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Abstract. Passwords are still by far the most widely used form of user
authentication, for applications ranging from online banking or corporate
network access to storage encryption. Password guessing thus poses a
serious threat for a multitude of applications. Modern password hashes
are speci�cally designed to slow down guessing attacks. However, having
exact measures for the rate of password guessing against determined
attackers is non-trivial but important for evaluating the security for many
systems. Moreover, such information may be valuable for designing new
password hashes, such as in the ongoing password hashing competition
(PHC).
In this work, we investigate two popular password hashes, bcrypt and
scrypt, with respect to implementations on non-standard computing plat-
forms. Both functions were speci�cally designed to only allow slow-rate
password derivation and, thus, guessing rates. We develop a methodology
for fairly comparing di�erent implementations of password hashes, and
apply this methodology to our own implementation of scrypt on GPUs,
as well as existing implementations of bcrypt and scrypt on GPUs and
FPGAs.
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1 Introduction

Passwords are still the most widely used form of user authentication on the
Internet (and beyond), despite substantial e�ort to replace them. Thus, research
to improve their security is necessary. One potential risk with authentication in
general is that authentication data has to be stored on the login server, in a form
that enables the login server to test for correctness of the provided credentials.
The database of stored credentials is a high-pro�le target for an attacker, which
was illustrated in recent years by a substantial number of databases leaked by
attacks. Even worse, for storage encryption the encryption key, protected by the
password using a key derivation function (KDF), is stored on the same machine
as the encrypted data, and thus an even easier target. A leak of the password
database is a major concern not only because the credentials for that particular
site leak, and resetting all passwords for all users of a site in a short time span
requires a signi�cant e�ort. In addition, password re-use, i. e., using one password
for more than one site, which is a frequent phenomenon to reduce the cognitive



load of a user, causes a single leaked password to compromise a larger number
of accounts.

In order to mitigate the adverse e�ects of password leaks, passwords are
typically not stored in plain, but in hashed (and possibly salted) form, i. e., one
stores

(s, h) = (salt ,Hash(pwd , salt))

for a randomly chosen value salt . Such a hashed password can easily be checked
by recomputing the hash and comparing it to the stored value h. While a secure
hash function cannot be inverted, i. e., directly computing the password pwd
from (s, h) is infeasible in general, the mere fact that the server can verify the
password gives rise to a so-called o�ine guessing attack. Here, an attacker pro-
duces a large number of password candidates pwd1, pwd2, pwd3, . . ., and veri�es
each candidate as described before. User-chosen passwords are well-known to
be predictable on average [19, 37], so such an attack is likely to reveal a large
fraction of the stored passwords, unless special precautions are taken.

A widely used method to defend against o�ine guessing attacks is using hash
functions that are slow to evaluate. While cryptographic hash functions are de-
signed to be fast to compute, password hashes are deliberately slow, often using
iterated constructions to slow down an attacker. This, of course, also slows down
the legitimate server, but the attacker is typically more substantially a�ected
by the slow-down as he needs to evaluate the hash functions millions or bil-
lions times. Some well-known examples for password hashes are the classical de-
scrypt [24], which dates back to the 1970s, md5crypt, sha256crypt/sha512crypt,
PBKDF2 [18], bcrypt [31], and scrypt [30]. There is ongoing e�ort to design
stronger password hashes, e. g., the password hashing competition [29].

Currently lacking is a thorough understanding of the resistance of those pass-
word hashes against attacks using non-standard computing devices, in particu-
lar FPGAs and GPUs. Understanding these issues is, however, crucial to decide
which password hash should be used, and at what hardness settings.

In this work, we make several contributions towards this goal: �rst, we pro-
vide an implementation of scrypt on GPUs that supports arbitrary parameters,
which is substantially faster than existing implementations; second, we determine
�equivalent� parameter sets for password hashes to allow for a fair comparison;
third, based on the equivalent parameter sets, existing implementations, and our
implementation of scrypt, we draw a fair comparison between bcrypt and scrypt.
In summary, we �nd that for fast parameters both bcrypt and scrypt o�er about
the same level of security, while for slow parameters scrypt o�ers more security,
at the cost of increased memory consumption.

1.1 Related Work

Password security. Guessing attacks against passwords have a long history [2, 39,
22]. More recently, probabilistic context-free grammars [37] as well as Markov
models [25, 5] have been used with great success for password guessing. Most



password cracking tools implement some form of mangling rules, some also sup-
port some form of Markov models, e. g., John the Ripper (JtR) and hashcat. An
empirical study on the e�ectiveness of di�erent attacks including those based
on Markov models can be found in [7]. If no salt is used in the password hash,
rainbow-tables can be used to speed up the guessing step [15, 28] using precom-
putation. An implementation of rainbow-tables in hardware is studied in [23].

Closely related to the problem of password guessing is that of estimating the

strength of a password. In early systems, password cracking was used to �nd
weak passwords [24]. Since then, so called pro-active password checkers are used
to exclude weak passwords [2, 4]. However, most pro-active password checkers
use relatively simple rule-sets to determine password strength, which have been
shown to be a rather bad indicator of real-world password strength [36, 20, 6].
More recently, Schechter et al. [32] classi�ed password strength by counting
the number of times a certain password is present in the password database,
and Markov models have been shown to be a very good predictor of password
strength and can be implemented in a secure way [6].

