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When Crowdsourcing Fails:
A Study of Expertise on
Crowdsourced Design Evaluation
Crowdsourced evaluation is a promising method of evaluating engineering design attrib-
utes that require human input. The challenge is to correctly estimate scores using a mas-
sive and diverse crowd, particularly when only a small subset of evaluators has the
expertise to give correct evaluations. Since averaging evaluations across all evaluators
will result in an inaccurate crowd evaluation, this paper benchmarks a crowd consensus
model that aims to identify experts such that their evaluations may be given more weight.
Simulation results indicate this crowd consensus model outperforms averaging when it
correctly identifies experts in the crowd, under the assumption that only experts have con-
sistent evaluations. However, empirical results from a real human crowd indicate this
assumption may not hold even on a simple engineering design evaluation task, as clusters
of consistently wrong evaluators are shown to exist along with the cluster of experts. This
suggests that both averaging evaluations and a crowd consensus model that relies only on
evaluations may not be adequate for engineering design tasks, accordingly calling for fur-
ther research into methods of finding experts within the crowd. [DOI: 10.1115/1.4029065]
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1 Introduction

Suppose we wish to evaluate a set of vehicle design concepts
with respect to attributes that have objective answers. For many of
these objective attributes, the “true score” may be determined
using detailed physics-based simulations, such as finite-element
analysis to evaluate crashworthiness or human mobility modeling
to evaluate ergonomics; however, for some objective attributes
such as maintainability, physics-based simulation is difficult or
not possible at all. Instead, these objective attributes require
human input for accurate evaluation.

To obtain evaluations over these objective attributes, one may
ask a number of specialists to evaluate the set of vehicle design
concepts. This assumes that the requisite expertise is imbued
within this group of specialists. Oftentimes though, the expertise
to make a comprehensive evaluation is instead scattered over the

“collective intelligence” of a much larger crowd of people with
diverse backgrounds [1].

Crowdsourced evaluation, or the delegation of an evaluation
task to a large and possibly unknown group of people through an
open call [2,3], is a promising approach to obtain such design
evaluations. Crowdsourced evaluation draws from the pioneering
works of online communities, such as Wikipedia, which have
shown that accuracy and comprehensiveness are possible in a
large crowdsourced setting requiring expertise. Although crowd-
sourcing has seen recent success in both academic studies [4] and
industry applications [5,6], there are limited reference materials
on the use of crowdsourced evaluation for engineering design.

In this study, we explore how the expertise of evaluators in the
crowd affects crowdsourced evaluation for engineering design,
where expertise is defined as the probability that an evaluator
gives an evaluation close to the design’s true score. The choice of
exploring expertise comes from an important lesson in managing
successful online community efforts, namely, the need to imple-
ment a systematic method of filtering “signal” from “noise” [7].
In a crowdsourced evaluation process, this manifests itself as a
need of screening good evaluations from bad evaluations, in par-
ticular when we are given a heterogeneous crowd made up of a
mixture of expert and nonexpert evaluators. In this case, averaging
evaluations from all participants with equal weight will reduce the
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accuracy of the crowd’s combined evaluation, also called the
crowd consensus [8], due to incorrect design evaluations from
low-expertise evaluators. Accordingly, a desirable goal is to iden-
tify the experts from the rest of the crowd, thus allowing a more
accurate crowd consensus by giving their evaluations more
weight.

With this goal in mind, we developed and benchmarked a
crowd consensus model of the crowdsourced evaluation process
using a Bayesian network that does not require prior knowledge
of the true scores of the designs or the expertise of each evaluator
in the crowd, yet still aims to estimate accurate design scores by
identifying the experts within the crowd and overweighing their
evaluations. This statistical model links the expertise of evaluators
in the crowd (i.e., knowledge or experience for the design being
evaluated), the evaluation difficulty of each design (e.g., a detailed
3D model provides more information than a 2D sketch and may
therefore be easier for an expert to evaluate accurately), and the
true score of each of the designs. It must be noted that this model
relies only on evaluations from the crowd; i.e., we do not explic-
itly measure expertise or difficulty; these variables are latent and
only implicitly inferred.

