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Sequence conservation during evolution is the foundation for the functional classification of the
ennormous number of new protein sequences being discovered in the current era of genome sequencing.
Conventional methods to detect homologous proteins are not always able to distinguish between true
homologs and false positive hits in the twilight zone of sequence similarity. Several different approaches
have been proposed to improve the sensitivity of these methods.  Among the most successful are
sequence profiles, multi-linked alignment, and threading.   However, evolution might offer up other
clues about a protein’s ancestry that are sequence independent.  Here we report the discovery of two such
traces of evolution that could potentially be used to help infer the fold of a protein and hence improve the
ability to predict the biochemical function.  The first such evolutionary trace is a conservation of fold
along the genome, i.e. nearby genes tend to share a fold more often than expected by chance alone—a
not unexpected observation, but one which holds true even when no pair of genes being examined share
appreciable homology.  The second such evolutionary trace is, surprisingly, present in expression data:
genes that are correlated in expression are more apt to share a fold than two randomly chosen genes.
This result is surprising because correlations in expression have previously only been considered useful
for determining biological function (e.g. what pathway a particular gene fits into), yet the observed fold
enrichment in the expression data permits us to say something about biochemical function since fold
corresponds strongly with biochemical function.  Again, the fold enrichment observed in the expression
data is apparent even when no pair of genes being examined share appreciable homology.

1 Introduction

The evolutionary tool of sequence duplication and subsequent sequence divergence
is the means used by Nature to create new biochemical and biological function.
The full tapestry on which these evolutionary events are played out is becoming
available thanks to the multitude of successful whole-genome sequencing projects.
Having the entire tapestry allows us to improve our understanding of evolution, and
that improved understanding will in turn lead to better prediction of both the
biological and biochemical functions of experimentally uncharacterized proteins.

Many experimentally uncharacterized proteins can be identified through sequence
similarity to other proteins that have  been characterized.  However, the
identification of distant homologs is a fundamental problem in modern
computational biology with enormous potential for practical applications. The vast
amount of genome sequencing is dramatically increasing the importance of the
problem.  The function of about 30% of Arabidopsis thaliana genes cannot be
predicted by sequence similarity search methods1-5. About 40% of the identified
genes in human chromosomes 21 and 22 do not have detectable homology to
known genes6,7. Therefore even a small improvement in our ability to identify
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distant homologs can help us  make functional predictions for a large number of
newly discovered genes.

To build proteins, Nature draws on what appears to be a more or less fixed
repertoire of folds developed during the course of evolution.  A fold is a structural
motif used as a building block in proteins.  Various fold classifications exist, for our
purposes we use that of the Structural Classification of Proteins (SCOP)8.
Structural similarity has been recognized as a solid argument for evolutionary
relationship between proteins9,10 and hence, prediction of their function. Success in
protein structure prediction by fold recognition is limited by our ability to identify
homologous protein with known three-dimensional structure. Progress in fold
recognition can be assessed at the regular CASP conferences
(http://predictioncenter.llnl.gov/). The recent CASP4 meeting clearly showed that
an expert, knowledge-based approach is superior to a purely computational, fully
automated approach. The advantage of experts is that they use not only biochemical
or biophysical information on protein sequence and structural properties, but also
knowledge of protein function derived from biochemical experiments. In support of
the utility of expert knowledge, it has in fact already been demonstrated that even
something as simple as a key-word comparison of protein descriptions in the
database increases the accuracy of fold recognition programs11.  Clearly then,
incorporation of additional data will improve the accuracy of fold prediction

What other kinds of data could be incorporated? The mechanism of duplication
often leads to neighboring genes that share a common ancestor.  It seems natural
then to expect a fold enrichment among neighboring genes, and that is in fact one of
the conclusions we report here for both Arabidopsis and Saccharomyces cerevisiae,
consistent with an analysis on a subset of the yeast data analyzed here12.   However,
we can make a stronger statement.  Not only do neighboring genes share fold, the
distance between pairs of genes in the genome conveys information about structural
homology over and above the information from the sequence comparison alone.

We will distinguish biochemical function of a protein from the gene’s biological
function, where by biological function we mean what the organism accomplishes
with the gene and other co-expressed genes, for example a signal transduction
cascade.  Just as sequence conservation during evolution can be used to infer
structural homology and biochemical function, one might wonder if Nature has left
a trace of structural information during its evolution of biological (as opposed to
biochemical) function.