Processing platforms for password cracking. Password cracking is widely used
on general-purpose CPUs, and cleverly optimized implementations can achieve
substantial speed-up compared to straight-forward implementations. Well-known
examples for such �general purpose tools� are John the Ripper [17], as well as
specialized tools such as TrueCrack [35] for TrueCrypt encrypted volumes. How-
ever, due to the versatility of their architecture, CPUs usually do not achieve an
optimal cost-performance ratio for a speci�c application.

Modern graphics cards (GPUs) have evolved into computation platforms for
universal computations. GPUs combine a large number of parallel processor
cores which allow highly parallel applications using programming models such
as OpenCL or CUDA. GPUs have proven very e�ective for password cracking,
demonstrated by tools such as the Lightning Hash Cracker by ElcomSoft [9] or
hashcat [33].

Special-purpose hardware usually provides signi�cant savings in terms of
costs and power consumption and at the same time provides a boost in perfor-
mance time. This makes special-purpose hardware very attractive for cryptanal-
ysis [13, 14, 10, 40]. With the goal of benchmarking a power-e�cient password
cracking approach, Malvoni et al. [21] provide several implementations of bcrypt
on low-power devices, including an FPGA implementation. Similarly, Wiemer
et al. [38] provide an FPGA implementation of bcrypt. In [8], the authors pro-
vided implementations of PBKDF2 using GPUs and an FPGA cluster, targeting
TrueCrypt.

1.2 Outline

We describe the scrypt algorithm and our GPU implementation in Section 2, and
brie�y review the bcrypt algorithm and recent work on implementing bcrypt on
FPGAs in Section 3. In Section 4 we present a framework for comparing password
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Fig. 1. Overview of scrypt. The data widths are given in bytes.

hashing functions and dedicated attacker platforms. We present the �nal results
and a discussion in Section 5.

2 The scrypt Password Hash

In this section we describe the scrypt password hash and present a GPU imple-
mentation of scrypt for guessing passwords in parallel.

2.1 The scrypt Construction

The scrypt password hash [30] is a construction for a password hash which specif-
ically counters attacks using custom hardware (the cost estimations speci�cally
target ASIC designs, but the results hold, in principle, against FPGAs as well).
The basic idea of the scrypt design is to force an attacker to use a large amount
of memory, which results in large area for the memory cells and thus high cost
of the ASICs.

Parameters. The scrypt algorithm takes as input a password pwd and a salt
salt , and is parameterized with the desired output length dklen and three cost
parameters: memory usage N , a block-size r, and a parallelism factor p. If p > 1
then basically p copies of the ROMix algorithm, which is described below, are
executed independently of each other; the overall memory usage for ROMix is
128 · r ·N bytes. The �nal output is a hash value h of size dklen bytes.

Overall structure. The overall structure of scrypt consists of three main steps
(see Figure 1).



Algorithm 2.1: ROMix

Data: B, r, N
Result: B′

1 X ← B;
2 for i← 0 to N − 1 do
3 V [i]← X;
4 X ← BlockMix(X);

5 end

6 for i← 0 to N − 1 do
7 j ← Integerify(X) mod N ;
8 X ← BlockMix(X ⊕ V [j]);

9 end

10 B′ ← X;

(i) Initially, scrypt applies the PBKDF2 password hash [18] to the password
and the salt, with an iteration count of 1, using HMAC-SHA-256 as MAC
function, and producing 128 · p · r bytes of output. PBKDF2 is used to
distribute the entropy from the password and salt and expand the input
length, and presumably as a fail-safe mechanism to ensure the onewayness
of the overall construction.

(ii) The output of this initial step is split into p chunks of 128 · r bytes, and
each chunk is fed into one of p parallel copies of the ROMix algorithm,
which is the core part of the scrypt construction and described below.

(iii) Each invocation of the ROMix algorithm yields 128 · r bytes of data, which
are concatenated and fed into another instance of PBKDF2, together with
the password, an iteration count of 1, and using HMAC-SHA-256, which
�nally produces the desired output of length dklen.

ROMix. The ROMix algorithm is the core of the construction. It operates on
blocks of size 128 · r bytes, and allocates an array V of N blocks as the main
data structure. ROMix �rst �lls the array V with pseudo-random data, and then
pseudo-randomly accesses the data in the array to ensure the attacker is actually
storing the data.
(i) First, ROMix �lls the array V by repeatedly calling BlockMix which is

basically a random permutation derived from the Salsa20/8 hash function
(see below). The current state X is initialized with the input bytes (derived
from the output of PBKDF2). Then, successively, BlockMix is applied to
the state and the result written to successive array locations. The pseudo-
code is shown in Algorithm 2.1 from line 2 to 5.

(ii) Second, the stored memory is accessed in a pseudo-random fashion in an
attempt to ensure that all memory cells are stored. The initial state X is
the �nal state of the previous step. The current state is interpreted as an
index pointing to an element in the array V , that target value is XORed to
the current state, and H is applied to form the next state. The pseudo-code
is shown in Algorithm 2.1 from line 6 to 9



BlockMix. The BlockMix construction operates on 2 · r blocks of size 64 bytes
each. It resembles the CBC mode of operation, with a �nal permutation of the
block order. Its main use is apparently to widen the block size from the �xed 64
bytes of Salsa20/8 to arbitrary width as required by the ROMix algorithm.

