. One advantage of the dual formulation is that it makes it possible

to express and incorporate additional constraints on the form of the policy found [88].

The dual linear program appears in Table 2.5. The f [s0; a] variables can be thought

of as indicating the amount of \policy ow" through state s0 that exits via action a.

Under this interpretation, the constraints are ow-conservation constraints that say

that the total ow exiting state s0 is equal to the ow beginning at state s0 (always

1) plus the ow entering state s0 via all possible combinations of states and actions

weighted by their probability. The objective, then, is to maximize the value of the

34

mdpDUAL(M = hS;A; T; R; �i) := f
Solve the following linear program:

maximize:
P

a

P
sR(s; a)f [s; a]

s.t.:
P

a2A f [s
0; a] = 1 + �

P
s2S

P
a2A T (s; a; s

0)f [s; a]; for all s0 2 S
variables: f [s; a] for all s 2 S and a 2 A

foreach s 2 S �(s) := argmaxa f [s; a]
return evalMDP(�;M)

g

Table 2.5: Solving an mdp via the linear programming dual.

ow.

If the f [s; a] variables constitute a feasible solution to the dual (i.e., they jointly

satisfy the constraints), then
P

s

P
aR(s; a)f [s; a] can be interpreted as the sum of the

state values of the stationary stochastic policy that chooses action a in state s with

probability f [s; a]=
P

a2A f [s; a]. The stochastic policy corresponding to the optimal

value of the f [s; a] variables is optimal, as is any deterministic policy that chooses

action a in state s where f [s; a] > 0.

2.3.4 Other Methods

There are many other methods for solving mdps, including methods that accelerate

the convergence of value iteration by keeping explicit suboptimality bounds [15] and

by grouping and regrouping states throughout the process [17].

A di�erent approach is illustrated in modi�ed policy iteration [127], which has the

basic form of policy iteration with the di�erence that a successive-approximation algo-

rithm (basically value iteration with the policy held �xed) is used to �nd an approx-

imation to the value function for policy �t. The connection between value iteration

for mdps and successive approximation for evaluating stationary policies is explored in

somewhat more detail in Chapter 3.

2.3.5 Algorithms for Deterministic mdps

In this section I show that deterministic mdps can be solved very e�ciently by present-

ing a novel formulation that leads to a fast algorithm.

35

determMDP(hS;A; N;R; �i) := f
foreach s 2 S f

foreach s0 2 S A1[s; s0] := �1
foreach a 2 A

A1[s;N(s; a)] := max(A1[s;N(s; a)];R(s; a))
g
foreach k 2 [2 : : : jSj] f

foreach s 2 S f
foreach s00 2 S

Ak[s; s00] := maxs02S(A
1[s; s0] + �Ak�1[s0; s00])

g
g
foreach s 2 S

V [s] := maxs002S;k2[0:::jSj];l2[0:::jSj]A
k [s; s00] + �k+1Al[s00; s00]=(1 + �l)

return V
g

Table 2.6: Computing the value function for a deterministic mdp.

A deterministic mdp is one in which T (s; a; s0) is either 0 or 1 for all s; s0 2 S,
a 2 A. The notation N(s; a) represents the unique next state resulting from taking

action a from state s in a deterministic mdp. In this section, I present two algorithms

for this problem; one runs e�ciently in parallel, and the other links the deterministic

mdp problem to a general class of shortest-path problems, which results in an e�cient

sequential algorithm.

Papadimitriou and Tsitsiklis [116] give a dynamic-programming algorithm for solv-

ing deterministic mdps e�ciently on a parallel machine. A sequential version of their

algorithm (given in Table 2.6) runs in jSj2 + jSjjAj+ 2jSj4 time. Here Ak[s; s00] repre-

sents the maximum reward on any path of length k from state s to state s00. The value

for state s can then be expressed as the maximum value path from s to s00, and then

from s00 back to itself inde�nitely.

Deterministic mdps can be cast in the closed semiring framework, and then solved

in polynomial time using a generic algorithm for solving closed semiring problems [40].

In Section B.3, I de�ne the deterministic mdp closed semiring and prove that it has

the necessary properties.

Cormen, Leiserson and Rivest [40] present a generic algorithm for solving path

problems on closed semirings. The algorithm can �nd the optimal value function for a

36

deterministic mdp in jSj2 + jSjjAj+ jSj3 time.
There are a few things to note about this new closed-semiring-based algorithm.

First, its sequential run time is an improvement over the algorithm given by Papadim-

itriou and Tsitsiklis, which was designed to prove that the problem is in NC. Second,

casting the problem in a more general framework helps highlight the similarities be-

tween deterministic mdps and general path-related problems. Third, any advances in

the area of algorithms for closed semirings immediately translate into advances for

deterministic mdps.

2.4 Algorithmic Analysis

This section provides complexity analyses of the algorithms described in the previous

section. For several of the bounds, it is necessary to assume that the components of

the reward and transition matrices are represented by rational numbers. We use B to

designate the maximum number of bits needed to represent any numerator or denomi-

nator of � or one of the components of T or R. Although none of the individual results

in this section are novel, they are presented in a way that highlights the connections

between linear programming, value iteration, and policy iteration, which allows me to

draw some novel conclusions concerning their complexity.

2.4.1 Linear Programming

The linear program in Table 2.4 has jSjjAj constraints and jSj variables and the dual

given in Table 2.5 has jSj constraints and jSjjAj variables. In both linear programs, the
coe�cients have a number of bits polynomial in B. There are algorithms for solving

rational linear programs that take time polynomial in the number of variables and

constraints as well as the number of bits used to represent the coe�cients [78, 79].

Thus, mdps can be solved in time polynomial in jSj, jAj, and B. Descendants of

Karmarkar's algorithm [78] are considered among the most practically e�cient linear-

programming algorithms.

It is popular to solve linear programs by variations of Dantzig's simplex method [41],

which works by choosing a subset of constraints to satisfy with equality and solving the

resulting linear equations for the values of the variables. The algorithm proceeds by

iteratively swapping constraints in and out of the selected subset, continually improving

the value of the objective function. When no swaps can be made to improve the

37

objective function, the optimal solution has been found. Simplex methods di�er as to

their choice of pivot rule, the rule for choosing which constraints to swap in and out at

each iteration.

Although simplex methods seem to perform well in practice, Klee and Minty [81]

showed that one of Dantzig's choices of pivoting rule could lead the simplex algorithm

to take an exponential number of iterations on some linear programs. Since then, other

pivoting rules have been suggested and almost all have been shown to result in expo-

nential run times in the worst case; none has been shown to result in a polynomial-time

implementation of simplex. Note that these results may not apply to the use of linear

programming to solve mdps: the set of linear programs resulting from mdps might not

include the counterexample linear programs. Some progress has been made speeding

up simplex-based methods, for instance, through the introduction of randomized ver-

sions of pivoting rules [20], some of which have been shown to result in subexponential

complexity [75].

The fact that the optimal value function for an mdp can be expressed as the solution

to a polynomial-size linear program has several important implications. First of all, it

provides a theoretically e�cient way of solving mdps. Secondly, it provides a practical

method for solving mdps using commercial-grade implementations. Thirdly, it puts a

convenient bound on the complexity of the optimal value function, as we will see in a

moment.

Theorem 2.1 Let M = hS;A; T;R; �i be an mdp with transitions, rewards, and the

discount factor expressed as rational numbers with numerator and denominator needing

no more B bits. The components of the optimal value function for M are rational

numbers with numerator and denominator needing no more B� bits, and B� is bounded

by a polynomial in jSj, jAj, and B.

Proof: It is well known [140, 162] that the solution to a rational linear program in

which each numerator and denominator is represented using no more than B bits, can

itself be written using rational numbers. The value of each variable in the solution

can be represented in B� bits where B� is polynomial in the size of the linear program

and B. The argument is based on a use of Cramer's rule to get a closed form for the

solution of a system of linear equations in terms of determinants. Bounding the size

of the determinant is not hard and gives a bound on the size of the components of the

optimal solution.

38

Because the optimal value function for M is the solution to just such a linear

program, B� also bounds the number of bits needed to express the optimal value

function for M. �

More on the relationship between linear programming and mdps appears in Sec-

tion 2.4.3.

2.4.2 Value Iteration

In this section, we analyze the value-iteration algorithm described in Section 2.3.1.

When the discount factor is less than one, the sequence of value functions produced in

the course of value iteration converges to the optimal value function [126].

In the general case, each iteration takes jAjjSj2 steps. The focus of this section is

on the number of iterations required to reach an optimal policy. Drawing from earlier

work, I will sketch an upper bound on the number of iterations and show that there

are mdps that take nearly that long to solve. More detailed discussions can be found

in papers by Tseng [162] (upper bound) and Condon [37] (lower bound).

Lemma 2.1 The number of iterations required by value iteration to reach an optimal

policy is bounded above by a polynomial in jSj, jAj, B, and 1=(1� �).

Proof: The proof consists of 5 basic steps.

1. Bound the di�erence between the initial value function and the optimal value

function, over all states.

Let M = maxs2S;a2A jR(s; a)j, the magnitude of the largest immediate reward.

Since
P1

t=0 �
tM = M=(1� �), the value function for any policy will have com-

ponents in the range [�M=(1� �);M=(1� �)]. Thus, any choice of initial value

function with components in this range cannot di�er from the optimal value

function by more than 2M=(1� �) at any state.

2. Show that each iteration results in an improvement of a factor of at least � in the

distance between the current and optimal value functions.

This is the standard \contraction mapping" result for mdps [126] that explains

why the value functions in value iteration converge. It is proven in a general form

in Chapter 3, though the proof for the mdp case is somewhat simpler.

39

3. Give an expression for the di�erence between current and optimal value functions

after t iterations. Show how this gives a bound on the number of iterations required

for an �-optimal policy.

After t iterations, the current value function can di�er from the optimal value

function by no more than 2M�t=(1 � �) at any state. Solving for t and using

the result relating the Bellman error magnitude to the value of the associated

greedy policy (Sections 2.3.1 and 3.3.2), we can express the maximum number of

iterations needed to �nd an �-optimal policy, i.e., one that has an expected value

within � of the optimal policy, as

t� � B + log(1=�) + log(1=(1� �)) + 1

1� �
: (2.2)

4. Argue that there is a value for � > 0 for which an �-optimal policy is, in fact,

optimal.

Theorem 2.1 says that each component of the optimal value function for an mdp

can be written using B� bits, where B� is polynomial in jSj, jAj and B. This

means that if we can �nd a policy that is � = (1=2B
�+1)-optimal, the policy must

be optimal.

5. Substitute the value of � from step 4 into the bound in step 3 to get a bound on

the number of iterations needed for an exact answer.

Substituting for � in Equation 2.2 reveals that running value iteration for a num-

ber of iterations polynomial in jSj, jAj, B, and 1=(1� �) guarantees an optimal

policy.

�

This analysis shows that value iteration runs in pseudopolynomial time, and, for

�xed discount factor �, it runs in polynomial time. Next, I examine a lower bound

that indicates that number of iterations can grow linearly with 1=(1��) log(1=(1��));
showing that value iteration is not a polynomial-time algorithm in general.

Lemma 2.2 Determining an optimal in�nite-horizon policy via value iteration takes

a number of iterations proportional to 1=(1� �) log(1=(1� �)) in the worst case.

Proof: Figure 2.2 illustrates a family of deterministic mdps, each of which consists of

3 states, labeled s0, s1, and s2. From state s0, action a1 causes a transition to state s1

40

-1

+0

+0

β2

1 β–
------------–

a1

a2

s1

s0

s2

Figure 2.2: Value iteration requires number of iterations proportional to 1=(1 �
�) log(1=(1� �)) to generate an optimal solution for this family of mdps.

and action a2 causes a transition to state s2. Action a1 has no immediate reward but

once in state s1, there is a reward of �1 for every timestep thereafter. Action a2 has

an immediate reward of ��2=(1� �) but state s2 is a zero-cost absorbing state.
1

The discounted in�nite-horizon value of choosing action a1 from state s0 is ��=(1�
�) whereas the value for action a2 is ��2=(1 � �) (larger, since 0 < � < 1). If we

initialize value iteration to the zero value function, the estimates of the values of these

two choices are: ��(1 � �t)=(1� �) and ��2=(1 � �) at iteration t > 1. Therefore,

value iteration will continue to choose the suboptimal action until iteration t� where

��(1� �t
�
)

1� �
<

��2
1� �

;

or

t� � log(1� �)

log �
� 1

2
log

�
1

1� �

�
1

(1� �)
:

Thus, in the worst case, value iteration has a run time that grows faster than

1=(1� �). �

2.4.3 Policy Iteration

Since there are jAjjSj distinct policies, and each iteration of policy iteration strictly

improves the approximation [126], it is obvious that policy iteration terminates in at

most an exponential number of steps.

Each step of policy iteration consists of a value-iteration-like policy-improvement

step, which can be performed in O(jAjjSj2) arithmetic operations; and a policy-evalu-

ation step, which can be performed in O(jSj3) operations by solving a system of linear

1Note that these rewards can be speci�ed by B � log(�2=(1� �)) = O(log(1=(1� �))) bits.

41

equations2. The total run time, therefore, hinges on the number of iterations needed

to �nd an optimal policy.

While direct complexity analyses of policy iteration have been scarce, several re-

searchers have examined a simpli�ed family of variations of policy iteration, which I

discuss in the following section.

Sequential Improvement Policy Iteration

Whereas standard policy iteration de�nes the policy on step t to be

�t(s) = argmax
a

Qt(s; a)

(see Table 2.3), sequential improvement policy iteration de�nes �t(s) = �t�1(s) for all

but one state. To be more precise, from the set of states s for which Qt(s; �t�1(s)) <

maxaQt(s; a) (the previous action choice for s is no longer maximal), one is selected

and �t(s) is set to argmaxaQt(s; a).

A detailed analogy can be constructed between the choice of state to update in

sequential improvement policy iteration and the choice of pivot rule to use in simplex.

Denardo [44] shows that the feasible bases for the linear program in Table 2.4 are in

one-to-one correspondence with the stationary deterministic policies.

As with simplex, examples have been constructed that make sequential improve-

ment policy iteration require an exponential number of iterations. Melekopoglou and

Condon [107] examine the problem of solving cost-to-go mdps using several variations

on the sequential-improvement-policy-iteration algorithm. In a version they call simple

policy iteration, every state is labeled with a unique index and, at each iteration, the

policy is updated at the state with the smallest index of those at which the policy can

be improved. They show that the family of examples suggested by Figure 2.3, from

a particular starting policy, takes an exponential number of iterations to solve using

simple policy iteration.

An example can be constructed for each whole number n (n = 5 in Figure 2.3).

There are 2n states and they are divided into three classes: decision states (labeled

s0 through sn�1), random states (labeled s01 through s0n�1), and an absorbing state,

sn. From each decision state si, there are two actions available: action a1 results in a

transition to decision state si+1 and action a2 results in a transition to random state

2In theory, policy evaluation can be performed faster, because it primarily requires inverting a
jSj � jSj matrix, which can be done in O(jSj2:376) time [39].

42

.5

.5

.5

.5

.5

.5

+0

s1′s4′ s3′ s2′

a1
s2 s1

s5

a1
a1

s3s4

a2a2a2

s0

1–

Figure 2.3: Simple policy iteration requires an exponential number of iterations to
generate an optimal solution to the family of mdps illustrated here.

s0i+1. From random state s0i, there is no choice of action and instead a random transition

takes place with probability 1=2 of reaching random state s0i+1 and probability 1=2 of

reaching decision state si+1. Actions from decision state sn�1 and random state s0n�1

both result in a transition to the absorbing state sn. This transition has a reward of

�1 in the case of decision state sn�1, whereas all other transitions have zero cost.

The initial policy is �0(s) = a1 for all s 2 S, so every decision state si selects the

action that takes it to decision state si+1. In the unique optimal policy, ��(s) = a1

for s 6= sn�2 and ��(sn�2) = a2. Although these two policies are highly similar,

Melekopoglou and Condon show that simple policy iteration steps through 2n�2 policies

before arriving at the optimal policy.

Although this example was constructed to hold for an undiscounted all-policies-

proper criterion, it also holds under the discounted criterion regardless of discount

rate. This is because the introduction of discount factor � > 0 causes the values

of states si and s0i to be reduced by precisely a factor of �n�i�1, regardless of the

policy, because every path from si or s0i that includes the non-zero reward has precisely

the same length. Thus, when the algorithm needs to decide whether the action for

decision state si should be changed, the introduction of � scales down the values of the

succeeding states equally, but does not change the relative order of the two choices.

Parallel Improvement Policy Iteration

When the policy is improved at all states in parallel, as in standard policy iteration, the

algorithm no longer has a direct simplex analogue. It is an open question whether this

can lead to exponential run time in the worst case or whether the resulting algorithm

is guaranteed to converge in polynomial time. However, this version is strictly more

43

e�cient than the simple policy iteration algorithm mentioned above.

Let �t be the policy found after t iterations of policy iteration. Let V �t be the

value function associated with �t. Let Vt be the value function found by value iteration

(Table 2.2) starting with V �0 as an initial value function. Puterman [126] (Theorem

6.4.6, discussed in Section B.1) showed that V �t(s) � Vt(s), for all s 2 S and there-

fore that policy iteration converges no more slowly than value iteration for discounted

in�nite-horizon mdps. When combined with a result by Tseng [162], presented here as

Lemma 2.1, that bounds the time needed for value iteration to �nd an optimal policy,

this shows that policy iteration takes polynomial time, for a �xed discount factor. Fur-

thermore, if the discount factor is included as part of the input as a rational number

with the denominator written in unary, policy iteration takes polynomial time. This

makes policy iteration a pseudopolynomial-time algorithm.

Thus, whereas policy iteration runs in polynomial time for a �xed discount factor,

simple policy iteration can take exponential time, regardless of discount factor. This

observation [96] stands in contrast to a comment by Denardo [44]. Denardo argues

that block pivoting in simplex achieves the same goal as parallel policy improvement in

policy iteration, and therefore that one should prefer commercial implementations of

simplex to casual implementations of policy iteration. This argument is based on the

misconception that one step of policy improvement on n states is equivalent in power to

n iterations of simple policy iteration. In fact, one policy improvement step on n states

can correspond to as many as 2n iterations of simple policy iteration. Thus, policy

iteration has not yet been ruled out as the preferred solution method for mdps|more

empirical study is needed.

2.4.4 Summary

The results of this section can be summarized by the following theorem.

Theorem 2.2 To solve families of mdps with a �xed discount factor, value iteration,

policy iteration, and linear programming take polynomial time, while simple policy it-

eration can take exponential time. When the discount factor is included as part of the

input, value iteration takes pseudopolynomial time, policy iteration takes no more than

pseudopolynomial time, and linear programming takes polynomial time. No strongly

polynomial-time algorithm is known.

Proof: The theorem follows from the preceding discussion. �

44

2.5 Complexity Results

At this time, there is no algorithm that solves general mdps in a number of arithmetic

operations polynomial in jSj and jAj (i.e., no known algorithm is strongly polynomial).

Using linear programming, however, the problem can be solved in a number of opera-

tions polynomial in jSj, jAj, and B, where B measures the number of bits needed to

write down the transitions, rewards, and discount factor.

Papadimitriou and Tsitsiklis [116] analyzed the computational complexity of mdps.

They showed that, under discounted, average-reward, and polynomial-horizon criteria,

the problem is P-complete. This means that, although it is solvable in polynomial time,

if an e�cient parallel algorithm were available, then all problems in P would be solvable

e�ciently in parallel|an outcome considered unlikely by researchers in the �eld. Since

the linear-programming problem is also P-complete, this result implies that in terms

of parallelizability, mdps and linear programs are equivalent: a fast parallel algorithm

for one would yield a fast parallel algorithm for the other. It is not known whether the

two problems are equivalent with respect to strong polynomiality: although it is clear

that a strongly polynomial algorithm for solving linear programs would yield one for

mdps, the converse is still open.

Papadimitriou and Tsitsiklis also show that for deterministic mdps, optimal value

functions can be found e�ciently in parallel using a parallel implementation of the al-

gorithm in Table 2.6 (i.e., the problem is in NC). This algorithm is strongly polynomial,

suggesting that the presence of stochastic transitions makes mdps harder to solve, in

general.

2.6 Reinforcement Learning in mdps

In the previous sections, I explained how to �nd the optimal policy for an mdp given

a complete description of its states, actions, rewards, and transitions. Now I describe

two reinforcement-learning algorithms for �nding optimal policies from experience. Al-

though many other reinforcement-learning algorithms have been invented, I present

these two algorithms because they are easily extended to work for decision-making

models in later chapters.

45

2.6.1 Q-learning

Q-learning [173] can be viewed as a sampled, asynchronous method for estimating

the optimal state-action values, or Q function, for an unknown mdp. The most basic

version of Q-learning keeps a table of values, Q[s; a], with an entry for each state/action

pair. The entry Q[s; a] is an estimate for the corresponding component of the optimal

Q function, de�ned by

Q�(s; a) = R(s; a) + �
X
s0

T (s; a; s0)V �(s0);

where V � is the optimal value function. The agent uses the experience it receives to

improve its estimate, blending new information into its prior experience according to

a learning rate 0 < � < 1.

The Q function is an ideal data structure for reinforcement learning. Recall that

there are three fundamental functions in the value-iteration algorithm: the value func-

tion V , the Q function Q, and the policy �. Given a model in the form of transition and

reward matrices, any of these functions can be computed from any one of the others.

Without access to T and R, however, only the Q function can be used to reconstruct

the other two: V (s) = maxaQ(s; a) and �(s) = argmaxaQ(s; a). In addition, the Q

function is not di�cult to estimate from experience.

The experience available to a reinforcement-learning agent in a Markov decision

process environment can be summarized by a sequence of experience tuples hs; a; r; s0i.
An experience tuple is a snapshot of a single transition: the agent starts in state s,

takes action a, receives reward r and ends up in state s0.

Given an experience tuple hs; a; r; s0i, the Q-learning rule is

Q[s; a] := (1� �)Q[s; a] + �

�
r + �max

a0
Q[s0; a0]

�
:

This creates a new estimate of Q�(s; a) by adding the immediate reward to the current

discounted estimate of V (s0). Because of the way r and s0 are chosen, the average

value of this new estimate is exactly R(s; a)+ �
P

s0 T (s; a; s
0)V (s0). In value iteration,

we would assign this value directly to Q[s; a]. However, to get an accurate estimate,

we need to average together many independent samples. The learning rate � blends

our present estimate with our previous estimates to produce a best guess at Q(s; a); it

needs to be decreased slowly for the Q values to converge to Q� [174, 163, 69].

In Section 3.6.3, I prove that a generalization of Q-learning converges to the optimal

Q function, under certain idealized assumptions.

46

2.6.2 Model-based Reinforcement Learning

Using Q-learning, it is possible to learn an optimal policy without knowing T or R

beforehand, and without even learning these functions en route. Although it guaranteed

to �nd optimal policies eventually and uses very little computation time per experience,

Q-learning makes extremely ine�cient use of the data it gathers; it often requires a

great deal of experience to achieve good performance. In model-based reinforcement

learning, a model of the environment is unknown in advance, but is learned from

experience. The learned model can then be used to �nd a good policy. This approach

is especially important in applications in which computation is cheap and real-world

experience costly.

For mdps in which the state and action spaces are small enough, the learned model

can be represented by three arrays, a count C[s; a] of the number of times action a has

been chosen in state s, a count Tc[s; a; s0] of the number of times this has resulted in

a transition to state s0, and a sum Rs[s; a] of the resulting reward. Given experience

tuple hs; a; r; s0i, the arrays are updated by

Tc[s; a; s
0] := Tc[s; a; s

0] + 1

Rs[s; a] := Rs[s; a] + r

C[s; a] := C[s; a] + 1:

Given these statistics, we estimate

~T (s; a; s0) =
Tc[s; a; s0]

C[s; a]
and ~R(s; a) =

Rs[s; a]

C[s; a]
:

The estimated model can be used in any of several ways to �nd a good policy.

In the certainty-equivalence approach [86], an optimal policy for the estimated model

is found at each step. This makes maximal use of the available data at the cost

of high computational overhead. In the DYNA [155], prioritized-sweeping [111] and

Queue-dyna [119] approaches, an estimated value function is maintained and updated

according to

V [s] := max
a

~R(s; a) + �

X
s0

~T(s; a; s0)V [s0]

!
:

Because the agent has access to a model of the environment, updates can be performed

at any state at any time.

47

The convergence of model-based reinforcement learning for mdps was shown by

Gullapalli and Barto [59]. In Section 3.6.4, I present a related theorem for a broader

class of models.

Reinforcement learning is an exciting area and new algorithms and studies are

appearing every day; this section barely scratches the surface of some of the more basic

concepts. For more information, see the survey by Kaelbling, Littman, and Moore [74].

2.7 Open Problems

Markov decision processes have been studied intensely for almost 40 years. Even so,

there are several important questions that remain unanswered.

� Is there a \clean" polynomial-time algorithm for solving mdps, that is, one that

is not dependent on general linear programming? This question was raised by

Papadimitriou and Tsitsiklis [116] several years ago, and is still open.

� What is the worst-case time complexity of policy iteration? We have shown that

it runs in polynomial time for a �xed discount factor, but is there a polynomial

upper bound on its run time for general mdps? Is there an exponential lower

bound? What is its complexity for deterministic mdps?

� Which of the standard algorithms is most e�cient for solving the mdps encoun-

tered in practice? Authorities appear to disagree as to whether policy itera-

tion [126] or value iteration [44] is most e�ective. Recent empirical compar-

isons [133] appear to favor modi�ed policy iteration. In the likely event that the

best choice of algorithm depends on the structure of the mdp being solved, are

there useful guidelines for choosing the best solution method given the problem?

� Is there a computable optimal or near-optimal strategy for exploring an unknown

mdp? There is an elegant theory of optimal exploration via allocation indices for

single-state mdps [56]; is there some way of extending this theory to general mdps?

Or is it possible to show that the problem is somehow inherently intractable?

� There are representations for rewards and transitions that make it possible to

specify compact models for mdps with exponential-size state spaces [87, 21, 24,

113]. What are the complexity issues? It is probably computationally intractable

48

to �nd �-optimal policies using compact representations, but are there useful

subclasses of mdps that can be solved e�ciently? This question is explored by

Boutilier, Dean, and Hanks [23].

� The dual linear-programming formulation of mdps has a ow-like interpretation.

Algorithms for �nding min-cost ows have been studied intensively over the last

few years. Are there any ow-like algorithms that can be tailored to solve mdps

e�ciently?

These questions are interesting in their own right, but take on even more importance

in the context of the more advanced models addressed in later chapters. Resolution

of some of these open questions would shed light on questions that arise in the more

complex frameworks as well.

2.8 Related Work

In this chapter, I gave an overview of the �elds of Markov decision processes and

reinforcement learning. The mdp literature is quite substantial, having been gathering

material for nearly 40 years. The early work of Bellman [13] and Howard [68] put

the �eld on a �rm footing. Later work by Bertsekas [15], Denardo [44], Derman [46],

Puterman [126], and others, synthesized the existing material and added new results.

Puterman's and Bertsekas' books [126, 16] give in-depth summaries of related work in

this �eld.

Fundamental work in reinforcement learning and its relation to Markov decision

processes and dynamic programming includes Sutton's thesis [153], which introduced

temporal di�erence (TD) methods, of which Q-learning is a special case; Watkins'

thesis [173], which developed Q-learning; and important surveys and syntheses by

Barto [10], Singh [145], and others. A survey by Kaelbling, Littman, and Moore [74]

gives a sense of the scope of the �eld.

Results on the convergence of reinforcement-learning methods in mdps, most par-

ticularly Q-learning, are primarily due to Watkins and Dayan [174], Tsitsiklis [163],

and Jaakkola, Jordan, and Singh [69]. The latter two papers brought out the connec-

tion between Q-learning and work in the �eld of stochastic approximation. John [71]

gave a critique of the use of the asymptotic optimal policy as a target for learning.

49

The convergence of model-based reinforcement-learning methods was studied by Gul-

lapalli and Barto [59]. Hern�andez-Lerma and Marcus [64] examined the closely related

problem of �nding an optimal policy for an mdp with a model speci�ed by unknown

parameters; they showed how to build an asymptotically optimal non-stationary policy

for such models.

The linear programming formulation of mdps was identi�ed by D'Epenoux [45]

and others (see Ho�man and Karp's paper [67] for a list). Kushner and Kleinman [88]

explored reasons for preferring the dual formulation for some applications. Denardo [44]

explicitly linked policy iteration to linear programming. Schrijver [140] provides an

excellent description of the theory and complexity of linear programming.

The section on the complexity of algorithms for solving mdps is based on the work

of Condon [37], Melekopoglou and Condon [107], and Tseng [162]. Condon's interest

was in a variation of the alternating Markov game model described in Chapter 4, but

she recognized that many of the bounds applied to analogous mdp algorithms as well.

Papadimitriou and Tsitsiklis [116] initiated exploration into the computational com-

plexity of solving mdps. Their work identi�ed deterministic models as being easier to

solve, from a worst-case complexity point of view, than their stochastic counterparts.

2.9 Contributions

In this chapter I presented many of the important results concerning mdps. I pro-

vided a new analysis of policy iteration based on earlier work by Puterman [126] and

Tseng [162] which resulted in a new upper-bound analysis and new insight into the con-

nection between policy improvement and value iteration. I extended Melekopoglou and

Condon's [107] exponential lower bound for simple policy iteration to discounted mdps,

and used this result in a summary of complexity results. I derived a fast sequential

algorithm for deterministic mdps using the closed-semiring framework.

Overall, there has been extensive work on Markov decision processes by researchers

in operations research, dynamic programming, complexity theory, and algorithm anal-

ysis. Existing theory and algorithms have been applied quite successfully to real-world

problems in a wide array of domains (see Chapter 1 of Puterman's book [126] for a

summary). In the next chapter, I will show that many of the basic results concerning

mdps hold for a much broader class of models. It is an open question whether the

real-world success of mdps will be replicated for any of the other models in this class.

Chapter 3

Generalized Markov Decision

Processes

Portions of this chapter have appeared in earlier papers: \A general-

ized reinforcement-learning model: Convergence and applications" [97]

with Szepesv�ari, and \Generalized Markov decision processes: Dynamic-

programming and reinforcement-learning algorithms" [158] with Szepesv�ari.

The Markov decision process model, discussed in the previous chapter, has a number of

important properties that make it easy to work with computationally. In this chapter,

I introduce a new class of models that includes mdps as a special case, and show that

many of the properties of mdps are shared by this more general class. The results are

presented in an abstract framework that make them easy to generalize to other models.

3.1 Introduction

This chapter builds on the ideas from the previous chapter, generalizing them wherever

possible. The model I develop here, the generalized Markov decision process includes all

the models discussed in the thesis: mdps, alternating Markov games, Markov games,

and information-state mdps, as well as several less-studied models. The generalized

mdp model applies to several di�erent optimality objectives: �nite-horizon, all-policies-

proper, expected discounted reward, and risk-sensitive discounted reward, to name a

few.

50

51

The main result is that all these models have a notion of an optimal value func-

tion and an optimal policy, and that a general form of the value-iteration algorithm

converges to the optimal value function. I de�ne a notion of a greedy policy with

respect to a value function for generalized mdps and show how the Bellman error mag-

nitude of the value function can be used to bound the suboptimality of this policy. For

�nite-state-space models with deterministic greedy policies, I show that value iteration

identi�es an optimal policy in a pseudopolynomial number of iterations.

I de�ne a version of policy iteration for generalized mdps, and show that the al-

gorithm converges to an optimal policy; however, it is only useful for a subclass of

generalized mdps that obey additional properties. For a di�erent subclass of gener-

alized mdps, I show that a form of Q-learning converges to the optimal Q function,

under the appropriate conditions. I also show that a simple model-based reinforcement-

learning algorithm converges to an optimal value function for all �nite-state generalized

mdps.

3.2 Generalized Markov Decision Processes

A generalized Markov decision process is a tuple hX ;U ; T; R;N;N;
L
; �i, where the

fundamental quantities are a set of states X (perhaps in�nite), a �nite set of actions

U , a reward function R : X � U ! R, a transition function T : X � U ! �(X), a
next-state function N mapping X � U to �nite subsets of X , a discount factor �, a

summary operator
L

that de�nes the value of transitions based on the value of the

successor states, and a summary operator
N

that de�nes the value of a state based on

the values of all state-action pairs.

The de�ning set of quantities for a generalized mdp is analogous to the de�ning set

of quantities for an mdp, with a few noteworthy exceptions. First, the state space X
can be in�nite. To prevent this from making the transition function unwieldy, every

state-action pair (x; u) can only lead to a �nite set of next statesN(x; u). The transition

probabilities for taking action u in state x are zero for all states except those in the set

N(x; u).

The most dramatic di�erence between generalized mdps and mdps is the appearance

of the summary operators,
N

and
L
. I will de�ne them precisely; however, they can

be motivated by de�ning the appropriate operators for the mdp model.

52

The equations de�ning the optimal value function in a mdp are, for each state s,

V �(s) = max
a

R(s; a) + �

X
s0

T (s; a; s0)V �(s0)

!
:

This corresponds to the fact that an optimal policy in an mdp maximizes the expected

reward. In generalized mdps, the operator
N

takes the place of the max over actions

and the operator
L

takes the place of the expectation over next states. If we de�ne

M
s0

(s;a)
g(s0) =

X
s0

T (s; a; s0)g(s0);

and we de�ne O
a

(s)
f(s; a) = max

a
f(s; a);

then we can rewrite the equations for the optimal value function in an mdp as

V �(s) =
O
a

(s)

R(s; a) + �

M
s0

(s;a)
V �(s0)

!
: (3.1)

The essence of the generalized Markov decision process framework is that whenever

the operators
L

and
N

satisfy certain non-expansion properties, then Equation 3.1 is

a characterization of the unique optimal value function. Both
L

and
N

are summary

operators :
L

summarizes the value of a �nite set of next states for each state-action

pair, and
N

summarizes the value of a �nite set of actions for each state. Not all possible

de�nitions of
L

and
N

can be used to de�ne a generalized mdps; they must both be

non-expansions for all states and state-action pairs, respectively. In the generalized

model, the value of a state is de�ned by the sum of rewards along a trajectory; however,

we allow other types of summaries to take the place of maximization and expectation

in the mdp model.

For a summary operator
J

to be a non-expansion, it must satisfy two constraints.

Given functions h and h0 over a �nite set I ,

min
i2I

h(i) �
K
i2I

h(i) � max
i2I

h(i) (3.2)

and �����
K
i2I

h(i)�
K
i2I

h0(i)

����� � max
i2I

jh(i)� h0(i)j (3.3)

The �rst condition states that the summary of a function must lie between the largest

and smallest value of the function. The second condition states that the di�erence

53

model/example reference
N

u
(x)f(x; u)

L
x0
(x;u)g(x0)

disc. exp. mdp [174] maxu f(x; u)
P

x0 T (x; u; x
0)g(x0)

cost-based mdp [29] minu f(x; u)
P

x0 T (x; u; x
0)g(x0)

evaluating policy � [154]
P

u �(x; u)f(x; u)
P

u0 T (x; u; x
0)g(x0)

alt. Markov game [26] maxu or minu f(x; u)
P

x0 T (x; u; x
0)g(x0)

risk-sensitive mdp [62] maxu f(x; u) minx02N(x;u) g(x
0)

evaluating risk-sensitive �
P

u �(x; u)f(x; u) minx02N(x;u) g(x
0)

exploration-sens. mdp [71] max�2P0
P

u �(x; u)f(�)
P

x0 T (x; u; x
0)g(x0)

Markov games [90] see text see text
information-state mdp [117] maxu f(x; u)

P
x02N(x;u) T (x; u; x

0)g(x0)

Table 3.1: Examples of generalized Markov decision processes and their summary op-
erators.

between the summaries of two di�erent functions must be no larger than the largest

di�erence between the functions.

Section C.1 explores di�erent summary operators and proves that a broad class of

operators are non-expansions. For this chapter, the most important summary operators

are expectation, max, min, and the minimax operator used in Markov games. Other

interesting examples include operators for computing the median, midpoint, and mean

of a set of values.

It follows from the de�nitions above that �nite-state mdps, the continuous state-

space mdps resulting from pomdps, and Markov games all satisfy the conditions of

being a generalized mdp. Whatever we prove about generalized mdps will apply to

all of these models. In addition, several other models are in this class, some of which

are not typically thought of as being related to mdps. Table 3.1 lists some sample

generalized mdps and their summary operators. In contrast to the previous chapter,

some generalized mdps have optimal policies that are stochastic. Throughout this

chapter, the notation �(x; u) is used to signify the probability that stochastic policy �

chooses action u from state x.

3.2.1 Acting Optimally

In this section I develop a notion of optimal value functions, Q functions, and policies for

generalized mdps. I casually use terms like \value function", \contraction mapping,"

and \�xed-point theorem" without formally developing these concepts. Discussion of

the theory behind contraction mappings and the space of value functions is given in

Puterman's book [126] (Appendix C and Section 6.2.2). This background is probably

54

not necessary for an understanding of the results presented here; however, it is critical

for a formal treatment of this topic.

To begin, de�ne the dynamic-programming operator H for a generalized mdp, a

function that takes a value function and creates a new value function, as

[HV](x) =
O
u

(x)

R(x; u) + �

M
x0

(x;u)
V (x0)

!
: (3.4)

The idea here is that
L

x0
(x;u)V (x0) is the value of the state resulting from taking action

u from state x, R(x; u)+ �
L

x0
(x;u)V (x0) is the value obtained by taking action u from

state x, and [HV](x) is the value of state x as obtained by one-step lookahead. For

mdps, H is the mathematical instantiation of a single step of value iteration. We can

also de�ne a dynamic-programming operator K that acts on Q functions,

[KQ](x; u) = R(x; u) + �
M
x0

(x;u)O
u0

(x0)
Q(x0; u0):

To simplify the presentation of some of the later results, we sometimes treat
N

andL
as mapping operators. To be precise, for Q function Q and value function V ,

[
O

Q](x) =
O
u2U

(x)
Q(x; u);

and

[
M

V](x; u) =
M

x02N(x;u)

(x;u)
V (x0):

Using this notation, and the obvious extension of the de�nitions of addition and scalar

multiplication, we can express [HV] =
N
(R+ �

L
V) and [KQ] = R+ �(

LN
Q):

In what follows, it is helpful to establish a notion of distance between two value

functions. For value functions V1 and V2, we de�ne

kV1 � V2k = sup
x
jV1(x)� V2(x)j;

where k � k is a distance function known as the L1 norm or max norm. Intuitively,

to �nd the distance between two value functions, we �nd the state where they di�er

the most and call the di�erence between values at that state the distance between the

value functions. We can extend the notion of distance to cover Q functions as well. If

Q1 and Q2 are Q functions,

kQ1 �Q2k = sup
x
max
u

jQ1(x; u)�Q2(x; u)j:

55

The non-expansion properties of
N

and
L

lead to a convenient property of these

operators with regard to distances.

Lemma 3.1 Let Q1 and Q2 be Q functions and V1 and V2 be value functions. Then

kNQ1 �NQ2k � kQ1 � Q2k and kLV1 �LV2k � kV1 � V2k:
Proof: Using the fact that

N
and

L
are non-expansions, and Condition 3.3 for non-

expansions, we have

k
O

Q1 �
O

Q2k = sup
x
j[
O

Q1](x)� [
O

Q2](x)j
� sup

x
max
u

jQ1(x; u)� Q2(x; u)j = kQ1 � Q2k;

and

k
M

V1 �
M

V2k = sup
x

max
u

j[
M

V1](x; u)� [
M

V2](x; u)j
� sup

x
max
u

max
x02N(x;u)

jV1(x0)� V2(x
0)j

� sup
x0
jV1(x0)� V2(x

0)j = kV1 � V2k:

�

It is this distance-based bound that will be most convenient for proving results

about the dynamic-programming operators H and K. Here is the �rst.

Lemma 3.2 The H and K operators are contraction mappings if � < 1. In particular,

if V1 and V2 are value functions and Q1 and Q2 are Q functions, kHV1 � HV2k �
�kV1 � V2k, and kKQ1 �KQ2k � �kQ1 � Q2k.

Proof: We address the H operator �rst. By Lemma 3.1 and the de�nition of H , we

have

kHV1�HV2k = k
O

(R+ �
M

V1)�
O

(R+ �
M

V2)k
� k(R+ �

M
V1)� (R+ �

M
V2)k

� �k
M

V1 �
M

V2k
� �kV1 � V2k:

Lemma 3.1 and the de�nition of K give us

kKQ1 �KQ2k = �k
O

[
M

Q1]�
O

[
M

Q2]k
� �k

M
Q1 �

M
Q2k

� �kQ1 �Q2k:

56

�

Because the operator H is guaranteed to bring two value functions closer together,

and the operator K is guaranteed to bring two Q functions closer together, they are

called contraction mappings .

A weighted max norm is de�ned by kV1�V2kw = supx jV1(x)�V2(x)j=w(x) for value
functions and kQ1�Q2kw = supxmaxu jQ1(x; u)�Q2(x; u)j=w(x) for Q functions. The

introduction of the weighting function w makes it possible for states to contribute dif-

ferently to the max norm; states with larger weights count less than states with smaller

weights. Operator H is a contraction mapping with respect to some weighted max

norm w if and only if kHV1�HV2kw � �wkV1�V2kw for some �w < 1. In mdps, even

if the discount factor is 1, if all policies are guaranteed to reach a zero-cost absorbing

state (the all-policies-proper case), then the dynamic-programming operator H is a

contraction mapping with respect to some weighted max norm [18, 162]. Section C.2

provides a new proof of this fact in the context of �nite-state generalized mdps.

Lemma 3.3 For any generalized mdp in which

M
x0

(x;u)
g(x0) =

X
x0

T (x; u; x0)g(x0);

if � = 1 but all policies are guaranteed to reach a zero-reward absorbing state (the

all-policies-proper case), then the H and K operators are contraction mappings with

respect to some weighted max norm.

Proof: The theorem follows from the preceding discussion. �

Because all the results in this chapter are stated in terms of norms, they apply to

any update rule as long as the dynamic-programming operator under consideration is

a contraction mapping; in particular, they cover generalized mdps with either � < 1

or the all-policies-proper condition. In the latter case, I abuse notation and use � to

signify the constant of contraction in the appropriate weighted max norm (i.e., �w).

The fact that the optimal value functions are well de�ned does not imply that they are

meaningful; that is, it may be the case that the optimal value function is not the same

as the value function for some appropriately de�ned optimal policy. The results in this

section apply to value functions de�ned by Bellman equations; to relate the Bellman

equations to a notion of optimality, it is necessary to put forth arguments such as are

given in Puterman's book [126].

57

Theorem 3.1 For any generalized Markov decision process, if � < 1 then there is a

unique V �, called the optimal value function, such that V � = HV �; a unique Q�, called

the optimal Q function, such that Q� = KQ�; and an optimal (possibly stochastic)

policy, ��, such that V �(x) =
P

u �
�(x; u)Q�(x; u). This is also true if � = 1, the

all-policies-proper condition holds, and an expected value criterion is used.

Proof: Combining Lemmas 3.2 and 3.3, the H and K operators for the generalized

mdp are contraction mappings with respect to some weighted max norm. The existence

and uniqueness of V � and Q� follow directly from the Banach �xed-point theorem.

We can de�ne the optimal value function and the optimal Q function in terms of

each other:

V � =
O

Q�; (3.5)

and Q� = R+ �
L

V �. These equations can be shown to be valid from the de�nitions

of K and H and the uniqueness of Q� and V �.

By Condition 3.2 of
N

and Equation 3.5,

min
u

Q�(x; u) � V �(x) � max
u

Q�(x; u):

Therefore, it is possible to de�ne a stochastic policy �� such that

V �(x) =
X
u

��(x; u)Q�(x; u):

�

The use of the word optimal is somewhat strange since V � need not be the largest

or smallest value function in any sense; it is simply the �xed point of the dynamic-

programming operator H . This terminology comes from the Markov decision process

model, where V � is the largest value function of all policies and is retained for consis-

tency.

3.2.2 Exploration-sensitive mdps

One interesting use of generalized mdps is as a way to formalize John's [71] exploration-

sensitive learning algorithm. John considered the implications of insisting that agents

simultaneously act to maximize their reward and explore their environment; he found

that better performance can be achieved if a policy incorporates the condition of per-

sistent exploration. In John's formulation, the agent is forced to adopt a policy from

58

a restricted set; in one example, the agent must choose a stochastic stationary policy

that selects actions at random 5% of the time. The random actions ensure that the

agent will experience all actions in all states in�nitely often; therefore, the agent will be

able to detect if its model of the environment is wrong, or if the environment changes,

or the e�ects of any non-Markovian dependencies that may exist.

John's approach requires that the de�nition of optimality be changed to reect the

restriction on policies. The optimal value function is given by V �(x) = sup�2P V
�(x),

where P is the set of permitted stationary policies, and the associated Bellman equa-

tions are

V �(x) = sup
�2P

X
u

�(x; u)

R(x; u) + �

X
x0

T (x; u; x0)V �(x0)

!
;

which corresponds to a generalized mdpmodel with
L

x0
(x;u)g(x0) =

P
x0 P (x; u; x

0)g(x0)

and
N

u
(x)f(x; u) = sup�2P

P
u �(x; u)f(x; u). Because �(x; �) is a probability distri-

bution for any given state x,
N

is a non-expansion and, thus, the model can properly

be considered a generalized mdp.1

3.3 Algorithms for Solving Generalized mdps

The results of the previous section show that any generalized mdp has an optimal value

function, Q function, and policy, and that these quantities can be de�ned in terms of

each other. In this section, I discuss methods for �nding these quantities.

3.3.1 Value Iteration

The method of value iteration, or successive approximations [13, 143], is a way of

iteratively computing arbitrarily good approximations to the optimal value function

V �.

A single step of the process starts with an estimate, Vt�1, of the optimal value

function, and produces a better estimate Vt = HVt�1. I will show that applying H

repeatedly causes the value function to become as close as desired to optimal.

Lemma 3.4 Let Vt be the value function produced in the tth iteration of value iteration.

After t steps of value iteration on a generalized mdp, kVt � V �k � �tkV0 � V �k.
1One additional condition is that the set P be compositional; if a separate policy is selected for each

action, the combined policy must still be in P.

59

Proof: We proceed by induction. The base case, kV0 � V �k � �0kV0 � V �k, is self
evident. By the inductive hypothesis we see

kVt � V �k = kHVt�1 �HV �k � �kVt�1 � V �k � ��t�1kV0 � V �k = �tkV0 � V �k:

�

In some circumstances, it is helpful to state this result without reference to the

details of the initial value function V0. LetM = supxmaxu jR(x; u)j= kRk. If the agent
received a reward of M on every step, its total expected reward would be

P1
i=0 �

iM =

M=(1��). The same result holds for the all-policies-proper case, although the reasoning
is a bit di�erent [162]. Thus, the zero value function, V0 = 0 cannot di�er from the

optimal value function by more than M=(1 � �) at any state. This also implies that

the value function for any policy cannot di�er from the optimal value function by more

than 2M=(1 � �) at any state. This allows us to restate Lemma 3.4 in a form that

bounds the number of iterations needed to �nd a �-optimal value function.

Theorem 3.2 Let V0 be any value function such that jV0(x)j � M=(1 � �) for all

x 2 X , and let

t� =

&
log(M) + log(1�) + log(1

1��)

log(1�)

'
:

Running value iteration for t� or more steps results in a value function V such that

kV � V �k � �.

Proof: This follows from simple algebraic manipulation of the bounds given in this

section. �

3.3.2 Computing Near-optimal Policies

In this section, we relate arbitrary generalized mdps to the speci�c generalized mdp

resulting from using the summary operator
N�;

u
(x)f(x; u) =

P
u �(x; u)f(x; u), where

� is some stationary probabilistic policy.

Condition 3.2 can be interpreted as saying that every time the
N

operator is applied,

it must be equivalent to applying
N� for some probabilistic policy �. Let V be some

value function. We de�ne the myopic policy with respect to V to be any � : X ! �(U)
such that

[HV](x) =
X
u

�(x; u)
�
R(x; u) + �[

M
V](x; u)

�
:

60

The existence of such a � follows from the de�nition of H given in Equation 3.4 and

Condition 3.2; it need not be unique. Myopic policies are simply greedy policies,

generalized to models in which reward is not maximized.

For a policy �, de�ne H� to be the dynamic-programming operator resulting from

the generalized mdp that shares its state space, action space, transition function, reward

function, next state function,
L

operator, and discount factor with the generalized mdp

in question, but uses
N� in place of

N
.

Because
N� is a non-expansion, the new model is itself a generalized mdp. There-

fore, we can de�ne V � to be the unique value function satisfying V � = H�V � , which

we call the value function for policy �.

For mdps, the distance between the value function for any myopic policy with

respect to V and the optimal value function can be bounded as a function of the

Bellman error magnitude, de�ned as kV �HV k; the result can be shown to apply to

generalized mdps, after a few basic results are established.

Lemma 3.5 Let V be a value function, V � be the value function for the myopic policy

with respect to V , and V � be the optimal value function. Let � be the Bellman error

magnitude for V , � = kV �HV k. Then, kV �V �k � �=(1��) and kV �V �k � �=(1��).

Proof: This result follows easily from the contraction property of H and the triangle

inequality , which states that the distance from a to c can not be larger than the distance

from a to b to c (for any b).

