
 

 

 

Experiments on Crowdsourcing Policy Assessment 

 

 

JOHN PRPIĆ   - Beedie School of Business, Simon Fraser University 

ARAZ TAEIHAGH1  - City Futures Research Centre, University of New South Wales 

JAMES MELTON  - College of Business Administration, Central Michigan University 

------------------------------------------------------------------------------------------------------------------------  

 

 

 

Abstract 

Can Crowds serve as useful allies in policy design? How do non-expert Crowds perform 

relative to experts in the assessment of policy measures? Does the geographic location of 

non-expert Crowds, with relevance to the policy context, alter the performance of non-

experts Crowds in the assessment of policy measures? In this work, we investigate these 

questions by undertaking experiments designed to replicate expert policy assessments with 

non-expert Crowds recruited from Virtual Labor Markets. We use a set of ninety-six climate 

change adaptation policy measures previously evaluated by experts in the Netherlands as 

our control condition to conduct experiments using two discrete sets of non-expert Crowds 

recruited from Virtual Labor Markets. We vary the composition of our non-expert Crowds 

along two conditions: participants recruited from a geographical location directly relevant to 

the policy context and participants recruited at-large. We discuss our research methods in 

detail and provide the findings of our experiments.  
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1. Introduction  

Crowds of non-experts accessed through a form of Crowdsourcing (de Vreede et al 2009, 

Prpić, Taeihagh, and Melton, 2014) known as Virtual Labor Markets (VLMS) have been 

shown to perform exceptionally-well relative to experts in several areas. These areas 

include, for example, image segmentation (Lee 2013), photograph classification (Mitry et al 

2013), and biomedical ontologies (Mortenson et al 2013).  Further, a growing body of 

experimental work (Micallef et al 2012, Trushkowsky et al 2013, Bragg and Weld 2013, 

Lasecki et al 2013, Hossfeld et al 2013) undertaken through VLMs such as Amazon’s M-Turk, 
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Crowdflower, and Gigwalk, illustrates that experiments with participants at VLMs are equal 

to or better than laboratory experimentation in respect to participant diversity and overall 

rigour (Paolacci et al 2010, Yen et al 2013).  

 

Given these early precedents illustrating that non-experts can perform well relative to 

experts in a number of domains and that experiments at VLMs have been shown to be 

scientifically viable settings for rigorous experimentation, in this work we design, implement, 

and report results from two VLM-based replication experiments for policy assessment.  

 

In the ensuing sections of this work, we first briefly review the literature on Policy Design 

and Crowdsourcing to motivate the context of our research and contributions. From this 

platform, we then describe our experimental design and data collection procedures before 

presenting the results of our findings.  

 

 

2. Policy Design 

Due to inherent technical, institutional, and political difficulties, policy problems are often 

considered to be ‘messy’ (Ney, 2009) or ‘wicked’ (Rittel and Webber, 1973). No longer are 

policy makers faced with a lack of options when dealing with policy problems; rather, 

sufficiently exploring all of the viable options has become more difficult and time consuming. 

In the 21st century, the number of policy alternatives and their respective measures 

considered in a policy problem can number in the hundreds, and as a result what should be 

done and what should be done first is becoming an increasingly complex question, given the 

options available, the information (empirical and/or theoretical) on each option, and the 

various political and advocacy influences on policy making (Taeihagh et al. 2013). 

Furthermore, there is evidence for inertia and a lack of consideration of more than a few 

options (Kelly et al., 2008).  

 

To successfully and efficiently advance most complex policy problems, using a range of 

different measures (i.e. a policy package - see Givoni et al, 2010) is necessary. One of the 

challenging tasks in executing such a methodology is processing a vast amount of 

information and developing a library of measures with the accompanying assessment of 

their properties. To facilitate policy design, new methodologies and decision support 

systems have been proposed (Taeihagh et al., 2014), and in this vein, this work seeks to 

investigate the performance of non-expert Crowds from VLMs in relation to the 

performance of known-experts in the evaluation of policy alternatives. In broad-terms, we 

seek to evaluate whether a Crowd can be a useful ally in policy design. Our results may have 

important implications in policy design in general, and specifically in the evaluation of policy 

packages, as the use of non-expert Crowds from VLMs has the potential to reduce the time 

and cost of analysis and may support the validation of policy measures.  

