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ABSTRACT 

The Great Artesian Basin of Australia is the largest freshwater artesian basin 

in the world.  It underlies arid and semi-arid regions of Queensland, New 

south Wales, South Australia and the Northern territory, approximately 20% 

of the Australian continent.  Temperatures of its’ waters range from 30ºC to 

over 100ºC and over 5000 bores access its waters and empty into open 

drainage systems for agricultural irrigation and stock watering purposes.  

The Great Artesian Basin of Australia has great economic and agricultural 

importance, but prokaryotic communities persisting in the bore waters 

influence its’ quality. 

To gain an understanding of these prokaryotic communities, a culture-

independent study was conducted on microbial communities present in the 

outflow of the New Lorne bore (registered bore number 17263).  Five 

distinct prokaryotic communities existing at different temperatures (88ºC, 

75ºC, 66ºC, 57ºC, and 52ºC) were selected and total genomic DNA was 

extracted.  PCR-amplified 16S rRNA genes were subsequently cloned and a 

total of 64 clones from the 88ºC community and 96 clones from the other 

communities were examined.  Partial sequences identified phylotypes that 

were then fully sequenced and analysed phylogenetically.  The analysis 

revealed identical phylotypes existing in adjacent communities, as well as 

an increase in the phylogenetic diversity as water temperature decreased.  

Sequences identified belonged to species spanning the full diversity of the 

Bacterial domain, including Hydrogenobacter, Thermus, Meiothermus, 

Chloroflexus, Cytophaga, Planctomycetes, Rhodothermus, Bacillus, 

Clostridium, Nitrospira, Verrucomicrobium, Acidobacterium, α-, β-, γ-, and 

δ-Proteobacteria.  Clones recovered also grouped with taxa with no isolated 

representatives.  Of the libraries, 24 phylotypes from 6 phyla had a 

similarity of 96% or more to cultured isolates and comprised 73% of all 

clones analysed.  34 phylotypes from 11 phyla had less than 96% similarity 

to cultured isolates, or were related to previously cloned 16S rRNA gene 

sequences, and comprised 27% of the clones analysed.  This shows the 

prokaryotic ecology of the Great Artesian Basin environment includes a 

diverse range of many uncultured, novel species. 
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Previous studies on isolates of Thermus and Meiothermus have revealed a 

relationship between the taxonomic groups and the geographical sites of 

isolation.  A survey of 14 Thermus and 2 Meiothermus isolates and 16S 

rRNA gene clone data from the New Lorne bore extends the geographical 

diversity of these two genera.  Thermus was isolated from all four mat 

samples and were most dominant in the red mat at 66ºC.  Meiothermus was 

only isolated from the red mat at 66ºC.  16S rRNA gene sequence analysis 

revealed that 13 of the 14 Thermus isolates were closely related to T. 

igniterrae (100% similarity) and one isolate was closely related to Thermus 

strain SRI-96 (99.1% similarity).  Both Meiothermus had 100% similarity 

with Meiothermus ruber.  The 16S rRNA gene study of the environment 

showed that Thermus dominated the grey mat (75ºC) followed by the red 

mat (66ºC) and green mat (57ºC), but was absent from the brown mat 

(52ºC).  Four Thermus phylotypes were identified with T. scotoductus the 

most dominant, followed by T. igniterrae, Thermus strain SRI-248, and T. 

oshimai.  T. scotoductus dominated over T. igniterrae in the grey mat 

library, and, only marginally, in the red mat.  Phylotypes belonging to the 

genus Meiothermus were identified in the red, green and brown mats, but 

not in the grey coloured mats with 2 distinct phylotypes related to M. ruber 

and M. cerberus.  The M. ruber phylotype was dominant in the red mat and 

the M. cerberus phylotype was dominant in the brown mat with M. ruber 

only slightly dominant over M. cerberus in the green mat.  Based on 16S 

rRNA gene sequence analysis, isolates and clones were most similar to 

those obtained from hot springs in Iceland, perhaps demonstrating a 

ecological similarity between the Great Artesian Basin of Australia and 

Iceland’s thermal environments.  Similarity of biodiversity was low between 

Thermus and Meiothermus species identified from the Great Artesian Basin 

and other well-studied thermal environments such as Yellowstone National 

Park, USA and New Zealand. 

From enrichment studies, a strictly aerobic, thermophilic, Gram-positive, 

spore-producing rod-shaped bacterium (2 - 10µm x 0.3µm), designated 

isolate C21T (T = type strain) was isolated from a sediment sample collected 

from the run-off channel of the New Lorne bore accessing the Great 

Artesian Basin of Australia.  Isolate C21T grew optimally at 70ºC 
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(temperature range for growth between of 55ºC and 80ºC) and a pH of 8.5 

(pH growth range between 6 and 10.5) with a generation time of 90 

minutes.  The isolate is strictly heterotrophic and grew on yeast extract 

and/or tryptone as sole carbon and energy source(s).  The growth of isolate 

C21T was not improved with the addition of a variety of carbohydrates 

(sucrose, cellobiose, glucose, dextrin, amylopectin, chitin, xylan, 

carboxymethylcellulose, inositol, arabinose, mannose, fructose, gelatin, 

starch, amylose, galactose, dextrose, xylose, maltose, L-sorbose, and 

raffinose), organic acids (lactic acid, pyruvic acid, and benzoic acid), or 

casamino acids without either yeast extract or tryptone.  The G+C content 

of the chromosomal DNA of isolate C21T was 71mol%.  A phylogenetic 

analysis of the 16S rRNA gene of isolate C21T indicated that it was a 

member of the phylum Firmicutes clustering with Thermaerobacter 

marianensis (similarity of 98%).  However, isolate C21T differed from T. 

marianensis in a number of key physiological and phenotypic properties and 

based on the evidence isolate C21T is designated Thermaerobacter 

subterranea sp. nov. (type strain C21T = ATCC BAA-137). 

To further understand the prokaryotic ecology of the Great Artesian Basin, 

the development of real-time PCR to detect and quantify environmental 

isolates of Caloramator was undertaken.  Thermophilic isolates from the 

genus Caloramator within the phylum Firmicutes are readily isolated from 

drainage systems of the Great Artesian Basin of Australia.  Adjacent 

hybridisation probes were designed to identify Caloramator strains.  The 

real-time PCR was optimised by manipulating the PCR and the 

concentrations of the adjacent hybridisation probes.  Real-time PCR enabled 

the detection of as little as 6fg of DNA in the 45 PCR cycles.  The 

development of real-time PCR will provide the foundation of applying this 

technique to identify and monitor other, perhaps detrimental, members of 

prokaryotic communities in the environment. 

The information provided by the examination of these communities has 

improved our understanding of the culturable and non-culturable members 

of the prokaryotic communities of the Great Artesian Basin of Australia and 

provides the basis for further ecological studies of the Great Artesian Basin. 
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INTRODUCTION 

The phylogeny of prokaryotes has been greatly elucidated recently due to 

the large increases in studies of environmental communities.  The use of the 

16S rRNA gene as a molecular identification tool has enabled the 

characterisation of prokaryotic communities from a wide variety of 

ecosystems.  Thermophilic communities (those that survive at high 

temperatures) are of particular importance as the search for the ancestry of 

modern life continues.  Thermophilic members of the domains Bacteria and 

Archaea are the most deep branching organisms known, and are assumed 

to be the closest living relatives of the origin of life.  In addition to providing 

phylogenetic data, prokaryotes surviving in extreme environments possess 

unique cellular adaptations that can be exploited biotechnologically. 

Thermophilic communities from a wide variety of ecosystems have been 

examined including those associated with hot springs at Yellowstone 

National Park, USA, New Zealand, and Iceland, and marine communities 

associated with hydrothermal vents.  The hydrochemistry of these sites is 

comparable, while the hydrochemistry of the Great Artesian Basin of 

Australia is unusual.  Although the amount of research on the prokaryotic 

diversity of the Great Artesian Basin of Australia is relatively low, it has 

revealed a number of novel isolates that show that it provides a unique 

ecosystem for prokaryotes. 

RESEARCH OBJECTIVES 

The aim of this thesis is to characterise the prokaryotic communities 

associated with the thermal environment of the Great Artesian Basin of 

Australia.  A literature review of the current status of prokaryotic diversity 

and approaches for studying prokaryotic communities is presented to 

highlight techniques and associated complications when characterising 

prokaryotic communities.  The particular site of study (the New Lorne bore) 

was chosen due to a high outflow temperature (89ºC) and the presence of a 

open drain runoff system that allows a unique temperature gradient to 
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form.  This temperature gradient allows the growth of associated, yet 

spatially distinct prokaryotic communities to develop. 

To describe the prokaryotic communities present in this thermal 

environment, a combination of culture-independent and culture-dependent 

methods are used.  A molecular approach based on the retrieval of 16S 

rRNA gene sequence data is used.  This approach circumvents the inherent 

biases associated with traditional enrichment and isolation techniques that 

are used in characterising pure cultures.  The communities present were 

phylogenetically characterised using 16S rRNA gene sequence data. 

To further understand the ecological nature of the Great Artesian Basin, a 

survey of Thermus and Meiothermus isolates and 16S rRNA gene sequence 

data from the Great Artesian Basin is compared to other world-wide 

populations of Thermus and Meiothermus.  As thermal environments are 

discontinuous throughout the world, it is theorised that these environments 

provide a unique opportunity to study the divergent evolution of prokaryotic 

strains that develop in separate thermal ecosystems.  An analysis of the 

16S rRNA gene sequence data presented increases our knowledge of the 

geographical restrictions of these species, and species selection by the 

environment. 

Further enrichment studies isolated a novel obligately aerobic, Gram-

positive Bacterial species, Thermaerobacter subterraneus str. C21.  A 

complete characterisation of this isolate is carried out. 

The real-time identification during PCR of environmental isolates belonging 

to the genus Caloramator is the first step in applying this new technology to 

microbial ecology.  Caloramator is widespread in thermal environments and 

easily isolated.  The use of real-time PCR has shown that it is very sensitive 

and specific.  The development of new probes will enable the rapid 

identification and quantification of different members within prokaryotic 

communities, greatly enhancing the understanding of the ecology of 

prokaryotes. 
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1.1 DIVERSITY: THE NEED FOR CLASSES 

The classification of life is important in three aspects.  It enables the 

prediction of characteristics for certain groups.  It provides a basis for 

identification systems for new isolates, and it provides information 

regarding the origins and evolutionary pathways for life. 

The use of a priori characters, that is, a character set chosen by the 

researcher, is purely subjective.  Under this system, morphological 

characteristics were originally used to categorise living organisms into one 

of five kingdoms.  The kingdom of Monera included all prokaryotes and the 

eukaryotes were divided into four other kingdoms.  All single-celled 

eukaryotes were placed in the kingdom of Protista.  The three other 

kingdoms of Fungi, Plantae and Animalae were comprised of multicellular 

eukaryotes differing in their mode of nutrition: absorption, autotrophism, or 

ingestion respectively.  This system of classification was suitable for all 

organisms that showed great morphological diversity.  With prokaryotes, 

however, this system was problematic due to their small size and low 

morphological diversity. 

There are two schools of thought regarding the classification of prokaryotes 

– the phenetic and phylogenetic classification systems (Stackebrandt, 

1988). 

1.1.1 THE PHENETIC CLASSIFICATION SYSTEM 

Phenetic classification relies on the physiological and genealogical 

similarities between organisms with no respect to the evolutionary 

pathways.  It relies on a polythetic approach.  Groupings have a high 

similarity in all measurable characters and the absence of a specific 

character will not remove individuals from a group.  Traditional phenetic 

classification relied on observable characteristics like colony morphology 

and cell shape.  As our knowledge of the diversity of the prokaryotic world 

increased, more information was required to correctly classify and identify 

isolates.  Chemotaxonomic or molecular methods (Section 1.2.2) introduced 
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included metabolite and enzyme analysis, and DNA-DNA homology.  This 

eliminated much of the uncertainty present in the systematics of 

prokaryotes. 

1.1.2 THE PHYLOGENETIC CLASSIFICATION SYSTEM 

Phylogenetic classification is based on the genealogical ancestry of 

organisms.  Phylogenetic classification will mirror phenetic classification if 

there is no parallel or convergent evolution and the rate of change proceeds 

constantly along all lines of descent (Kyrpides & Olsen, 1999). 

Phylogenetic classification was particularly advantaged with the introduction 

of PCR and DNA sequencing.  Studying the sequence of conserved genes, 

Woese proposed that all life could be divided into the three domains of 

Archaea, Bacteria, and Eukarya (Winker & Woese, 1991; Woese et al., 

1990).  Table 1.1 shows a comparison of characters for the three domains.  

Figure 1.1 illustrates the phylogenetic relationship between the domains.  

The previous kingdom of Monera was split into Archaea and Bacteria, and 

the other four kingdoms of Protista, Animalae, Plantae, and Fungi were 

grouped into the domain Eukarya.  It became possible to now study the 

phylogenetic and evolutionary relationships between prokaryotes easily. 

Due to the high information content used to determined the phenetic 

relationship, it is more practical to the researcher, however, evolutionary 

pathways are not shown.  On the other hand, phylogenetic classifications do 

not seem to be any more stable or predictive that phenetic classifications 

(Hartford & Sneath, 1988).  To provide as much information as possible, 

both approaches need to be combined in classifying microorganisms 

(Stackebrandt, 1988).  There is little ambiguity between the prokaryotic 

taxa whether defined phenetically or phylogenetically, so the use of both 

phenetic and phylogenetic data is preferred when characterising 

prokaryotes. 

The discovery and use of DNA phylogenetic markers enables researchers to 

unambiguously compare DNA sequences and enhances the accuracy of the 

classification of prokaryotes.  These markers are genes that are ubiquitous, 
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functionally conserved, and evolve with a constant rate of change e.g. rRNA 

and ATPase genes.  Currently, a single gene sequence can identify the 

phylogenetic position of an unknown isolate.  Hence assumptions about its 

phenotype and ecological importance in its environment can be made as its 

phenetic description can be deduced from its phylogenetic position (Bond et 

al., 1995; Hugenholtz et al., 1998a; Moffett et al., 2000; Reysenbach et al., 

2000). 

Table 1.1: Summary of the major differences between Bacteria, 
Archaea and Eukarya 

Character Bacteria Archaea Eukarya 

Membrane bound nucleus No No Yes 

Circular and covalently 

closed DNA 

Yes Yes No 

Histones No Yes Yes 

Cell wall containing muramic 

acid 

Yes No No 

Membrane Lipid Ester-linked Ether-linked Ester-linked 

Ribosome 70S 70S 80S 

Capping and poly-A tailing of 

mRNA 

No No Yes 

Initiator tRNA Formyl-

methionine 

Methionine Methionine 

Introns in tRNA No Yes Yes 

Operons Yes Yes No 

Ribosomes sensitive to 

diptheria toxin 

No Yes Yes 

RNA Polymerase One Several Three 

Sensitive to: kanamycin, 

chloramphenicol, and 

streptomycin. 

Yes No No 

Chemolithotrophy Yes Yes No 

Growth above 80ºC Yes Yes No 

Adopted from Madigan et al. (2000) 
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Figure 1.1: The Three Domain Tree of Life 

The Three Domain Tree of Life based on the phylogenetic analysis of 16S rRNA gene 

sequence data.  It shows a definitive separation of the domains of Bacteria, Archaea, and 

Eukarya.  Taken from Pace (1997). 
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1.2 TAXONOMY AND PHYLOGENY 

1.2.1 NUMERICAL TAXONOMY 

Sneath & Sokal (1973) define numerical taxonomy as `the grouping by 

numerical methods of taxonomic units into taxa on the basis of their 

characteristics’.  It requires the study of as many aspects of the organism 

as possible, and for prokaryotes includes such characters as colony 

morphology, cell morphology, growth characteristics, biochemistry, 

inhibitory tests, substrate utilisation, serology, chemotaxonomy, molecular 

genetics and bacteriophage typing.  Computational methods are used to 

calculate similarity between different strains.  The similarity is then used to 

order organisms into groups with high comparability.  Hierarchical methods 

are then employed to place organisms into species, then genera, families, 

etc.  Numerical taxonomy is based on a phenetic classification approach. 

1.2.2 CHEMOTAXONOMY 

Chemotaxonomy is a classification system based on cell chemical variations 

between organisms.  It is a reflection of the genetic and morphological traits 

and is less subjective than some character studies used in numerical 

taxonomy (Hensel et al., 1986).  It includes analysis on the chromosomal 

DNA (base composition, DNA-DNA reassociation, RFLP), rRNA (sequence, 

DNA-rRNA hybridisation), proteins (sequence, electrophoresis patterns), cell 

wall (peptidogylcan structure, polysaccharides, teichoic acids), membranes 

(fatty acids, polar lipids, mycolic acids) and metabolic end-products (fatty 

acids).  In some cases an examination of the whole cell (prolysis followed 

by mass spectrometry) is used.  Most chemotaxonomic methods are able to 

differentiate to the species level while being able to delineate the major 

divisions present.  It is the ability of chemotaxonomical methods to offer 

fine specificity while covering wide taxonomic diversity that shows its’ value 

in microbial systematics. 