First, note that kV � V �k � kV � HV k + kHV � V �k = kV � HV k + kH�V �
H�V �k � � + �kV � V �k. Grouping like terms gives kV � V �k � �=(1� �).

Similarly, kV � V �k � kV � HV k+ kHV � V �k = kV �HV k + kHV �HV �k �
� + �kV � V �k. Grouping like terms gives kV � V �k � �=(1� �). �

By the de�nitions of H and �, HV =
N
(R + �

L
V) =

N�(R + �
L

V) and

H�V � =
N�(R + �

L
V �). We can use these equations to help bound the distance

between V � and the V � in terms of �, the Bellman error magnitude.

Theorem 3.3 Let V be a value function, V � be the value function for the myopic

policy with respect to V , and V � be the optimal value function. Let � be the Bellman

error magnitude for V , � = kV �HV k. Then, kHV �V �k � ��=(1��), kHV �V �k �
��=(1� �), and kV � � V �k � 2��=(1� �).

61

Proof: The third statement follows from an application of the triangle inequality to

the �rst two statements, which we prove now. First,

kHV � V �k = kH�V �H�V �k � �kV � V �k � ��=(1� �):

Similarly,

kHV � V �k = kHV �HV �k � �kV � V �k � ��=(1� �);

completing the proof. �

This result is concerned with values and not immediate rewards, so the total reward

earned by a myopic policy is not too far from optimal. The signi�cance of the result is

that a value-iteration algorithm that stops when the Bellman error magnitude is less

than or equal to � � 0 will produce a good policy with respect to �.

3.3.3 Policy Iteration

In this section, I de�ne a generalized version of policy iteration. Applied to mdps, it is

equivalent to Howard's policy-iteration algorithm [68] and applied to Markov games,

it is equivalent to Ho�man and Karp's policy-iteration algorithm [67].

Unlike value iteration, the convergence of policy iteration seems to require that

value is maximized with respect to some set of possible actions. To capture this, we

will restrict our attention to generalized mdps in which
N

can be written

[
O

Q](x) = max
�2R

[
O�

Q](x) (3.6)

where R is a compact set and
N� is a non-expansion operator for all � 2 R. The idea

is that R is some set of parameters or choices from which the best choice is selected.

Note that any operator can be written this way by de�ning
N� =

N
; the choice of

parameterization ultimately determines the e�ciency of the resulting policy-iteration

algorithm. A generalized mdp satisfying Equation 3.6 and the monotonicity property

discussed in Section 3.4.2 is called a maximizing generalized mdp.

The term �-myopic policy refers to a mapping ! : X ! R such that

[
O!(x)

Q](x) = max
�2R

[
O�

Q](x);

for all x 2 X . The value function for a �-myopic policy !, V !, is de�ned as the optimal

value function for the generalized mdp where
N!(x) is used as the summary operator

in state x.

62

We characterize policy iteration as follows. Start with a value function V and

compute its �-myopic policy ! and !'s value function V !. If kV � V !k � �, terminate

with V as an approximation of the optimal value function. Otherwise, start over, after

assigning V := V ! .

We can apply this algorithm to mdps by taking R to be the set of actions and
N�

to select the Q value for the action corresponding to �:

[
O

Q](x) = max
�2R

[
O�

Q](x) = max
u2U

Q(x; u):

Because computing V ! is equivalent to evaluating a �xed policy and can be solved by

Gaussian elimination, the resulting policy-iteration algorithm (which is just standard

policy iteration) is useful. In Markov games, we take R to be the set of probability

distributions over agent actions and
N� to be a minimum over opponent actions of the

�-weighted expected Q value. As we will see in Chapter 5, computing V ! is equivalent

to solving an mdp, which is easier than �nding V � directly.

In Section 3.4.2, I argue that generalized policy iteration converges to an optimal

policy under particular restrictions on
N�.

3.4 Algorithmic Analysis

This section provides additional details on how value iteration performs on speci�c

classes of generalized mdps, and on the convergence of policy iteration.

3.4.1 Value Iteration

Although value iteration converges to the optimal value function (Lemma 3.4), and

the suboptimality of the myopic policies generated along the way can be bounded

(Theorem 3.3), it is not guaranteed to identify the optimal policy in a �nite number of

iterations.

Let Vt be the value function produced on the tth iteration of value iteration. This

section shows that, for a certain class of �nite-state-space generalized mdps, the greedy

policy with respect to Vt� is optimal, for a �nite t�.

Let X be �nite, and let B be a problem-speci�c parameter, for example, a bound

on the number of bits needed to represent components of T and R. We say that

a quantity is polynomially bounded if there is some polynomial in jX j, jUj, B, and
log(1=(1� �)) that grows asymptotically faster than that quantity. We say a quantity

63

is pseudopolynomially bounded if it is polynomially bounded with respect to jX j, jUj,
B, and 1=(1� �)

We know that
N

and
L

have the property that for all Q and V , [
N

Q](x) =P
u �(x; u)Q(x; u) and [

L
V](x; u) =

P
x02N(x;u) �(x; u; x

0)V (x0) for some probability

distributions � and � . If, for all Q and V , � and � can be expressed using only rational

numbers with a polynomially bounded number of bits, then we say that
N

and
L

are

polynomially expressible.

There are a few important polynomially expressible operators: maximum, mini-

mum, selection according to a deterministic policy, and expectation according to a set

of polynomially bounded probabilities. The operators in the risk-sensitive mdp model

described by Heger [62] are polynomially expressible. The next theorem tells us that

value iteration can be used to �nd optimal policies in pseudopolynomial time for models

using these operators.

Theorem 3.4 If X is �nite, the number of bits needed to express R(x; u) for all x

and u is polynomially bounded, and
N

and
L

are polynomially expressible, then any

myopic policy with respect to Vt� is optimal, for some pseudopolynomially bounded t
�.

Proof: Since
N

and
L

are polynomially expressible, there must be some optimal policy

�� and a function �� such that [
N

Q�](x) =
P

u �
�(x; u)Q�(x; u) and [

L
V �](x; u) =P

x02N(x;u) �
�(x; u; x0)V �(x0), where the number of bits needed to express �� and �� are

polynomially bounded.

By an argument similar to that in the proof of Theorem 2.1, this implies that there

is some polynomially bounded number B� such that the number of bits needed to

express each component of V � and Q� is bounded by B�.

The rest of the argument parallels that in Lemma 2.1, using the contraction-

mapping property of H and Theorem 3.3. The basic idea is that, eventually, Vt is

so close to V �, that the amount of reward lost by following a myopic policy with re-

spect to V t is smaller than the precision needed to specify V �. At that point, any

myopic policy must be optimal. �

3.4.2 Policy Iteration

In this section, I argue that the policy-iteration algorithm de�ned in Section 3.3.3

converges to the optimal value function. To do this, we will need to place an additional

64

monotonicity condition on the associated summary operators.

Consider a maximizing generalized mdp in which the optimal value function is

de�ned by

V �(x) =
O
u

(x)

R(x; u) + �

M
x0

(x;u)
V �(x0)

!

and O
u

(x)
f(x; u) = max

�2R

O
u

�;(x)
f(x; u)

for some compact set R. Assume L and
N� are non-expansions for all � 2 R. Theo-

rem 3.1 gives conditions under which V � is well de�ned. Further assume that
L

andN� obey an additional monotonicity condition: if g(x0) � g0(x0), then

M
x0

(x;u)
g(x0) �

M
x0

(x;u)
g0(x0)

and similarly for
N�.

Not all non-expansion operators satisfy the monotonicity condition. However, all

the summary operators discussed in Section C.1, and therefore all the operators of

immediate interest, do satisfy this additional condition. The monotonicity of these

operators is proven in Section C.3.

The policy-iteration algorithm can be stated as follows. Let !0 be an arbitrary

function mapping X to R. At iteration t, let !t�1 be the �-myopic policy with respect

to V !t . Terminate when kV !t � V !t�1k is small enough.
To show that policy iteration converges, I appeal to two important results. The

�rst is that

V �(x) = max
!:X!R

V !(x);

meaning that the optimal value function dominates or equals the value functions for

all possible values of !. The second is a generalization of a result of Puterman [126]

that shows that the iterates of policy iteration are bounded below by the iterates of

value iteration. From these two facts, we can conclude that policy iteration converges

to the optimal value function, and furthermore, that its convergence is at least as fast

as the convergence of value iteration.

Theorem 3.5 Let

V �(x) = max
�2R

O
u

�;(x)

R(x; u) + �

M
x0

(x;u)
V �(x0)

!

65

and, for all ! : X ! R,

V !(x) =
O
u

!(x);(x;u)

R(x; u) + �

M
x0

(x;u)
V !(x0)

!

where
N� and

L
are non-expansions and monotonic. Then, for all x 2 X ,

V �(x) = max
!:X!R

V !(x):

Proof: This result is proven in Section C.4. �

Lemma 3.6 Let Ut be the iterates of value iteration and Vt be the iterates of policy

iteration, starting from the same initial value function. For all t and x 2 X , Ut(x) �
Vt(x) � V �(x).

Proof: The proof is Section C.4. �

Theorem 3.6 If X is �nite, the number of bits needed to express R(x; u) for all x

and u is polynomially bounded, and
N

and
L

are polynomially expressible, then policy

iteration converges in a pseudopolynomial number of steps.

Proof: The theorem follows from Lemma 3.6, which shows that policy iteration con-

verges no more slowly than value iteration, combined with Theorem 3.4, which shows

that value iteration converges in a pseudopolynomial number of iterations under the

conditions of the theorem. �

Stronger results are available on the convergence rate of policy iteration [125, 126]

that would lead to better complexity bounds than those of Theorem 3.6; however, these

theorems do not appear to yield useful bounds for mdps with �nite state and action

spaces. This is discussed in Section B.2.

It is worth noting that the implementation of policy evaluation in �nite-state-space

generalized mdps depends on the de�nition of
L
. When the expected-reward objective

is used, as it is in mdps, policy evaluation can be implemented using a linear-equation

solver. When
L

is maximization or minimization, as it is in some games or under a

risk-sensitive criterion, policy evaluation is equivalent to solving an mdp and can be

accomplished using linear programming (or policy iteration!).

66

3.5 Complexity Results

The di�culty of solving particular generalized mdps depends critically on the de�nitions

of
N

and
L

and whether X is �nite. I present complexity results for speci�c models

in other chapters.

3.6 Reinforcement Learning in Generalized mdps

In this section, I assume that the summary operators
N

and
L

are de�ned in terms

of the transition function T and the reward function R. If both T and R are known

in advance, the techniques I described earlier in this chapter can be used to compute

optimal or near-optimal policies. In this section, I describe how reinforcement-learning

algorithms can use experience to converge to optimal policies when T and R are not

known in advance.

Section 2.6 described two di�erent families of reinforcement-learning algorithms:

model-free (Q-learning), and model-based. My plan in this section is to introduce

a mathematical framework that captures algorithms from both of these classes, to

describe a new stochastic-approximation theorem that provides conditions under which

these algorithms converge, then to show how the general theorem can be applied to

prove the convergence of model-free and model-based reinforcement-learning algorithms

for generalized mdps.

A mathematically more general presentation of these results is available [97, 158];

the goal in this section is to present the results as intuitively as possible, yet in su�cient

generality and rigor to be useful in proving theorems presented in later chapters.

3.6.1 A Generalized Reinforcement-Learning Method

A wide variety of learning algorithms can be viewed in the following way. The algorithm

begins with an initial approximation V0 of the optimal value function V �. With each

new experience, an update rule is applied to the current approximation Vt to produce

a new approximation Vt+1. The update rule can change as a function of time or as a

function of the experience gathered.

The simplest update rule to analyze is the dynamic-programming operatorH , which

I discussed earlier in this chapter. To use H to compute V �, we de�ne Vt+1 = HVt; the

resulting algorithm is value iteration, and its convergence properties were discussed in

67

Section 3.3.1.

As an important step towards analyzing Q-learning-like update rules, we will con-

sider a learning rule that, in the limit, converges to HV for a �xed value function V .

We consider the family of �nite-state generalized mdps with no choice of action andL
x0
(x;u)g(x0) =

P
x0 T (x; u; x

0)g(x0), that is, models with an expected value criterion.

For this model, [HV](x) = R(x; u)+�
P

x0 T (x; u; x
0)V (x0), where u is the only possible

action. Q-learning, applied to this model, begins with an initial value function U0 and,

given experience tuple hxt; ut; x0t; rti at time t, de�nes

Ut+1(xt) = (1� �t(xt))Ut(xt) + �t(xt)
�
rt + �V (x0t)

�
;

and Ut+1(x) = Ut(x) for all x 6= xt. The idea behind the learning rule is that Ut(x)

contains an estimate of the value R(x; u) + �
P

x0 T (x; u; x
0)V (x0). If the learning rate

� is decayed properly, Ut converges to HV .

We can capture the learning rule in the form of an operator

Ht(U; V)(x) =

8<
: (1� �t(xt))U(x) + �t(xt)(rt + �V (x0t)); if x = xt

U(x); otherwise.

and de�ne

Ut+1 = Ht(Ut; V): (3.7)

Conditions for the convergence of Ut to HV are provided by classic stochastic-approx-

imation theory [130].

A more advanced reinforcement-learning problem is computing V � = HV �, the

�xed point of H , instead of the value of HV for a �xed value function. Consider the

natural learning algorithm that begins with a value function V0 and de�nes

Vt+1 = Ht(Vt; Vt); (3.8)

where Ht is as de�ned above. In a sense, this algorithm is computing HV , where V is

a moving target. It combines the simple learning algorithm in Equation 3.7 with value

iteration, and, as we will see shortly, converges to V �.

In what follows, we will use Ht(U; V) to stand for a generic learning rule; it is not

di�cult to express model-based reinforcement-learning algorithms and Q-learning-like

algorithms in this form. We will also see that there are very reasonable conditions

under which the learning rule captured by Equation 3.8 is guaranteed to converge to

V �.

68

3.6.2 A Stochastic-Approximation Theorem

The fundamental property that we will require of a sequence of operators Ht(U; V) is

that it can be used to approximate the value of HV by holding V �xed and iterating

on U ; this was illustrated in Equation 3.7. We say that Ht approximates H at V if

iteration on U converges to HV with probability 1 uniformly over X .
The following theorem shows that, under the proper conditions, we can use an

operator Ht to estimate the optimal value function V �; it is due to Szepesv�ari and

Littman [158].

Theorem 3.7 Let H be a contraction mapping with respect to a weighted max norm

with �xed point V �, and let Ht approximate H at V �. Let V0 be an arbitrary value

function, and de�ne Vt+1 = Ht(Vt; Vt). If there exist functions 0 � Ft(x) � 1 and

0 � Gt(x) � 1 satisfying the conditions below with probability one, then Vt converges

uniformly to V � with probability 1:

1. for all value functions U1 and U2 and all x 2 X ,

j(Ht(U1; V
�))(x)� (Ht(U2; V

�))(x)j � Gt(x)kU1 � U2k;

2. for all value functions U and V , and all x 2 X ,

j(Ht(U; V
�))(x)� (Ht(U; V))(x)j � Ft(x)kV � � V k;

3. for all k > 0, �n
t=kGt(x) converges to zero uniformly in x as n increases; and,

4. there exists 0 � � < 1 such that for all x 2 X and large enough t,

Ft(x) � �(1� Gt(x)):

Proof: The theorem is proven in Section C.5. �

Next, I describe some of the intuition behind the statement of the theorem and its

conditions.

69

The iterative approximation of V � is performed by computing Vt+1 = Ht(Vt; Vt).

Because of Conditions 1 and 2, Gt(x) is the extent to which the estimated value function

depends on its present value and Ft(x) � 1�Gt(x) is the extent to which the estimated

value function is based on \new" information.

In some applications, such as Q-learning, the contribution of new information needs

to decay over time to ensure that the process converges. In this case, Gt(x) needs to

converge to one. Condition 3 allows Gt(x) to converge to 1 as long as the convergence

is slow enough to incorporate su�cient information for the process to converge to the

right value.

Condition 4 links the values of Gt(x) and Ft(x) through some quantity � < 1.

If it were somehow possible to update the values synchronously over the entire state

space, the process would converge to V � even when � = 1. In the more interesting

asynchronous case, when � = 1, the long-term behavior of Vt is not immediately clear;

it may even be that Vt converges to something other than V �. The requirement that

� < 1 ensures that the use of outdated information in the asynchronous updates does

not cause a problem in convergence.

One of the most noteworthy aspects of this theorem is that it shows how to reduce

the problem of approximating V � to the problem of approximating H at V �; in many

cases, the latter is much easier to achieve and also to prove. For example, the theorem

makes the convergence of Q-learning a consequence of the simpler Robbins-Monro

theorem [130].

3.6.3 Generalized Q-learning for Expected Value Models

A Q-learning algorithm can be de�ned for the family of �nite-state generalized mdps

with
L

x0
(x;u)g(x0) =

P
x0 T (x; u; x

0)g(x0), that is, models with an expected value cri-

terion. Given experience tuple hxt; ut; x0t; rti at time t and an estimate Qt(x; u) of the

optimal Q function, let

Qt+1(xt; ut) := (1� �t(xt; ut))Qt(xt; ut) + �t(xt; ut)

rt + �

O
u

(x0
t
)
Qt(x

0
t; u)

!
:

When
N

u
(x)f(x; u) = maxu f(x; u), this is precisely the Q-learning algorithm described

in Section 2.6.1; however, a di�erent de�nition of
N

captures the minimax-Q learning

algorithm described in Section 5.6.1.

70

In this section, I derive the assumptions necessary for this learning algorithm to

satisfy the conditions of Theorem 3.7 and therefore converge to the optimal Q values.

The dynamic-programming operator de�ning the optimal Q function is

[KQ](x; u) = R(x; u) + �
X
x0

T (x; u; x0)
O
u0

(x0)
Qt(x

0; u0)):

The Q-learning rule is equivalent to the approximate dynamic-programming operator

Ht(U; V)(x; u)

=

8<
: (1� �t(xt; ut))U(x; u) + �t(xt; ut)(rt + �

N
u
(x0

t
)V (x0t; u)); if x = xt, u = ut

U(x; u); otherwise.

If

� N is a non-expansion and does not depend on T or R,

� x0 is selected according to the probability distribution de�ned by T (x; u; x0),

� the expected value of r given x and u is R(x; u),

� r has �nite variance,

� every state-action pair is updated in�nitely often, and

� the learning rates are decayed so that

X
t:xt=x;ut=u

�t(x; u) =1 and
X

t:xt=x;ut=u

�t(x; u)
2 <1

uniformly over X � U with probability 1,

then a standard result from the theory of stochastic approximation [130] can be used to

show that Ht approximates H . That is, this method of using a decayed, exponentially

weighted average correctly computes the average one-step reward.

Let

Gt(x; u) =

8<
: 1� �t(x; u); if x = xt and u = ut;

0; otherwise,

and

Ft(x; u) =

8<
: ��t(x; u); if x = xt and u = ut;

0; otherwise.

71

These functions satisfy the conditions of Theorem 3.7 (Condition 3 is implied by the

restrictions placed on the sequence of learning rates �t).

Theorem 3.7 therefore implies that the generalized Q-learning algorithm converges

to the optimal Q function with probability 1. The convergence of Q-learning for dis-

counted mdps and alternating Markov games follows easily from this result. In addition,

this result also applies to models satisfying the all-policies-proper condition by using a

weighted max norm.

It is also worth noting that a Q-learning-type algorithm can be de�ned for general-

ized mdps under a worst-case-reward criterion [62]. Theorem 3.7 can be used to prove

the convergence of this algorithm [158].

3.6.4 Model-based Methods

The fundamental assumption of reinforcement learning is that the reward and tran-

sition functions are not known in advance. Although Q-learning shows that optimal

value functions can sometimes be estimated without ever explicitly learning R and

T , learning R and T makes more e�cient use of experience at the expense of addi-

tional storage and computation. The parameters of R and T can be learned from

experience by keeping statistics on the expected reward for each state-action pair and

the proportion of transitions to each next state for each state-action pair. In model-

based reinforcement learning, R and T are estimated on-line, and the value function

is updated according to the approximate dynamic-programming operator derived from

these estimates. Theorem 3.7 can be used to prove the convergence of a wide array of

model-based reinforcement-learning methods.

In this section, we assume that
L

may depend on T and/or R, but
N

may not.

Although this is the more common case, it is possible to extend the argument below

to allow
N

to depend on T and R as well.

In model-based reinforcement learning, R and T are estimated by the quantities

Rt and Tt, and
Lt is an estimate of the

L
operator de�ned using Rt and Tt. As

long as every state-action pair is visited in�nitely often, there are a number of sim-

ple methods for computing Rt and Tt that converge to R and T . A bit more care is

needed to ensure that
Lt converges to

L
, however. For example, in expected-reward

models,
L

x0
(x;u)g(x0) =

P
x0 T (x; u; x

0)g(x0) and the convergence of Tt to T guaran-

tees the convergence of
Lt to

L
. On the other hand, in worst-case-reward models,

72

L
x0
(x;u)g(x0) = minx0:T (x;u;x0)>0 g(x

0) and it is necessary to approximate T in a way

that ensures that the set of x0 such that Tt(x; u; x
0) > 0 converges to the set of x0

such that T (x; u; x0) > 0. This can be accomplished easily, for example, by setting

Tt(x; u; x0) = 0 if no transition from x to x0 under u has been observed.

Assuming T and R can be estimated in a way that results in the convergence of
Lt

to
L
, the approximate dynamic-programming operator Ht de�ned by

Ht(U; V)(x) =

8><
>:
N

u
(x)
�
Rt(x; u) + �

Lt;
x0
(x;u)

V (x0)

�
; if x 2 �t

U(x); otherwise,

converges to H with probability 1 uniformly. Here, the set �t � X represents the set

of states whose values are updated on step t; one popular choice is to set �t = fxtg.
Other algorithms use a larger �t set to speed up learning: DYNA [156] supplements �t

with a randomly generated set of states while prioritized sweeping [111] and Queue-

DYNA [119] use heuristics to select elements for �t that will result in the fastest possible

convergence of the value function.

The functions

Gt(x) =

8<
: 0; if x 2 �t;

1; otherwise,

and

Ft(x) =

8<
: �; if x 2 �t;

0; otherwise,

satisfy the conditions of Theorem 3.7 as long as each x is in in�nitely many �t sets

(Condition 3) and the discount factor � is less than 1 (Condition 4).

As a consequence of this argument and Theorem 3.7, model-based methods can

be used to �nd optimal policies in mdps, alternating Markov games, Markov games,

risk-sensitive mdps, and exploration-sensitive mdps.

3.7 Open Problems

The exploration of this class of models has just begun. Although generalized mdps were

developed to generalize the speci�c models used in this thesis, they may be worthy of

independent study.

73

� Although many relevant summary operators have been shown to have the required

non-expansion properties, is there a better, more succinct, or more intuitive char-

acterization of the summary operators used in generalized mdps?

� Can generalized mdps be extended to in�nite action spaces?

� Some natural summary operators, like Boltzmann weighting (Section C.1), do

not have the non-expansion property. Is there a way to characterize these oper-

ators and the e�ect of using them in value iteration? In the case of Boltzmann

weighting, there are examples where the H operator has multiple �xed points.

� Model-free reinforcement-learning updates appear to require the use of the ex-

pected reward summary operator. Is there a general theory of how to take a given

de�nition of the
L

operator and create an appropriate model-free reinforcement-

learning algorithm?

� The class of generalized mdps was developed primarily with regard to a discounted

reward criterion. Is it possible to extend the results to the average reward crite-

rion? Would that be interesting?

� Is it possible to extend Sutton's TD(�) algorithm [154] to the generalized mdp

model?

3.8 Related Work

This chapter's main function is to prove some basic properties of mdps and variants

of mdps. Puterman [126] develops the results for mdps with �nite state and action

spaces, but also more general spaces. His work focuses exclusively on maximizing

expected reward. Van Der Wal [166] addresses a generalized set of objective criteria

for mdps and Markov games.

The inspiration for trying to �nd a uniform framework for these proofs grew out of

the independent work of Shapley [143] on games and of Howard [68] and Bellman [13]

on mdps. Both of these e�orts developed the value-iteration algorithm and proved its

convergence. This chapter attempted to capture the essence of both approaches in a

uni�ed way.

There are many, many models that satisfy the conditions of being a generalized mdp;

very few of these are interesting. In the remaining chapters of this thesis, I examine a

74

few models of interest, but there are others that are worth mentioning. John [71] looks

at mdps that maximize expected reward given that actions are chosen with respect to a

perpetually exploring policy. His learning rule for the uniform-exploration case can be

shown to be a generalized mdp and, hence, inherits the results proven in this chapter.

Heger [62, 63] has developed a collection of results, including a proof of Theorem 3.3,

for risk-sensitive mdps: generalized mdps that maximize worst-case reward. The results

in this chapter extend some of Heger's results. I prove �nite convergence of value

iteration and policy iteration for his minimax criterion, and make it possible to extend

risk-sensitive objective criteria to in�nite state spaces and games.

The results on pseudopolynomial convergence of some generalized mdps comes di-

rectly from the work of Tseng [162] for mdps and Condon [36] for alternating Markov

games. The idea of bounding the greedy policy according to an approximate value

function is common knowledge in the dynamic-programming community, and was in-

troduced to the reinforcement-learning community by Williams and Baird [180] and

Singh and Yee [147].

The work presented in Section 3.6 is closely related to several previous research

e�orts. Szepesv�ari [157] described a generalized reinforcement-learning model, and

used it to de�ne a set of conditions under which there is an optimal policy that is

stationary, and when it can be found as the myopic policy with respect to the optimal

value function. The speci�c generalized mdpmodel presented here is both more and less

general than Szepesv�ari's model; however, Theorem 3.7 is useful in both frameworks.

Jaakkola, Jordan, and Singh [69] and Tsitsiklis [163] developed the connection be-

tween stochastic-approximation theory and reinforcement learning, focusing on themdp

model. The mathematics and insight used in Theorem 3.7 are not substantially di�erent

from that used in the earlier papers; however, the form of Theorem 3.7 makes it par-

ticularly convenient for proving the convergence of reinforcement-learning algorithms.

Concretely, Theorem 3.7 shows that, given a contraction mapping H and an idea of

how to approximate HV �, it is often fairly easy to design algorithms that approximate

V � itself.

Waldmann [172] developed a highly general model of dynamic-programming prob-

lems, with a focus on deriving approximation bounds. Vendu and Poor [167] introduced

a class of abstract dynamic-programming models that is far more comprehensive than

the model discussed here. In addition to permitting non-additive operators and value

functions with values from any set (not just the real numbers), they showed how, in

75

the context of �nite-horizon models, a weaker \commutativity" condition can replace

the monotonicity condition exploited in this chapter.

3.9 Contributions

In this chapter, I presented a new model, which I called generalized Markov decision

processes, for the purpose of making it easier to present background results that are

common to all the models covered in this thesis. The model, which de�nes optimal

values by a simple generalization of the Bellman equation, might be useful to researchers

studying other types of sequential decision making. I proved a series of concrete results

concerning the model, including the contraction of the dynamic-programming operator,

the convergence of value iteration and policy iteration, the convergence of a model-

free reinforcement-learning algorithm, the convergence of a model-based reinforcement-

learning algorithm. I also gave a simple new proof that all-policies-proper mdps result in

contraction with respect to some weighted max norm, and described a new stochastic-

approximation theorem, developed in collaboration with Szepesv�ari [158].

The generalized mdp framework highlights common elements among several di�er-

ent sequential decision-making models, and extends existing models in an interesting

way. In the following chapters, I examine several simple applications of the results from

this chapter, but there are a number of interesting directions yet to be explored.

Chapter 4

Alternating Markov Games

Portions of this chapter and the next have appeared in earlier papers:

\Markov games as a framework for multiagent reinforcement learning" [90],

and \An introduction to reinforcement learning" [74] with Kaelbling and

Moore.

Game playing has dominated the arti�cial-intelligence world as a problem domain ever

since the �eld was born. Two-player games do not �t into the established mdp frame-

work because the optimality criterion for games is typically not one of maximizing

reward in the face of a �xed environment, but one of maximizing reward against an

optimal adversary. Nonetheless, there are profound similarities between the problem of

�nding an optimal policy for an mdp and that of �nding an optimal policy for a game.

4.1 Introduction

In this chapter, I review some of the important similarities and di�erences between

mdps and two-player games in which players alternate moves (alternating Markov

games). In the next chapter, I consider a more general class of games in which both

players choose their moves simultaneously (Markov games). Both chapters address only

zero-sum games, that is, games in which reward for one player comes directly \out of

the pocket" of the other.

Interest in �nding optimal policies for games is spread over several di�erent �elds:

complexity theorists have linked the (open) question of the existence of polynomial-time

76

77

algorithms for �nding optimal policies for alternating games to the equivalence of par-

ticular Turing-machine models [36]; reinforcement-learning researchers have adapted

mdp-based learning algorithms to a very general class of games [90] and many re-

searchers have used reinforcement learning in these environments; economists and game

theorists [168, 166, 143] have studied Markov games as a model for understanding the

behavior of individuals in multiagent systems.

4.2 Alternating Markov Games

In this chapter, I describe alternating Markov games, in which stochastic control of

the state transitions alternates between an agent and its opponent. This includes most

standard board games like backgammon, chess, and tic-tac-toe, but also captures more

complex situations in which rewards are issued throughout the interaction. The identity

of the player in control of the transition is part of the state description, and control

does not necessarily change hands after every action.

4.2.1 Basic Framework

In its general form, a Markov game, sometimes called a stochastic game [114], is de�ned

by a set of states, S, and a collection of action sets, A1;A2; : : : ;Ak, one for each agent

in the environment. State transitions are a stochastic function of the current state and

one action from each agent: T (s; a1; a2; : : : ; ak; s0) is the probability of a transition from

s to s0 when agent 1 chooses a1 2 A1, agent 2 chooses a2 2 A2, etc. Agent i also has an

associated reward function, Ri(a1; a2; : : : ; ak), and attempts to maximize its expected

sum of discounted rewards, EfP1
j=0 �

jrit+jg, where rit+j is the reward received j steps

into the future by agent i.

In this chapter and the next, I consider a well-studied specialization of Markov

games in which there are only two agents and they have diametrically opposed goals.

This makes it possible to represent the agents' instantaneous rewards with a single

reward function that one agent seeks to maximize and the other, called the opponent ,

seeks to minimize. The set A1 denotes the agent's action set, and A2 denotes the

opponent's action set. In this chapter, only one agent has an action choice in each

state; S1 signi�es the states in S in which the agent has a choice of action, and S2
signi�es the other states. It is not necessary to assume that control strictly alternates

between the two players; Section D.1 shows that, from a complexity standpoint, such

78

an assumption does not change the class of models considered. The function R(a; s)

denotes the immediate reward to the agent for taking action a 2 A1 in state s 2 S1
or the immediate reward to the agent for its opponent taking action a 2 A2 in state

s 2 S2.
Restricting the model to two-player zero-sum games simpli�es the mathematics but

makes it impossible to consider important phenomena such as cooperation. Nonethe-

less, the present model subsumes mdps, which are just alternating Markov games in

which jA2j = 1 or jS2j = 0. In the next chapter, I consider a generalization of alternat-

ing Markov games in which the players select their moves synchronously.

4.2.2 Acting Optimally

As in Chapter 2, an optimal policy is one that maximizes the expected sum of dis-

counted reward. There are subtleties in applying this objective to Markov games,

however. First, consider the parallel scenario in mdps.

In an mdp, an optimal policy is one that maximizes the expected sum of discounted

reward; it is undominated , meaning that there is no state from which any other policy

can achieve a better expected sum of discounted reward. Every mdp has at least one

optimal policy, and of the optimal policies for a given mdp, at least one is stationary

and deterministic. This means that, for any mdp, there is a policy � : S ! A that is

optimal. The policy � is called stationary because it does not change as a function of

time, and it is called deterministic because the same action is always chosen whenever

the agent is in state s, for all s 2 S.
For many games, there is no policy that is undominated because performance de-

pends critically on the choice of opponent. How, then, can we de�ne an optimal policy?

In the game-theory literature, this di�culty is resolved by evaluating each policy with

respect to the opponent that makes it look the worst. This performance measure prefers

conservative strategies that can force any opponent to a stalemate over more daring

ones that accrue a great deal of reward against some opponents and lose a great deal

to others. This is the essence of minimax: Behave so as to maximize your reward in

the worst case.

Given this de�nition of optimality, alternating Markov games share several impor-

tant properties with mdps: every alternating Markov game has a non-empty set of

optimal policies, at least one of which is stationary and deterministic [36].

79

As in mdps, the discount factor, �, can be thought of as the probability that the

game will be allowed to continue after the current move, i.e., 1 � � is the probability

that a zero-value forced draw will be proclaimed on any given move.

Another connection between alternating Markov games and mdps is that, if we hold

the opponent's policy �xed, the agent faces a stationary environment and any of the

mdp algorithms of Chapter 2 can be used to �nd an optimal counter strategy. This fact

will be helpful in deriving an e�cient policy-iteration algorithm for alternating Markov

games.

4.2.3 Simple Stochastic Games

Condon [36] reduced alternating Markov games to their simplest possible form, which

she called \simple stochastic games." In this model, there are four kinds of states:

states in which the agent deterministically controls the transitions, states in which

the opponent deterministically controls the transitions, states in which neither player

controls the transition but instead a transition is made to one of two states with equal

probability, and absorbing \win" states (one for each player) that end the game when

they are reached. The model includes a single transition with a non-zero reward, no

discount factor, two actions per state, and only deterministic transitions and probability

1/2 transitions. Nonetheless, it is possible to show that any alternating Markov game

with rational immediate rewards and transition probabilities can be transformed to

an equivalent simple stochastic game with at most a polynomial increase in problem

size [36, 183].

Although the simple stochastic game model is elegant, its connection to the tradi-

tional mdp is somewhat indirect; I will focus on the alternating Markov game model,

although the results I present apply to simple stochastic games as well.

4.3 Algorithms for Solving Alternating Markov Games

In this section, I review methods for �nding optimal policies for alternating Markov

games. The algorithms here are all variations of algorithms for solving Markov decision

processes.

80

4.3.1 Value Iteration

In an mdp, given Q�(s; a), an agent can maximize its reward using the \greedy" strategy

of always choosing the action with the highest Q value. This strategy is greedy in the

sense that it treats Q�(s; a) as a surrogate for immediate reward and then acts to

maximize its immediate gain. It is optimal because the Q function is an accurate

summary of future rewards.

A similar observation can be exploited in alternating Markov games. First, we re-

de�ne V �(s) to be the expected reward to the agent for following the optimal minimax

policy against an optimal opponent starting from state s, and Q�(s; a) to be the ex-

pected reward for the agent taking action a (if s 2 S1) or the opponent taking action

a (otherwise) and both players continuing optimally thereafter. Then the value of a

state s 2 S in an alternating Markov game is

V �(s) =

8<
: maxa12A1

Q�(s; a1) if s 2 S1
mina22A2

Q�(s; a2) otherwise,

and the value of a state-action pair (s; a) is

Q�(s; a) = R(s; a) + �
X
s0

T (s; a; s0)V �(s0):

The resulting recursive equations look much like the equations for Q and V in mdps,

and indeed the analogous value-iteration algorithm converges to the correct values [36].

4.3.2 Policy Iteration

Policy iteration in Markov decision processes proceeds by alternating between comput-

ing the value of the current policy and �nding the greedy policy for the current value

function. In alternating Markov games, there are essentially two active policies at any

given time, and as a result, there are several choices for generalizing policy iteration to

alternating Markov games.

Table 4.1 gives a generic policy-iteration algorithm for alternating Markov games.

It follows the mdp algorithm quite closely, alternating between policy evaluation and

policy improvement, and makes use of two important subroutines: evalGame and

improvePoliciesGame. The evalGame subroutine, given in Table 4.2, simply computes

the value function that results from the agent following policy �1 and the opponent

81

PolicyIterationGame(M = hS1;S2;A1;A2; T; R; �i) := f
foreach s 2 S1 �1(s) := a, for some a 2 A1

foreach s 2 S2 �2(s) := a, for some a 2 A2

V0 := evalGame(�1; �2;M)
t := 0
loop

t := t+ 1
(�1; �2) := improvePoliciesGame(�1; �2; Vt�1;M)
Vt := evalGame(�1; �2;M)

until Vt�1(s) = Vt(s) for all s
return (�1; �2)

g

Table 4.1: The policy-iteration algorithm for alternating Markov games.

evalGame(�1; �2; hS1;S2;A1;A2; T; R; �i) := f
Solve the following system of linear equations:

�nd: v[s]
s.t.: v[s] = R(s; �1(s)) + �

P
s02S T (s; �1(s); s

0)v[s0], for all s 2 S1
and: v[s] = R(s; �2(s)) + �

P
s02S T (s; �2(s); s

0)v[s0], for all s 2 S2
return v

g

Table 4.2: Computing the value function for a given pair of policies.

82

following policy �2; as in mdps, the value function is computed by solving a system of

linear equations.

At this high level, the policy-iteration algorithm is identical to the one described

in Chapter 2. The di�erence is in the implementation of improvePoliciesGame. How

should we choose new policies for the players that are closer to the optimal policies?

Let Vt�1 be a value function and �1 and �2 be policies for the agent and the

opponent. There are at least four sensible choices for constructing policies �01 and �02

that are improvements relative to Vt�1:

1. let �01 and �
0
2 both be greedy with respect to Vt�1;

2. let �01 be greedy with respect to Vt�1, and �02 be the optimal policy for the

opponent given that the agent is following �01;

3. let �02 be greedy with respect to Vt�1, and �01 be the optimal policy for the

opponent given that the agent is following �02;

4. let �01 be the optimal policy for the agent given that the opponent is following �2,

and let �02 be the optimal policy for the opponent given that the agent is following

�1.

These choices are not all equivalent; in fact, only choices 2 and 3, which are duals,

lead to algorithms that converge in general [37]. We therefore base the implementation

of our improvePoliciesGame subroutine in Table 4.3 on choice 2. Since we need �2 to

be the optimal counter-strategy to the greedy �1, Table 4.4 shows how to compute the

optimal counter-strategy for a �xed policy. The basic idea is that, once one player's

actions are �xed, only one player is left with any choice of action; the resulting model

is an mdp. The algorithms in Table 4.4 make use of mdp policy iteration to solve the

resulting one-player game, though any of the mdp algorithms from Chapter 2 would

su�ce. In the routine for computing an optimal policy for the opponent given a �xed

policy for the agent, the rewards are negated; this is because the opponent's job is to

minimize reward and the mdp algorithms from the previous chapter maximize reward.

The value function computed in the process of �nding the optimal �2 given �1 is

the same value function that is found when evaluating the resulting policies. A more

e�cient implementation would save this value function instead of throwing it away and

recomputing it.

83

improvePoliciesGame(�1; �2; V;M= hS1;S2;A1;A2; T; R; �i) := f
foreach s 2 S1

�1(s) := argmaxa2A1
(R(s; a) + �

P
s02S T (s; a; s

0)V (s0))
�2 := counterStratGame2(�1;M)
return (�1, �2)

g

Table 4.3: Computing improved policies for both players.

counterStratGame2(�1; hS1;S2;A1;A2; T; R; �i) := f
foreach s 2 S and s0 2 S and a 2 A2 f

if (s 2 S2) T 0(s; a; s0) := T (s; a; s0)
else T 0(s; a; s0) := T (s; �1(s); s

0)
foreach s 2 S and a 2 A2 R

0(s; a) := �R(s; a)
return(PolicyIterationMDP(hS1 [S2;A2; T

0; R0; �i))
g

counterStratGame1(�2; hS1;S2;A1;A2; T; R; �i) := f
foreach s 2 S and s0 2 S and a 2 A1 f

if (s 2 S1) T 0(s; a; s0) := T (s; a; s0)
else T 0(s; a; s0) := T (s; �2(s); s0)

return(PolicyIterationMDP(hS1 [S2;A1; T
0; R; �i))

g

Table 4.4: Computing the optimal counter-strategy for player 2 given a policy for player
1, and vice versa.

84

4.3.3 Polynomial-time Algorithms for Simple Games

There is no algorithm that is known to solve general alternating Markov games in

polynomial time, although it is easy to believe that such an algorithm exists [37]. This

section examines algorithms that provably solve simpli�ed classes of alternating Markov

games in polynomial time.

Cycle-free Games

We say that an alternating Markov game is cycle free if, aside from designated zero-

reward absorbing states, there is absolutely no way that any state can be revisited.

Games with a non-renewable resource, such as spaces on the board in tic-tac-toe or

Connect-Four, are cycle free. Cycle-free games are easy to solve, because no more than

jS1j + jS2j steps can elapse before the absorbing state is reached. These games can

be solved in polynomial time using value iteration, or by a procedure referred to as

DAG-SP [28], which I will describe now.

In a cycle-free game, all states can be categorized by the largest possible number of

transitions that can elapse between an agent occupying the state and the agent reaching

an absorbing state. Let d(s) be the maximum number of transitions (distance) from s

to an absorbing state. We can de�ne d by

d(s) =

8<
: 0 if s is absorbing,

1 + maxs0 ;a IfT (s; a; s0) > 0gd(s0) otherwise.

Here Ifeg is the indicator function for boolean expression e; Ifeg = 1 if e is true, and

0 otherwise. We are guaranteed that d(s) � jS1j + jS2j for all s in non-cycle games.

In addition, if s0 is reachable from s in a single transition, d(s0) < d(s). As a result,

an algorithm can solve the Bellman equations by assigning values to states in order of

increasing d(s).

Of course, it is not necessary to compute and sort these distances explicitly; a

topological sort [40] of the transition graph accomplishes the same purpose much more

easily.

Deterministic Goal-reward Games

In many games, like checkers, it is possible to return to the same board con�guration

over and over again. The DAG-SP algorithm from the previous section can not be

85

applied to these games. However, checkers can be characterized as a deterministic

goal-reward game and can be solved e�ciently (relative to the astronomical size of its

state space!) by an algorithm closely related to Dijkstra's shortest-path algorithm [40].

Like cycle-free games, reward-goal games have a set of absorbing states. Unlike

cycle-free games, the only non-zero rewards in a reward-goal game are issued imme-

diately upon entering an absorbing state. This means that the optimal values in de-

terministic reward-goal games can be conveniently characterized; there is at most one

non-zero reward reached in any game. The optimal value for any state in a determinis-

tic reward-goal game is either zero or can be written �kr, where r is one of the non-zero

rewards, and k is the number of steps before the non-zero reward is reached.

We can solve deterministic goal-reward games e�ciently by carefully working back-

wards from the absorbing states. At an intuitive level, this is accomplished by taking

the largest reward and propagating it backwards to states in S1 (the maximizing states).
Similarly, the most negative reward can be propagated backwards through the states

in S2 (the minimizing states). Once this process gets stuck, the remaining states all

have value zero.

More precisely, the algorithm begins by de�ning V (s) = 0 for all absorbing states

and leaving it unde�ned otherwise. De�ne a lower bound l and upper bound u on the

value of each state as follows. If s 2 S1, l(s) is the value of

max
a2A1

(R(s; a) + �V (N(s; a)));

where the maximization is over actions such that V (N(s; a)) is de�ned; recall that N is

the next-state function. If V (N(s; a)) is unde�ned for all a, l(s) is unde�ned. Because

the value l(s) is attainable for some action, the true value of V (s) is at least this large.

For s 2 S2, u(s) is de�ned analogously.

If s 2 S1, we can compute an upper bound on V (s) as follows. We de�ne an

optimistic Q value to be

Q(s; a) = R(s; a) + �V (N(s; a))

if V (N(s; a)) is de�ned. If V (N(s; a)) is not de�ned, Q(s; a) = maxs0 maxd �
dV (s0)

where the maximization of s0 is over all s0 such that V (s0) is de�ned, and the maxi-

mization over d is over path lengths from s to s0 when a is taken as the �rst action. If

V (s0) < 0, this quantity is maximized when d = 1. The value u(s) = maxaQ(s; a) is

86

an upper bound on the value of V (s) because the Q values are computed optimistically.

For s 2 S2, l(s) is de�ned analogously.

If, for any s, V (s) is unde�ned and l(s) = u(s), then we can de�ne V (s) = l(s). This

will happen if V (N(s; a)) is de�ned for all a, or one of the actions for which V (N(s; a))

is de�ned dominates the optimistic estimate for all the other actions. This can happen,

for example, when s 2 S1 and s is one step away from the largest de�ned V (s0).

Each time a new V (s) is de�ned, the upper and lower bounds need to be recomputed.

If, at any time, there is no s for which V (s) is unde�ned and l(s) = u(s), we can set all

the unde�ned V (s) values to zero. This can be justi�ed by induction on the value of d

in the de�nition of the optimistic bounds above, but intuitively, each of the states for

which V (s) is unde�ned would prefer to be in a zero-reward cycle to any other outcome

they could ensure.

A straightforward implementation of this algorithm in which the upper and lower

bounds are recomputed from scratch at each iteration runs in polynomial time. How-

ever, a more e�cient implementation can be created by storing the optimistic Q values

in priority queues. This novel algorithm was inspired by Condon's [36] algorithm for

deterministic simple stochastic games and Boyan and Moore's [28] application of Di-

jsktra's algorithm to deterministic mdps. Condon's algorithm is a great deal simpler,

but is only de�ned for undiscounted games with a unique goal state.

Deterministic Constant-reward-cycle Games

The algorithm of the previous section can be extended using ideas from the cycle-free-

game algorithm to solve a wider class of games in polynomial time.

In a constant-reward-cycle game, for every possible cycle of states there exists a

value r such that every immediate reward on that cycle is exactly r. In the goal-reward

games of the previous section, r is zero. In other games, several di�erent values of r are

possible depending on the cycle. These games can be solved by clustering the states

according to whether they can participate in any cycles, and, if so, the value of r for

those cycles. Note that all the actions a from state s that can result in a cycle must

have the same immediate reward.

The transition graph for a deterministic alternating Markov game is the graph

consisting of one node for each state, and one directed edge for each state-action pair.

There is an edge in the transition graph from node s to node s0 if there is some action

87

a for which N(s; a) = s0. We can partition the states of the game by their strongly

connected components [40] in the transition graph. Each component consists of either

a single state or a set of states in which every pair of states in the set is involved in a

cycle. Thus, by assumption, each component c has a single immediate-reward value,

which we write as rc.

We will label each of the nodes of the graph with its value. Begin by making V (s)

unde�ned for all states s. As in the cycle-free-game algorithm, consider each component

c in reverse topological order, i.e., starting with the components that can reach no other

components. For all states within a given component, all rewards are equal, except for

those that result in a transition out of the component. Values can be assigned to all the

states in the component using a variation of the deterministic goal-reward algorithm

of the previous section.

It is not obvious that this algorithm has any practical application over that of

the goal-reward algorithm. However, it is interesting in that it is the most general

polynomial-time algorithm known for solving alternating Markov games.

4.3.4 Other Algorithms

Condon [37] surveyed algorithms for the simple stochastic game model. The results

of Zwick and Paterson [183] and Condon [36] show that the discounted alternating

Markov game model is polynomially reducible to the simple stochastic game model;

this means that any of the simple stochastic game algorithms can also be used to solve

alternating Markov games, indirectly. However, most of the algorithms in Condon's

paper can be applied to alternating Markov games with little or no change.

In addition to algorithms designed for alternating games, any algorithm that can

solve general Markov games can solve alternating Markov games as well. Chapter 5

discusses these more general algorithms.

4.4 Algorithmic Analysis

The correctness of and run time bounds for the algorithms in Section 4.3 follow from

the analogous algorithms for generalized Markov decision processes (Chapter 3).

Lemma 4.1 Alternating Markov games are a type of generalized Markov decision pro-

cess.

88

Proof: To show that alternating Markov games are a form of generalized mdp, we

need to de�ne the state space, action space, reward and transition functions, and

optimality equations. Let X = S1[S2, U = A1�A2, R(x; (a1; a2)) = R(x; a1) if s 2 S1
and R(x; a2) otherwise, and T (x; (a1; a2); x0) = T (x; a1; x0) if s 2 S1 and T (x; a2; x0)

otherwise. The optimality equations are

V �(s) =

8<
: maxa12A1

Q�(s; a1); if s 2 S1
mina22A2

Q�(s; a2); otherwise,
(4.1)

and

Q�(s; a) = R(s; a) + �
X
s0

T (s; a; s0)V �(s0):

The relevant summary operators are shown to be non-expansions in Section C.1. �

4.4.1 Value Iteration

Lemma 4.1 and Theorem 3.4 together imply that the value-iteration algorithm for

alternating Markov games converges to the optimal value function.

In addition, Condon [36] shows that the complexity (in terms of bits) of the optimal

value function is bounded by a polynomial in the size of the description of the game.

As discussed in Theorem 3.4, this fact can be used to show that value iteration can

be used to �nd optimal policies in pseudopolynomial time, or polynomial time for

�xed discount factor, for discounted alternating Markov games and all-policies-proper

alternating Markov games.

4.4.2 Policy Iteration

To apply the policy-iteration algorithm for generalized mdps to alternating Markov

games, the optimality equations (Equation 4.1) must be rewritten so that the outermost

operator is a maximization. This can be accomplished as follows:

V �(s) = max
a12A1

8<
: Q�(s; a1); if s 2 S1

mina22A2
Q�(s; a2); otherwise,

and

Q�(s; a) = R(s; a) + �
X
s0

T (s; a; s0)V �(s0):

The resulting policy-iteration algorithm is exactly the algorithm of Section 4.3.2,

in which policy evaluation is accomplished by solving a minimum-reward mdp. A dual

89

algorithm can be obtained by placing the minimization on the outside and performing

policy evaluation using a maximum-reward mdp.