 



 

 

 

 

3. Crowdsourcing 

Crowdsourcing is known to be a distributed problem-solving, idea generation, and 

production model where problems are broadcast through IT to an unknown group in the 

form of an open call for input (Brabham 2008). Problem-solving, idea-generation and 

production are generally achieved by different IT-mediated approaches, and in the following 

subsections we will describe the three general types of Crowdsourcing found in the literature 

(de Vreede et al 2013).  

 

 

3.1 Tournament-Based Crowdsourcing 

In tournament-based crowdsourcing (TBC), organizations post their problems or 

opportunities to IT-mediated Crowds at web properties such as Innocentive, Eyeka, and 

Kaggle (Afuah and Tucci 2012). In posting a problem at the web property (and paying for the 

privilege to do so), the organization creates a prize competition amongst the assembled 

Crowd where the best solution will be chosen (and granted the prize) as determined by the 

sponsor organization. 

 

These web properties leverage an exclusive Crowd of contributors that they have formed 

and offer client organizations access to their Crowd in exchange for fees (Zwass 2010, 

Lakhani & Panetta 2007). These web properties generally attract and maintain more or less 

specialized Crowds premised upon the focus of the web property, though the properties are 

almost always open to new Crowd members joining. For example, the Crowd at Eyeka is 

coalesced around the creation of advertising collateral for brands, while the Crowd at Kaggle 

has formed around data science (Ben Taieb and Hyndman 2013, Roth and Kimani 2013). 

When applied to innovation, these platforms have been termed as innomediaries or open 

innovation platforms (Sawhney et al. 2003) and represent both the idea generation and 

problem solving aspects of Crowdsourcing (Morgan and Wang 2010, Brabham 2008).  

 

The scale of the Crowd of participants at these TBC sites can be very large (for example, 

Kaggle has a Crowd of approximately 140,000 available, while eYeka boasts approximately 

280,000 members), and the individual Crowd participants can choose whether or not to be 

anonymous at these sites in relation to their offline identities.  

 

Generally, firms seek out such TBC sites for relatively complete solutions (for example a new 

algorithm that solves a business need) and the competition sponsoring firm usually works 

directly with the TBC intermediary to design the contest in respect its duration, determine 

the number of prizes being offered, the monetary distribution of the prize money amongst 

the overall prizes awarded, and define the problem to be solved itself. Fixed amounts of 

prize money are offered to the Crowd for the winning solution and can range from a few 



 

 

 

hundred dollars to a million dollars or more2.   

 

 

3.2 Open Collaboration 

In the open collaboration (OC) model of Crowdsourcing, organizations post their 

problems/opportunities to the public at large through IT. Contributions from the Crowds in 

these endeavors are voluntary and do not generally entail monetary exchange. Posting on 

Reddit, starting an enterprise wiki (Jackson and Klobas 2013), or using social media 

(Kietzmann et al 2011) like Facebook and Twitter (Sutton et al 2014) to garner contributions 

are prime examples of this type of Crowdsourcing. In this vein, Wikipedia is perhaps the most 

famous example of an OC application, “where a huge amount of individual contributions 

build solid and structured sources of data” (Prieur et al. 2008).  