Recommended parameter values. Two sets of parameter choices are given [30] for
typical use cases. For storage encryption on a local machine Percival proposes
N = 220, r = 8, p = 1, which uses 1024 MB of memory. For remote server login he
proposes N = 214, r = 8, p = 1, which uses 16 MB. Android since version 4.4 uses
scrypt for storage encryption [11], with parameters (N, r, p) = (215, 3, 1) [34].

2.2 GPU Programming

Over the years, GPUs have changed from mere graphic processors to general
purpose processing units, o�ering programming interfaces such as CUDA [27]
for cards manufactured by NVIDIA.

GPUs execute code in so called kernels, which are functions that are executed
by many threads in parallel. Each thread is member of a block of threads. All
threads within a block have access to the same shared memory, which allows
communication and synchronization between threads. During execution, blocks
are assigned to Streaming Multiprocessors (SMs). An SM then schedules its
pending blocks in chunks of 32 threads, called a warp, to its hardware, where each
thread within a warp executes the same instruction. When threads in the same
warp execute di�erent instructions they are scheduled one after another (thread
divergence). When threads are scheduled for high-latency memory instructions,
the scheduler will execute additional warps while waiting for the memory access
to �nish, thus to a certain extent hiding the slow memory access.

Each thread has private registers and local memory which is, for example,
used for register spilling. Threads from the same block can access the fast per-
block shared memory, which can be used for inter-thread communication. All
threads can access global memory, which is by far the largest memory, but also
the slowest. There are some specialized memory regions, constant memory and
texture memory, which are fast for speci�c access patterns.

NVIDIA's GTX 480 GPU [26] is a consumer-grade GPU which o�ers rea-
sonable performance at an a�ordable price. It entered market in 2010 at the
price of 499 dollars. A GTX 480 consists of 15 SMs with 32 computing cores
each, i. e., the architecture provides 480 cores within a single GPU. Memory
bandwidth is 177.4 GB/s. The cores are running at 1401 MHz and can reach a
single-precision �oating point performance (Peak) of up to 1345 GFLOPS. (For
comparison: Intel's recent Core i7 980 CPUs running at 3.6 GHz are listed at 86
GFLOPS [16].) The GTX 480 o�ers 1536 MB of global memory.

2.3 Implementing scrypt on CUDA

Our implementation performs a brute-force password search over a con�gurable
character set. The implementation is fully on the GPU, the CPU is only respon-
sible for enumerating the passwords, calling the GPU kernels, and comparing



the �nal results.(Parts of the implementation are inspired by the cudaMiner [3],
a miner for the litecoin cryptocurrency, which uses scrypt with very low cost
parameters (N, r, p) = (1024, 1, 1) as proof-of-work.)

The CPU keeps track of the current progress and calls a new kernel with a
starting point in the space of all passwords. It starts as many threads in parallel
as are allowed by the available global memory, but always requires the number
of threads to be a multiple of 32, as we are running 32 threads per warp. If the
parameter p is greater than one, then those blocks will be executed one after
another, which does not increase memory usage. In the remainder of the section
we give some details about the GPU implementation.

PBKDF2. The implementation of PBKDF2 is rather straightforward. The iter-
ation count of c = 1 is hard-coded. Overall, the operation is not time-critical.

BlockMix. The BlockMix operation operates on a state of 2 · r words of size 64
bytes each, thus 128 · r bytes in total, which are kept in the registers. For an
e�cient implementation of the mixing layer, in addition to the array holding
the data, we implement an array with pointers that serve as index for the data;
this way the mixing layer can be implemented by copying pointers (4 bytes)
instead of blocks of data (64 bytes). The Salsa20/8 implementation follows the
original proposal [1] including the optimization to eliminate the transpositions
by alternatingly processing rows and columns.

ROMix. The implementation of ROMix has to take special care of the memory
hierarchy in order to utilize the GPUs potential. The main concern is maximiz-
ing memory throughput. Global memory can be accessed in chunks of 32, 64, or
128 bytes, which must be aligned to a multiple of their size (naturally aligned).
However, one thread can access a word of at most 16 bytes, so memory through-
put is maximized when several threads access contiguous and aligned words;
then memory access is called coalesced. Therefore, reading one block (64 bytes)
is distributed across four threads reading words of 16 bytes, and, as each of the
four threads needs to access a full block after all, they will cooperate four times
to load all four blocks. Data is �rst read to shared memory by the cooperating
threads, then copied to the registers by each thread individually.

Writing data to global memory follows the same rules. The data is �rst copied
by the individual threads from registers to shared memory and then written to
global memory by cooperating threads in an aligned and coalesced fashion.

Time-memory trade-o�. Our implementation also provides the possibility to
use a time-memory trade-o�. By just storing every t-th data segment generated
by the initial BlockMix iterations, only 1/t of the original amount of memory is
needed. In return, every time a segment that was not stored is needed, it must be
recomputed from the nearest previous segment. If t is increased, the probability
of such a recomputation rises. So does the time needed for a recomputation since
there are on average more iterations to recompute.



