
Towards Automated Game Design

Mark J. Nelson1 and Michael Mateas2

1 College of Computing
Georgia Institute of Technology

Atlanta, Georgia, USA
mnelson@cc.gatech.edu

2 Computer Science Department
University of California—Santa Cruz

Santa Cruz, California, USA
michaelm@cs.ucsc.edu

Abstract. Game generation systems perform automated, intelligent de-
sign of games (i.e. videogames, boardgames), reasoning about both the
abstract rule system of the game and the visual realization of these rules.
Although, as an instance of the problem of creative design, game genera-
tion shares some common research themes with other creative AI systems
such as story and art generators, game generation extends such work by
having to reason about dynamic, playable artifacts. Like AI work on cre-
ativity in other domains, work on game generation sheds light on the
human game design process, offering opportunities to make explicit the
tacit knowledge involved in game design and test game design theories.
Finally, game generation enables new game genres which are radically
customized to specific players or situations; notable examples are cell
phone games customized for particular users and newsgames providing
commentary on current events. We describe an approach to formaliz-
ing game mechanics and generating games using those mechanics, using
WordNet and ConceptNet to assist in performing common-sense reason-
ing about game verbs and nouns. Finally, we demonstrate and describe
in detail a prototype that designs micro-games in the style of Nintendo’s
WarioWare series.

1 Introduction

Game generation systems perform automated, intelligent design of games, rea-
soning about both the abstract rule system of the game and the visual realization
of these rules. While procedural content generation focuses on the generation of
assets such as textures, meshes, animations, sounds, and the physical layout of
levels, game generation involves the entire game design process, including gen-
erating the game rules themselves, the game mechanics that describe how the
game state evolves over time, how player action influences the game state, and
the audio-visual realization of the game.

The goal of our research is not to replace human designers, but rather to:
facilitate formal game analysis through the computational expression of game



rules, mechanics, and representations; enable new game mechanics and game
genres where the game dynamically changes as a function of player interaction;
move human design up the abstraction hierarchy to the meta-authorship of gen-
erative processes that generate games; and enable intelligent game design tools
to support human game designers.

Game designers and scholars have discussed the need for a game design lan-
guage, noting that there is no unified vocabulary for describing existing games
and thinking through the design of new ones. While some semi-formal analy-
sis languages are being developed [1], game design has not been described at
the level of detail and formality necessary to support automatic generation.
Automatic game generators can serve as highly detailed theories of both game
structure and game design expressed operationally as a program. In the same
way that AI-based story generators have, over the years, served as operational
models of both narrative and the story generation process, and thus served to
expose the strengths and weaknesses of different models of narrative, so too can
game generation facilitate the development of a design science for games.

In addition to shedding light on the game design process, dynamic generation
enables new game mechanics and game genres where the game dynamically
changes (or is generated from scratch) as a function of player input or other
exogenous events. Newsgames are one such category of game—micro-games that
provide commentary on a news item, much like political cartoons. Unlike political
cartoons, however, newsgames provide their commentary through gameplay: the
point is made through interaction on the part of the player. Some well-known
newsgames include Madrid,3 a memorial game released shortly after the Madrid
train bombings on March 11, 2004, and Bacteria Salad,4 a game about the fall
2006 E. coli infections spread by spinach in the United States. To offer timely
commentary on a news item, newsgames must be created rapidly, motivating the
need for automatic (or at least AI-assisted) game design. Newsgames tend to be
relatively small micro-games, making automated generation tractable, even in
the short term.

In the rest of the paper, we describe our view of game design as a problem-
solving activity comprising four major aspects of games, and describe a prototype
system that generates games in the style of Nintendo’s WarioWare games—short
games that typically last several seconds, come in rapid sequence, and ask the
player to do a single thing, such as dodging a car or shooting a duck.

2 Game Design as a Problem-Solving Activity

To understand game design as a problem-solving activity, we factor it into four
interacting domains (or aspects): abstract game mechanics, concrete game rep-
resentation, thematic content, and control mapping. A game design space (the
space of possible games the design system can reason about) is defined by the

3 http://www.newsgaming.com/games/madrid/
4 http://www.persuasivegames.com/games/game.aspx?game=arcadewireecoli



knowledge given to the system for each of these domains. Though the domains in-
teract, we hope to support the modular mixing and matching of different knowl-
edge sources for each domain, thus supporting the rapid specification of new
design spaces.