If a structural trace can be found in the evolution of pathways, that trace could also
be helpful in improving the prediction of protein fold.  We looked for and found
that trace using correlations in expression data, a method used for inferring
biological function since the invention of the Northern blot but only recently
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performed on the genome-wide scale necessary to detect such a trace.  As in the
case of the fold enrichment seen between nearby genes on the genome, the fold
enrichment between pairs of co-expressed genes conveys structural information
over and above that from sequence similarity alone.  Hence, biological function of a
gene says something about the gene’s corresponding protein fold, and via the fold
something about the biochemical function of that protein.

In the following, then, we show that both physical distance on the genome and
correlation in expression show traces of evolution manifested in structural
homology.  Those weak signals could in principle be used to improve prediction of
structural homology in the twilight zone of sequence similarity.

2 Methods

2.1  Genomes

To investigate the evolutionary trace of fold enrichment along the genome, we used
the genomes of the model organisms Saccharomyces cerevisiae13 and Arabidopsis
thaliana1-5. The yeast genome consists of 16 chromosomes, with 6,310 identified
ORFs, available from the Saccharomyces  Genome Database (SGD) at
http://genome-www.stanford.edu/Saccharomyces/. The smallest chromosome,
chromosome I, is ~0.23 Megabases and has 107 ORFs.  The largest chromosome,
chromosome IV, is ~1.53 Mb and encodes 819 ORFs. The recently finished
Arabidopsis genome consists of five chromosomes, with 25,498 genes predicted.
The smallest chromosome is chromosome IV and is ~17.5 Mb in length, containing
3,825 protein encoding genes.  The largest chromosome is chromosome I,
approximately 29.1 Mb in length, with 6,543 genes. We downloaded Arabidopsis
genes from the NCBI web site (http://www.ncbi.nlm.nih.gov).

Only chromosomes II and IV were available as one contig at the time we made our
analysis, so we used only 7,852 protein-coding genes from these two chromosomes
in our analysis of fold enrichment in the genome neighborhood.

2.2 Microarray Expression Data

Yeast and arabidopsis expression data were downloaded from the Stanford
Microarray Database14.  A subset of non-biological experiments (e.g. assessing the
performance of microarrays) was excluded from our analysis.  The resulting dataset
contained expression data from 345 yeast and 201 Arabidopsis microarray
experiments.

The similarity in expression across all experiments between a pair of genes was
measured using the Spearman rank correlation coefficient on the normalized
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ratios15.  The Spearman r was chosen because it is a robust statistic that will capture
any monotonic relationship between a pair of variables, as opposed to the
commonly used Pearson correlation coefficient which is suitable for detecting linear
relationships between pairs of variables.  Missing data points were handled by
pairwise deletion of observations from the Spearman r calculation and any pair of
genes having fewer than 10 experiments in common were ignored.  No special
attempt was made to account for the redundancy due to experimental replicates or
similarities in subsets of experiments.  We note, however, that for the purposes of a
global correlation analysis at least, it would be more desirable to have a larger
number of distinct, diverse experiments than to have experimental replicates since
the correlation coefficient implicitly takes inherent experimental variation into
account.

Spurious significant correlations might be introduced between a pair of genes that
are not actually co-expressed if the two genes are sufficiently similar that cross-
hybridization occurs, where “sufficiently similar” is roughly taken to be in the
neighborhood of 80% over 50 nucleotides16-18.  No large scale, systematic
experimental study of cross-hybridization on microarrays has been done, so we
assessed the degree of cross-hybridization indirectly as follows.  Pairwise similarity
was measured using Wash-U BLASTN, version 2.0 with M=2 and all other
parameters set to their defaults.  We compared the overall distribution of correlation
coefficients between pairs of genes to the distribution between non-identical chip
features showing similarity of >=85% over >=50 nt.  There is a clear shift towards
one for the similar sequences as seen in Figure 1.  The distribution for clones
having 70%-85%, >=50 nt similarity is shifted towards 1 as well, but the shift is
less pronounced (data not shown).  To be conservative and minimize the possibility
of cross-hybridization affecting our results, we discarded any chip feature having a
sequence with an HSP showing 70% or greater similarity over at least 50 nt to some
other gene in the genome.  Applying this approach for yeast is straightforward since
the microarray features are PCR fragments of the ORFs, the complete sequence of
the features is known19 and there are essentially no introns in yeast. In the case of
Arabidopsis, the full sequence of the clones serving as source material for the
microarrays is not available, so we mapped ESTs from the clones to the cDNAs
from the annotation of the Arabidopsis genome1-5 and assumed that the entire
cDNA sequence was present in the microarray feature, then screened against all
other cDNAs in Arabidopsis. While conservative, our approach cannot guarantee
complete exclusion of features that might cross-hyb because the genomic
annotations often lack full UTRs or have other errors.