This crowd consensus model rests on the key assumption that
low-expertise evaluators are more likely to “guess,” and are thus
more likely to give random evaluations to designs. This assump-
tion is modeled by defining an evaluation as a random variable
centered at the true score of the design being evaluated [9]. A
graphical representation of the Bayesian network showing these
relationships is given in Fig. 1.

The performance of the Bayesian network crowd consensus
model versus the baseline method of averaging evaluations is
explored through two studies on the same “simple” engineering
design evaluation task of rating the strength of a load-bearing
bracket [10]. First, we created simulated crowds to generate evalu-
ations for a set of designs. These crowds had a homogeneous or
heterogeneous expertise distribution, representing two cases that
may be found in a human crowd. Second, we used a human crowd
recruited from the crowdsourcing platform Amazon Mechanical

Turk [11] and performed a crowdsourced evaluation with the
same crowd and task properties as in the simulation.

Our results show that we are not able to achieve a more accu-
rate design evaluation using the crowd consensus model than just
averaging all evaluations. Even for the simple engineering design
evaluation task in this study, the modeling assumption that low-
expertise evaluators guess more randomly was found not to hold.
Upon further investigation, it was found that there exist numerous
clusters of “consistently wrong” evaluators that wash out the
evaluations from the cluster of experts.

The main contribution of this paper is this finding; namely, that
crowdsourced evaluation can fail for even a simple engineering
design evaluation task due to the expertise distribution of the
crowd. Averaging already gives a low-accuracy estimate of design
scores due to the large number of low-expertise evaluators, and a
crowd consensus model relying only on information about evalua-
tions may not be able to find the experts in the crowd. This study
thus serves as justification for further research into methods of
finding experts within crowds, particularly when they are
shrouded by numerous clusters of consistently wrong nonexperts.

The remainder of this paper is organized as follows. Section 2
reviews relevant research within the engineering design, psycho-
metrics, and crowdsourcing literature, as well as research motiva-
tions from industry. Section 3 presents the Bayesian network
crowd consensus model and modeling assumptions. Section 4
details the statistical inference scheme of the Bayesian network.
Section 5 describes the simulated crowd study and results.
Section 6 describes the human crowd study and discusses its
results. We conclude in Sec. 7 with implications of this work and
opportunities for future research.

2 Related Work

Within the engineering design community, attention is being
drawn to the use of crowdsourcing for informing design decisions
[12]. Design preferences have been captured using crowdsourced
data on social media sites [13,14], as well as through more
directed crowdsourced elicitation using online surveys for prefer-
ence learning [15,16]. Our work differs from these works in that
we focus on design evaluation with an objective answer, thus
necessitating the estimation of evaluator expertise. Within design
evaluation for objective attributes, recent research has used
crowdsourcing for idea evaluation [17,18] and creativity evalua-
tion [19]. There also exists much research studying the effect of a
single decision maker versus crowd consensus decisions [20,21].
Our work is relevant to these research efforts in that we extend
previous findings of the potential limitations of using the entire
crowd for design evaluation.

Modeling the crowdsourced evaluation process exists in the lit-
erature extending at least back to Condorcet [22], with founda-
tional contributions from the psychometrics community under
item response theory [23] and Rasch models [24]. These models
have been applied to standardized tests, with several extensions to
include hierarchical structure [25] similar to the crowd consensus
model in this work. Additional foundational literature from econo-
metrics includes “mechanism design” such as prediction markets
and peer prediction [26,27]. For simplicity, we do not consider
important findings and approaches from this econometrics litera-
ture, instead assuming all evaluators give truthful evaluations and
are similarly incentivized by a fixed-sum payment.

More recently, the crowdsourcing community has developed
numerous crowd consensus models capturing the expertise of
evaluators in a crowdsourced evaluation process [8]. Many of
these models are qualitatively similar, with differences in the
treatment of evaluator bias [28–30], form of the likelihood func-
tion (e.g., ordinal, ranking, binary) [31], extent to which the true
score is known [32], and methods of scaling up to larger data sets
[30,33]. These models are most often applied to tasks that are
“human easy, computer hard,” such as image annotation [30,34],
planning and scheduling [35], and natural language processing

Fig. 1 Graphical representation of the Bayesian network
crowd consensus model. This model describes a crowd of eval-
uators making evaluations rpd that have error from the true
score Ud. Each evaluator has an expertise ap and each design
has an difficulty dd. The gray shading on the evaluation rpd

denotes that it is the only observed data for this model.
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[36,37]. Our study is also qualitatively similar to this literature,
but with a key difference on the application to an engineering
design task and the subsequent distribution of expertise in the
crowd.