Algorithm 3.1: bcrypt

Input: cost, salt, pwd
Output: hash

1 state← EksBlow�shSetup(cost, salt, pwd);
2 ctext← �OrpheanBeholderScryDoubt�;
3 Repeat (64) begin
4 ctext← EncryptECB(state, ctext);
5 end

6 return Concatenate(cost, salt, ctext);

Algorithm 3.2: EksBlow�shSetup

Input: cost, salt, pwd
Output: state

1 state← InitState();
2 state← ExpandKey(state, salt, pwd);
3 Repeat (2cost) begin
4 state← ExpandKey(state, 0, salt);
5 state← ExpandKey(state, 0, pwd);

6 end

7 return state;

3 The bcrypt Password Hash

The second password hash we consider is the bcrypt hash function.

3.1 The bcrypt Construction

Provos and Mazières published the bcrypt hash function [31] in 1999, which, at
its core, is a cost-parameterized, modi�ed version of the blow�sh algorithm. The
key concepts are a tunable cost parameter and a constantly modi�ed moderately
large (4 KB) block of memory. The bcrypt password hash is used as the default
password hash in OpenBSD since version 2.1 [31]. Additionally, it is the default
password hash in current versions of Ruby on Rails and PHP.

Parameters. The bcrypt algorithm uses the input parameters cost, salt, and key.
The number of executed loop iterations is exponential in the cost parameter,
cf. Algorithm 3.2. The algorithm uses a 128-bit salt to derive a 192-bit password
hash from a key of up to 56 bytes.

Design. The algorithm is structured in two phases. First, EksBlowfishSetup
initializes the internal state. Afterwards, Algorithm 3.1 repeatedly encrypts a
magic value using this state. The resulting ciphertext is then concatenated with
the cost and salt and returned as the hash. While the encryption itself is as
e�cient as the original Blow�sh encryption, most of the time is spent in the
EksBlowfishSetup algorithm.



The EncryptECB encryption is e�ectively a blow�sh encryption. Within its
standard 16-round Feistel network, the S-boxes and subkeys are determined by
the current state and the plaintext is encrypted in 64-bit blocks.

The EksBlowfishSetup algorithm is a modi�ed version of the blow�sh key
schedule. It computes a state, which consists of 18 32-bit subkeys and four S-
boxes � each 256 × 32-bit in size � which are later used in the encryption process.
The state is initially �lled with the digits of π and a modi�ed version of the blow-
�sh keyschedule is performed. After xoring the key to the subkeys, it successively
uses the current state as S-boxes and subkeys to encrypt blocks of the current
state and update the state. In this process, the function ExpandKey computes 521
blow�sh encryptions. If the salt is �xed to zero, one call to ExpandKey resembles
the standard blow�sh key schedule.

Recommended parameter values. Provos and Mazières originally proposed to
use a cost parameter of six for normal user passwords, while using eight for
administrator passwords.

3.2 Implementations of bcrypt on FPGAs

While general-purpose hardware, i. e., CPUs, o�ers a wide variety of instruc-
tions for all kinds of programs and algorithms, usually, only a few are important
for a speci�c task. More importantly, the generic structure and design might
impose restrictions and become cumbersome, i. e., when registers are too small
or memory access times becomes a bottleneck. Recon�gurable hardware like
Field-Programmable Gate Arrays (FPGAs) and special-purpose hardware like
Application-Speci�c Integrated Circuits (ASICs) are more specialized and dedi-
cated to a single task. An FPGA consists of a large area of programmable logic
resources (the fabric), e. g., lookup tables, shift registers, multiplexers and stor-
age elements, and a �xed amount of dedicated hardware modules, e. g., memory
cores (BRAM), digital signal processing units, or even PowerPCs, and can be
specialized for a given task.

Recently, two groups presented implementations of bcrypt on FPGAs. The
latest work is by Wiemer et al. [38], who present an implementation of bcrypt
on Xilinx FPGAs from the low-power consumption and low cost segment. Their
platform is the zedboard, more precisely the Zynq-7000 XC7Z020 FPGA. The
Zynq-7000 persists mainly of a dual-core ARM Cortex A9 CPU and an Artix-7.
The zedboard allows easy access to the logic inside the FPGA fabric via direct
memory access and provides several interfaces, e. g., AXI4, AXI4-Stream, AXI4-
Lite or Xillybus. These cores come with drivers for embedded Linux kernels and
thus o�er an easy way of accessing custom logic from a higher abstraction layer.
Their design has a LUT consumption of 2, 777 LUTs per (quad-)core and uses
13 BRAMs. Including a simple logic for generating password candidates for a
brute-force guessing attack, they were able to �t 10 quad-core designs on a single
FPGA, which runs at a maximum clock frequency of 100 MHz. They reported
6, 511 hashes per second for a cost parameter of 5.



The other work by Malvoni et al. [21] reported a rate of 4571 passwords per
second for a cost parameter of 5 on the zedboard. Due to unstable behavior,
they could not fully implement there design idea of 56 bcrypt instance and had
to reduce this number to 28. Therefore, the simulated their design on the larger
Zynq-7045 and reported 7044 passwords per second as the expected result for a
stable behavior. Additionally, they reported a theoretical rate of 8112 passwords
per second which they derived from the performance for a cost parameter of 12.

4 Methodology

Next, we present the methodology that we use to compare di�erent algorithms
on di�erent platforms.

4.1 Basic Idea

In this work we consider o�ine guessing attacks, and consequently the hashrate,
i. e., how fast an attacker can verify its password guesses, is the critical factor.
The e�ect of a password hash is to slow down the attacker's veri�cation of a
password guess. Slower password hashes will usually slow down both the (honest)
veri�cation of a password, as well as the attacker. However, an attacker is not
bound to use the same implementation as the (honest) veri�cation server, and so
he may utilize optimizations that the legitimate veri�er is not able to implement;
in particular the adversary can use di�erent hardware platforms much more
easily than the veri�cation server.