 

The scale of the Crowds available to these types of endeavors can vary significantly 

depending on the reach and engagement of the IT used and the efficacy of the “open call” 

for volunteers. For example, Twitter3 currently counts 271 million active users per month, 

with 500 million tweets sent on an average day, while applications like Reddit have 

approximately 3 million registered ‘Redditors’.4 Further, individuals such as politicians like 

Narendra Modi of India have in place very large personal communities of followers on 

Facebook to the tune of 15 million ‘likes’5. On the other hand, California Assemblyman Mike 

Gatto garnered less than one hundred responses in his efforts to Crowdsource probate 

legislation in California.6  

 

In short, the size of the Crowds accessed in OCs can vary significantly in terms of the upper 

limit of Crowd scale, easily varying orders of magnitude at a time, depending on the 

particular platform in use. Further, even with the largest potential Crowds at, say, Facebook 

or Twitter, there is little to guarantee the attention of any significant subset of the vast 

amount of potential contributors at any one time. Similarly, in respect to anonymity, OC 

Crowds run the gamut from fully anonymous--in respect to one’s offline identity--to 

participation that is completely synonymous with offline identity.  

 

 

3.3 Virtual Labor Marketplaces 

A virtual labor marketplace (VLM) is an IT-mediated market for spot labor where individuals 

and organizations can agree to execute work in exchange for monetary compensation. 

Typified by endeavors like Amazon’s M-Turk and Crowdflower, these endeavours are 
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generally thought to exemplify the “production model” aspect of Crowdsourcing (Brabham 

2008), where workers undertake microtasks for pay.  Microtasks, such as the translation of 

documents, labelling/tagging photos, and transcribing audio (Narula et al. 2011), are 

generally considered to represent forms of human computation (Michelucci 2013, Iperiotis & 

Paritosh 2011), where human intelligence is tasked to undertake work currently 

unachievable through artificial intelligence means. Though human computation tasks cannot 

be tackled by the most advanced forms of AI, they are generally rather mundane work for all 

human intelligences.  

 

In respect to the Crowd of laborers at VLMs, they are generally anonymous in respect to 

their offline identities (Lease et al 2013) and independently undertake the tasks that they 

select, based upon the compensation offered for the task and the nature of the task itself. 

Crowd laborers accrue historical ratings for their past efforts with tasks, which future 

requesters can use to segment the highest quality workers. In this respect, the work is 

completed by Crowd participants first, and then the requesters (or the platform 

intermediary) decide whether or not to pay for the work, based upon their satisfaction with 

the effort. The size of the Crowds at the VLMs can be immense; for example, Crowdflower 

has over 5 million laborers available at any given time. Therefore, microtasking through 

VLMs can be rapidly completed on a massively parallel scale.  

 

With our review of the Crowdsourcing literature complete, in the next section we describe 

our research methods in using VLM Crowdsourcing to garner policy assessments from 

separate Crowds of non-experts.  

 

 

4. Research Method 

In this section we outline the details of our research method, including our overall 

experimental design, our experimental task design, the pilot tests undertaken, the final 

experiments, and the data collected.  

 

 

4.1 Experimental Design 

Using a deterministic climate change scenario (see Appendix #1) and an accompanying set of 

ninety-six policy measures (see Appendix #2 for a sample) for climate change adaptation 

previously evaluated by experts in the Netherlands (de Bruin et al 2009), we present the 

identical climate change scenario and adaptation policy measures--as our control condition--

to two discrete sets of non-expert Crowds recruited from Virtual Labor Markets (VLMs).  

 

We vary the composition of our non-expert Crowds along two conditions: participants 

recruited from a geographical location directly relevant to the policy context (i.e., the 

Netherlands) and participants recruited at-large. In each experiment, we gather 



 

 

 

approximately 25 independent assessments for each of the ninety-six climate change 

adaptation options along five criteria (importance, urgency, no-regret, co-benefit, 

mitigation) on a 5 point scale.  