Specifically, many of these recent crowdsourced evaluation
efforts are applied to tasks in which a majority of evaluators
within the crowd have the expertise to give an accurate evaluation
(e.g., does this image contain a “duck”?) [8]. As a result, either
averaging or taking a majority vote of the crowd’s evaluators is
often already quite accurate [38]. For these cases, expertise
may often represent the notion of task consistency and
attentiveness, with low-expertise evaluators being more spammy
or malicious [30].

In contrast, many engineering design tasks may require exper-
tise that only exists in a sparse minority of the crowd. This notion
is supported by prior industrial applications of crowdsourced
evaluation for engineering design. The Fiat Mio was a fully
crowdsourced vehicle design concept, yet the large number of
low-expertise submissions resulted in Fiat using its design and
engineering teams as a filter without the use of algorithmic assis-
tance [39]. Local Motors Incorporated developed the Rally
Fighter using a crowdsourced evaluation system similar to this
study, but heavily weighted evaluations of the internal design
team [40]. For these engineering design tasks, the notion of exper-
tise may instead represent specialized knowledge and heuristics
necessary to give an accurate evaluation.

3 A Bayesian Network Model for Crowd Consensus

We introduce a crowd consensus model that statistically aggre-
gates the evaluations from the set of evaluators using a Bayesian
network to estimate the true design scores. More formally, let the
crowdsourced evaluation contain D designs and P evaluators. We
denote the true score of design d as Ud � [0, 1], and the evaluation
from evaluator p for design d as R¼ {rpd}, where rpd � [0, 1].
Each design d has an evaluation difficulty dd, and each evaluator p
has an evaluation expertise ap.

Some significant assumptions we make are highlighted here:
(1) Evaluators evaluate designs without systematic biases, i.e.,
given infinite chances of evaluating one specific design, the aver-
age score of the evaluators will converge to the true score of that
design regardless of their expertise [9,41]; note that this assump-
tion also implies that no evaluators purposely give bad evalua-
tions; (2) Evaluations are independent, i.e., the evaluation on one
design from one evaluator will not be affected by the evaluation

made by that evaluator for any other design nor will be affected
by the evaluation given by a different evaluator. (3) The expertise
of evaluators is constant during the entire evaluation process. (4)
All evaluators are fully incentivized and do not exhibit fatigue.
Without loss of generality, we consider human evaluations real-
valued in the range of zero to one.

The evaluation rpd is modeled as a random variable following a
truncated Gaussian distribution around the true performance score
Ud as detailed by Eq. (1) and shown in Fig. 2(a)

rpd � Truncated� Gaussian Ud;r
2
pd

� �
; rpd 2 ½0; 1� (1)

The variance of density r2
pd is interpreted as the error an evalua-

tor makes when using his or her cognitive processes while evalu-
ating the design and is described by a random variable taking an
Inverse-Gamma distribution

r2
pd � Inverse� Gamma apd; bpd

� �
(2)

The average evaluation error for a given evaluator on a given
design is a function of the evaluator’s expertise ap and the
design’s difficulty dd. In addition, this function is sigmoidal to
capture the notion that there exists a threshold of necessary back-
ground knowledge to make an accurate evaluation. Figure 2(b)
illustrates this function. We set the first requirement on the evalua-
tor’s error random variable using the expectation operator E as
shown below

E r2
pd

h i
¼ 1

1þ ehðdd�apÞ�c
(3)

The random variables h and c are introduced as model parame-
ters to allow more flexibility in modeling evaluation tasks and are
assumed to be the same for all evaluators and designs: A high
value of the scale parameter h will sharply bisect the crowd into
good evaluators with negligible errors and bad evaluators that
evaluate almost randomly; the location parameter c captures eval-
uation losses intrinsic to the system, such as those stemming from
the human–computer interaction.