One of the major drawbacks of chemotaxonomy is that cell components are 

affected by environmental fluctuations e.g. lipid content of the cell wall is 

largely affected by temperature and/or salt concentration.  The informative 



A Review of Microbial Phylogeny, Thermophilic Prokaryotes, and Molecular Microbiology 

 10

content of the DNA is largely not affected by environmental changes.  It 

offers the only opportunity to classify large numbers of organisms 

regardless of growth conditions. 

A combination of numerical taxonomy and chemotaxonomy, termed 

polyphasic taxonomy (Vandamme et al., 1996) must be used to develop a 

taxonomic system for prokaryotes. 

Phenotypic data e.g. cell morphology and structure is of limited use for 

phylogenetic purposes because the choice of early versus derived characters 

is purely subjective.  Molecular phylogenies of genes or gene families can 

trace evolution or show evidence for the lateral transfer of genes.  Given a 

constant rate of change, divergent evolution, and no lateral gene transfer, 

homologous sequences of DNA, RNA or proteins represent sequences from a 

common ancestor.  Phylogenetic relatedness is given by the homology 

between sequences.  A high homology indicates high relatedness and recent 

divergence, whereas low homology indicates low relatedness and an older 

divergence.  The process of obtaining a phylogenetic tree used for 

classification is similar irrespective of the data set containing protein or DNA 

sequences. 

1.3 PHYLOGENETIC ANALYSIS 

1.3.1 SEQUENCE ALIGNMENT 

To be able to construct phylogenies based on gene sequences, identical 

characters must be compared across all individuals.  The sequence data 

must be aligned so that maximum homology is obtained.  Gaps are inserted 

to allow for insertions or deletions.  The number of mismatches therefore 

reflects the degree of divergence.  There is no allowance for back mutations 

or multiple substitutions with regard to distantly related sequences.  The 

conservative secondary structure of rRNA molecules (Figure 1.2) enables 

the straightforward identification of congruent regions within the gene.  

Alignment of these analogous regions facilitates the alignment of the 

remainder of the gene. 
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1.3.2 PHYLOGENETIC RECONSTRUCTION 

There are several methods to create a phylogenetic tree once the data has 

been aligned.  Three most commonly used reconstructive methods are the 

distance matrix, maximum parsimony and maximum likelihood methods. 

1.3.2.1 DISTANCE MATRIX METHODS 

The distance matrix methods such as unweighted pair group method using 

arithmetic averages (UPGMA) clustering are based on algorithmic 

approaches (Saitou & Imanishi, 1989; Saitou & Nei, 1987).  They are 

generally heavily influenced by the rates of evolution and divergence.  

Distance matrix methods are usually combined with neighbour analysis to 

determine the best possible tree.  Distance matrix methods were developed 

from a phenetic base and led to a phenetic classification system.  Distance 

matrix methods, however, have been applied to prokaryotic phylogeny 

using sequences from DNA, RNA and proteins.  A major limitation of 

distance matrix methods is if evolution rates are neither constant nor 

divergent, this system will not mirror the phylogenetic classes (Grishin, 

1999). 

1.3.2.2 MAXIMUM PARSIMONY METHODS 

Maximum parsimony analysis relies on the assumption that the true 

phylogeny requires the fewest mutations that accounts for the observed 

differences between individual sequences.  The data set is reduced to only 

informative sites i.e. individual sites that favour only some of the possible 

trees.  Minimum substations are calculated for each possible tree, and the 

tree with the least substitutions is the maximum parsimony tree.  Maximum 

parsimony methods will give misleading results if the amount of evolution is 

unequal in the branches of the phylogenetic tree (Felsenstein, 1978). 

1.3.2.3 MAXIMUM LIKELIHOOD METHODS 

Maximum likelihood analysis calculates the possibility of observing the data 

set given a tree and a mathematical model for evolution.  There are many 
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models that can be applied in this analysis e.g. the Markov chain model 

(Felsenstein, 1981; Schadt et al., 1998; Thorne et al., 1992).  Since the 

model is invariant for all comparisons, the tree that maximises the 

probability that it fits the data is the maximum likelihood phylogeny.  

Maximum likelihood is the most statistically reliable method for phylogenetic 

inference.  Limitations are based on the mathematical model used for 

evolution, but with the increase in computing speed and power, more 

complex models are being introduced (Schadt et al., 1998). 

1.3.3 CONFIDENCE IN ANALYSIS 

There are a number of methods available that infer statistical confidence for 

phylogenies produced.  Felsenstein (1985) first applied bootstrapping to 

phylogenetic analysis.  This test can be applied to many data sets or 

algorithms.  It has the ability to test the monophyletic nature of groups of 

sequences (Brown, 1994). 

Deeper branches observed in phylogenetic analysis may not reflect earlier 

divergence, but may represent a faster rate of evolution.  To check that 

evolution rates are constant for all, a comparison to an outgroup is required 

(Kollman & Doolittle, 2000).  The outgroup is a distant relative of the 

organisms studied and prior research shows that it has diverged prior to the 

group.  If the organisms have evolved at a similar rate, they will show a 

similar level of homology to the outgroup.  Once shown, an earlier branch 

point will identify earlier divergence (Baldauf et al., 1996). 

1.4 SEQUENCES USED IN PHYLOGENY 

In choosing which sequences to study several considerations must be made.  

The sequences must belong to genes that are highly conserved with a 

specific function.  They must show a ubiquitous distribution and divergent 

evolution with no lateral gene transfer.  Protein sequences play an 

important part in molecular phylogeny.  rRNA genes, however, fulfil all 

these criteria, and for this reason are most widely used. 
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1.4.1 GENE SEQUENCES AND PHYLOGENY 

There are three rRNA genes used in phylogenetic analysis.  The 5S rRNA 

gene has been used in a number of studies (Bulygina et al., 1990; Hori & 

Osawa, 1979; Rogers et al., 1985; Stahl et al., 1985).  However, due to its 

small size (≈120bp) the phylogenetic information gained is limited.  The 16S 

rRNA gene has an approximate size of 1600bp.  Numerous studies on the 

16S rRNA gene have shown a variety of conserved regions within the gene 

(Lane et al., 1985; Winker & Woese, 1991).  These conserved regions 

enable the full sequence to be determined easily and quickly via PCR.  The 

increased use of the 16S rRNA gene to study phylogeny has led to large 

increases in sizes of 16S rRNA gene databases.  The RDP has grown from 

10,880 aligned SSU rRNA gene sequences on September 17, 1999 (v7.1) 

(Maidak et al., 1999) to 19,833 aligned SSU rRNA gene sequences on June 

1, 2000 (v8.0) (Maidak et al., 2000).  The 23S rRNA gene is less used.  It is 

approximately 3000bp in length and although it contains more phylogenetic 

information, a lower number of conserved regions hinder the easy 

determination of its full sequence. 

Phenograms based on rRNA gene sequences are providing a comprehensive 

overview of the relationships between prokaryotes.  It confirms the unifying 

concepts of genus and higher ranked taxa, while showing possible 

evolutionary pathways linking organisms (Doolittle, 1999). 

Recent studies have shown that pure isolates may possess and express 

different 16S rRNA genes with sequence similarities below 95% (Amann et 

al., 2000; Oren et al., 1999).  This has implications in overestimating 

environmental prokaryotic diversity when using the 16S rRNA gene as a 

tool. 

1.4.2 PROTEIN SEQUENCES AND PHYLOGENY 

Cytochrome c sequences were one of the first protein sequences analysed 

(Margoliash & Smith, 1965).  This research showed a distinct correlation 

between the fossil evolutionary record and the phylogenetic analysis 

undertaken of these sequences.  Phylogeny based on protein sequences has 



A Review of Microbial Phylogeny, Thermophilic Prokaryotes, and Molecular Microbiology 

 15

not had a large effect on prokaryote systematics.  This is mainly due to the 

relatively small number of sequences available for comparison.  The 

sequencing of proteins have also led to the discovery of protein families 

(e.g. globins), subfamilies (e.g. myoglobins and haemoglobins) and further 

variations (α-, β-, and δ-haemoglobins).  For a correct phylogenetic analysis 

orthologous proteins must be compared i.e. α-haemoglobins must be 

compared to α-haemoglobins.  Incorrect conclusions about the phylogeny of 

proteins will occur if paralogous proteins are compared i.e. α-haemoglobin 

to β-haemoglobins.  Comparisons of paralogous proteins are important in 

phylogeny as they enable the definition of the root of the universal tree 

(Forterre & Philippe, 1999; Kollman & Doolittle, 2000). 

Proteins such as EF-Tu (349aa) and the ATPase β-subunit (460aa) have also 

been used in phylogenetic studies (Baldauf et al., 1996; Ludwig et al., 

1993).  The amount of informational content carried in proteins is much less 

that in gene sequences due to the much shorter length of proteins.  The 

phylogenetic relationships observed using protein sequences support the 

prokaryotic phylogeny as determined by 16S rRNA gene analysis (Ludwig & 

Schleifer, 1994).  Any groups that did not reflect 16S rRNA gene phylogeny 

are usually explained by the reduced informative content of protein 

sequences. 

The study of phylogenetic markers such as the 16S rRNA gene do not 

provide information regarding the potential physiological differences 

between closely related prokaryotes that may have an ecological effect.  

Studies on dissimilatory sulfate reductase genes have shown a similar 

phylogeny to that obtained with analysis of 16S rRNA genes.  However, 

they reveal a greater genetic diversity that is very likely of ecological 

significance (Chang et al., 2001; Wagner et al., 1998). 

1.4.3 GENOME SEQUENCES AND PHYLOGENY 

The increase in interest in whole genome sequencing has added another 

dimension to phylogenetic analysis.  At the time of writing, 49 microbial 

genomes (7 Archaea, 38 Bacteria, and 4 Eukarya) have been published with 

more than 150 currently under research (www.tigr.org).  Research so far 
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indicates that there are few genes present across all genomes that are 

sufficiently similar to analyse (Ludwig & Schleifer, 1999).  The topologies of 

trees defined using genes of different function follow closely that of 16S 

rRNA gene phylogeny (Snel et al., 1999).  The inconsistencies observed 

however do raise questions.  The most likely cause is the effect of horizontal 

gene transfer.  The horizontal transfer of 16S rRNA genes cannot be 

excluded, but evidence leads to the conclusion that rRNA genes are not as 

transferable as other genes (Aravind et al., 1998; Boucher & Doolittle, 

2000; Eisen, 2000; Martin, 1999). 

1.5 DIVERSITY OF PROKARYOTES 

The diversity within the prokaryotic domains is much greater than the 

eukaryotic group as prokaryotes are not restricted to a relatively limited 

environmental niche.  Metabolically, prokaryotes are broadly broken into 

four groups.  Photoautotrophs harness light energy to synthesis organic 

molecules from carbon dioxide.  Photoheterotrophs use light energy to 

create ATP, but obtain carbon from organic sources.  Chemoautotrophs 

obtain carbon from carbon dioxide and oxidise inorganic compounds to 

create ATP.  Chemoheterotrophs consume organic compounds for both 

energy and carbon-sources.  The majority of isolated prokaryotes are 

chemoheterotrophs.  The greatest variety of metabolic pathways is within 

the chemoautotrophic group. 

With prokaryotes possessing a wide range of nutritional modes, prokaryotic 

life is not limited to such “constrained” environments as eukaryotes.  Wide 

ranges of nutritional modes allow the colonisation of more extreme 

environments.  Their adaptations allow for growth at low or high 

temperatures (psychrophiles and thermophiles respectively), low and high 

pH (alkalophiles and acidophiles respectively), high salinity (halophiles), 

high pressure (barophiles), high substrate concentration (osmophiles), and 

low water availability (xerophiles).  Prokaryotes adapted to toxic and 

recalcitrant compounds have also been described. 
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1.5.1 THE BACTERIAL DOMAIN 

The Bacterial domain was first described as being comprised of around 12 

natural divisions (Woese, 1987).  With more 16S rRNA gene information 

becoming available, the current view contains 36 divisions with about a 

third of these characterised only by environmental sequences (Hugenholtz 

et al., 1998a) (Figure 1.3).  Some of the major divisions with isolated and 

characterised representatives are discussed below. 

Figure 1.3: Phylogenetic divisions within the domain Bacteria 

Evolutionary distance tree of the Bacterial domain showing currently recognized divisions and 

candidate divisions.  Division-level groupings of two or more sequences are depicted as 

wedges.  The depth of the wedge reflects the branching depth of the representatives selected 

for a particular division.  Divisions that have cultivated representatives are shown in black; 

divisions represented only by environmental sequences are shown in outline. The scale bar 

indicates 0.1 change per nucleotide.  Taken from Hugenholtz et al. (1998a). 
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1.5.1.1 AQUIFICAE (THERMOPHILIC HYDROGEN OXIDISERS) 

The thermophilic hydrogen oxidisers contain hyperthermophilic and 

thermophilic, obligately chemolithotrophic autotrophs.  They are 

microaerophilic and reside only in thermal environments.  The complete 

genome sequence of Aquifex aeolicus shows homology with thermophilic 

Archaea.  16S rRNA gene sequence analysis indicates that it is the oldest 

lineage within the Bacterial domain (Bocchetta et al., 2000; Burggraff et al., 

1992; Reysenbach et al., 2000).  The physiological properties of both 

Aquifex and its closest Archaeal relative suggest a common ancestor 

required H2 as an electron donor for metabolism (Huber et al., 1992). 

1.5.1.2 THERMOTAGALES 

The Thermotagales are strictly anaerobic, thermophilic and 

chemoheterotrophic with a fermentative metabolism (Fardeau et al., 1997).  

Thermotogales are named after a unique morphological feature – the 

presence of an outer sheath (or “toga”) covering the cell.  In 

Fervidobacterium species this sheath is distended at one pole (Patel et al., 

1985).  They are found in thermal terrestrial aquatic and marine 

environments. 

1.5.1.3 DEINOCOCCUS/THERMUS 

This division contains only three genera: Thermus, Meiothermus, and 

Deinococcus.  Deinococcus is well known for its’ ability to withstand high 

levels of radiation and a lack of an outer cell membrane (Ferreira et al., 

1997).  Phylogenetic analysis reveals a close association with the Gram-

positive bacteria.  Thermus and Meiothermus are well known thermophilic 

ecosystem inhabitants being isolated from Iceland, USA, Portugal, Australia, 

Italy and New Zealand (Brock & Freeze, 1969; Chung et al., 2000; Loginova 

et al., 1984; Manaia & da Costa, 1991; Santos et al., 1989).  Recent work 

on Thermus isolates indicates that there is a geographical limitation on 

distribution of strains around the world (Moreira et al., 1995; Moreira et al., 

1997).  They are obligately aerobic with a chemoorganotrophic metabolism.  



A Review of Microbial Phylogeny, Thermophilic Prokaryotes, and Molecular Microbiology 

 19

All genera within this group share an atypical cell wall in which 

diaminopimelic acid in the peptidoglycan is replaced by ornithine. 

1.5.1.4 GREEN NON-SULFUR BACTERIA 

The green non-sulfur bacteria are defined more by sequence analysis than 

numerical taxonomy.  Chloroflexus auranticus is the most known species 

from this kingdom and has similarities to both the green sulfur bacteria and 

the Proteobacteria.  It contains bacteriochlorophyll c in chlorosomes, like 

green sulfur bacteria, however its structure of bacteriochlorophyll a 

resembles that of the Proteobacteria.  It is theorised that Chloroflexus may 

be very similar to a photosynthetic ancestor, but received chlorosome genes 

by lateral transfer (Gupta et al., 1999).  Chloroflexus is unique in that it can 

carry out photoautotrotrophy and photoheterotrophy as well as 

chemoorganotrophy. 

1.5.1.5 PLANCTOMYCETES 

The Planctomycetes are a group of morphological distinct organisms.  Their 

cell wall lacks peptidoglycan and is proteinaceous in nature.  Primarily 

aquatic organisms, this group are typically facultatively aerobic possessing a 

chemoorganotrophic metabolism.  Phylogenetic studies reveal a low 

homology with all other bacterial lineages and a rapidly evolving genome is 

thought to be the cause (Madigan et al., 2000). 

1.5.1.6 CHLAMYDIA 

The obligatory intracellular parasites belonging to the division Chlamydia 

have very limited biosynthetic capabilities.  The relatively small genome of 

Chlamydia trachomatis (1Mbp) reflects it restrictive metabolic abilities and 

the eukaryotic nature of some genes suggest the horizontal transfer of 

eukaryotic genes into its genome (Madigan et al., 2000). 
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1.5.1.7 CYANOBACTERIA 

The Cyanobacteria are distinguished by the common trait of chlorophyll a.  

Sequence analysis of Cyanobacteria show that their closest relatives are the 

chloroplasts, indicating that they share a common ancestor.  The 

Cyanobacteria are generally obligately aerobic phototrophs.  They are found 

in aquatic environments, and are often the dominant phototroph in hot 

spring environments (Ruff-Roberts et al., 1994; Ward et al., 1998). 

1.5.1.8 GREEN SULFUR BACTERIA 

The green sulfur bacteria are a phylogenetically coherent group of non-

motile anoxygenic phototrophic bacteria.  They are chemolithotrophic 

utilising H2S as an electron donor.  They use bacteriochlorophyll a to 

photosynthetically convert energy to ATP.  Chlorosomes present near the 

cytoplasmic membrane contain one of the bacteriochlorophylls c, d, or e 

that act as light harvesting centres.  Due to the effectiveness of the 

chlorosome, they require less light energy, and as a consequence are often 

found at greater depths than other photosynthetic bacteria (Madigan et al., 

2000). 