Thus, it is important to consider the ratio between the following two run-
times: �rst, the runtime of the normal (optimized for server use) implementation
on typical server CPUs, and second, the runtime for a password on an attacker's
implementation on comparable hardware of his choice. Here, the defender chooses
the algorithm and parameters to be used, while the attacker can choose a hard-
ware platform and has certain optimization techniques that the defender cannot
use. As we want to compare di�erent password hashing algorithms attacked on
di�erent platforms, we need to derive reasonably equivalent parameters for the
di�erent password hashes. Thus, we start by measuring the runtime of the al-
gorithms on di�erent PCs � which di�er in the amount of processors as well as
architecture and available memory � and derive comparable algorithm-parameter
pairs.

4.2 Derivation of Equivalent Parameters

To determine the �equivalent� parameter sets for the di�erent schemes, we run a
series of tests on di�erent CPUs and compare runtimes. We use implementations
that target password checking by legitimate servers (i. e., that check one pass-
word at a time). Thus, we call two parameter sets of two algorithms �equivalent�
if the legitimate server that checks the passwords needs the same runtime to do
so in both cases.



We used the following implementations: for PBKDF2, we used the imple-
mentation in the OpenSSL library calling PKCS5_PBKDF2_HMAC() with SHA512.
For bcrypt, we used a version available from the Openwall website (http://
www.openwall.com/crypt/), which was compiled on the target system gcc and
compiler �ags -O3 -fomit-frame-pointer -funroll-loops. For scrypt, we use
our own implementation in C, as the original implementation is packaged into a
larger project. The runtimes were comparable to those published by Percival [30].

Table 8 in Appendix B lists the platforms we used for the parameter deriva-
tion. We utilized di�erent CPUs, with an emphasis on server CPUs, and mea-
sured runtimes for each of them. Appendix B gives the full measurement results.
As there is no single system we can optimize for but are interested in general
statements, we take the average runtime over all CPUs we tested. Note that the
runtimes were, despite the wide variance of CPUs, grouped together relatively
closely, the worst-case being a factor of two between the fastest and the slowest
CPU, and in general much lower.

To investigate reasonable parameters and their resulting runtimes, one must
ask for the actual size of parameters used in real-world applications. First, we
need to note the this strongly depends on the application scenario. In an inter-
active login scenario the server must be able to quickly response to the user who
tries to authenticate with a password. The situation is di�erent if we consider
key derivation for storage encryption, where longer delays are acceptable. (But
note that the delay time is not the only bound for a practical implementation.
Also extensive memory usage may hinder a server from choosing according pa-
rameters.) In light of these di�erences in the security requirements for password
hashing, we make a comparison across a wide range of parameters and desired
runtimes.

We give four classes of parameters, for targeted runtimes of (approximately)
1ms, 10ms, 100ms, 1000ms. Percival [30] states 100 ms as an upper bound on
the delay for interactive login. For storage encryption, the acceptable runtime
is higher and may extend slightly higher than 1000ms. But note that the pa-
rameters used for scrypt in Android since version 4.4 [11] for storage encryption
(namely (N, r, p) = (215, 3, 1) [34]) yields moderate running times (around 100ms
on server CPUs, but higher on typical mobile devices).

Both bcrypt and scrypt o�er a relatively coarse control over the runtime (in-
crementing the hardness parameter by one approximately doubles the execution
time), thus no parameter will match exactly the target time. Therefore, we in-
terpolate the parameters from the measured values, to more accurately model
the desired runtimes and making the comparison fair. This means we have to
interpolate the runtimes for the attacking implementations in the same way.

The (interpolated) equivalent parameters are listed in Table 1, the detailed
measurements are listen in Table 9, 10, and 11 in Appendix B.



Algorithm (Parameter) Target (CPU) runtime
1ms 10ms 100ms 1000ms

PBKDF2 (Iteration count) 313 3 138 31 347 313 925
bcrypt (Cost) 3.69 7.03 10.3 13.6
scrypt (log N (r=8, p=1)) 6.93 10.3 13.7 16.9

Table 1. �Equivalent� parameters for several target runtimes for PBKDF2, bcrypt,
and scrypt.

.

4.3 Comparing Di�erent Platforms

For comparing the ratio between the runtime of the legitimate server and the
attacker, we also need a method to compare attacks using di�erent hardware
platforms.

An attack scales linearly with invested resources, mainly cost of the equip-
ment and energy consumption, and thus we have to take their in�uence into
account. (In addition, one can consider development cost, but here we will as-
sume that implementations are already available. While GPU programming is
quite similar to CPU programming and thus generally quicker, code develop-
ment for FPGAs is substantially di�erent and usually requires more time, and
thus cost.) This leads to a time-cost trade-o�, which is a�ected by the amount
of devices the attacker uses in parallel to increase the hashrate, the costs per
device and the power costs.