We’ll use the 1983 arcade game Tapper as an example. Tapper is a nice ex-
ample because is it well known within the game-design community, and small
enough to allow formal analysis yet large enough to clearly exhibit all four knowl-
edge domains. In Tapper, the player is a bartender who fills up mugs of beer and
serves customers by sliding the beers down one of several bars. The customers
move along the bars towards the bartender; serving a customer pushes him back
towards the door. The goal is to push the customers out of the bar without let-
ting any reach the bartender. Effective Tapper play is an exercise in rapid time
management.

A game’s abstract game mechanics specify an abstract game state and how
this state evolves over time, both autonomously and in response to player in-
teraction. In Tapper, the abstract mechanics are those of an order-fulfillment
game: There are requesters (customers) who want certain items (beers) within
time limits, sources for the player to get those items (taps), and a means for
the player to ferry the items from the sources to the requesters (sliding them
down the bar). The space of order-fulfillment mechanics is defined by general
knowledge about requesters, sources, requested objects, the progression of time,
and the relationships between each; the mechanics in Tapper are one instance,
making commitments to specific design decisions in this space. Chess likewise
makes concrete design commitments within the space of symmetric, 2D, tile-
based games [2]. In WarioWare games, the abstract mechanics are usually a
single rule, such as “avoid being hit for five seconds”.

Concrete game representation specifies how the abstract mechanics are in-
stantiated and represented to the player in a concrete game world, that is, the
audio-visual representation of the abstract game state. In Tapper, the abstract
time limit within which an order request must be serviced is represented con-
cretely by the customer’s position along the bar; in other games, an abstract time
limit might be represented by a literal on-screen clock, through a slowly emptying
bar graph, etc. In WarioWare, one concrete representation of the “avoid being
hit for five seconds” abstract mechanic is a dodging game in which the player has
to move around in a 2d top-down view and avoid getting hit. General knowledge
about representational strategies for different types of abstract game states (and
state transitions) constitutes a visual design space. Holding the abstract me-
chanics domain constant while changing the game representation domain results
in a new overall design space, such as 3D, first-person order-fulfillment games
(Tapper is a 2D, third-person game).

Thematic content comprises the real-world references expressed by the game.
For example, Tapper takes place in a bar, with beer glasses, customers, and so
on; Diablo takes place in a fantasy world with swords and monsters; The Sims

takes place in a suburban house; and a WarioWare dodging game might have a
person on a road dodging cars. The thematic knowledge domain comprises the



common-sense knowledge about the real-world domain being expressed in the
game. Holding the other domains constant while changing the thematic content
domain results in a new overall design space, such as the design space of 2D
order-fulfillment games set in fast-food restaurants.

Finally, control mapping describes the relationships between the physical
player input, such as button presses and joystick movement, and modification
of abstract game state. In Tapper, pressing a button at the tap begins filling a
mug, while releasing the button stops filling and, if the mug is full, automatically
slides it down the bar. Possible alternative mappings for filling the beer include
repeatedly pumping the joystick back and forth, repeatedly hitting a button,
holding the joystick down for a specified period of time, etc. (to say nothing of
alternate physical control mechanisms such as dancepads or gestural controllers).

It might be tempting to see these four game-design aspects as a pipelined
process: Come up with an abstract game, represent it concretely, add a “skin”
of thematic content, and finally set up control mappings. That approach may
work for some types of games, but we feel that enabling non-pipelined inter-
actions between these aspects is likely to lead to more interesting and creative
game designs. Even something as seemingly straightforward as setting up the
control mappings is not a one-way street; for example, a game written for a
computer with keyboard and mouse might call for different game mechanics and
representations than one written for the Nintendo Wii, with its physical gestu-
ral controller (indeed, the idea that an interesting control scheme can lead to
interesting game design is one of the core market hypotheses of the Wii).