By Lemma 3.6, the policy-iteration algorithm for games converges no more slowly

than value iteration, �nding an optimal policy and value function in a pseudopolynomial

number of iterations.

4.4.3 Linear Programming

No one has yet been able to reduce the problem of solving an alternating Markov

game to that of solving a polynomial-size linear program. This is somewhat surprising

because, as with mdps, the optimal value function for an alternating Markov game is

the solution to a polynomial-size set of linear equations. In addition, there is a very

natural linear program that would seem to solve this problem perfectly.

In this section, I describe the linear program that seems to solve alternating Markov

games, and give a simple example that shows why it does not. This issue is also treated

in a paper by Condon [37].

The optimal value function V for an alternating Markov game satis�es the Bellman

equations in Equation 4.1. Section 2.3.3 described a linear program that solved a similar

set of equations. In that formulation, the maximization operator is implemented as the

least upper bound; that is, there is a constraint demanding that V (s) is greater than

or equal to the one-step value for each action, and the objective function minimizes

V (s). An analogous technique can be used to implement the minimum operator.

This leads to the natural assumption that these two techniques could be combined

to create a linear program whose solution is exactly the value of an alternating Markov

game. Table 4.5 provides the \algorithm" suggested by this idea.

Unfortunately, the objective function cannot be used to jointly ensure that the

maximization and minimizations are implemented properly. Figure 4.1 depicts a 4-state

deterministic alternating Markov game for which the linear-programming algorithm in

Table 4.5 does not work.

In this example, states s1 and s01 are nominally controlled by the agent and state

s2 is nominally controlled by the opponent. However, the single actions available from

states s1 and s
0
1 lead to state s2, and the single action available from state s2 leads to

an absorbing state. In the corresponding linear program, V (s1) � 3=4 V (s2), V (s01) �
3=4 V (s2), V (s2) � 1, and V (s1) + V (s01)� V (s2) needs to be minimized. Although it

90

gameLP(hS1;S2;A1;A2; T; R; �i) := f
Solve the following linear program:

minimize:
P

s2S1 v[s]�
P

s2S2 v[s]
s.t.: v[s] � R(s; a) + �

P
s02S T (s; a; s

0)v[s0], for all s 2 S1 and a 2 A1

and: v[s] � R(s; a) + �
P

s02S T (s; a; s
0)v[s0], for all s 2 S2 and a 2 A2

variables: v[s] for all s 2 S
return v

g

Table 4.5: Trying to solve an alternating Markov game via linear programming. This
algorithm is incorrect.

s1 s3
+1

s2

+0max

s1'

min

Figure 4.1: A small deterministic alternating Markov game for which the natural linear-
programming formulation does not specify the optimal value function (� = 3=4).

91

is true that the optimal value function (V (s1) = 3=4, V (s01) = 3=4, V (s2) = 1) satis�es

the constraints and has an objective value of 1/2, the incorrect value function V (s) = 0

for all s also satis�es the constraints and has a smaller objective value.

This shows that the naive application of linear programming to the problem of

solving alternating Markov games (even deterministic ones) is incorrect. Although

there are simple modi�cations that can be applied to repair this example, no general

solution is known; it is possible that the problem can be formulated and solved as a

linear program, but no one has yet found a way to do this.

4.5 Complexity Results

Condon [36] showed that, like mdps, simple stochastic games can be solved by �nding

an optimal value function and that the optimal value function can be written as the

solution to a polynomial-size set of linear equations. This is roughly because the solu-

tion to a simple stochastic game can be expressed as a pair of deterministic stationary

policies (one for each player) that are in equilibrium, meaning that neither player has

any incentive to change its policy if the other player's policy stays �xed.

From these observations, it is relatively straightforward to see that the problem of

�nding a minimax optimal policy is in the complexity class NP\co-NP [36]. This is

because we can guess a policy for either player and verify its optimality in polynomial

time using a polynomial-time algorithm for solving the resulting mdp.

There are very few problems that are in NP\co-NP and yet are not known to be

solvable in polynomial time. Unfortunately, this is one of them. Although there are

dozens of natural algorithms for solving the problem, Condon [37] showed that almost

all of them are either wrong or run in exponential time in the worst case.

Condon shows that the deterministic-transition version of the simple stochastic

game problem can be solved in polynomial time. Zwick and Paterson [183] tried to ex-

tend this result by considering deterministic alternating Markov games, that is, games

with general rewards and discounting but only deterministic transitions. They ex-

pressed con�dence that this problem is in P, but were unable to prove it. They did

show that the discounted version is solvable in pseudopolynomial time using an argu-

ment closely related to the proof that value iteration is pseudopolynomial for mdps.

Section 4.3.3 gave a polynomial time algorithm for a subclass of deterministic alter-

nating Markov games in which every cycle (a sequence of transitions from a state back

92

to itself) consists of identical immediate rewards. Although this broadens the class of

games known to be solvable in polynomial time, there is still a great deal of room for

improvement.

The polynomial-horizon version of general alternating Markov games is P-complete.

P-hardness follows easily from the analogous result for mdps, proven by Papadimitriou

and Tsitsiklis [116] and value iteration can be used to solve polynomial-horizon games

in polynomial time. However, unlike mdps, the problem remains P-hard even when

all transitions are deterministic. This can be shown by an easy reduction from the

monotone circuit-value problem [57]|essentially, the opponent takes the place of the

stochastic transitions in Papadimitriou and Tsitsiklis' mdp proof [116].

4.6 Reinforcement Learning in Alternating Games

As mentioned in the introduction, game playing is one of the best studied domains for

reinforcement learning. One application, well ahead of its time, was Samuel's checkers

playing system [134]; it employed a training scheme similar to the updates used in

value iteration and Q-learning. Tesauro [160] used the TD(�) algorithm [154] to �nd

an excellent policy for backgammon.

Tesauro's work is interesting for many reasons. I include a brief description here

for its motivational appeal. Backgammon has approximately 1020 states, making

table-based reinforcement learning virtually impossible. Instead, Tesauro used a back-

propagation-based three-layer neural network as a function approximator for the value

function, mapping board position to an estimate of the probability of victory for the

current player. Basic TD-Gammon used very little pre-de�ned knowledge of the game,

and the representation of a board position was a direct encoding, su�ciently power-

ful only to permit the neural network to distinguish between conceptually di�erent

positions. The more advanced TD-Gammon was provided with the same raw state

information supplemented by a number of hand-crafted features of backgammon board

positions. The results have been exceptional.

Although experiments with other games have in some cases produced interesting

learning behavior, no success close to that of TD-Gammon has been repeated. Other

games that have been studied include Go [139] and Chess [161]. It is an open question

as to how the success of TD-Gammon might be repeated in other domains.

The main challenges these projects face, however, are in designing algorithms that

93

can deal with the huge state spaces that results from formalizing traditional board

games as alternating Markov games. The alternating-Markov-game approach is most

appropriate for problems with undecomposable state spaces and general reward func-

tions.

How does one go about using reinforcement learning to solve an alternating Markov

game? Because of the many similarities between alternating Markov games and mdps,

researchers have simply used variations of existing reinforcement-learning algorithms

to solve games. In the next sections, I show that this is perfectly acceptable, as long

as updates are performed correctly.

4.6.1 Simple Minimax-Q Learning

The Q-learning update rule for mdps can also be applied to alternating Markov games:

Q[s; a] := (1� �)Q[s; a] + �(r+ �V (s0)) for experience tuple hs; a; r; s0i. This learning
rule converges to the optimal Q function assuming that every action is experienced in

every state in�nitely often and that new estimates are blended with previous ones using

a slow enough exponentially weighted average (see Section 3.6.3). The major di�erence

is that

V (s0) =

8<
: maxa0

1
2A1

Q(s0; a01) if s0 2 S1
mina0

2
2A2

Q(s0; a02) otherwise,

whereas in mdps, it is a simple maximization.

The algorithm is a generalization of Q-learning, and existing convergence results

do not directly apply. It is also a special case of the minimax-Q learning algorithm,

described in the next chapter. The convergence theorem for generalized Q-learning,

stated in Section 3.6.3, applies to simple minimax-Q learning as a consequence of

Lemma 4.1.

Theorem 4.1 Simple minimax-Q learning converges to the optimal Q values with

probability 1 under the appropriate conditions.

Proof: The theorem follows from the results in Section 3.6.3. �

94

4.6.2 Self-play Approach

There are many other ways of adapting mdp-oriented reinforcement-learning algorithms

to Markov games [26]. Some take advantage of the fact that, often, a complete tran-

sition model for the game is known in advance, making sampled updates unnecessary;

others exploit the agent-opponent symmetry that is present in many games by storing

Q[s; a] values for s 2 S1 only and noting that Q�(s1; a1) = �Q�(s2; a2) when (s1; a1)

and (s2; a2) are symmetric state-action pairs (described below). Many of these ap-

proaches are special cases or simpli�cations of simple minimax-Q learning and their

convergence to optimal minimax policies follows from Theorem 4.1.

The self-play algorithm can be applied to the class of symmetric, alternating Markov

games. In these games the action space for the two agents is the same, A1 = A2, and

the state space can be split into a set S1 of states stochastically controlled by the agent,
and a set S2 of states stochastically controlled by the opponent. The sizes of S1 and

S2 are the same and all transitions from states in S1 (S2) have zero probability of

remaining in S1 (S2). Furthermore, we can de�ne a \board ipping function" f that

maps each s1 2 S1 to some s2 2 S2 and vice versa. The ipping function has the

property that R(s; a) = �R(f(s); a), and T (s; a; s0) = T (f(s); a; f(s0)). This is just a

complicated way to say that any move for the agent can be turned into into an identical

move for the opponent and vice versa.

Because of the symmetry in this class of games, the optimal value function V � and

Q function Q� satisfy V �(s) = �V �(f(s)) and Q�(s; a) = �Q�(f(s); a), for any state s
and action a. An easy way to see this is to notice that the zero value function satis�es

these properties and that they are preserved by a step of value iteration. This suggests

that the self-play algorithm need only maintain Q values for the states in S1. Using

the symmetry properties, we can write the updates as:

Q[s1; a] := (1� �)Q[s1; a] + �

�
r � min

a0
Q[f(s2); a

0]

�

for a transition from s1 to s2 and

Q[f(s2); a] := (1� �)Q[f(s2); a] + �

�
r � min

a0
Q[s1; a

0]

�

for a transition from s2 to s1.

It is easy to see that each update is precisely a simple minimax-Q learning update

with the values of S1 being updated in di�erent ways. The fact that some states are

95

updated \out of order" just means that they are being updated more often but still in

the proper way; this can only improve convergence. In applications in which the model

is known in advance [160], it is not even necessary to represent the Q values explicitly;

instead, the value function can be modi�ed directly, as in value iteration.

Theorem 4.2 Self-play algorithms converge to the optimal Q values with probability 1

under the appropriate conditions.

Proof: This follows fairly easily from the results of Section 3.6.3. �

4.6.3 Non-converging Update Rules

There are approaches to learning games that do not converge in general. In this section,

I examine an approach that treats the opponent as part of the stochastic environment.

Consider a game in which all transitions, except to an absorbing goal state, result

in zero reward. Imagine that the agent is in state s1. After taking an action a1, the

resulting state is s2 and control belongs to the opponent. The opponent now takes an

action, bringing the state to s01 and returns control back to the agent. Under the simple

minimax-Q learning rule, two updates are performed,

Q[s1; a1] := (1� �)Q[s1; a1] + �

�min

a0
2

Q[s2; a
0
2]

!
;

and

Q[s2; a2] := (1� �)Q[s2; a2] + �

�max

a0
1

Q[s01; a
0
1]

!
:

However, from the agent's point of view, there was only one transition|from state s1

to state s01 via action a1. This implies a single update,

Q[s1; a1] := (1� �)Q[s1; a1] + �

�max

a0
1

Q[s01; a
0
1]

!
:

If the opponent chooses its actions according to a �xed policy, this update rule will

converge to the value of the optimal counter-policy, and not the minimax optimal policy.

If the opponent adopts a non-stationary policy, the update rule will not necessarily

converge to anything meaningful.

One of the main results of this section, then, is that it is possible to learn opti-

mal minimax strategies for games using reinforcement learning. The popular self-play

96

method, in which a system learns about a game by playing it against itself for a long

time, can be shown to converge to an optimal strategy as long as the simple minimax-

Q learning update rule is used, and the system visits all possible game con�gurations

often enough.

4.7 Open Problems

The most glaring open problems with respect to alternating Markov games involve the

existence of polynomial-time algorithms.

� Can alternating Markov games be solved in polynomial time?

� What if we restrict ourselves to deterministic alternating Markov games? We

know that by making the problem any simpler, for example, by restricting rewards

to be zero except upon entering an absorbing state, polynomial-time algorithms

exist, so the deterministic problem is in a perfect position to be solved.

� Like alternating Markov games, the problem of deciding whether a given number

is prime is in the class NP\co-NP. Primes can be recognized by a randomized

algorithm in polynomial time with a bounded probability of error. Perhaps a

randomized algorithm for alternating Markov games would be easier to �nd.

There is a randomized subexponential-time algorithm [101]; is there one that

runs in polynomial time?

� A connection can be made between deterministic mdps and min-cost ow prob-

lems (see Chapter 2). Can these connections be exploited to �nd an e�cient

algorithm for alternating Markov games?

4.8 Related Work

The study of games has been divided among several di�erent disciplines: game theory,

reinforcement learning, and computational complexity. Although there has been some

cross fertilization between these �elds, many of the fundamental results have been

discovered separately by individual researchers in the di�erent areas.

The study of the computational properties of games in the game-theory litera-

ture dates back at least to the work of von Neumann and Morgenstern [168], which

97

addressed solutions to the single-state simultaneous-action games known as matrix

games. Shapley [143] extended these concepts to multi-stage Markov games. Sur-

veys of Markov games from a game-theory perspective have been written by Van Der

Wal [166] and Vrieze [170]. A shorter survey is also available in a game-theory overview

edited by Peters and Vrieze [120]. Filar [54] speci�cally examined the di�erence between

simultaneous- and alternating-action games.

It is interesting to note that many of the great minds of computer science worked

on creating game-playing programs. Russell and Norvig's arti�cial intelligence text-

book [132] lists contributions by Babbage, Zermelo, Von Neumann, Wiener, Shannon,

Turing, and Knuth.

Alternating Markov games have been the source of a great deal of attention in

the reinforcement-learning world. One of the earliest systems for game playing was

Samuel's checker-playing program [134], which improved with experience and was in-

spired by many of the same insights that underlie simple minimax-Q learning. More re-

cent examples of learning in alternating Markov games include Tesauro's backgammon

player [160]; Boyan's backgammon and tic-tac-toe players [26]; Schraudolph, Dayan

and Sejnowski's Go player [139]; and Thrun's chess player [161].

In the complexity and algorithms literature, Condon [36] initiated the study of

simple stochastic games, \the simplest possible restriction of Shapley's model, which

retains just enough complexity so that no polynomial time algorithm is known." The

model is essentially an undiscounted alternating Markov game with restricted transition

probabilities and action sets and rewards only of plus and minus one upon transition to

a zero-reward absorbing state. Condon showed that solving a \stopping" (all-policies-

proper) simple stochastic game is actually equivalent to solving an alternating Markov

game. She describes connections from this problem to Markov games, as well as to

important open problems in complexity theory. Later work [37] examined algorithmic

approaches to the problem, with the hope of �nding a polynomial-time algorithm to

solve it. Although this problem is still open, Ludwig [101] was able to show that

the problem of �nding the optimal value function for a simple stochastic game can

be solved in subexponential time. Zwick and Paterson [183] examined deterministic

average-reward and deterministic discounted games and showed that these problems are

no harder than solving simple stochastic games, that pseudopolynomial-time algorithms

exist, and that no polynomial-time algorithms are known.

98

4.9 Contributions

In this chapter, I described a generalization of Markov decision processes to a type of

multiagent environment called an alternating Markov game. I proved a new theorem

showing that strictly alternating Markov games are just as hard to solve as alternat-

ing Markov games. I described the extension of value iteration and policy iteration

to games, and explained that no polynomial-time algorithm is known for solving this

class of models. I derived a new algorithm for solving constant reward-cycle alternat-

ing Markov games in polynomial time, by combining the core algorithmic ideas of two

previous polynomial-time algorithms. I showed, for the �rst time, that reinforcement-

learning algorithms developed for alternating Markov games converge to optimal min-

imax policies.

It seems inevitable that a polynomial-time algorithm for alternating Markov games

will be found. There are important algorithmic ideas that have been recently discovered

in the context of solving min-cost ow problems and hard combinatorial optimization

problems, and some of these ideas are likely to be useful in �nding provably e�cient

algorithms for alternating Markov games. This would settle one of the more intriguing

open problems in the area of sequential decision making, and perhaps spark interest in

developing useful applications.

Chapter 5

Markov Games

Markov games, also called stochastic games, are a model of sequential decision making

that both predates and generalizes Markov decision processes. The topic was originally

studied by Shapley [143]. This chapter generalizes the previous chapter by considering

two-player Markov games in which rewards and transitions are determined by the

simultaneous actions of both players.

5.1 Introduction

Most board games (chess, checkers, tic-tac-toe, etc.) are played by people taking turns

changing the state of the game. This form of game is very convenient for humans to

play because it requires no hidden information or implied trust; all players have access

to all information at all times.

There are familiar conict situations that have a more simultaneous quality to

them. In football, for example, the o�ensive and defensive coaches call plays without

knowing what the other coach will do. In hockey, a player taking a penalty shot decides

whether to shoot high or low, while the goalie commits to blocking one or the other

type of shot. In business, MCI decides to start an ad campaign defending itself against

whatever negative claims AT&T might be making. All these examples have the prop-

erty that the two decision makers choose a course of action that becomes immediately

apparent to the other decision maker; decisions are made in the face of information

that is complete except for the current decision of the other player. This is a di�erent

kind of information structure from alternating games, in which nothing is hidden, and

incomplete-information games like poker in which information remains hidden through

99

100

a sequence of decisions. It is these simultaneous-action complete-information games

that are the subject of this chapter.

5.2 Markov Games

The set of Markov games subsumes both Markov decision processes and alternating

Markov games, described in previous chapters, as special cases.

5.2.1 Basic Framework

As before, A1 and A2 represent the action choices available to the agent and its oppo-

nent. Instead of partitioning the state space according to which player has control of

transitions, here the players control the transitions together. The functions R(s; a1; a2)

and T (s; a1; a2; s0) represent the immediate rewards to the agent and transition proba-

bilities resulting from the agent taking action a1 2 A1 and the opponent taking action

a2 2 A2 from state s.

An important special case is when jSj = 1. The resulting game is called a matrix

game; it is the earliest form of game studied in the game-theory literature [168]. The

name \matrix game" comes from the fact that the relevant parameters can be sum-

marized by a jA1j � jA2j matrix consisting of the immediate reward values. Solving a

matrix game is known to be polynomially equivalent to solving a linear program [47].

5.2.2 Acting Optimally

As with alternating Markov games, I mainly consider the problem of �nding minimax-

optimal policies. Once again, I consider only the discounted expected value criterion.

It is possible to de�ne a notion of undiscounted rewards for Markov games, but not all

Markov games have optimal strategies in the undiscounted case [114]. This is because,

in some games, it is best to postpone risky actions inde�nitely but not to avoid them

forever.

Like mdps and alternating Markov games, every Markov game has a stationary

optimal policy. Unlike the other models, however, there are Markov games with no

deterministic optimal policy. A classic example is \Rock, Paper, Scissors," in which

any deterministic policy can be consistently defeated, whereas the optimal stochastic

policy always breaks even. The need for stochastic action choice stems from the agent's

101

Agent
rock paper scissors

rock 0 1 �1
Opponent paper �1 0 1

scissors 1 �1 0

Table 5.1: The matrix game for \Rock, Paper, Scissors."

uncertainty of its opponent's current action and its requirement to avoid being \second

guessed."

Like alternating Markov games, when one player's policy is held �xed, the other

player's optimal counter strategy can be found as the solution to an mdp.

5.3 Algorithms for Solving Markov Games

In this section, I briey review methods for �nding optimal policies for Markov games

using extensions of the value-iteration and policy-iteration algorithms. Both methods

rely on a subroutine for �nding the optimal stochastic policy to a matrix game.

5.3.1 Matrix Games

In this section, I describe the problem of �nding an optimal policy for a single-state

Markov game. Although this type of game is a very special case, the linear program

used to solve it forms the basis for multi-state algorithms.

A matrix game is de�ned by the matrix R of immediate rewards. Component

R(a1; a2) is the reward to the agent for choosing action a1 when the opponent chooses

action a2. The agent's goal is to choose actions to maximize its expected reward while

the opponent's goal is to minimize it. Table 5.1 gives the matrix game corresponding

to the well-known game of \Rock, Paper, Scissors."

The agent's policy � is a probability distribution over the actions in A1. For \Rock,

Paper, Scissors," � is made up of 3 components: �[rock], �[paper], and �[scissors].

Under a minimax criterion, the optimal agent's minimum expected reward should be

as large as possible. How can we �nd a policy that achieves this? Imagine that we

would be satis�ed with a policy that is guaranteed an expected score of v no matter

which action the opponent chooses. The inequalities in Table 5.2, with � � 0, constrain

the components of � to represent exactly those policies|any solution to the inequalities

102

�[paper] � �[scissors] � v (vs. rock)
� �[rock] + �[scissors] � v (vs. paper)

�[rock] � �[paper] � v (vs. scissors)
�[rock] + �[paper] + �[scissors] = 1

Table 5.2: Linear constraints on the solution to a matrix game.

matrixLP(A1;A2; R) := f
Solve the following linear program:

maximize: v
s.t.: v �Pa12A1

�[a1]R(a1; a2), for all a2 2 A2

and: �[a2] � 0, for all a2 2 A2

and:
P

a22A2
�[a2] = 1

variables: v, �[a2] for all a2 2 A2

return �
g

Table 5.3: Solving a matrix game via linear programming.

would su�ce.

For � to be optimal, we must identify the largest v for which there is some value of �

that makes the constraints hold. Linear programming can be used solve this problem;

in this example, it �nds a value of 0 for v and (1/3, 1/3, 1/3) for �. We can abbreviate

the general linear program as

v = max
�2�(A1)

min
a22A2

X
a12A1

R(a1; a2)�[a1];

where �(A1) represents the set of probability distributions over A1, and

X
a1

R(s; a1; a2)�[a1]

expresses the expected reward to the agent for adopting stochastic policy � against the

opponent's action a2. Table 5.3 gives a subroutine for computing an optimal policy for

the agent in a matrix game.

The value found by the subroutine in Table 5.3 is the largest reward that the agent

can guarantee itself; this is sometimes called the maximin value. An alternate de�nition

is for the value to be the smallest amount of reward the opponent can force the agent

to get; this is sometimes called the minimax value. An important result about matrix

103

games, as well as the more general Markov games, is that the maximin and minimax

values are equal [168, 143]. Using the maximin de�nition, the agent is the only one

that needs to choose actions stochastically, because once the agent's policy is �xed,

the opponent faces a simple minimization problem (or mdp, in the Markov-game case)

that can be optimized by a deterministic policy.

5.3.2 Value Iteration

In mdps and alternating Markov games, the problem of �nding an optimal policy can

be reduced to that of �nding the optimal Q values. The same is true for general Markov

games, although the process of extracting the optimal policy from the optimal Q values

is somewhat more complex.

De�ne V �(s) to be the expected reward to the agent when both players follow

minimax optimal policies starting from state s. De�ne Q�(s; a1; a2) to be the expected

reward to the agent taking action a1 when the opponent chooses a2 from state s and

both players continue optimally thereafter. The optimal choice of action from state

s, then, is one that maximizes Q�(s; a1; a2) with respect to the minimizing choice of

a2. This problem is identical to the problem of solving a matrix game, discussed in

Section 5.3.1.

The value of a state s 2 S in a Markov game is

V �(s) = max
�2�(A1)

min
a22A2

X
a12A1

Q�(s; a1; a2)�[a1];

and the Q value of action a1 against action a2 in state s is

Q�(s; a1; a2) = R(s; a1; a2) + �
X
s0

T (s; a1; a2; s
0)V �(s0):

The optimal policy for the agent in state s is to choose actions according to the prob-

ability distribution �(s; �) that maximizes

min
a22A2

X
a12A1

Q�(s; a1; a2)�(s; a1):

The resulting recursive equations look much like the Bellman equations for Q� and

V � in mdps, and indeed the analogous value-iteration algorithm converges to the correct

values [114]. Unlike mdps however, the greedy policy is not necessarily optimal after

any �nite number of steps.

104

PolicyIterationMarkovGame(M = hS;A1;A2; T; R; �i; �) := f
foreach s 2 S V0(s) := 0
t := 0
loop

t := t+ 1
(�1; �2; Vt) := improvePoliciesMarkovGame(Vt�1;M)

until maxs jVt�1(s)� Vt(s)j < �
return �1

g

Table 5.4: The policy-iteration algorithm for Markov games.

improvePoliciesMarkovGame(V;M= hS;A1;A2; T; R; �i) := f
foreach s 2 S f

foreach a1 2 A1 and a2 2 A2

Q(a1; a2) := R(s; a1; a2) + �
P

s02S T (s; a1; a2; s
0)V (s0)

�1(s; �) := matrixLP(A1;A2; Q)
g
(�2; V

0) := counterStratMarkovGame2(�1;M)
return (�1, �2, V

0)
g

Table 5.5: Computing improved policies for both players.

5.3.3 Policy Iteration

The policy-iteration algorithm for alternating Markov games described in Chapter 4

extends to Markov games. As in alternating Markov games, not all possible de�nitions

of policy improvement lead to a convergent algorithm. An important di�erence between

alternating Markov games and Markov games is that there is no �nite-size set of policies

that is known to include an optimal policy. As a result, policy iteration produces a

sequence of better and better policies, but will not necessarily converge in �nite time.

Tables 5.4, 5.5, and 5.6 give subroutines for �nding a near-optimal policy for a

Markov game via policy iteration. The underlying ideas follow those developed in

Section 4.3.2.

105

counterStratMarkovGame2(�1; hS;A1;A2; T; R; �i) := f
foreach s 2 S and s0 2 S and a2 2 A2

T 0(s; a2; s
0) :=

P
a1 �1(s; a1)T (s; a1; a2; s

0)
foreach s 2 S and a2 2 A2 R

0(s; a2) := �Pa1
�1(s; a1)R(s; a1; a2)

return (PolicyIterationMDP(hS;A2; T
0; R0; �i))

g

Table 5.6: Computing the optimal counter-strategy for a �xed policy.

5.4 Algorithmic Analysis

The most important analytic tool for Markov games is expressed in the following lemma.

Lemma 5.1 Markov games are a type of generalized mdp.

Proof: The Bellman equations given in Section 5.3.2 look a bit di�erent from the earlier

examples of generalized mdps. Nonetheless, as shown in Section C.1, the Markov game

summary operator,

O
(a1;a2)

f(a1; a2) = max
�2�(A1)

min
a22A2

X
a12A1

�[a1]f(a1; a2)

is a non-expansion. �

An important result concerning the analysis of algorithms for Markov games is that

the optimal value function (and policy) need not consist of rational numbers, even if

the components of the transition matrix, reward matrix, and the discount factor are

all rational. This result is discussed in more detail in Section 5.5, but it is important

to note this now because the following analyses makes use of it.

5.4.1 Matrix Games

As I mentioned earlier, solving matrix games is equivalent to linear programming [47].

This means that they can be solved exactly in polynomial time. Although an optimal

policy for a matrix game can be stochastic, the probabilities and values are guaranteed

to be rational if the transitions, rewards, and discount factor are rational.

106

5.4.2 Iterative Algorithms

From Lemma 5.1 and Theorem 3.2, the value-iteration algorithm can be used to �nd

�-optimal value functions for Markov games

The convergence of policy iteration follows from the convergence of the policy-

iteration algorithm for generalized mdps. Although policy iteration will not necessarily

�nd the optimal value function in �nite time, each iteration is guaranteed to improve

the current approximate value function by a factor of �. As a result, �-optimal approx-

imations to the optimal policy for a game can be found in time polynomial in the size

of the game, 1=(1� �) and log �.

5.4.3 Linear Programming

Markov decision processes are Markov games in which the opponent has only one choice

of action, and matrix games are Markov games with only one state. Both of these

models can be solved exactly in polynomial time using linear programming. Given this

fact, it is perhaps surprising that no �nite-size linear program can express the optimal

value function of an arbitrary Markov game [76]. This follows from the fact that linear

programs have rational solutions given rational coe�cients, while Markov games can

have irrational solutions.

5.5 Complexity Results

Markov games can be solved to any desired degree of accuracy using value iteration.

However, it is not known if any algorithm can solve Markov games exactly. This is

because the optimal value function of a Markov game can consist of irrational numbers,

as was shown by Vrieze [169] using a two-state example. A similar example, which uses

only deterministic transitions is described in Section E.1; thus, it is the simultaneous-

move quality of Markov games that makes this problem very di�cult.

On the other hand, polynomial-horizon problems can be solved in polynomial time

using value iteration (see Section 5.3). The value functions for �nite-horizon problems

are guaranteed to consist of rational numbers as long as the immediate rewards, transi-

tions, and discount factor are rational. Both the deterministic and stochastic versions

of the problem are P-complete as they include polynomial-horizon alternating Markov

games and matrix games as special cases, both of which are P-hard. See Papadimitriou

107

and Tsitsiklis' [116] work on mdps for related results.

5.6 Reinforcement Learning in Markov Games

In the reinforcement-learning community, Markov games with simultaneous actions

have not been examined as closely as alternating Markov games. This is probably, in

part, due to the fact that most popular games are designed for humans to play, and

simultaneous actions are cumbersome for humans to carry out.

There are a few examples of learning in simultaneous-action games, including my

earlier work on a simple soccer-like game [90], and Harmon, Baird, and Klopf's ex-

plorations of a di�erential pursuit/evasion game [61]. In Harmon et al.'s work, it is

assumed that a deterministic optimal policy exists for the simultaneous-action game,

whereas, in my work, a stochastic optimal policy is sought.

5.6.1 Minimax-Q Learning

Section 4.6.1 described a Q-learning-like rule for alternating Markov games. It is

straightforward to apply the same technique to solving Markov games. An experi-

ence tuple is now hs; a1; a2; r; s0i, thus both players must have access to the other's

action choice after it is issued. The update is exactly the same as for Q-learning, with

the obvious di�erence that Q values are indexed by the action choices for both players:

Q[s; a1; a2] := (1� �)Q[s; a1; a2] + �(r + V (s0));

where

V (s0) = max
�2�(A1)

min
a22A2

X
a12A1

Q[s0; a1; a2]�[a1]:

Because the computation of V (s0) from the current Q values involves solving a matrix

game, each learning step requires solving a linear program.

The algorithm is called minimax-Q because it is essentially identical to the standard

Q-learning algorithm with a minimax replacing the maximization. It is described in an

earlier paper [90], which includes empirical results on a simple Markov game.

The convergence of this approach follows from the convergence of the generalized

Q-learning algorithm in Section 3.6.3. It is interesting to note that, from a convergence-

of-learning standpoint, Markov games and mdps are equally di�cult to solve, whereas,

from a complexity standpoint, Markov games are signi�cantly harder. This highlights

108

fictitiousMatrix(A1;A2; R; k) := f
foreach a1 2 A1 Y [a1] := 0
foreach a2 2 A2 X [a2] := 0
foreach t 2 1 : : :k f

a�1 := argmaxa12A1
Y [a1]

a�2 := argmina22A2
X [a2]

foreach a1 2 A1 Y [a1] := Y [a1] +R(a1; a
�
2)

foreach a2 2 A2 X [a2] := X [a2] + R(a�1; a2)
g
return (maxa12A1

Y [a1])=k
g

Table 5.7: Approximating the value of a matrix game by �ctitious play.

one of the di�erences between the criteria used to evaluate learning algorithms and

planning algorithms.

5.6.2 Solving Matrix Games by Fictitious Play

Solving a known Markov game using the method of �ctitious play is reminiscent of

reinforcement learning. The basic idea is that we can identify an optimal value function

by playing two players against one another. On each step, each player chooses the

action that is the best response to the stochastic policy that the other player appears

to be using. The long-run proportion of action choices for each player converges to an

optimal stochastic policy for the matrix game.

The material in this section is summarized from an article by Vrieze and Tijs [171],

which is itself a summary of some 45 years of work in this area. The algorithm in

Table 5.7 uses the method of �ctitious play to approximate the value of a matrix game.

In this subroutine, k represents the number of rounds of play to use when approx-

imating the game (the method does not necessarily converge in �nite time, thus some

stopping rule must be used). At step t, vector Y has the property that the value Y [a1]

represents the rewards that the agent would expect to receive in t steps for action a1

if the actions chosen thus far by the opponent are representative of how it will choose

actions in the future. The agent's best (deterministic) response to such an opponent

is to choose action a�1 = argmaxa12A1
Y [a1], the action with the maximum expected

reward.

109

At the same time, the opponent keeps a vector X with one component for each

action in A2. Vector X represents the expected rewards the opponent would receive

in t steps when playing against an agent with a �xed stochastic policy in which action

a1 is selected precisely in the proportion in which the agent has chosen it thus far;

therefore, a�2 = argmina22A2
X [a2] is the opponent's optimal choice of action.

After actions a�1 and a
�
2 are chosen, the X and Y vectors can be updated to include

one more round of rewards. The agent's Y vector is incremented with the rewards the

agent receives when the opponent takes action a�2 (which it just did); similarly for X .

Lemma 5.2 In the �ctitious-play algorithm, the quantities (maxa12A1
Y [a1])=k and

(mina22A2
X [a1])=k converge to the value of the matrix game, as k increases.

Proof: This is proven in Vrieze and Tijs' article [171]. �

In addition to the proof, Vrieze and Tijs include information on the rate of con-

vergence of this process, and show that the reward matrix R need not be known with

certainty for the process to converge. All that is necessary is for an estimate of R to

be available, and for that estimate to converge to R over time.

5.6.3 Solving Markov Games by Fictitious Play

The �ctitious-play method for matrix games is interesting from an algorithmic or learn-

ing standpoint, but its practical use is extremely limited; solving a game using linear

programming is not di�cult either conceptually or computationally.

The same is not true of Markov games, which are not known to be exactly solvable

by any algorithm. In addition, each phase of the standard iterative methods involve

solving a linear program|two, in the case of policy iteration. Therefore, there is much

to be said for applying a method like �ctitious play to the Markov-game case.

Vrieze and Tijs [171] explored this problem, and found a �ctious-play algorithm

for Markov games with convergence rates comparable to the matrix game case. Their

algorithm is given in Table 5.8.

Although the algorithm is a fairly straightforward extension of the algorithm from

the previous section, there are a few subtleties worth explaining. If we knew that V

represented the optimal value function for the given Markov game, then the algorithm

would essentially be �nding the value of the matrix game with payo�s

R(s; a1; a2) + �
X
s0

T (s; a1; a2; s
0)V (s0)

110

fictitiousMarkovGame(S;A1;A2; T; R; �; k) := f
M := maxs2S;a121;a22A2

jR(s; a1; a2)j
foreach s 2 S f

foreach a1 2 A1 Y [s; a1] :=M=(1� �)
foreach a2 2 A2 X [s; a2] :=M=(1� �)
V [s] := maxa12A1

Y [s; a1]
g
foreach t 2 1 : : :k f

foreach s 2 S f
a�1 := argmaxa12A1

Y [s; a1]
a�2 := argmina22A2

X [s; a2]
V [s] := min(V [s]; 1=t Y [s; a�1])
foreach a1 2 A1

Y [s; a1] := Y [s; a1] + R(s; a1; a�2) + �
P

s0 T (s; a1; a
�
2; s

0)V [s0]
foreach a2 2 A2

X [s; a2] := X [s; a2] +R(s; a�1; a2) + �
P

s0 T (s; a
�
1; a2; s

0)V [s0]
g

g
return(V)

g

Table 5.8: Approximating the value of a Markov game by �ctitious play.

111

for each s 2 S. However, the value of this game is V (s), so if we knew V , there would

be no point in solving this game.

Of course, we do not know the optimal V in advance, but the algorithm in Table 5.8

can be shown to approximate the true optimal value function from above. The algo-

rithm initializes the Y [s; a1] values with an optimistic estimate of the value of action

a1 in state s. Each time the maximum value of Y [s; a1] (over all actions) decreases, we

can decrease the estimate of the value of state s accordingly.

The �ctitious-play algorithm has much in common with a reinforcement-learning

approach to this problem; at each step, the players choose actions, and the choice of

actions a�ects the estimates and future decisions. However, it is a very strange learning

algorithm. First, for each player to learn to behave optimally, it is necessary for the

other player to choose its moves in a particular fashion; the two competing players must

collaborate on their choices. Second, updates and action choices are made in all states

simultaneously. These two di�culties make the �ctious-play approach unsuitable for

use in reinforcement-learning problems.

It is likely that the second of these di�culties can be eliminated; the same algorithm

ought to converge if Q values are estimated, as in the minimax-Q learning algorithm.

On the other hand, it is di�cult to imagine eliminating the �rst di�culty; it seems

necessary for the players to choose their actions in this highly scripted way for the

�ctitious-play approach to converge to optimal behavior.

5.7 Open Problems

In this chapter, I described the problem of solving Markov games, drawing from the

�elds of algorithmic analysis, reinforcement learning, and game theory. There are a

number of extensions that might prove fruitful and interesting.

� Game theorists consider two-player zero-sum games to be the simplest, and in

many ways, the least interesting, type of game. Variations that include possible

cooperation or multiple players have been considered extensively. Such models

are of interest to researchers in planning and reinforcement learning since they

could be used to capture interactions between a collection of agents solving tasks

together. Are there optimality criteria that would be appropriate for planning

and/or learning? Are there e�cient algorithms for manipulating these models?

112

� The use of linear programming in the innermost loop of minimax-Q learning is

problematic, because the computational complexity of each step is large and typ-

ically many steps will be needed before the system converges su�ciently. Would

approximate solutions to the linear programs su�ce? The results on �ctitious

play for Markov games indicate that this ought to be possible. Iterative methods

are also quite promising since the relevant linear programs change slowly over

time. Are there iterative linear-programming algorithms that would be appropri-

ate for this problem?

� The strength of the minimax criterion is that it allows the agent to converge to a

�xed strategy that is guaranteed to be \safe," in that it does as well as possible

against the worst possible opponent. It can be argued that this is unnecessary if

the agent is allowed to adapt continually to its opponent. To what extent is this

true? In theory, any deviation from the minimax-optimal policy would leave the

agent vulnerable to a devious form of trickery in which the opponent leads the

agent to learn a poor policy and then exploits the resulting situation. Can such

an opponent be identi�ed for, say, a regular Q-learning agent?

� The fact that rational-valued Markov games can have irrational value functions

makes it hard to discuss the complexity of the optimization problem|how should

the algorithm represent and return the irrational values? Decision problems like

\Is the optimal value function for state s at least r?" are well-de�ned (the

answer is just one bit), but the exact complexity is unknown. Can it be shown

to be uncomputable, perhaps by relating it to the problem of �nding the roots of

polynomial equations and Galois theory [6]?

� There are criteria other than minimax that capture the competitive aspect of

games, while satisfying the conditions for being a generalized mdp. Among these

are rules in which agents choose randomly among actions that maximize their

worst-case reward and those that maximize their expected reward against a par-

ticular adversary. This criterion can be shown to result in well-de�ned value

functions and convergent learning, but are the optimal policies interesting? Do

they blend aggressive behavior against a known opponent with conservative ac-

tions? Are there other update rules that are more appropriate? Are they non-

expansions?

113

� Markov games can be viewed as incomplete-information games with a particular

\information structure" [128] in which the state is made known to both players

every other move. It is possible that games with more elaborate information

structures can be solved just as e�ciently, as long as the structure is not too

complex. For example, as long as the true state is revealed often enough, it

ought to be possible to combine a successive-approximation algorithm with an

e�cient algorithm for solving game trees [84]. Would such a hybrid algorithm be

of interest? Are there any applications with this structure?

5.8 Related Work

Section 4.8 listed work related to alternating Markov games as well as the more general

Markov games discussed in this chapter.

Dobkin and Reiss [47] showed that the complexity of solving matrix games is closely

related to a set of problems in linear programming and computational geometry; it is

interesting to note that their paper was written before linear programming was known

to be solvable in polynomial time.

Work on game learning in the reinforcement-learning literature focuses almost exclu-

sively on alternating-move games. Noteworthy exceptions include work by Littman [90]

on a discrete soccer-like game, and work by Harmon, Baird, and Klopf [61] on a con-

tinuous pursuit-evasion game.

Kallenberg [76] examined a set of game-related problems that can be solved in

polynomial time by linear programming. These include one-player games (mdps), ma-

trix games, and Markov games in which transitions are inuenced by only one player.

Vrieze [170] surveyed all the algorithms listed in this chapter, as well as others.

General Markov games di�er from alternating Markov games in that the players

choose actions simultaneously. Games with simultaneous actions can be viewed as a

restricted type of incomplete-information game in which the players' actions are issued

sequentially but are not revealed until after both players have made their decisions.

Koller, Megiddo, and von Stengel [82, 84, 83] looked closely at games of partial infor-

mation. They developed algorithms that run in polynomial time with respect to the

size of the game tree, which roughly means that their results apply to Markov games

in which there are no cycles in the transition graph. Their algorithms �nd optimal

stochastic policies for a wide range of incomplete-information games including those

114

with simultaneous actions and games that do not obey the zero-sum property.

5.9 Contributions

In this chapter, I described Markov games, a model of sequential decision making in

which two agents choose actions in parallel. I discussed several of the classic algorithms

for �nding approximately optimal solutions to this type of game, and explained that

the existence of simple games with irrational solutions makes it di�cult to analyze

the exact computational complexity of this model. I showed for the �rst time that

this di�culty persists even in deterministic games. In spite of these computational

challenges, I presented a novel result that reinforcement-learning algorithms converge

to optimal solutions for Markov games.

Because of their computational intractability, Markov games will probably continue

to be of mainly theoretical interest to researchers in the �elds of reinforcement learn-

ing and operations research. However, they could potentially help provide worst-case

bounds for even more di�cult problems that arise in models with uncertainty in state

estimation [123] or imprecise value functions [112]. Even if Markov games themselves

are of only marginal interest, the optimal randomness that results from solving them

is an important and powerful concept that deserves further attention.

Chapter 6

Partially Observable Markov

Decision Processes

Portions of this chapter and its associated appendix have appeared in ear-

lier papers: \Planning and acting in partially observable stochastic do-

mains" [73] with Kaelbling and Cassandra, \Acting optimally in partially

observable stochastic domains" [32] with Cassandra and Kaelbling, and \An

introduction to reinforcement learning" [74] with Kaelbling and Moore.

Chapter 2 began with an example of a robot deciding how to navigate in a large o�ce

building. This hypothetical robot was plagued by an environment that it could not

completely control. In spite of these di�culties, I explained how such a robot could

use a map of its environment and knowledge of its own dynamics to generate optimal

policies for navigating. A more realistic robot not only has unreliable actions, but

unreliable observations as well: sometimes a corridor looks like a corner; sometimes a

T-junction looks like an L-junction. The mdp algorithms discussed in Chapter 2 are

no longer appropriate for an agent that does not have perfect state information.

A robot with imperfect state information cannot use a policy that only maps true

location to a best choice of action. In general, the robot will have to remember some-

thing about its history of actions and observations, and use this information, together

with its knowledge of the underlying dynamics of the world, to maintain an estimate

of its location. Many engineering applications follow this approach, using methods like

the Kalman �lter [77] to maintain a running estimate of the robot's spatial uncertainty,

expressed as a Gaussian probability distribution in Cartesian space. This approach will

115

116

not do for our robot, though. Its uncertainty may be discrete: it might be almost cer-

tain that it is in the north-east corner of either the fourth or the seventh oors, though

it might admit some chance that it is on the �fth oor, as well.

The robot must decide what actions to take given an uncertain estimate of its

location. In some cases, it might be su�cient for the robot to ignore its uncertainty

and take actions that would be appropriate for the most likely location. In other cases,

it might be better for the robot to take actions for the purpose of gathering information,

such as searching for a landmark or reading signs on the wall. In general, it will take

actions that ful�ll both purposes simultaneously.

6.1 Introduction

In this chapter, I address the problem of choosing optimal actions in partially observable

stochastic domains. Problems like the one described above can be modeled as partially

observable Markov decision processes (pomdps). In addition to their applicability to

problems of robot navigation, pomdps are useful for solving problems of factory process

control, resource allocation under uncertainty, cost-sensitive testing, and a variety of

other complex real-world challenges [109].

One important facet of the pomdp approach is that there is no distinction drawn

between actions taken to change the state of the world and actions taken to gain

information. This is important because, in general, every action has both types of

e�ect. Stopping to ask questions may delay the agent's arrival at the goal or spend

extra energy; moving forward may give the agent information that it is in a dead-end

because of the resulting crash.

6.2 Partially Observable Markov Decision Processes

Solving a pomdp involves taking a map or model of the environment which includes

state transition information, observation probabilities, and the reward structure, and

generating a plan for acting to maximize reward.

6.2.1 Basic Framework

A pomdp M = hS;A; T; R;Z ;Oi is de�ned in part by an mdp model: a �nite set S
of states, and a �nite set A of actions, a transition function T : S �A ! �(S), and a

117

2/5 1/5
2/5

home

store

+100

woodswoods
LEFT

LEFTLEFT RIGHT
RIGHT

RIGHT

Figure 6.1: An example partially observable environment.

reward function, R : S � A ! R. In addition, it includes a �nite set of observations,

Z , and an observation function O : S � A ! �(Z). The quantity O(s0; a; z) is the

probability of observing z 2 Z in state s0 after taking action a.

6.2.2 Acting Optimally

The average-reward criterion is not always well-de�ned for pomdps.1 This is roughly

because, in some problems, the agent can guarantee itself a huge reward tomorrow by

doing nothing today, so it ends up doing nothing forever. This is sometimes called the

problem of the in�nitely delayed splurge [121]. However, the optimal value function is

well-de�ned in the discounted case, which I will continue to focus on exclusively here.

Even though the optimal discounted in�nite-horizon value function is well-de�ned,

representing a policy that can achieve the optimal value function can be quite chal-

lenging. This section reviews some approaches for representing policies.

Memoryless Policies The most naive strategy for dealing with partial observability

is to ignore it; that is, to treat observations as if they were the states of the environment

and to try to �nd good behavior. Figure 6.1 shows a simple domain in which the agent

is attempting to get \home" from the store. After leaving the store, there is a good

chance that the agent will end up in one of two places that look like \woods", but that

require di�erent actions for getting home. If we consider these states to be the same,

then the agent cannot possibly behave optimally. But how well can it do?

1This is also true for mdps with in�nite state or action spaces.

118

memory-state-
update module

memory
state policy

observation action

Figure 6.2: Generic structure of memory-based solutions to pomdps.

Problems relating to �nding observation-to-state mappings in pomdps, sometimes

called memoryless policies , have been studied in many di�erent contexts [182, 91, 146,

70]. Finding the optimal memoryless policy is NP-hard [91], and it often has very poor

performance. In the case of the environment of Figure 6.1, for example, no memoryless

policy takes less than an in�nite number of steps to goal, on average.

Some improvement can be gained by considering stochastic memoryless policies;

these are mappings from observations to probability distributions over actions. If there

is randomness in the agent's actions, it will not get stuck in the woods forever. Although

algorithms exist for �nding locally optimal stochastic policies, �nding a globally optimal

policy is still NP-hard|this follows indirectly from a result by Papadimitriou and

Tsitsiklis [116]. In our woods example, the unique optimal stochastic policy is for the

agent, when in the woods, to go right with probability 2 � p
2 � 0:6 and left with

probability
p
2�1 � 0:4. This can be found by solving a simple (in this case) quadratic

program. The fact that the optimal policy requires irrational numbers, even for such a

simple example, gives some indication that it is a di�cult problem to solve exactly.

Memory-based Policies The only way to behave e�ectively in a wide-range of

environments is to use memory of previous actions and observations to create a better

estimate of the current state. There are a variety of approaches to learning policies

with memory.

Figure 6.2 illustrates the basic structure. The component on the left is the memory-

state-update module, which computes the agent's new memory state as a function of

the agent's present memory state, the most recent action, and the current observation.

Solution methods di�er in their choice of memory state.

History-window Policies One type of memory-based policy is obtained by de�ning

the agent's memory state to be a list of the k most recent actions and observations.

119

White and Scherer [178] explored algorithms for �nding near-optimal policies of this

form. Platzman [121] used a more sophisticated approach that involved variable-width

windows: the amount of history stored at any given time depended on the saliency of

the most recent actions and observations.

The variable-width-window approach can make much more e�cient use of a �nite

memory because the number of distinct memory states needed for a �xed window of

width k is (jAjjZj)k, whereas a variable-width-window approach can involve as few or

as many memory states as needed.

Finite-memory Policies In the �nite-memory approach, the memory state can be

any one of a �nite number of internal states. Finite-memory policies can remember

a �nite amount of information about the past; unlike history-window approaches, in-

formation can be stored for an arbitrarily long time. Both memoryless policies and

history-window policies are special cases of �nite-memory policies.