The cross-hybridization filtering resulted in 4,280 yeast features and 3,011
Arabidopsis features.  The smaller number of filtered features for Arabidopsis was
primarily a consequence of feature redundancy on the chip (more than one clone for
a given cDNA) and a higher amount of gene duplication in Arabidopsis.  A
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correlation and cluster analysis was performed with the biological sensibility of
results conforming to those from the literature, though the Arabidopsis results were
less compelling20-22.

2.3 Fold Assignment

For each gene we assigned fold(s) according to the SCOP-1.55 classification of
protein structures8. Assignment was done by WU-Blastp23 search against the Astral

database of non-redundant SCOP domains at the 95% identity level 24. We
considered all matches with a P-value < .001.  At that level of significance
approximately 2% of our assignments are wrong9. One protein may consist of more
than one domain, in those cases multiple folds were assigned to the corresponding
gene. Out of 6,310 yeast genes, we assigned folds to 1,839 genes (29%). Out of
27,469 Arabidopsis genes from the TIGR gene index, we assigned folds to 9,147
genes (33%). The distribution of different SCOP folds in the two genomes is shown
in Figure 2, with the most frequent folds summarized in Table 1. This is consistent
with the most frequent folds in other organisms25.  More advanced methods of fold
assignments, e.g. PSI-BLAST, the profile-profile technique, and threading, increase
the coverage, but overall do not change the statistical observations.

2.4 Non-redundant Set of Proteins

Since our intent is to determine if we can detect distant homologs, we created a
non-redundant set of proteins from the overall set of proteins that had folds assigned
to them.  To create the non-redundant set, the following procedure was applied: for
each protein, beginning with the longest, all shorter proteins were removed from the
list if they matched the first protein with a P-value < 1.0e-3.

2.5  Fold Enrichment Along the Genome

The relative enrichment of folds along the genome was defined as the ratio of the
probability of finding the same fold between pairs of genes a given distance apart in
the genome to the probability of finding the same fold between two randomly
selected pairs of genes in the genome.  The ratio is therefore a function of the
distance in nucleotides between gene pairs.  At a given distance, a ratio greater than
one implies that more similar folds are occurring than one would expect if folds
were distributed randomly over that distance.  A ratio of one indicates that the folds
are distributed randomly.
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Figure 1.  a)  Histogram of Spearman r distribution for clones showing >=85% similarity
over >=50 nt.  b)  Histogram of Spearman r distribution overall for clones included in
analysis, i.e. those that show no similarity to any other clone at the 70%, 50 nt level.  It
should be pointed out that Figure 1a strongly suggests that the Arabidopsis data is of inferior
quality to the Yeast data, see comment in the Results section below.
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Figure 2. Fold distributions in yeast and Arabidopsis genomes.

SCOP_1.55
fold

Description Yeast Arabidopsis

rank frequency rank frequency

c.37 P-loop containing nucleotide
triphosphate hydrolases

1 0.095 2 0.059

d.144 Protein kinase-like (PK-like) 2 0.054 1 0.105
c.1 TIM beta/alpha-barrel 3 0.033 5 0.030

b.69 7-bladed beta-propeller 4 0.030 10 0.024
a.118 alpha-alpha superhelix 5 0.028 7 0.027
c.2 NAD(P)-binding Rossmann-fold

domains
6 0.028 8 0.025

d.58 Ferredoxin-like 7 0.027 3 0.031
g.38 Zn2/Cys6 DNA-binding domain 8 0.021 >27

9
0

f.2 Membrane all-alpha 9 0.020 18 0.011
c.55 Ribonuclease H-like motif 10 0.018 21 0.009
a.4 DNA/RNA-binding 3-helical

bundle
11 0.016 4 0.031

g.44 RING finger domain, C3HC4 22 0.008 6 0.028
a.104 Cytochrome P450 149 0.001 9 0.024

Table1. Ten most frequent folds in the yeast and Arabidopsis genomes. Seven folds belong to
the ten most frequent folds in both genomes.
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2.6  Fold Enrichment for Genes with Similar Patterns of Expression

The relative enrichment for co-expressed genes was defined by calculating the ratio
of the probability of having a matching fold at or above a given level of correlation
coefficient to that expected by randomly choosing pairs of genes. Fold enrichment
for correlated genes is therefore a function of the Spearman r, with a ratio greater
than one indicating that a pair of correlated genes is more likely to share fold than
expected from chance.  Error bars were estimated from counting error.