Thematic knowledge should also ideally be more than a “skin” chosen ac-
cording to the constraints of an already-designed abstract mechanic; instead, it
should suggest gameplay opportunities as well. For example, thematic knowl-
edge from a bar theme might lead a system to reason that as people drink they
become drunk and that drunk people move erratically, suggesting that drunk
customers might serve as obstacles for the player as they serve drinks, but only
if the player is a cocktail server moving between tables. This movement from
theme to mechanics and representation is particularly important for the gen-
eration of newsgames and other games dealing with real-world events, where
much of the rhetorical force of the game depends on the appropriate incorpo-
ration of thematic elements into the gameplay—rather than merely skinning an
off-the-shelf game with the faces of politicians or something equally superficial.

Of course, it is not a requirement that all games equally emphasize all aspects.
In chess the thematic content and concrete realization are of minimal importance;
design of interesting chess variants would focus on the abstract game mechanics.
A first-person shooter, on the other hand, puts large emphasis on the game’s
concrete representation (3D graphics and physics); design of first-person shooters
would focus on this aspect. Our goal is to have all these aspects available for
interesting interaction when desired.

Like any problem-solving activity, game design is driven by goal achievement.
These may be internal goals such as “maximize the variety in a collection of
generated games” or “design an interesting game”, where internal notions of



variety and interestingness guide design; or external goals to create games with
specific properties for one or more aspects of the design, or specific properties
relative to a player model. For example, one might ask for a symmetric chess-
like game with a certain locality of movement [2] (here abstract mechanics would
be the guiding aspect of the design process), or an order-fulfillment game with
a desired visual complexity in terms of the number of simultaneously moving
objects on screen (here concrete representation would be the guiding aspect).
For our WarioWare-style generator, we chose to focus on theme as the guiding
aspect. Design goals are specified in terms of nouns and verbs; the generator’s
job is to create micro-games that are “about” the verb and/or noun. Since a
micro-game instantiates a single, atomic game mechanic, and maps real-world
referents onto this mechanic, such games are a nice vehicle for exploring the
common-sense reasoning issues that arise in the thematic aspect of game design.

3 Generating WarioWare-style games

Although WarioWare-style micro-games are quite simple structurally, usually
containing one or two pieces of abstract mechanics and lasting for no more than
a few seconds, they are an example of a game style that actual game designers
work on and release commercially (rather than an artificial toy domain), with
a design space that touches on a wide cross-section of issues in game design
[3]. Their abstract simplicity allows us to focus on the thematic elements of
game generation, and the fact that they are lightweight games that are easy
and quick to play meshes well with a number of potential applications, such as
web-distributed casual games and customized cell-phone games.

3.1 Common-sense thematic content

Since our initial focus is on the thematic aspect of game generation, we have the
user direct the system by specifying a verb and/or noun to describe a desired
theme (e.g. a game about “shooting” and “ducks”). Generating a game that
fulfills the request is now a combination of two common-sense problems: The
game should “make sense” in terms of the roles its thematic elements are playing,
and it should be “reasonably close” to what the user requested.

To address both problems, we use a combination of the ConceptNet [4] and
WordNet [5] knowledge bases. ConceptNet is a graph-structured common-sense
knowledge base mined from OpenMind [6], a collection of semi-structured En-
glish sentences expressing common-sense facts gathered from online volunteers.
ConceptNet’s nodes are English words or phrases, and links between them ex-
press semantic relationships such as (CapableOf "person" "play video game").
Compared to more formally specified common-sense knowledge bases such as
Cyc [7] and ThoughtTreasure [8], ConceptNet uses natural language and infor-
mal semantics. This is nice for ease of use and interfacing with text, but has
drawbacks when it comes to ambiguity and inability to usefully respond to com-
plex queries; nonetheless, it has been useful for a number of applications [9], and
we have found it useful as well.



A second drawback of ConceptNet is that its coverage is somewhat weak:
it knows that a duck can be shot, but not that a pheasant can be shot. Fortu-
nately, combining it with data from WordNet mitigates this problem to a very
large extent. WordNet is a similarly graph-structured knowledge base (Concept-
Net’s structure was based on WordNet’s), but it positions itself as a dictionary
rather than as a semantic knowledge base. Nonetheless, it contains semantic in-
formation in the form of word hierarchies, where a word below another one in
the hierarchy is a specialization of the higher-up one (the higher word is a “hy-
pernym”, and the lower one a “hyponym” if a noun, or “troponym” if a verb).
This information allows us to add inheritance to ConceptNet queries: If some-
thing is true of animals in general, then it is true for specific kinds of animals
as well. Since ConceptNet knows that an animal can be shot, WordNet-based
inheritance lets us figure out that a pheasant, as a specific kind of animal, can
also be shot.