 

 

4.1.1 Experimental Task Design 

Our experimental tasks give the participants a climate change scenario in a deterministic 

setting, in which it is assumed that the climate changes detailed in Appendix #1 will occur by 

the year 2050 in the Netherlands.  Within this deterministic setting, participants are asked to 

assess different policy measures to prepare for these assumed climate changes. Policy 

measures are evaluated along a solitary set of assessments for adaptation priority (see 

Appendix #3). The adaptation priority assessment set contains five independent criteria 

(importance, urgency, no-regret, co-benefit, mitigation), each assessed on a 5-point scale 

ranging from very low (1) to very high priority (5).  

 

The ninety-six policy measures that were evaluated by experts in de Bruin et al (2009) were 

evaluated as a complete corpus by each expert, whereas in our experiment we break the 

body of ninety-six policy measures into ninety-six separate microtasks, each containing 

exactly one policy measure. Appendix #4 illustrates screenshots of an actual task 

implemented during the experiments.  

 

After receiving IRB approval but prior to executing the main experiments, we undertook a 

set of iterative pilot tests at the M-Turk and Crowdflower VLM platforms to refine the text 

and presentation of our experimental tasks and to find adequate pricing-levels for our tasks 

in the markets. A total of eight different pilot tests were initiated and iterated altogether.  

 

Initially, we thought that we would be able to run both of our experiments (Dutch and at-

large) at the M-Turk platform alone, though it soon came to light from our pilot tests that it 

would not be possible to find and recruit a solely Dutch Crowd of participants at M-Turk, 

irrespective of the reward offered. Therefore, we turned to Crowdflower to run our Dutch 

experiment.  

 

The net result of our complete set of pilot studies was attractively displayed microtasks at 

each VLM platform, appropriately structured with task-settings such as price, expiry of task, 

and maximum time spent per task, etc. Further, the pilots gave us a working knowledge of 

the form of the output of the results of Crowd labor and some insight into the market 

dynamics of VLM Crowd behaviour.  

 

Altogether, the ability to rapidly iterate through pilot tests at VLMs is, we feel, a powerful 

strength of the methodology. After running the pilot tests for seven days, we were able to 

fine tune the experiments and run the main experiments tasks given the gained 



 

 

 

understanding of the time, monetary costs and market dynamics of the VLMS for the 

proposed microtasks.  

 

 

4.2 Main Experiments 

Over a period of approximately 3 weeks bridging July and August 2014, our final experiments 

were undertaken. As mentioned, the Dutch experiment was run at the Crowdflower 

platform, while the at-large experiment was run at M-Turk. At both Crowdflower and M-

Turk, ninety-six different “batches” were created and launched through the web interface, 

each reflecting one climate change adaptation option.  

 

Each task was typically completed with the lower bound of 15 seconds to the upper bound 

of 2 minutes for majority of the participants. With average times ranging from 30 to 45 

seconds per task. Compensation of one to five cents per task were offered at Crowdflower 

and M-Turk after conducting pilot tests to understand market dynamics for the microtasks 

defined. The Dutch experiment was limited to participation of those who were verified by 

Crowdflower to be Dutch residents. Participation in the M-Turk batches was not restricted 

geographically 

 

 

4.3 Data Collected 

Our Dutch experiment yielded twenty five completed assessments (25) for each of the five 

criteria (5) for each climate change adaptation option (96). Our at-large experiment yielded 

an average of twenty-three-and-a-half completed assessments (23.5), for each of the five 

criteria (5), for each climate change adaptation option (96). Exactly half of the at-large 

experiment climate change adaptation options received a full-set of twenty five completed 

assessments, while the remainder received between 16-24 assessments per climate change 

adaptation option. Altogether, 12,000 data points were collected from the Dutch experiment 

(25 X 5 X 96), while 11, 280 data points were collected from the at-large experiment (23.5 X 

5 X 96). The cost to collect these 23,000+ data points was approximately $250 USD.   

 

Crowd diversity has been shown by Hong & Page (2002) to be a fundamental element in the 

efficacy of IT-mediated Crowds. Because the microtasks were structured to contain only one 

climate change adaptation option at a time (as opposed to each expert assessing all 96 of 

them at once), our collected data represents a significant increase in overall respondent 

diversity, as compared to the expert assessments.  Through our methods, it was possible for 