1.5.1.9 FLAVOBACTERIUM/CYTOPHAGA/BACTEROIDES 

This prokaryotic assembly range from obligate aerobic to obligate anaerobic 

bacteria.  Bacteroides are obligately anaerobic and are thought to be 

dominant in the intestinal gut of animals.  Flavobacterium species are 

obligate aerobic prokaryotes that are generally found in aquatic habitats.  

Their chemoheterotrophic metabolism is limited to a small number of simple 

sugars (Madigan et al., 2000). 

Cytophaga species are obligate aerobes and widespread in the 

environments of soil and water.  They are able to degrade polysaccharides 

and move by a characteristic gliding motility.  Their degradative activity is 

responsible for the majority of oxic degradation of cellulose (Madigan et al., 

2000). 
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1.5.1.10 SPIROCHAETES 

Spirochaetes form a morphologically and phylogenetically coherent group 

within the Bacterial domain.  The coiling of endoplasmic flagella around the 

protoplasmic cylinder forms their characteristic spiral shape.  Spirochaetes 

are found in aquatic habitats or as animal pathogens (Kudo et al., 1998). 

1.5.1.11 GRAM-POSITIVE BACTERIA 

The Gram-positive Bacteria form a distinct line of descent within the 

Bacterial domain.  A major division separates the High G+C content Gram-

positive groups from the Low G+C content groups.  The High G+C content 

group is primarily aerobic rods to filament-shaped cells inhabiting soil and 

plant environments.  Mycobacterium species are distinct due to the unique 

capability to produce mycolic acids.  Another important member of this 

group is Streptomyces.  Primarily soil organisms, they are best known for 

their ability to produce antibiotics.  They have a versatile metabolism, being 

able to grow chemoheterotrophically on a wide variety of simple and 

compound substances (Roller et al., 1994). 

The Low G+C content group is dominated by the two classes of Bacilli and 

Clostridia.  The group is heterogeneous with members of the class Bacilli 

having values of G+C content that ranges over 40 percentile units.  The 

endospore-formers are mainly soil inhabitants with wide metabolic 

activities.  Physiological traits range from obligately aerobic, facultatively or 

obligately anaerobic, polysaccharide degradation, fermentation variety, 

acidophiles, alkalophiles, cocci to rod shaped-cells, and thermophiles 

(Collins et al., 1994; de Bartolomeo et al., 1991). 

1.5.1.12 THE PROTEOBACTERIA 

The Proteobacterial division is the most diverse among the Bacterial 

domain.  Anoxygenic photosynthesis is prevalent within the Proteobacterial 

phylum.  Photosynthesis is inhibited by oxygen as it represses 

photopigment synthesis.  Their classification has been established by 

numerous physiological and phylogenetic studies (Gupta, 2000). 
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The α- and β- groups are heterogeneous groups with most being able to 

utilise a variety of organic compounds as an electron donor.  

Photoautotrophic growth is also possible.  γ-Proteobacteria includes the 

purple sulfur bacteria and Enterobacteriaceae.  The purple sulfur bacteria 

use H2S as an electron donor for CO2 reduction during photosynthesis.  The 

purple bacteria are found in illuminated anoxic areas of aquatic habitats.  

The δ-Proteobacterial members are diverse and contain anaerobic sulfate 

reducers such as Desulfovibrio and Desulfobacter and the fruiting 

myxobacteria.  Campylobacter and Helicobacter are two genera within the 

ε-Proteobacteria.  Members of the ε-Proteobacteria are few in number, and 

are dominated by human disease causing prokaryotes. 

As photosynthesis is widespread throughout the Proteobacterial lineage, it is 

thought that the last common ancestor was photosynthetic.  This ability was 

lost through evolution and replaced by chemoautotrophic capabilities.  In 

addition to the physiological activities mentioned, metabolic groups of the 

Proteobacteria include the sulfur and iron oxidising bacteria, hydrogen 

oxidizing bacteria, methanotrophic and methylotrophic bacteria, acetic acid 

bacteria and nitrogen fixers. 

1.5.2 THE ARCHAEAL DOMAIN 

By 16S rRNA gene sequence analysis, it has been shown that there is three 

main lines of descent within the Archaeal Domain: the Korarchaeota; the 

Euryarchaeota; and the Crenarchaeota (Barns et al., 1996) (Figure 1.4). 
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Figure 1.4: Phylogenetic divisions within the domain Archaea 

Evolutionary distance tree of the Archaeal domain showing currently recognised divisions and 

candidate divisions.  Crenarchaeota are represented by: Thermoproteus neutrophilus JCM 

9278T (AB009618); Thermofilum pendens str. Hvv3 DSM 2475T (X14835); Staphylothermus 

marinus str. F1 DSM 3639T (X99560); Thermosphaera aggregans str. M11TL DSM 11486T 

(X99556); Sulfolobus solfataricus str. P1 DSM 1616T (X90478); and Sulfurisphaera 

ohwakuensis str. TA-1 IFO 15161T (D85507).  Euryarchaeota are represented by: 

Methanoplanus limicola str. M3 DSM 2279T (M59143); Methanomicrobium mobile str. BP 

DSM 1539T (M59142); Methanococcoides methylutens str. TMA-10 DSM 2657T (M59127); 

Methanosarcina mazei str. C16 ATCC 43340T (M59138); Haloferax volcanii str. DS-2 ATCC 

29605T (K00421); Halorubrum lacusprofundi JCM 8891T (U17365); Natrinema pellirubrum 

NCIMB 786T (AJ002947); Archaeoglobus fulgidus str. VC-16 DSM 4304T (X05567); 

Thermococcus chitonophagus str. GC74 DSM 10152T (X99570); and Methanopyrus kandleri 

str. av19 DSM 6324T (M59932).  Korarchaeota are represented by: Unidentified 

Korarchaeote SRI-306 (AF255604); Unidentified Korarchaeote pJP78 (CNBRG16SD); 

Unidentified korarchaeote pBA5 (AF176347); and Unidentified korarchaeote pJP27 

(CNBRG16SK).  The evolutionary distance tree is based on an unambiguous data set 

containing 1179bp.  Scale bar represents 10 nucleotide substitutions per 100bp.  GenBank 

accession numbers are contained within parenthesis.  The phylogenetic analysis was carried 

out as detailed in Section 2.15. 

1.5.2.1 KORARCHAEOTA 

The Korarchaeota are represented only by clone sequences, as no members 

of this group have been isolated.  All sequences have been retrieved from 

geothermal habitats i.e. Yellowstone National Park (Reysenbach et al., 

2000). 
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1.5.2.2 EURYARCHAEOTA 

Three main physiological groups dominate the Euryarchaeota. 

1.5.2.2a Halophilic Euryarchaeota 

The halophilic Euryarchaeota such as Haloferax and Natrinema are uniquely 

adapted to hypersaline environments with many requiring salt 

concentrations near saturation (32%).  Their physiology is quite diverse 

with most having an obligate aerobic, chemoorganotrophic metabolism.  

However, denitrification and autotrophism is also found.  Their ability to 

withstand high salt concentration stems from their ability to intracellularly 

accumulate compatible solutes e.g. amino acids or K+ ions (Benlloch et al., 

1995). 

1.5.2.2b Methanogenic Euryarchaeota 

Based on 16S rRNA gene sequence analysis, the methanogenic 

Euryarchaeota are a phylogenetically diverse group of microorganisms and 

include the genera of Methanoplanus and Methanomicrobium.  However, 

their metabolic characteristics are similar.  They all derive methane from a 

variety of small compounds.  Enzymes required for this task are very 

oxygen-sensitive, hence methanogenic Euryarchaeota are obligatory 

anaerobic.  Methanogenesis is limited to the Archaea.  They are found in a 

variety of environments ranging from intestinal tracts, anoxic sediments to 

geothermal environments (Schäfer et al., 1999). 

1.5.2.2c Thermophilic Euryarchaeota 

The thermophilic Euryarchaeota consist of a number of divergent species.  

Thermoplasma and Picrophilus are unique in their physiology.  Both are 

thermophilic and extremely acidophilic.  Hyperthermophilic Euryarchaeota 

includes Thermococcus, Pyrococcus, Methanopyrus, and Archaeoglobus.  All 

are found to inhabit environments near hydrothermal vents with 

chemoorganotrophic or chemolithotrophic metabolisms (Barns et al., 1996; 

Hugenholtz et al., 1998b; Keller et al., 1995). 
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1.5.2.3 CRENARCHAEOTA 

The Crenarchaeota is a diverse group of species that inhabit two extremes 

of the Earth’s environments.  16S rRNA gene sequence analysis has shown 

that Crenarchaeota are found in a wide variety of non-thermal habitats 

including marine and rice paddies (Schleper et al., 1997).  The better 

known groups of the Crenarchaeota are hyperthermophilic with members 

largely being obligately anaerobic.  Members of the Crenarchaea include 

Thermofilum, Thermosphaera, and Sulfolobus.  Their metabolisms are 

generally chemoorganotrophic or chemolithotrophic and members have 

been isolated from both marine and terrestrial volcanic habitats (Hugenholtz 

et al., 1998b). 

1.6 THERMOPHILIC PROKARYOTES 

Thermophiles dominate the deeper branches of the Three Domain Tree of 

Life.  However, they are not limited to these groups and are present 

throughout both Archaeal and Bacterial domains.  The isolation and 

characterisation of the first true thermophile, Thermus aquaticus (Brock & 

Freeze, 1969), sparked an increase in the study of thermophilic microbial 

ecology and physiology. 

1.6.1 THERMOPHILY AND ITS ADAPTATIONS 

Temperature is one of the most important factors that affect life on our 

planet.  Characterisation of microorganisms with respect to the 

temperatures at which it grows is fundamental in prokaryote systematics.  

With respect to temperature, microorganisms have been described as 

belonging to one of three groups - psychrophiles, mesophiles and 

thermophiles. 

There is a specific range of temperature at which growth of microorganisms 

is possible.  Growth starts at a minimum temperature (TMIN) and reaches an 

optimum at temperature TOPT, 15 to 20ºC higher than TMIN.  Growth stops at 

a maximum temperature (TMAX), 5 to 10ºC higher that TOPT.  The difference 

between TMIN and TMAX rarely exceeds 30 to 40ºC.  The TMIN, TOPT, and TMAX 
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values are characteristic for individual isolates, and are used to broadly 

describe the prokaryote.  Organisms with TOPT <20ºC are described as 

psychrophiles.  Mesophiles have a TOPT between 20ºC and 50ºC and 

thermophiles have TOPT >50ºC (Figure 1.5).  Although these are discrete 

brackets, it should be seen as a continuum, and many species are described 

as a combination of two groups e.g. facultative thermophile.  Thermophilic 

prokaryotes with a TOPT between 60ºC and 80ºC are hyperthermophiles, and 

extreme thermophiles have a TOPT >80ºC. 

Figure 1.5: Typical growth profiles for a range of prokaryotes 

1.6.1.1 ADAPTATIONS TO HIGH TEMPERATURES 

The temperature to which growth is limited is currently unknown.  Most 

popularly, it is believed to be around 140ºC, although currently the most 

thermophilic species is Pyrolobus fumarii with a TMAX of 113°C (Blochl et al., 

1997).  The ability of an organism to grow at a temperature is limited by 

the stability of its constituents.  Thermophilic prokaryotes have adaptations 

that ensure their cell constituents are stable at high temperatures 

1.6.1.1a Monomer Adaptations to High Temperatures 

Low molecular weight metabolites and cofactors have relatively short half-

lives at high temperatures.  Studies have shown that the stability of certain 

metabolites like ATP are greatly affected by pH and the presence of ions and 
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manipulation of the chemical microenvironment can aid in the stability of 

these compounds (Cowan, 1997). 

Some metabolic intermediates are also extremely heat-labile, and an 

increase in catalytic efficiency of enzymes would ensure such intermediates 

are transformed before they are denatured.  Comparisons with mesophilic 

enzymes, however, show comparable catalytic efficiencies for most 

enzymes and increasing the catalytic efficiency of thermophilic enzymes 

may not be a widespread occurrence. 

Physical-associations of enzymes may prevent metabolite degradation by 

the channelling of intermediates.  Intermediate-enzyme associations 

increase the stability of the metabolite, and sequential enzyme associations 

ensure a high throughput and reduce the intracellular concentration of the 

intermediate. 

The use of alternate metabolites is an additional means that may aid 

thermal stability of the cell.  ATP is the popularly considered the main 

source of cellular energy for organisms.  However, ATP has a relatively 

short half-life.  The use of other phosphorylated compounds in certain 

metabolic pathways e.g. ADP in Pyrococcus or pyrophosphate in 

Thermoproteus bypass the need for high cellular concentrations of ATP. 

1.6.1.1b Lipid and Membrane Adaptations to High Temperatures 

The maintenance of the membrane is a further consideration of extreme 

thermophiles.  Thermophilic Archaea have unique adaptations that allow 

their membrane to maintain its functions at very high temperatures.  The 

more stable ether linkage replaces the ester linkage found in the Bacterial 

and Eukaryal domains.  In hyperthermophilic Archaea, the presence of 

transmembrane C40 phytanyl chains has the effect of reducing the 

membrane into a monolayer.  The phytanyl chains also show cyclic 

structures that aid in membrane packing and reducing the fluidity at high 

temperatures.  In some thermophilic Bacteria ether linkages have been 

identified indicating the possibility that this characteristic may be a 

definitive thermophilic adaptation (Langworthy & Pond, 1986).  Bacteria are 
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known to modify the types of lipids contained within their membrane 

relative to the temperature by increasing the length, branching and 

saturation of the lipid molecule at high temperature (Reizer et al., 1985). 

1.6.1.1c Protein Adaptations to High Temperatures 

Continued studies on thermostable proteins have been shown that there is 

no pattern that confers thermal stability.  It has shown that mesophilic 

enzymes are more active than their thermal relatives, however the stability 

of the mesophilic enzymes is much lower. 

The structure of proteins is determined by a variety of forces including 

hydrogen bonds, Van der Waals interactions, salt bridges, and the 

hydrophobic effect, while the conformational entropy largely governs the 

denaturation of proteins.  The energy of both these stabilising and 

destabilising forces is in the order of 1 MJ mol-1.  The difference between 

these two forces is known as the conformational stability (∆G) and is usually 

around 50 kJ (Jaenicke, 1996).  Single amino acid substitutions can 

increase the ∆G by up to 25kJ without any effect on the protein’s 

conformation.  It is this relatively large increase in ∆G caused by little 

change in the protein sequence that can have such a large effect on protein 

thermostability.  These subtle changes minimise the surface energy and the 

hydration of apolar surface groups while maximising core packing and 

burying hydrophobic residues.  Increases in the number of salt bridges and 

salt bridge networks also aid in thermal stability (Ladenstein & Antranikian, 

1998). 

Thermal stability is also correlated with protein flexibility (Cowan, 1997; 

Vieille et al., 1996).  As protein flexibility decreases, the ∆G increases, 

reducing its susceptibility to denaturation.  A decrease in flexibility has a 

detrimental effect on enzyme activity.  Mesophilic enzymes are much more 

flexible than thermal enzymes, and at any temperature mesophilic enzymes 

have a higher specific activity than their thermophilic relatives have 

(Shoichet et al., 1995).  Higher conformational stability also reduces cellular 

turnover of the protein. 
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Spontaneous protein degradation caused by amidation, succinimide 

formation and oxidation of side chains also increases with temperature.  

However, it has been shown that these reactions are reduced on correctly 

folded proteins. 

1.6.1.1d DNA and RNA Adaptations to High Temperatures 

The instability of the DNA helix at high temperatures can be overcome in a 

number of ways.  The accumulation of salts like potassium di-inositol-1,1’-

phosphate in Pyrococcus woesei has been shown to stabilise the DNA helix, 

and also aids in protein conformational stability at high temperatures 

(Scholz et al., 1992).  Polycationic polyamines also increase the melting 

temperature of DNA and are found in many sulfur-dependent Archaea. 

DNA topology plays an important part in maintaining the durability of the 

DNA at high temperature.  Positive and negative supercoiling has been 

shown to exist in hyperthermophilic Archaea and in some hyperthermophilic 

Bacteria (de la Tour et al., 1990; Guipaud et al., 1997).  Evidence of DNA 

associating with cationic proteins to form nucleosome-like structures is also 

shown.  The thermal stability of the chromosomal DNA is increased by 

compaction. 

The degradation of DNA, like proteins, also increases with temperature.  To 

combat this, it has been shown that some hyperthermophilic prokaryotes 

possess homologues of DNA repair systems, including possible homologous 

recombination SOS repair, excision repair and uracil DNA glycosylase 

activity. 

Transfer RNA (tRNA) must be able to maintain its functional activity in the 

absence of any molecular associations.  The most commonly employed 

strategy is post-transcriptional modification e.g. methylation.  Nucleoside 

modification is usually localised to regions that aid in structural rigidity.  It 

has been shown that a greater number of modification is found in 

Pryodicitium occultum (TOPT = 105ºC) than in Thermoplasma acidophilum 

(TOPT = 55ºC).  Temperature studies on Pyrococcus furiousus show an 

increase in the relative abundance of base modification relative to growth 
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temperature (Edmonds et al., 1991).  These results suggest that post-

transcriptional modification of nucleosides is an important method for 

thermal stability in prokaryotes. 