In addition to using WordNet to extend ConceptNet’s coverage, we use its
hypernymy relationships to determine simple attributes, such as whether a noun
is animate (if it is, it will be below “animate thing” in the hierarchy). This is
only possible for attributes deemed primary by WordNet—although we might
say “money” is conceptually a type of “valuable thing”, that isn’t a sufficiently
primary attribute for WordNet. Finally, we use distances between nouns and
verbs in WordNet and ConceptNet, respectively, as simple measures of similar-
ity. We use WordNet for nouns due to its fairly comprehensive taxonomy, and
ConceptNet for verbs since this captures more complex notions of similarity such
as “can operate on the same object”. While link distance is a simple notion of
similarity, it has worked well as a first approximation; in the future we plan to
explore more complex measures [10].

3.2 Decomposing WarioWare

To facilitate generation, we abstract a number of styles of WarioWare games into
abstract game types; currently the system knows about three of them. An Avoid

game is one in which one entity, the “avoider”, must avoid (for the duration
of the game) one or more other entities, the “attackers”, which may attack the
avoider either directly or via other objects. The player can play either role. An
Acquire game is one in which the player must find an object within a time limit.
A Fill game is one in which the player must fill a meter within a time limit.
These abstract game types capture the abstract mechanics the system currently
knows about.

These game types can be implemented via several stock sets of concrete game
mechanics, represented in a mixable J2ME (Java mobile platform) class library.
A Dodger game is a 2d top-down game in which one object, the “dodger”, tries
to avoid one or more other entities, the “attackers”; it is used to implement some
Avoid games and some Acquire games. A Shooter game is a 2d side-view game
in which objects move across the screen, and can be shot by aiming crosshairs
and firing; it is used to implement some Avoid games. A Pick-Up game is a 2d
top-down game with a player and an object for them to pick up, usually through



Fig. 1. Two games generated for the noun “pheasant” and verb “shoot”. A duck is in
both since it is the closest noun to “pheasant” for which the generator has a sprite. Both
are Avoid games with Attacker-verb “shoot”, Avoider-noun “duck”, and Attacker-noun
“bullet”. The left game is implemented by the Shooter concrete mechanic and has the
player trying to shoot the duck; the right game is implemented by the Dodger concrete
mechanic and has the player, as the duck, trying to avoid bullets.

some obstacle such as a maze; it is used to implement some Acquire games. A
Pump game has a reservoir of some sort that needs to be filled up; it is used to
implement some Fill games. A Move game has a player moving some distance;
it is used to implement some Fill games.

Each of the five types of game mechanics can then be matched with compos-
able movement managers that determine how the non-player-controlled objects
will move, based on some common-sense reasoning about the thematic repre-
sentation they’ve been assigned (see next section). For example, attackers in a
Dodger game where the player plays the dodging side might chase the player (if
animate) or travel in a straight line (if not). The interface mappings are cur-
rently bundled with the objects in the concrete game mechanics: If the player
plays the dodging side in a Dodger game, then the controls will be arrow-keys to
move. These concrete game mechanics capture the concrete representations and
control mappings the system currently knows about. Finally, we have a stock
set of sprites, each attached to a noun describing them, that can be used as the
graphical representation of any of the objects in any of the games.

The end result of the generation process is a recipe for building a game.
The game is then built out of the composable classes corresponding to the five
sets of stock concrete mechanics (plus input and movement-control classes) to
produce a running game. Screenshots of the realizations of two generated games
are shown in Figure 1.



3.3 Common-sense WarioWare generation

In response to a request, we generate a number of games meeting a set of con-
straints on what games “make sense” in each of the three types of abstract games,
and score them according to a heuristic measure of how “reasonably close” they
are to the player’s actual request. These games are then built and fed to the
player in rapid-fire sequence, much as in Nintendo’s original WarioWare, with
the games growing increasingly distant from the original request as the system
has to stretch further to find games satisfying the thematic request that it hasn’t
yet used.