25 discrete individuals at each VLM to evaluate each of the 96 adaptation options, therefore 

equaling a maximum participant pool of 2400 individuals supplying only one solitary 

assessment each. Though these details are beyond the scope of this particular work, we 

estimate that approximately 10% of Crowd members supplied a full set of 96 assessments in 

both experiments, which means that the overall participant pool (in supplying at least one 



 

 

 

assessment) for each experiment, contained at least one input from more than 230 different 

people (on average), representing input from people more than an order of magnitude 

higher than the expert assessments.  

 

 

5. Results 

Our research design was formed as an attempt at two replication experiments for policy 

assessment. We used the deterministic climate change scenario and the ninety-six related 

climate change adaptation options used by de Bruin et al (2009) to gather expert 

assessments on climate change adaptation and verbatim brought the exact same scenario 

and climate change adaptation options to two different Crowds of non-experts for 

assessment.  

 

The use of the exact same scenario and adaptation options, scale, and criteria of evaluation 

used in the work of de bruin et al (2009) with our two different groups of non-expert 

Crowds, suffices as the control condition of our experiments, hence potentially allowing the 

replication of the expert policy assessment results, in both new non-expert Crowd settings.  

 

Our experimental treatment varies the composition of the non-expert Crowds that we 

access to attempt to tease out if the composition of non-expert Crowds (as reflected by the 

geographic diversity of Crowd participants) changes the policy assessment results. To control 

for this treatment, one non-expert Crowd was recruited at-large, while a second distinct 

non-expert Crowd was recruited from a specific geographic setting relevant directly to the 

policy context (i.e., the Netherlands).  

 

 

5.1 Results from Non-Expert Dutch Crowd  

Our Dutch experiment with non-experts yielded twenty five completed assessments (25), for 

each of the five criteria (5), for each climate change adaptation option (96), forming 12,000 

data points from this sample. And based upon our estimate that 10% of respondents 

completed all 96 assessments (and thus on average each respondent completed 

approximately 10 assessments each), our data points represent input from approximately 

240 Dutch people overall.  

 

As mentioned, this Dutch Crowd was accessed at the Crowdflower VLM platform, and we 

were able to segment this Crowd specifically and completely as a part of the functionality 

that the Crowdflower platform provides. Respondents, segmented based upon their IP 

addresses, were shown to originate from every region of the country, including urban and 

rural areas.  

 

In respect to the actual assessments made by the Dutch Crowd of non-experts, Table #1 



 

 

 

details a rank ordering of the Top 15 Assessments made by this Dutch Crowd using the 

Median values from the data collected and the same weights assigned by de Bruin et al. 

(2009).  

 

Table 1 - Top 15 Adaptation Options as Generated By Dutch Non-Expert Crowd 

 

 
 

5.2 Results from Non-Expert At-Large Crowd 

Our At-large experiment with non-experts yielded an average of twenty-three and a half 

completed assessments (23.5) for each of the five criteria (5) for each climate change 

adaptation option (96), forming 11,280 data points from this sample. Exactly half of the at-

large experiment climate change adaptation options received a full-set of twenty five 

completed assessments, while the remainder received between 16-24 assessments per 

climate change adaptation option. And based upon our estimate that 10% of respondents 

completed all 96 assessments (and thus on average each respondent completed 

approximately 10 assessments each), our data points represent input from approximately 

230 at-large people overall.  

 

Category Adaptation Option 

Agriculture 
Adjusting crop rotation schemes and planting and harvesting 

dates. 

Agriculture Self-sufficiency in production of roughage. 

Agriculture Water management and agriculture. 

Agriculture Choice of crop variety and genotype. 

Agriculture Development and growing of crops for biomass production. 

Agriculture Irrigation. 

Agriculture Floating greenhouses. 