Because they are more expressive, general �nite-memory policies can be de�ned

that perform better than any history-window policy. However, this additional expres-

siveness makes optimal �nite-memory policies di�cult to �nd. A heuristic algorithm for

�nding stochastic �nite-memory policies has been explored [123]. The value-iteration

approach described in Chapter 7 can produce optimal �nite-memory policies for some

problems [32].

Information States There are pomdps for which no �nite memory is su�cient to

de�ne optimal behavior. In contrast, using the memory state to encode every action and

observation the agent ever encountered would be su�cient to allow optimal decisions

to be made. In many cases, an equivalent yet more convenient representation of the

past is the information state.

An information state is a probability distribution over states of the environment

indicating the likelihood, given the agent's past experience, that the environment is

actually in each of those states. A memory-state-update module for information states

can be constructed straightforwardly using the environment model and basic probabil-

ity theory (see Section 7.2.1).

The problem of �nding a policy mapping information states into actions can be

formulated as an mdp, but the mdp cannot be solved using the techniques of Chapter 2

because the state space is in�nite. Chapter 7 addresses techniques for solving this

120

information-state mdp.

6.3 Algorithms for Solving pomdps

There are no practical algorithms for solving pomdps. In Chapter 7, I present the

witness algorithm, which is the most e�cient algorithm to date for solving pomdps

exactly over a �nite horizon; it solves some pomdps very quickly and others quite

slowly. Here, I describe several algorithms that are of theoretical interest because they

help indicate the computational complexity of di�erent types of pomdps.

The fundamental decision problem is the following: given a pomdp M = hS;A; T;
R;Z ; O; �i, a distribution over starting states x0, and a reward bound r, is there a

policy such that the expected discounted reward starting from x0 is at least r? I will

assume that all the numbers involved are speci�ed as rational numbers written with

no more than B bits. I use \pomdp" to refer to the model M, and \pomdp problem"

to refer to M combined with x0 and the reward bound r.

The complexity of the general in�nite-horizon version of this problem is not known.

It may be the case that the problem is undecidable, although attempts to prove this

have not been successful. On the other hand, the more important problem of �nding

an �-optimal policy for a given pomdp problem can be solved. I address this problem

in more detail in Chapter 7.

6.3.1 Complexity Summary

In this chapter, I present results pertaining to the computational complexity of solving

24 separate variations of the pomdp problem. In this section, I describe upper bounds,

in Section 6.5 lower bounds. Here, I will briey summarize the results.

The basic pomdp problem is, given a pomdp model, an initial distribution x0, and

a reward bound r, is there a policy with value at least r starting from x0? There are 4

dimensions along which the basic problem might be varied. For each dimension, I will

list the values it can take, abbreviations for the values to simplify later discussion, and

the relationship between the various values.

� Transitions (T): In general, taking action a from state s results in a stochastic

transition. A simpler case is when all transitions and observations are determin-

istic. Any algorithm for solving stochastic (S) problems can be used to solve

121

deterministic (D) problems by setting the probabilities to zeros and ones; any

hardness result for a deterministic problem applies to the stochastic version as

well.

� Horizon (t): I am most interested in problems with an in�nite (1) planning hori-

zon. Sometimes, however, computing answers for long enough �nite horizons (F)

is su�cient. For analytic purposes, it is useful to consider problems in which the

horizon length is bounded by a polynomial in the size of the pomdp. Polynomial

horizons (P) are a special case of �nite horizons. We can create an equivalent

in�nite-horizon problem for a given polynomial-horizon one by replicating the

states once for each time step in the horizon, then adding a zero-reward absorb-

ing state at the end.

� Rewards (R): I will consider general rewards (G), and a special case in which

all rewards are non-positive and the target bound is zero. In problems of the

latter type, as soon as a single negative reward is encountered with non-zero

probability, the value of the policy is less than zero and the reward bound is not

met. For this reason, these problems can be formalized using boolean reward

values (true for zero rewards, false for negative rewards), so are called boolean-

reward problems (B). Discount factors are not needed in the speci�cation of

boolean-reward problems.

� Observations (O): When a pomdp has only one possible observation, it is unob-

servable (U). If there are one or more possible observations, I call it the general

case (G).

Table 6.1 summarizes the complexity results presented in this chapter. The paren-

thesized numbers are section references and *" represents a \don't care" symbol.

6.3.2 Deterministic pomdps

A deterministic pomdp M = hS;A; N;R;Z ;Obs; �i, is like a general pomdp with

the exception that the transition function N : S � A ! S and observation function

Obs : S�A ! Z are deterministic. In this section, I show how to exploit the structure

of deterministic pomdp problems to solve them.

The following lemma provides a powerful way to reason about deterministic pomdp

problems.

122

T t R O

S 1 G * EXPTIME-hard (6.5.1), not known to be decidable

* F * * decidable (6.3.3)

D 1 G * in EXPTIME (6.3.2), PSPACE-hard (6.5.3)

S 1 B G EXPTIME-comp.: EXPTIME-hard (6.5.1), in EXPTIME (6.3.3)

S 1 B U PSPACE-complete: PSPACE-hard (6.5.3), in PSPACE (6.3.3)

S P * G PSPACE-complete: PSPACE-hard (6.5.2), in PSPACE (6.3.3)

D 1 B * PSPACE-complete: PSPACE-hard (6.5.3), in PSPACE (6.3.2)

S P * U NP-complete: NP-hard (6.5.4), in NP (6.3.3)

D P * * NP-complete: NP-hard (6.5.4), in NP (6.3.2)

Table 6.1: Summary of pomdp complexity results in this chapter.

Lemma 6.1 For every in�nite-horizon deterministic pomdp problem hS;A; N;R;Z;
Obs; �; x0; ri, there is a �nite-state mdp with an equivalent optimal value. The number

of states in the mdp is no more than (1 + jSj)jSj.

Proof: We will construct a �nite-state Markov decision process hD;A; T 0; R0; �i that
is equivalent to the given deterministic pomdp problem.

In the initial distribution, the probability that the agent is in state s is x0[s]. If

the agent is actually in state s, then after taking action a and observing z, the agent

is in state N(s; a), assuming that Obs(N(s; a)) = z. If Obs(N(s; a)) 6= z, then we can

conclude that it was not possible for the agent to have been in state s initially.

This argument can be generalized to a sequence of actions and observations. For

each t � 1, let at be the tth action and zt be the resulting observation. For each t � 0,

let Dt : S ! (S[fgoneg). I will refer to Dt as a table, and de�ne the value Dt(s) to be

the location of the agent at time t, assuming it started in state s. IfDt(s) = gone, it was

not possible for the agent to have started in state s, given the actions and observations

up to time t. Table Dt is de�ned recursively by: D0(s) = s for all s 2 S and

Dt(s) =

8>>><
>>>:

gone; if Dt�1(s) = gone

or Obs(N(Dt�1(s); at); at) 6= zt;

N(Dt�1(s); at); otherwise.

We can use elementary probability theory to express the probability that the agent

is in state s after t steps in terms of Dt,

Pr(st = s) = xt[s] =

P
s0 x0[s

0]IfDt(s0) = sg
(
P

s0 x0[s
0]IfDt(s0) 6= goneg) ; (6.1)

123

where Ifeg has value 1 if the boolean expression e is true and zero otherwise. Equa-

tion 6.1 simply sums up, over the initial states s0 for which the agent would now be

in state s, the probability that the agent started in state s0, and then normalizes the

result. The vector xt of probabilities is an information state, which is an adequate

summary of the past to allow optimal decisions to be made [5].

Since xt can be written entirely in terms of x0, which does not change from step to

step, and Dt which does, we can use the table Dt to represent the state of the system

at time t. As there are (1 + jSj)jSj possible tables, the state space for a deterministic

pomdp with a known initial distribution is �nite (in fact, exponential). In the following,

D represents the set of all tables.

The transitions and rewards over the state space of tables are de�ned as follows.

Let N 0 be a next-table function given a table, action, and observation, N 0(D; a; z) = D0

where

D0(s) =

8>>><
>>>:

gone; if D(s) = gone

or Obs(N(D(s); a); a) 6= z

N(D(s); a); otherwise.

The probability of observing z after taking action a from table D can be found by

probability theory to be

Pr(zjD; a) =
P

s x0[s]IfObs(N(D(s); a); a) = zgP
z0(
P

s x0[s]IfObs(N(D(s); a); a) = z0g) :

Intuitively, this expression considers each state s and includes its initial probability

x0[s] in the total if the state that it maps to under table D followed by action s results

in observation z. It then normalizes this quantity so that it sums to one when all

possible observations are considered.

The probability of a transition from D to D0 under action a is the sum over obser-

vations z of the probability of observing z, given that D goes to D0 under observation

z: T 0(D; a;D0) =
P

z Pr(zja;D)IfD0 = N 0(D; a; z)g. The expected reward for action

a from table D is the sum over states of the reward from state D(s) weighted by the

probability that s was the initial state, R0(D; a) =
P

s IfD(s) 6= gonegx0[s]R(D(s); a).
The Markov decision process hD;A; T 0; R0; �i is equivalent to the given deterministic

pomdp problem because at each step, the set of tables and x0 constitute a su�cient

summary of past history. �

Lemma 6.1 shows that the state space of a deterministic pomdp problem possesses

124

a great deal of structure. I will next show that the transitions between states are also

constrained in a useful way.

Recall from the proof of Lemma 6.1 that we can represent the state of a deterministic

pomdp problem at any moment in time by a table D : S ! (S [fgoneg). De�ne

ng(D) =
P

s IfD(s) 6= goneg, where I once again is a zero-one indicator function on

the given predicate. The quantity ng(D) represents the number of \non-gone" elements

in the D table. The set of possible next tables for D given action a is a singleton (i.e.,

the transition is deterministic) if and only if ng(D0) = ng(D), where D0 is the resulting

table. If there are multiple possible next tables, then the value of ng for each of the

next tables is strictly smaller than ng(D). This follows from the lemma below.

Lemma 6.2 Given a table D, and an action a, ng(D) =
P

z ng(N
0(D; a; z)).

Proof: Using the de�nitions of ng and N 0, and letting D0 be the result of applying N 0

to D,

X
z

ng(N 0(D; a; z)) =
X
z

X
s

IfD0(s) 6= goneg

=
X
s

X
z

IfD(s) 6= gone and Obs(N(D(s); a); a) = zg

=
X
s

IfD(s) 6= goneg

= ng(D):

�

Lemma 6.2 will help prove two important results concerning deterministic pomdp

problems later in this chapter.

In�nite Horizon

Lemma 6.1 leads directly to an algorithm for solving deterministic pomdp problems:

create the �nite-state mdp described in Lemma 6.1, compute the optimal value function

V � using the linear-programming algorithm of Chapter 2, and then check if V �(D0) � r

(where D0(s) = s for all s 2 S). The run time is exponential in jSj; it is in EXPTIME.

The algorithm and analysis can be improved for special cases. In the boolean-reward

case, I will show how to reduce the space requirements to be polynomial, and in the the

polynomial-horizon case, I will show how to solve the problem non-deterministically in

polynomial time. These results are presented next.

125

Polynomial Horizon

The optimal t-horizon policy for a pomdp problem can be represented by a t-step

policy tree (policy trees are discussed in detail in Chapter 7, see Figure 7.3 for a useful

illustration). A t-step policy tree is a depth t tree that gives the action choice for

the initial state at the root and a (t � 1)-step policy tree for each observation that is

possible given the initial action. A t-step policy tree tells the agent which action to

take �rst and how to behave depending on the observation that results.

In general, a t-step policy tree will have as many as jZjt nodes. In a deterministic

pomdp problem, this upper bound can be lowered considerably.

Lemma 6.3 The optimal t-step policy tree for a deterministic pomdp problem has no

more than tjSj nodes.

Proof: The lemma follows from several useful facts. First, each node in a policy tree

can be associated with a table. In particular, the root node is associated with the

initial table D0, and the observation z child of a node with action choice a and table

D is associated with table N 0(D; a; z).

Second, the optimal policy tree need not include any node whose associated table

D would have ng(D) = 0. Such a node could never be reached (all observations would

be impossible) and so is irrelevant to the representation of the optimal policy.

Third, the sum of the ng values over all the tables at any given level of the policy

tree is exactly jSj. This follows from the fact that ng(D0) = jSj, and Lemma 6.2, which
says that the sum of ng values is preserved between a node and its children.

Putting these three facts together, there can be no more than jSj nodes at any of

the t levels of the optimal t-step policy tree, from which the lemma follows. �

Lemma 6.3 shows that, for a polynomial horizon, the number of nodes in the optimal

policy tree is polynomially bounded. A polynomial-size policy tree can be evaluated

in polynomial time quite easily. For a leaf, let D be the associated table and a be the

action chosen; the value of the leaf is R(D; a). For an internal node of the tree, let D

be the associated table and a be the action chosen at that node. The value of the node

is

R(D; a) + �
X
z

value of the z child :

We can now specify a polynomial-time non-deterministic (NP) algorithm for solving

polynomial-horizon deterministic pomdp problems.

126

D D’

D’’

ng(D)

ng(D’’) ...

Figure 6.3: Optimal in�nite-horizon policy for a deterministic pomdp.

1. Guess the optimal policy tree. By Lemma 6.3, the tree need not have more than

a polynomial number of nodes.

2. Evaluate the guessed tree in polynomial time.

3. Return \true" if the value of the root node is at least r.

Boolean Rewards

In the previous section, I showed how to exploit the special structure of the table transi-

tion function to show that the optimal polynomial-horizon policy could be represented

succinctly. A similar observation can be made for in�nite-horizon policies, which makes

it possible to solve boolean-reward problems using polynomial space. Recall that in a

boolean-reward pomdp problem, all rewards are non-positive and the reward bound is

zero.

As a consequence of Lemma 6.2, any sequence of tables followed starting from D0

can have no more than jSj stochastic transitions in it. Let D be some table that is

reachable from D0 by following a particular optimal policy. What tables can be visited

after D? The agent will take some number of deterministic transitions (no more than

jDj), and reach a table D0 such that ng(D0) = ng(D)|all the tables encountered along

this path will have ng values equal to ng(D) also. Then, either a loop will be entered

(a path of length no more than jDj from D0 to itself), or a stochastic transition will

occur to table D00 such that ng(D00) < ng(D). Figure 6.3 depicts the structure of an

in�nite-horizon policy starting from table D.

In the boolean-reward version of the deterministic in�nite-horizon pomdp problem,

we want to know whether there is a policy with expected reward equal to zero starting

from x0 (table D0) given that all immediate rewards are either zero or negative. Let

127

V 0?(D) be a boolean variable indicating whether or not a zero-reward policy exists for

an agent starting at table D. The Bellman equation for V 0? can be written

V 0?(D) = 9a : (R0(D; a) = 0^ 8z : V 0?(N 0(D; a; z))):

This is not a generalized mdp because boolean arithmetic is being used in place of

operations on real numbers.

Using the insight illustrated in Figure 6.3, we can rewrite the Bellman equation in a

computationally more convenient form. Let zpath(D;D0; t) be a predicate that is true if

there is some zero-reward deterministic path from D to D0 of length t, and stoch(D; a)

be a predicate that is true if there is more than one possible next table resulting from

taking action a from table D. The Bellman equation can now be written

V 0?(D) = 9D0 : 90 � t � jDj : (ng(D0) = ng(D)^ zpath(D;D0; t) ^
((90 � t0 � jDj : zpath(D0; D0; t0))

_(9a : stoch(D0; a) ^ 8z : V 0?(N 0(D0; a; z))))) :

Although this formulation is complicated, it has several important properties. First,

V 0?(D) is not de�ned in terms of itself. Although the de�nition of V 0? is recursive,

V 0?(D) is only de�ned in terms of V 0?(D00) such that ng(D00) < ng(D). Second, close

examination of the formula reveals that it can be evaluated using a polynomial amount

of space, as long as zpath can be evaluated in a polynomial amount of space.

To see that zpath can be evaluated in a polynomial amount of space, notice that it

can be expressed as

zpath(D;D0; t) =

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

false; if t = 0 and D 6= D0;

false; if ng(D) 6= ng(D0);

false; if t = 1 and there is no a such that

T 0(D; a;D0) = 1 and R0(D; a) = 0;

false; if t > 1 and there is no D00 such that

zpath(D;D00; dt=2e) and
zpath(D00; D0; bt=2c);

true; otherwise:

It is not hard to see that the above expression for zpath is correct; that it can be

evaluated in polynomial space follows from Savitch's Theorem [115].

128

Since V 0?(D0) is true if and only if the deterministic in�nite-horizon pomdp has a

zero-reward policy, and V 0?(D0) can be evaluated in polynomial space, the problem of

solving boolean-reward pomdps is in PSPACE.

6.3.3 Stochastic Transitions

When a pomdp has stochastic transitions, the set of information states reachable from

a given starting distribution can be countably in�nite; this is true even when actions

are chosen according to an optimal stationary policy. As a result, although the optimal

value function can be approximated to any degree of accuracy in �nite time (see Chap-

ter 7), determining whether an in�nite-horizon policy can achieve an expected reward

of at least r is quite di�cult, and perhaps even impossible.

There are special cases of the problem that are decidable. I will next show that

when reward is restricted to be non-positive, the existence of a zero-reward optimal

policy can be determined using an exponential amount of time. I will also show that

when the horizon is restricted to be �nite, the problem is decidable, and if the horizon

is polynomially bounded, the problem can be decided in a polynomial amount of space.

Polynomial Horizon

An information state is a probability distribution over the states in S. In the next

chapter, I will explain how an information state can be updated to summarize new

information, in the form of actions and observations. For the purposes of this section,

all we need to know is that information states are su�cient summaries of past history

for predicting future transitions and rewards, and that the set of information states

reachable in a �nite number of steps is �nite.

The t-step value of information state x can be written

Vt(x) = max
a

 X
s

x[s]R(s; a) + �
X
z

Pr(zjx; a)Vt�1(x0)
!
;

where V0(x) = 0 and x0 is the information state resulting from taking action a and

observing z from information state x. It is straightforward to evaluate this expression

in �nite time for t < 1 and in polynomial space if t is polynomially bounded [116].

The resulting optimal value can be compared to the reward bound r to answer the

decision problem for a �nite-horizon pomdp problem.

129

In the case of an unobservable pomdp over a polynomial horizon, the optimal policy

is a polynomial-length sequence of actions; such a policy can be guessed and evaluated

in polynomial time, therefore the associated pomdp problem is in NP.

Boolean Rewards

To compute whether a given policy achieves zero total reward, given that immediate

rewards are all non-positive, it is not necessary to keep accurate statistics about the

agent's information state. For information state x, if x[s] > 0 and taking action a

from state s results in a negative reward, then taking action a from information state

x results in negative reward.

It is su�cient, therefore, to group information states by the set of states to which

they assign positive probability. Using this insight, the total number of distinct groups

of information states is 2jSj�1, the size of the power set of S minus the null set. For the

boolean-reward case, it is possible to de�ne a boolean-reward mdp with these groups as

the states. This mdp has a zero-reward optimal policy if and only if the boolean-reward

pomdp has one, and can be solved in exponential time using the linear-programming

algorithm of Chapter 2, or by a simple graph search algorithm.

In the case of an unobservable pomdp, the �nite-state boolean-reward mdp de-

scribed above is deterministic and can be solved using polynomial space using a varia-

tion of the zpath predicate from Section 6.3.2.

6.4 Algorithmic Analysis

The presentation of the algorithms in Section 6.3 included analyses of their upper

bounds|it is worth noting that these algorithms can all be implemented to run in

exponential time because all NP, PSPACE, and EXPTIME algorithms can. Therefore,

the worst-case run times (and most of the best-case run times) for the algorithms in

the previous section are exponential.

6.5 Complexity Results

In this section, I collect what is known of the complexity of solving pomdps. I show

that

130

� the in�nite-horizon problem is EXPTIME-hard and EXPTIME-complete in the

case of boolean rewards;

� the polynomial-horizon problem is PSPACE-complete [116], even in the boolean-

reward case;

� the in�nite-horizon, deterministic case (observable or not) is PSPACE-hard, and

PSPACE-complete in the boolean-reward case; and

� the polynomial-horizon, deterministic problem is NP-complete, even in the bool-

ean reward, unobservable case.

Each result is a lower bound, stated in its most speci�c form. It is important to

keep in mind that hardness results for boolean-reward models also apply to general-

reward models, and hardness results for unobservable models also apply to partially

observable models. I will summarize the implications of these results in Section 6.5.5.

6.5.1 In�nite Horizon

The in�nite-horizon, boolean-reward pomdp problem is: Given a pomdpM = hS;A; T;
R;Z ; Oi in which all rewards are non-positive, and a set of non-zero probability initial

states S0, is there a policy that achieves zero reward over the in�nite horizon starting

from every state in S0?

This problem is provably intractable. In Section F.2, I show that the problem is

hard for EXPTIME, which implies that any algorithm for solving it must take expo-

nential time for in�nitely many instances. See Papadimitriou's complexity book [115]

for background information on the class EXPTIME.

6.5.2 Polynomial Horizon

The polynomial-horizon, boolean-reward pomdp problem is: Given a pomdp M =

hS;A; T; R;Z; Oi in which all rewards are non-positive, a polynomially bounded horizon
length t, and a set of non-zero probability initial states S0, is there a policy that achieves

zero reward over t steps starting from every state in S0?

A polynomial-time algorithm for solving this problem could be used to solve quant-

i�ed-boolean-formula problems in polynomial time. Since the quanti�ed-boolean-for-

mula problem is PSPACE-hard [55], this shows that the polynomial-horizon, boolean-

reward pomdp problem is also PSPACE-hard. The proof is due to Papadimitriou and

131

Tsitsiklis [116].

6.5.3 In�nite Horizon, Deterministic

The unobservable, deterministic, in�nite-horizon, boolean-reward pomdp problem is:

Given a deterministic, unobservable pomdp M = hS;A; N;Ri in which all rewards are

non-positive, and a set of non-zero probability initial states S0, is there a policy that

achieves zero reward over the in�nite horizon starting from every state in S0?

A polynomial-time algorithm for solving this problem could be used to solve �nite-

state-automata-intersection problems in polynomial time. Since the �nite-state-auto-

mata-intersection problem is PSPACE-hard [55], this shows that the unobservable,

deterministic, in�nite-horizon, boolean-reward pomdp problem is also PSPACE-hard.

The proof is given in Section F.1.

6.5.4 Polynomial Horizon, Deterministic

The unobservable, deterministic, polynomial-horizon, boolean-reward pomdp problem

is: Given a deterministic, unobservable pomdp M = hS;A; N;Ri in which all rewards

are non-positive, a polynomially bounded horizon-length t, and a set of non-zero prob-

ability initial states S0, is there a policy that achieves zero reward over t steps starting

from every state in S0?

A polynomial-time algorithm for solving this problem could be used to solve 3-CNF-

SAT problems in polynomial time. Since the 3-CNF-SAT problem is NP-hard [55],

this shows that the unobservable, deterministic, polynomial-horizon, boolean-reward

pomdp problem is also NP-hard. The proof is a corollary of the result from Sec-

tion 6.5.2, due to Papadimitriou and Tsitsiklis [116].

6.5.5 Complexity Summary

Table 6.1 summarized the complexity results (lower bounds) presented in this section,

as well as the upper bounds derived from the algorithms in Section 6.3. Figure 6.4

gives a more abstract summary. In the �gure, the most general problem is at the top

and the most constrained is at the bottom, the pre�x \D-" means deterministic, the

su�x \-poly" means polynomial horizon, and \UMDP" means unobservable mdp. The

exact \complete" complexity class for the boolean-reward problem is given, and when

132

D-POMDP
PSPACE*

POMDP-poly
PSPACE

UMDP
PSPACE*

D-UMDP
PSPACE*

D-POMDP-poly
NP

UMDP-poly
NP

D-UMDP-poly
NP

POMDP
EXPTIME*

Figure 6.4: An abstract summary of complexity results for pomdps.

the general-reward problem is not known to be in the same class, it is marked with an

asterisk.

There are a few observations worth making about the information in the �gure.

Although, historically, stochastic models have been viewed as more di�cult than their

deterministic counterparts, this is not consistently the case. In particular, in unobserv-

able models, restricting the problem to deterministic transitions does not change the

complexity class.

A more important simpli�cation is shifting from in�nite-horizon problems to poly-

nomial-horizon problems. This consistently improves the complexity (EXPTIME to

PSPACE, PSPACE to NP), and makes it possible to solve general-reward problems as

easily as boolean-reward problems. This provides additional support to the idea that

approximating an in�nite-horizon solution by a �nite-horizon solution is an e�cient

approach.

133

6.6 Reinforcement Learning in pomdps

Reinforcement learning in partially observable domains is a much more di�cult problem

than reinforcement learning in completely observable domains, such as mdps or Markov

games. In general, an experience tuple in a pomdp is hat; zt; rti: the most recent action,
observation, and reward. Whereas, in completely observable models, it is possible for

the reinforcement learner to �nd the optimal value function when experience tuples are

presented in an arbitrary order, in pomdps, the proper ordering is crucial to learning;

previous experience tuples are part of the agent's past history, and therefore its state.

Because of these di�culties, no reinforcement-learning method for general pomdps

is known to converge to an optimal policy. Nonetheless, there are some heuristic meth-

ods that are known to do well on simple problems. It is an open problem whether any

of these methods can be used to solve realistic problems.

As before, I classify reinforcement-learning methods according to whether or not

they learn a model of the environment, or simply try to learn a policy directly. I

subclassify model-free approaches by whether any form of short-term memory is used.

6.6.1 Model-free Methods, Memoryless

In the memoryless approach to reinforcement learning in pomdps, the learner treats

observations as if they were states. Two consecutive experience tuples can be combined

to create an observation tuple of the form hzt�1; at; zt; rti. This tuple is similar to the
experience tuple in mdps, with observations replacing states.

In pomdps for which the immediate observation completely distinguishes the cur-

rent state, this observation tuple is su�cient for learning optimal behavior (see Sec-

tion 2.6.1). In other pomdps, it is not su�cient for learning; even if immediate obser-

vations are enough to make optimal action choices, learning which choices to make can

require additional information about past history [103].

Q-learning Many researchers have used Q-learning and other mdp-based reinforce-

ment-learning algorithms to learn policies for partially observable domains. One in-

teresting example is Wilson's work on a 900-state pomdp [182]. A classi�er-based

approach, and later Q-learning, were both able to �nd acceptable memoryless policies

for this large domain. It has been shown [91] that neither approach �nds the optimal

memoryless policy. In addition, there are examples that show that Q-learning can fail

134

to converge or �nd pessimal policies in partially observable domains; see Section F.3.

Stochastic policies Even if Q-learning were able to �nd the optimal observation-to-

action policy, it would be of little use in general; in many problems, no observation-to-

action policy achieves acceptable levels of reward. By broadening the class of memo-

ryless policies to stochastic memoryless policies , it is possible to improve the situation

somewhat (recall the example in Figure 6.1).

Jaakkola, Singh and Jordan [70] developed a reinforcement-learning algorithm that

learns policies that choose actions probabilistically on the basis of the current obser-

vation. Their algorithm converges to locally optimal policies, meaning that no local

change to the probabilities results in improved performance, although it might be pos-

sible to adopt an entirely di�erent policy that does substantially better. There has

been extremely little computational experience with this algorithm; it is di�cult to

judge its usefulness at this time.

The algorithm itself is interesting in its use of TD(1)-type updates. This means

that, during learning, there is a great deal of record keeping and statistics gathering.

Nonetheless, the method is considered \memoryless" in that the policy that is learned

does not require the agent to maintain any memory of the past in deciding which action

to choose.

Consistent Representations Whitehead and Lin [179] demonstrate that, for some

environments, it is possible to coax a learning algorithm to adopt a good memoryless

policy, if one exists. A consistent representation, in their framework, is one in which the

states visited in the course of executing a policy can be adequately distinguished on the

basis of their observations. Whitehead and Lin present an algorithm that is appropriate

for pomdps in which the agent has some degree of control over its observations.

6.6.2 Model-free Methods, Memory-based

Unlike the memoryless methods, memory-based methods construct policies that require

the agent to maintain some form of short-term memory during the execution of the pol-

icy. Such policies can be signi�cantly better than memoryless policies when the crucial

states of the environment cannot be distinguished on the basis of their observations.

There are environments for which no �nite amount of memory su�ces for constructing

135

an optimal policy; it is not yet clear whether important or practical environments have

this property.

Su�x tree The su�x-tree approach is closely related to Platzman's variable-width-

history-window approach [122], mentioned earlier. McCallum [105] showed how a good

policy can be learned in the absence of a model by iteratively widening the history

window at points that appear to bene�t from additional history information. A closely

related technique was explored by Ring [129] from a \neural" perspective.

A recent extension of the su�x-tree approach [103], adapted to deal with large,

structured observation spaces, has been applied to a simulated highway-driving task

with over 21,000 states, 6,000 observations, and �ve actions. The learned policy used

about 150 internal states, and was able to handle many tricky situations; however, it

was, by no means, optimal.

Recurrent Q-learning One intuitively simple approach is to use a recurrent neural

network to learn Q values. The network can be trained using backpropagation through

time or some other suitable technique, and learns to retain \history features" to predict

value. This approach has been studied by a number of researchers [106, 89, 137]. It

seems to work e�ectively on simple problems, but can su�er from convergence to local

optima on more complex problems.

Register memory Another short-term memory structure that has been studied in

the reinforcement-learning framework is storage registers [72, 91, 181, 35]. The idea here

is that the agent has explicit actions for saving information in non-volatile memory, and

for retrieving this information at a later time.2 The method has been used successfully

when the number of storage registers is small (one or two), but the combinatorics

appear to make this approach impractical when the number of registers is larger.

6.6.3 Model-based Methods

As in the completely-observable case, we can learn to solve a pomdp by breaking the

process into two parts: �rst, learn the pomdp model from experience, then (or con-

currently) �nd an optimal policy for the model. Given a model, a policy can be found

2This type of memory can be viewed as a form of stigmergy [12]. The idea behind stigmergy is that
the actions of an agent change the environment in a way that a�ects later behavior resulting in a form
of \external memory."

136

using techniques from Chapter 7; both algorithmic methods and learning methods are

appropriate. This section describes several attempts at learning the model itself.

Chrisman [34] showed how the Baum-Welsh algorithm [11] for learning hidden

Markov models (HMMs) could be adapted to learning transition and observation func-

tions for pomdps. He, and later McCallum [104], gave heuristic state-splitting rules

to attempt to learn the smallest possible model that captures the structure of a given

environment.

The Baum-Welsh algorithm is known to converge to locally optimal models, and

the same is probably true of its application to learning pomdp models. However,

no method is known for converging to a globally optimal model for general pomdps.

Thus, even if an optimal policy could be found for the learned model, there is still no

guarantee that the process would converge to an optimal policy for the environment.

In their work on model-based methods for pomdps, Chrisman and McCallum

learned a particular representation of the value function that did not require an ex-

plicit representation of the reward function. To apply the sophisticated techniques of

Chapter 7 in the context of a learned model, it is necessary to represent the reward

function R directly. Fortunately, this is not di�cult to do.

Given a learned pomdp, it is possible to use the history of actions and observations

to construct an information-state experience tuple, hxt; at; rt; xt+1i. We want to �nd

a reward function R that has the property that
P

s xt[s]R(s; at) is the expected value

of rt. Assuming the information states are properly maintained, this is equivalent to a

supervised-learning problem with a simple linear function. The update rule

�R(s; at) = �txt[s]

rt �

X
s

xt[s]R(s; at)

!
;

where �t is a learning rate, can be shown to make the reward function converge to one

that predicts the immediate rewards arbitrarily accurately [66].

6.7 Open Problems

The study of algorithmic and complexity properties of pomdps is still relatively young.

Although the results I presented in this chapter constitute signi�cant progress towards

understanding these problems, many important issues remain unresolved.

� Given a pomdp, an initial distribution, and a reward bound, is it possible to

determine whether there is an in�nite-horizon policy that can achieve the reward

137

bound or better from the given initial distribution? What about when the pomdp

is unobservable? There is some reason to believe that the problem is undecidable,

but proving this appears extremely di�cult.3

� Is there is a pomdp problem and initial distribution, all represented with rational

numbers, whose optimal value from that initial distribution has irrational value?

The answer to this might shed some light on the decidability of pomdp problems.

� Consider a pomdp in which there is a zero-reward absorbing state that is reached

with probability 1 under all policies. If the pomdp is completely observable, this

condition is the all-policies-proper condition, and the optimal value function is

bounded even if � = 1. Is this also true when the pomdp is partially observable?

If the minimum probability of reaching the absorbing state is non zero from all

states, say p, the answer is yes: an equivalent pomdp can be created by decreasing

the probability of reaching the absorbing state and setting the discount factor to

1� (1� �)p.

� Several researchers [178, 122] have shown that pomdps with no zero probabilities

in their transition or observation matrices can be solved arbitrarily well by policies

that remember a �nite amount of history. This is because non-zero probabilities

have a tendency to make distant observations and actions irrelevant to current

decision making; this can be viewed as informational discounting, analogous to

the value discounting that makes distant future rewards irrelevant to current

decision making. Are pomdps with informational discounting easier to solve than

general pomdps? Are they decidable? Can the idea of informational discounting

make it possible to analyze approximate state estimators?

� Sondik [149] de�nes the class of �nitely transient policies, and shows that these

policies can be represented as �nite-memory policies. The pomdp decision prob-

lem described earlier is decidable for the class of pomdps with �nitely transient

optimal policies, because we can simply enumerate all the �nite-memory policies

until one is found that is provably optimal. Can value iteration be used to iden-

tify optimal policies for �nitely transient pomdps? Is informational discounting

guaranteed to make a pomdp �nitely transient?

3Work currently in progress by Hanks uses a result from the probabilistic automata literature [118]
to show that problem of solving undiscounted pomdps is undecidable; it is unclear whether these results
can be adapted for discounted pomdps.

138

� The problem of �nding the optimal value for a �nite-horizon deterministic pomdp

is NP-complete. It has been shown that there are heuristics that are useful for

�nding optimal memoryless policies [91], another NP-complete problem. Are

there good heuristics for solving �nite-horizon deterministic pomdps?

� The search method used in the PSPACE algorithm for computing optimal values

for deterministic, in�nite-horizon pomdps with boolean rewards (Section 6.3.2)

also works for general-reward pomdps, except that the values themselves may

require an exponential number of bits to write down. Is there a way to represent

the optimal values more compactly? If so, it might be possible to extend the

PSPACE result to cover general-reward pomdps.

� The existence of Bellman equations for the boolean-reward case (Section 6.3.2)

suggests that it might be possible to develop a theory of optimal policies for other

algebraic structures. Are there other algebraic structures that could be used in

a sequential decision-making setting?

� Is there a class of natural pomdps? The carefully constructed hard pomdps I

reference in this chapter do not seem very natural. Do the pomdps found in

real-world problems have structure that makes them any easier to solve?

� The complexity results in this chapter address the di�culty of computing exact

solutions to pomdps. Finding approximate solutions is likely to be easier. What

is the complexity of computing approximately optimal pomdp policies?

� Is there a reinforcement-learning method that converges to an optimal policy?

Although no such algorithm is known, I believe McCallum's su�x-tree algorithm

is close to being convergent, at least applied to pomdps with optimal �nite-

history policies. Is there a non-trivial subclass of pomdps that can be solved by

reinforcement learning? Would it help to consider \natural" pomdps?

6.8 Related Work

In this chapter, I presented partially observable Markov decision processes, gave a

brief overview of solution methods that have been employed to solve them, developed

associated complexity results, and described reinforcement-learning approaches.

139

The fundamental mathematical structure of pomdps was developed by Drake [48]

and Astr�om [5]. The algorithmic foundation was laid by Sondik [149, 150]. Additional

information on algorithmic approaches can be found in Section 7.8.

State estimation in a type of continuous-space pomdp was explored by Kalman [77]

and others, although the \spatial" assumptions required by Kalman's approach are

violated for the graph-like state spaces considered in this chapter.

Several researchers have explored the problem of �nding �nite-memory policies for

pomdps. Platzman [121] developed a �nite-history-window approach in his thesis, and

later explored a heuristic method for �nding more general stochastic �nite-memory

policies [123]. White and Scherer [178] also presented bounds on the suboptimality of a

type of �nite-history-window approach. Cassandra, Kaelbling, and Littman [32] showed

how �nite-memory policies can sometimes be found using value iteration. Littman [91]

showed that �nding good memoryless policies is NP-complete; closely related results

were proven by Papadimitriou and Tsitsiklis [116] and Koller and Megiddo [82]. Both

Littman's and Papadimitriou and Tsitsiklis' proofs can be extended to show that �nding

optimal stochastic memoryless policies is NP-hard.

The study of the complexity of Markov decision processes was initiated by Papadim-

itriou and Tsitsiklis [116]. For pomdps, they showed that the �nite-horizon problem is

PSPACE-hard. More recent work by Burago, de Rougemont and Slissenko [31] showed

that a class of pomdps with bounded unobservability can be solved in polynomial time.

They introduced a parameter m which is a measure of how \unobservable" the envi-

ronment is; given that observations are a deterministic function of the state, m is the

largest number of states that possess the same observation. Special cases where m = 1

(completely observable) and m = jSj (completely unobservable) have been studied

separately.

The relevant reinforcement-learning literature is quite varied. Singh, Jaakkola and

Jordan [146] presented the theory behind de�ning optimal memoryless (and by ex-

tension, �nite-memory) policies in partially observable reinforcement-learning environ-

ments. They argued persuasively in favor of using an undiscounted criterion. Jaakkola,

Jordan and Singh [70] described a provably convergent reinforcement-learning algo-

rithm for maximizing undiscounted reward in partially observable environments; their

algorithm �nds locally optimal stochastic memoryless policies.

Wilson [182] presented results on applying a classi�er-system-based memoryless

reinforcement-learning algorithm to a large partially observable environment to fairly

140

good e�ect. Littman [91] repeated these experiments using Q-learning with similar

results. Wilson [181] recently suggested a register-memory extension to a classi�er

system; Cli� and Ross [35] implemented this idea and found that it works well for

very simple problems. McCallum [105] examined a tree-based-memory approach for

simultaneously learning a predictive model and an approximate value function.

Neural networks have been used to �nd short-term memories for reinforcement-

learning agents. Schmidhuber [137] designed a novel connectionist learning algorithm

for Markovian and non-Markovian environments. Lin and Mitchell [89] surveyed several

di�erent architectures including �nite-history windows, observation prediction models,

and recurrent networks for approximating the optimal value function. Meeden, Mc-

Graw, and Blank [106] applied a simple backpropagation-based algorithm [2] to a re-

current network that learned to drive a remote-controlled car. Lin and Whitehead [179]

presented reinforcement-learning algorithms for learning internal representations of the

state, and an algorithm for learning to behave in such a way as to obviate the need

for internal state representation. In all these papers, the problems described would be

di�cult to formalize as pomdps; some involve continuous state spaces, others act in the

real-world in the absence of a model, and the rest have state spaces that are so large

that it would be di�cult to solve them using existing algorithms. However, without

additional formal analysis, it is di�cult to predict whether these results will scale well

to larger domains.

Chrisman [34] and McCallum [104] extended an algorithm for learning hidden

Markov models to the case of learning a reward and transition model for a pomdp.

Their algorithms used an impoverished linear representation for the value function,

but sophisticated rules for determining when to extend the number of states in the

approximate model; Chrisman used a rule based on the accurate prediction of observa-

tions, and McCallum used a rule based on the accurate prediction of values. Bengio and

Frasconi [14] created an algorithm for learning input/output HMMs, a model that is

equivalent to a pomdp with no rewards. Abe and Warmuth [1] studied the problem of

learning approximately correct probabilistic automata from experience. Their learning

framework is very interesting, and worth extending to pomdps. Hernandez-Lerma and

Marcus [65] approach the problem of reinforcement-learning in pomdps from a di�erent

perspective; their results show that given a method for learning a parameterized model

of the environment, it is possible to use a variation of value iteration to simultaneously

learn the model and converge to an optimal policy.

141

6.9 Contributions

In this chapter, I examine partially observable Markov decision processes. My funda-

mental contribution to this area is a collection of complexity results that show how

di�cult it is to select optimal actions for this model, even when the problem is con-

strained in various ways. I explain that no provably convergent learning algorithm

exists and I augment the existing heuristic model-learning algorithms by devising a

new algorithm for learning the reward function for an unknown pomdp.

As the complexity results in this chapter show, pomdps are simply too di�cult

to solve. However, they are also too important to ignore. Perhaps a resolution of

this di�culty will come when researchers begin to explore applications of pomdps to

important real-world problems. The constraints present in these applications might

be su�cient to make the corresponding pomdps solvable. Some progress has been

made: Hansen [60] blended completely unobservable and completely observable mdps

to form an intermediate model, and Simmons and Koenig [144] controlled a robot using

a pomdp model. From the interest that has been generated, I believe it is likely that

a great deal of additional progress will be made in the next few years.

Chapter 7

Information-State Markov

Decision Processes

Portions of this chapter and its associated appendix have appeared in ear-

lier papers: \Planning and acting in partially observable stochastic do-

mains" [73] with Kaelbling and Cassandra, \Acting optimally in par-

tially observable stochastic domains" [32] with Cassandra and Kaelbling,

\The witness algorithm: Solving partially observable Markov decision pro-

cesses" [92], \Learning policies for partially observable environments: Scal-

ing up" [94] with Cassandra and Kaelbling, and \An e�cient algorithm

for dynamic programming in partially observable Markov decision pro-

cesses" [95] with Cassandra and Kaelbling.

In this chapter, I present a number of algorithms for solving information-state Markov

decision processes. As discussed in Section 6.2.2, an information-state mdp arises

in the context of solving pomdps when the agent encodes its history of actions and

observations as a probability vector over states of the environment. The algorithms

from Chapter 2 are not adequate because the information-state mdp has an in�nite

number of states|the algorithms in Chapter 2 apply only to �nite-state mdps.

7.1 Introduction

An information state is a vector of probabilities, one probability value for each state

in the pomdp, that sums to one. Given a pomdp model, information states can be

142

143

AGENT

Action
Observation

SE
x

Environment

π

Figure 7.1: A pomdp agent can be decomposed into a state estimator (SE) and a policy
(�).

updated using basic probability theory and encode su�cient information for making

optimal decisions. Because they constitute a su�cient statistic for optimal behavior, it

is possible to use information states to de�ne a particular kind of in�nite-state mdp [5].

7.2 Information-state mdps

Information-state Markov decision processes arise when the problem of controlling a

pomdp is decomposed into the two components shown in Figure 7.1. The agent makes

observations and generates actions. It uses memory to summarize its previous experi-

ence. The component labeled SE in the �gure is the state estimator : it is responsible

for updating the memory state based on the most recent action and observation and

the previous memory state (it is a type of memory-state-update module, as discussed

in Section 6.2.2). The component labeled � is the policy: as before, it is responsible

for generating actions, but now as a function of the agent's memory state rather than

the state of the environment.

In this chapter, the contents of the agent's memory is an information state: a

probability distribution over states of the environment. Information states are su�cient

summaries of past history to make optimal decisions. This is because, given the agent's

current information state, no additional data about its past actions or observations

would supply any further information about the current state of the environment.

Figure 7.2 illustrates a simple pomdp with four states, one of which is a goal state

marked with a star. There are two possible observations: one is always made when

the agent is in state 1, 2, or 4; the other, when it is in the goal state. There are two

144

1 2 3 4

Figure 7.2: A simple pomdp example.

possible actions: right and left. These actions succeed with probability 0:9, and

when they fail the movement is in the opposite direction. If no movement is possible

in a particular direction, then the agent remains in the same location.

We assume that the agent is initially equally likely to be in any of the three non-goal

states. Thus, its initial information state is (0:333; 0:333; 0:000; 0:333), where the order

of components in the vector corresponds to the order of states in the �gure.

If the agent takes action right and does not observe the goal, then the new infor-

mation state is (0:100; 0:450; 0:000; 0:450). Not observing the goal a second time after

taking action right results in an information state in which the right-most state is

most probable: (0:100; 0:164; 0:000; 0:736). Notice that as long as the agent does not

observe the goal state, it will always have some non-zero chance that it is in any of the

non-goal states; only the third component of the information state will be zero.

7.2.1 Computing Information States

An information state x is a probability distribution over S. We let x[s] denote the

probability assigned to state s by information state x. The axioms of probability

require that 0 � x[s] � 1 for all s 2 S and that
P

s2S x[s] = 1. The state estimator

must compute a new information state x0, given an old information state x, an action

a, and an observation z. The new probability of some state s0, x0[s0], can be obtained

from basic probability theory as follows:

x0[s0] = Pr(s0jz; a; x)
=

Pr(zjs0; a; x) Pr(s0ja; x)
Pr(zja; x)

=
Pr(zjs0; a)Ps2S Pr(s

0ja; x; s) Pr(sja; x)
Pr(zja; x)

=
O(s0; a; z)

P
s2S T (s; a; s

0)x[s]

Pr(zja; x)

145

The denominator, Pr(zja; x), can be treated as a normalizing factor, independent of s0,
that causes x0 to sum to 1. The state-estimation function SE(x; a; z) has as its output

the new information state x0.

Thus, the state-estimation component of a pomdp controller can be constructed

quite simply from a given model.

7.2.2 Basic Framework

The policy component in Figure 7.1 takes an information state as input and produces

an action. LetM = hS;A; T; R;Z; O; �i be a partially observable Markov decision pro-

cess. Because the information state is a su�cient statistic, we can treat it as a state and

de�ne the information-statemdp, B = hX ;A; N; �; �i, where X is the jS�1j-dimensional
unit simplex representing the set of all information states, N(x; a) = fSE(x; a; z)jz 2
Zg is a next-state function for information states, �(x; a; x0) =

P
z IfSE(x; a; z) =

x0gPr(zja; x) is the information-state transition function, and �(x; a) =
P

s x[s]R(s; a)

is the information-state reward function.

This information-state mdp has the property that an optimal policy for it, coupled

with the state-estimation function, will give rise to optimal behavior (in the discounted

in�nite-horizon sense) in the original pomdp [150, 5]. The remaining problem, then,

is to solve this mdp. It is very di�cult to solve continuous-space mdps in the general

case [133], but, as we shall see in the next section, the information-state mdp has special

properties that can be exploited to simplify its solution.

7.2.3 Acting Optimally

The continuous nature of the information-state mdp presents several challenges to

�nding optimal behavior computationally. As in the case of �nite-state mdps, the

target is a policy that maximizes discounted expected reward, and this policy can be

de�ned as the greedy policy with respect to the optimal value function. Once again,

the optimal value function is well-de�ned and can be approximated by value iteration.

The primary di�culty is that the value function can no longer be represented by a

table of values, one for each state, because the state space itself is continuous.

There appears to be no method for representing general optimal value functions for

in�nite-horizon information-state mdps. The best we can hope for is an approximation.

In this chapter, I discuss algorithms that address this issue using a parameterized

146

representation of the exact value functions produced in value iteration; algorithms

have been developed that attempt to represent approximations of the in�nite-horizon

value function more directly [100], but I will not discuss these representations here.

7.3 Algorithms for Solving Information-state mdps

The information-state mdp is a special kind of mdp, and many di�erent algorithms are

available for solving it. The algorithms in Chapter 2 do not apply directly, because

those algorithms were designed for �nite-state mdps. However, versions of policy it-

eration [150] and value iteration [135] have been developed for the information-state

mdp.

The algorithms I present in this section are all variations of value iteration. They

�nd near-optimal in�nite-horizon value functions by exactly solving for t-step �nite-

horizon value functions for larger and larger t, until the di�erence between successive

value functions is su�ciently small. Section 7.3.1 shows that �nite-horizon value func-

tions for the information-state mdp are always piecewise-linear and convex, implying

that they can be exactly represented by a �nite set of linear functions. This is not nec-

essarily true for the in�nite-horizon discounted value function; it remains convex [175],

but may have in�nitely many facets. I present the algorithms from the simplest and

least e�cient, to the most complicated and most e�cient, including a novel algorithm

called the witness algorithm [95].

7.3.1 The Policy-Tree Method

In this section, I present a simple algorithm for �nding t-step value functions that,

although impractical, serves as the basis for the more e�cient algorithms developed

in the remainder of the chapter. We begin by considering the structure of optimal

�nite-horizon policies.

When an agent has one step remaining, all it can do is take a single action. With

two steps to go, it can take an action, make an observation, then take another action,

perhaps depending on the previous observation. In general, an agent's non-stationary

t-step policy can be described by a policy tree as shown in Figure 7.3. It is a tree of

depth t that speci�es a complete t-step policy. The top node determines the �rst action

to be taken. Then, depending on the resulting observation, an arc is followed to a node

147

...

... ...

a1

a2

a4

a3

a5
a6 a7

z1 zk

t

|Z |

|Z |

|Z |

Figure 7.3: A t-step policy tree.

on the next level, which determines the next action. This is a complete recipe for t

steps of conditional behavior.

Now, what is the expected discounted value to be gained from executing a policy

tree p? It depends on the true state of the environment when the agent starts. In the

simplest case, p is a 1-step policy tree (a single action). The value of executing that

action in state s is Vp(s) = R(s; act(p)); where act(p) is the action speci�ed in the top

node of policy tree p. More generally, if p is a t-step policy tree, then

Vp(s) = R(s; act(p)) + � Expected value of the future

= R(s; act(p)) + �
X
s02S

Pr(s0js; act(p))
X
z2Z

Pr(zjs0; act(p))Vsubtree(p;z)(s0)

= R(s; act(p)) + �
X
s02S

T (s; act(p); s0)
X
z2Z

O(s0; act(p); z)Vsubtree(p;z)(s
0)

= R(s; act(p)) + �
X
z2Z

stval(act(p); z; subtree(p; z))[s]; (7.1)

where subtree(p; z) is the (t� 1)-step policy subtree associated with observation z at

the top level of a t-step policy tree p, and stval(a; z; p0)[s] is the probability-weighted

value contributed by the subtree p0 in the context of a policy tree with action a at the

root when p0 is the subtree for observation z:

stval(a; z; p0)[s] =
X
s02S

T (s; a; s0)O(s0; a; z)Vp0(s
0):

Although this quantity has minimal intuitive appeal, it plays a crucial role in several

of the algorithms.