1.6.1.2 BIOTECHNOLOGY OF THERMOPHILIC PROKARYOTES 

The biotechnological exploitation of thermophilic prokaryotes has come to 

the fore recently.  Inclusion of biological catalysts in industrial applications 

has been predominant as man looks towards more environmentally friendly 

solutions.  Many industries that employ biocatalysts gain from running these 

applications at high temperatures.  Higher reaction rates, better solubility 

and diffusion, and greater fluidity are all results of higher temperatures.  

However, to enable biological catalysts to be efficient, their stability and 

activity at these high temperatures must be assured. 

Research into thermophilic organisms as sources for these biocatalysts has 

shown that new sources may be better suited for current applications.  It 

also uncovers new possibilities that were previously unthought of. e.g. 

xylanases in paper pulp bleaching (Viikari, 1994).  The discoveries of novel 

thermophilic Archaea and Bacteria growing above 100ºC have pushed the 

boundaries of life, and their potential, to new extremes. 

1.6.2 THE ECOLOGY OF THERMOPHILES 

1.6.2.1 THERMAL ENVIRONMENTS 

Thermal natural environments are found in isolated pockets throughout the 

world and are usually described as high-temperature solfatara fields or 

freshwater hot springs.  The neighbouring environments have a much lower 

temperature and temperature gradients are formed.  Distinct temperature 

zones are usually evident where phototrophic communities are present.  

Thermal environments are broadly broken into high temperature acidic 

solfatara fields and low temperature freshwater hot fields. 
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1.6.2.1a Acidic Solfatara Fields 

Volcanic heating of soils and aquatic environments results in high 

temperature acidic solfataric fields.  Temperatures of these environments 

can reach as high as 350ºC and have a pH as low as 2.  Solfataric soils 

consist of an upper acidic oxygenic layer with ferric iron (Fe3+) and a lower 

neutral, anoxic layer with ferrous iron (Fe2+).  Major gases expelled by these 

environments are steam, CO2 and H2S.  These weak acids allow the 

subsurface to remain near neutrality.  On the surface, however, the H2S is 

oxidised to sulfur, and then to sulfuric acid, lowering the pH to 2. 

Solfataric boiling mud and hot springs have been studied in New Zealand 

(Jones et al., 1999; Saul et al., 1999), United States of America (Huber et 

al., 1998; Hugenholtz et al., 1998b; Reysenbach et al., 2000), Japan 

(Yamamoto et al., 1998) and Italy (Canganella & Trovatelli, 1995; Tenreiro 

et al., 1997).  Most of these mats are dominated by photolithotrophic 

metabolisms with Cyanobacteria and chemolithotrophs (both Archaea and 

Bacteria) being the dominant species. 

Research into the prokaryotic communities from various hot springs at 

Yellowstone National Park, U.S.A., show that a wide diversity of prokaryotic 

life exist simultaneously, including Archaea and Bacteria (Hugenholtz et al., 

1998b; Reysenbach et al., 2000; Reysenbach et al., 1994).  Examinations 

of thermophilic communities from Japan do not show the presence of 

Archaea, but deep branching Bacteria like Aquificales sequences are 

identified with Thermus being easily isolated (Oshima & Imahori, 1971; 

Yamamoto et al., 1998).   

Hydrothermal vent systems occur when volcanic activity breaks through the 

Earth’s crust in deep ocean water.  Although the temperature is very high, 

the pressure at that depth ensures that water remains in its liquid form.  As 

with hot springs on the surface, these waters have high levels of dissolved 

minerals including sulfur and chemolithotrophy is the dominant form of 

metabolism.  As the high temperature magma mixes with the cold oxygenic 

seawater, metal sulphides precipitate, causing chimneys to form and H2S is 

oxidised to other sulfur-based compounds.  Due to the high levels of sulfur 
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compounds present many of the prokaryotic species identified from these 

environments have a sulfur-dependent metabolism (Moyer et al., 1995; 

Prieur, 1997; Takami et al., 1997; Taylor et al., 1999).  Many other species 

have been identifed from these environments including Thermus, 

Thermosipha and Thermococcus (Godfroy et al., 1997; Marteinsson et al., 

1999; Takai & Horikoshi, 2000). 

Oil and petroleum reservoirs are dominated by fermentative or sulfur-

metabolising prokaryotes and methanogens (Grassia et al., 1996; Greene et 

al., 1997; Magot et al., 2000; Nilsen et al., 1996; Voordouw et al., 1996).  

These prokaryotes are implicated in the degradation of long chain 

hydrocarbons and the corrosion of piping.  Other terrestrial subsurface 

environments have revealed the presence of novel prokaryotes e.g. Bacillus 

infernus (Boone et al., 1995). 

1.6.2.1b Freshwater Hot Fields 

Freshwater hot springs are usually located outside volcanically active areas.  

They are passively heated by deep magma chambers and reach 

temperatures of up to 150ºC.  The water usually contains low levels of 

dissolved minerals, but high levels of dissolved CO2 and silicates, buffering 

the system to a pH around 9-10 (Kristjánssen & Hregguidssen, 1995).  Due 

to the alkaline pH, any sulfur that is present is in the form H2S. 

In Iceland, studies on an alkaline hot spring environments reveal diverse 

populations of Thermus (Chung et al., 2000; Kristjánsson et al., 1994).  

Indian hot springs have revealed the presence of novel isolates 

(Chrisostomos et al., 1996).  Another freshwater thermal environment is 

the Great Artesian Basin of Australia.  Limited studies on freshwater hot 

fields show a wide diversity of Bacteria present including the deep branching 

Aquificales and Thermus, members of the Proteobacteria, Bacillus and 

Clostridium.  As yet, Archaea are not known to widely populate this thermal 

environment. 
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1.6.2.1c The Great Artesian Basin of Australia 

The Great Artesian Basin of Australia is a freshwater hot spring.  It is one of 

the largest artesian groundwater basins in the world. It underlies 

approximately 20% of Australia’s landmass, extending beneath the arid and 

semi-arid regions of Queensland, New South Wales, South Australia and the 

Northern Territory (Figure 1.6).  The Great Artesian Basin stretches from 

the Great Dividing Range to the Lake Eyre depression (a total area of over 

1,711,000 square kilometres) and stores an estimated 8,700 million ML of 

water (Hillier, 1996).  The rate at which water flows varies between one and 

five metres per year.  Recharge occurs mainly along the northeastern 

margin of the basin and natural discharge occurs mainly from springs in the 

south-western area (Habermahl, 1980).  Water temperatures vary from 

30ºC in the shallower areas to over 100ºC in the deeper areas.  Around 

5000 bores access the basin.  Individual bore depths vary up to 2000 

metres with the average being 500 metres. Many of these bores empty into 

open drainage systems for agricultural irrigation and stock watering 

purposes.  Nearly 33,000km of bore drains are currently in use in 

Queensland and New South Wales, and individual drains may be in excess 

of 100km long (Hillier, 1996).  As the water flows through these open drain 

systems, the temperature slowly decreases to ambient temperatures. 

The Great Artesian Basin waters are dominated by a sodium-bicarbonate-

chloride hydrochemistry, with a sodium-sulphate-chloride hydrochemistry 

appearing at the western margins (Habermahl, 1980).  A wide variety of 

physiological groups of bacteria including sulfate reducers, carbohydrate 

fermenters, strict aerobes and strict anaerobes have been isolated from the 

Artesian Basin environment (Andrews & Patel, 1996; Denman et al., 1991; 

Love et al., 1992; Redburn & Patel, 1994; Wynter et al., 1996). 
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Figure 1.6: Map showing the Great Artesian Basin of Australia 

The map of Eastern Australia depicting the aspects of the Great Artesian Basin was taken 

from Mudd (2000). 
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1.6.1.2d Man-made Environments 

Thermophilic prokaryotes have also been isolated from a wide variety of 

man-made environments including compost systems (Beffa et al., 1996; 

Blanc et al., 1997) and hot water systems (Kristjánsson et al., 1994).  As 

these environments are usually temporary, the dominant species are 

usually thermophilic sporeformers from the Bacterial domain (Blanc et al., 

1997). 

1.7 STUDIES ON PROKARYOTIC COMMUNITIES 

1.7.1 THE NEED FOR MOLECULAR METHODS 

The traditional microbiological approach to study prokaryote ecology using 

techniques such as cultivation and isolation has a number of limitations.  

These methods are intrinsically biased towards microorganisms that are 

favoured by the growth conditions employed e.g. temperature, media, or 

pH (Dunbar et al., 1997; Santegoeds et al., 1996; Saul et al., 1999; Ward 

et al., 1997).  Previous studies show that the culturability of prokaryotes 

from the environment is low (Table 1.2). 

Table 1.2: Culturability of Different Environments 

Environment Culturability (%) References 

Seawater 0.001-0.1 Fergusan et al. (1984); 

Kogure et al. (1979); 

Kogure et al. (1980) 

Freshwater 0.25 Jones (1977) 

Mesotrophic lakes 0.1-1 Staley & Konopka (1985) 

Unpolluted esturine waters 0.1-3 Fergusan et al. (1984) 

Activated sludge 1-15 Wagner et al. (1993); 

Wagner et al. (1994b) 

Sediments 0.25 Jones (1977) 

Soil 0.3 Torsvik et al. (1990) 

The table was taken from Amann et al. (1995) 
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Denaturing gradient gel electrophoresis studies have shown that enrichment 

and isolation studies sometimes do not favour the dominant phylotype in 

the environment (Saul et al., 1999; Ward et al., 1997) 

Characterisation of even simple microbial communities has posed many 

problems to the traditional microbiologist.  Molecular methods enable the 

identification of community members without the need for cultivation.  The 

use of these methods on a number of environments has expanded the 

current view of the natural microbial diversity. 

Investigations of activated sludge microbial communities has revealed that 

many more species are present and involved in the wastewater treatment 

process than previously isolated and characterised (Bond et al., 1995; 

Hornsby & Horan, 1994; Kämpfer et al., 1996; Schade & Lemmer, 1994; 

Wagner et al., 1994a).  Many studies on marine environments (sediments 

and benthic) have also revealed numerous taxa as yet not isolated 

(Britschgi & Giovannoni, 1991; Fuhrman et al., 1994; Giovannoni et al., 

1996; Gray & Herwig, 1996; McCaig et al., 1994; Wise et al., 1997). 

Soil, an environment to previously thought be well characterised, has also 

been shown to contain many novel bacterial species (Bintrim et al., 1997; 

Dunbar et al., 1999; O'Donnell & Gorres, 1999; Zarda et al., 1997).  

Thermophilic mat communities in Yellowstone National Park, USA, have 

been the most informative in expanding our knowledge of phylogenetic 

diversity, especially concerning thermophiles and those species considered 

more ancestral (Ferris et al., 1996a; Hugenholtz et al., 1998b; Reysenbach 

et al., 1994; Risatti et al., 1994; Ward et al., 1998). 

1.8 METHODS TO STUDY PROKARYOTE ECOLOGY 

There are a number of methods in which to identify phylogenetic diversity 

within a community without the need for cultivation of pure isolates.  These 

methods increasingly involve the extraction or identification of 16S rRNA 

genes from a community (Figure 1.7). 
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Figure 1.7: 16S rRNA gene-based strategies to characterise 
prokaryotic communities 

Redrawn from Hugenholtz & Pace (1996). 
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1.8.1 IDENTIFYING PHYLOTYPES 

1.8.1.1 NUCLEIC ACID EXTRACTION 

To identify different phylotypes present within a community, the 

communities’ 16S rRNA genes need to be extracted.  There are a wide 

variety of methods available that enable this.  Initially, the nucleic acids 

must be extracted from the sample.  These methods are usually a 

combination of physical and chemical means to disrupt the cells while 

minimising damage caused to nucleic acids (Miller et al., 1999). 

1.8.1.2 CLONING OF PHYLOGENETIC MARKERS 

After nucleic acid purification, individual phylotypes must be separated from 

within the community.  The most commonly used technique involves the 

specific PCR amplification of 16S rRNA genes followed by cloning (Bond et 

al., 1995; Dunbar et al., 1999; Schmidt et al., 1991).  Shotgun cloning of 

community genomic fragments (Schmidt et al., 1991) and RT-PCR 

amplification of rRNA molecules (Felske et al., 1996) are other methods that 

can also provide phylogenetically useful information.  Once cloned, the 16S 

rRNA genes can then be screened by hybridisation or restriction fragment 

length polymorphism (RFLP) and sequenced. 

1.8.1.3 DENATURING GRADIENT GEL ELECTROPHORESIS 

Denaturing gradient gel electrophoresis (DGGE) involves the separation of 

PCR-amplified 16S rRNA gene segments through a denaturant concentration 

gradient contained within an acrylamide gel matrix.  The separation is based 

on differences in melting characteristics of the double-stranded DNA 

segments, which in turn is dependent on sequence differences.  The result 

is detection of a profile of 16S rRNA gene segment bands that can then be 

re-amplified and sequenced (Muyzer, 1999). 

This approach has been applied to many environments including 

Yellowstone hot spring communities (Heuer et al., 1997; Kowalchuk et al., 

1997; Muyzer et al., 1993; Ward et al., 1997).  Its greatest potential is in 
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the relatively easy comparison of different communities, or identifying the 

effect environmental changes have on the community structure (Ferris & 

Ward, 1997; Saul et al., 1999; Ward et al., 1997). 

1.8.1.4 HYBRIDISATION TECHNIQUES 

Once 16S rRNA genes have been identified from the environment, 

hybridisation probes can be designed.  These probes are then used to 

describe, either qualitatively or quantitatively, the community structure.  

The design of the probes can enable identification of groups up to domain 

level through to species level identification.  Visualisation of whole cells is 

also possible using fluorescent in situ hybridisation and microscopy (Amann, 

1995; Harmsen et al., 1997a; Kämpfer et al., 1996; Mobarry et al., 1996).  

Newer techniques involve the use of hybridisation probes in real-time PCR 

to detect groups of prokaryotes and individual species (Brandt et al., 1998; 

Woo et al., 1998). 

1.8.1.5 REAL-TIME PCR 

The LightCycler™ is a microvolume, multisample rapid air thermal cycler 

with a built-in fluorometer that allows the real-time detection of 

amplification products (Wittwer et al., 1997).  The PCR increases the levels 

of dsDNA present within the sample, which in turn can be indiscriminately 

and simply detected by the use of a fluorogenic dsDNA specific dye (e.g. 

SYBR® Green I).  In addition, several complex techniques currently in use 

enable the identification and quantification of specific PCR-products by 

fluorescence resonance energy transfer (FRET) between two fluorophores. 

1.8.1.5a Adjacent Hybridisation Probes Technique 

In the adjacent hybridisation probe methods, two oligonucleotide probes 

bind to target sites separated by a single base pair.  The 3’-end of the 

upstream probe is labeled with a donor fluorophore while the 5’-end of the 

downstream probe is labeled with an acceptor fluorophore.  The specific 

hybridisation of both probes to a single amplicon results in FRET from the 

donor fluorophore to the acceptor fluorophore, decreasing the detected 
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levels of donor fluorophore fluorescence, and increasing the detected levels 

of acceptor fluorophore fluorescence (Figure 1.8) (Wittwer et al., 1997). 

Figure 1.8: Increase in FRET by the acceptor fluorophore after 
hybridisation during PCR. 

Adopted from Wittwer et al. (1997). 

1.8.1.5b Hydrolysis Probe Technique 

A single oligonucleotide probes is designed for use with the hydrolysis 

technique.  This probe has both donor and acceptor (quencher) 

fluorophores.  During PCR, the 5’ 3’ exonuclease activity of the Taq DNA 

polymerase hydrolyses the probe, separating the two fluorophores (Figure 

1.9).  The donor fluorophore is no longer subjected to the quenching 

activity of the acceptor fluorophore and results in an increase in detected 

fluorescence from the donor fluorophore, but a decrease in detected 

fluorescence of the acceptor fluorophore (Wittwer et al., 1997). 

Figure 1.9: Decrease in FRET from the donor fluorophore after 
hydrolysis of the probe during PCR. 

Adopted from Wittwer et al. (1997). 
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1.8.2 DIFFICULTIES IN MOLECULAR CHARACTERISATIONS 

Molecular techniques surpass the traditional methods of enrichment and 

isolation in describing prokaryotic communities.  These molecular 

techniques, however, do introduce biases and errors.  The following 

describes some of the areas in which bias and errors can be introduced 

when using molecular techniques to characterise prokaryotic communities.  

1.8.2.1 DNA EXTRACTION 

To ensure that all genomes are extracted from the environment, harsh 

methods, both physical and chemical are employed.  These methods can 

damage the nucleic acids e.g. fragmentation, causing problems 

downstream.  Techniques less likely to damage the nucleic acids will not 

lyse all cells in the community and will create a community structure that 

will favour less hardy cells or species.  Purity of the nucleic acids obtained 

may also pose problems for PCR and enzyme activity (Leff et al., 1995; 

Miller et al., 1999). 

1.8.2.2 PCR AMPLIFICATION 

1.8.2.2a DNA Polymerase Error Rates 

Several problems arise when applying PCR to amplify genes from 

environmental communities.  Humic substance coextracted with 

environmental DNA is commonly known to inhibit PCR amplification 

(Jackson et al., 1997; Tsai & Olson, 1992).  Biased amplification is caused 

by differences in primer-template accessibility, primer-template formation, 

and extension efficiency for different templates (Suzuki & Giovannoni, 

1996).  Genome size and rRNA gene copy number also causes differential 

amplification in mixtures of genomic DNA (Farrelly et al., 1995; Polz & 

Cavanaugh, 1998). 