Next, the variance V of the evaluator error is considered con-
stant, capturing the notion that, while we hope the major variabili-
ty in the evaluation error to be captured by Eq. (3), other reasons
exist to spread this error, represented by constant C as shown
below

Fig. 2 (a) Low evaluation expertise (dashed) relative to the design evaluation difficulty
results in an almost uniform distribution of an evaluator’s evaluation response, while
high evaluation expertise (dotted) results in evaluators making evaluations closer to
the true score. (b) An evaluator’s evaluation error variance r2

pd as a function of that
evaluator’s expertise ap given some fixed design difficulty dd and crowd-level parameters
h and c.
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V r2
pd

h i
¼ C (4)

Following the requirements given by Eqs. (3) and (4), we repar-
ameterize the Inverse-Gamma of Eq. (2) to obtain in the following
equations:

apd ¼
1

C 1þ ehðdd�apÞ�c
� �2

þ 2 (5)

bpd ¼
1

ehðdd�apÞ�c

� �
1

Ce2hðdd�apÞ�2c
þ 1

� �
(6)

The hierarchical random variables of the evaluator’s evaluation
expertise ap and the design’s evaluation difficulty dd are both re-
stricted to the range [0,1]. We let their distributions be truncated

Gaussians with parameters la, r2
a, ld, r2

d set globally for all
evaluators and designs as shown in the following equations:

ap � Truncated� Gaussian la;r
2
a

� �
; ap 2 ½0; 1� (7)

dd � Truncated� Gaussian ld;r
2
d

� �
; dd 2 ½0; 1� (8)

The probability densities over h and c are assumed as Gaussian
with parameters lh; r

2
h; lc;r

2
c as shown in the following

equations:

h � Gaussian lh;r
2
h

� �
(9)

c � Gaussian lc;r
2
c

� �
(10)

Finally, by combining all random variables described in this
section, we obtain the joint probability density function as shown
below

p a;d;U;R; h; cð Þ ¼pðhÞpðcÞ
YP

p¼1

pðapÞ

�
YD
d¼1

pðrpdjap; dd; h; c;UdÞpðddÞpðUdÞ

(11)

Note that all hyperparameters are implicitly included.

4 Estimation and Inference of the Bayesian Network

The Bayesian network crowd consensus model is built upon the

following random variables: Evaluators’ expertises fapgP
p¼1,

designs’ difficulties fddgD
d¼1, true scores of designs fUdgD

d¼1, and

parameters h, c, la, r2
a, ld, r2

d . This section explains the settings
for inferring the random variables and estimating the parameters
using the observed evaluations of the evaluators
R ¼ frpdgp¼1;…;P;d¼1;…;D.

Two techniques are used in sequence. Maximum a posteriori
estimation is performed using Powell’s conjugate direction algo-
rithm [42], a derivative-free optimization method, to get initial
estimates of the parameters that maximize Eq. (11). These point
estimates are then used to initiate an adaptive Metropolis–Hast-
ings Markov Chain Monte Carlo (MCMC) algorithm [43–45] that
determines the estimates of all unknown parameters and infers
posterior distributions of the random variables. The posterior sam-
ple size of the single-chained MCMC simulation is set to 2� 105,
thinned by a factor of 2, with the first half discarded as burn-in.

5 Simulated Crowd Study

We now study how the expertise distribution of the crowd
affects the crowdsourced evaluation process using Monte Carlo
simulations. There are two main goals of this study. First, we
want to understand how crowds made up of different mixtures of
high and low-expertise evaluators affect the crowd’s combined
scores of designs and the subsequent evaluation error from the
true scores of the designs. Second, we want to understand the
performance differences between the Bayesian network and by
averaging. Specifically of interest are the conditions under which
the Bayesian network is able to find the subset of high-expertise
evaluators within the crowd so that it can give greater weight to
their responses.

There are two crowd expertise distribution cases we test, as
shown in Fig. 3. Case I is that of a homogeneous crowd, where all
evaluators making up the crowd have similar expertise. The varied
parameter in the homogenous case is the average expertise of the
crowd, thus testing the question: How well can a crowd perform if
no individual evaluator can evaluate correctly or, alternatively, if
every evaluator can evaluate correctly? Case II is that of a hetero-
geneous crowd, where the crowd is made up of a mixture of high
and low-expertise evaluators. In this case, we fix the average ex-
pertise of the crowd to be low, so that most evaluators cannot
evaluate designs correctly. Instead, the varied parameter in the
heterogeneous case is the variance of the crowd’s expertise distri-
bution. This tests the question: How well can a crowd perform as
a function of its proportion of high-expertise to low-expertise
evaluators?