Because we will never know the exact state of the environment, we must be able to

determine the value of executing a policy tree p, from some information state x. This

148

Vp1

Vp2

Vp3

1

Vp4

0 x

Figure 7.4: The optimal t-step value function is the upper surface of all the value
functions associated with t-step policy trees.

is just an expectation over states of executing p in each state, which can be computed

as a dot product:

Vp(x) =
X
s2S

x[s]Vp(s):

Now we have a function that represents the value of executing policy tree p in

every possible information state. To construct an optimal t-step policy, however, it

will generally be necessary to execute di�erent policy trees depending on the initial

information state. Let Pt be the �nite set of all t-step policy trees. Then

Vt(x) = max
p2Pt

X
s

x[s]Vp(s):

That is, the optimal t-step value of starting in information state x is the value of

executing the policy tree that is best in x.

This de�nition of the value function leads to some important geometric insights

into its form. Each policy tree p induces a value function that is linear in x, and

the optimal t-step value function Vt is the upper surface of those functions. So, Vt is

piecewise-linear and convex, as illustrated in Figure 7.4. Consider a pomdp with only

two states. Each information state for the pomdp can be written as a vector of two

non-negative numbers, hx[s1]; x[s2]i, that sum to 1: it has only one degree of freedom.

The value function associated with a policy tree p1, Vp1 , is a linear function of x[s1] and

is shown in the �gure as a line. The value functions of other policy trees are similarly

represented. Finally, Vt is the maximum of all the Vpi's at each information state,

giving us the upper surface, which appears in the �gure as a bold line.

When there are three states in the environment, an information state is determined

by two values. The space of information states can be visualized as a triangle in two-

space with vertices (0; 0), (1; 0), and (0; 1). The value function associated with a single

149

(0, 1)

(1, 0)

(0, 0)

s1

s2

Figure 7.5: A value function in three dimensions.

policy tree is a plane in three-space, and the optimal value function is typically a bowl

shape that is composed of planar facets; an example is shown in Figure 7.5. This

general pattern holds in higher dimensions, but becomes di�cult to contemplate and

even harder to draw!

The convexity of the optimal value function makes intuitive sense when we think

about the value of di�erent information states. Information states that are at the

corners of the space X of information states correspond to situations in which the

agent is certain of the true underlying state. These information states have relatively

high values (unless they correspond to states that are extremely undesirable), whereas

information states closer to the \middle" correspond to high uncertainty situations in

which it is more di�cult for the agent to select actions appropriately to gain long-term

reward.

Table 7.1 shows how policy trees can be used as a basis for a value-iteration algo-

rithm. For each t, the policy-tree method enumerates the set Pt of all t-step policy

trees, and then calls the function BellmanErrMag to determine whether the value func-

tions represented by Pt and Pt�1 are close together. A linear-programming algorithm

for BellmanErrMag is given in Section G.1.

The policy-tree method is, of course, hopelessly computationally intractable. Each

t-step policy tree contains (jZjt � 1)=(jZj � 1) nodes (the branching factor is jZj, the
number of possible observations). Each node can be labeled with one of jAj possible
actions, so the total number of t-step policy trees is

jAj
jZjt�1
jZj�1 ;

150

PolicyTreeMethod(hS;A; T;R;Z ;O; �i; �) := f
t := 0
loop

t := t+ 1
until BellmanErrMag(Pt;Pt�1) < �
return Pt

g

Table 7.1: Value iteration using the policy-tree method.

which grows astronomically in t.

It is not known whether any algorithm for computing a set of policy trees to rep-

resent the t-step value function has a better worst-case run time. This is because the

number of policy trees needed to represent the t-step value function might actually be

doubly exponential in t in the worst case. For solving a �nite-horizon pomdp with a

given initial belief state, the PSPACE �nite-horizon algorithm of Papadimitriou and

Tsitsiklis [116], mentioned in Section 6.3.3, can be made to run in singly exponen-

tial time in t, which is better in the worst case. In the next few sections, I present

algorithms that run faster for pomdps that possess simple value functions.

7.3.2 A Note on Implementation

Several of the algorithms in this section make use of sets of policy trees as a primitive

data structure. Policy trees can be represented by a tree-like data structure; however,

for e�ciency of space and computation speed, other data structures might be preferred.

The policy-tree data structure needs to support the operators de�ned in Table 7.2.

All the necessary primitive operations on policy trees can be implemented on a

data structure that consists of a vector of values, an action, and a pointer for each

observation to a vector of values or a policy tree.

7.3.3 Useful Policy Trees

In general, the set Pt of t-step policy trees contains many policy trees whose value

functions are totally dominated by or tied with value functions associated with other

policy trees. Figure 7.6 shows a situation in which the value function associated with

policy tree pd is completely dominated by (everywhere less than or equal to) the value

151

tree(a; �) create a new policy tree with action a at root
and subtree for observation z equal to �(z)

Vp return a vector representing the value function for
policy tree p with one component per state

act(p) return the action at the root of policy tree p
subtree(p; z) return the subtree of policy tree p associated

with observation z; a subtree can be a policy
tree, or more simply, the value function of the subtree

stval(a; z; p) return a vector representing the probability-weighted
value of following policy tree p as the observation
z subtree of a policy tree with a at the root

�, �a;z compare policy trees lexicographically according to
their value functions

Table 7.2: A list of operations needed for policy-tree-based algorithms.

function for policy tree pb. The situation with the value function for policy tree pc is

somewhat more complicated; although it is not completely dominated by any single

value function, it is completely dominated by pa and pb taken together.

Given a set G of policy trees representing a piecewise-linear convex value function,

it is possible to de�ne a minimal subset � that represents the same function that G

represents. I call the elements of this set the useful policy trees; it is unique up to

substitutions of policy trees with exactly the same value function. In the following

discussion, I assume that no two policy trees in G have the same value function. In

practice, it is easy to examine a set of policy trees and to throw out all but one policy

tree for each value function represented. This does not change the piecewise-linear

convex function represented and guarantees that no two policy trees yield identical

value functions (an implementation appears in Table 7.3).

Using the de�nition of useful policy trees directly, it appears that to determine

whether a policy tree is useful, we must perform a combinatorial search for the set �.

The following lemma shows that usefulness is a property of the individual vectors in

G.

Lemma 7.1 Let G be a set of policy trees. A policy tree p 2 G is useful if and only if

there is some information state x such that Vp(x) is strictly greater than V~p(x) for all

other policy trees ~p 2 G.

Proof: A proof is given in Section G.2. �

152

0 1x s1[]

Vpa

Vpc

Vpbexpected
t-step

discounted
value

Vpd

Figure 7.6: Some policy trees may be totally dominated by others and can be ignored.

uniq(G) := f
G0 := ;
while (G 6= ;) f

p := any element in G
G0 := G0 [fpg
G := G� fpg
foreach (~p 2 G)

if (Vp = V~p) G := G� f~pg
g
return G0

g

Table 7.3: Subroutine for removing policy trees from G so that any pair of policy trees
remaining have di�erent value functions.

153

Filter(G) := f
G := uniq(G)
� := ;
foreach p 2 G

if (dominate(p;G) 6= false) � := � [fpg
return �

g

Table 7.4: Subroutine for returning the useful policy trees in G.

dominate(p;G) := f
if (G = ;) then return any element in X
Solve the following linear program:

maximize: d
s.t.:

P
s x[s]Vp(s) �

P
s x[s]V~p(s) + d, for all ~p 2 G� fpg

and:
P

s x[s] = 1
and: x[s] � 0, for all s 2 S
variables: d, x[s] for all s 2 S

if (d > 0) then return x
else return false

g

Table 7.5: Subroutine for �nding an information state at which policy tree p dominates
all other policy trees in G.

Lemma 7.1 gives us a way of computing the set � of useful policy trees, the minimal

set of policy trees needed to represent the value function for G. We need only loop over

the policy trees in G, testing whether there is an x where each policy tree dominates

the others (an implementation appears in Table 7.4). The domination condition itself

can be checked using linear programming (an implementation appears in Table 7.5).

The linear program can take many di�erent forms; as presented here, a variable d is

used to represent the amount by which a policy tree p dominates all the policy trees in

G at information state x. Maximizing d results in the identi�cation of the x at which p

dominates the policy trees in G the most. If the maximum amount is negative or zero,

p does not dominate all the policy trees in G anywhere and is therefore not a member

of �.

154

EnumerationMethod(hS;A; T;R;Z ;O; �i; �) := f
t := 0
�0 := ;
loop

t := t+ 1
Gt := ftree(a; �)ja 2 A; � 2 T (Z ! �t�1)g
�t := Filter(Gt)

until BellmanErrMag(�t;�t�1) < �

return �t
g

Table 7.6: Value iteration in information-state mdps using the enumeration method.

The ability to compute the set of useful policy trees serves as a basis for a more

e�cient version of the value-iteration algorithm in Table 7.6, generally attributed to

Monahan [109].

Some new notation is introduced in Table 7.6. First, T (Y ! �) represents the set

of all mappings from a �nite set Y to a �nite set �. For � 2 T (Y ! �), �(y) 2 � for

all y 2 Y . There are j�jjYj elements in the set T (Y ! �) and they can be enumerated

easily.

Second, tree(a; �) is the t-step policy tree with action a at its root, and a policy

subtree for each observation z 2 Z equal to �(z), where � 2 T (Z ! Pt�1). As a

demonstration of this new notation, here is a recursive de�nition for the set of t-step

policy trees:

Pt = ftree(a; �)ja 2 A; � 2 T (Z ! Pt�1)g:

7.3.4 The Enumeration Method

The enumeration method is used by a family of algorithms that exploit the following

idea: �t�1, the set of useful policy trees for the (t� 1)-step value function, can be used

to construct a superset Gt of the useful t-step policy trees. In constructing the policy

trees in Gt, the choice of subtree is restricted to those (t � 1)-step policy trees that

were useful. This is justi�ed by the fact that, for any information state and any choice

of policy subtree, there is always a useful subtree that is at least as good at that state;

there is never any reason to include a non-useful policy subtree.

The time complexity of a single iteration of this algorithm can be divided into two

155

parts: generating Gt and �ltering Gt. There are jAjj�t�1jjZj elements in Gt because

there are jAj di�erent ways to choose the action, and j�t�1jjZj di�erent mappings from
Z to �t�1 corresponding to the di�erent combinations of subtrees. The value functions

for the policy trees in Gt can be computed e�ciently from those of the subtrees. Thus,

generating Gt is exponential in the number of observations.

Filtering also takes exponential time, but even worse, it involves solving an ex-

ponential number of exponential-size linear programs. Although this algorithm may

represent a large computational savings over the policy-tree method, it still does more

work than may be necessary. The next section shows how the linear programs used to

implement the �ltering stage can be made signi�cantly smaller.

7.3.5 Lark's Filtering Algorithm

The �ltering algorithm in Table 7.4 uses the dominate subroutine to decide whether

a policy tree p dominates all others in a set G. When there is no information state

x at which p has a larger value than all policy trees in G, dominate returns false.

However, when there is such an x, dominate returns it, but Filter ignores its actual

value.

A �ltering algorithm attributed to Lark [176] shows how the useful policy trees can

be identi�ed one by one by making use of the identity of the information state x at

which one policy tree dominates the others. As a result, the size of the linear programs

used to test domination can be bounded by the size of the set of useful policy trees in

G, instead of the size of G itself.

Lark's �ltering algorithm uses the following insight. Let U be a set of policy trees

that have been determined to be useful. The set U does not equal the complete set �

of useful policy trees if and only if some policy tree p 2 G dominates the policy trees

in U .

The algorithm maintains a set U of policy trees that have been determined to

be useful, and a set unchecked of policy trees that have not yet been determined

to not be useful. An iteration of the algorithm proceeds by choosing a policy tree

p from unchecked and checking whether there is an x at which it dominates all the

useful policy trees in U . If no such x exists, then p is not useful and is removed from

unchecked.

If there is an x at which p dominates the policy trees in U , then there is at least

156

one useful policy tree still missing from U . The missing policy tree is not necessarily

p: we know that p dominates the policy trees in U at x, not that it dominates all the

policy trees in G at x. The following lemma provides one way we can use x to identify

a policy tree that is guaranteed to be useful.

Lemma 7.2 Given a set of policy trees G and an information state x, let p� be the

policy tree in G that has the largest value at x where ties are broken in favor of the

policy tree with the lexicographically greater value vector. Then p� is useful with respect

to G.

Proof: A proof appears in Section G.2. �

We say that one vector is lexicographically greater than another vector if, given

some predetermined ordering over the states in S, the �rst vector has a larger �rst

component, or the two vectors are tied on their �rst i components and the �rst vector

is larger in component i+1. We can use this to de�ne an ordering relation over policy

trees: p1 � p2 if the vector of values Vp1 is lexicographically greater than the vector of

values Vp2 .

The subroutine best in Table 7.7 chooses a policy tree from a set P that has max-

imum value at an information state x and is guaranteed to be useful. The subroutine

in Table 7.8 makes use of best to identify useful policy trees from a set. As described

above, each call to dominate is given only the set of known useful policy trees. As a

result, no linear program larger than the full set of useful policy trees is constructed.

Using FilterLark in place of Filter in the value-iteration algorithm in Table 7.6

results in a much faster algorithm [95].

7.3.6 The Witness Algorithm

The pomdp value-iteration algorithms discussed in the previous sections su�er from

the problem that the set Gt of possibly useful policy trees is constructed at each step.

Since the size of Gt is exponential in the number of observations, these algorithms are

terribly ine�cient for solving pomdps with more than a small number of observations

(jZj = 6 appears to be a practical upper limit [95]).

If we hope to solve larger problems, we need to avoid generating Gt. The witness

algorithm works by building up a set of useful policy trees, one by one, analogous to

the way Lark's �ltering algorithm operates, except without making use of an explicit

157

best(x; P) := f
maxtree := any element in P

maxval :=
P

s x[s]Vmaxtree(s)
foreach p 2 P � fmaxtreeg f

val :=
P

s x[s]Vp(s)
if ((val > maxval) or ((val = maxval) and (p � maxtree))) then f

maxtree := p
maxval := val

g
g
return maxtree

g

Table 7.7: Subroutine for �nding a useful policy tree at x, given a set of policy trees
P .

FilterLark(G) := f
U := ;
unchecked := G
while (unchecked 6= ;) f

p := any element in unchecked

x := dominate(p; U)
if (x = false) then unchecked := unchecked� fpg
else f

p� := best(x; unchecked)
U := U [fp�g
unchecked := unchecked� fp�g

g
g
return U

g

Table 7.8: Lark's method for computing the useful policy trees in G.

158

WitnessOuter(M = hS;A; T; R;Z ;O; �i; �) := f
�0 := ;
t := 0
loop

t := t+ 1
foreach a 2 A

�at := WitnessInner(a;�t�1;M)
�t := FilterLark(

S
a �

a
t)

until BellmanErrMag(�t;�t�1) < �
return �t

g

Table 7.9: Value iteration in information-state mdps using the witness algorithm.

representation of Gt. When Lark's �ltering algorithm is used in the context of value

iteration, it uses the set Gt in two ways. First, it uses Gt as a source of policy trees

that might reveal that U is incomplete; once all the policy trees in Gt are considered,

Lark's algorithm terminates. Second, Gt is searched to identify a useful policy tree

given an information state x. The witness algorithm avoids both of these uses of Gt.

The main di�erence between the high-level structure of the witness algorithm and

that of the algorithms mentioned earlier is that the witness algorithm �rst �nds a repre-

sentation for the t-step Q functions. As a result, the outer loop of the witness algorithm

(Table 7.9) closely resembles the value-iteration algorithm for mdps in Table 2.2, with

the set �at playing the role of the Q function Qt(�; a).
By arguments parallel to those in Section 7.3.1, the t-step Q function for action a

is piecewise linear and convex, and can be represented by a minimal set of policy trees,

�at . Because the value of an information state is the maximum Q value for that state,

V (x) = maxaQ(x; a), it must be the case that every policy tree p in the set �t of useful

policy trees for the t-step value function is in �
act(p)
t . Therefore, we can compute �t

given the �at sets by �nding the useful vectors in
S
a �

a
t , which might be a good deal

larger than �.

Any of the algorithms I mentioned earlier can be used to construct �at ; however, all

need to construct the exponential-size set of possibly useful policy trees. To build up

to �at without enumerating an exponential-size set, we need to answer two questions:

\How do we �nd useful policy trees without enumerating all policy trees?" and \How

159

UsefulPolicyTreeFromState(x; a;�t�1;M = hS;A; T; R;Z ;O; �i) := f
foreach z 2 Z

�(z) := bestSubtree(x; a; z;�t�1;M)
return tree(a; �)

g

bestSubtree(x; a; z; P; hS;A; T;R;Z ;O; �i) := f
maxtree := any element in P
maxval :=

P
s x[s]stval(a; z; maxtree)[s]

foreach p 2 P f
val :=

P
s x[s]stval(a; z; p)[s]

if ((val > maxval) or ((val = maxval) and (p �a;z maxtree))) then f
maxtree := p
maxval := val

g
g
return maxtree

g

Table 7.10: Computing a useful policy tree at x, given action a.

will we know when we are done?"

The �rst question was answered in the context of Smallwood and Sondik's [148]

pomdp algorithm. The subroutine UsefulPolicyTreeFromState in Table 7.10 shows

how to construct a useful (with respect to �at) t-step policy tree for action a that is

useful at information state x, given the set �t�1. It works much like the implementation

of best in that it identi�es the policy tree with maximum value at x, breaking ties using

lexicographic ordering. Instead of considering each candidate policy tree separately, it

constructs one directly.

To see how UsefulPolicyTreeFromState works, �rst notice that we can build a

policy tree with maximum value at x by maximizing the subtree values. If Pat is the set

of t-step policy trees with action a at the root, then the value of the best policy tree

160

at x is

max
p2Pa

t

Vp(x) = max
p2Pa

t

 X
s

x[s]

R(s; a) + �

X
z

stval(a; z; subtree(p; z))[s]

!!

=
X
s

x[s]

R(s; a) + �

X
z

max
pz2Pt�1

stval(a; z; pz)[s]

!

=
X
s

x[s]R(s; a) + �
X
z

max
pz2�t�1

X
s

x[s]stval(a; z; pz)[s]: (7.2)

This is justi�ed by the formula for Vp in Equation 7.1, and the fact that �t�1 is the set

of useful (t� 1)-step policy trees. Equation 7.2 essentially says that we can choose the

subtree for each observation separately. The code in Table 7.10 implements this idea,

choosing the best subtree for each observation using bestSubtree. The bestSubtree

subroutine works much like best, choosing a policy tree with maximum (subtree) value

with respect to x, breaking ties lexicographically (the relation p1 �a;z p2 is true if the

vector stval(a; z; p1) is lexicographically greater than stval(a; z; p2)). Close examina-

tion of Equation 7.2 reveals that breaking ties for each observation subtree in favor of

the lexicographic maximum yields the lexicographically largest policy tree when the

subtrees are combined. Therefore, by Lemma 7.2, UsefulPolicyTreeFromState re-

turns a useful policy tree, even in the case of ties, without enumerating an exponential-

size set.

To answer the question \How will we know when we are done?" we need some

additional terminology. Policy trees p1 and p2 are neighbors if act(p1) = act(p2), and

subtree(p1; z) = subtree(p2; z) for all but one z 2 Z . Each t-step policy tree has

jZj(j�t�1j � 1) neighbors, which can be enumerated easily. The following lemma forms

the basis of a termination test.

Lemma 7.3 Let U be a set of policy trees that have been determined to be useful with

respect to action a. The set U does not equal the complete set �a of useful policy trees

if and only if some policy tree p, in the set of neighbors of policy trees in U , dominates

the policy trees in U .

Proof: A proof appears in Section G.5. �

Lemma 7.3 is quite powerful because it lets us determine whether a subset U of

useful policy trees is complete by examining only the relatively small set of neighboring

policy trees.

161

10 x

Γt
a2

Γt

Γt
a1

Figure 7.7: Q functions can be arbitrarily more complex than their corresponding value
functions.

The code in Table 7.11 builds up the set of useful policy trees. The set unchecked is

an agenda, initialized with a single arbitrary policy tree. Each iteration takes a policy

tree p o� the agenda and determines whether there is an information state x that can

\witness" the fact that p dominates the policy trees in U . If such an x is discovered,

its associated policy tree is added to U and all neighbors of the policy tree are added

to the agenda. If p does not dominate the policy trees in U , then p is removed from

the agenda. When the agenda is empty, the algorithm terminates.

Because it only ever constructs the neighbors of the useful policy trees (and not

all possibly useful policy trees), the witness algorithm runs very e�ciently over a wide

range of pomdps. Like the enumeration algorithms, however, the witness algorithm

may do more work than is necessary. In particular, the witness algorithm spends

a great deal of time �nding the exact set of policy trees needed to represent the Q

functions, when, in fact, many of these policy trees may not be useful when they are

pooled to form the optimal value function; Figure 7.7 is an example value function in

which the number of policy trees in the optimal Q function is much larger than the

number of policy trees in the optimal value function. It would be desirable to identify a

lemma analogous to Lemma 7.3 that pertains to value functions instead of Q functions.

No such lemma is known, and there are complexity-theoretic reasons to believe that it

may not exist (see Section 7.5).

7.3.7 Other Methods

Several other algorithms have been proposed to perform value-iteration updates in

information-state mdps. Sondik [149] proposed the �rst such algorithm. Although

162

WitnessInner(a;�t�1;M = hS;A; T; R;Z; O; �i) := f
U := ;
unchecked := fany element in Ptg
while (unchecked 6= ;) f

p := any element in unchecked

x := dominate(p; U)
if (x = false) then unchecked := unchecked� fpg
else f

p� := UsefulPolicyTreeFromState(x; a;�t�1;M)
U := U [fp�g
unchecked := unchecked[neighbors(p�;M)

g
g
return U

g

neighbors(p;�t�1; hS;A; T;R;Z ;O; �i) := f
U := ;
foreach z 2 Z �(z) := subtree(p; z)
foreach z 2 Z f

foreach p0 2 �t�1 � fsubtree(p; z)g f
�(z) := p0

U := U [tree(act(p); �)
g
�(z) := subtree(p; z)

g
return U

g

Table 7.11: Computing the set of useful t-step policy trees for action a, via the witness
algorithm.

163

the algorithm is complicated and, in principle, avoids enumerating the set of possibly

useful policy trees at each iteration, it appears to run more slowly than the simpler

enumeration methods in practice [33].

Cheng [33] developed a collection of algorithms for solving pomdps. His relaxed

region and linear support algorithms work by building up a set U of useful policy

trees using specialized algorithms for enumerating the extreme points in the sets of

information states over which each p 2 U dominates. The algorithms run very quickly

when jSj is small, but scale poorly because the number of extreme points can grow

exponentially with the size of the state space.

White and Scherer [177] propose an alternative approach in which the reward func-

tion is changed so that all of the algorithms discussed in this chapter will tend to run

more e�ciently. This technique has not yet been combined with the witness algorithm,

and may provide some improvement.

7.4 Algorithmic Analysis

An information-state mdp is a generalized mdp with an in�nite state space and maxi-

mum expected value optimality criterion. Theorem 3.2 bounds the number of iterations

needed for value iteration to identify a value function with an �-optimal policy.

In this section, I analyze the time complexity of a single step of value iteration for

several of the algorithms described in Section 7.3. I refer to the problem of computing

the set �t of useful policy trees from a set �t�1 of vectors as the one-stage pomdp

problem. The sets �t and �t�1 represent the t-step and (t � 1)-step value function,

respectively. The size of a one-stage pomdp problem is equal to jSj + jZj + jAj for
the state, observation and actions sets; plus the size of jSj2jAj+ jSjjAj+ jSjjAjjZj+ 1

rational numbers for the transition function, observation function, reward function, and

discount factor; plus the size of j�t�1jjSj rational numbers for the (t � 1)-step value

function.

Although the algorithms described earlier use policy trees to represent the (t� 1)-

step value function, it is not di�cult to adapt them to work directly with sets of vectors.

I use this model here because it makes it easier to construct examples with particular

properties. I abuse notation and write �t�1 for the set of vectors representing Vt�1,

instead of the set of policy trees.

164

7.4.1 Enumeration Algorithms

Several algorithms for �nding �t work by enumerating the set Gt of possibly useful

policy trees, and then identifying which of these policy trees is useful: Monahan's

algorithm [109] was the �rst and later Eagle [51] and Lark [176] provided improvements.

However, all these algorithms, regardless of their details, build Gt, the size of which is

jAjj�t�1jjZj. Thus, even if a policy tree could be identi�ed as useful in constant time,

the run times of these algorithms are at least exponential in jZj, making them of little

use for solving pomdps with anything but the smallest observation sets.

7.4.2 The One-pass Algorithm

Sondik's one-pass algorithm [149, 148] was the �rst exact algorithm for solving �nite-

horizon pomdps. At a high level, the algorithm works by taking a useful policy tree

p and constructing a set of linear constraints over the set of information states that

guarantee that p will be the optimal policy tree throughout the constrained region.

There is one constraint for each policy tree pa obtained by substituting action a for the

root of p, plus one for each neighbor of the pa trees. By identifying the optimal policy

tree in each region adjacent to the constrained region, a systematic search for optimal

policy trees can be carried out.

Because of the complicated nature of the algorithm, and its poor performance in

empirical evaluations [33], I will not present a detailed analysis of the one-pass algo-

rithm. However, it is possible to construct pomdps in which it is necessary to create all

possible constraint sets; as a result, the worst-case run time of the one-pass algorithm is

at least (jAjj�t�1j)jZj iterations, which can be considerably worse than the worst-case

bound for enumeration algorithms.

7.4.3 Extreme-point Algorithms

Cheng's linear support and relaxed region algorithms [33] make use of special-purpose

routines that enumerate the vertices of each linear region of the value function.

Bounding the number of vertices in a polyhedron is a well-studied problem [80] and

it is known that there can be an exponential number. In fact, there is a family of

one-stage pomdp problems such that, for every n, jSj = n+ 1, jAj = 2n+ 1, jZj = 1,

j�t�1j = 1, j�tj � 2n + 1, and yet the number of vertices in one of the regions is 2n.

The construction is given in Section G.3. Since visiting each vertex is just one of the

165

operations the extreme-point algorithms perform, we can expect the worst-case run

time to grow at least exponentially in the size of the one-stage pomdp problem.

7.4.4 The Witness Algorithm

This section contains a run-time analysis of the witness algorithm on one-stage pomdp

problems, in terms of the size of the problem and
P

a j�at j, the size of the sets of useful
policy trees for each action. The run time is polynomial in these quantities, although

it is not di�cult to construct examples in which
P

a j�at j is exponential in the size of

the one-stage pomdp problem.

At the highest level, the witness algorithm computes �at for each a 2 A, and then

selects �t from the union of the �at sets. In computing �at , the total number of policy

trees added to unchecked is equal to the number of neighbors of the policy trees used to

construct the vectors in �at plus the arbitrarily chosen starting policy tree, speci�cally,

1+jZj(j�t�1j�1)j�at j. Each pass through the \while" loop in the inner loop (Table 7.11)
either consumes an element from unchecked (1 + jZj(j�t�1j � 1)j�at j times) or adds a
vector to U (j�at j times). Thus, the total number of iterations in WitnessInner is

1 + jZj(j�t�1j � 1)j�at j+ j�at j:

The statements in the loop in WitnessInner can all be implemented to run in

polynomial time; this includes dominate, since polynomial-time algorithms for linear

programming with polynomial-precision rational numbers exist [140]. The total run

time of WitnessInner for each a is therefore bounded by a polynomial in the size of

the one-stage pomdp problem and j�at j.
The WitnessOuter routine calls WitnessInner for each a 2 A and then calls

FilterLark, which creates one linear program for each policy tree found. For one-

stage pomdp problems in which
P

a j�at j is polynomially bounded, this implies that the

total run time is polynomial. The algorithm takes no more than exponential time in

the worst case because
P

a j�at j � jGtj = jAjj�tjjZj.

7.5 Complexity Results

In this section, I present some results pertaining to the computational complexity of

the one-stage pomdp problem described in the previous section.

166

It is not di�cult to show that no algorithm can compute �t from �t�1 in polynomial

time for general pomdps, simply because �t can be exponentially large with respect

to the size of the one-stage pomdp problem. An example pomdp illustrating this

phenomenon is presented in Section G.3.

Any algorithm for computing �t in polynomial time must only apply to a subclass

of pomdps. We call a family of one-stage pomdp problems polynomially output bounded

if j�tj can be bounded by a polynomial in the size of the pomdp and �t�1.

No existing algorithm has been shown to run in polynomial time on polynomially

output-bounded one-stage pomdp problems, and the next theorem suggests that there

may be a good reason for this.

Theorem 7.1 The best algorithm for solving polynomially output-bounded one-stage

pomdp problems runs in polynomial time if and only if RP=NP.

Proof: The theorem is proved in Section G.4. �

The importance of Theorem 7.1 is that it links the problem of exactly solving one-

stage pomdps with the complexity-theoretic question of whether RP=NP.

These results imply that further restrictions on the class of one-stage pomdp prob-

lems are needed before a polynomial-time algorithm will be found. A family of one-stage

pomdp problems is polynomially action-output bounded if
P

a2A j�at j is bounded by a

polynomial in the size of the one-stage pomdp problem. As before, �at is the minimum

set of policy trees needed to represent the t-step Q function for action a.

The quantity
P

a2A j�at j is an upper bound on j�tj, though the bound may be

arbitrarily loose. By focusing on polynomially action-output-bounded pomdps, we can

solve for �t in polynomial time as long as we can �nd �at in polynomial time for each

a 2 A.

The performance of the algorithms described in this chapter on this restricted class

of pomdps is summarized in the following theorem.

Theorem 7.2 Of the existing algorithms that can be used to solve polynomially action-

output bounded pomdps, only the witness algorithm runs in polynomial time.

Proof: The theorem follows from the run-time analyses in Section 7.4. �

167

7.6 Reinforcement Learning in Information-state mdps

I now briey describe several approaches to learning a policy for an information-state

mdp from experience. This di�ers from learning a policy for a pomdp from experience

(see Section 6.6) in that here the experience tuples have the form: hx; a; x0; ri; the
information states are provided instead of observations. This type of experience tuple

would arise in situations where the rewards and transition probabilities are known in

advance or when an accurate model of the environment has been learned on line.

This is an interesting application of reinforcement learning, because the model is

known in advance and yet there are still sound reasons for trying to learn the optimal

Q function from experience; for example, reinforcement learning could possibly �nd a

useful approximation over the important parts of the state space more quickly than

the analytical methods described earlier. Still, there are major challenges to applying

any of the algorithms discussed earlier to learning in an information-state mdp, most

particularly the fact that the optimal Q function cannot be represented by a table of

values.

In this section, I sketch several methods for �nding linear or piecewise-linear convex

approximations to the optimal Q functions for pomdps. In each, a simple, parameter-

ized function representation is used to approximate the optimal Q function for each

action. In some cases, the parameterized function is linear, that is, a set of coe�cients,

one for each state; it assigns values to information states by taking the dot product

of the information state and the coe�cients. The approximate value function for an

information state is the maximum value assigned to that state by any of the Q func-

tions; this means that if the Q functions are approximated by linear or piecewise-linear

convex functions, the approximate value function will be piecewise linear and convex.

7.6.1 Replicated Q-learning

As described in Section 6.6, Chrisman [34] and McCallum [104] explored the problem

of learning a pomdp model in a reinforcement-learning setting. At the same time

that their algorithms attempt to learn the transition and observation probabilities,

an extension of Q-learning [173] was used to approximate Q functions for the learned

pomdp model. Although it was not the emphasis of their work, their replicated Q-

learning rule is of independent interest.

Replicated Q-learning generalizes Q-learning to apply to vector-valued states and

168

uses a single vector, qa, to approximate the Q function for each action a: Q(x; a) =P
s x[s]qa[s].

The components of the vectors are updated using the rule

�qa[s] = � x[s]

�
r + �max

a0
Q(x0; a0)� qa[s]

�
:

The update rule is applied for every s 2 S each time the agent makes a state transition;

� is a learning rate, x an information state, a the action taken, r the reward received,

and x0 the resulting information state. This rule applies the Q-learning update rule

to each component of qa in proportion to the probability that the agent is currently

occupying the state associated with that component.

This learning rule can be applied to the problem of solving information-state mdps.

If the observations of the pomdp are su�cient to ensure that the agent is always certain

of its state (i.e., x[s] = 1 for some s at all times), this rule reduces exactly to standard

Q-learning and existing convergence theorems apply (see Section 2.6.1).

The rule itself is an extremely natural extension of Q-learning to vector-valued state

spaces. In fact, an elaboration of this rule was developed independently by Connell and

Mahadevan [38] for solving a distributed-representation reinforcement-learning problem

in robotics.

7.6.2 Linear Q-learning

Although replicated Q-learning is a generalization of Q-learning, it does not extend

correctly to cases in which the agent is faced with signi�cant uncertainty. Consider a

pomdp in which the optimal Q function can be represented with a single linear function.

Since replicated Q-learning independently adjusts each component of the approximate

linear representation of the Q function to predict the moment-to-moment Q values, the

learning rule tends to move all components of qa toward the same value.

The components of qa ought to be set to match the coe�cients of the linear function

that predicts the Q values. This suggests using the delta rule for neural networks [131],

which, adapted to the information-state mdp framework, becomes:

�qa[s] = � x[s]

�
r + max

a0
Q(x0; a0)�Q(x; a)

�
:

Like the replicated Q-learning rule, this rule reduces to ordinary Q-learning when the

information state is deterministic.

169

a1

s1

s4

a3

a4

100–
a4

+10

+10a3

a1 s0s2

s3

+0

a2

a2

obs=z3

obs=z2

100–

Figure 7.8: A pomdp that cannot be solved with a single linear function per action.
Unmarked rewards are zero, unmarked observations are z1, unmarked transitions are
self transitions, and the initial information state has equal probability on states s2 and
s3.

In neural network terminology, linear Q-learning views fx; r+�maxa0 Q(x
0; a0)g as

a training instance for the function Q(�; a). Replicated Q-learning, in contrast, uses this

example as a training instance for the component qa[s] for every s. The rules behave

signi�cantly di�erently when the components of qa need to have widely di�erent values

to solve the problem at hand [94].

7.6.3 More Advanced Representations

Although replicated Q-learning and linear Q-learning seem to work quite well on small

problems, the linear functions they use are not adequate in general. As mentioned

earlier, piecewise-linear convex functions can approximate the optimal Q functions as

closely as necessary. In contrast, the linear functions used by the learning algorithms

can result in arbitrarily bad approximations.

As a concrete example of a pomdp that cannot be solved using simple linear Q func-

tions, consider the pomdp illustrated in Figure 7.8. A policy is linearly representable

if it can be represented as the greedy policy with respect to some linear representation

of the Q functions. I will show that the optimal policy for the pomdp of Figure 7.8 is

not linearly representable, and therefore that a more complex representation is needed

to solve it.

As an aside, there is some connection between the notion of linear separability in

classi�cation tasks and linear representability of optimal pomdp policies. Indeed, the

170

argument that the optimal policy for the pomdp of Figure 7.8 is not linearly repre-

sentable fairly closely mimics the classic argument that \xor" is not linearly separa-

ble [66].

To show that the pomdp of Figure 7.8 is not linearly representable, I �rst describe

the optimal policy for this environment and argue that it is unique, then show that any

choice of a single vector to represent the Q values for action a1 leads to a suboptimal

decision for some information state on the path from the initial state to the goal state.

The optimal policy can be represented using a single vector for actions a2, a3, and a4

and two vectors for action a1.

The unique optimal policy in this environment is to take action a2 to determine

whether the agent is in state s2 (observation z2) or state s3 (observation z3). If the

agent is in state s2, it needs to take action a1, then a3. If the agent is in state s3, it

needs to take action a1, then a4. The expected number of steps to goal for this policy

is 3 and the value of the initial state is 10�3.

To see that no other policy does as well, note that actions a3 and a4 from the initial

state are clearly suboptimal. If a1 is selected as the initial action, the second action

would have to be either a3 or a4. For either choice, half of the time this would lead the

agent to a reward of �100, and the other half, the agent would receive 10. The average

is then �45 < 10�3; thus, the unique optimal policy is the one stated above.

Given that we know how to behave optimally for this pomdp, we now need to

show that no single-vector-per-action representation can capture the optimal policy.

To do this, let us examine three particular information states, each of which places all

its probability weight on two states (s2 and s3). The starting information state for

this pomdp places equal weight on states s2 and s3; this information state is x0 =

h0; 0:5; 0:5; 0; 0i. After taking the optimal action in this state (a2), the agent is then

informed as to which of the two possible initial states it is in, either x2 = h0; 1; 0; 0; 0i
or x3 = h0; 0; 1; 0; 0i.

Assume that the optimal policy can be expressed using a single vector for each

action. Let q1 be the vector associated with action a1 and q2 be the vector associated

with a2. In the optimal policy, x0 � q2 > x0 � q1 (a2 is optimal from the initial state),

x2 � q1 > x2 � q2 (a1 is optimal from s2), and x3 � q1 > x3 � q2 (a1 is optimal from s3).

The �rst inequality can be rewritten

q1[s2] + q1[s3] < q2[s2] + q2[s3]: (7.3)

171

The second two inequalities are equivalent to q1[s2] > q2[s2] and q1[s3] > q2[s3], which

together imply q1[s2] + q1[s3] > q2[s2] + q2[s3]. But this directly contradicts Inequal-

ity 7.3; thus, the assumption that a single vector per action su�ces is in error.

Representing the optimal policy using two vectors for action a1 is trivial.

7.6.4 A Piecewise-linear-convex Q-learning Algorithm

A simple approach to learning a piecewise-linear convex Q function is to maintain a

set of vectors for each action and to use a competitive updating rule: when a new

training instance (i.e., information state/value pair) arrives, the vector with the largest

dot product is selected for updating. The actual update follows the linear Q-learning

rule. In some cases, di�erent vectors will come to cover di�erent parts of the space

and thereby represent a more complex function than would be possible with a single

vector [94].

Although this algorithm performs well on some problems, its performance on other

problems has been disappointing. The primary di�culty is that noisy updates can cause

a vector to \sink" below the other vectors. Since this approach only updates vectors

when they are the largest for some information state, these sunken vectors can never

be recovered. A related problem plagues almost all competitive learning methods [66].

A classic approach to the sunken-vector problem is to avoid hard \winner-take-all"

updates. Parr and Russell [117] solved information-state mdps using a di�erentiable

approximation of the maximum function and found they could produce good policies

for many simple pomdps. The approach is promising enough to warrant further study.

7.7 Open Problems

Algorithms for solving information-state Markov decision processes are still being de-

veloped and many questions remain.

� Are there any provably e�cient approximate solutions to the information-state

mdp?

� There are value functions for pomdps with n states and 2n actions where the

number of vertices in a value-function region is 2n. By analogy with existing

work on counting the vertices of polyhedral regions [80], it ought to be possible to

construct an example with a constant number of actions and a logarithmic number

172

of observations for which the number of vertices in some region is exponential.

Can such an example be identi�ed?

� It is possible to �nd the best linear approximation (in a max norm sense) to a set

of points using linear programming. Is there an extension of this result to more

complex approximations? This would have implications for learning optimal value

functions and putting bounds on the suboptimality of a learned value function.

� In this section, I suggested that the class of polynomially action-output bounded

pomdps was worthy of study. This comment was motivated by complexity-

theoretic concerns. Are there naturally occurring pomdp subclasses that can

be identi�ed and explored?

� Are there pomdps in which j�tj grows as a double-exponential function of t? Are

there pomdps in which j�tj grows a a single-exponential function of t? Is it ever

the case that the PSPACE algorithm of Chapter 6 is superior to the algorithms

described in this chapter?

� Although lexicographic ordering plays a crucial role in separating useful and non-

useful policy trees, there is a sense in which it is an artifact of the proof of

Lemma 7.1. Is there another simple way to quickly identify useful policy trees?

� Q-learning is known to converge to the optimal Q function in �nite-state mdps,

under the right conditions. Reinforcement-learning methods do not appear to

converge for general information-state mdps. Is there some way of structuring

the problem so it is solvable by reinforcement learning? Does linear Q-learning

converge to the optimal Q functions if they are linear? Does linear Q-learning

converge to an optimal policy if it is linearly representable? Schapire and War-

muth [136] showed that a minor variation of TD(�) performs reasonably well

provided that there is some linear predictor that performs well; could these re-

sults shed some light on learning good policies?

7.8 Related Work

Algorithmic approaches to solving pomdps, especially in terms of the information-state

mdp, have been surveyed extensively. The surveys by Monahan [109], Lovejoy [100],

and White [176] are all clear, concise, and contain a great deal of useful information.

173

Although in this chapter I focus on approximating the in�nite-horizon problem

using exact methods for the �nite-horizon, other methods have been explored. Lovejoy's

survey cites several other methods for solving the information-state mdp in addition

to those that use a piecewise-linear convex representation of the value function; for

instance, in one class of methods, the in�nite-horizon value function is approximated

using a �xed grid of information states [99].

Sondik [150] presented a policy-iteration algorithm for �nding approximate solutions

to in�nite-horizon pomdps. Sawaki and Ichikawa [135] advocated the use of the value-

iteration method, e�ectively reducing the problem of �nding an approximate in�nite-

horizon value function to that of �nding an exact �nite-horizon value function. This is

identical to the approach taken in this chapter.

The vector representation of �nite-horizon value functions was �rst explored by

Sondik [149] in his dissertation, which made it possible for a computational treatment

of pomdps to commence. The policy-tree representation is implicit in his work, and was

made explicit by Cassandra, Kaelbling and Littman in the course of this research [32,

73].

Monahan [109] provided the �rst description of the enumeration method, also im-

plicit in Sondik's work. Monahan attributes the enumeration algorithm to Sondik,

although later authors [33, 100] give the credit to Monahan. Smallwood and Sondik's

one-pass algorithm [148] avoids enumeration, at the expense of extensive record keeping.

Cheng [33] developed a collection of pomdp algorithms and his Ph.D. thesis surveys

almost all the algorithms existing at the time. White and Scherer [177] extended the

reward-revision method, developed for mdps, to pomdps.

The development of the witness algorithm [32, 92, 95] was inspired most directly

by Cheng's linear support algorithm [33], with the di�erence that standard linear pro-

gramming was to be used in place of vertex enumeration to identify missing vectors.

An early version was shown to be incorrect [92], and later versions introduced the idea

of �nding a representation for the Q functions. As presented here, the algorithm bears

a close resemblance to Lark's �ltering algorithm [176].

Chrisman [34] introduced the pomdp model to the reinforcement-learning commu-

nity. His work, and that of McCallum [104], primarily addressed learning the pomdp

model itself, and used the simplest possible representation for value functions.

Methods for solving the continuous state-space information-state mdps that come

174

from pomdps must work with a parameterized representation of the value function. Ex-

cept in some very special cases, these representations are approximate. Reinforcement

learning and dynamic programming using approximate value functions is attracting

increasing interest. Boyan and Moore [29] examined methods for solving a particular

class of continuous state-space mdps, Gordon [58] and Tsitsiklis and Van Roy [164]

demonstrated closely related provably convergent dynamic-programming algorithms,

and Baird [7] derived a gradient-descent rule for adjusting the parameters representing

a value function in a reinforcement-learning setting; a survey of these techniques and

others has recently been compiled [30].

The linear Q-learning and piecewise-linear convex Q-learning rules were developed

in a parallel research e�ort by Littman, Cassandra, and Kaelbling [94]. Independently,

Russell and Parr [117] attacked the same problem using a more complex value-function

representation that can be adjusted by gradient descent.

7.9 Contributions

Information-state mdps arise as a way of coping with the potentially unbounded his-

tories that must be considered when solving partially observable Markov decision pro-

cesses. Exact algorithms for solving information-state mdps over �nite horizon have

been around for 25 years, though a careful complexity study of these algorithms had

not been undertaken. I provide a new worst-case analysis of several algorithms for

solving this problem, and explain that, even when the optimal value function is simple,

these algorithms can take exponential time. I develop a new complexity result that

shows that it is likely that this is an inherent di�culty with the problem, for it can

be solved in polynomial time if and only if all problems in NP can be solved in ran-

domized polynomial time. I describe a new algorithm, called the witness algorithm,

which I developed in collaboration with Cassandra and Kaelbling, and prove that it

has complexity-theoretic properties that make it extremely attractive.

In the process of developing this algorithm, I discovered the importance of breaking

ties between policy trees using a lexicographic ordering, and developed e�cient algo-

rithms for doing so. The concepts I derived in this context are critical to bounding

the run time of earlier algorithms as well, although, because this is the �rst in-depth

analysis of these algorithms, this fact was not recognized.

In the area of reinforcement learning, I analyzed the replicated Q-learning rule

175

and argued that the new linear Q-learning rule is more appropriate. I also provided

a concrete example for which no linear representation will su�ce to encode optimal

behavior.

Although the witness algorithm goes a long way toward solving information-state

mdps e�ciently, it is likely that no exact algorithm will be e�ective for solving large-

scale pomdps. Other methods that make use of value-function approximation or �nite-

memory policies appear more promising in the short run. It is my hope that the

techniques presented in this chapter will inspire and inform the development of more

practical approaches.

Chapter 8

Summary and Conclusions

The central thesis of this work is that designing algorithms with attention to complexity

and convergence analysis can make it possible to solve larger and more di�cult sequen-

tial decision-making problems. I illustrated this point by analyzing existing algorithms

to indicate which hold the most promise for solving large problem instances, deriving

complexity results to show which problems are unlikely to be solvable e�ciently with-

out additional restrictions, and inventing new algorithms with provably superior run

times, wider coverage of problem instances, or guaranteed convergence.

This chapter provides several \big-picture" comparisons among the sequential decis-

ion-making models discussed throughout the thesis. It is intended to convey a feel for

the state of the art in algorithms for sequential decision making, as well as to point the

way to the next set of problems to be solved.

8.1 Comparison to Arti�cial Intelligence Planning

In this section, I provide an extremely brief summary of work in planning and relate it

to the results I described.

8.1.1 Deterministic Environments

Planning in arti�cial intelligence is concerned with �nding good behavior given a de-

scription of an environment. In traditional planning research, environments are de-

terministic and fully observable, and the objective is to �nd any sequence of actions

that moves the agent from a prespeci�ed start state to any of a prespeci�ed set of goal

176

177

states|to solve deterministic goal-oriented mdps.

This model is the simplest type of sequential decision-making problem considered

in this thesis. What makes it di�cult and worthy of study is that the states of the

environment are represented in a propositional form. Let us consider a simple example,

adapted from a paper by Draper, Hanks, and Weld [50, 49].

The environment is a manufacturing plant and the agent's task is to process and

ship a particular widget. At any moment in time, the widget is either painted (PA)

or not, awed (FL) or not, blemished (BL) or not, shipped (SH) or not, rejected (RE)

or not, and the supervisor has either been noti�ed (NO) or not. The actions available

to the agent are to: REJECT the widget, which should happen if it is awed; PAINT

the widget, which it must do to process it; SHIP the widget, which it should do if the

widget is processed; and NOTIFY the supervisor when processing is complete.

There are two possible initial states, FL BL PA SH RE NO and FL BL PA SH RE

NO. The objective is to end up in either of two goal states, FL BL PA SH RE NO

or FL BL PA SH RE NO. The shortest valid plan is REJECT NOTIFY if the part is

awed or PAINT SHIP NOTIFY if the part is not awed. Traditional planners have

very little trouble �nding these plans.

As there are six propositions and each can take on two values, the e�ective state

space consists of 26 = 64 states. In general, the size of the state space is exponential

in the number of propositions. In addition, the transitions and rewards can often be

speci�ed compactly in terms of the propositions themselves, so a complete description

of the domain can be made signi�cantly smaller than an exhaustive listing of the

components of the T andR functions. This means that the fastest possible algorithm for

solving deterministic mdps will always be exponential, simply because it must consider

each of the states independently. The challenge of traditional planning research is

to �nd algorithms that can run e�ciently with respect to the size of the compact

representation of the environment.

8.1.2 Stochastic Environments

In spite of the di�culty of compact planning problems, researchers have begun to

reach the limits of problems that can be solved usefully as deterministic goal-oriented

problems. Work in decision-theoretic planning has broadened its scope to stochastic

178

environments with more elaborate reward structures. The fundamental di�erence be-

tween work in operations research on mdps and the work in arti�cial intelligence on

decision-theoretic planning is the representation of states and actions; planning re-

searchers work with compact propositional representations of the state space, while

mdp researchers assume a collection of unanalyzed, independent states.

Of course, this di�erence in assumptions translates to substantial di�erences in

the types of algorithms that can be used to �nd optimal behavior; one fundamental

di�erence is in the form of the output of the algorithms.