We start by defining prototype verbs that specify some canonical ways of
describing the action in each game. For example, an Avoid game from the per-
spective of the attacker has prototype verbs “attack”, “injure”, “shoot”, and
several more. If the user requests a verb, we compare it with a set of proto-
type verbs via ConceptNet distance (with closer verbs making for higher-scored
games), to determine if the verb can be mapped onto one of the abstract game
types. The original verb, not the prototype, is then used to determine which
nouns can be mapped into the game.

Filling in a game’s nouns is where the meat of common-sense reasoning comes
in; the process varies per game type, but can usually be done to reasonable
accuracy with surprisingly simple constraints once the basic logic of the game
type is teased apart. We choose nouns from those for which we have sprites that
meet the constraints of the game and are close to what the player requested.
The methods we use for each of the three game types are described below.
In addition to selecting the abstract game type, the specifics of the semantic
relationships discovered between the noun and verb are also used to select the
concrete realization (e.g. deciding to implement Acquire using Dodger with the
player playing the attacker).

Avoid The relationship of nouns and verbs in an Avoid game can follow two
patterns: “Avoider-noun Avoids-verb being Attack-verbed by Attacker-noun”;
or “Avoider-noun Avoids-verb an Attacker-noun Attacker-verbed by Instigator-
noun”. In the first case, an attacker directly attacks the avoider (e.g., “person
avoids being hit by car”), while in the second, an attacker is a projectile being
used by some other noun (the instigator) to attack the avoider (e.g., “pheasant
avoids a bullet shot by gun”). Although both types of games make sense, it is
important not to confuse one for the other, lest we end up with a gun shooting
a pheasant by moving across the screen towards it instead of firing bullets at
it. Since many of the same nouns could conceivably function in either type of
game, we decide between these two phrases by testing the verb. We say that
a game is of the projectile sort if the Attacker-verb is a type of verb that acts
on devices; that is, whether for some noun that is a hyponym of “device”, that
noun is CapableOfReceivingAction the Attacker-verb.5

5 We use “device” rather than “projectile” because some non-hyponyms of “projectile”
can be used as projectiles, such as “baseball” and “hammer”. There are also devices



In either version, the Avoider-noun must be CapableOfReceivingAction

the Attacker-verb, and furthermore must be an “animate thing”. The Attacker-
noun’s constraints depend on whether this is a projectile or non-projectile Avoid
game. In a projectile game, the Attacker-noun is a device being acted upon by
the Attacker-verb, so it must be CapableOfReceivingAction the Attacker-verb
and must be a “device”. In a non-projectile game, the Attacker-noun is doing
the attacking itself, so it must be CapableOf the Attacker-verb.

The player can be assigned to play either side. If assigned to play the Avoider-
noun, the game is implemented by the Dodger concrete game mechanic. If the
game is a projectile type game, then the Attacker-noun will be duplicated into
multiple copies that move via a “move in a straight line” movement manager.
If the game is a non-projectile type, then there will be a single Attacker-noun,
controlled by a “chase the player” movement manager.

If the player is assigned to play the attacking side, the specifics depend on
whether this is a projectile or non-projectile type game. In a projectile game, the
player plays the Instigator-noun, and the game is implemented by the Shooter
concrete game mechanic, with the player firing Attacker-noun projectiles. In a
non-projectile game, the game is implemented by a Dodger game in which the
player plays the Attacker-noun, and the Avoider-noun has a movement manager
that runs away from the player.

Acquire In an Acquire game, the situation is somewhat simpler. There is an
Acquirer-noun, which the player always plays, and it is trying to acquire a Target-
noun. The Target-noun must be a DesireOf the Acquirer-noun (for example, a
squirrel may want to acquire a nut). The game is usually implemented by the
Pick-Up concrete game mechanic, but if the Target-noun is an “animate thing”,
then it may also be implemented by the Dodger mechanic, with the player playing
the attacker. In either case, a non-animate Target-noun will have a movement
manager that causes it to sit still, while an animate Target-noun will run away
from the player.