Enzymes used in PCR are known to have error rates. Taq DNA polymerase 

has an error rate of 8.0x10-6 and Pfu DNA Polymerase has an error rate of 

1.3x10-6 (Cline et al., 1996).  These low rates will not have a significant 
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effect on phylogenetic analysis.  However if multiple PCRs or reverse 

transcriptase-PCR (RT-PCR) were carried out, this misincorporation of bases 

may lead to higher error rates that may be significant. 

1.8.2.2b Chimera Formation 

Since the majority of prokaryotic species have not yet been cultured, 

sequence data used to provide phylogenetic information is obtained using 

methods such as 16S rRNA gene amplification and cloning.  This method 

has been used to study a wide variety of natural populations (Bond et al., 

1995; Britschgi & Giovannoni, 1991; Hugenholtz et al., 1998b; Moffett et 

al., 2000; Ward et al., 1990). The major flaw associated with PCR-based 

analysis of mixed populations is the creation of chimeric PCR products.  A 

study on the RDP data set has shown that up 20% of its sequences may be 

chimeric (Robison-Cox et al., 1995). 

Chimeras are formed between two DNA molecules with regions of high 

sequence similarity.  Incomplete strand synthesis during the PCR process, 

subsequent annealing to a different template and complete extension forms 

chimeras.  In a study involving barophilic bacteria, Liesack et al. (1991) 

found that chimeras were formed from low molecular weight DNA extracted 

from a mixed culture containing closely related species.  Additionally, if the 

template DNA is damaged during the lysis procedure (e.g. sonication) the 

PCR produces recombinant products.  Since harsh lysis conditions are 

required to extract DNA from environmental samples, this is likely to 

facilitate the creation of chimeras that can be seen in a number of studies 

(Byers et al., 1998; Kopczynski et al., 1994; Moyer et al., 1995; Schmidt et 

al., 1991). 

There are a variety of methods to detect chimeric sequence data available 

including covariation analysis and analysis of predicted secondary structure.  

The most widely used methods rely on nearest neighbour analysis (e.g. 

Chimera Detection at RDP II).  A sequence is split into two parts, and if the 

affiliation of the two parts differ to that of the whole, a chimera is 

suspected.  If the sequence has no close relatives in the database, it is 
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likely that no method will be able to detect the likelihood of it being 

chimeric (Kopczynski et al., 1994; Robison-Cox et al., 1995). 

1.8.2.2c 16S rRNA Gene Heterogeneity 

Hybridisation studies have shown the presence of a number of copies of 16S 

rRNA genes within a single genome (Farrelly et al., 1995).  Amann et al. 

(2000) has shown that Haloarcula marismortui has two 16S rRNA that are 

5% dissimilar.  Analysis of 16S rRNA genes amplified from a community 

may not reflect the true phenotypic heterogeneity that may be present as it 

is not clear that a single sequence represents a distinct organism, or one of 

many genes from one organism. 

1.8.2.3 SEQUENCE DATA ANALYSIS 

The number of sequences contained within the dataset limits the 

comparative sequence analysis.  The RDP contains over 19,833 aligned SSU 

rRNA gene sequences (Maidak et al., 2001) but this is only a fraction of the 

total estimated prokaryotic diversity.  Novel sequences obtained from 

environmental samples may not exhibit high similarity to sequences within 

the database.  This leads to the question whether the sequences correspond 

to novel uncultured prokaryotes or represent phylogenetic taxa that have 

poor sequence data. 

1.8.3 VALIDATION OF PHYLOGENETIC INFORMATION 

The best possible substantiation for sequence data obtained from the 

environment is the subsequent enrichment and pure isolation of the 

prokaryote.  At present only a minority of prokaryotes can be isolated ex 

situ, and only a few studies are able to direct culturing techniques to isolate 

detected, yet novel prokaryotes (Huber et al., 1998; Hugenholtz, 2000). 

Fluorescent in situ hybridisation is another technique that enables the 

clarification that sequence data obtained do belong to cells in the 

environment and are not artefacts of PCR.  It also allows the determination 
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of cellular activity, as metabolically active cells will have a higher content of 

rRNA molecules that can bind SSU rRNA probes (Amann et al., 1995). 
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2.1 REAGENTS AND CHEMICALS 

Unless otherwise specified, all reagents and chemicals used are molecular 

biology grade. 

2.2 BUFFERS 

TE buffer 10mM Tris-Cl (pH 7.4), 1mM EDTA (pH 8.0). 

TAE buffer 40mM Tris-acetate, 2mM EDTA. 

10x PCR buffer 50mM Tris-Cl (pH 8.3), 20mM MgCl2, 2.5mg/mL bovine 

serum albumin (BSA). 

6x loading buffer 0.25% bromophenol blue, 40% sucrose.  Store at 4ºC. 

2.3 MEDIA 

2.3.1 LURIA BERTANI (LB) MEDIA 

LB media is prepared by adding 10g tryptone, 5g yeast extract and 5g NaCl 

to 1L of dH2O.  The pH of the media was adjusted to 7.0 with 10M NaOH 

prior to sterilisation by autoclaving at 121ºC for 15 minutes. 

LB agar plates were produced by amending LB media with 1.5% agar and 

sterilising by autoclaving at 121ºC for 15 minutes.  After cooling to 

approximately 50ºC, the plates are poured and stored at 4ºC. 

If required, ampicillin is added to LB media and plates after sterilisation to a 

final concentration of 100µg/mL.  Ampicillin amended media was stored at 

4ºC for 1 month. 

To allow the blue/white colour selection of plasmid-containing clones, 100µL 

of 100mM isopropyl-β-D-thiogalactopyranoside (IPTG) and 20µL of 50mg/mL 

5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal) was spread over the 

surface of LB agar plates containing 100µg/mL ampicillin.  The solutions 

were allowed to absorb for 30 minutes at 37ºC prior to use. 
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2.3.2 SOC MEDIA 

SOC media used to aid in the recovery of transformed E. coli XL-10 cells.  

SOC media is prepared by adding 2.0g tryptone, 0.5g yeast extract, 1mL 

1M NaCl, and 0.25mL 1M KCl to 90mL of ddH2O.  After sterilisation by 

autoclaving at 121ºC for 15 minutes, 1mL of filter-sterilised 2M Mg2+ 

solution (1M MgCl2.6H2O/1M MgSO4.7H2O) and 1mL of 2M glucose solution 

was added.  Sterile ddH2O was added to adjust the final volume to 100mL 

and the media again filter-sterilised (0.2µm filter, Sarstedt Australia Pty 

Ltd). 

2.3.3 MEDIA D 

2.3.3.1 MEDIA D 

(Brock & Freeze, 1969; Castenholz, 1969) 

Media D is used in the enrichment and isolation of Thermus and 

Meiothermus.  It is prepared by adding 50mL of 20x Media D Stock Solution 

(Section 2.3.3.2), 1g tryptone, and 1g yeast extract to 1L of dH2O.  The pH 

was adjusted to 8-8.2 with NaOH prior to dispensation and sterilisation by 

autoclaving at 121ºC for 15 minutes. 

2.3.3.2 MEDIA D 20X STOCK SOLUTION 

(Brock & Freeze, 1969; Castenholz, 1969) 

The 20x stock solution of Media D is prepared by adding 2g nitrilotriacetic 

acid, 1.2g CaSO4.2H2O, 2µg MgSO4.7H20, 0.16µg NaCl, 2.06g KNO3, 13.78g 

NaNO3, 2.22g Na2HPO4, 1 mL 0.3% FeCl3, and 10 mL Nitch’s Micronutrient 

Solution (Section 2.3.3.3) to a final volume of 1L dH2O.  To prevent the 

growth of contaminating organisms, the pH was adjusted to 3 with HCl and 

the media was stored at 4ºC. 
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2.3.3.3 NITCH’S MICRONUTRIENT SOLUTION 

(Brock & Freeze, 1969; Castenholz, 1969) 

Nitch’s Micronutrient solution is prepared by adding 0.5mL H2SO4, 2.28g 

MnSO4.H2O, 0.5g ZnSO4.7H2O, 0.5g H3BO3, 0.016g CuSO4, 0.25g 

Na2MoO4.2H2O, and 0.46g of CoCl2.6H2O in 1L of dH2O.  The solution was 

sterilised by autoclaving at 121ºC for 15 minutes. 

2.3.4 TRYPTONE YEAST EXTRACT GLUCOSE (TYEG) MEDIA 

2.3.4.1 TRYPTONE YEAST EXTRACT GLUCOSE (TYEG) MEDIA 

(Patel et al., 1985) 

TYEG media is used in the routine isolation of chemoheterotrophic anaerboic 

prokaryotes, especially members of the order Clostridiales.  TYEG is 

prepared by adding 0.2g MgCl2, 0.9g NH4Cl, 0.75g KH2PO4, 1.5g K2HPO4, 

9mL Zeikus’ Trace Element Solution (Section 2.3.4.2), 5µL 10% FeSO4, 1mL 

0.2% resazurin, 5mL Wolin’s Vitamin Solution (Section 2.3.4.3), 10g 

tryptone, 3g yeast extract, and 5g glucose to a final volume of 1L of dH2O.  

The pH was adjusted to 7 with 5M KOH prior to dispensation and 

sterilisation.  The media was prepared as described previously (Balch et al., 

1979; Hungate, 1969; Macy et al., 1972) under a stream of oxygen-free 

nitrogen, and dispensed in 20mL volumes into serum bottles or 5 or 10mL 

volumes into Hungate tubes and autoclaved at 121°C for 20 minutes.  Prior 

to inoculation, Na2S.9H20 (2%) and NaHCO3 (10%) were injected from 

anaerobic sterile stock solutions to obtain final concentrations of 0.04% and 

0.2% respectively. 

2.3.4.2 ZEIKUS’ TRACE ELEMENT SOLUTION 

(Zeikus et al., 1979) 

Zeikus’ trace element solution is prepared by adding 0.2g FeCl3.4H2O, 0.1g 

MnCl2.4H2O, 17mg CoCl2.6H2O, 0.1g CaCl2.2H2O, 0.1g ZnCl2, 0.2g CuCl2, 

0.01g H3BO3, 0.01g NaMoO4.2H2O, 1.0g NaCl, 0.02g Na2SeO3, and 12.5g 
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nitrilotriacetic acid to 1L of dH2O.  The pH of the solution was adjusted to 

6.5 prior to sterilisation at 121ºC for 15 minutes.  The sterile trace element 

solution was stored at 4ºC. 

2.3.4.3 WOLIN’S VITAMIN SOLUTION 

(Wolin et al., 1963) 

Wolin’s vitamin solution is prepared by adding 2mg biotin, 2mg folic acid, 

10mg pyridoxine-HCl, 5mg riboflavin, 5mg thiamine, 5mg nicotinic acid, 

5mg pantothenic acid, 0.1mg vitamin B12, 5mg para-amino benzoic acid, 

and 5mg thiotic acid to 1L of sterile ddH2O.  The solution was filter-sterilised 

(0.2µM, Sarstedt Australia Pty Ltd, Australia) and stored at 4ºC. 

2.4 SAMPLE COLLECTION 

2.4.1 SAMPLE SITE: THE NEW LORNE BORE 

The New Lorne bore (registered bore number 17263) is situated near 

Blackall in central Queensland (24º 54’ 48’’S, 145º 08’ 18’’E) (Figure 2.1), 

some 1000 km northwest of Brisbane, Queensland, Australia.  It was drilled 

on October 29th, 1966 and has a depth of 1613m.  The bore water has an 

outflow temperature of 89ºC and a flow rate of 7.56L/s.  Results of a 

chemical analysis of the water are shown in Table 2.1.  The water from the 

New Lorne bore has a sodium-bicarbonate-chloride hydrochemistry that is 

typical of bore waters found in central Queensland (Habermahl, 1996). The 

bore outlet empties into a small pool approximately 1m3 in volume that has 

a temperature of 88ºC (Figure 2.2).  This pool then flows into an open 

drainage system allowing the water temperature to decrease to ambient 

levels (Figure 2.3).  The New Lorne bore was chosen for this study due to 

the high outlet temperature and the open drainage system that provided a 

unique temperature gradient. 



General Methods and Protocols 

 50

Figure 2.1: Map of Queensland showing the New Lorne Bore site 

Map produced by SunMap.  Obtained from http://www.queensland-holidays.com.au.  Arrow 

indicates approximate position of the New Lorne Bore (registered bore number 17263). 

 

New Lorne bore 

http://www.queensland-holidays.com.au/
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Table 2.1: Chemical analysis of the water from the New Lorne Bore 

Conductivity 540µS/cm 

Temperature 89ºC 

pH 8.5 

Si 60mg/L 

Total Ions 430.22mg/L 

Total Solids 360.60mg/L 

Hardness 5 

Alkalinity 217 

Sodium Absorption Ratio 22.4 

RAH 4.22 

Na 3.7mg/L 

Ca 2.0mg/L 

Mg 0.1mg/L 

Mn 0.01mg/L 

HCO3 255mg/L 

Fe 0.01mg/L 

CO3 4.5mg/L 

Cl 38mg/L 

F 2.1mg/L 

NO3 0.5mg/L 

SO4 4.3mg/L 

Data obtained from the Department of Natural Resources, Queensland, Australia.  Chemical 

analysis was carried out in 1991. 

2.4.2 COLLECTION OF SAMPLES 

All samples were stored on ice in the field and in transit.  In the laboratory, 

the samples were stored at 4ºC. 

Water samples collected from the bore outlet pipe and pool (Figure 2.2) 

were each taken in sterilised 2L Schott bottles.  Sediment samples from the 

bottom of the pool (Figure 2.2) were collected in sterilised 250mL Schott 

bottles. 
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A number of filamentous mat communities were selected for analysis.  

These were a grey coloured community at 75ºC (Figure 2.4), a red coloured 

community at 66ºC (Figure 2.5), a green coloured community at 57ºC 

(Figure 2.6), and a brown coloured community at 52ºC (Figure 2.7).  Each 

community had approximately 5 to 10g of filamentous growth (wet weight) 

collected and stored in 50mL screw cap tubes (Sarstedt Australia Pty Ltd) 

with either sterile TE buffer (pH 7.4) or water taken from the drain near the 

community.  Sediment slurry samples near each community were also 

taken and stored in 100mL sterilised Schott bottles. 

2.5 LIGHT AND ELECTRON MICROSCOPY 

Cell morphology was observed using a Nikon Optiphot microscope equipped 

with a Nikon UFX-IIa camera attachment and a FX-35WA camera.  

Examination slides were prepared using either liquid culture or emulsifying a 

small amount of colony grown on solid media.  Photographs were taken 

using Kodak 135/36 T400CN black and white film. 

Electron microscopy was performed as previously described (Andrews & 

Patel, 1996).  Gram reaction was performed as previously described (Collee 

et al., 1996). 
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Figure 2.2: Bore outlet pipe and pool of the New Lorne Bore 

The temperatures at the outlet and in the pool are 89ºC and 88ºC respectively. 

 

Figure 2.3: Open drainage system present at the New Lorne bore 

The open drain allows a temperature gradient from 89ºC to ambient temperatures to form. 
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Figure 2.4: Grey coloured filamentous growth 

The grey coloured community was present at 75ºC in the New Lorne bore open drainage 

system. 

 

Figure 2.5: Red coloured filamentous growth 

The red coloured community was present at 66ºC in the New Lorne bore open drainage 

system. 
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Figure 2.6: Green coloured filamentous growth 

The green coloured community was present at 57ºC in the New Lorne bore open drainage 

system. 

 

Figure 2.7: Brown coloured filamentous growth 

The brown coloured community was present at 52ºC in the New Lorne bore open drainage 

system. 
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2.6 DNA EXTRACTION AND PURIFICATION 

2.6.1 DNA EXTRACTION FROM PURE CULTURES FOR PCR 

DNA was extracted from pure cultures and enrichments following a 

modification of Marmur’s method (Marmur, 1961).  Cells from 10-30mL of a 

late log phase culture (24-48hr old) were harvested by centrifuging at 

5400rpm for 5 minutes (Sigma 4K15, Quantum Scientific Pty Ltd, Australia).  

The pellet was resuspended in 487µL of TE buffer (pH 7.4), 8µL of lysozyme 

(50mg/mL), 40µL of achromopeptidase (10mg/mL) and incubated for 1 

hour at 37ºC.  30µL of 10% SDS and 3µL of Proteinase K (20mg/mL) was 

added and the solution was incubated at 50ºC for 1 hour.  The cell lysis 

procedure was checked by phase-contrast microscopy.  5M NaCl (100µL) 

and 80µL of a solution containing 10% CTAB/0.7M NaCl were added.  The 

mixture was vortexed and incubated at 65ºC for 10 minutes.  DNA was 

purified from the suspension by extracting with equal volumes of 

chloroform:iso-amyl-alcohol (24:1), then phenol:chloroform:iso-amyl-

alcohol (25:24:1).  Chromosomal DNA was recovered by adding 450µL of 

isopropanol and spinning at 14000rpm for 15 minutes in a microcentrifuge 

(Sigma 1-15, Quantum Scientific Pty Ltd, Australia).  The chromosomal DNA 

pellet was then washed with 250µL of 70% ethanol, dried and resuspended 

in 100µL TE buffer (pH 7.4).  RNase A was added to a final concentration of 

200µg/mL before incubating for 30 minutes at room temperature.  