Generally speaking, equipment cost is in favor of the graphic cards, as GPUs
are a consumer product that is sold in large quantities. Also, older versions
usually receive a discount, making them more cost-e�ective. Interestingly, FPGA
vendors use a di�erent strategy: with the release of a new product line, the price
of the old family stays roughly unchanged, while the new version is o�ered with a
small discount to make the consumers switch away from the abandoned hardware
platform. In terms of power consumption, recon�gurable hardware is by far more
e�ective than GPUs. We will consider equipment cost and energy consumption
for the di�erent devices when comparing those implementations.

5 Results

Finally, we present and compare the hash rates of di�erent implementations.

5.1 Comparing with oclHashcat

Before giving a more detailed comparison of di�erent platforms, we start with an
evaluation of our implementation of scrypt (given in Section 2.3) with existing
implementations of scrypt, in particular with the oclHashcat [33] implementa-
tion. The scrypt algorithm is supported by oclHashcat starting with version
1.30, released in August 2014. We used the latest version at the time of writing,



(212, 8, 1) (212, 4, 1) (212, 1, 1) (217, 8, 1) (217, 4, 1) (217, 1, 1)

oclHashcat v1.31 19.86 72.58 280.38 0.10 0.26 1.31
Our implementation 287.61 1171.82 27748.27 0.38 2.15 83.08

Table 2. Selected scrypt hashrates from oclHashcat and our GPU implementation.

oclHashcat v1.31. To the best of our knowledge, oclHashcat is the only imple-
mentation of scrypt on GPUs allowing for a full variable choice of parameters.
The litecoin miner cudaMiner [3], as well as other mining software we are aware
of, only implement �xed parameter values (in particular (N, r, p) = (1024, 1, 1)
which are the standard litecoin parameters), or partially �xed parameter val-
ues (in particular (N, r, p) = (N, 1, 1) which are the parameters for some other
scrypt-based altcoins). These constraints allow for deeper optimization tech-
niques.

Both our implementation as well as oclHashcat run on a single NVIDIA
Geforce GTX 480 card. Selected hashrates are listed in Table 2, more com-
prehensive measurements can be found in Appendix A. We can see that our
implementation outperforms oclHashcat by a factor of 10 to 100 for moderate
values of N < 214, which drops to approximately 4 for higher N ≈ 217 and r = 8.
We cannot investigate why oclHashcat is slower, as it is closed source software.

5.2 Measuring Hashrates

We use the following platforms in the comparison:

� Our GPU-based scrypt implementation is run on an NVIDIA Geforce GTX
480. Prices for GPUs have a substantial variability over time, being in�u-
enced by competing products, customer demand and releases of newer cards.
The GTX 480 was released at a price of $499 in the �rst quarter of 2010
and dropped to around $310 in the third quarter of 2011. For the subsequent
discussion, we estimate a reasonable price at $350. We assume an attacker
mounts three graphics cards on a single motherboard, a setup which was
empirically found to o�er a good balance [12]. A suitable motherboard is
estimated at $200, and a suitable 1600W power supply we estimate at $300.
Overall, a machine with 3 GPUs will cost approx. $1550, and the average
price per GPU (including peripherals) is approx. $517. The GTX 480 has
been benchmarked with up to 430W under full load, even though the TDP
is given as 250W only.

� The same setup was used to measure the speed of oclHashcat's implemen-
tation of bcrypt on GPUs.

� The bcrypt implementation from [38] runs on the zedboard, cf. Section 3.
The zedboard is currently available for approx. $319, and has a power con-
sumption of 4.2W.

Table 3 shows the results of the implementations for the derived parameter
sets. We can see a couple of interesting points already from this basic data.



Target (CPU) runtime
1ms 10ms 100ms 1000ms

bcrypt
� zedboard 9 230 H/s 916.25 H/s 98.77 H/s 9.93 H/s
� GTX 480 2 868 H/s 319.37 H/s 33.73 H/s 2.71 H/s

scrypt
� GTX 480 42 650 H/s 2 333 H/s 49.06 H/s 0.37 H/s

(t=1) (t=2) (t=8) (t=4)

Table 3. Hashrates of attacking implementations.

Target (CPU) runtime
HW cost 1ms 10ms 100ms 1000ms

bcrypt
� zedboard $319 28.93 H/$s 2.87 H/$s 0.31 H/$s 0.03 H/$s
� GTX 480 $517 5.55 H/$s 0.62 H/$s 0.07 H/$s 0.01 H/$s

scrypt
� GTX 480 $517 82.50 H/$s 4.51 H/$s 0.09 H/$s 0.00 H/$s

(t=1) (t=2) (t=8) (t=4)

Table 4. Hashes per dollar-second for attacking implementations.

Target (CPU) runtime
Energy 1ms 10ms 100ms 1000ms

bcrypt
� zedboard 4.2 W 2198 H/Ws 218.15 H/Ws 23.52 H/Ws 2.36 H/Ws
� GTX 480 430 W 6.67 H/Ws 0.74 H/Ws 0.08 H/Ws 0.01 H/Ws

scrypt
� GTX 480 430 W 99.19 H/Ws 5.43 H/Ws 0.11 H/Ws 0.00 H/Ws

(t=1) (t=2) (t=8) (t=4)

Table 5. Hashes per watt-second for attacking implementations.