Fill In a Fill game, the player is a Filler-noun trying to fill an abstract reservoir,
which can be represented as a literal reservoir via the Pump concrete mechanic,
or metaphorically by distance across the screen with the Move mechanic; there
are prototype verbs for both. Once we’ve chosen a verb, we require that the
Filler-noun be CapableOf the verb. If the verb is a troponym of “move”, we
generate a Move game; otherwise, we generate a Pump game with a Thing-To-
Fill-noun that is CapableOfReceivingAction the verb.

that would be awkward to use as projectiles, but with the semantic information in
ConceptNet and WordNet they are difficult to avoid, so for now we admit some—
hopefully amusing—games with unlikely projectiles.



4 Related Work

The earliest automatic game-generation system we’re aware of is the component
of METAGAMER [2] that generates “symmetric chess-like” games. METAGAMER

itself is a general game player for such games: It takes a formal description of
a particular game written in a grammar that can represent a class of games,
and tries to figure out how to play it well. Given a class of games specified by
a grammar, new games can be generated at random by following production
rules in the grammar. To generate games that would test specific aspects of
METAGAMER, Pell parameterized the generator along four axes so it could, via
some heuristics, generate games with greater or lesser rule complexity, decision
complexity, search complexity, and movement locality. Although the primary
purpose of the generator was to provide games with which to test METAGAMER,
Pell notes that it nonetheless generated some interesting games. From of our view
of game generation, METAGAMER tackles the portion of game design involving
the abstract gameplay mechanics.

EGGG [11], on the other hand, takes a formally specified game as its input,
and from that generates a graphical, playable game. The formal specification
gives the abstract mechanics for a specific game from one of several classes of
games (chess-like games, card games, etc.), and also partly specifies the concrete
game representation (e.g. whether the abstract rules should be represented as
operating on cards or board pieces). EGGG itself then tackles the process of
fleshing out the on-screen representation, assigning input mappings, and “com-
piling” this all into a final product. For two-player games it also generates an AI
opponent, which could be seen as generating abstract game mechanics to flesh
out the one-human-player version of the game.

Another body of work, mostly in the game industry and graphics field, aims to
procedurally generate graphics, animations, terrain, and levels [12–15]. Though
only a subset of the game design problem, procedural content generation would
be a useful component of an automated game-design system, allowing it to gener-
ate custom content on demand rather than relying on libraries of canned content.

Holm, Jukka, & Arrasvuori [16] propose games that customize themselves to
music, for example by synchronizing movement in the game to the music’s beat.
This is similar to our goal of customizing games, but it is not game generation
per se, since the games are programmed explicitly to respond to music as input,
rather than adapted on the fly by a process that explicitly reasons about the
game’s design.

Insofar as we’re exploring an expressive domain at least partly in order to
better understand the potential for computer creativity within it, there are sim-
ilarities with work in automated story generation [17, 18], art generation [19],
music composition [20, 21], and film generation [22]. The main difference is that
in story generation the product is an interactive artifact, rather than text, art,
music, or film, and so involves mechanics and dynamics as well as content.6 A

6 It’s worth noting that several of these systems [22, 21] are themselves highly inter-
active, but they don’t generate interactive systems.



particularly interesting parallel is with MAKEBELIEVE [23], a demo that pro-
duces very short stories about a requested subject by querying OpenMind for
plausible things the subject might do and stringing them together. Our proto-
type might be viewed as the interactive analog, generating micro-games that tell
plausible stories about the noun and/or verb the user requests.

5 Conclusions and Future Work

Automated game generation is a little-explored area of research that we feel holds
great potential, both as a technique that would enable the development of new
types of games, and as a research agenda that tackles the problem of machine
creativity from the perspective of the generation of highly interactive artifacts.
We described a general framework for viewing this problem, and a prototype
system that generates games in the style of WarioWare about user-requested
subjects, while respecting common-sense expectations about the roles of verbs
and nouns in those games.

There are a large number of avenues for future work on this subject. In the
short term, we plan to scale up our prototype to generate a wider variety of War-

ioWare-style games and gain feedback from users on the perceived strengths and
weaknesses of the system to guide future improvements. We will also explore the
use of the system to generate newsgames, using biased summaries of news stories
as a starting point for generation. In the longer term, we’d like a more iterative
blackboard approach to generation, in which different components of the gener-
ator revise a design-in-progress, allowing design failures in various aspects of the
design to force revision of other aspects. To allow such a system to perform com-
plex analysis of its design-in-progress, we envision a more formal representation
of a game, perhaps as a high-level game simulation defined by logical assertions;
in such a system, a more formal database of common-sense knowledge along the
lines of Cyc might be a good fit.