The procedure for these studies is to use the Monte Carlo simu-
lation environment to: (1) generate a crowd made up of evaluators
with expertise drawn from the tested expertise distribution (Case I
or II), and a set of designs with true scores unknown to the crowd;
(2) simulate the evaluation process by generating a rating between

Fig. 3 Crowd expertise distributions for Cases I and II that test how the expertise of evalua-
tors within the crowd affect evaluation error for homogeneous and heterogeneous crowds,
respectively. Three possible sample crowds are shown for both cases.
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1 and 5 that each evaluator within the crowd gives to each design;
(3) combine the evaluator-level ratings into the crowd’s combined
score for each design using either the Bayesian network or by
averaging; and (4) calculate the evaluation error between the true
scores of the designs and the combined scores from either the
Bayesian network or by averaging.

The simulation setup for these studies consisted of 60 evalua-
tors per crowd, as well as eight designs with scores drawn uni-
formly from the range [0,1] and evaluation difficulties {dd} set at
0.5 for all designs. The evaluation process for each evaluator is to
rate all eight designs in the continuous interval [1,5] according to
a deterministic equation given by the right hand side of Eq. (3),
with the location parameter c set at 0 and the scale parameter h set
at 0.1. After the crowd’s combined scores are obtained, either by
the Bayesian network or by averaging, the evaluation error
between the combined scores Ûd and the true scores is calculated
using the mean-squared error (MSE) metric as shown below

MSE ¼ 1

D

XD

d¼1

Ûd � Ud

� �2
(12)

The results of Case I are shown in Fig. 4. Each data point repre-
sents a distinct simulated crowd with average expertise given on
the x-axis, and associated design evaluation error between the
overall estimated score and the true scores on the y-axis. All
crowds in Case I were generated using the same narrow crowd ex-
pertise variance ra¼ 0.1 to create homogeneous crowds. The
results show that if the average evaluator expertise is relatively
high, both averaging and the Bayesian network perform similarly
with small design evaluation error. In contrast, when the average
expertise is relatively low, neither averaging nor the Bayesian net-
work can estimate the true scores very well. Note that around an
average evaluator expertise of 0.4–0.7, the Bayesian network
performs marginally better than averaging.

This observation agrees with intuition. A group of evaluators
where “no one has the expertise” to evaluate a set of designs
should not collectively have the expertise to evaluate a set of
designs just by changing the relative weightings of evaluators and
their individual evaluation responses upon combination when
determining the crowd’s combined score. Similarly, a group of
evaluators where “everyone has the expertise” to evaluate a set of

designs should perform well regardless of the relative weighting
between evaluators. The key result for Case I is this: When the
crowd has a homogeneous distribution of evaluator expertise, it
does not significantly matter which weighting scheme one assigns
between various evaluators and their evaluations; the Bayesian
network and averaging will perform similarly to each other.

The results of Case II are shown in Fig. 5. Contrary to Case I,
distinct crowds represented by each data point have on average
the same expertise la¼ 0.2. Moving right along the x-axis
designates crowds with increasingly higher proportions of high-
expertise evaluators within the crowd. We observe that the Bayes-
ian network performs much better than averaging after a certain
point on the x-axis; the point where a sufficient number of high-
expertise evaluators is contained within the crowd. Under these
conditions, the Bayesian network identifies the small group of
experts from the less competent crowd and weighs their evalua-
tion more than the rest, thus leading to combined scores much
closer to the true scores of the designs. This observation is not
present when the crowd does not have the sufficient number of
high-expertise evaluators within the crowd. When this occurs, as
is shown on the left side of the x-axis, the situation of no one has
the expertise is recreated from Case I.

In summary, we created simulated crowds to test the influence
of crowd expertise on the crowdsourced evaluation process. Two
cases were tested, representing homogeneous and heterogeneous
expertise distributions. Under the modeling assumptions described
in Sec. 3, we find that: (1) when the crowd is homogeneous, it
does not matter what weighting scheme is used, as both averaging
and the Bayesian network give similar results; (2) when the crowd
is heterogeneous, the Bayesian network is able to output the
crowd’s combined score much closer to the true scores under the
condition that a sufficient number of “expert” evaluators exist
within the crowd.