Cost Target (CPU) runtime
HW Energy 1ms 10ms 100ms 1000ms

bcrypt
� zedboard $319 $7.41 28.3 H/$s 2.81 H/$s 0.303 H/$s 0.0304 H/$s
� GTX 480 $517 $759 2.25 H/$s 0.250 H/$s 0.0264 H/$s 0.00212 H/$s

scrypt
� GTX 480 $517 $759 33.4 H/$s 1.83 H/$s 0.0384 H/$s 0.000287 H/$s

(t=1) (t=2) (t=8) (t=4)

Table 6. Hashes per dollar-second taking into account total cost for two years.



First, we see that bcrypt is faster on the zedboard than it is on a GTX 480,
despite the latter being more expensive and more energy consuming. This is
a common observation, that specialized hardware implementations are faster
and more e�cient. Second, our scrypt implementation scales reasonably well
between the parameter classes for 1ms and 100ms, but then the pressure from
memory consumption becomes too large and speed drops substantially. Also,
as expected, with increasing runtime (and thus memory consumption) higher
trade-o� parameters become optimal, as they trade memory consumption for
computational load (except for the highest class of 1000ms). Third, even though
the hashrates for di�erent platforms are not directly comparable, we can already
see that, while the hashrates for bcrypt scale almost linearly with the CPU
runtime, scrypt scales much worse, which is caused by the increased memory
consumption.

5.3 Comparison Taking Cost into Account

The comparison in the previous section has the advantage that, by using equiv-
alent parameters for the di�erent password hashes, we obtain a fair comparison
between the di�erent password hashes. However, results from di�erent hardware
platforms, most notably GPUs and FPGAs, are still hardly comparable, as both
have fundamentally di�erent characteristics.

There are two main parameters that are di�erent for the two di�erent plat-
forms: �rst, hardware cost is di�erent. On the one hand, most GPUs are con-
sumer products and are sold in huge quantities, while FPGA boards that are
easily usable by consumers are a niche product. On the other hand, GPUs are
equipped with additional units that are irrelevant for our speci�c application,
and FPGAs can fully be con�gured to the task at hand. Second, the energy cost
is fundamentally di�erent. FPGA designs only implement the logic required
to compute the desired functionality, which means that most overhead can be
avoided. This results in a decreased number of switching logic gates and thus
reduced power consumption. There are other factors one could consider, e.g, de-
velopment cost, but in this discussion we will concentrate on energy cost and
hardware cost.

Table 4 shows the results taking into account the hardware cost of the in-
dividual devices, as estimated in the previous section. Data is given in hashes
per second and dollar (H/$s). What we observe is that the in�uence of the price
is smaller than we expected, as the prices for a GPU including (shared) host
PC and an FPGA that sits on a development board are quite similar. Note here
that the devices used are one example only, and by using other GPUs or FP-
GAs the prices are somewhat variable. Also, the price of a development board
such as the zedboard is substantially higher than a single FPGA only, but note
that an FPGA always will need some additional hardware to facilitate its op-
eration, e. g., to ensure network connectivity. While all these prices come with
some uncertainty, the overall picture of the comparison should be quite reliable.

Table 5 shows the results taking into account the energy costs of the di�erent
architectures. We listed the approximate power consumption of the GTX 480 and



the zedboard as 430 Watt and 4.2 Watt, respectively, which already illustrates
the fundamental di�erence between the two. Note that, again, these estimates
are somewhat variable and depend on the speci�c FPGA and GPU used, as well
as the exact load put on the device. What we see is that the zedboard is clearly
superior to the GTX 480 in this metric due to the signi�cantly lower power
consumption.

Finally, we aim to bring these di�erent results together and determine a total
cost, combining the energy and hardware cost for a duration of two years. We
estimate energy cost at a price of 10.08 cents per kWh (average retail price of
electricity in the United States in 2013, according to the U.S. Energy Information
Administration1). The results are shown in Table 6. Basically what this table
shows is that scrypt can be attacked rather e�ciently for low parameters with the
GTX 480. The attack is even stronger than the bcrypt attack with the zedboard.
But for higher parameters the FPGA attack on bcrypt is more e�cient than the
GPU attack on scrypt.

Finally, we can say that we were surprised by the fast operation of scrypt
on GPUs for moderate parameters. In scenarios where FPGA-based crackers
are unavailable (e. g., for the casual password cracker), or for applications where
power cost is not a critical factor, bcrypt is more resistant to password cracking
for parameters up to the 100ms class. When we additionally consider FPGA-
based attacks, the picture changes, as bcrypt can be computed quite e�ciently
on FPGAs, in particular in terms of energy cost. Except for low parameters
from the 1ms class (where GPUs against scrypt are more e�cient than FPGAs
against bcrypt in terms of hardware cost as well as total cost for two years),
scrypt is harder to attack, based on the implementations we are considering.
This advantage is almost exclusively caused by the energy cost (energy cost
for a single GTX 480 is approximately a factor 100 higher than for a single
zedboard).