Agriculture Limiting the import of timber. 

Agriculture Adjusting fishing quota. 

Agriculture Introduction of ecosystem management in fishery. 

Nature Afforestation and mix of tree species. 

Energy & Transport Use improved opportunities for generating wind energy. 

Agriculture Water storage on farmland. 

Agriculture Changes in farming systems. 

Agriculture Adaptation strategies to salinization of agricultural land. 

 



 

 

 

In respect to the actual assessments made by the at-large Crowd of non-experts, Table #2 

details a rank-ordering of the Top 15 Assessments made by this Crowd. In identical fashion 

to the directly preceding analysis, our statistical aggregation of the values from the 

assessment data used the median values from the data collected and then sequenced the 

Top 15 median values to create the rank-ordered list seen in Table #2.  

 

 

Table #2 - Top 15 Adaptation Options as Generated by At-Large Non-Expert Crowd 

 
 

7. Conclusion 

This work examines the use of crowdsourcing in policy design specifically by posing 

questions in regards to viability of non-expert crowds recruited through VLMs in aiding in 

policy design process. In our work we briefly reviewed policy design as one of the steps in 

the policy cycle and introduced and examined crowdsourcing approaches, focusing on VLMs 

Category Adaptation Option 

Energy & Transport 
Use improved opportunities for transport generating solar 

energy. 

Agriculture Water management and agriculture. 

Water Protection of vital infrastructure. 

Energy & Transport 
Change modes of transport and develop more intelligent 

infrastructure. 

Nature Implementation of effective agri-environmental schemes. 

Nature Educational programs. 

Energy & Transport Water management systems: revision of sewer system. 

Water 
More space for water: Regional water system improving river 

capacity. 

Water Creating public awareness. 

Energy & Transport Use improved opportunities for generating wind energy. 

Energy & Transport 
Design houses with good climate conditions (control)—‘low 

energy’. 

Housing & 
Infrastructure 

Water management systems: options for water storage and 
retention in or near city areas. 

Housing & 
Infrastructure 

Water management systems: emergency systems revision for 
tunnels and subways. 

Nature Integrated coastal zone management. 

Water Protection of vital objects.  

 



 

 

 

and their unique characteristics. Using a previously conducted expert assessment of climate 

change adaptation policy measures as a benchmark, we created pilot and final experiments 

with two sets of crowds; one local to the specific policy context and an at large crowd, and 

we present the details of our experimental process. Thereafter, we present the results from 

our experiments.  
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Appendix #1 - Deterministic Climate Change Scenario in The Netherlands by 20507 

 

 

                                                                                                  Estimated Change  

Temperature (◦C)                   +2  

Average summer precipitation (%)                 +2  

Average summer evaporation (%)        +8  

Average winter precipitation (%)        +12 

Sea level rise (cm)          +60  

 

 

 

Appendix #2 - Assessment Set & Criteria of Climate Change Adaptation Option  

 

 

Assessment Set     Criteria  

 

     Adaptation      - Importance 

       - Urgency 

       - No Regret 

       - Co-Benefit 

       - Mitigation Effect 

 

 

 

Appendix #3 - Sample of Policy Measures Used 

 

a) Change modes of transport and develop more intelligent infrastructure 

b) Improvement of healthcare for climate related diseases 

c) Make existing and new cities robust—avoid ‘heat islands’, provide for sufficient cooling 

capacity 

d) Artificial reefs along the coastline & development nature conservation values 

e) Relocation of fresh water intake points 

f) Adapted forms of building and construction 

g) Increasing genetic and species diversity in forests   

h) Eco-labelling and certification of fish 

i) Adjusting crop rotation schemes and planting and harvesting dates 

j) Floating greenhouses 

 

 

                                                
7
 Adapted from de Bruin et al (2009) and KNMI (2003). 



 

 

 

 

Appendix # 4 - Sample VLM Task Screenshots - M-Turk 

 

 
 

 