6 Human Crowd Study

In this section, we test the performance of the Bayesian network
crowd consensus model as compared with averaging using an en-
gineering design evaluation task and a real human crowd. The
evaluation task was chosen to be a simple classic structural design
problem for a load-bearing bracket [10], in which evaluators are

Fig. 4 Case I: Design evaluation error from the averaging and
Bayesian network methods as a function of average evaluator
expertise for homogeneous crowds. This plot shows that, when
dealing with homogeneous crowds, aggregating the set of eval-
uations into the crowd’s consensus score only sees marginal
benefits from using the Bayesian network around 0.4–0.7 range
of evaluator expertise.

Fig. 5 Case II: Design evaluation error over a set of designs for
a mixed crowd with low average evaluation expertise. With
increasing crowd variance of expertise there is an increasingly
higher proportion of high-expertise evaluators present within
the crowd. This leads to a point where the Bayesian network is
able to identify the cluster of high-expertise evaluators, upon
which evaluation error drops to zero.
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asked to rate the capabilities of bracket designs to carry a vertical
load as shown in Fig. 6.

Participants: The human crowd consisted of 181 evaluators
recruited using the crowdsourcing platform Amazon Mechanical
Turk [11]. For the bracket designs, eight bracket topologies were
generated using the same amount of raw material. The deforma-
tion induced by tensile stress upon vertical loading of each bracket
was calculated in OptiStruct [46]. The strength of a bracket was
defined as the amount of deformation under a common load and
was subsequently scaled linearly between 1 and 5 as labeled in
Fig. 6. The scaled strength values were considered as the true
scores, which were later used to calculate evaluation errors from
the estimations from either the Bayesian network or averaging
methods.

Procedure: The evaluation process for each evaluator was as
follows: The eight bracket designs were first presented all together
to the evaluator, who was then asked to review these designs to
get an overall idea of their strengths. After at least 20 s, the eval-
uator was allowed to continue to the next stage where the designs
were presented sequentially and in random order. For each design,
the evaluator was asked to evaluate its strength using a rating
between 1 and 5, with 1 being “Very Weak” and 5 being “Very
Strong.” To gather these data, a website with a database backend
was set up that recorded when an evaluator gave an evaluation to
a particular bracket design [47].

Data analysis: A preprocessing step was carried out before the
data were fed into either the Bayesian network or averaging crowd
consensus methods. Specifically, since some evaluators would
give ratings all above three while some others tended to give rat-
ings all around three, all evaluations were linearly rescaled to a
range of 1–5. It should be noted that while this mapping ensures
that everyone gives “1s and 5s,” it does not help to remove nonlin-
ear biases in between an evaluator’s most extreme evaluations. To
calculate design evaluation error, the same MSE metric was used
as in the simulated crowd study and as given in Eq. (12).

6.1 Human Crowd Study Results. The Bayesian network
crowd consensus model did worse than averaging when estimat-
ing the true scores of the bracket designs as shown in Table 1.

According to the simulation results, the Bayesian network can
only do worse than averaging if it is not able to find the experts in
the crowd. This could happen under either of the following two
situations: (1) the modeling assumption made in Sec. 3 holds,
namely, that low-expertise evaluators are less consistent (more
random) in their evaluations, but there are just no high-expertise
evaluators; (2) the modeling assumption is violated, in that there
exist low-expertise evaluators consistently wrong in their

evaluations. In this situation, the Bayesian network crowd consen-
sus model would mistakenly identify evaluators as having high
expertise due to their consistency and overweigh their incorrect
evaluations.

Visualizing the crowd’s expertise distribution: We now show
that situation (2) above has occurred; namely, there are indeed
consistently wrong evaluators that exist in the human crowd. To
show this, we cluster the eight-dimensional human evaluation
data to find clusters of similar evaluators, and then flatten these
clustered data to two dimensions for visualization. This clustering
finds groups of evaluators who give consistent evaluation, regard-
less of whether such evaluations are correct or incorrect. In other
words, members of a cluster were consistent in their evaluations
not necessarily to the right or wrong answer, but consistent to
others in the cluster.