Let us restrict our attention for the moment to stochastic, goal-oriented environ-

ments. We would like to know how to behave over the �nite or in�nite horizon so that

the probability of reaching the goal from some start state is at least 1� �. The output

of an mdp algorithm for this problem would be an optimal policy that lists, for each

state, the best choice of action. This is impractical for planning problems, however,

because the number of states is too large. In deterministic environments, the solution

to this is to return a plan, or sequence of actions, instead of a policy. The size of an

optimal plan is a function of the number of steps needed to reach the goal, not the size

of state space, so it can be a very e�cient representation.

In a stochastic environment, a linear plan is not su�cient to describe optimal behav-

ior1; it is necessary to conditionalize the actions on the results of uncertain transitions.

The simplest extension over a linear plan is a plan tree, which is an agent's course of

action that includes \forks" that occur when an action can have multiple outcomes.

Environments that are generally deterministic can have good plan trees that are small,

and planning algorithms have been developed that can �nd these plan trees.

As the number of possible action outcomes grows, the branching factor for the

associated plan tree grows as well. It rapidly becomes ine�cient for a plan to associate

each possible sequence of outcomes with an action. It makes more sense to map states

to actions than to construct a full plan tree. Such plans have been called \universal

plans" [138] and are equivalent to what I have been calling \policies."

I am not aware of any detailed comparisons of mdp and planning algorithms in

uncertain domains. I understand that mdps with hundreds of thousands of states

can be solved using current approaches, which translates to problems with perhaps 17

propositions. It is my opinion that a combination of techniques from operations research

and arti�cial intelligence will be needed to solve large planning problems e�ciently; this

1Kushmerick et al. [87] attempt to �nd good linear plans for stochastic environments.

179

INSPECT

REJECT

PAINT

NOTIFY

SHIP

PAINT

BL BL

Figure 8.1: Plan for a partially observable environment.

issue is explored by Boutilier, Dean, and Hanks [23].

8.1.3 Partially Observable Environments

Several projects have concerned themselves with planning in partially observable en-

vironments. Plans for partially observable environments cannot be conditioned on the

underlying state, i.e., the value of the propositions. Instead, actions are endowed by the

environment with \observational e�ects" and these e�ects (noisily) reveal the values of

particular propositions.

We can extend the widget-processing example above by making the two possible

starting states equally likely and by introducing an additional action, INSPECT, which

returns either \blemished" or \not blemished" depending on the state of the BL propo-

sition. Figure 8.1 gives a simple DAG-structured plan that reaches a goal with high

probability.

Very few algorithms have been proposed for this type of problem. Of course, any

of the pomdp algorithms described in Chapter 6 can be used, once the complete state

space is constructed. The C-Buridan [50, 49] and structured policy iteration [25] algo-

rithms solve partially observable problems using compact representations directly. The

C-Buridan algorithm discovers the DAG-structured plan in Figure 8.1. Draper et al.

note that \signi�cant search control knowledge is necessary to enable solution of even

simple examples" like the widget-processing example. This means that C-Buridan is

unlikely to have found the plan in Figure 8.1 in any reasonable amount of time without

additional information about the environment.

In contrast, the witness algorithm performed quite well on this problem. Of all

180

possible three-step plans, it found one with the maximum success probability in a few

seconds using no additional information about the domain. This result illustrates two

points. First, the witness algorithm can be used to solve compactly speci�ed planning

problems competitively with state-of-the-art planning algorithms. Second, the state

of the art in planning in pomdps is still quite primitive. I personally believe that the

witness algorithm is not the best way to solve compact pomdps in general. However,

I believe that insights from the witness algorithm could make important contributions

to algorithms for planning in partially observable stochastic domains.

In conclusion, I believe that the algorithms described in this thesis are quite rele-

vant to planning researchers because (a) they can be used as alternatives to existing

planning algorithms, but more importantly (b) there are important insights here that

can probably be used to complement existing planning algorithms to solve bigger and

more complex problems.

8.2 Comparison of Game Models

Table 8.1 compares and contrasts mdps, alternating Markov games, and Markov games

using the results from Chapters 2, 4, and 5. The �rst row summarizes the long-term be-

havior of value iteration for each model. For both mdps and alternating Markov games,

value iteration identi�es an optimal policy in a pseudopolynomial number of iterations

(Sections 2.4.2 and 4.4.1). For Markov games, value iteration generates policies that

become closer and closer to optimal but never necessarily get there (Section 5.4.2).

The second row summarizes the result of a linear-programming approach to solving

these models. Whereas linear programs can be used to solve mdps (Section 2.3.3), it is

not known whether alternating Markov games can be solved this way (Section 4.4.3).

However, for general Markov games, it is possible to argue that no linear program can

be used to identify the optimal policy (Section 5.4.3).

The third row describes the form of the optimal policy: for mdps and alternating

Markov games, a stationary deterministic policy su�ces, while, for general Markov

games, it is necessary to consider probabilistic policies as well. The fourth row gives

the state of our understanding of the computational complexity of solving the three

models: mdps can be solved in polynomial time (Section 2.5); alternating Markov games

are not known to have a polynomial-time solution, but belong to the class NP\co-NP,
providing some evidence that a polynomial-time algorithm exists (Section 4.5); and

181

alternating
mdps Markov games Markov games

value iteration optimal policy optimal policy approaches optimal

naive linear program solves fails impossible

optimal policy deterministic deterministic stochastic

computational polynomial NP\co-NP irrational
complexity

reinforcement learning approaches optimal approaches optimal approaches optimal

Table 8.1: Comparison of properties of Markov decision processes, alternating Markov
games, and Markov games.

optimal solutions to Markov games may involve irrational numbers even when the

rewards and transitions are rational, making it unlikely that any algorithm can solve

them exactly (Section 5.5). The �fth and �nal row states that reinforcement-learning

algorithms exist for all three models that result in arbitrarily good approximations to

the optimal policy under the proper conditions.

It is worth noting that every mdp is an alternating Markov game and every alter-

nating Markov game is a Markov game, and thus any algorithm for solving Markov

games can be used to solve mdps as well.

8.3 Complexity Summary

There are many aspects by which the value of an algorithm can be judged, but without

either theoretical analysis or empirical evaluation, the development of algorithms is an

exercise in aesthetics: Can you �nd an algorithm that is su�ciently \elegant"?

Of course, sound theoretical and empirical study of an algorithm is di�cult. Which

example problems are the most revealing empirically? Do the assumptions necessary

to make for the analysis to work hold in practice? How can we be sure our empirical

results generalize? Are the constants in our asymptotic analysis small enough to a�ect

the run time of a small to medium-size problem instance?

One major challenge in any theoretical analysis of an algorithm is to determine

whether the upper and lower bounds on the run time are \tight", that is, whether they

accurately characterize the range of possible run times of the algorithm. If the analysis

is tight, one needs then determine whether some other algorithm might produce faster

run times. These issues can be extremely di�cult to address.

182

polynomial horizon in�nite horizon

deterministic mdp NC [116] NC [116]
mdp P-complete [116] P-complete [116]
deterministic alternating
Markov game

P-complete* NP\co-NP [183], P-hard*

alternating Markov game P-complete* NP\co-NP [36], P-hard*
deterministic Markov game P-complete* irrational*, P-hard*
Markov game P-complete irrational [169], P-hard*

deterministic unobservable mdp NP-complete*
PSPACE-hard*/
EXPTIME*

unobservable mdp NP-complete [116] PSPACE-hard*

deterministic pomdp NP-complete*
PSPACE-hard*/
EXPTIME*

pomdp PSPACE-complete [116] EXPTIME-hard*

Table 8.2: Summary of complexity results for �nding optimal policies.

Complexity theory can be invaluable in determining when algorithmic development

and analysis need to change direction. Complexity analysis addresses the inherent

di�culty of the problem that is being solved. Finding that in�nite-horizon pomdps

are EXPTIME-hard immediately implies that your algorithm for solving them will

not run in polynomial time|no further analysis is needed. In addition, if you do

�nd an algorithm that runs in exponential time, you need not bother searching for

an algorithm with better worst-case run time; at this point, it is better to focus on

algorithms for special cases, algorithms that run well on \average" problems, or some

other less traditional avenue of algorithm development.

Table 8.2 summarizes the complexity results for the various models. Results marked

with asterisks were �rst proven in this thesis.

A de�nite trend is visible in this summary: increasing the amount of uncertainty

in a problem increases the complexity of the problem. An agent in a in�nite-horizon

pomdp environment faces an uncertain future because of stochastic transitions, an

uncertain state because of stochastic observations, and an inde�nite horizon. The

corresponding computational complexity is extremely high. An agent in a deterministic

Markov game environment faces a di�erent type of uncertainty: uncertainty about the

agent's behavior and its current choice of action. Again, the complexity is high, but in

a di�erent way.

183

These results indicate that, wherever possible, it is important to eliminate uncer-

tainty from applications. Nevertheless, when signi�cant uncertainty is present, algo-

rithms are available that �nd near-optimal behavior.

8.4 Contributions

Although much of the thesis was devoted to summarizing and unifying results from a

number of di�erent disciplines, I also presented the novel results listed below.

� Markov decision processes

{ proof that policy iteration runs in pseudopolynomial time, and in polynomial

time for any �xed discount factor

{ generalized convergence proof for Q-learning

{ simpli�ed proof of the convergence of value iteration for all-policies-proper

mdps

{ demonstration that the deterministic case can be viewed in the closed semi-

ring framework

� Generalized Markov decision processes

{ introduction of a new model

{ proof of convergence of value iteration

{ proof of convergence of policy iteration

{ proof of convergence of model-free reinforcement learning

{ proof of convergence of model-based reinforcement learning

� Markov games

{ reinforcement-learning method (minimax-Q)

{ proof of convergence of reinforcement-learning methods

{ proof of convergence of self-play approaches

{ demonstration that the deterministic case can lead to irrational values

184

{ polynomial-time algorithm for a special case: constant reward-cycle alter-

nating Markov games

{ proof of P-hardness for the deterministic �nite-horizon case

� Partially observable Markov decision processes

{ model-based algorithm (witness)

{ method for learning immediate rewards in an unknown model

{ proof that the deterministic polynomial-horizon case is NP-complete

{ proof that the deterministic in�nite-horizon case is PSPACE-hard, in EXP-

TIME, and PSPACE-complete if rewards are boolean

{ proof that the stochastic in�nite-horizon case is EXPTIME-hard, and EXP-

TIME-complete if rewards are boolean

{ proof that a single step of value iteration using the policy-tree representation

is NP-hard under randomized reductions

{ analyses of several existing algorithms for solving pomdps.

8.5 Concluding Remarks

Sequential decision making is one of the most important problems in arti�cial intel-

ligence and perhaps all of computer science, and the search for e�cient algorithms

is still relatively young. The most important areas of future research are (1) �nding

restrictions to some of the harder problems that capture the structure of problems in

the real world while admitting e�ciently computable approximate solutions, and (2)

�nding e�cient algorithms for models speci�ed in structured form.

Both of these areas will require signi�cant synergy between researchers exploring

applications and researchers inventing and analyzing new algorithms. As long as the

lines of communication remain open, there is every reason to be optimistic that the

coming years will bring more e�cient algorithms for more important problems.

Appendix A

Supplementary Introductory

Information

In this appendix, I provide background material on computational complexity and

linear programming, and summarize some of the conventions I use to illustrate the

algorithms in this thesis.

A.1 Computational Complexity

The goal of research into computational complexity is to classify and categorize compu-

tational problems. The most fundamental quantity in this area is run time: How much

time does it take to solve a particular problem? At the same time, it is often useful to

constrain other quantities such as the space used or the number of processors required

in a parallel implementation.

Time is measured in terms of basic computer operations like simple logical oper-

ations or branches. In the arithmetic model , arithmetic operations are assumed to

take unit time. In the bit-operation model , the time taken for arithmetic operations

is a function of the magnitude of the numbers involved. Since we expect the numbers

used in the programs to be represented using conventional computers, we most often

restrict our attention to integers or rational numbers (the ratio of two integers). The

arithmetic model is often more intuitive to work with and when we can guarantee that

all operations will be on rational numbers of a given precision, it is easy to convert

bounds under an arithmetic model to those under a bit-operation model.

185

186

Most complexity results are framed in terms of decision problems|problems that

require a yes/no response for each well formed input. The time and space complexity

of decision problems are given as a function of the amount of space needed to write

down an input. The goal of complexity analysis is to �nd, for a given class of decision

problems, how the worst-case run time of an algorithm scales as a function of the input

length. Note that many fundamental questions in this area are open. This means that

many important results are given in the slightly cumbersome form \such and such is

true only if some complexity theoretic property which is generally believed to be true

is true." I examine examples of this in the next section.

A.1.1 Complexity classes

Here are brief descriptions of some of the complexity classes I use in this thesis.

� P: The set of decision problems that can be answered with certainty in a polyno-

mial number of operations (polynomial time). Traditionally, this class has been

equated with the set of problems that have e�cient algorithms.

� NP: The set of decision problems that can be answered non-deterministically in

polynomial time. Most NP problems have the property that a \yes" answer can

be supported by a short example.

� co-NP: This is the complement of NP. Most co-NP problems have the property

that a \no" answer can be supported by a short example.

� NP\co-NP: This is the set of problems that are in both NP and co-NP. Member-

ship in this class can be taken as evidence that a problem is in P [55], although

there are some signi�cant examples in this class whose exact complexity remains

unknown.

� NC: The set of problems that can be decided on a parallel computer using a

polynomial number of processors and polylogarithmic (O(logk n), for some k)

time. All problems in NC are in P.

� P-hard: The set of problems such that if they are in NC, all problems in P are

in NC.

� RP: The set of problems that can be decided in randomized polynomial time,

that is, if the answer is truly \yes," an algorithm will give a \yes" answer with

187

at most a bounded probability of error; if the answer is \no," the algorithm will

say \no." All decision problems in P are in RP and all decision problems in RP

are in NP.

� PSPACE: The set of problems that can be decided using polynomial space. All

problems in P and NP and co-NP are in PSPACE.

� EXPTIME: The set of problems decidable in exponential time. All problems in

PSPACE are in EXPTIME.

� NP-hard: The set of problems such that if they are in P, all problems in NP are

in P. Similarly for PSPACE-hard.

� NP-complete: Problems in NP that are NP-hard. They are the hardest problems

in NP and many natural decision problems are in this class. No e�cient algo-

rithms are known for exactly solving problems in this class. The important and

open question \does P=NP?" basically boils down to whether any NP-complete

problem can be solved in polynomial time. For our purposes, we assume that P

mostly likely does not equal NP and therefore that any NP-complete or NP-hard

problem is intractable in general.

� PSPACE-complete: Analogous to NP-complete. Even if P=NP, it is very likely

that PSPACE does not equal P. Showing that a problem is PSPACE-complete is

very nearly a proof of its intractability in general.

� EXPTIME-complete: The hardest problems in EXPTIME. Includes problems

that are provably intractable, therefore the class of EXPTIME-complete problems

is the easiest set of problems known to be intractable.

Saying a problem is in PSPACE (or NP or EXPTIME or NC or RP) gives an upper

bound on its di�culty, since knowing that a problem is in PSPACE, for example, means

that we never need more than polynomial space to solve it. Saying a problem is NP-hard

(or PSPACE-hard or EXPSPACE-hard or P-hard) gives a lower bound on its di�culty

since an NP-hard problem is no easier than any problem in NP. \Completeness" results

are particularly tidy since they give matching upper and lower bounds on the di�culty

and as such (with regard to current theory) exactly determine how hard a problem

is. For more background information on decision problems and NP-completeness, see

Garey and Johnson's book [55].

188

A.1.2 Reductions

A reduction is simply a mapping of an instance of one problem A to an instance of

another B, so that the solution to B can be used to solve A. Reductions are extremely

important for relating two problems to show that one is no easier than the other. For

example, by reducing A to B, we show that solving A is no more di�cult than solving

B. And if the transformation from A to B and from the answer for B back to the

answer for A takes, for instance, polynomial time, then A takes no longer to solve than

B to within a polynomial factor.

One use of reductions is to show that a given problem is hard. An example, discussed

in more detail in Chapter 6, is that solving �nite-horizon pomdps is PSPACE-hard.

The proof goes like this. Take an instance of the quanti�ed-boolean-formula problem.

It is known that the quanti�ed-boolean-formula problem is PSPACE-hard (PSPACE-

complete, in fact), meaning that a polynomial-time algorithm for solving the problem in

general would prove that all problems in PSPACE are solvable in polynomial time. It is

possible to show that a �nite-horizon pomdp can be constructed from an instance of the

quanti�ed-boolean-formula problem in polynomial time, and that the solution to the

pomdp could be used to provide a solution to the quanti�ed-boolean-formula problem

in polynomial time. Since this is true, a polynomial-time algorithm for solving general

�nite-horizon pomdps would provide a polynomial-time algorithm for the quanti�ed-

boolean-formula problem, which would, in turn, imply that all problems in PSPACE are

solvable in polynomial time. Thus the �nite-horizon pomdp problem is PSPACE-hard.

It is also possible to use the notion of reductions to show how easy a given problem

is. An example of this is in Chapter 2, where the problem of solving mdps is reduced

to the problem of solving linear programs. Since the reduction can be carried out in

polynomial time, and since linear programs can be solved in polynomial time, this

proves that mdps can be solved in polynomial time. Interestingly, this is the only

existing proof of this fact.

In the next section, I use reductions to show that many decision problems are equal

in di�culty to their corresponding optimization problems.

A.1.3 Optimization Problems

Despite the mathematical richness of decision problems, most naturally occurring prob-

lems do not appear in a \yes/no" form, and hence the complexity classes described

189

above cannot really be applied to them. Nevertheless, many optimization problems,

such as the sequential decision-making problems that are the topic of this thesis, are

polynomially reducible to decision problems.

For example, consider the following problem: given a description of an mdp, �nd

the optimal policy. A related decision problem might be: given a description of an

mdp, and a rational number w, and a starting state s0, is there a policy that achieves

expected reward greater than or equal to w starting from s0?

Clearly if we could solve the optimization problem, the decision problem would be

trivial|simply take the mdp, �nd its optimal policy, and evaluate it to see if V �(s0) �
w.

We can also use an e�cient solution to the decision problem to solve the optimiza-

tion problem. The basic idea is to use binary search to �nd the largest possible value

for w for each s0. As long as we have a guarantee that the optimal value function con-

sists of polynomial-precision rational numbers (and we do for mdps, see Theorem 2.1),

a polynomial-time answer to the decision problem gives a polynomial-time answer to

the optimization problem.

Thus, for this and many other problems, the decision-problem formulation and the

optimization formulation are \equivalent" in that they have the same worst-case run

time to within a polynomial factor. For many problems, it is therefore reasonable to

use the decision-problem terminology when taking about optimization problems.

These reductions almost always depend on the solution to the optimization prob-

lem being a rational number expressible with at most a polynomial number of bits.

Thus, showing that an optimization problem can have an irrational solution, even for a

problem speci�ed with only rational values, is taken as evidence that the optimization

problem is strictly harder than its corresponding decision problem.

A stronger result might be to show that solving the optimization problem is equiv-

alent to �nding exact solutions to arbitrary polynomial equations. Galois theory tells

us that there is no �nite-time algorithm (restricted to simple arithmetic operations and

roots) for solving arbitrary polynomial equations [6]. Thus, such problems are, in a

sense, uncomputable. In spite of the di�culty of this class of optimization problems,

several of them admit �-optimal approximations that can be computed in time that is

a function of 1=�.

190

A.1.4 Other Complexity Concepts

There are several other complexity-theoretic concepts that are used in this thesis. They

involve the speci�cation of a problem's complexity when the input involves representa-

tions of numbers.

When a problem is in P, it has an algorithm whose run time scales as a polynomial in

the size of the input. When the input involves numbers, we assume that these numbers

are given in the most compact possible form, for example, as integers speci�ed in binary

notation. Similarly, when we say a problem is NP-complete, we are stating that it is

hard with respect to a compact representation of the input numbers.

Sometimes it is interesting to consider the complexity of the problem when its input

is given in unary. This means we are considering the run time with respect to the

magnitude of the numbers involved and not the size of their representations in binary.

Presenting the input numbers in unary makes a problem easier in the following sense.

Consider the problem of determining if a number x is prime. One simple algorithm

checks every number from 2 to bpxc to see if any divide x evenly. The run time of

this algorithm is proportional to bpxc and is thus polynomial in the input size if x is

expressed in unary, but exponential in the input size if x is expressed in binary.

With this in mind, here are some major categories of time complexity:

� strongly polynomial: The run time of the algorithm, measured in arithmetic

operations, can be bounded as a polynomial function of the size of the input,

measured as the number of numbers. An example is matrix multiplication which

needs no more than n3 arithmetic operations to multiply two n by n matrices.

� polynomial: The run time of the algorithm, measured in arithmetic or bit oper-

ations, can be bounded as a polynomial function of the size of the input, mea-

sured in bits. Although all strongly-polynomial algorithms are polynomial, some

polynomial-time algorithms (such as the ellipsoid method for solving linear pro-

grams and mdps) are not strongly polynomial because the number of arithmetic

operations needed depends on the size of the numbers involved.

� pseudo-polynomial: The run time of the algorithm, measured in arithmetic or

bit operations, can be bounded as a polynomial function of the magnitude of the

numbers in the input. An example is the value-iteration algorithm for solving

mdps, for which the number of iterations can grow as a polynomial function of

191

the magnitude of the discount factor, 1=(1� �). Any polynomial-time algorithm

is also pseudo-polynomial.

� NP-complete: A decision problem is NP-complete if it is in NP and the existence

of a polynomial-time algorithm to solve it would imply that P=NP.

� strongly NP-complete: A decision problem is strongly NP-complete if it is in NP

and the existence of a pseudo-polynomial-time algorithm to solve it would imply

that P=NP.

A.2 Algorithmic Examples

Throughout this thesis, I use short code fragments to make concrete the algorithms

being discussed. I use a number of conventions to help make the code fragments as

clear and simple as possible.

First of all, the notation I use does not correspond to any existing computer lan-

guage. It borrows a great deal of structure from \C," but with a number of extensions

for more complex data types.

Table A.1 contains a meaningless subroutine that illustrates some of the conventions

used to de�ne program fragments. In this example, a subroutine greeting is de�ned

to take 3 arguments, a, b, and c. The local variable t is initialized to zero and then

doubled and incremented by k, for each k from 1 to a. Next, a is increased by 3 if

t does not equal b and c is greater than or equal to 10. Otherwise, b is raised to the

second power and c is assigned the value of b� 3. Finally, the subroutine returns the

largest value of a, b, and c.

The distinction between global and local variables should be clear depending on the

context. The data type of a given variable is not given explicitly, but again, it should

always be clear from the context or the associated text.

Typographically, names of user-de�ned subroutines are in typewriter font, reserved

words are bold, variables are in italics, and mathematical functions are in roman font.

For the most part, any subroutine called within the de�nition of another subroutine

will be de�ned elsewhere in the thesis. The only di�cult functions that are left un-

speci�ed are routines for solving linear programs and systems of linear equations. The

�rst is intended to take a set of variables, linear constraints on those variables, and an

objective function, and return bindings for the variables that satisfy the constraints and

192

greeting(a; b; c) := f
t := 0
foreach k 2 [1 : : :a] t := 2t+ k
if ((t 6= b)and(c � 10)) then a := a+ 3
else f

b := b2

c := b� 3
g
return maxfa; b; cg

g

Table A.1: Example subroutine illustrating the sample-code conventions used through-
out this thesis.

maximize the objective function. The second �nds a binding for a set of variables that

satis�es a set of equality constraints on linear functions of those variables. Although

neither of these procedures are considered standard in most programming languages,

there are many excellent commercial (and free) software packages available.

My intention is that an experienced programmer should have little trouble imple-

menting the algorithms described in this thesis.

A.3 Linear Programming

Nearly every chapter refers to, or makes use of, linear programming. Very briey, a

linear program consists of a set of variables, a set of linear inequality constraints on

those variables, and a linear objective function to be either maximized or minimized.

Linear programming is interesting because it is one of the most di�cult and general

problems that can be solved in polynomial time. The �rst theoretically e�cient algo-

rithm for solving linear programs, the ellipsoid algorithm [79], does not appear to be

of practical use; however, re�nements of Karmarkar's [78] polynomial-time algorithm

are competitive with the fastest practical algorithms. Another algorithm for solving

linear programs, the simplex method [41], is theoretically ine�cient but runs extremely

quickly in practice.

An excellent book by Schrijver [140] describes the theory of linear programs and

the algorithms used to solve them.

Appendix B

Supplementary Information on

Markov Decision Processes

In this appendix, I present an analysis of two results from Puterman's mdp text-

book [126] and discuss their implications for the complexity of mdps. I also prove

that deterministic mdps are closed semirings.

B.1 Comparing Policy Iteration and Value Iteration

This result is given much more precisely in Puterman's mdp book [126] as Theorem

6.4.6. The goal of this section is to provide intuitive verbal arguments so that the

critical points can be examined more closely. We start with a host of de�nitions.

Let �0 be an arbitrary policy. For t � 0, let Vt be the value function for �t and �t+1

be a greedy policy with respect to Vt. Thus, the Vt functions form a sequence of value

functions obtained by executing policy iteration starting from �0. Let U0 be the value

function for �0 (i.e., V0) and for t � 0, let Ut+1 be the result of applying value iteration

to Ut. Thus the Ut functions form a sequence of value functions obtained by executing

value iteration starting from �0's value function. Let V
� be the optimal value function.

Theorem B.1 For all s 2 S and t � 0, Ut(s) � Vt(s) � V �(s), and therefore policy

iteration converges no more slowly than value iteration (i.e., at least linearly).

Proof: The easy part is showing that Vt(s) � V �(s) for all s 2 S and all t � 0. This

follows from the fact that Vt is the value function for a particular policy and the optimal

value function is larger than all such value functions at all states.

193

194

To show that Ut(s) � Vt(s) for all s 2 S and t � 0, we proceed by induction on t.

For t = 0, clearly U0(s) � V0(s) for all s 2 S since U0 is de�ned to be equal to V0. This

proves the base case.

Let us assume that Ut(s) � Vt(s) for all s 2 S. We will use this to show that

Ut+1(s) � Vt+1(s) for all s 2 S.

First, let U 0t+1 be the value function that results from taking one step of value

iteration on Vt. I will argue that U
0
t+1(s) � Vt+1(s) and that Ut+1(s) � U 0t+1(s) for all

s 2 S and the inductive proof will follow from chaining these inequalities.

Note that U 0t+1 is the value function for a non-stationary policy that follows �t+1 for

one step and then �t thereafter. This non-stationary policy is no worse than one that

follows �t forever since the non-stationary policy chooses its �rst action to maximize

the long term reward given that �t will be followed thereafter. Certainly this is no

worse than following �t all along. Thus U
0
t+1(s) � Vt(s) for all s 2 S.

The quantity U 0t+1(s)�Vt(s) � 0 is the amount of improvement the non-stationary

policy achieves over policy �t starting from state s. Following policy �t+1 is like using

the non-stationary policy but restarting it after each transition. This can be no worse

than the non-stationary policy since it is as if the U 0t+1(s) � Vt(s) gain is reaped on

every step instead of just once. (This is true, although the actual argument is a bit

more subtle. It can be proven as a consequence of the results in Section 3.3.3.) Since

Vt+1 is the value function for this policy, we have Vt+1(s) � U 0t+1(s) for all s 2 S.

How does U 0t+1 compare to Ut+1? Well U 0t+1 is the result of taking one step of value

iteration on Vt and Ut+1 is the result of taking one step of value iteration on Ut. Using

the inductive hypothesis that Ut(s) � Vt(s) for all s 2 S, it is easy enough to show that

Ut+1(s) � U 0t+1(s) for all s 2 S.

Chaining these results gives us the desired answer that Ut+1(s) � Vt+1(s) for all

s 2 S and therefore that policy iteration converges no more slowly than value iteration

when started from the same point. �

One extremely important observation is that this argument depends on the fact that

policy updates are done in parallel. The proof does not hold for sequential improvement

variations such as simple policy iteration. The reason is that, in comparing value

iteration and policy iteration, the proof uses the fact that applying a step of either

algorithm involves �nding the same greedy policy with respect to the value function

from the previous iteration. In value iteration, this greedy policy is adopted for a single

195

step. In policy iteration, it is adopted as a stationary in�nite-horizon policy. But deep

down, it is the same policy and therefore the two algorithms have some common ground

on which to be compared.

It is possible to imagine using Puterman's approach to compare other pairs of

algorithms. For instance, consider a version of policy iteration in which on the tth

iteration, the action choice for state t mod jSj is ipped. It might be possible to compare
this type of \single ip" policy-iteration algorithm to a version of value iteration where

the value for state t mod jSj is modi�ed on step t. Unlike simple policy iteration, it is

impossible for these algorithms to spend exponential time between considering changes

to the action choice for any given state; it is likely that these algorithms will have

similar convergence properties to true value and policy iteration.

On the other hand, it is di�cult to imagine how this type of proof could be ap-

plied to simple policy iteration. In simple policy iteration, the state updated depends

on the current value function. A related version of value iteration might be one in

which the state with the lowest index number whose Bellman residual is nonzero is up-

dated. I could easily believe that such a value-iteration algorithm would have terrible

convergence properties and would therefore serve as a useless bound on simple policy

iteration.

In summary, Puterman's proof relating value iteration to policy iteration makes

use of the fact that both perform updates with respect to greedy policies. As a result,

only parallel improvement policy iteration is covered by this theorem. Variations of

policy iteration can be discussed, but only as they relate to analogous variations of

value iteration.

B.2 On the Quadratic Convergence of Policy Iteration

Puterman [126] proves a theorem concerning the rate of convergence of policy iteration.

It shows that, under the appropriate conditions, policy iteration converges at a rate

that is quadratic (i.e., the error is squared on each iteration). The linear convergence of

policy iteration [126] can be used to show that policy iteration runs in pseudopolynomial

time (see Section 2.4.3). A proof of quadratic convergence would have even more

important implications to the complexity analysis of policy iteration, so it is worth

understanding what the theorem implies in this case. I will argue that Puterman's

theorem applied to general �nite state/action mdps leads to a vacuous conclusion.

196

Here, P� is the transition probability matrix associated with policy �.

Theorem B.2 Suppose Vt is the tth value function generated by policy iteration, and

that �t is a greedy policy with respect to Vt, and there exists a K; 0 < K <1 for which

kP�t � P��k � KkVt � V �k (B.1)

for t = 1; 2; : : :. Then

kVt+1 � V �k � K
�

1� �
kVt � V �k2: (B.2)

Proof: See Puterman [126], Theorem 6.4.8. �

I begin by considering the conditions of the theorem, particularly Inequality B.1.

First of all, as there may be more than one optimal policy, it is not necessarily the

case that kP�t � P��k goes to zero as n increases. However, the theorem gives us the

exibility to choose �t as any policy that is greedy with respect to Vt, so we choose �t

to be as similar as possible to ��.

What more can we say about the convergence of the transition matrices in Inequal-

ity B.1? Convergence of Vt to V
� takes place in a �nite number of iterations, which

we call t�. For t � t�, we have equality in Inequality B.1 for all K, since both sides

are equal to zero. For t < t� in deterministic mdps, all the entries in the transition

matrices for policies �t and �� are zeros and ones and the two matrices di�er in at

least one component. Therefore, for deterministic mdps, kP�t � P�� jj = 1 for t < t�

and 0 afterwards. Because deterministic mdps are a subset of the mdps to which this

theorem should apply, it is important to see how the theorem applies to this case.

How do we choose K so that Inequality B.1 holds for all t � 1? I argued that the

left-hand side of Inequality B.1 goes to zero in one discrete jump at t�. In contrast, we

know that kVt�V �k goes to zero in a series of steps. Tseng [162] argues that when the

rewards and transition probabilities of an mdp are all rational numbers, and Vt is the

value function for some policy, then there is a value � > 0 such that kVt�V �k is either
zero or greater than or equal to �. That is, any pair of value functions derived from

policies that are closer than � to one another are, in fact, exactly equal. This result

provides a range of values for K that makes Inequality B.1 hold: K � 1=�. This works

because the smallest possible value of kVt � V �k for t < t� is �, so KkVt � V �k � 1,

197

as required. In addition, any smaller value for K would not work, because � represents

the closest that the value functions for two policies can be without being equal.

I showed, at least at an abstract level, a way of satisfying Inequality B.1 by setting

K appropriately, and gave an argument that smaller values of K will not su�ce. The-

orem B.2 relates the distance between the (t+ 1)-step value function and the optimal

value function to the distance between the t-step value function and the optimal value

function. For Inequality B.2 to be useful in proving the convergence rate of policy itera-

tion, it must be that successive value functions are getting closer to optimal. Therefore,

we need kVt+1 � V �k < kVt � V �k, or

kVt � V �k > K
�

1� �
kVt � V �k2 (B.3)

for t < t�. Using the facts that kVt � V �k � �, and K = 1=�, Inequality B.3 implies

that � < 1=2. Or, to put it another way, when the discount factor is one half or

more, the convergence bound given by Theorem B.2 allows the distance between value

functions and the optimal value function to grow over successive iterations. This implies

that Theorem B.2 is mute on the convergence rate of policy iteration unless � < 1=2.

Section 2.4.3 shows that policy iteration, when the discount factor is bounded away

from one, runs in polynomial time, so it appears that Theorem B.2 contributes little

to the analysis.

Theorems related to Theorem B.2 are presented by Puterman and Brumelle [124,

125] in a more abstract setting that might make it possible to prove superlinear con-

vergence of policy iteration, given some additional analysis.

B.3 Deterministic mdps as Closed Semirings

In this section, I show how to de�ne deterministic mdps as closed semirings. As a

consequence, deterministic mdps can be solved in O(jSjjAj+ jSj3) time.
Let V = R[f�1;+1g and L = N [f�1; 0;+1g. De�ne S= V� L. An

element of Sis a summary of the discounted �nite-horizon value of a path, where the

�rst component gives the value and the second component gives the length. Note that

L � V. De�ne �1+ v = �1 for all v 2 Vand +1 + v = +1 for all v 2 V� f�1g.
Otherwise, v1+ v2 is de�ned as normal addition. For discount factor 0 < � < 1, de�ne

��1 = +1, �0 = 1, �+1 = 0, and otherwise �` is de�ned as normal exponentiation

198

for ` 2 L. Finally, de�ne (+1)(�1) = �1, (+1)0 = 0, (+1)v = +1 (for v 2
V� f�1; 0g), and otherwise v1v2 is de�ned as normal multiplication.

De�ne operator � as follows. Let (v1; `1) 2 Sand (v2; `2) 2 S. Then

(v1; `1)� (v2; `2) �

8>>>>><
>>>>>:

(v1; `1); if v1 > v2;

(v2; `2); if v1 < v2;

(v1; `1); if v1 = v2 and `1 > `2,

(v2; `2); otherwise.

Thus, � acts as a lexicographic maximum operator over path values with ties broken in

an arbitrary but consistent way. In the language of closed semirings, it is the summary

operator .

De�ne operator � as (v1; `1)�(v2; `2) � (v1+�
`1v2; `1+`2). The � operator can be

interpreted as a concatenation operator for a pair of paths. In the language of closed

semirings, it is the extension operator .

De�ne �0 = (�1;�1) and �1 = (0; 0). Then �0 acts as a sort of path sink and �1 as

the empty path. Finally, de�ne

(v; `)? = �1� (v; `)� ((v; `)� (v; `))� ((v; `)� (v; `)� (v; `))� : : :

= (0; 0) if v � 0 and (v�`=(1� �);+1) otherwise.

Here the star is being used as an operator, not a notational symbol as in V �. It

represents the maximum value of cycling around a path zero or more times.

Now, for (S;�;�; �0; �1) to be a closed semiring, a collection of properties must be

satis�ed.

1. (S;�; �0) is a monoid.

� Sis closed under �. This is trivial since the result of s1� s2 is always either

s1 or s2.

� � is associative. This follows fairly easily from the de�nition because the

lexicographic ordering is total and therefore independent of the order in

which elements are combined.

� �0 is an identity for �. Since both components of �0 are �1, �0�s = s��0 = s

for all s 2 S.

2. (S;�; �1) is a monoid.

199

� S is closed under �. This follows from the fact that L and V are closed

under addition, V is closed under multiplication, and �` 2 V for ` 2 L.
� � is associative. This is easily veri�ed algebraically.

� �1 is an identity for �. This is easy to see given that �0 = 1 and v � 0 = 0.

3. �0 is an annihilator: (v1; `1) � (�1;�1) = (v1 + �`1 � 1; `1 � 1) = �0 and

(�1;�1)� (v1; `1) = (�1 + ��1v1;�1+ `1) = �0.

4. � is commutative. This follows from the commutativity of lexicographic maxima.

5. � is idempotent. Again, this follows from the idempotence of maxima.

6. � distributes over �. First, s1 � (s2 � s3) = (s1 � s2) � (s1 � s3) because the

left-hand side is s1 concatenated to whichever path has greater value, s2 or s1;

and the right-hand side is the path with greater value between s1 concatenated

to s2 or s1 concatenated to s3. Second, (s2 � s3)� s1 = (s2 � s1)� (s1 � s3) for

similar reasons.

7. If s1; s2; s3; : : : is a countable sequence of elements in Sthen the in�nite summary

s1 � s2 � s3 � � � � is well de�ned and in S. This follows from the fact that Vand

L are closed under countable sequences of � operations. It is important that

+1 2 V for this reason.

8. Associativity, commutativity, and idempotence apply to in�nite summaries, thus,

any in�nite summary can be rewritten as an in�nite summary in which each term

of the summary is included just once and the order of evaluation is arbitrary.

9. � distributes over in�nite summaries.

As a result, every deterministic mdp is a closed semiring.

Appendix C

Supplementary Information on

Generalized mdps

In this appendix, I prove important properties of a collection of summary operators, the

contraction of dynamic-programming operators in the all-policies-proper case, the con-

vergence of policy iteration, and the convergence of a doubly asynchronous stochastic

process.

C.1 Summary Operators

In this section, I prove several properties associated with functions that summarize sets

of values. These summary operators are important for de�ning generalized Markov

decision processes, which involve summaries over the action set U and the set of next

states N(x; u) for each state-action pair (x; u).

Let I be a �nite set and h : I ! R. We de�ne a summary operator
J

over I to be

a function that maps a real-valued function over I to a real number. The maximum

operator maxi2I h(i) and the minimum operator mini2I h(i) are important examples of

summary operators.

Let h be a real-valued function over I . We say a summary operator
J

is a non-

expansion if it satis�es two properties:

min
i2I

h(i) �
K
i2I

h(i) � max
i2I

h(i); (C.1)

200

201

and �����
K
i2I

h(i)�
K
i2I

h0(i)

����� � max
i2I

jh(i)� h0(i)j: (C.2)

I will show that the max and min summary operators are both non-expansions, after

proving a series of simpler results.

Let h and h be real-valued functions over I . For i 2 I , let
Ji be the summary

operator
Ji

i02I h(i
0) = h(i).

Theorem C.1 The summary operator
Ji is a non-expansion.

Proof: Condition C.1 requires that
Ji

i02I h(i
0) = h(i) lie between mini02I h(i

0) and

maxi02I h(i
0). This holds trivially.

To see that Condition C.2 holds, note that jJi
i02I h(i

0) �Ji
i02I h

0(i0)j = jh(i) �
h0(i)j � maxi02I jh(i0)� h0(i0)j: �

I next examine a more complicated set of non-expansions. For real-valued function

h over I , let ordni2Ih(i) be the nth largest value of h(i) (1 � n � jI j). According to

this de�nition, ord1i2Ih(i) = maxi h(i) and ord
jIj
i2Ih(i) = mini h(i). I will show that the

ordn summary operator is a non-expansion for all 1 � n � jI j. To do this, I show that

pairing the values of two functions in their sorted order minimizes the largest pairwise

di�erence between the functions.

Lemma C.1 Let h1 and h2 be real-valued functions over I and i1; i2; i3; i4 2 I. If

h1(i1) � h1(i2) and h2(i3) � h2(i4), then

maxfjh1(i1)� h2(i3)j; jh1(i2)� h2(i4)jg
� maxfjh1(i1)� h2(i4)j; jh1(i2)� h2(i3)jg:

Proof: Two bounds can be proven separately:

jh1(i1)� h2(i3)j = maxfh1(i1)� h2(i3); h2(i3)� h1(i1)g
� maxfh1(i2)� h2(i3); h2(i4)� h1(i1)g
� maxfjh1(i1)� h2(i4)j; jh1(i2)� h2(i3)jg;

202

and

jh1(i2)� h2(i4)j = maxfh1(i2)� h2(i4); h2(i4)� h1(i2)g
� maxfh1(i2)� h2(i3); h2(i4)� h1(i1)g
� maxfjh1(i1)� h2(i4)j; jh1(i2)� h2(i3)jg:

Combining these two inequalities proves the lemma. �

I use Lemma C.1 to create a bound involving the ordn summary operator.

Lemma C.2 Let h1 and h2 be real-valued functions over I. Then

max
n

jordni2Ih1(i)� ordni2Ih2(i)j � max
i2I

jh1(i)� h2(i)j:

Proof: Both quantities in the inequality involve taking a maximum over di�erences

between matched pairs of values. This lemma states that, of all possible matchings,

pairing values with the same position in a sorted list of values gives the smallest max-

imum di�erence.

To prove this, I argue that, from any matching that violates the sorted order we can

produce a matching that is \more sorted" without increasing the maximum di�erence

(and perhaps decreasing it). The idea is that we can �nd a pair of pairs of values that

are matched out of order, and swap the matching for that pair. By Lemma C.1, the

resulting matching has a maximum di�erence no larger than the previous matching.

After generating pairings that are more and more sorted, we eventually reach the totally

sorted matching. Since the initial matching was arbitrary, the lemma follows. �

That ordn is a non-expansion follows easily from Lemma C.2.

Theorem C.2 The ordn operator is a non-expansion for all 1 � n � jI j.

Proof: Condition C.1 is satis�ed easily since it is always the case that ordni2Ih(i) = h(i)

for some i 2 I .

To verify Condition C.2, let h1 and h2 be real-valued functions over I . It follows

from Lemma C.2 that

jordni2Ih1(i)� ordni2Ih2(i)j � max
n

jordni2Ih1(i)� ordni2Ih2(i)j
� max

i2I
jh1(i)� h2(i)j:

203

Since n was arbitrary, the theorem is proved. �

Theorems C.1 and C.2 state that two very speci�c classes of summary operators

are non-expansions. The next theorem makes it possible to create more complex non-

expansions by blending non-expansions together.

Theorem C.3 If
J1 and

J2 are non-expansions, then for any 0 � � � 1, the sum-

mary operator K
i2I

(1+2);�
h(i) = �

K
i2I

1
h(i) + (1� �)

K
i2I

2
h(i)

is a non-expansion.

Proof: Once again, Condition C.1 is not di�cult to verify since the operators are being

combined using a (convex) weighted average.

Condition C.2 follows from�����
K
i2I

(1+2);�
h(i)�

K
i2I

(1+2);�
h0(i)

�����
=

������
K
i2I

1
h(i) + (1� �)

K
i2I

2
h(i)�

�
K
i2I

1
h0(i) + (1� �)

K
i2I

2
h0(i)

!�����
=

������
 K

i2I

1
h(i)�

K
i2I

1
h0(i)

!
+ (1� �)

 K
i2I

2
h(i)�

K
i2I

2
h0(i)

!�����
� �

�����
K
i2I

1
h(i)�

K
i2I

1
h0(i)

�����+ (1� �)

�����
K
i2I

2
h(i)�

K
i2I

2
h0(i)

�����
� �max

i2I
jh(i)� h0(i)j+ (1� �)max

i2I
jh(i)� h0(i)j = max

i2I
jh(i)� h0(i)j:

The proof is easily extended to weighted averages of more than two operators. �

The previous theorem demonstrated one way of making non-expansions out of other

non-expansions by averaging. The next theorem shows a more sophisticated method

for constructing non-expansions.

If
J1 is a summary operator over I1, and

J2 is a summary operator over I2, we

de�ne the composition of
J1 and

J2 to be a summary operator over I1 � I2,

(
K1 �

K2
)(i1;i2)2I1�I2h((i1; i2)) =

K
i12I1

1 K
i22I2

2
h((i1; i2)):

Theorem C.4 Let
J

=
J1 �J2 for non-expansions

J1 over I1 and
J2 over I2.

Then
J

over I = I1 � I2 is a non-expansion.

204

Proof: Let h and h0 be real-valued functions over I . For Condition C.1, we see that

K
(i1;i2)2I

h((i1; i2)) =
�K1 �

K2�
(i1;i2)2I

h((i1; i2))

=
K
i12I1

1 K
i22I2

2
h((i1; i2))

� max
i12I1

K
i22I2

2
h((i1; i2))

� max
i12I1

max
i22I2

h((i1; i2))

� max
(i1;i2)2I

h((i1; i2)):

The argument that
J

(i1;i2)2I h((i1; i2)) � min(i1;i2)2I h((i1; i2)) is similar.

For Condition C.2,������
K

(i1;i2)2I

h((i1; i2))�
K

(i1;i2)2I

h0((i1; i2))

������
=

���(K1 �
K2

)(i1;i2)2Ih((i1; i2))� (
K1 �

K2
)(i1;i2)2Ih

0((i1; i2))
���

=

������
K
i12I1

1 K
i22I2

2
h((i1; i2))�

K
i12I1

1 K
i22I2

2
h0((i1; i2))

������
� max

i12I1

������
K
i22I2

2
h((i1; i2))�

K
i22I2

2
h0((i1; i2))

������
� max

i12I1
max
i22I2

jh((i1; i2))� h0((i1; i2))j = max
(i1;i2)2I

jh((i1; i2))� h0((i1; i2))j:

This proves that
J

is a non-expansion. �

As a non-trivial application of the preceding theorems, I will show that the minimax

summary operator, used in Markov games, is a non-expansion. Let A1 and A2 be �nite

sets. The minimax summary operator over A1 � A2 is de�ned as

minimax(a1;a2)2A1�A2
h((a1; a2)) = max

�2�(A1)
min
a22A2

X
a12A1

�[a1]h((a1; a2)):

Let � 2 �(A1) and let h1 be a real-valued function over A1. De�ne

K
a12A1

�
h1(a1) =

X
a12A1

�[a1]h1(a1);

by Theorem C.3 and Theorem C.1,
J� is a non-expansion. Let h be a real-valued

function over A1 � A2. By Theorem C.2, the minimum operator is a non-expansion.

205

Rewrite

minimax(a1;a2)2A1�A2
h((a1; a2)) = max

�2�(A1)

�
min �

K��
(a2;a1)2A2�A1

h((a1; a2));

minimax is a non-expansion by Theorem C.4 and the compactness of the set �(A1) of

probability distributions over A1.

The class of non-expansions is quite broad. It is tempting to think that any operator

that satis�es Condition C.1 will be a non-expansion. This is not the case.

Lemma C.3 De�ne the boltzmann weighted average of h as

BOLTZTi2Ih(i) =
X
i2I

h(i)
eh(i)=TP
i2I e

h(i)=T
:

The operator BOLTZT is not a non-expansion.

Proof: Let I = f1; 2g, T = 1, h(1) = 100, h(2) = 1, h0(1) = 1, and h0(2) = 0. For

BOLTZT to be a non-expansion, it must be the case that Conditions C.1 and C.2 hold.

Although Condition C.1 holds,

jBOLTZTi2Ih(i)� BOLTZTi2Ih
0(i)j

=

�����
X
i

h(i)
eh(i)=TP
i e

h(i)=T
�
X
i

h0(i)
eh

0(i)=TP
i e

h0(i)=T

�����
� j(100+ 0)� (0:731+ 0)j = 99:269 > 99 = max

i2I
jh(i)� h0(i)j;

proving that the operator is not a non-expansion. �

C.2 Contractions in the All-policies-proper Case

Consider a �nite-state generalized Markov decision process1 under the expected reward

criterion satisfying the all-policies-proper condition. This condition states that one

state, call it x0, is a zero-reward absorbing state (T (x0; u; x0) = 1 and R(x0; u) = 0 for

all u), and every other state has a positive probability of reaching x0 eventually, for

any policy.

In this section, we work through a novel proof that, under these conditions, the

dynamic-programming operator H is a contraction mapping under some weighted max

1Recall that generalized mdps are de�ned to have a �nite action set.

206

norm, even if � = 1. Alternate proofs for the mdp case are given by Bertsekas and

Tsitsiklis [18], and Tseng [162].

De�ne w(x0) = 0 and w(x) = maxu
�
1 +

P
x02N(x;u)T (x; u; x

0)w(x0)
�
; that is, w(x)

is the maximum expected steps to absorption from state x over all policies. This is

the Bellman equation for a simple all-policies-proper mdp, and is well de�ned [126].

Because of the all-policies-proper condition and the de�nition of w, 0 � w(x) <1 for

all x 2 X . De�ne �w = �maxx((w(x)� 1)=w(x)); it is strictly less than one because

both w(x) and jX j are �nite.
Let V1 and V2 be value functions and Q1 and Q2 be Q functions with

Q1(x; u) = R(x; u) + �
X

x02N(x;u)

T (x; u; x0)V1(x
0);

and

Q2(x; u) = R(x; u) + �
X

x02N(x;u)

T (x; u; x0)V2(x
0):

The de�nitions of H , w and �w, along with the non-expansion properties of
N

imply

kHV1�HV2kw = max
x

j[HV1](x)� [HV2](x)j
w(x)

= max
x

j[NQ1](x)� [
N
Q2](x)j

w(x)

� max
x

max
u

jQ1(x; u)� Q2(x; u)j
w(x)

� max
x

max
u

�
X

x02N(x;u)

T (x; u; x0)
jV1(x0)� V2(x0)j

w(x)

� max
x

max
u

�
X

x02N(x;u)

T (x; u; x0)
w(x0)

w(x)

jV1(x0)� V2(x
0)j

w(x0)

� max
x

�max
u

X
x02N(x;u)

T (x; u; x0)
w(x0)

w(x)
kV1 � V2kw

� max
x

�
w(x)� 1

w(x)
kV1 � V2kw

� �wkV1 � V2kw:

This shows that H is a contraction mapping with respect to the weighting function w

with contraction coe�cient �w.