Chromosomal DNA was checked by agarose gel electrophoresis (Section 

2.7). 

2.6.2 DNA EXTRACTION FROM FILAMENTOUS GROWTH FOR PCR 

Approximately 2g (wet weight) of the filamentous material was added to 

5mL of TE buffer (pH 7.4).  Filamentous growth was disrupted by sonication 

for 5 seconds and chromosomal DNA was extracted from 1mL of this 

suspension as described above (Section 2.6.1). 
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2.6.3 DNA EXTRACTION FROM SEDIMENTS FOR PCR 

DNA was extracted from sediments following a modification of the 

procedure described by Porteous et al. (1994).  Approximately 100mg of 

sediment was resuspended in 350µL of Solution A (250mM NaCl; 100mM 

EDTA, pH 8.0).  10µL of lysozyme (50mg/mL) and 40µL of 

achromopeptidase (10mg/mL) were added and the solution incubated at 

37ºC for 1 to 3 hours.   350µL of Solution B (250mM NaCl; 250mM EDTA, 

pH 8.0; 4% SDS) and 50µL of 5M guanidine thiocyanate were added.  The 

solution was vortexed and incubated at 65ºC for 1-3 hours.  The solution 

was centrifuged at 14000rpm for 15 minutes at 4ºC and the supernatant 

was transferred to a sterile 1.5mL microcentrifuge tube.  The DNA was 

precipitated following the addition of 500µL cold isopropanol, incubation for 

30 minutes at -20ºC, and centrifugation at 14000rpm for 15 minutes at 4ºC 

(Sigma 1-15, Quantum Scientific Pty Ltd, Australia).  The resulting pellet 

was washed with 500µL of 70% ethanol and centrifuged at 14000rpm for 15 

minutes (Sigma 1-15, Quantum Scientific Pty Ltd, Australia).  The ethanol 

was removed and the pellet allowed to air dry.  Once dry, the DNA was 

resuspended in an appropriate volume (20 to 50µL) of TE buffer (pH 7.4).  

RNase A was added to a final concentration of 200µg/mL mL before 

incubating for 30 minutes at room temperature.  Chromosomal DNA was 

checked by agarose gel electrophoresis (Section 2.7). 

2.6.4 DNA EXTRACTION FROM PURE CULTURES FOR DNA-DNA 

HYBRIDISATION AND G+C MOL% CALCULATION 

Cells from a 1L liquid culture in late log phase were pelleted by 

centrifugation at 3000g for 10 minutes.  The pellet was resuspended in 

10mL in TE buffer (pH 7.4) and lysozyme and achromopeptidase were 

added to final concentrations of 1mg/mL each.  The suspension was 

incubated at 37ºC overnight.  SDS and proteinase K is added to final 

concentrations of 1% and 0.1mg/mL respectively and incubated at 60ºC for 

3 hours.  DNA was purified from the suspension by successive extractions 

with equal volumes of chloroform:iso-amyl-alcohol (24:1) and 

phenol:chloroform:iso-amyl-alcohol (25:24:1). 
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2 volumes of cold 100% ethanol was added to the tube and mixed by gentle 

inversion.  High molecular weight DNA from the ethanol-aqueous interface 

was recovered by spooling and subsequently dissolved in TE buffer (pH 

7.4).  RNase A was added to a final concentration of 200µg/mL before 

incubating for 30 minutes at room temperature.  Chromosomal DNA was 

assessed by agarose gel electrophoresis (Section 2.7) and quantitated as 

described in Section 2.12. 

The RNase A was removed by successive extractions with equal volumes of 

chloroform:iso-amyl-alcohol (24:1) and phenol:chloroform:iso-amyl-alcohol 

(25:24:1).  Ethanol precipitation and centrifugation at 14000rpm for 15 

minutes recovered the high-molecular weight DNA.  The chromosomal DNA 

pellet was then washed with 500µL of 70% ethanol and air-dried. 

2.7 AGAROSE GEL ELECTROPHORESIS 

Agarose gel electrophoresis was performed as previously described 

(Sambrook et al., 1989).  Agarose gel solutions of 0.8% to 1.0% are 

prepared by dissolving DNA grade agarose powder in 1x TAE buffer (Section 

2.2) in a microwave oven.  The solution was cooled to approximately 50ºC 

before ethidium bromide was added to a final concentration of 0.1µg/mL.  

The molten gel was poured into a casting tray and allowed to set.  After 

setting, the gel was placed in a horizontal electrophoresis unit and 1x TAE 

buffer added until the gel was submerged.  The samples were prepared by 

adding a 0.2 volume of a 6X loading buffer (Section 2.2) prior to loading.  

To standardise gels, 500ng of λ DNA/Hind III marker or 500ng of a Low 

Mass Ladder was run parallel with the samples.  Electrophoresis occurred at 

5V/cm (80V for 50mL gels and 120V for 100mL gels) until the dye front 

reached an appropriate distance from the well (usually one half to three-

quarters of the gel length).  DNA bands were visualised by long wavelength 

ultraviolet radiation.  Digital images of the ethidium bromide stained gels 

were captured using a UVP GDAS 1200 Gel Documentation Analysis System 

(Pathtech Pty Ltd, Australia) and edited using a simple image editor (e.g. 

PaintShop Pro v4.12). 
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2.8 OLIGONUCLEOTIDES USED IN PCR AND SEQUENCING 

Amplification and sequencing oligonucleotides used have been described 

previously (Redburn & Patel, 1993) and are listed in Table 2.2.  Primers 

were resuspended to a stock concentration of 200µM in TE buffer (pH 7.4).  

Amplification and sequencing primers were diluted in 10mM Tris-Cl (pH 8.5) 

to 50µM and 3.2µM respectively.  All primers were stored at –20ºC. 

Table 2.2: Oligonucleotides used in PCR and sequencing 

Primer E. coli position Sequence 5’  3’ 

Amplification   

Fd1 8-27 AGA GTT TGA TCC TGG CTC AG 

Rd1 1542-1526 AAG GAG GTG ATC CAG CC 

Sequencing   

F1 339-357 CTC CTA CGG GAG GCA GCA G 

F1.1 519-536 CAG CAG CCG CGG TAA TAC 

F2 785-805 CAG GAT TAG ATA CCC TGG TAG 

F3 907-926 AAA CTC AAA GGA ATT GAC GG 

F4 1391-1406 TGT ACA CAC CGC CCG T 

R1 357-342 CTG CTG CCT CCC GTA G 

R2 536-519 GTA TTA CCG CGG CTG CTG 

R3 802-785 CCA GGG TAT CTA ATC CTG 

R4 926-907 CCG TCA ATT CCT TTG AGT TT 

R5 1115-1100 GGG GTT GCG CTC GTT G 

R6 1513-1494 TAC GGT TAC CTT GTT ACG AC 

Primer list is adapted from Redburn & Patel (1993). 

2.9 PCR AMPLIFICATION OF 16S RRNA GENES 

The polymerase chain reaction (PCR) was used to amplify the 16S rRNA 

genes from chromosomal DNA.  Reactions were prepared on ice in sterile 

0.2mL thin-wall tubes (Quantum Scientific Products Pty Ltd, Australia).  

Chromosomal DNA concentrations were titrated to optimise the PCR 

amplification for a given reaction.  Concentrations ranged from neat to 10-2, 

serially diluted in sterile TE buffer (pH 7.4). 
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Reactions consisted of 5µL of 10x PCR buffer, 0.5µL of 20mM dNTPs (5mM 

dATP, 5mM dGTP, 5mM dCTP, and 5mM dTTP), 1µL of 50µM Fd1 primer (see 

Table 2.2), 1µL of 50µM Rd1 primer (see Table 2.2), 0.2µL of 5U/µL of Taq 

DNA Polymerase (Promega Corp.), 2µL of chromosomal DNA, and 40.3µL of 

sterile ddH2O. 

The PCR was carried out in a RapidCycler (Idaho Technology Inc., USA) with 

the following parameters: 1 cycle of 94ºC for 2 minutes; and 30 cycles of 

94ºC for 1 minute, 50ºC for 1 minute, 74ºC for 1 minute and 30 seconds 

with a slope of 9.9.  No mineral oil is added to the PCR.  Each PCR run 

contained a negative control (2µL sterile dH2O instead of template DNA) and 

a positive control (2µL of known amplifiable DNA instead of template DNA).  

A 5µL aliquot of each PCR was checked by agarose gel electrophoresis. 

2.10 PURIFICATION OF PCR PRODUCTS 

PCR products from three reactions were pooled and purified using QiaQuick 

PCR Purification Spin Columns as per manufacturer’s instructions (Qiagen 

Pty Ltd, Australia). 

If gel purification was required, the PCR amplification reactions were pooled 

and precipitated to reduce the sample volume loaded onto the gel.  Adding 

2 volumes of chilled 100% ethanol to the PCR products and centrifuging at 

14000rpm (Sigma 1-15, Quantum Scientific Pty Ltd, Australia) carried out 

the precipitation.  The supernatant was removed and the pellet allowed to 

dry before resuspending in 10-20µL of TE buffer (pH 7.4). 

Agarose gels (0.8%) were prepared and the entire PCR products were 

electrophoresed.  A gel slice containing the desired DNA was excised using 

sterile scalpel blades and placed in a sterile pre-weighed microcentrifuge 

tube.  The PCR-amplified DNA was purified using QiaQuick Gel Purification 

Spin Columns as per manufacturer’s instructions (Qiagen Pty Ltd, Australia) 

and eluted in 30µL of 10mM Tris-CL (pH 8.5).  The elutant was assessed by 

agarose gel electrophoresis and stored at –20ºC. 
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2.11 PLASMID EXTRACTION AND PURIFICATION 

Plasmid DNA was extracted from 1.5mL LB cultures containing 100µg/mL 

ampicillin following overnight incubation at 37ºC with shaking.  The 

plasmids were extracted and purified using Qiagen’s QIAprep® Miniprep 

columns following the manufacturer’s instructions.  The purified plasmid 

extracts were checked by agarose gel electrophoresis. 

2.12 NUCLEIC ACID QUANTITATION 

DNA concentration was measured spectrophotometrically using conversion 

factors of A260 1.0 = 50µg/mL for double stranded DNA (Sambrook et al., 

1989). 

2.13 CREATION OF 16S RRNA GENE CLONE LIBRARIES 

2.13.1 PREPARATION OF COMPETANT ESCHERICHIA COLI XL-10 

CELLS 

N.B.  All resuspension of cell pellets were carried out by gentle agitation, 

not vortexing. 

Stock cultures were prepared by inoculating 25mL of LB broth (Section 

2.3.1) with a single E. coli XL-10 colony grown on LB agar plates at 37ºC.  

The 25mL culture was incubated at 37ºC with shaking overnight.  This was 

then used to inoculate 500mL of pre-warmed LB broth.  This culture was 

grown at 37ºC with shaking until the OD600 reached 0.4 (3 to 4 hours).  The 

culture was then chilled on ice for 30 minutes before the cells were 

harvested by centrifugation at 3000g for 10 minutes at 4ºC.  The cells were 

twice washed with decreasing amounts of cold sterile ddH2O (250mL then 

40mL) and harvested by centrifuging at 3000g for 10 minutes at 4ºC.  Once 

washed, the cells were resuspended in 10mL of cold sterile 20% glycerol 

before pelleting at 5400rpm for 10 minutes at 4ºC (Sigma 4K-15, Quantum 

Scientific Pty Ltd, Australia).  Once pelleted, the supernatant was removed 

and the cells resuspended in 2mL of 10% glycerol.  Aliquots of 50µL were 
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placed into sterile 1.5mL microcentrifuge tubes, snap-frozen by dropping in 

liquid nitrogen, and stored at –80ºC. 

For electroporation, one aliquot of 50µL of frozen E. coli XL-10 cells was 

used to inoculate 5mL of LB broth.  This was grown at 37ºC for 3 to 4 hours 

(with shaking).  Centrifuging at 5400rpm at 4ºC for 10 minutes pelleted the 

cells.  The cells were successively washed with 2mL of sterile cold ddH2O 

three times.  The final suspension volume of cells was 50µL of sterile cold 

ddH2O. 

2.13.2 LIGATION AND TRANSFORMATION 

Purified PCR product was ligated using a TA cloning strategy (Zhou et al., 

1995) into the pGEM-T Easy Vector according to the manufacturer’s 

instructions (Promega Corporation, USA).  1µl of the ligation mix was 

electroporated into a 50µL volume of freshly prepared competent E. coli XL-

10 cells.  Electroporation as described by Dower et al. (1988) took place in 

Gene Pulser® II (Bio-Rad Laboratories Australia Pty Ltd) in Gene Pulser® 

cuvettes (Bio-Rad Laboratories Australia Pty Ltd) with an electrode gap of 

0.2cm.  Settings used were a voltage of 1.75kV; 25µF capacitance; and 

200Ω resistance. 

After electroporation, the cells were immediately suspended in 950µL of 

SOC media (Section 2.3.2) and incubated for 90 minutes at 37ºC with 

shaking.  100µL of the transformation culture were then plated on LB agar 

plates supplemented with 100µg/mL ampicillin, IPTG, and X-Gal and 

incubated overnight (Section 2.3.1).  Positive clones were picked using the 

blue/white colour selection capacity and replated. 

2.14 AUTOMATED DYE TERMINATOR CYCLE SEQUENCING 

Sequence reactions were prepared on ice in sterile 0.6mL tubes.  Reactions 

consisted of 20ng purified PCR product or 300-500ng purified plasmid 

preparation, 1µL of 3.2µM primer (Table 2.2), 4µL of ABI PRISM BigDye 

Terminator Cycle Sequencing Ready Reaction Mix (Applied Biosystems, 

Australia), and sterile ddH2O to a final volume of 20µL.  An overlay of 40µL 
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of sterile mineral oil was added.  Thermal cycling was carried out in a 

Corbett Research Thermal Sequencer (FTS-1) following the ABI 

recommended cycling program of 25 cycles of 96ºC for 30 seconds, 50ºC 

for 15 seconds, 60ºC for 4 minutes. 

The sequence products were purified using ABI’s recommended ethanol 

precipitation for BigDye Terminators by adding the 20µL sequencing 

reaction volume to 80µL of 80% ethanol.  The solution remained at room 

temperature for a minimum of 15 minutes, but less than 24 hours before 

centrifuging at 14000rpm in a Sigma Microcentrifuge (1-15) for 20 minutes.  

The supernatant was carefully removed by aspiration.  Adding 250µL of 

70% ethanol and centrifuging for 10 minutes washed the pellet.  Again the 

supernatant was removed by aspiration, and the pellet dried by heating to 

95ºC for 1 minute in a Thermoline heating block (DB-1). 

Sequence reaction products were stored in the dark at 4ºC prior to 

electrophoresis on a 4.8% denaturing polyacrylamide gel.  Electrophoresis 

was performed on an Applied Biosystems 377 DNA sequencer with 96-lane 

upgrade (Applied Biosystems, Australia) with a 0.2mm thick comb, on 36cm 

well-to-read plates for 7 hours at 1.68kV (Molecular Biology Facility, Griffith 

University, Brisbane, Qld, Australia). 

2.15 PHYLOGENETIC ANALYSIS 

Sequence data was imported into the sequence editor BioEdit v5.0.1 (Hall, 

1999) and the base calling examined.  A contiguous consensus sequence 

was obtained for each phylotype or isolate.  The full sequence was aligned 

using the RDP Sequence Aligner program (Maidak et al., 2001).  The 

consensus sequence was then manually adjusted to conform to the 16S 

rRNA secondary structure model (Winker & Woese, 1991). 

A non-redundant blastn search of the full sequence through GenBank 

(Altshul et al., 2001; Benson et al., 1999) identified its closest relative.  

Sequences used in the phylogenetic analysis were obtained from the RDP 

(Maidak et al., 2001) and GenBank (Benson et al., 1999).  Positions of 

sequence and alignment ambiguity were omitted.  Comparative 
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phylogenetic analysis was carried out using the TreeCon program (Van de 

Peer & De Wachter, 1994).  Pair-wise evolutionary distances were 

calculated using the method of Jukes and Cantor (Jukes & Cantor, 1969).  

Dendrograms were constructed using the neighbor-joining method (Saitou 

& Nei, 1987).  Confidence in the tree topology was determined by using 100 

bootstrapped trees (Felsenstein, 1985) and expressed as a precentage near 

the branching point. 
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3.1 INTRODUCTION 

Naturally occurring thermal environments exist in many parts of the world.  

Many of these are volcanically heated (Reysenbach et al., 2000; Saul et al., 

1999), marine (Harmsen et al., 1997b; Marteinsson et al., 1997; Moyer et 

al., 1995), or oil field environments (Beeder et al., 1994; Nilsen et al., 

1996).  The Great Artesian Basin of Australia is dissimilar to other well-

studied environments and provides a unique niche for prokaryotic 

communities to develop. 