The clustering algorithm we used is density-based and uses the
Euclidean distance metric to identify clusters of evaluators who
gave similar evaluations [48]. This clustering method was chosen
as it can account for varying clustering sizes, as well as not neces-
sitating that every evaluator belongs to a cluster. The flattening
from eight dimensions to two dimensions was done using metric
multidimensional scaling.

We see in Fig. 7 that five clusters of similar evaluators were
found, while Table 2 gives the evaluation error of each cluster.
We find that the cyan cluster is made up of high-expertise expert
evaluators, as evidenced by their evaluation error. In contrast, the
other four clusters were consistently wrong in their evaluations.

This analysis suggests that finding expert evaluators through an
open call is possible even for a task like structural design, in
which expertise is sparsely distributed through the crowd. How-
ever, while the Bayesian network crowd consensus is a theoretical

Fig. 6 (a) Boundary conditions for bracket strength evaluation and (b) the set of all eight
bracket designs

Table 1 Mean-squared evaluation error and standard deviation
from entire human crowd using averaging and Bayesian net-
work estimation

Design evaluation error (std.)

Averaging 1.001 (N/A)
Bayesian network 1.728 (0.006)

Fig. 7 Clustering of evaluators based on how similar their
evaluations are across all eight designs. Each black or colored
point represents an individual evaluator, where colored points
represent evaluators who were similar to at least 3 other evalua-
tors, and black points represent evaluators who tended to eval-
uate more uniquely
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way to identify these evaluators, its application in reality is
limited by the fact that there exist other (more numerous) clusters
of evaluators who are just as consistent yet wrong in their
evaluations.

6.2 Followup to Human Crowd Study. For completeness of
the human crowd study, we conducted three followup experiments
to capture the differences between the simulated crowd assump-
tions and results and the human crowd results. The first followup
experiment augments the human crowd data with simulated
experts, in order to offset the consistently wrong evaluators with a
larger cluster of experts. The second followup experiment tests
the effect of removing the consistently wrong evaluators from the
human crowd study. The third followup experiment remains
entirely in simulation and shows that the existence of enough con-
sistently wrong evaluators will also cause the Bayesian network
crowd consensus to fail to find experts in simulation as well, thus
mimicking the results of the human study.

6.2.1 Human Crowd Augmented With Simulated Experts. We
show in Fig. 8 how the design evaluation error would be reduced
if extra expert evaluators, i.e., evaluators with evaluations exactly
the same as true scores, were collected in addition to the original
181 evaluators from the human study. Notice that the error should
be reduced monotonically as the number of experts increases.
However, the stochastic nature of the estimation process of a
Bayesian network could cause suboptimal estimations. Similar to
the simulations in Fig. 5, one can observe the phase-changing phe-
nomenon in the change of the design evaluation error. This phase
change represents when the Bayesian network is indeed able to
find the experts in the crowd. Notice that although adding ten
additional experts does not make a majority of the crowd as
expert, it is sufficient for the Bayesian network crowd consensus
model to locate the experts and subsequently overweigh their
evaluations.

6.2.2 Human Crowd With Consistently Wrong Evaluators
Removed. We address how removing the consistently wrong eval-
uators affects the crowd’s evaluation error, in which the consis-
tently wrong evaluators are those found by clustering as shown in
Fig. 7. As reference, averaging the evaluations of the entire crowd
results in a MSE of 1.001 as given earlier in Table 1.

Removing the consistently wrong evaluators resulted in a worse
evaluation error at 1.228 than averaging the entire crowd. This
finding suggests that either the consistently wrong evaluators are
not as wrong as the nonconsistent nonexperts (i.e., the humans
that were not clustered as represented black dots in Fig. 7) or that
nonexpert evaluation errors at the design level tend to cancel each
other out.

It is found that indeed evaluation errors are being canceled at
the design level. This is suggested by finding that the evaluation
error of only the nonconsistently wrong (black dots) is 1.339,
while the evaluation error of both the consistent and nonconsis-
tently wrong (i.e., all but the experts) is 1.060. Note that the non-
consistently wrong evaluators have an average evaluation error
lower than that of any of the consistently wrong evaluators.