Note that the weights w are can be determined by the solution of an mdp. By

the reasoning in Theorem 2.1, each of the weights (and �w) can be written using a

207

polynomial number of bits. This is important for arguing that value iteration for all-

policies-proper mdps converges in pseudopolynomial time.

Let Q1 and Q2 be Q functions. Using reasoning similar to the above,

kKQ1 �KQ2kw
= max

x
max
u

j[KQ1](x; u)� [KQ2](x; u)j
w(x)

= max
x

max
u

�
X

x02N(x;u)

T (x; u; x0)
j[NQ1](x

0)� [
N

Q2](x
0)j

w(x)

� max
x

max
u

�
X

x02N(x;u)

T (x; u; x0)max
u0

jQ1(x
0; u0)�Q2(x

0; u0)j
w(x)

� max
x

�max
u

X
x02N(x;u)

T (x; u; x0)
w(x0)

w(x)
max
u0

jQ1(x
0; u0)� Q2(x

0; u0)j
w(x0)

� max
x

�max
u

X
x02N(x;u)

T (x; u; x0)
w(x0)

w(x)
max
x0

max
u0

jQ1(x0; u0)�Q2(x0; u0)j
w(x0)

� max
x

�
w(x)� 1

w(x)
kQ1 � Q2kw

� �wkQ1 �Q2kw;

demonstrating that the K operator on Q functions is also a contraction mapping with

respect to the w weighted max norm.

It is interesting to ask whether this result holds true for di�erent de�nitions ofL
, such as the minimization operator. In fact, the result does not hold for either

minimization or maximization, unless the state space is entirely acyclic (no policy has

a positive probability path from a state to back itself).

C.3 Monotonicity of Several Operators

Section C.1 describes a collection of important non-expansion operators based on ele-

ment selection, ordering, convex combinations, and composition. All of these operators

obey an additional monotonicity property as well.

Summary operator
J

is monotonic if, for all real-valued functions h and h0 over a

�nite set I , h(i) � h0(i) for all i 2 I implies

K
i2I

h(i) �
K
i2I

h0(i):

208

Theorem C.5 The following summary operators are monotonic:
Ji for all i 2 I,

ordn for all 1 � n � jI j, J(1+2);� for all 0 � � � 1 if
J1 and

J2 are monotonic, andJ1 �J2 if
J1 and

J2 are monotonic.

Proof: The monotonicity of
Ji,

J(1+2);�, and
J1 �J2 follow immediately from their

de�nitions. The monotonicity of ordn can be proven by considering the e�ect of in-

creasing h(i) to h0(i) for each i 2 I , one at a time. A simple case analysis shows that

each increase in h(i) cannot decrease the value of ordni2Ih(i). �

C.4 Policy-Iteration Convergence Proof

In this section, I develop the necessary results to show that the generalized policy-

iteration algorithm of Section 3.3.3 converges to the optimal value function. I will

�rst prove several simple lemmas that illuminate the fundamental properties of value

functions in maximizing generalized mdps.

First, for maximizing generalized mdps, a single step of value iteration on a value

function associated with a mapping !, results in a value function that is no smaller.

Lemma C.4 For all ! : X ! R, HV ! � V !.

Proof: From Equation 3.4, the constraints on
N
, and the de�nition of V !,

[HV !](x) =
O
u

(x)

R(x; u) + �

M
x0

(x;u)
V !(x0)

!

= max
�2R

O
u

�;(x)

R(x; u) + �

M
x0

(x;u)
V !(x0)

!

�
O
u

!(x);(x)

R(x; u) + �

M
x0

(x;u)
V !(x0)

!
= V !(x):

�

Let H! be the dynamic-programming operator associated with the mapping !

[H!V](x) =
O
u

!(x);(x)

R(x; u) + �

M
x0

(x;u)
V (x0)

!
:

The next lemma says that the monontonicy properties of
N

and
L

carry over to H

and H!.

209

Lemma C.5 The mappings H and H! are monotonic for maximizing generalized

mdps.

Proof: For value functions V and V 0, we want to show that if V � V 0, then HV � HV 0

and H!V � H!V 0. This follows easily from the de�nitions and the monotonicity of

the operators involved. �

Theorem 3.5 states that the optimal value function dominates the value functions

for all !. I will now prove this using Lemmas C.4 and C.5.

From Lemma C.4, we have that V ! � HV ! for all !. Combining this with the result

of Lemma C.5, we haveHV ! � H(HV !). By induction and transitivity, V ! � (H)kV !

for all integers k � 0 where (H)k corresponds to the application of H repeated k times.

Because limk!1(H)kV ! = V �, it is not di�cult to show that V ! � V �, proving

Theorem 3.5.

The �nal result we need relates the convergence of policy iteration to that of value

iteration. Let Ut be the iterates of value iteration and Vt be the iterates of policy

iteration, starting from the same initial value function. Let !t : X ! R be the

sequence of mappings such that Vt = V !t.

Lemma 3.6 states that, for all t and x 2 X , Ut(x) � Vt(x) � V �(x). We proceed

by induction. Clearly U0(x) � V0(x), because they are de�ned to be equal. Now,

assume that Ut(x) � Vt(x) � V �(x). By Lemma C.5, HUt(x) � HVt(x). By de�nition,

HUt(x) = Ut+1(x), and by an argument similar to the proof of Theorem 3.5,

HVt = H!t+1Vt � (H!t+1)kVt � V !t+1 = Vt+1:

Therefore, Ut+1(x) � Vt+1(x). By Theorem 3.5, Vt+1(x) = V !t+1 � V �(x), completing

the proof of Lemma 3.6.

Lemma 3.6 and Lemma 3.4 together imply the convergence of policy iteration.

Lemma 3.6 also provides a bound on the convergence rate of the algorithm; it is no

slower than value iteration, but perhaps faster.

C.5 A Stochastic-Convergence Proof

In this section, I prove Theorem 3.7, which is useful for proving the convergence of

reinforcement-learning algorithms in generalized mdps.

The proof relies critically on the following lemma concerning the convergence of

stochastic processes.

210

Lemma C.6 Let Z be an arbitrary set and consider the sequence

xt+1(z) = gt(z)xt(z) + ft(z)kxt(z) + �t(z)k;

where z 2 Z and �t(z) � 0 converges to zero. Assume that for all k,

lim
n!1

�n
t=kgt(z) = 0

uniformly in z with probability 1 and ft(z) � �(1�gt(z)) with probability 1. Then xt(z)
converges to 0 with probability 1.

Proof: The proof is in a paper by Szepesv�ari and Littman [158]. A similar claim is

proven by Jaakkola, Jordan and Singh [69]. �

Let H be a contraction mapping with respect to a weighted max norm with �xed

point V �, and let Ht approximate H at V �. Let V0 be an arbitrary value function, and

de�ne Vt+1 = Ht(Vt; Vt). If there exist functions 0 � Ft(x) � 1 and 0 � Gt(x) � 1

satisfying the conditions below with probability one, then Vt converges uniformly to

V � with probability 1:

1. for all value functions U1 and U2 and all x 2 X ,

j(Ht(U1; V
�))(x)� (Ht(U2; V

�))(x)j � Gt(x)kU1 � U2k;

2. for all value functions U and V , and all x 2 X ,

j(Ht(U; V
�))(x)� (Ht(U; V))(x)j � Ft(x)kV � � V k;

3. for all k > 0, �n
t=kGt(x) converges to zero uniformly in x as n increases; and,

4. there exists 0 � � < 1 such that for all x 2 X and large enough t,

Ft(x) � �(1� Gt(x)):

To prove this, we will de�ne a sequence of auxillary functions, Ut, that is guaranteed

to converge, and relate the convergence of Vt to the convergence of Ut. Let U0 be an

arbitrary value function and let Ut+1 = Ht(Ut; V
�). Since Ht approximates H , Ut

converges to HV � = V � with probability 1 uniformly over X . We will show that

211

kUt � Vtk converges to zero with probability 1, which implies that Vt converges to V
�.

Let

�t(x) = jUt(x)� Vt(x)j

and let

�t(x) = jUt(x)� V �(x)j:

We know that �t(x) converges to zero because Ut converges to V
�.

By the triangle inequality and the constraints on Ht, we have

�t+1(x) = jHt(Ut; V
�)(x)�Ht(Vt; Vt)(x)j

� jHt(Ut; V
�)(x)�Ht(Vt; V

�)(x)j+ jHt(Vt; V
�)(x)�Ht(Vt; Vt)(x)j

� Gt(x)kUt � Vtk+ Ft(x)kV � � Vtk
� Gt(x)�t(x) + Ft(x)kV � � Vtk
� Gt(x)�t(x) + Ft(x)(kV � � Utk+ kUt � Vtk)
� Gt(x)�t(x) + Ft(x)(k�t(x)k+�t(x))

Inequality C.3 is now in the correct form for Lemma C.6, which tells us that �t(x)

goes to zero with probability 1. This proves Theorem 3.7.

Appendix D

Supplementary Information on

Alternating Markov Games

In this appendix, I prove that Markov games in which players switch turns after every

action and Markov games in which players switch turns according to the current state

are equivalent in complexity.

D.1 Equivalence to Strictly Alternating Markov Games

There are two models that might properly be called \alternating Markov games"; in

one, control of the play strictly alternates between the two players, in the other, control

remains with a player for an unspeci�ed number of actions before switching to the other

player. The two models are equivalent in the sense that a polynomial-time algorithm

for one could be used to solve instances of the other model in polynomial time.

A strictly alternating Markov game (SAMG) is de�ned by the tuple

hS;A1;A2; T; R; �i

and play strictly alternates between the two players. An alternating Markov game

(AMG) is de�ned by hS1;S2;A1;A2; T; R; �i, and control belongs to player 1 if the

current state is in S1, and it belongs to player 2 otherwise. Given a SAMG, we can

create an equivalent AMG by duplicating the state space into sets S1 and S2 so that

the state encodes the turn of the player, and rede�ning transitions so they alternate

between the two copies of the states.

212

213

Given an AMG, we can also create an equivalent SAMG. The di�culty is that

the �rst player takes an unspeci�ed number of actions in the AMG before control is

turned over to the second player. How can we make control alternate on every turn?

We can do this by introducing a number of \dummy" states where one or the other

player nominally has control, but from which the state transition is actually completely

determined.

In more detail, consider an AMG G = hS1;S2;A1;A2; T; R; �i. We will de�ne a

SAMG G0 = hS;A1;A2; T
0; R0; �0i such that the solution to G0 can be used to quickly

�nd the solution to G. The set S consists of all the states in S1 and S2 as well as the
dummy states. For every state s1 2 S1 and action a1 2 A1 we introduce a new state

s2 into S and de�ne the transition function T 0 so that action a1 from state s1 results

in a deterministic transition to state s2, and from s2, any action a2 2 A2 results in the

same state transitions de�ned by T for state-action pair (s1; a1). In this way, state s2

\intercepts" the transition, resulting in a (dummy) action for player 2 after player 1's

action. This ensures that every action for player 1 is immediately followed by an action

for player 2.

We need to also introduce dummy states that intercept the incoming transitions to

the states in S2. This requires one dummy state added to S for each state in S2. Once
this transformation is complete, each transition in G has been replaced by a pair of

transitions in G0: a transition for a S1 state followed by a dummy move for player 2, or

a dummy move for player 1 followed by a transition for an S2 state. The transformation
has the critical property that the probability of reaching some state s in t steps in G
under some policy is exactly equal to the probability of reaching s in 2t�1 steps under

the analogous policy in G0.
It remains to be shown how to modify R and � to ensure that the optimal value of

state s in G is equal to its optimal value in G0. To a �rst approximation, this is quite

easy. Because one step in G is equivalent to two steps in G0, we need the discount factor
to decay half as fast: �0 =

p
�. We then modify the rewards so that all the dummy

states have only zero-reward transitions, the states in S1 have the same rewards in G0
that they have in G, and the states in S2 have their rewards increased by a factor of

1=�0. It is not hard to show that the optimal value of a state s 2 S1 in G is precisely

equal to the optimal value of the analogous state in G0 and that the optimal value of

a state s 2 S2 in G is precisely equal to the optimal value of the analogous state in G0
multiplied by �0.

214

A major di�culty remains. Even if G is speci�ed using only rational numbers of B

or fewer bits, the discount factor �0 for G0 may be irrational. I now argue that there is

a rational value for �0 that is close enough to
p
� to ensure an optimal policy for G0 is

optimal for G and yet can be speci�ed with a number of bits polynomial in the size of

G and B.

The argument has three parts. First, there is a value � > 0 such that an �-optimal

value function yields an optimal policy. This follows from the argument in the proof of

Lemma 2.1.

Second, there is a value � > 0 such that using a discount factor of � + � in place

of � when evaluating a policy results in a value function that is no more than � away

from the true value function for that policy. Finally, the �rst two parts together imply

that we can use a polynomial-bit approximation of
p
� in the construction described

earlier and still be able to identify optimal policies.

We choose � � �(1��)2=(M+(1��)�). Let V � be the value function for some policy

� under discount factor �, and let V �0 be the value function for � under discount factor

�+�. Let s� be the state for which jV �0(s�)�V �(s�)j is maximized. Once again, letM
be the magnitude of the largest absolute immediate reward. Substituting de�nitions

reveals

jV �0(s�)� V �(s�)j
= j�

X
s0

T (s; �(s); s0)(V �0(s0)� V �(s0)) + �
X
s0

T (s; �(s); s0)V �0(s0)j

� �
X
s0

T (s; �(s); s0)jV �0(s0)� V �(s0)j+ �
X
s0

T (s; �(s); s0)jV �0(s0)j

� �jV �0(s�)� V �(s�)j+ �M=(1� (� + �))

Solving for jV �0(s�)� V �(s�)j and noting that

1� � � � = 1� � � �(1� �)2=(M + (1� �)�)

= ((M + (1� �)�)(1� �)� �(1� �)2)=(M + (1� �)�)

= (M(1� �))=(M + (1� �)�)

215

lets us continue with

jV �0(s�)� V �(s�)j � �M=(1� (� + �))=(1� �)

� �M

(1� �)(1� (� + �))

� �(1� �)2M

(1� �)(1� (� + �))(M + (1� �)�)

� �(1� �)2M

(1� �)(1� (� + �))(M + (1� �)�)

� �(1� �)2M(M + (1� �)�)

(1� �)(M + (1� �)�)(M(1� �))
� �;

as desired.

From the expressions for � and �, it is not hard to show that the number of bits of

accuracy needed in the computation of
p
� is polynomial in the necessary parameters.

Therefore, an AMG can be turned into an equivalent SAMG with only a polynomial

increase in size. If the resulting SAMG can be solved in polynomial time, so can the

original AMG.

Appendix E

Supplementary Information on

Markov Games

In this appendix, I present a new result concerning the optimal value function of a

deterministic Markov game.

E.1 A Deterministic Markov Game with an Irrational

Value Function

The existence of deterministic stationary optimal policies for mdps and alternating

Markov games makes it easy to show that these models can be solved in �nite time,

simply by enumerating the possible policies and evaluating each one by solving a system

of linear equations.

Markov games are di�erent, in that optimal policies are sometimes stochastic. Of

course, if the probabilities needed to express an optimal policy can be written as rational

numbers (consider the \Rock, Paper, Scissors" example from Chapter 5), it still might

be possible to identify an optimal policy in �nite time. This is not generally the case

for Markov games, however; even if the transitions, rewards, and discount factor are

all represented by rational numbers, the optimal value of the game and the optimal

stochastic policy can both require irrational numbers to express.

This fact was mentioned in Shapley's original paper [143], and a speci�c example

appears in Vrieze's survey article [170]. Vrieze's example is a stochastic Markov game,

and, because deterministic models are often easier to solve, there is reason to believe

216

217

s0

a0 a2,()

a1 a2,()

+4
+1

+2
+2

s1
s2+0 +0

a0 a3,()

a1 a3,()

Figure E.1: A deterministic Markov game with rational rewards and � = 3=4 for which
the optimal value function is irrational.

�1(s0; a0) = 1=2 (�5 +p
41) � :702

�1(s0; a1) = 1=2 (7� p
41) � :298

�2(s0; a2) = 1=12 (�1 +p
41) � :450

�2(s0; a3) = 1=12 (13�p
41) � :550

Table E.1: The optimal pair of stochastic policies for a deterministic Markov game.

that the deterministic case might be simpler. This does not appear to be the case for

Markov games|deterministic Markov games can have irrational value functions even

if all rewards and the discount factor are speci�ed using rational numbers.

Consider the three-state deterministic Markov game illustrated in Figure E.1. In

this game, state s2 is a zero-reward absorbing state, state s1 is a zero-reward state with

deterministic transitions to state s0, and state s0 results in a transition to s0, s1, or

s2, depending on the actions chosen by the two players. From state s0, player 1 must

choose between actions a0 and a1 and player 2 must choose between actions a2 and a3;

in the �gure, transitions from state s0 are labeled by pairs of actions.

The value of state s0 in this game is V �(s0) = �3 +p
31 � 3:403, which was found

by solving a quadratic equation. This can be veri�ed by evaluating the stochastic

policies in Table E.1. These policies are optimal because, if the agent adopts �1, it

guarantees itself a value of V �(s0) regardless of the opponent's policy. Similarly, if the

opponent adopts �2, it guarantees itself V
�(s0) regardless of the opponent's policy.

The fact that optimal value functions can be irrational does not directly rule out the

possibility that an exact algorithm exists; for example, if the values are all solutions to

quadratic equations, then perhaps the equations themselves can be used to represent

the values. However, no radix-type representation for the numbers will result in an

exact algorithm.

Appendix F

Supplementary Results on

pomdps

In this appendix, I show that solving deterministic pomdps is PSPACE-hard, and

solving stochastic pomdps is EXPTIME-hard. I also describe an example, due to

Chrisman, of a di�cult pomdp for Q-learning.

F.1 Hardness of Deterministic pomdps

In this section, I prove that the problem of determining whether a deterministic pomdp

has an in�nite-horizon policy with zero reward is PSPACE-hard. The proof does not

make use of the observation set, therefore the hardness result applies to unobservable

pomdps as well.

The proof relates deterministic unobservable pomdps to �nite-state automata. A

�nite-state automaton is much like a deterministic mdp with a �nite set of states S
and actions A, a next-state function N , and an initial state s0. A subset F of the

states of the automaton are called accepting states . A �nite-state automaton accepts

string ` 2 A? (the star superscript denotes the Kleene star) if the state s reached after

executing the string of actions ` starting from state s0 is an accepting state (i.e., it is

in F).

Lemma F.1 Given a �nite-state automaton F = hS;A; N; s0; F i, there is a determin-
istic, unobservable, boolean-reward pomdp problemM = hS[facceptg;A[facceptg; N 0;

R; x0i such that F accepts string ` 2 A? if and only if executing the action sequence `

218

219

followed by \accept" results in zero reward and a transition to a zero-reward absorbing

state in M.

Proof: CreateM by making a copy of F so that every transition in F is a zero-reward

transition in M. De�ne the state accept to be a zero-reward absorbing state. For every

state s 2 S and action a 2 A, de�ne N 0(s; a) = N(s; a). For every accepting state

sf 2 F , de�ne N 0(sf ; accept) = accept and R(sf ; accept) = 0, and for every other state

s in S, make N 0(s; accept) = s and R(s; accept) = �1. De�ne x0[s0] = 1 and x0[s
0] = 0

for all s0 6= s.

The resulting pomdp satis�es the requirements of the lemma. �

Given a �nite collection of �nite-state automataF1; : : : ;Fk, all with the same action

set A but disjoint state sets S1; : : :Sk, we say that string ` 2 A? is in the intersection

of the sets of strings accepted by the �nite-state automata if ` is accepted by all k

automata.

We can create a deterministic, unobservable, boolean-reward pomdp problem that

is equivalent to a collection of �nite-state automata.

Lemma F.2 Given a collection of k �nite-state automata, Fi = hSi;A; Ni; si;0; Fii
for each 1 � i � k, there is a deterministic, unobservable, boolean-reward pomdp

problem M = hSi Si[facceptg;A[facceptg; N 0; R; x0i such that string ` 2 A? is in the

intersection of the strings accepted by the �nite-state automata if and only if executing

the action sequence ` followed by \accept" results in zero reward and a transition to a

zero-reward absorbing state in M.

Proof: The rewards R and the next state function N 0 are de�ned analogously to

their de�nitions in Lemma F.1. We de�ne x0[si;0] = 1=k for each 1 � i � k and zero

otherwise. Thus, in the initial state, there is a probability of 1=k of being in each initial

state of the collection of �nite-state automata.

If, upon presentation of an action sequence `, �nite-state automaton i is in state si

for each i, then, in the information state x for M, x[si] = 1=k for each i. As a result,

the pomdp simulates all k of the �nite-state automata concurrently. An accept action

has zero reward if only if all k machines are in accepting states. �

The �nite-state-automata-intersection problem is de�ned by a collection of �nite-

state automata. The problem is to decide whether there is any sequence ` 2 A? in the

intersection of the sets of strings accepted by the �nite-state automata; we call such

220

a string ` an accepting string. The pomdp construction from Lemma F.2 cannot be

used directly to determine the existence of an accepting string, because any policy that

never issues the accept action will have the same value as one that issues accept after an

accepting string. To make sure that policies are penalized for not issuing an accepting

string when one exists, we can make use of a standard result that states that if there

is an accepting string, then there must be an accepting string no more than
Q

i jSij
symbols long. By adding a counter to the pomdp construction from Lemma F.2, we

can use it solve the �nite-state-automata-intersection problem.

Lemma F.3 Given a collection of k �nite-state automata Fi = hSi;A; Ni; si;0; Fii, for
each 1 � i � k, there is a deterministic, unobservable, boolean-reward pomdp problem

M = hSi[facceptg[fsi;j j1 � i � k; 1 � j � jSijg[finc; actg;A[facceptg[fincij1 �
i � kg; N 0; R; x0i such that the intersection of the strings accepted by the �nite-state

automata is non-empty if and only if there is a zero-reward policy for M.

Proof: The de�nitions from Lemma F.2 all apply here. One slight di�erence is that

the initial state has x0[si;0] = 1=(2k + 1) instead of 1=k. The \new" states si;j , inc,

and act, and actions inci will be used to implement a set of counters that will issue a

negative reward if no accept action is chosen over the course of a sequence of
Q

i jSij
actions.

The initial probability on the inc and act states is x0[inc] = 0 and x0[act] = 1=(2k+

1). The inci actions result in a transition from inc to act, and the other actions a 2 A
result in a transition from act to inc. If any action a 2 A is selected from the inc state,

there is a reward of �1. This forces the optimal policy to alternate between actions in

A and inci actions.

As before, the actions in A correspond to transitions in all the �nite-state automata

simultaneously. The inci actions are used to implement a counter using the si;j states.

In the initial distribution, x0[si;1] = 1=(2k + 1) for all i, and x0[si;j] = 0 for all i and

j � 2. This represents the reset state for the counters.

There is one counter for each �nite-state automaton in the collection; counter 1 is

the low-order counter, and counter k is the high-order counter. Action inci increments

counter i, resets all the lower order counters, and does not change any of the higher

221

order counters,

N(si0;j ; inci) =

8>>><
>>>:

si0;0; i0 < i;

si;j+1; j � jSij � 1; i0 = i;

si0 ;j ; i0 > i:

The reward for all these transitions is zero. Counter i is full when the probability of

being in state si;jSij is non-zero. Incrementing a full counter results in negative reward,

R(si;jSij; inci) = �1.
To maximize the number of inci actions before a negative reward, a policy would

issue inc1 until the low-order counter was full, then inc2 to increment the second counter

and reset the �rst counter, then inc1 once again. After
Q

i jSij increments of this kind,
all k counters will be full. Any inci action at this point results in a negative reward.

If there is an accepting string for all the automata, a zero-reward policy would

alternate between selecting actions corresponding to the shortest possible accepting

string (any string shorter than
Q

i jSij would do), and the appropriate inci actions.

Then, once the automata are all in their accepting states, issuing the accept action

ensures the policy a total reward of zero.

If there is no accepting string, it is impossible to avoid a negative reward; if the

accept action is selected, this will result in a negative reward, and if more than 2
Q

i jSij
steps elapse without issuing accept, a negative reward will be received.

Thus, the resulting pomdp problem has a zero-reward policy if and only if there

is a string in the intersection of the sets of strings accepted by the given �nite-state

automata. �

Theorem F.1 The deterministic, unobservable, boolean-reward pomdp problem is P-

SPACE-hard.

Proof: This theorem follows easily from the reduction in Lemma F.3 and the PSPACE-

completeness of the �nite-state-automata-intersection problem [55]. �

F.2 Hardness of Stochastic pomdps

In this section, I show that solving in�nite-horizon boolean-reward pomdps with sto-

chastic transitions and observations is EXPTIME-hard by showing that solving such

pomdps yields a solution to a particular type of game on boolean formulas.

222

The game was devised by Stockmeyer and Chandra [151] in their paper linking

combinatorial two-player games to the class EXPTIME. The speci�c EXPTIME-hard

game I use in this section is referred to as G4, or \Peek," in their paper. It is a

particular kind of deterministic alternating Markov game played by two players taking

turns changing values of boolean variables, in an attempt to make a given formula

evaluate to \true."

The game is de�ned by a choice of which player moves �rst, disjoint sets X and

Y of variables, an initial assignment for these variables, and a disjunctive-normal-form

boolean formula de�ned over the variables with 13 literals (variables or negations of

variables) per term. Such a formula is called a \13-DNF" formula. The two players

take turns changing the value of at most one of the variables in the formula; player 1

can only change the value of variables in X , and player 2 can only change the value of

variables in Y . The game is over when the 13-DNF formula evaluates to true with the

winner being the player whose action caused this to happen. The decision problem is

whether there is a winning strategy for player 2 from the initial assignment.

I will show that every game of this form has an equivalent boolean-reward pomdp

such that player 2 has a winning strategy in the game if and only if the optimal policy

in the pomdp from a given initial state has negative expected reward. I use the set

of states of the pomdp to represent the variable assignments and actions in the game,

where the states with non-zero probability in the pomdp encode the state of the game.

In the pomdp, the agent plays the role of player 1. Of course, in a pomdp there

is no second player; however, we can use the stochastic transitions to represent the

actions of the second player. Because we judge the optimal policy by whether or not

it achieves zero reward, any probability of encountering a negative reward amounts

to certain failure. This makes it possible to assume that the worst possible transition

occurs each time there is a choice; stochastic transitions are equivalent to worst-case

transitions.

A game instance is a tuple G = h�;X; Y;F; �i where � 2 f1; 2g is the �rst player to
move, X is the set of variables that player 1 can change, Y is the set of variables that

player 2 can change, F is the 13-DNF formula for deciding termination represented as

a set of terms each of which is a set of 13 literals, and � : X [Y ! ftrue; falseg is an
initial assignment of the variables. Given G, we de�ne the equivalent boolean-reward
pomdp problem M = hS;A; T; R;Z ;O; S0i as described below.

The set S of states consists of the literals, X [f�xjx 2 Xg [Y [f�yjy 2 Y g (the

223

\literal-related" states); the stateX ; states for each possible action of player 2, fpassg[
ftog(y)jy 2 Y g [ftogwin(y; t)jy 2 Y; t 2 Fg (the \player-2-action" states); and states

\start" and \done." Only \start" is in the set of non-zero probability initial states, S0.

The set A of actions consists of an action \start" for starting the game; actions for

toggling the boolean value of each of the variables, ftog(x)jx 2 Xg[ftog(y)jy 2 Y g; an
action pass for passing; actions for simultaneously ipping a variable and declaring a win

for player 1 by satisfying a particular term in the formula F , ftogwin(x; t)jx 2 X; t 2 Fg;
and actions for challenging a win declared by player 2, fchallenge(y; t; l)jy 2 Y; t 2 F; l 2
Lg, where L is the set of literals.

It is via the observations that player 2's choices of actions are realized. The set Z
of observations consists of an element for each of player 2's actions, pass [ftog(y)jy 2
Y g [ftogwin(y; t)jy 2 Y; t 2 Fg.

Roughly, here is how the states of the pomdp represent the state of the game. The

information state of the pomdp is captured by the set of states which have non-zero

probability. An assignment to the variables of the formula is represented by non-zero

probabilities on the literal-related states; in particular, if a variable v is true, state

v has non-zero probability while state �v has zero probability; if a variable v is false,

state v has zero probability while state �v has non-zero probability. When it is player

1's turn, state X has non-zero probability and the player-2-action states have zero

probability. When it is player 2's turn, exactly one of the player-2-action states has

non-zero probability. When the game is over, state \done" has non-zero probability

and all others zero, and when the game starts, state \start" has non-zero probability

and all others zero.

Initially, the probability of each of the states is 0, except for the \start" state, which

has probability 1. The \start" action causes a stochastic transition that results in the

literal-related states representing the initial assignment �, as well as a transition to

either X or all the player-2-action states. The start action results in negative reward

from all other states, meaning that it will only be chosen as the �rst action. Figure F.1

depicts the pomdp state space, and the transitions, rewards, and observations for the

\start" action.

Player 1 can take three types of moves, the simplest of which is to toggle a single

X variable. The tog(x) action causes the probability in states x and �x to swap. In

addition, a stochastic transition is made from state X to the player-2-action states;

each of these states has a unique observation associated with it, and therefore only one

224

will have non-zero probability after an observation is made. From the literal-related

states, any of the player-2-action observations can be made; as a result, they have

zero probability after a transition if and only if they had zero probability before the

transition. To prevent player 1 from choosing out of turn, negative rewards are issued

for a tog(x) action from all of the player-2-action states. Figure F.2 depicts the rewards,

transitions, and observations associated with the tog(x) actions. The second type of

move, pass, is implemented similarly, except that it may also be issued when it is player

2's turn.

In the third type of move, player 1 can simultaneously toggle a variable and declare

a win. Recall that player 1 wins if the 13-DNF formula is true after that player's move.

For a 13-DNF formula to be true, at least one of the terms of the formula must be true

and all 13 of the literals in that term must be true. We de�ne action togwin(x; t) to

toggle the value of variable x 2 X and declare that term t of the formula is true. Given

any togwin(x; t) action, all states make a transition to \done" (the game is over). Once

again, precautions are taken to ensure that player 1 moves in turn, however, additional

constraints force player 1 to take a togwin(x; t) action only when it results in a win.

This is done by placing a negative reward on every state associated with a literal that

appears negated in term t (except for x which has a negative reward directly, because

its toggled value is considered in making the decision as to whether or not the term is

satis�ed), and thus the action has zero reward if and only if all the literals in term t

are true.

Since player 2 is not explicitly represented in the pomdp, we must force the agent

(player 1) to make player 2's moves on its behalf. To do this, we introduce tog(y)

and challenge(y; t; l) actions for each y 2 Y , t 2 F , and literal l. Once again, we use

negative rewards to ensure that the agent takes a player-2 action when it is player 2's

turn. Player 2's choice of action is represented by the single player-2-action state that

has non-zero probability. For action tog(y), there are negative rewards out of state X

and the other player-2-action states; this makes tog(y) the only action choice possible

when state tog(y) has non-zero probability.

The challenge(y; t; l) actions are a bit di�erent. When state togwin(y; t) has non-

zero probability, this means that player 2 claims that toggling the value of variable

y results in a win for player 2 because term t becomes true. Player 1's response is

to choose a literal in term t that proves that term t is not true. For each y, t, l

triple, challenge(y; t; l) results in a transition to \done" with a negative reward on the

225

X

y1 y1 y2 y2 ...

x1 x1 x2 x2 ...

start done

tog
y1

tog
y2

...
togwin
y1 t1,

...

togwin
y1 t2,

Figure F.1: Transitions for the \start" action. All states with no outgoing transition
have negative-reward transitions. All observations among the player-2-action states are
distinct. The union of these observations is possible from each of the other states.

X

y1 y1 y2 y2 ...

x1 x1 x2 x2 ...

start done

tog
y1

tog
y2

...
togwin
y1 t1,

...

togwin
y1 t2,

Figure F.2: Transitions for the tog(x2) action. All states with no outgoing transition
have negative-reward transitions. All observations among the player-2-action states are
distinct. The union of these observations is possible from each of the other states.

226

X

y1 y1 y2 y2 ...

x1 x1 x2 x2 ...

start done

tog
y1

tog
y2

...
togwin
y1 t1,

...

togwin
y1 t2,

Figure F.3: Transitions for the challenge(y1; t2; �x2) action. All states with no outgoing
transition have negative-reward transitions. All observations are equal.

transition from literal l; this means that if l is actually true, player 1 loses. It is in

player 1's best interest to choose a literal that proves that term t is not satis�ed (if

such a literal exists). Figure F.3 depicts the rewards, transitions, and observations

associated with the challenge(y; t; l) actions.

Given this construction, there is a tight analogy between reachable con�gurations

of states in the pomdp and legal states of the game. In particular, if player 2 has a

win, there is no policy that will prevent the agent from reaching a negative reward.

Conversely, if player 1 has a win or a draw, then player 1 has a choice of actions that

result in only zero rewards forever. Thus, a procedure for deciding whether a pomdp has

a zero-reward optimal policy can be used to decide the winner in the boolean-formula

game, after an easy transformation.

Because the boolean-formula game is known to EXPTIME-hard, solving boolean-

reward pomdps is EXPTIME-hard. It is known that P6=EXPTIME and that there are

problems in EXPTIME that truly take exponentially long to solve. Unlike the NP and

PSPACE-hard problems described earlier, which are likely to be intractable, pomdps

are provably intractable.

F.3 A Di�cult pomdp For Q-learning

This section briey describes an example pomdp, constructed by Chrisman, for which

a naive Q-learning algorithm learns the worst possible policy.

The pomdp is illustrated in Figure F.4 and consists of 3 states, 3 actions, and a

single observation. The discount factor is 0:9 and state s1 is the start state. An optimal

policy in this environment is to take action a1, and then to alternate between actions

227

a2

s1

s2

s3

a3

a3

a1

a3

-1

-1

-1

a1: +1

-1

a2: -1
a1: -1
a2: +1

-1

Figure F.4: A hard pomdp for Q-learning.

a1 and a2. This policy has an immediate reward of �1 on the �rst step, then +1 on

every step thereafter.

There are three deterministic memoryless policies for this environment: always a1,

always a2, and always a3. In the long run, always a1 and always a2 have the same

reward, alternating between +1 and �1 immediate reward.
Will now consider the behavior of a simple Q-learning agent in this environment.

The agent's internal data structure consists of a Q function mapping sensations to

actions, therefore it is a vector of three values: Q[a1]; Q[a2], and Q[a3]. Let us initialize

the Q values to be all zeros, and use a learning rate of 0:1. Action selection is greedy

(choose the action with the highest Q value), with ties broken according to the order:

a1, a2, a3.

Here is what happens when the Q-learner faces Chrisman's pomdp: It starts with

Q values all the same. By the tie-breaking scheme, action a1 is chosen in state s1 to

start. The immediate reward of �1 makes state s1 look the worst. Now the agent is in

state s2 with a tie between actions a2 and a3. The agent chooses action a2. This results

in an immediate reward of �1 for action a2, and makes action a3 the best remaining

choice. After taking action a3 in state s3, the agent returns to state s1 with all Q

values tied once again. Thus, actions a1, a2, and a3 are deterministically selected in

that order resulting in immediate rewards of �1 at every step. No policy achieves worse
performance in this environment.

This example is fairly robust to changes in the learning rate and the discount factor.

It is not robust to changes in the action selection scheme, either by choosing actions

228

non-greedily or breaking ties di�erently. Nevertheless, it illustrates that a simple Q-

learning algorithm can perform miserably on a simple pomdp.

Appendix G

Supplementary Results on

Information-state mdps

In this appendix, I prove several fundamental results concerning information-state

Markov decision processes. I show that it is not di�cult to compute the Bellman

error magnitude when value functions are represented by policy trees, that useful pol-

icy trees can be identi�ed easily, that there are complicated one-stage pomdps, that

solving one-stage pomdps is NP-complete under randomized reductions, and that wit-

nesses can be identi�ed easily.

G.1 Computing the Bellman Error Magnitude

One method for stopping value iteration in an information-state mdp is to wait for the

maximum di�erence between consecutive value functions Vt and Vt�1 to be less than

some �. The maximum di�erence between value functions, called the Bellman error

magnitude, is easily computed for �nite-state-space models. In this section, I examine

two algorithms for computing the Bellman error magnitude in information-state mdps

when the value functions are represented as sets of policy trees �t and �t�1.

The �rst algorithm is exact and somewhat expensive, while the second is a bound

but very cheap to compute. Both run in polynomial time. The section is not intended

as an exhaustive account of possible algorithms; instead, it simply serves to show that

e�cient algorithms for this problem exist.

229

230

G.1.1 An Exact Method

Briey, the exact method considers all pairs of policy trees pt 2 �t and pt�1 2 �t�1. It

uses linear programming to �nd an information state x� such that

1. pt dominates the policy trees in �t at x
�,

2. pt�1 dominates the policy trees in �t�1 at x
�, and

3. � = jVpt(x�)� Vpt�1(x
�)j is maximized over all x� satisfying the �rst two condi-

tions.

The �rst two conditions guarantee that Vpt(x
�) = Vt(x

�) and Vpt�1(x
�) = Vt�1(x

�).

The third condition makes � a lower bound on the largest di�erence between value

functions. By �nding the pair of policy trees that give the largest value for �, the

Bellman error magnitude is identi�ed.

An algorithm that uses this idea to compute the Bellman error magnitude appears

in Table G.1. To compute the maximum absolute value, two separate linear programs

are constructed.

G.1.2 A Bound

The previous section described a method for computing the maximum di�erence be-

tween two piecewise-linear and convex value functions represented as sets of policy

trees. This section describes a simpler approach that is much more e�cient to compute

but only gives an upper bound on the di�erence.

We want to bound the biggest di�erence between two value functions, Vt(x) =

maxp2�t Vp(x) and Vt�1(x) = maxp2�t�1 Vp(x). The following lemma gives an inexpen-

sive way to bound the biggest positive di�erence between Vt and Vt�1.

Lemma G.1 Let

� = max
pt2�t

min
pt�12�t�1

max
s2S

(Vpt(s)� Vpt�1(s)):

Then, for all information states x, Vt(x)� Vt�1(x) � �.

Proof: Consider some particular information state x. Let p�t = argmaxp2�t Vp(x),

p�t�1 = argmaxp2�t�1 Vp(x), and

p0t�1 = argmin
~p2�t�1

max
s2S

(Vp�
t
(s)� V~p(s)):

231

BellmanErrMag(�t;�t�1) := f
maxdiff := �1
foreach pt 2 �t, pt�1 2 �t�1 f

�1 := checkpair(pt�1;�t�1; pt;�t)
�2 := checkpair(pt;�t; pt�1;�t�1)
maxdiff := maxfmaxdiff; �1; �2g

g
return maxdiff

g

checkpair(p;�; p0;�0) := f
Solve the following linear program:

maximize: �
s.t.:

P
s x[s]Vp(s) �

P
s x[s]V~p(s), for all ~p 2 � � fpg

and:
P

s x[s]Vp0(s) �
P

s x[s]V~p(s), for all ~p 2 �0 � fp0g
and: � =

P
s x[s]Vp(s)�

P
s x[s]Vp0(s),

and:
P

s x[s] = 1
and: x[s] � 0, for all s 2 S
variables: �, x[s] for all s 2 S

if (� = undefined) then return �1
else return �

g

Table G.1: Subroutine for computing the exact Bellman error magnitude in polynomial
time.

232

Vt x() x s[]V
p*

t
s()

s
∑=

x

Vt 1– x() x s[]V
p*

t 1–
s()

s
∑=

x s[]Vp't 1–
s()

s
∑

δ≤

Figure G.1: Upper bound on the maximum di�erence between value functions.

In words, p�t is the best policy tree in �t at x, p�t�1 is the best policy tree in �t�1 at

x, and p0t�1 is the policy tree whose value function has the smallest possible biggest

di�erence from that of p�t at any state. De�ne � as in the statement of the lemma. This

situation is depicted in Figure G.1.

We can bound

Vt(x)� Vt�1(x) = Vp�
t
(x)� Vp�

t�1
(x)

� Vp�
t
(x)� Vp0

t�1
(x) =

X
s2S

x[s]Vp�
t
(s)�

X
s2S

x[s]Vp0
t�1

(s)

�
X
s2S

x[s](Vp�
t
(s)� Vp0

t�1
(s))

� max
s2S

(Vp�
t
(s)� Vp0

t�1
(s)) = min

pt�12�t�1
max
s2S

(Vp�
t
(s)� Vpt�1(s))

� max
pt2�t

min
pt�12�t�1

max
s2S

(Vpt(s)� Vpt�1(s)) = �;

as desired. Since x was chosen arbitrarily, the bound holds for all x 2 X . �

Lemma G.1 gives a one-way bound on the Bellman error magnitude. A more

complete bound can be found by reversing the roles of �t and �t�1 in the lemma and

combining the result with the bound from Lemma G.1.

Although the bound obtained this way can be arbitrarily loose, it is a good ap-

proximation in the following sense. If the policy trees in �t are identical to the policy

trees in �t�1, the bound will (correctly) state that the Bellman error magnitude is zero.

And, although it is di�cult to formalize, if the two sets are only slightly di�erent, the

given bound will be fairly accurate.

Table G.2 provides a subroutine for the upper bound.

233

BellmanErrMagBound(�t;�t�1) := f
�1 := maxpt2�t minpt�12�t�1 maxs2S(Vpt(s)� Vpt�1(s))
�2 := maxpt�12�t�1 minpt2�t maxs2S(Vpt�1(s)� Vpt(s))
return maxf�1; �2g

g

Table G.2: Computing a bound on the Bellman error magnitude.

G.2 Identifying Useful Policy Trees

In this section, I prove Lemma 7.1, which states that the useful policy trees are precisely

those that dominate the other policy trees for some information state. To show this, I

begin by proving Lemma 7.2.

Given an information state x and a set of policy trees F , let p� be the lexicographic

maximum policy tree in F such that Vp�(x) = Vt(x). Lemma 7.2 asserts the existence

of an x0 such that p� dominates all other policy trees in F at x0.

To show this formally, we need some additional notation. Information state x is a

�-step from x1 towards x2 if x = �(x2 � x1) + x1, 0 � � � 1. Let es be the vector

corresponding to the \corner" of X where all the probability mass is on state s 2 S.

Lemma G.2 Let W = fp 2 F jVp(x) � Vp0(x) for all p
0 2 Fg; that is, W is the set of

policy trees in F that dominate those in F �W at x. For all s 2 S, if x 6= es, there is

a value � > 0 such that for the information state x0 that is a �-step from x towards es,

the policy trees in W still dominate those in F �W .

Proof: For any p 2 W and any p0 2 F � W , de�ne � = Vp(x) � Vp0(x) > 0. Let

x0 = �(es � x) + x. We can �nd a value for � > 0 such that Vp is bigger than Vp0 at x
0.

Using the linearity of the value function for policy trees, the following statements are

equivalent:

Vp(x
0) > Vp0(x

0)

(Vp(�(es � x) + x)� Vp0(�(es � x) + x) > 0

(1� �)(Vp(x)� Vp0(x)) + �(Vp(es)� Vp0(es) > 0

(1� �)�+ �(Vp(s)� Vp0(s)) > 0

�(�+ Vp0(s)� Vp(s)) < �

234

Since � > 0, we can divide by it without changing the inequality. Let � = 1+(Vp0(s)�
Vp(s))=�. Then the above expression is equivalent to �� < 1. If � � 0, the inequality

holds with � � 1. Otherwise, we can set � � 1=(2�) to satisfy the inequality.

This shows that for every s, we can �nd a � > 0 for each pairing of p 2 W and

p0 2 F �W such that a �-step from x to es gives an x
0 such that Vp(x

0) > Vp0(x
0). Since

there are a �nite number of ways of pairing elements in W with those in F �W , there

is a � > 0 that works for all pairs (namely, the minimum � for any pair). �

We can now use Lemma G.2 to prove Lemma 7.2. The plan is to take successive �-

steps from x towards each corner es. Each step is small enough so that the lexicographic

maximum policy tree in W still dominates the policy trees in F �W , but large enough

so that some ties within W are broken.

Let W0 = W be the set of policy trees maximal at x0 = x. By Lemma G.2, there

is an information state, x1, strictly di�erent from x0 if x0 6= es0 and in the direction of

es0 at which the policy trees in W0 are still bigger than the others. Let W1 be a subset

of W0 consisting of the policy trees maximal at x1. If x0 = es0 , let W1 = W0.

It should be clear that the policy trees in W1 are precisely those p 2 W0 for which

Vp(s0) = Vp�(s0), that is, those tied with the lexicographically maximal policy tree in

the �rst component.

If we apply this argument inductively for each component,Wi becomes the set of all

policy trees in W that agree with Vp� in the �rst i components of their value functions.

The policy trees in Wi dominate those in F � Wi at xi. After every state has been

considered, we are left with WjSj = fp�g with p� as the unique policy tree dominating

all others in F at xjSj.

This concludes the proof of Lemma 7.2. In addition to its computational impor-

tance, Lemma 7.2 is also helpful for proving Lemma 7.1, which states that a policy tree

is useful if and only if there is an information state for which it dominates all other

policy trees.

Let G be a set of policy trees and V (x) = maxp2G Vp(x) be the value function they

represent. Let � be the set of policy trees in G that dominate the other policy trees in

G for some information state. I �rst show that every policy tree p 2 � is necessary for

representing V . Consider any x for which p dominates the policy trees in G. Such an x

exists by construction of �. From the de�nition of domination, we know that no other

policy tree in G gives as large a value at x as p does. Therefore, the value function

235

represented by any set U � G � fpg would have a strictly smaller value at x than V

does. Thus, every p 2 � is needed to represent V .

Next, we show that � is a su�cient representation of V , that is,

V (x) = max
p2�

Vp(x):

To see this, consider any x 2 X . Let p� be the lexicographic maximum policy tree

in G such that Vp�(x) = maxp2G Vp(x). By Lemma 7.2, there exists an x0 such that

p� dominates all other policy trees in G at x0, so p� will be included in �. Thus,

V (x) = maxp2G Vp(x) = Vp�(x) = maxp2� Vp(x). Since this holds for every x, �

represents the same function that G does.

G.3 Example One-stage pomdp Problems

In this section, I provide several constructions that illustrate various important pomdp

issues. I will start with a lemma that makes it easier to describe speci�c one-stage

pomdp problems.

Recall that to specify a one-stage pomdp problem, it is necessary to de�ne sets S,
Z , and A; functions T , O, and R; a scalar �; and a set � of jSj-vectors. The set �0 is
the minimum set of policy trees such that

max
p2�0

Vp(x) = max
a2A

max
�2T (Z!�)

X
s

x[s]

R(s; a) + �

X
z

X
s0

T (s; a; s0)O(s0; a; z)�(z)[s0]

!
;

(G.1)

for all x 2 X , where T (Z ! �) is the set of all functions mapping Z to �. The set �0

of jSj-vectors can be viewed as a representation of a piecewise-linear convex function

f(x) = maxp2�0 Vp(x) over the (jSj� 1)-dimensional simplex. Because �0 is de�ned via

a one-stage pomdp problem, the Z , A, T , O, R, �, and � quantities can be viewed as

a speci�cation of a piecewise-linear convex function.

I will show that there are values for Z , A, T , O, R, �, and � such that the

piecewise-linear convex function they specify via �0 has particular properties. I show

that by specifying a �nite set K of jSj-vectors, and a �nite collection � of pairs of

jSj-vectors with components between zero and one, it is possible to specify a piecewise-
linear convex function that is the solution to a one-stage pomdp problem, without

needing to identify Z , A, T , O, R, �, and � directly.

236

Let K be a set of jSj-vectors. Let V be a �nite set of variables , and B be the set of

all bindings mapping the elements of V to f1; 2g (B = T (V ! f1; 2g)). Let � be a set of

jSj-vectors, � = f�zkjz 2 V ; k 2 f1; 2gg. Let the sets K and � specify a piecewise-linear

convex function f over X by

f(x) = max

�
max
�2K

(x � �);max
b2B

(x � �b)
�
;

where �b =
P

z2V �
z
b(z) for b 2 B.

The next lemma shows that any piecewise-linear convex function that can be spec-

i�ed this way can also be speci�ed as the solution to a one-stage pomdp problem of

similar size.

Lemma G.3 Given a set of variables V, and setsK and � of jSj-vectors (jSj � jVj+2),
and a set � = f�zkjz 2 V ; k 2 f1; 2gg (0 � �zk[s] � 1; 8s 2 S), there is a one-stage

pomdp problem such that

max
p2�0

Vp(x) = max

�
max
�2K

(x � �);max
b
(x � �b)

�
:

The pomdp has jZj = jVj, jAj = jKj+ 1, and j�j = 2.