The Great Artesian Basin of Australia is a deep subsurface geothermally 

heated freshwater aquifer.  It underlies arid and semi-arid regions of 

Australia and lies beneath approximately 20% of Australia's landmass 

(Habermahl, 1980).  Its waters are chemically distinctive from volcanic 

thermal environments (Mazor, 1995).  The accessed water is mainly 

distributed through open drain runoff channels for uses in stock watering 

and irrigation (Habermahl, 1980). 

The temperature at the sources of these bores can be as high as 100ºC with 

temperatures in runoff channels cooling to ambient thereby producing 

unique temperature gradients in which distinct microbial communities 

develop.  These prokaryotic communities are separated spatially and can be 

distinguished on general characteristics such as colour, morphology, and 

temperature at which the community is found. 

Characterising microbial communities using traditional enrichment and 

isolation techniques results in limited success (Amann et al., 1995; Saul et 

al., 1999; Ward et al., 1997).  To further understand natural microbial 

communities, molecular methods have been introduced.  Many of these 

approaches are based on the use of the 16S rRNA gene as a phylogenetic 

and evolutionary marker (Ferris et al., 1996a; Heuer et al., 1997; Muyzer & 

Ramsing, 1995; Risatti et al., 1994; Weisburg et al., 1991).  The 

comprehensive use of the 16S rRNA gene in microbial community studies 

has resulted in large databases, such as the RDP (Maidak et al., 2001), 

which provides ribosome related data and services. 
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Here the culture-independent method of 16S rRNA gene amplification, 

cloning and sequencing to phylogenetically characterise the microbial 

communities found in the bore pool sediment and the run-off channel of a 

Great Artesian Basin bore is detailed. 

3.2 MATERIALS AND METHODS 

3.2.1 SITE AND SAMPLE COLLECTION 

Sediment and filamentous mat samples were collected from the run-off 

channel of the New Lorne Bore situated near Blackall, Central Queensland, 

as described in Section 2.4.1.  The bore outlet pool sediment and four 

filamentous mat communities were taken for analysis.  These included the 

bore pool sediment at 88ºC, a grey mat community at 75ºC, a red mat 

community at 66ºC, a green mat community at 57ºC, and a brown mat 

community at 52ºC. 

3.2.2 DNA EXTRACTION AND 16S RRNA GENE AMPLIFICATION 

Chromosomal DNA was extracted from the bore pool sediment as specified 

in Section 2.6.3.  Chromosomal DNA was extracted from the filamentous 

mat communities as described in Section 2.6.2.  Chromosomal DNA was 

checked by agarose gel electrophoresis as detailed in Section 2.7. 

The communal 16S rRNA genes are amplified from the chromosomal DNA 

by PCR as described in Section 2.9.  PCR amplification and purity was 

checked by agarose gel electrophoresis as detailed in Section 2.7.  The PCR 

products from three reactions were pooled and purified using QiaQuick PCR 

Purification Spin Columns as per manufacturer’s instructions (Qiagen Pty 

Ltd, Australia). 

3.2.3 CLONING AND SEQUENCING 

The purified PCR product was ligated, electrotransformed into competent E. 

coli cells and positive transformants selected as detailed in Section 2.13.2.  



Molecular Characterisation of Microbial Communities from Australia’s Great Artesian Basin 

 68

The extraction of plasmids is detailed in Section 2.11 and inserts were 

detected by agarose gel electrophoresis as specified in Section 2.7. 

Sequencing of plasmid inserts is carried out as described in Section 2.14. 

3.2.4 SEQUENCE EDITING AND PHYLOGENETIC ANALYSIS 

The sequence data was corrected, collated and phylogenetically analysed as 

described in Section 2.15.  A maximum limit of 98% similarity between 

sequences and tree topology was used to select the phylotypes.  A clone 

from each phylotype was then fully sequenced as described previously.  

Chimeras were identified using the Chimera Check program at RDP (Maidak 

et al., 2001) and the T7 and Sp6 generated sequence data.  For cases of 

chimera-ambiguity, topology of separate 3’- and 5’- dendrograms was 

examined. 

3.3 RESULTS 

3.3.1 PCR-AMPLIFIED 16S RRNA GENE CLONE LIBRARY ANALYSIS 

Total chromosomal DNA was extracted from the bore pool sediment and 

four filamentous mat communities and the 16S rRNA genes from each 

amplified and cloned.  From the bore pool sediment library, 64 

transformants were selected for further analysis.  From each filamentous 

mat community library 96 positive transformants were selected for further 

analysis.  Of these, agarose gel electrophoresis analysis reduced the 

number of plasmids containing an appropriately sized insert to 46 (bore 

pool sediment library), 68 (grey mat library), 72 (red mat library), 88 

(green mat library) and 92 (brown mat library). 

Partial sequencing of each insert using the plasmid-specific primers T7 and 

Sp6 produced an average sequence length of 519 bp and 505 bp 

respectively.  Chimera analysis of the partial sequences removed a further 

41 clones (0, sediment library; 2, grey mat library; 14, red mat library; 19, 

green mat library; and 20, brown mat library).  Phylogenetic analysis of the 

T7- and Sp6-generated sequences identified 1 phylotype from the bore pool 
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sediment library, 10 phylotypes from the grey mat library, 12 phylotypes 

from the red mat library, 16 phylotypes from the green mat library and 19 

phylotypes from the brown mat library.  Full sequences of each phylotype 

were produced. 

3.3.2 PHYLOGENETIC AND BLASTN ANALYSIS 

Table 3.1 shows the blastn results of the full-length phylotype sequences 

obtained from the bore pool sediment, grey, red, green and brown mat 

clone libraries respectively.  Blastn matches ranged from 88% to 99% and 

were spread throughout the Bacterial domain.  Table 3.2 shows a 

comparison of community members across all clone libraries.  Due to the 

number and diversity of phylogenetic groups, the analysis was divided into 

phyla or classes as defined by Boone & Castenholz (2001).  Figures 3.1 to 

3.15 are dendrograms indicating the phylogenetic placement of the 

phylotypes obtained from the analysis of all clone libraries.  Reference 

sequences used in the phylogenetic analysis were selected on the basis of 

the 16S rRNA gene sequence length and diversity present within the 

division examined. 

The output from the Chimera Check program at the RDP (Maidak et al., 

2001) detected a number of chimeric inserts.  Several ambiguous results, 

however, necessitated the creation and analysis of separate 5’ and 3’ 

phylogenetic dendrograms to elucidate the sequence’s chimeric status. 

The 16S rRNA gene sequence data produced has been deposited to 

GenBank and the accession numbers are listed in Appendix II. 
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Figure 3.1 shows a distinct relationship between clones obtained from the 

bore pool sediment, grey mat and red mat communities and members of 

the phylum Aquificae.  There is a high similarity (99%) of 16S rRNA gene 

sequences between the three GAB clones and Hydrogenobacter 

subterranea.  Only one phylotype was identified from the sediment clone 

library. 

Figure 3.1: The phylogenetic analysis of the phylotypes within the 
phylum Aquificae 

The dendrogram was created using a total of 16 sequences comprising of 3 GAB clone library 

sequences and 13 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 702 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 

The phylum Deinococci-Thermus segregates the aerobic 

chemoorganotrophic filamentous rod-shaped prokaryotes into the high-

temperature Thermus and the lower-temperature Meiothermus species.  

Members from the Thermus group were identified from the grey, red, and 

green mat communities.  The Meiothermus groups had representative in the 

red, green and brown mat communities.  There appears to be a natural 

micro-diversity of Thermus and Meiothermus present within each 

filamentous mat as shown by the spread of the clones in the phylogenetic 

analysis (Figure 3.2).  This phylogenetic diversity is discussed further in 

0.1 

Hydrogenobacter acidophilus str. 3H-1 (D16296) 

Uncultured bacterium env.OPS 6 (AF018191) 

GAB Mat Clone Sed01 

Unidentified bacterium str. EM 17 (U05661) 
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Hydrogenobacter thermophilus str. T3 (Z30189) 
GAB Red Mat Clone R57 
GAB Grey Mat Clone Y04 

Hydrogenobacter thermophilus str. TK-6 (T) (Z30214) 
Calderobacterium hydrogenophilum str. Z-829 (T) (Z30242) 

Unidentified Aquificales OPS165 (AF027105) 
Unidentified Aquificales OPT14 (AF027106) 

Aquifex aeolicus (AE000751) 
Aquifex pyrophilus str. Kol5a (M83548) 

100 72 

100 

88 

84 

99 

100 



Molecular Characterisation of Microbial Communities from Australia’s Great Artesian Basin 

 76

Chapter 4.  Clones from this phylum dominated the grey (72%), red (54%) 

and brown (34%) mat clone libraries. 

Figure 3.2: The phylogenetic analysis of the phylotypes within the 
phylum Deinococci-Thermus 

The dendrogram was created using a total of 30 sequences comprising of 12 GAB clone 

library sequences and 18 reference sequences.  GenBank accession numbers are presented 

in brackets.  The masked data set included 1280 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 

The red mat, green mat and brown mat had clones that grouped closely 

within the phylum Chloroflexi (Figure 3.3).  Each had a high similarity of 

96% to Chloroflexus auranticus.  This photosynthetic prokaryote was not 

identified in the higher temperature grey mat or sediment community. 
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Figure 3.3: The phylogenetic analysis of the phylotypes within the 
phylum Chloroflexi 

The dendrogram was created using a total of 18 sequences comprising of 3 GAB clone library 

sequences and 15 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 589 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 

One clone from the green mat community grouped closely to Nitrospira 

species within the phylum Nitrospira (Figure 3.4).  Nitrospira have only 

been found in marine (Ehrich et al., 1995) and wastewater environments 

(Burrell et al., 1998), and the identification of Nitrospira species in the GAB 

extends its known ecology. 
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Figure 3.4: The phylogenetic analysis of the phylotype within the 
phylum Nitrospira 

The dendrogram was created using a total of 11 sequences comprising of 1 GAB clone library 

sequence and 10 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 995 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 

One member from the brown mat community grouped with environmental 

clones from the phylum Verrucomicrobia (Figure 3.5). 

Figure 3.5: The phylogenetic analysis of the phylotype within the 
phylum Verrucomicrobia 

The dendrogram was created using a total of 18 sequences comprising of 1 GAB clone library 

sequence and 17 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 499 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 
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The phylum Cyanobacteria had clones from the green mat and brown mat 

communities (Figure 3.6).  Both had high similarity to each other (99%) but 

did not have high similarity to any characterised species within this group.  

The green mat clone library was dominated by this phylotype (36%). 

Figure 3.6: The phylogenetic analysis of the phylotypes within the 
phylum Cyanobacteria 

The dendrogram was created using a total of 32 sequences comprising of 2 GAB clone library 

sequences and 30 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 776 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 
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The GAB Red mat clone R38 has high similarity to the uncharacterised 

isolate 2BP-58 and a clone from thermophilic environment at Yellowstone 

National Park, USA.  The remaining GAB clones from the green and brown 

mats were deep branching within the phylum Planctomycetes and clustered 

with environmental clones from a variety of ecosystems (Figure 3.7). 

Figure 3.7: The phylogenetic analysis of the phylotypes within the 
phylum Planctomycetes 

The dendrogram was created using a total of 24 sequences comprising of 5 GAB clone library 

sequences and 17 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 849 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 
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Figure 3.8: The phylogenetic analysis of the phylotypes within the 
phylum Acidobacteria 

The dendrogram was created using a total of 26 sequences comprising of 5 GAB clone library 

sequences and 21 refernce sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 482 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 
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each other.  Members from this phylum were limited to the grey mat and 

red mat communities. 
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Figure 3.9: The phylogenetic analysis of the phylotypes within the 
phylum Bacteroidetes 

The dendrogram was created using a total of 22 sequences comprising of 3 GAB clone library 

sequences and 19 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 1095 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 

Members from the phylum Proteobacteria were identified only from the 

green and brown mat communities.  Members from the brown mat 

dominated the representatives from the α-class of the Proteobacterial 

phylum (Figure 3.10).  One clone from the green mat library (G62) had a 

high similarity to a member from the brown mat library (B35).  Of the α-

class Proteobacterial clones, only two grouped clearly with well-

characterised genera (GAB brown mat clone B10 with Porphyobacter, and 

GAB brown mat clone B53 with Azospirllum).  The remaining are associated 

with environmental clones or genera with few representatives species. 

The β- and γ-classes of Proteobacteria (Figures 3.11 and 3.12 respectively) 

included clones from both the green and brown mat communities.  All were 

deep branching with a relatively low similarity to recognised genera.  The δ-
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community (Figure 3.13).  They were both very deep branching and did not 

correlate with any recognised genera. 

Figure 3.10: The phylogenetic analysis of the phylotypes within the 
α- class of the phylum Proteobacteria 

The dendrogram was created using a total of 39 sequences comprising of 8 GAB clone library 

sequences and 31 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 1161 non-ambiguous bases. The phylogenetic 

analysis was carried out as described in Section 2.15. 
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Figure 3.11: The phylogenetic analysis of the phylotypes within the 
β-class of the phylum Proteobacteria 

The dendrogram was created using a total of 27 sequences comprising of 3 GAB clone library 

sequences and 24 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 1092 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 
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Figure 3.12: The phylogenetic analysis of the phylotypes within the 
γ-class of the phylum Proteobacteria 

The dendrogram was created using a total of 28 sequences comprising of 2 GAB clone library 

sequences and 26 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 1183 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 
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Figure 3.13: The phylogenetic analysis of the phylotypes within the 
δ-class of the phylum Proteobacteria 

The dendrogram was created using a total of 28 sequences comprising of 2 GAB clone library 

sequences and 26 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 1040 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 

Representatives from the grey, red and green mat communities were 

identified as belonging to the Firmicutes phylum (Figure 3.14).  Clones from 

the grey and red mats associated with the genus Clostridia and the green 

mat phylotype associated with the genus Sporomusa.  One phylotype from 

the grey mat clone library (Y27) affiliated with the genus Paenibacillus, 

within the class Bacilli.   
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Figure 3.14: The phylogenetic analysis of the phylotypes within the 
phylum Firmicutes 

The dendrogram is created using a total of 15 sequences comprising of 7 clone library 

sequences and 31 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 982 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 

A clone from the brown mat community correlated with a group of 

environmental clones that have no characterised relative (Figure 3.15).  

These clones come from a wide variety of environments such as the 

Antarctic, aquifers, marine environments and soils. 
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Figure 3.15: The phylogenetic analysis of the phylotype within a 
cluster of environmental clones 

The dendrogram was created using a total of 15 sequences comprising of 1 GAB clone library 

sequence and 14 reference sequences.  GenBank accession numbers are presented in 

brackets.  The masked data set included 781 non-ambiguous bases.  The phylogenetic 

analysis was carried out as described in Section 2.15. 

3.4 DISCUSSION 

3.4.1 PCR AND CLONE LIBRARY CONSTRUCTION 

A PCR-mediated approach is used to investigate the microbial communities 

associated with the New Lorne bore of the Great Artesian Basin.  Methods 

based on culturing to study microbial communities are well known to have 

intrinsic limitations that do not provide a comprehensive view of the 

populations present (Dunbar et al., 1999; Hugenholtz et al., 1998b; 

Kämpfer et al., 1996; Saul et al., 1999; Ward et al., 1997).  Culture 

independent methods, such as PCR and cloning, do have a number of 

drawbacks.  DNA extraction, amplification bias, gene copy number bias as 

well as cloning and sequencing artefacts are known to have an effect on the 

phylotypes identified (Ekendahl et al., 1994; Farrelly et al., 1995; 

Frostegård et al., 1999; Liesack et al., 1991; Wintzingerode et al., 1997). 

To ensure the DNA extraction and purification is comprehensive, rigorous 

chemical and enzymatic methods were applied.  The microscopic 

examination of lysed extracts revealed a low number of intact cells ensuring 
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that a loss of phylotypes due to incomplete lysis was minimal.  

Chromosomal DNA was titrated in the PCR in an effort to optimise 

amplification prior to ligation.  To maximise the ligation of correctly sized 

inserts, the PCR products were gel purified.  Transformation by 

electroporation of the ligated plasmids into competant Escherichi coli XL-10 

cells was chosen as electroporation produces a much higher rate of 

transformation than heat-shock transformation (Dower et al., 1988). 

Clones with inappropriately sized inserts (as shown by agarose gel 

electrophoresis) were considered negative.  All 16S rRNA gene clones 

sequenced were approximately 1500bp in length.  A phylogenetic analysis 

of partial sequences identified phylotypes from each clone library and full 

sequences for these were obtained.  Chimeric inserts were identified 

utilising the Chimera Check at RDP (Maidak et al., 2001), and in cases of 

ambiguity, separate 5’ and 3’ trees elucidated the status of inserts.  The 

Chimera Check program is most useful if the parent sequences (or close 

relatives of the parent sequences) of the chimera are available in the 

database for matching, and in some cases there was a need for further 

clarification. 

Some of the commonly occurring chimeric artefacts found in the clone 

libraries were derivatives closely related to Thermus sp. str. NMX2 A.1, 

Thermus sp. str ZFI A.2, Meiothermus ruber, Meiothermus cerberus, and 

Chloroflexus auranticus.  The chimeras from the 16S rRNA gene clone 

library from the red coloured mat were dominated by these derivatives, but 

they were not exclusive to his mat.  The chimeras from the 16S rRNA gene 

clone libraries of the Green and Brown coloured mats possessed a much 

greater diversity in their chimeric artefacts, including sequences closely 

related to Thiobacillus hydrothermalis str. R3 DSM 7121, Stenotrophomonas 

maltophilia str. N4-15, Nitrospira moscoviensis str. M-1 DSM 10035, 

Acidiphilium acidophilum, Ralstonia sp. str. TFD41, Hyphomicrobium M3 

ATCC 202122, Planctomyces brasiliensis DSM 5305, Thermomicrobium 

roseum ATCC 27502, Roseococcus thiosulfatophilus str. RB-3 DSM 8511, 

and other groups with only cloned 16S rRNA gene sequence data available.  