This analysis suggests that it is not sufficient, at least as far as
this sample goes, to use the Bayesian network crowd consensus
model to identify consistently wrong evaluators and simply omit
them from the evaluation task. While their evaluations may
obscure identification of the experts, they may be useful as they
may be also canceling out errors from other evaluators.

6.2.3 Simulated Crowd With Consistently Wrong Evaluators.
In this scenario, we tested a set of simulations in which the crowd
contained two clusters of evaluators. One cluster, the experts, can
always evaluate correctly; the other cluster is almost the same,
except that evaluators in this cluster always rate one design con-
sistently wrong by 0.5. We vary the crowd proportion of consis-
tently wrong evaluators from 100% to 0% and calculate the
corresponding evaluation errors as shown in Fig. 9. While the
error from averaging changes linearly with respect to the propor-
tion, that from the Bayesian network takes only two phases. The
result mimics what we saw with the human study; the Bayesian
network simply considers one of the clusters as the experts based
on the cluster size and spread, regardless of whether the cluster is
consistently correct or consistently wrong.

7 Conclusion

Crowdsourcing is a promising method to evaluate engineering
design concepts that require human input, due to the possibility of
leveraging evaluation expertise distributed over a large number of

Table 2 Mean-squared evaluation errors from the five clusters
of similarly evaluators

Cluster color Design evaluation error

Blue 1.415
Cyan experts 0.544
Red 1.652
Green 2.203
Magenta 6.031

Fig. 8 Design evaluation error with respect to additional
experts

Fig. 9 Design evaluation error with respect to the proportion
of the expert group
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people. For engineering design tasks, a common characteristic of
typical crowdsourced design evaluation processes is that the
crowd is composed of a heterogeneous mixture of high and low-
expertise evaluators. Simply averaging all evaluations from the
crowd results in inaccurate crowd consensus scores for the set of
designs, due to the large number of low-expertise evaluators. Con-
sequently, a key challenge in such crowdsourced evaluation proc-
esses is to find the subset of expert evaluators in the crowd so that
their evaluations may be given more weight.

In this paper, we developed and benchmarked a crowd consen-
sus model in the form of a Bayesian network that aims to find the
expert evaluators and subsequently give their evaluations more
weight. The key modeling assumption for this crowd consensus
model is that low-expertise evaluators tend to guess, resulting in
more random evaluations than expert evaluators.

We tested, using both simulated crowds and a human crowd,
how the Bayesian network crowd consensus model performs com-
pared to averaging all evaluations for a simple engineering design
evaluation task. We showed in simulation that when assumptions
hold, the Bayesian network is able to find the experts in the crowd
and outperform averaging. However, the results of the human
crowd study show that we were not able to achieve a more accu-
rate design evaluation using the Bayesian network crowd consen-
sus model than just averaging all evaluations. It was found that
there were numerous clusters of consistently wrong evaluators in
the crowd, causing the Bayesian network to believe they were the
experts, and consequently overweighing their (wrong) evalua-
tions. These results suggest that crowd consensus models that only
observe evaluations may not be suitable for crowdsourced evalua-
tion tasks for engineering design, contrasting with many of the
recent successes from the crowdsourcing literature.

Crowdsourced evaluation can fail for even a simple engineering
design evaluation task due to the expertise distribution of the
crowd; averaging already gives a low-accuracy estimate of design
scores due to the large number of low-expertise evaluators, and
crowd consensus models relying only on evaluations may not be
able to find the experts in the crowd. Consequently, further
research is needed into practical methods to find experts when
they are only a small subset of the crowd as well as shrouded by
numerous clusters of consistent yet incorrect evaluators.

Promising avenues in this direction may be in extending crowd
consensus model to include relevant information to the engineer-
ing design evaluation task as has been done with item features
[49], evaluator confidence [50], evaluator behavioral measures
[51], and expertise assessed over longitudinal tasks [52]. Another
useful direction may be in analytic conditions for when experts in
the crowd may be found [53–56], possibly in the form of practical
questions or tests to run before setting up an entire crowdsourced
evaluation process. While this initial step displays potential chal-
lenges for crowdsourced evaluation for even simple engineering
design tasks, such extended crowd consensus models are likely to
benefit a multitude of research communities.
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