6 Conclusion

In this work we have provided a methodology for comparing di�erent password
hashes on varying platforms. We have applied this methodology to bcrypt and
scrypt implementations on GPUs and FPGAs, including our own implemen-
tation of scrypt on GPUs, which may be of independent interest. Taking into
account all the attacking implementations we have considered, bcrypt and scrypt
o�er comparable strength for smaller parameters (that take about 1ms to 10ms
on the defenders side), while scrypt is stronger for larger parameters.
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A Full Runtime Listings for hashcat

(211, 8, 1) (212, 8, 1) (213, 8, 1) (214, 8, 1) (215, 8, 1) (216, 8, 1) (217, 8, 1)

oclHashcat 71.80 19.86 5.34 1.35 0.62 0.26 0.10
Our results 909.75 287.61 85.12 26.30 4.92 0.93 0.38

(211, 4, 1) (212, 4, 1) (213, 4, 1) (214, 4, 1) (215, 4, 1) (216, 4, 1) (217, 4, 1)

oclHashcat 146.29 72.58 20.41 5.05 1.33 0.62 0.26
Our results 3253.26 1171.82 365.22 108.52 31.86 7.94 2.15

(211, 2, 1) (212, 2, 1) (213, 2, 1) (214, 2, 1) (215, 2, 1) (216, 2, 1) (217, 2, 1)

oclHashcat 285.87 143.72 71.34 20.32 5.26 1.35 0.61
Our results 17887.84 5311.56 1967.22 660.43 191.21 54.62 15.64

(211, 1, 1) (212, 1, 1) (213, 1, 1) (214, 1, 1) (215, 1, 1) (216, 1, 1) (217, 1, 1)

oclHashcat 567.47 280.38 140.80 70.47 19.53 5.25 1.31
Our results 55694.39 27748.27 9179.61 3380.60 1075.55 313.39 83.08

Table 7. Comparison of hashrates for our implementation and oclHashcat v1.31.

B Full Runtime Listings for the Benchmark CPUs

CPU CPU Launch OS Type

CPU1 Intel Core i5-2400, 3.1 GHz Q1'11 Win7/CygWin Desktop
CPU2 AMD Opteron 6276, 2.3 GHz Q1'13 CentOS 6.2 Cluster
CPU3 Intel Core i5-2520M CPU, 2.50 GHz Q1'11 Win/CygWin Laptop
CPU4 Intel Xeon E5540, 2.53 GHz Q1'09 Ubuntu 12.04 Server
CPU5 Intel Xeon E3-1220 V2, 3.10 GHz Q2'11 Fedora 19 Server

Table 8. Hardware used to measure CPU runtimes.



Iterations 250 500 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1024k

CPU1 0.63 1.27 2.53 5.05 10.06 20.22 40.44 80.92 162.4 323.1 646.2 1288 2604
CPU2 1.03 2.05 4.11 8.22 16.51 33.00 66.16 131.7 262.8 524.5 1051 2119 4217
CPU3 1.04 2.09 4.18 8.36 16.62 33.38 66.74 133.5 266.9 532.7 1063 2136 4264
CPU4 0.79 1.57 3.15 6.29 12.59 25.19 50.38 100.8 201.4 402.9 805.3 1612 3222
CPU5 0.50 0.99 1.98 3.97 7.93 15.87 31.72 63.47 127.0 254.0 507.8 1015 2035

Average 0.80 1.59 3.19 6.38 12.74 25.53 51.09 102.1 204.1 407.5 814.6 1634 3268

Table 9. Running times of PBKDF2 with HMAC and SHA-512 on CPUs (in ms).

N 27 28 29 210 211 212 213 214 215 216 217 218 219

CPU1 1.13 2.29 4.53 8.95 17.81 35.49 71.57 143.5 287.0 578.6 1159 2324 4664
CPU2 1.02 1.90 3.62 7.09 14.07 28.24 56.75 115.5 237.3 474.3 959.3 1938 3911
CPU3 1.19 2.42 4.74 9.45 18.88 37.98 76.00 152.9 307.3 616.8 1236 2479 4958
CPU4 1.16 2.21 4.32 8.53 16.97 33.91 68.34 137.1 287.4 577.4 1157 2317 4643
CPU5 0.72 1.38 2.70 5.33 10.59 21.12 42.56 86.00 173.5 346.9 694.5 1389 2780

Average 1.04 2.04 3.98 7.87 15.66 31.35 63.04 127.0 258.5 518.8 1041 2089 4191

Table 10. Running times of scrypt (r=8, p=1) on CPUs (in ms).

Cost 4 5 6 7 8 9 10 11 12 13 14 15 16

CPU1 1.28 2.40 4.63 9.12 18.04 35.93 72.15 144.0 288.2 576.6 1148 2307 4613
CPU2 1.67 3.11 6.00 11.79 23.38 46.63 92.81 185.3 370.4 740.5 1480 2960 5918
CPU3 1.35 2.52 4.87 9.55 18.92 37.76 75.20 150.4 301.2 600.4 1204 2410 4842
CPU4 1.48 2.76 5.34 10.47 20.75 41.32 82.44 164.8 329.1 658.3 1317 2631 5264
CPU5 1.04 1.95 3.77 7.41 14.68 29.23 58.34 116.5 232.9 465.5 931.8 1863 3728

Average 1.36 2.55 4.92 9.67 19.15 38.17 76.19 152.2 304.4 608.3 1216 2434 4873

Table 11. Running times of bcrypt on CPUs (in ms).

C Full Runtime Listings for Di�erent Trade-O�

Parameters for scrypt

log(N) (r=8,p=1) 6.93 10.35 13.66 16.94

No Tradeo� 42,650.62 2,053.98 30.97 -
Tradeo� = 2 22,153.09 2,333.11 39.84 -
Tradeo� = 4 15,870.75 1,552.01 45.02 0.37
Tradeo� = 8 9,548.42 949.73 49.06 0.23

Table 12. Obtained hashrates for scrypt. Computed as interpolation of the nearest
measurements.