Proof: De�ne the one-stage pomdp as follows. The set of observations is the set of

variables (Z = V), and there is one action for each vector in K and one corresponding

to the � set, A = fa�j� 2 Kg [fa0g: Let � be a set of two jSj-vectors, 1 and 2, and
let � = 1. De�ne 1 and 2 by

k[s
0] =

8>>><
>>>:

(3� 2k)(jZj+ 1); if s0 � jZj;
(k � 1)jZj(jZj+ 1); if s0 = jZj+ 1;

0; otherwise,

for k 2 f1; 2g.
Let each a� action result in an immediate reward of x � � and a transition to state

jZj + 2 (which has zero value under �); for all s, R(a�; s) = �[s], T (s; a�; s0) = 1,

O(s0; a�; z) = 1=jZj if s0 = jZj + 2 and zero otherwise. Since k[jZj + 2] = 0 for

k 2 f1; 2g, for all � 2 T (Z ! f1; 2g) and s 2 S

R(s; a�) + �
X
z

X
s0

T (s; a�; s
0)O(s0; a�; z)�(z)[s

0] = R(s; a�) = �[s]:

(G.2)

237

The a0 action is a bit more complex. De�ne the pomdp functions as follows,

R(s; a0) =
X
z

�z1[s] + �z2[s]� 1

2
;

T (s; a0; s
0) =

8>>>>>><
>>>>>>:

�s
0

1
[s]��s

0

2
[s]+1

2(jZj+1) ; if s0 � jZj,
1

jZj+1 ; if s0 = jZj+ 1,

1�PjZj+1
s0=1 T (s; a0; s

0); if s0 = jZj+ 2,

0; otherwise.

;

O(s0; a0; z) =

8>>><
>>>:

1; if z = s0;

0; if s0 � jZj and z 6= s0;
1
jZj ; otherwise.

;

It is not hard to show that the components of T and O add to 1 in the proper way.

For any s 2 S, � 2 T (Z ! �), let b be the binding such that �(z) = b(z) for all

z 2 Z , then,

R(s; a0) + �
X
z

X
s0

T (s; a0; s
0)O(s0; a0; z)�(z)[s

0]

= R(s; a0) + �
X
z

X
s0

T (s; a0; s
0)O(s0; a0; z)b(z)[s

0]

=
X
z

�z1[s] + �z2[s]� 1

2
+
X
z

�z1[s]� �z2[s] + 1

2(jZj+ 1)
b(z)[z] +

X
z

1

jZj+ 1

1

jZjb(z)[jZj+ 1]

=
X
z

�
�z1[s] + �z2[s]� 1

2
+
�z1[s]� �z2[s] + 1

2(jZj+ 1)
(3� 2b(z))(jZj+ 1)

+
1

jZj+ 1

1

jZj(b(z)� 1)jZj(jZj+ 1)

�

=
X
z

�
�z1[s] + �z2[s]� 1

2
+
�z1[s]� �z2[s] + 1

2
(3� 2b(z)) + (b(z)� 1)

�

=
X
z

�
�z1[s](4� 2b(z)) + �z2[s](�2 + 2b(z)) + 2� 2b(z)

2
+ (b(z)� 1)

�

=
X
z

(�z1[s](2� b(z)) + �z2[s](�1 + b(z)) + 1� b(z) + b(z)� 1)

=
X
z

�zb(z)[s] = �b[s]: (G.3)

238

Combining Equations G.1, G.2, and G.3, we have

max
p2�0

Vp(x)

= max
a2A

max
�2T (Z!�)

X
s

x[s]

R(s; a) + �

X
z

X
s0

T (s; a; s0)O(s0; a; z)�(z)[s0]

!

= max

(
max

�2T (Z!�)

X
s

x[s]

R(s; a0) + �

X
z

X
s0

T (s; a0; s
0)O(s0; a0; z)�(z)[s

0]

!
;

max
�2K

max
�2T (Z!�)

X
s

x[s]

R(s; a�) + �

X
z

X
s0

T (s; a�; s
0)O(s0; a�; z)�(z)[s

0]

!)

= max

�
max
b2B

(x � �b);max
�2K

(x � �)
�
;

therefore, the supplied vectors correspond exactly to the set of value functions obtained

by solving a one-stage pomdp problem.

�

G.3.1 Exponential Number of Useful Policy Trees

I show that there exists a family of one-stage pomdps such that, for every n > 2,

jSj = 2n, jAj = 1, jZj = n, j�t�1j = 2, and j�tj = 2n.

Let S = f1; : : : ; 2ng, and V = f1; : : : ; ng. For k 2 f1; 2g, let �zk[2z + k � 2] = 1,

and 0 otherwise. Let K = ;. By Lemma G.3, there is a pomdp with jAj = 1, jZj = n,

and j�j = 2 such that G =
S
b2Bf

P
z �

z
b(z)g. Note that jGj = jBj = 2jV j = 2n. We

know that the set �0 is a subset of G. We can show that, in fact, these sets are equal,

because every policy tree in G dominates all other policy trees in G at some x 2 X .

Lemma G.4 In the construction just described, for every b 2 B there is an x� 2 X
such that x� � �b > x� � �b0 for all b0 6= b.

Proof: For a binding b, for each z 2 V , let x�[2z + b(z)� 2] = 1=n and 0 otherwise.

239

The components of x� are non-negative and sum to 1, so x� 2 X . Now, for any b0 2 B,

x� � �b0 = x� �
X
z

�zb0(z)

=
X
s

(x�[s]
X
z

�zb0(z)[s])

=
X
z

X
s

(x�[s]�zb0(z)[s])

=
X
z

x�[2z + b0(z)� 2]

=
1

n
Ifb0(z) = b(z)g;

which is uniquely maximized for b0 = b. �

G.3.2 Exponential Number of Vertices in a Region

In this section, I show that there is a family of one-stage pomdp problems such that,

for every n > 2, jSj = n + 1, jAj = 2n + 1, jZj = 1, j�j = 1, j�0j � 2n + 1, and the

number of vertices in the region dominated by one of the policy trees is 2n.

Once again, I will use the speci�cation described in Lemma G.3, inductively creating

a separate piecewise-linear convex function for each n. For each n, de�ne a set Kn

containing 2n+ 1 vectors, and let �n be a vector such that the vectors in Kn form the

walls of an n-dimensional hypercube bounding the region fxjx � �n � x � �; � 2 Kng:
We de�ne the family of pomdps recursively, starting with n = 1. Let S1 = f1; 2g and
V = f1g. Let �zk[s] = 0 for all z 2 V , k 2 f1; 2g, and s 2 S (the set � is not needed

in this construction). The notation hx; yi concatenates two vectors (or a vector and

scalar) into a single vector.

Let K1 = fh1;�1=2i; h0; 0i; h�1; 0ig and �1 = h0; 0i. Let
n be the set of vertices

of the region fxjx � �n � x � �; � 2 Kng: The vertices are the information states where

one of the other vectors in K1 gives the same value as �1. It is easy to verify that the

set of vertices
1 = fh0; 1i; h1=3; 2=3ig.
Inductively de�ne �n+1 = h�n; 0i,

Kn+1 = fh�; 0i : � 2 Kng [fh0; : : : ; 0;�1i; h1; : : : ; 1;�1ig

and Sn+1 = Sn [fn+ 2g.
Note that �n+1 = h0; : : : ; 0i 2 Kn+1. The vertices of �n+1's region are the infor-

mation states where n + 1 of the vectors in Kn+1 give the same value as �n+1. Let

240

x 2
n. Inductively, n vectors in Kn give the same value as �n at x. Let � be any one

of these vectors. It follows from the construction of � that

hx; 0i � h�; 0i= x � � = 0 = x � �n = hx; 0i � �n+1

and

hx; 0i � h0; : : : ; 0;�1i= 0 = hx; 0i � �n+1;

so hx; 0i 2 X is a vertex of �n+1's region. Similarly,

h1=2 x; 1=2i � h�; 0i = 1=2 x � � + 0 = 0 = h1=2 x; 1=2i � �n+1

and

h1=2 x; 1=2i � h1; : : : ; 1;�1i = 1=2� 1=2 = 0 = h1=2 x; 1=2i � �n+1;

so h1=2 x; 1=2i 2 X is a vertex of �n+1's region also. As a result,

n+1 = fhx; 0i : x 2
ng [fh1=2 x; 1=2i : x 2
ng:

Since all the vectors in Kn+1 and
n+1 are unique, jKn+1j = jKnj+2, and j
n+1j =
2j
nj, jKnj = 2n + 1 and j
nj = 2n for all n � 2. Applying Lemma G.3, there is a

one-stage pomdp problem for each n > 2 with jSj = n + 1, jAj = 2n + 1, jZj = 1,

j�j = 1, j�0j = n + 1, such that the number of vertices in one of the linear regions of

the value function is 2n.

G.4 Solving One-stage pomdp Problems is Hard

In this section, I show that the problem of solving polynomially output-bounded one-

stage pomdp problems is NP-complete under randomized reductions. This means that

there is a randomized algorithm for solving one-stage pomdp problems in polynomial

time if and only if RP=NP. To show this, we examine a deep connection between this

problem and the unique-satisfying-assignment problem, de�ned below.

A boolean formula in conjunctive normal form (CNF) is an \and" of a set of clauses

of \ors" of literals (variables and negated variables). A satisfying assignment maps each

of the variables to either \true" or \false" so the entire formula evaluates to \true."

There is a result, proved by Valiant and Vazirani [165], that implies that there exists

a polynomial-time algorithm for �nding a satisfying assignment for a formula that is

241

guaranteed to have at most one satisfying assignment only if RP=NP1. I will show

that a polynomial-time algorithm for solving polynomially output-bounded pomdps

could be used to solve the unique-satisfying-assignment problem in polynomial time,

and therefore that such an algorithm exists only if RP=NP.

I use the speci�cation described in Lemma G.3 and de�ne S, V , K, and �. Take

a CNF formula consisting of a set of M > 1 clauses C, and variables V (jVj � 2).

The set of variables corresponds both to the variables in Lemma G.3 and the boolean

variables in the formula. Let S = C � V . An element of S is a pair (c; z) 2 C � V .
There is a pair of � vectors for each variable z 2 V , which will encode the CNF formula.

Vector �z1 indicates in which clauses variable z is unnegated and �z2 indicates in which

clauses variable z is negated. More speci�cally, for each z 2 V and k 2 f1; 2g, �zk is

a jC � Vj-vector with �z1[(c; z)] = 1 if variable z appears unnegated in clause c and

�z2[(c; z)] = 1 if variable z appears negated in clause c. All other components of the �

vectors are zero.

For a binding b 2 B, b(z) = 1 if variable z is true in the assignment and b(z) = 2

otherwise. Thus, if �zb(z)[(c; z)] = 1, then clause c evaluates to \true" under binding b

because of the binding of variable z in that clause. Let � be a jC�Vj-vector with each

component equal to (M�1=2)=M . For each c 2 C, de�ne a jC�Vj-vector �c, as follows.
For all z 2 V , let �c[(c; z)] = 1+ (M � 1=2)=M �M and �c[(c

0; z)] = 1+ (M � 1=2)=M

for c0 6= c. As described earlier, let �b =
P

z �
z
b(z). From the de�nition of �, every

component of �b is either a one or a zero.

Each �b vector corresponds to a variable assignment and the �c and � vectors are

designed to jointly dominate all possible �b vectors, except those corresponding to

satisfying assignments.

Lemma G.5 Let K = f�g [f�cjc 2 Cg. There is an x� 2 X such that x� � �b >
max�2K(x

� � �) if and only if b is a satisfying assignment.

Proof: First, assume b is a satisfying assignment. We can construct an x� such that

x� � �b = 1, but x� � � < 1 and x� � �c < 1 for all c 2 C as follows.

For each clause c 2 C, pick a single variable zc such that the binding of that variable

in b causes clause c to be satis�ed. Let x�[(c; zc)] = 1=M for each c 2 C and 0 otherwise.

Note that x� 2 X because M components are set to 1=M . Because of the zeros in x�

1Thanks to Avrim Blum for pointing this out.

242

and the � vectors,

x� � �b =
X
c

X
z

x�[(c; z)]
X
z0

�z
0

b(z0)[(c; z)]

=
X
c

X
z

x�[(c; z)]�zb(z)[(c; z)]

=
X
c

x�[(c; zc)]�
zc
b(zc)

[(c; zc)] =
X
c

1

M
= 1:

Using the same x� we see that x� �� = (M�1=2)=M < 1, and for each clause c 2 C,

x� � �c =
X
z

X
c0

x�[(c0; z)]�c[(c
0; z)]

=
X
z

0
@x�[(c; z)]

1 +

M � 1
2

M
�M

!
+
X
c0 6=c

x�[(c0; z)]

1 +

M � 1
2

M

!1
A

=
X
z

�Mx�[(c; z)] +

X
c0

x�[(c0; z)]

1 +

M � 1
2

M

!!

= �M 1

M
+

1 +

M � 1
2

M

!X
z

X
c0

x�[(c0; z)]

= �1 + 1+
M � 1

2

M
=
M � 1

2

M
< 1:

Thus, x� � �b = 1 > max�2K(x
� � �), for satisfying assignment b.

Now I show that, for a non-satisfying b, x � �b < max�2K(x � �) for all x 2 X . We

proceed by contradiction. Assume we have an x 2 X such that max�2K(x � �) � x � �b
for a non-satisfying b. Then, x � � � x � �b and x � �c � x � �b for all c 2 C. De�ne

wc =
P

z x[(c; z)]. The variable wc is the weight of clause c, and note that
P

c wc = 1

if x 2 X . Let c� = argmincwc; c� is a minimum weight clause.

If x � � � x � �b, then (M � 1=2)=M � x � �b = x � [Pz �
z
b(z)] � 1 � wc� . The

last inequality is justi�ed by the fact that b is not satisfying so at least one clause

contributes zero to the dot product and assuming it is the smallest weight clause gives

us the largest possible value. This restricts wc� so that

wc� � 1

2M
<

1

2M
+

1

2(M � 1)
=

M � 1
2

M(M � 1)
: (G.4)

At the same time, it must be the case that x � �c� � x ��b, which implies 1 + (M �
1=2)=M �Mwc� � 1� wc� and therefore wc� � (M � 1=2)=(M(M � 1)). This directly

contradicts Inequality G.4, and therefore we can conclude that, for a non-satisfying b,

x � �b < max�2K(x � �) for all x 2 X . �

243

By Lemma G.3, there is a pomdp such that

max
2�0

(x �) = max

�
max
�2K

(x � �);max
b
(x � �b)

�
:

This one-stage pomdp problem is derived from the unique-satisfying-assignment-prob-

lem instance and has the property that �0 6� K if and only if the boolean-formula

instance is satis�able. Because of the assumption that the boolean formula has no

more than 1 satisfying assignment, j�0j � M + 2; thus, the one-stage pomdp problem

is polynomially output bounded.

Because the one-stage pomdp problem instance can be created in polynomial time,

and the condition �0 6� K can be checked in polynomial time, a polynomial-time

algorithm for solving polynomially output-bounded one-stage pomdp problems could

be used to �nd unique satisfying assignments in polynomial time. As mentioned at the

start of this section, this would imply RP=NP.

To complete the proof of Theorem 7.1, I need to argue that if RP=NP then there

is a randomized polynomial-time algorithm for solving polynomially output-bounded

one-stage pomdp problems. We can build up a set of vectors U � �0 one at a time by

answering the question \Is there an information state x such that max2U x� 6= Vt(x)?"

and adding the dominating vector at x into U . For polynomially output-bounded one-

stage pomdp problems, if the answer to this question is yes, then there is an x that

can be written using polynomially many bits. Such an x can be identi�ed in non-

deterministic polynomial time using standard techniques, and therefore in randomized

polynomial time if RP=NP. Because there are at most a polynomial number of vectors

that can be added to U , the process terminates with U = �0 in polynomial time.

G.5 Proof of the Witness Lemma

Let U be a set of useful policy trees for action a. In this section, I show that the set

U does not equal the complete set �a of useful policy trees if and only if some policy

tree, in the set of neighbors of policy trees in U , dominates the policy trees in U .

The \if" direction is easy since the neighbor can be used to identify a policy tree

missing from U .

The \only if" direction can be rephrased as: If U 6= �a then there is an information

state x 2 X , a policy tree p 2 U , and a neighbor p0 of p such that p0 dominates all

244

X

, constructed fromp' τ
value

p

p* Γa
U–∈

x

Figure G.2: An illustration of some of the quantities used in Theorem 7.3.

policy trees in U at x. Figure G.2 illustrates some of the relevant quantities used to

show this.

Start by picking p� 2 �a � U and choose any x such that p� dominates the policy

trees in U at x. Let p = argmax~p2U V~p(x). As illustrated in the �gure, p� is the

optimal policy tree at x, and p is the best policy tree in U at x. By construction,

Vp�(x) > Vp(x).

If p� and p are neighbors, we are done, since we are searching for a neighbor of p

that dominates the other policy trees in U at x, and p� meets these requirements.

If p� and p are not neighbors, we will identify a neighbor p0 of p that does satisfy

these requirements. Choose an observation z� 2 Z such that

x � stval(a; z�; p�) > x � stval(a; z�; p):

There must be a z� satisfying this inequality since otherwise we get the contradiction

Vp�(x) =
X
s

x[s]

R(s; a) + �

X
z

stval(a; z; p�)[s]

!

�
X
s

x[s]

R(s; a) + �

X
z

stval(a; z; p)[s]

!
= Vp(x):

Let � 2 T (Z ! �) where �(z�) = subtree(p�; z�) and �(z) = subtree(p; z) for z 6= z�.

Let p0 be the policy tree constructed from � , p0 = tree(a; �). By construction, p and

245

p0 are neighbors. In addition,

Vp0(x) =
X
s

x[s]

R(s; a) + �

X
z

stval(a; z; p0)[s]

!

=
X
s

x[s]

0
@R(s; a) + �

X
z 6=z�

stval(a; z; p)[s] + � stval(a; z; p�)[s]

1
A

>
X
s

x[s]

R(s; a) + �

X
z

stval(a; z; p)[s]

!
= Vp(x) = max

~p2U
V~p(x):

Therefore the policy tree p0 dominates all policy trees in U at x.

Bibliography

[1] N. Abe and M. Warmuth. On the computational complexity of approximating

distributions by probabilistic automata. Machine Learning, 9:205{260, 1992.

[2] David H. Ackley and Michael L. Littman. Generalization and scaling in rein-

forcement learning. In D. S. Touretzky, editor, Advances in Neural Information

Processing Systems 2, pages 550{557, San Mateo, California, 1990. Morgan Kauf-

mann.

[3] David H. Ackley and Michael L. Littman. Interactions between learning and

evolution. In C. Langton, C. Taylor, J. D. Farmer, and S. Ramussen, editors,

Arti�cial Life II: Santa Fe Institute Studies in the Sciences of Complexity, vol-

ume 10, pages 487{509. Addison-Wesley, Redwood City, California, 1991.

[4] Aristotle Arapostathis, Vivek S. Borkar, Emmanuel Fern�andez-Gaucherand, Mri-

nal K. Ghosh, and Steven I. Marcus. Discrete-time controlled Markov processes

with average cost criterion: A survey. SIAM Journal on Control and Optimiza-

tion, 31(2):282{344, March 1993.

[5] K. J. Astr�om. Optimal control of Markov decision processes with incomplete

state estimation. Journal of Mathematical Analysis and Applications, 10:174{

205, 1965.

[6] Yuri Bahturin. Basic Structures of Modern Algebra. Kluwer Academic Publishers,

Norwell, Massachusetts, 1993.

[7] Leemon Baird. Residual algorithms: Reinforcement learning with function ap-

proximation. In Armand Prieditis and Stuart Russell, editors, Proceedings of

the Twelfth International Conference on Machine Learning, pages 30{37, San

Francisco, California, 1995. Morgan Kaufmann.

246

247

[8] Leemon C. Baird and A. H. Klopf. Reinforcement learning with high-dimensional,

continuous actions. Technical Report WL-TR-93-1147, Wright-Patterson Air

Force Base Ohio: Wright Laboratory, 1993.

[9] Andrew G. Barto, S. J. Bradtke, and Satinder P. Singh. Learning to act using

real-time dynamic programming. Arti�cial Intelligence, 72(1):81{138, 1995.

[10] Andrew G. Barto, Richard S. Sutton, and Christopher J. C. H. Watkins. Learn-

ing and sequential decision making. Technical Report 89-95, Department of

Computer and Information Science, University of Massachusetts, Amherst, Mas-

sachusetts, 1989. Also published in Learning and Computational Neuroscience:

Foundations of Adaptive Networks, Michael Gabriel and John Moore, editors.

The MIT Press, Cambridge, Massachusetts, 1991.

[11] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximiza-

tion technique occurring in the statistical analysis of probabilistic functions of

Markov chains. Annals of Mathmatical Statistics, 41(1):164{171, 1970.

[12] R. Beckers, O. E. Holland, and J. L. Deneubourg. From local actions to global

tasks: Stigmergy and collective robotics. In Rodney A. Brooks and Pattie Maes,

editors, Arti�cial Life IV: Proceedings of the Fourth International Workshop on

the Synthesis and Simulation of Living Systems, pages 181{189, Cambridge, Mas-

sachusetts, 1994. Bradford Books/MIT Press.

[13] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton,

New Jersey, 1957.

[14] Y. Bengio and P. Frasconi. An input/output HMM architecture. In G. Tesauro,

D. S. Touretzky, and T.K. Leen, editors, Advances in Neural Information Pro-

cessing Systems 7, pages 427{434, Cambridge, Massachusetts, 1995. The MIT

Press.

[15] Dimitri P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Mod-

els. Prentice-Hall, Englewood Cli�s, New Jersey, 1987.

[16] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Sci-

enti�c, Belmont, Massachusetts, 1995. Volumes 1 and 2.

248

[17] Dimitri P. Bertsekas and David A. Casta~non. Adaptive aggregation methods

for in�nite horizon dynamic programming. IEEE Transactions on Automatic

Control, 34(6):589{598, June 1989.

[18] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computa-

tion: Numerical Methods. Prentice-Hall, Englewood Cli�s, New Jersey, 1989.

[19] David Blackwell. Discrete dynamic programming. Annals of Mathematical Statis-

tics, 33(2):719{726, June 1962.

[20] R. G. Bland. New �nite pivoting rules for the simplex method. Mathematics of

Operations Research, 2(2):103{107, May 1977.

[21] Jim Blythe. Planning with external events. In Proceedings of the Tenth Confer-

ence on Uncertainty in Arti�cial Intelligence, 1994.

[22] Craig Boutilier. Imposed and learned conventions in multiagent decision pro-

cesses: Extended abstract. Unpublished manuscript, 1995.

[23] Craig Boutilier, Thomas Dean, and Steve Hanks. Planning under uncertainty:

Structural assumptions and computational leverage. In Proceedings of the Second

European Workshop on Planning, 1995.

[24] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Exploiting structure

in policy construction. In Proceedings of the International Joint Conference on

Arti�cial Intelligence, 1995.

[25] Craig Boutilier and David Poole. Computing optimal policies for partially observ-

able decision processes using compact representations. Unpublished manuscript,

1995.

[26] Justin A. Boyan. Modular neural networks for learning context-dependent game

strategies. Master's thesis, Department of Engineering and Computer Laboratory,

University of Cambridge, Cambridge, United Kingdom, August 1992.

[27] Justin A. Boyan and Michael L. Littman. Packet routing in dynamically changing

networks: A reinforcement learning approach. In J. D. Cowan, G. Tesauro,

and J. Alspector, editors, Advances in Neural Information Processing Systems 6,

pages 671{678. Morgan Kaufmann, San Mateo, California, 1994.

249

[28] Justin A. Boyan and Andrew W. Moore. Algorithms for approximating optimal

value functions in acyclic domains. Unpublished manuscript, 1995.

[29] Justin A. Boyan and Andrew W. Moore. Generalization in reinforcement learn-

ing: Safely approximating the value function. In G. Tesauro, D. S. Touretzky,

and T. K. Leen, editors, Advances in Neural Information Processing Systems 7,

Cambridge, Massachusetts, 1995. The MIT Press.

[30] Justin A. Boyan, Andrew W. Moore, and Richard S. Sutton. Proceedings of

the workshop on value function approximation, Machine Learning Conference

1995. Technical Report CMU-CS-95-206, Carnegie Mellon University, School of

Computer Science, 1995.

[31] Dima Burago, Michel de Rougemont, and Anatol Slissenko. On the complexity

of partially observed Markov decision processes. Theoretical Computer Science,

to appear.

[32] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting

optimally in partially observable stochastic domains. In Proceedings of the Twelfth

National Conference on Arti�cial Intelligence, Seattle, Washington, 1994.

[33] Hsien-Te Cheng. Algorithms for Partially Observable Markov Decision Processes.

PhD thesis, University of British Columbia, British Columbia, Canada, 1988.

[34] Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The percep-

tual distinctions approach. In Proceedings of the Tenth National Conference on

Arti�cial Intelligence, pages 183{188, San Jose, California, 1992. AAAI Press.

[35] Dave Cli� and Susi Ross. Adding temporary memory to ZCS. Adaptive Behavior,

3(2):101{150, 1994.

[36] Anne Condon. The complexity of stochastic games. Information and Computa-

tion, 96(2):203{224, February 1992.

[37] Anne Condon. On algorithms for simple stochastic games. DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, 13:51{71, 1993.

[38] Jonathan Connell and Sridhar Mahadevan. Rapid task learning for real robots.

In Robot Learning, pages 105{140. Kluwer Academic Publishers, Boston, Mas-

sachusetts, 1993.

250

[39] Don Coppersmith and Schmuel Winograd. Matrix multiplication via arithmetic

progressions. In Proceedings of 19th Annual ACM Symposium on Theory of Com-

puting, pages 1{6, 1987.

[40] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. The MIT Press, Cambridge, Massachusetts, 1990.

[41] George Dantzig. Linear Programming and Extensions. Princeton University

Press, Princeton, New Jersey, 1963.

[42] Peter Dayan and Terrence J. Sejnowski. Exploration bonuses and dual control.

Machine Learning, to appear.

[43] Thomas Dean, Leslie Kaelbling, Jak Kirman, and Ann Nicholson. Planning un-

der time constraints in stochastic domains. Arti�cial Intelligence, 76(1-2):35{74,

1995.

[44] Eric V. Denardo. Dynamic Programming: Models and Applications. Prentice-

Hall, Englewood Cli�s, New Jersey, 1982.

[45] F. D'Epenoux. A probabilistic production and inventory problem. Management

Science, 10:98{108, 1963.

[46] Cyrus Derman. Finite State Markovian Decision Processes. Academic Press,

New York, New York, 1970.

[47] David P. Dobkin and Steven P. Reiss. The complexity of linear programming.

Theoretical Computer Science, 11:1{18, 1980.

[48] A. W. Drake. Observation of a Markov Process Through a Noisy Channel. PhD

thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1962.

[49] Denise Draper, Steve Hanks, and Dan Weld. Probabilistic planning with informa-

tion gathering and contingent execution. Technical Report 93-12-04, University

of Washington, Seattle, Washington, December 1993.

[50] Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with infor-

mation gathering and contingent execution. In Proceedings of the AAAI Spring

Symposium on Decision Theoretic Planning, pages 76{82, 1994.

251

[51] James N. Eagle. The optimal search for a moving target when the search path is

constrained. Operations Research, 32(5):1107{1115, 1984.

[52] E. Fern�andez-Gaucherand, M. K. Ghosh, and S. I. Marcus. Controlled Markov

processes on the in�nite planning horizon: Weighted and overtaking cost criteria.

Technical Report TR 93-6, The University of Maryland, 1995.

[53] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the appli-

cation of theorem proving to problem solving. Arti�cial Intelligence, 2:189{208,

1971. Reprinted in Readings in Planning, J. Allen, J. Hendler, and A. Tate, eds.,

Morgan Kaufmann, 1990.

[54] J. A. Filar. Ordered �eld property for stochastic games when the player who

controls transitions changes from state to state. Journal of Optimization Theory

and Applications, 34:503{515, 1981.

[55] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-completeness. Freeman, San Francisco, California, 1979.

[56] J. C. Gittins. Multi-armed Bandit Allocation Indices. Wiley-Interscience series

in systems and optimization. Wiley, Chichester, New York, 1989.

[57] Leslie M. Goldschlager. The monotone and planar circuit value problems are log

space complete for P. SIGACT News, pages 25{29, 1977.

[58] Geo�rey J. Gordon. Stable function approximation in dynamic programming. In

Armand Prieditis and Stuart Russell, editors, Proceedings of the Twelfth Inter-

national Conference on Machine Learning, pages 261{268, San Francisco, Cali-

fornia, 1995. Morgan Kaufmann.

[59] Vijaykumar Gullapalli and Andrew G. Barto. Convergence of indirect adaptive

asynchronous value iteration algorithms. In J. D. Cowan, G. Tesauro, and J. Al-

spector, editors, Advances in Neural Information Processing Systems 6, pages

695{702, San Mateo, California, 1994. Morgan Kaufmann.

[60] Eric A. Hansen. Completely observable Markov decision processes with observa-

tion costs. Unpublished manuscript, 1995.

252

[61] Mance E. Harmon, Leemon C. Baird, III, and Harry Klopf. Reinforcement learn-

ing applied to a di�erential game. Adaptive Behavior, 4(1):3{28, 1995.

[62] Matthias Heger. Consideration of risk in reinforcement learning. In Proceedings

of the Eleventh International Conference on Machine Learning, pages 105{111,

San Francisco, California, 1994. Morgan Kaufmann.

[63] Matthias Heger. The loss from imperfect value functions in expectation-based

and minimax-based tasks. Machine Learning, to appear.

[64] O. Hern�andez-Lerma and S. I. Marcus. Adaptive control of discounted Markov

decision chains. Journal of optimization theory and applications, 46(2):227{235,

June 1985.

[65] O. Hernandez-Lerma and S. I. Marcus. Adaptive control of Markov processes with

incomplete state information and unknown parameters. Journal of Optimization

Theory and Applications, 52(2):227{241, February 1987.

[66] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory

of Neural Compuation. Addison-Wesley, Redwood, California, 1991.

[67] A. J. Ho�man and R. M. Karp. On nonterminating stochastic games. Manage-

ment Science, 12:359{370, 1966.

[68] Ronald A. Howard. Dynamic Programming and Markov Processes. The MIT

Press, Cambridge, Massachusetts, 1960.

[69] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence

of stochastic iterative dynamic programming algorithms. Neural Computation,

6(6), November 1994.

[70] Tommi Jaakkola, Satinder Pal Singh, and Michael I. Jordan. Monte-carlo rein-

forcement learning in non-Markovian decision problems. In G. Tesauro, D. S.

Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing

Systems 7, Cambridge, Massachusetts, 1995. The MIT Press.

[71] George H. John. When the best move isn't optimal: Q-learning with exploration.

Unpublished manuscript, 1995.

253

[72] Leslie Pack Kaelbling. Learning in Embedded Systems. The MIT Press, Cam-

bridge, Massachusetts, 1993.

[73] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning

and acting in partially observable stochastic domains. Technical Report CS-96-08,

Brown University, Providence, Rhode Island, 1995.

[74] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-

ment learning: A survey. Journal of Arti�cial Intelligence Research, to appear.

[75] G. Kalai. A subexponential randomized simplex algorithm. In Proceedings of 24th

Annual ACM Symposium on the Theory of Computing, pages 475{482, 1992.

[76] L. C. M. Kallenberg. Linear Programming and Finite Markovian Control Prob-

lems. Number 148 in Mathematical Centre Tracts. Mathematisch Centrum, Am-

sterdam, 1983.

[77] R. E. Kalman. A new approach to linear �ltering and prediction problems. Trans-

actions of the American Society of Mechanical Engineers, Journal of Basic En-

gineering, 82:35{45, March 1960.

[78] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-

binatorica, 4(4):373{395, 1984.

[79] L. G. Khachian. A polynomial algorithm for linear programming. Soviet Mathe-

matics Doklady, 20(1):191{194, 1979.

[80] Victor Klee. On the number of vertices of a convex polytope. Canada Journal of

Mathematics, XVI:701{720, 1964.

[81] Victor Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha,

editor, Inequalities, III, pages 159{175. Academic Press, New York, 1972.

[82] Daphne Koller and Nimrod Megiddo. The complexity of two-person zero-sum

games in extensive form. Games and Economic Behavior, 4:528{552, 1992.

[83] Daphne Koller and Nimrod Megiddo. Finding mixed strategies with small sup-

ports in extensive form games. International Journal of Game Theory, to appear.

254

[84] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Fast algorithms

for �nding randomized strategies in game trees. In Proceedings of the 26th ACM

Symposium on the Theory of Computing, pages 750{759, 1994.

[85] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. E�cient computa-

tion of equilibria for extensive two-person games. Games and Economic Behavior,

to appear.

[86] P. R. Kumar and P. P. Varaiya. Stochastic Systems: Estimation, Identi�cation,

and Adaptive Control. Prentice Hall, Englewood Cli�s, New Jersey, 1986.

[87] Nicholas Kushmerick, Steve Hanks, and Daniel S. Weld. An algorithm for prob-

abilistic planning. Arti�cial Intelligence, 76(1-2):239{286, September 1995.

[88] Harold J. Kushner and A. J. Kleinman. Mathematical programming and the

control of Markov chains. International Journal of Control, 13(5):801{820, 1971.

[89] Long-Ji Lin and Tom M. Mitchell. Memory approaches to reinforcement learning

in non-Markovian domains. Technical Report CMU-CS-92-138, Carnegie Mellon

University, School of Computer Science, May 1992.

[90] Michael L. Littman. Markov games as a framework for multi-agent reinforcement

learning. In Proceedings of the Eleventh International Conference on Machine

Learning, pages 157{163, San Francisco, California, 1994. Morgan Kaufmann.

[91] Michael L. Littman. Memoryless policies: Theoretical limitations and prac-

tical results. In Dave Cli�, Philip Husbands, Jean-Arcady Meyer, and Stew-

art W. Wilson, editors, From Animals to Animats 3: Proceedings of the Third

International Conference on Simulation of Adaptive Behavior, Cambridge, Mas-

sachusetts, 1994. The MIT Press.

[92] Michael L. Littman. The witness algorithm: Solving partially observable Markov

decision processes. Technical Report CS-94-40, Brown University, Department of

Computer Science, Providence, Rhode Island, December 1994.

[93] Michael L. Littman and David H. Ackley. Adaptation in constant utility non-

stationary environments. In Rik K. Belew and Lashon Booker, editors, Pro-

ceedings of the Fourth International Conference on Genetic Algorithms, pages

136{142, San Mateo, California, 1991. Morgan Kaufmann.

255

[94] Michael L. Littman, Anthony Cassandra, and Leslie Pack Kaelbling. Learning

policies for partially observable environments: Scaling up. In Armand Prieditis

and Stuart Russell, editors, Proceedings of the Twelfth International Conference

on Machine Learning, pages 362{370, San Francisco, California, 1995. Morgan

Kaufmann.

[95] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. E�cient

dynamic-programming updates in partially observable Markov decision processes.

Technical Report CS-95-19, Brown University, Providence, Rhode Island, 1996.

[96] Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the com-

plexity of solving Markov decision problems. In Proceedings of the Eleventh An-

nual Conference on Uncertainty in Arti�cial Intelligence (UAI{95), Montreal,

Qu�ebec, Canada, 1995.

[97] Michael L. Littman and Csaba Szepesv�ari. A generalized reinforcement-learning

model: Convergence and applications. Technical Report CS-96-10, Brown Uni-

versity, Providence, Rhode Island, 1996.

[98] Michael Lederman Littman. Algorithms for sequential decision making. Technical

Report CS-96-09, Brown University, March 1996.

[99] William S. Lovejoy. Computationally feasible bounds for partially observed

Markov decision processes. Operations Research, 39(1):162{175, January{

February 1991.

[100] William S. Lovejoy. A survey of algorithmic methods for partially observable

Markov decision processes. Annals of Operations Research, 28:47{66, 1991.

[101] Walter Ludwig. A subexponential randomized algorithm for the simple stochastic

game problem. Information and Computation, 117:151{155, 1995.

[102] Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algo-

rithms, and empirical results. Machine Learning, to appear.

[103] Andrew Kachites McCallum. Reinforcement Learning with Selective Perception

and Hidden State. PhD thesis, Department of Computer Science, University of

Rochester, December 1995.

256

[104] R. Andrew McCallum. Overcoming incomplete perception with utile distinc-

tion memory. In Proceedings of the Tenth International Conference on Machine

Learning, pages 190{196, Amherst, Massachusetts, 1993. Morgan Kaufmann.

[105] R. Andrew McCallum. Instance-based utile distinctions for reinforcement learn-

ing with hidden state. In Proceedings of the Twelfth International Conference

on Machine Learning, pages 387{395, San Francisco, California, 1995. Morgan

Kaufmann.

[106] Lisa Meeden, G. McGraw, and D. Blank. Emergent control and planning in an

autonomous vehicle. In D.S. Touretsky, editor, Proceedings of the Fifteenth An-

nual Meeting of the Cognitive Science Society, pages 735{740. Lawerence Erlbaum

Associates, Hillsdale, New Jersey, 1993.

[107] Mary Melekopoglou and Anne Condon. On the complexity of the policy itera-

tion algorithm for stochastic games. Technical Report CS-TR-90-941, Computer

Sciences Department, University of Wisconsin Madison, 1990. To appear in the

ORSA Journal on Computing.

[108] Nicolas Meuleau. Exploration or Exploitation? Real-time learning. PhD thesis,

Universite de Caen, forthcoming.

[109] George E. Monahan. A survey of partially observable Markov decision processes:

Theory, models, and algorithms. Management Science, 28:1{16, January 1982.

[110] P.R. Montague and T.J. Sejnowski. The predictive brain: Temporal coincidence

and temporal order in synaptic learning mechanisms. Learning and Memory,

1(1):1{33, 1994.

[111] Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforce-

ment learning with less data and less real time. Machine Learning, 13, 1993.

[112] Andrew W. Moore and Christopher G. Atkeson. The parti-game algorithm for

variable resolution reinforcement learning in multidimensional state spaces. Ma-

chine Learning, 21, 1995.

[113] Ann Nicholson and Leslie Pack Kaelbling. Toward approximate planning in very

large stochastic domains. In Proceedings of the AAAI Spring Symposium on

Decision Theoretic Planning, Stanford, California, 1994.

257

[114] Guillermo Owen. Game Theory: Second edition. Academic Press, Orlando,

Florida, 1982.

[115] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Read-

ing, Massachusetts, 1994.

[116] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov

decision processes. Mathematics of Operations Research, 12(3):441{450, August

1987.

[117] Ronald Parr and Stuart Russell. Approximating optimal policies for partially ob-

servable stochastic domains. In Proceedings of the International Joint Conference

on Arti�cial Intelligence, 1995.

[118] Azaria Paz. Introduction to Probabilistic Automata. Academic Press, New York,

1971.

[119] Jing Peng and Ronald J. Williams. E�cient learning and planning within the

Dyna framework. Adaptive Behavior, 1(4):437{454, 1993.

[120] H. J. M. Peters and O. J. Vrieze, editors. Surveys in game theory and related

topics. Number 39 in CWI Tract. Stichting Mathematisch Centrum, Amsterdam,

1987.

[121] Loren K. Platzman. Finite-memory Estimation and Control of Finite Probabilis-

tic Systems. PhD thesis, Massachusetts Institute of Technology, 1977.

[122] Loren K. Platzman. Optimal in�nite-horizon undiscounted control of �nite prob-

abilistc systems. SIAM Journal of Control and Optimization, 18:362{380, 1980.

[123] Loren K. Platzman. A feasible computational approach to in�nite-horizon

partially-observed Markov decision problems. Technical report, Georgia Insti-

tute of Technology, Atlanta, Georgia, January 1981.

[124] M. L. Puterman and S. L. Brumelle. The analytic theory of policy iteration. In

Martin L. Puterman, editor, Dynamic Programming and its applications, pages

91{114. Academic Press, New York, New York, 1978.

258

[125] M. L. Puterman and S. L. Brumelle. On the convergence of policy iteration in

stationary dynamic programming. Mathematics of Operations Research, 4:60{69,

1979.

[126] Martin L. Puterman. Markov Decision Processes|Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc., New York, New York, 1994.

[127] Martin L. Puterman and Moon Chirl Shin. Modi�ed policy iteration algorithms

for discounted Markov decision processes. Management Science, 24:1127{1137,

1978.

[128] Eric Rasmusen. Games and Information: An Introduction to Game Theory.

Oxford, New York, New York, 1989.

[129] Mark B. Ring. Continual Learning in Reinforcement Environments. PhD thesis,

University of Texas at Austin, Austin, Texas, August 1994.

[130] Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals

of Mathematical Statistics, 22:400{407, 1951.

[131] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-

sentations by error backpropagation. In D. E. Rumelhart and J. L. McClelland,

editors, Parallel Distributed Processing: Explorations in the Microstructures of

Cognition. Volume 1: Foundations, chapter 8. The MIT Press, Cambridge, Mas-

sachusetts, 1986.

[132] Stuart J. Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach.

Prentice-Hall, Englewood Cli�s, New Jersey, 1994.

[133] John Rust. Numerical dynamic programming in economics. In Handbook of

Computational Economics. Elsevier, North Holland, 1996.

[134] A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3:211{229, 1959. Reprinted in E.

A. Feigenbaum and J. Feldman, editors, Computers and Thought, McGraw-Hill,

New York 1963.

[135] Katsushige Sawaki and Akira Ichikawa. Optimal control for partially observable

Markov decision processes over an in�nite horizon. Journal of the Operations

Research Society of Japan, 21(1):1{14, March 1978.

259

[136] Robert E. Schapire and Manfred K. Warmuth. On the worst-case analysis of

temporal-di�erence learning algorithms. In Proceedings of the Eleventh Interna-

tional Conference on Machine Learning, pages 266{274, San Francisco, Califor-

nia, 1994. Morgan Kaufmann.

[137] J�urgen H. Schmidhuber. Reinforcement learning in Markovian and non-

Markovian environments. In D. S. Lippman, J. E. Moody, and D. S. Touretzky,

editors, Advances in Neural Information Processing Systems 3, pages 500{506,

San Mateo, California, 1991. Morgan Kaufmann.

[138] Marcel J. Schoppers. Universal plans for reactive robots in unpredictable en-

vironments. In Proceedings of the International Joint Conference on Arti�cial

Intelligence 10, pages 1039{1046, 1987.

[139] Nicol N. Schraudolph, Peter Dayan, and Terrence J. Sejnowski. Temporal dif-

ference learning of position evaluation in the game of Go. In J. D. Cowan,

G. Tesauro, and J. Alspector, editors, Advances in Neural Information Process-

ing Systems 6, pages 817{824, San Mateo, California, 1994. Morgan Kaufmann.

[140] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-

Interscience, New York, New York, 1986.

[141] Anton Schwartz. A reinforcement learning method for maximizing undiscounted

rewards. In Proceedings of the Tenth International Conference on Machine Learn-

ing, pages 298{305, Amherst, Massachusetts, 1993. Morgan Kaufmann.

[142] Tom Seaver. How I Would Pitch to Babe Ruth. Playboy Press, Chicago, Illinois,

1974.

[143] L.S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences

of the United States of America, 39:1095{1100, 1953.

[144] Reid Simmons and Sven Koenig. Probabilistic robot navigation in partially ob-

servable environments. In Proceedings of the International Joint Conference on

Arti�cial Intelligence, pages 1080{1087, 1995.

[145] Satinder Pal Singh. Learning to Solve Markovian Decision Processes. PhD the-

sis, Department of Computer Science, University of Massachusetts, 1993. Also,

CMPSCI Technical Report 93-77.

260

[146] Satinder Pal Singh, Tommi Jaakkola, and Michael I. Jordan. Model-free re-

inforcement learning for non-Markovian decision problems. In Proceedings of

the Eleventh International Conference on Machine Learning, pages 284{292, San

Francisco, California, 1994. Morgan Kaufmann.

[147] Satinder Pal Singh and Richard C. Yee. An upper bound on the loss from ap-

proximate optimal-value functions. Machine Learning, 16, 1994.

[148] Richard D. Smallwood and Edward J. Sondik. The optimal control of partially

observable Markov processes over a �nite horizon. Operations Research, 21:1071{

1088, 1973.

[149] Edward Sondik. The Optimal Control of Partially Observable Markov Processes.

PhD thesis, Stanford University, 1971.

[150] Edward J. Sondik. The optimal control of partially observable Markov processes

over the in�nite horizon: Discounted costs. Operations Research, 26(2), 1978.

[151] Larry J. Stockmeyer and Ashok K. Chandra. Provably di�cult combinatorial

games. SIAM Journal of Computing, 8(2):151{174, May 1979.

[152] Gilbert Strang. Linear Algebra and its Applications: Second Edition. Academic

Press, Orlando, Florida, 1980.

[153] Richard S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD

thesis, University of Massachusetts, Amherst, Massachusetts, 1984.

[154] Richard S. Sutton. Learning to predict by the method of temporal di�erences.

Machine Learning, 3(1):9{44, 1988.

[155] Richard S. Sutton. Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. In Proceedings of the Seventh

International Conference on Machine Learning, Austin, Texas, 1990. Morgan

Kaufmann.

[156] Richard S. Sutton. Planning by incremental dynamic programming. In Proceed-

ings of the Eighth International Workshop on Machine Learning, pages 353{357.

Morgan Kaufmann, 1991.

261

[157] Csaba Szepesv�ari. General framework for reinforcement learning. In Proceedings

of ICANN'95 Paris, 1995.

[158] Csaba Szepesv�ari and Michael L. Littman. Generalized Markov decision pro-

cesses: Dynamic-programming and reinforcement-learning algorithms. Technical

Report CS-96-11, Brown University, Providence, Rhode Island, 1996.

[159] Gerald Tesauro. Temporal di�erence learning and TD-Gammon. Communica-

tions of the ACM, pages 58{67, March 1995.

[160] Gerald J. Tesauro. Practical issues in temporal di�erence. In J. E. Moody, S. J.

Hanson, and D. S. Lippman, editors, Advances in Neural Information Processing

Systems 4, pages 259{266, San Mateo, California, 1992. Morgan Kaufmann.

[161] Sebastian Thrun. Learning to play the game of chess. In G. Tesauro, D. S.

Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing

Systems 7, Cambridge, Massachusetts, 1995. The MIT Press.

[162] Paul Tseng. Solving H-horizon, stationary Markov decision problems in time

proportional to log(H). Operations Research Letters, 9(5):287{297, 1990.

[163] John N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Ma-

chine Learning, 16(3), September 1994.

[164] John N. Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale

dynamic programming. Machine Learning, to appear.

[165] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions.

Theoretical Computer Science, 47(1):85{93, 1986.

[166] J. van der Wal. Stochastic Dynamic Programming. Number 139 in Mathematical

Centre tracts. Mathematisch Centrum, Amsterdam, 1981.

[167] Sergio Vendu and H. Vincent Poor. Abstract dynamic programming models

under commutativity conditions. SIAM Journal of Control and Optimization,

25(4):990{1006, July 1987.

[168] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.

Princeton University Press, Princeton, New Jersey, 1947.

262

[169] Koos Vrieze. Zero-sum stochastic games. In H. J. M. Peters and O. J. Vrieze,

editors, Surveys in game theory and related topics, pages 103{132. Stichting Math-

ematisch Centrum, Amsterdam, 1987.

[170] O. J. Vrieze. Stochastic games with �nite state and action spaces. Number 33 in

CWI Tract. Stichting Mathematisch Centrum, Amsterdam, 1987.

[171] O. J. Vrieze and S. H. Tijs. Fictitious play applied to sequences of games and

discounted stochastic games. International Journal of Game Theory, 11(2):71{85,

1982.

[172] K.-H. Waldmann. On bounds for dynamic programs. Mathematics of Operations

Research, 10(2):220{232, May 1985.

[173] Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,

King's College, Cambridge, United Kingdom, 1989.

[174] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,

8(3):279{292, 1992.

[175] C. C. White and D. Harrington. Application of Jensen's inequality for adaptive

suboptimal design. Journal of Optimization Theory and Applications, 32(1):89{

99, 1980.

[176] Chelsea C. White, III. Partially observed Markov decision processes: A survey.

Annals of Operations Research, 32, 1991.

[177] Chelsea C. White, III and William T. Scherer. Solution procedures for par-

tially observed Markov decision processes. Operations Research, 37(5):791{797,

September-October 1989.

[178] Chelsea C. White, III and William T. Scherer. Finite-memory suboptimal design

for partially observed Markov decision processes. Operations Research, 42(3):439{

455, May-June 1994.

[179] Steven D. Whitehead and Long-Ji Lin. Reinforcement learning of non-Markov

decision processes. Arti�cial Intelligence, 73(1-2):271{306, February 1995.

263

[180] Ronald J. Williams and Leemon C. Baird, III. Tight performance bounds

on greedy policies based on imperfect value functions. Technical Report NU-

CCS-93-14, Northeastern University, College of Computer Science, Boston, Mas-

sachusetts, November 1993.

[181] Stewart Wilson. Classi�er �tness based on accuracy. Evolutionary Computation,

3(2):147{173, 1995.

[182] Stewart W. Wilson. Knowledge growth in an arti�cial animal. In Proceedings

of the First International Conference on Genetic Algorithms and Their Applica-

tions, pages 16{23, Hillsdale, New Jersey, 1985. Lawrence Erlbaum Associates.

[183] Uri Zwick and Mike S. Paterson. The complexity of mean payo� games. Theo-

retical Computer Science, to appear.