6 Acknowledgments

We would like to thank Nuri Amanatullah, Thib Guicherd-Callin, Jeremy Hay,
and Ian Paris-Salb (UC Santa Cruz) for developing a package to implement War-

ioWare-like games in J2ME; Ian Bogost (Georgia Tech) for useful discussions on
various aspects of the project; and Chaim Gingold (Maxis) for suggesting War-

ioWare as an interesting game-generation domain. Thanks also to support from
Intel and from the National Science Foundation’s Graduate Research Fellowship
Program.

References

1. Zagal, J.P., Mateas, M., Fernández-Vara, C., Hochhalter, B., Lichti, N.: Towards
an ontological language for game analysis. In: Proceedings of the 2005 Digital
Games Research Association Conference (DiGRA). (2005)



2. Pell, B.: Metagame in symmetric, chess-like games. In Allis, L.V., van den Herik,
H.J., eds.: Heuristic Programming in Artificial Intelligence 3: The Third Computer
Olympiad. Ellis Horwood (1992)

3. Gingold, C.: What WarioWare can teach us about game design. Game Studies
5(1) (2005)

4. Liu, H., Singh, P.: ConceptNet: A practical commonsense reasoning toolkit. BT
Technology Journal 22(4) (2004)

5. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database. MIT Press (1998)

6. Singh, P.: The public acquisition of commonsense knowledge. In: Proceedings of
the AAAI Spring Symposium on Acquiring (and Using) Linguistic (and World)
Knowledge for Information Access. (2002)

7. Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Commu-
nications of the ACM 38(11) (1995) 33–38

8. Mueller, E.T.: Natural Language Processing with ThoughtTreasure. Signiform
(1998) Online: http://www.signiform.com/tt/book/.

9. Lieberman, H., Liu, H., Singh, P., Barry, B.: Beating common sense into interactive
applications. AI Magazine 25(4) (2004) 63–76

10. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet::Similarity: Measuring the
relatedness of concepts. In: Proceedings of the 19th National Conference on Arti-
ficial Intelligence (AAAI). (2004)

11. Orwant, J.: EGGG: Automated programming for game generation. IBM Systems
Journal 39(3–4) (2000) 782–794

12. Wright, W.: The future of content. Keynote address, 2005 Game Developers
Conference (2005) Recording: http://www.gamasutra.com/features/20050525/

wright_01.shtml.

13. Roden, T., Parberry, I.: Procedural level generation. In Pallister, K., ed.: Game
Programming Gems 5. Charles River Media (2005) 579–588

14. Compton, K., Mateas, M.: Procedural level design for platform games. In: Pro-
ceedings of the 2nd Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE). (2006)

15. Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation
models. IEEE Transactions on Visualization and Computer Graphics 13(4) (2007)
834–848

16. Holm, J., Arrasvuori, J., Havukainen, K.: Using MIDI to modify video game
content. In: Proceedings of the 2006 International Conference on New Interfaces
for Musical Expression (NIME). (2006) 65–70

17. Meehan, J.: TALE-SPIN. In Schank, R.C., Riesbeck, C., eds.: Inside Computer
Understanding: Five Programs Plus Miniatures. Lawrence Erlbaum (1981) 197–
258

18. Turner, S.R.: The Creative Process: A Computer Model of Storytelling. Lawrence
Erlbaum (1994)

19. Cohen, H.: What is an image? In: Proceedings of the 6th International Joint
Conference on Artificial Intelligence (IJCAI). (1979)

20. Cope, D.: Virtual Music: Computer Synthesis of Musical Style. MIT Press (2001)

21. Thom, B.: Interactive improvisational music companionship: A user-modeling ap-
proach. User Modeling and User-Adapted Interaction 13(1–2) (2003) 133–177

22. Mateas, M., Vanouse, P., Domike, S.: Generation of ideologically-biased histori-
cal documentaries. In: Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI). (2000) 36–42



23. Liu, H., Singh, P.: MAKEBELIEVE: Using commonsense knowledge to generate
stories. In: Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI). (2002) 957–958