3 Results

3.1 Fold Enrichment Along the Genome

One of the most frequent evolutionary events is gene duplication, with the
Arabidopsis genome being especially rich in tandemly repeated genes1-5. Therefore
it is not surprising to see enrichment of homologous genes in the chromosomal
neighborhood for both organisms. The effect can, however, still be observed even
for the set of non-redundant proteins (Figure 3)

3.2 Fold Enrichment for Genes with Similar Patterns of Expression

Figure 4a shows a plot of the fold enrichment in yeast as a function of r.  Figure 4b
shows the corresponding plot for Arabidopsis.  Both organisms show enrichment
that is significantly elevated from the baseline of 1.0, although the difference is
more pronounced for yeast.  The enrichment is maintained even when redundant
proteins are removed.

In the case of Arabidopsis there is only a weak signal at best, yet we suspect that it
is in fact real.  We believe that it is weak as compared to yeast at least in part
because of dataset size and in part because of overall data quality.  A power
calculation shows that for the set of yeast data, we can reliably detect correlations
down to ~0.4 (significance 0.01, power 80%, Bonferonni correction, power
calculation assumed Pearson r rather than Spearman r).  For Arabidopsis the
threshold is roughly 0.5.  This weaker detection ability is confounded by relatively
poor quality data for Arabidopsis.  The poorer quality Arabidopsis data means that
the threshold for a biologically significant correlation is higher than for the yeast
data.  The difference in quality is evident from the much smaller overall shift
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towards a correlation of 1 in the distribution of Figure 1a). With more and better
quality data, the peak should presumably become cleaner.

Figure 3. We examined two sets of genes for fold enrichment along the genome.  The first set
was all genes that had a fold assignment.  The second set was a subset of the first consisting
of genes whose proteins showed no significant homology to one another.  For each set, fold
enrichment was measured as the ratio of the frequency of same fold for genes within d
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nucleotides of each other to the frequency of the same fold in randomly selected genes. The
enrichment ratio is then plotted as a function of distance d.

4 Summary and Conclusions

Folds among nearby genes in the genome and among co-expressed genes are
enriched relative to that expected by chance alone.  We examined the distributions
of enriched folds and were unable to explain the enrichment through a bias in folds
in either case.  From this we conclude that the enrichment we see is a more-or-less
general feature of folds in organisms; with the large amount of data becoming
available for worm26, human and other organisms we will be able to confirm or rule
out this speculation in the near future.  Assuming we are correct one should in
principle be able to incorporate such information into fold prediction for proteins
whose fold is unknown.  We are currently evaluating approaches to accomplish that
goal.

The mechanism behind the enrichment of folds along the genome seems clear.
Gene duplications lead to pairs of genes with similar ancestors, and even after
substantial divergence results in no sequence homology between nearby genes on
the genome, there is still a remnant of structural similarity.  It is that remnant which
accounts for the observed enrichment.

The mechanism behind the enrichment of folds among co-expressed genes is less
clear.  One hypothesis is that during the course of evolution of (e.g.) a particular
metabolic pathway, a newly duplicated gene is created.  For the sake of illustration
let us say that the duplicated gene is an enzyme.  Since that newly duplicated gene,
which includes the promoter region of the original gene, is now redundant, one of
two things must happen.  Either one of the duplicated genes will disappear or the
pair will diverge apart in sequence, with one retaining the original function (by
function here we mean both biochemical function as well as biological role), and
the other taking on a new function.  Since both originally operate on the same
substrate there is a structural constraint to how the pair diverge in sequence, and this
constraint tends to cause the fold to be maintained.

The extent to which the behavior described above actually explains how Nature
evolves pathways remains to be demonstrated.  It is interesting to note, however,
that we made a correct, blinded prediction of protein fold for a recent target in the
CASP4 competition, using in part exactly the above reasoning.  The target in
question was pectin methylesterase, which is co-expressed with its metabolic
pathway neighbor pectate lyase27.  Both enzymes share exactly the same SCOP
fold, the single-stranded right-handed beta-helix.
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Figure 4.  We examined two sets of genes for fold enrichment among co-expressed genes.
The first set was all genes that had a fold assignment and showed no significant sequence
homology to other genes at the nt level, see methods description for details on selection.  The
second set was a subset of the first consisting of genes whose proteins showed no significant
homology to one another.  For each set, fold enrichment was measured as the ratio of the
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frequency of same fold for genes correlated at r or better to each other, relative to the
frequency of the same fold in randomly selected genes. The enrichment ratio is then plotted
as a function of r.  Error bars are counting statistics only.
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