Of the chimeras that were fully sequences the most probable point of 
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chimera formation ranged from 690bp to 1110bp (E. coli numbering).  Of 

the parent sequences, the majority was detected in the clone libraries. 

3.4.2 BLASTN ANALYSIS 

Blastn analysis of the full sequences of the phylotypes was undertaken to 

identify their closest relatives.  Most blastn results from 16S rRNA gene 

clones that identified high similarity (>98%) were identified with isolated 

and characterised strains. Low blastn matches were not limited to clone 

sequences, with some of the closest relatives of the GAB clones belonging 

to phylogenetic groups with low numbers of characterised members. 

Interestingly, one clone (GAB Red Mat Clone R38) had 98% identity with a 

clone sequence obtained from the Obsidian Pool, Yellowstone Park, USA 

(Barns et al., 1994).  This is unusual, as the Obsidian Pool is chemically 

dissimilar to the GAB.  The Obsidian Pool (75-95ºC) is rich in reduced iron, 

sulfide, CO2, and hydrogen. The New Lorne bore in the GAB is relatively 

lower in reduced iron and sulfide, and the presence of near identical clones 

from both environments may be linked to the turnover of some other 

nutrient (e.g. hydrogen). 

The blastn analysis of the clone libraries indicated that temperature has a 

critical effect on microbial community structure.  The clone libraries from 

the environments with the highest temperatures had fewer phylogenetic 

members than those identified from environments at lower temperatures. 

Some clone library members were found in more than one clone library.  

This may have been caused by the flow of the bore water through the drain.  

However, not one phylotype was identified from all clone libraries and this 

may imply that flow through of members and their subsequent detection in 

the clone libraries is inconsequential.  The numbers of these identical clones 

from consecutive environments may indicate that they play an ecological 

role in each community. 
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3.4.3 PHYLOGENETIC ANALYSIS 

The number of prokaryotes that can be cultivated using standard techniques 

is relatively low.  It is a challenge to elucidate the roles that uncultivated 

microorganisms have in the environment based solely on molecular data.  A 

rRNA sequence does little to provide a sense of the physiological properties 

of the prokaryote responsible for that sequence.  If phylogenetic analysis, 

however, places that prokaryote within a group of prokaryotes that possess 

coherent characteristics, then it is likely that those characteristics occur in 

the uncultivated prokaryote.  Many of the GAB clones clustered with 

collections of prokaryotes that exhibit consistent phenotypic properties, and 

it is possible to surmise the phenotypic properties of the uncultured 

prokaryote.  Inferences about the metabolisms and nutrient cycles within 

the microbial communities may also be inferred from studying their 

constitutive phylogeny. 

Members from the phylum Aquificae are known to inhabit high temperature 

aquatic environments.  Hydrogenobacter species have been isolated and 

detected in hot springs, sulfur turfs and petroleum reservoirs (Kawasumi et 

al., 1984; Yamamoto et al., 1998).  This is the first time members from the 

genus Hydrogenobacter have been identified from the GAB.  As 

Hydrogenobacter are hydrogen-oxidisers and require microaerophilic 

conditions, it is not unexpected to detect their presence in this bore’s 

waters.  The high outflow temperature of 89ºC ensures that the solubility of 

oxygen is low, maintaining microaerophilic conditions, and it is within the 

range for growth of Hydrogenobacter. Clones with high similarity (98%) 

were also detected at 75ºC and 66ºC suggesting that Hydrogenobacter 

species play a role in these communities as well.  At lower temperatures, 

they were absent in the green mat community at 57ºC and the brown mat 

community at 52ºC. 

Members from the Deinococci-Thermus phylum were also detected from 

GAB.  Each mat community had representatives from this phylum.  

Phylotypes from the grey mat (75ºC) and the red mat (66ºC) clustered 

around T. scotoductus and T. igniterrae.  The green mat had one phylotype 

that grouped with T. oshimai.  Phylotypes from the red mat (66ºC) and the 
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green mat (57ºC) had a high similarity (99%) and clustered with 

Meiothermus ruber while other related phylotypes (98% similarity) from the 

green mat (57ºC) and the brown mat (52ºC) communities were present 

within the genus of Meiothermus. 

Obligately thermophilic and heterotrophic, Thermus and Meiothermus were 

first isolated from volcanic hot springs in the USA (Brock & Freeze, 1969) 

and Russia (Loginova et al., 1975) respectively.  Members from these 

genera of are well known to inhabit a variety of thermal environments and 

their presence in the GAB is expected.  Previous studies have shown that 

isolates related to Thermus aquaticus and Meiothermus ruber are easily 

cultured from this thermal aquatic environment (Byers et al., 1997; 

Denman et al., 1991).  The different phylotypes obtained from the mat 

libraries indicates a high microdiversity present in this environment.  

Studies in New Zealand (Moreira et al., 1997; Saul et al., 1999) and the 

USA (Munster et al., 1986) have also indicated a wide diversity of Thermus 

genotypes in the natural environment. 

The difference in phylotypes from the four mat communities reveals a 

definite change in the Thermus-Meiothermus populations from the highest 

temperature of 75ºC to the lowest temperature of 52ºC.  At the higher 

temperatures Thermus phylotypes were present in the grey and red 

filamentous mats, while at the lower temperatures Meiothermus phylotypes 

were present in the green and brown mats.  The red mat community had 

members from all and it is possible that it is a transitional environment for 

the dominant populations.  The green mat had one phylotype closely related 

to Thermus oshimai, different to the populations detected in the grey and 

red mats. 

The red, green and brown mats had phylotypes corresponding to 

Chloroflexus auranticus.  With similarities higher than 98%, it signifies a 

high coherence in the Chloroflexus populations from 66ºC to 52ºC.  

Chloroflexus is another species that is detected in hot spring communities.  

Thermophilic and phototrophic, Chloroflexus is usually considered to be a 

descendent of the first phototroph as it is the most phylogenetically ancient 

of the anaerobic phototrophs (Madigan et al., 2000).  Phototrophy is 
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considered to be limited to temperatures lower than 70ºC (Brock, 1967; 

Castenholz, 1969) and may be linked to the thermal stability of the 

photosynthetic apparatus.  No photosynthetic members were identified in 

the grey mat at 75ºC.  Synechococcus, a common thermophilic phototroph 

usually found in association with Chloroflexus, is easily detected in sulfur 

hot springs (Ferris et al., 1996b; Miller et al., 1998), and their absence in 

GAB is associated with the different hydrochemistry. 

The phylum Cyanobacteria is thought to be recently evolved and possess an 

oxygenic phototrophic metabolism.  The thermophilic limit on 

photosynthesis applies to this group and most are mesophilic and found in 

aquatic environments.  Cyanobacteria are commonly detected in the 

volcanic hot spring environment (Nübel et al., 1999; Ruff-Roberts et al., 

1994; Ward et al., 1998) and as they are oxygenic, are usually found in the 

top layers of mat communities.  GAB clones from the green mat (57ºC) and 

brown mat (52ºC) communities were both identified as belonging to this 

group.  A high correlation between the two (99%) indicates that a single 

dominant Cyanobacterial phylotype is present. 

The red mat phylotype R38 grouped closely with an uncharacterised 

bacterial isolate related to Gemmalla obscuriglobus in the phylum 

Planctomycetes.  The related phylotypes from the brown mat and green mat 

branched deeply within the phylum and any definitive association with a 

genus in Planctomycetes is dubious.  Within this phylum is the genus 

Isosphaera, a hot spring community member (Giovannoni et al., 1987; 

Ward et al., 1998), and the presence of deep-branching, but related, 

phylotypes in the GAB is probable. 

A relatively new and uncharacterised phylogenetic group, Acidobacteria, is 

represented by phylotypes from the red, green and brown mat clone 

libraries.  This phylogenetic group has constituents that are largely 

environmental soil clone sequences.  The sole characterised isolate, 

Acidobacterium capsulatum (Hiraishi et al., 1995), is chemoorganotrophic 

and it may indicate that the deep branching related phylotypes possess a 

similar metabolism.  The phylum is limited to temperatures lower than 

66ºC.  This study furthers the known ecology of this group. 
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The genus Rhodothermus within the phylum Bacteroidetes is represented by 

thermophilic prokaryotes that are isolated from hydrothermal vent 

ecosystems and submarine hot springs (Alfredsson et al., 1988; Sako et al., 

1996).  Affiliating phylogenetically with this genus is a number of 16S rRNA 

gene clones identified from volcanic hot springs in the USA (Hugenholtz et 

al., 1998b).  The GAB clones belonging to the thermophilic grey mat (75ºC) 

and red mat (66ºC) communities are deep branching and group clearly with 

the volcanic hot spring clones.  The presence of these clones only in the 

higher temperature mats indicates that these clones represent novel 

thermophilic prokaryotes. 

Gram positive prokaryotes are represented in the grey mat (75ºC), red mat 

(66ºC) and green mat (57ºC) communities.  The Firmicutes have a wide 

variety of thermophilic representatives including Caloramator (Chrisostomos 

et al., 1996), Thermoanaerobacter (Cayol et al., 1995), and Clostridium 

(Collins et al., 1994).  The red mat had 5 phylotypes spread through the 

class Clostridia.  One of these (R82) had a high similarity of 95% to the 

grey mat clone Y36 allowing that this phylotype may extend the upper limit 

to 75ºC for growth of a member of the class Clostridia.  The green mat 

clone grouped with the Sporomusa genus. 

The only representative from the class Bacilli is present in the 16S rRNA 

gene clone library from the grey mat at 75ºC.  It grouped confidently within 

the Paenibacillus genus, a facultatively anaerobic and alkalophilic group 

(Ash et al., 1993; Shida et al., 1997).  The hydrochemistry of the bore 

water is favourable to the growth of this group.  The absence of Bacilli in 

the communities is notable, as members from this group (notably Bacillus) 

are easily isolated from this and most other environments.  Their easy 

isolation may be due to fact that they are spore-formers and can survive 

the high temperatures present in the GAB.  Later enrichment studies have 

shown that their numbers are at least 100 times lower than Thermus and 

Meiothermus populations (see Chapter 4) and this may explain their 

noticeable absence in the clone libraries. 

The phylum Proteobacteria has a wide diversity of phenotypes thought to 

evolve from a phototrophic ancestor.  Proteobacteria were limited to the 
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green mat (57ºC) and brown mat (52ºC) communities.  Members from the 

α-, β-, γ- and δ- classes of the phylum Proteobacteria were present.  There 

was no close relationship between any clone and a characterised isolate.  

Most cloned rRNA genes were deep branching indicating that the GAB is a 

novel environment for the study of new and uncharacterised Proteobacteria.  

Isolates such as Desulfovibrio (Redburn & Patel, 1994) from the GAB belong 

to the δ-class of the Proteobacteria indicating the presence of sulfate-

reducers in this ecosystem. 

GAB mat clones also affiliated to the phyla Nitrospira and Verrucomicrobium 

were identified.  One clone (GAB Brown Mat B25) affiliated with a group of 

clone sequences that had no isolated and cultured representative. 

A member of the anaerobic, thermophilic, heterotrophic species 

Fevidobacterium has been isolated from the GAB (Andrews & Patel, 1996) 

and detected in a previous study (Byers et al., 1998) was not identified in 

this investigation.  The absence of a clone with high similarity to F. 

gondwanense may be explained by the differing hydrochemistry between 

different bores in the GAB.  The flow of bore water into the pool and drain 

may have maintained a microaerobic environment, ensuring the numbers of 

this species remain low. 

3.4.4 COMPOSITIONAL ANALYSIS OF THE CLONE LIBRARIES 

The composition of each library varied.  The clone library created from the 

bore pool sediment (88ºC) consisted of a single phylotype, Sed01, which 

closely matched Hydrogenobacter subterranea (98% similarity). A limited 

number of Bacterial species grow at this temperature, and it is possible that 

the Hydrogenobacter species are the dominant species at the higher 

temperatures.  There were no observed chimeras in this library, a fact that 

points to a low diversity of phylotypes (Wang & Wang, 1997). The 

probability that Hydrogenobacter subterranea is the sole inhabitant of this 

environment is high and indicates that the ecosystem’s temperature of 88ºC 

has a restrictive effect on the populations that grow.  Reysenbach et al. 

(2000) has shown that at 83ºC in Yellowstone National Park, USA, a 
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member of the phylum Aquificae dominated the community present with 

few members of Korarchaeota being detected. 

The grey coloured mat community clone library was dominated by species 

of Thermus that accounted for over 70% of the clones analysed.  The 

relatively high temperature of 75ºC of this environment also plays a 

significant role in limiting the diversity of prokaryotic populations that are 

maintained as representatives from only 5 phyla were detected. 

At 66ºC in the red coloured mat community, clones related to Meiothermus 

accounted for almost 47% of the clones analysed, with clones related to 

Thermus accounting for a further 7%.  The lower temperature allowed a 

greater diversity of species to survive, with members from the phyla 

Chloroflexi (8%), Bacteroidetes (6%) and Firmicutes (4%) detected. 

Representatives of the phylum Cyanobacteria dominated the green coloured 

community clone library at 57ºC (36% of the library).  The temperature of 

57ºC is ideal for the proliferation of photosynthetic bacteria.  Cyanobacteria 

are known to dominate in some thermal, aquatic ecosystems where the 

temperature is around 50-60ºC (Ruff-Roberts et al., 1994; Ward et al., 

1998).  β-Proteobacteria and Chloroflexi comprised 13% and 10% of the 

green community clone library respectively.  Members of these phyla have 

also been identified in hot spring communities from the USA at similar 

temperatures (Santegoeds et al., 1996; Ward et al., 1998).  7% of this 

library consisted of members from the phylum Dienococci-Thermus. 

The brown filamentous mat community clone library was dominated by 

members from the phylum Deinococci-Thermus (34%) and α-Proteobacteria 

(20%).  The phylum Deinococci-Thermus consisted of a sole phylotype 

(B01) that was closely related to Meiothermus cerberus (99% similarity).  

The α-Proteobacteria was comprised of 7 different phylotypes, showing a 

great increase in phylogenetic diversity at the lower temperatures. 

In total, 24 phylotypes from 6 phyla had a similarity of 96% or more to 

cultured isolates and comprised 73% of all clones analysed.  34 phylotypes 

from 11 phyla had less than 96% similarity to cultured isolates, or were 

related to cloned 16S rRNA gene sequences, and comprised 27% of the 
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clones analysed.  These results lead to the conclusion that the prokaryotic 

ecology of the Great Artesian Basin environment includes a diverse range of 

many uncultured, novel species. 

The 16S rRNA gene amplification and cloning approach used here to 

phylogenetically describe five communities present in a bore drain 

associated with the Great Artesian Basin of Australia indicated a broad 

spectrum of prokaryotes throughout the Bacterial domain. 
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CHAPTER 4: THERMUS AND MEIOTHERMUS DIVERSITY 

FROM THE GREAT ARTESIAN BASIN OF AUSTRALIA 
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4.1 INTRODUCTION 

Thermus and Meiothermus are strictly aerobic, thermophilic heterotrophs.  

Members of the genus Thermus are non-pigmented to pale or very brightly 

yellow pigmented.  Most isolates grow with an optimum temperature of 

between 65ºC and 75ºC.  Some Thermus species display halotolerance, 

with marine isolates being more halotolerant than their terrestrial relatives 

(Kristjánsson et al., 1986; Manaia & da Costa, 1991; Sharp & Williams, 

1988).  In general, however, there is very little inter- and intra- phenotypic 

variation amongst Thermus isolates.  There are eight distinct species 

described on the basis of DNA-DNA homology studies (Boone & Castenholz, 

2001), namely T. aquaticus, T. brockianus, T. oshimai, T. filiformis, T. 

thermophilus, T. scotoductus, T. igniterrae and T. antranikianus.  

Meiothermus species generally possess pale red to bright red pigmentation, 

with the exception of M. chilarophilus that has a pale yellow pigmentation, 

and grow optimally at temperatures between 50ºC and 60ºC.  Despite these 

differences, early chemotaxonomic and numerical studies placed members 

of Meiothermus in the genus Thermus (Loginova et al., 1984; Sharp & 

Williams, 1988).  However, subsequent phylogenetic and DNA-DNA 

hybridisation showed that Thermus and Meiothermus are closely related but 

phylogenetically distinct (Chung et al., 1997; Tenreiro et al., 1995).  The 

four species of Meiothermus, M. chilarophilus, M. cerberus, M. silvanus and 

M. ruber, can be distinguished on the basis of their physiology, fatty acid 

composition and DNA-DNA homology (Boone & Castenholz, 2001). 

Thermus and Meiothermus were first isolated from neutral and alkaline hot 

springs in Yellowstone National Park, USA (Brock & Freeze, 1969).  Strains 

have subsequently been isolated from terrestrial and shallow marine hot 

springs in Iceland (Chung et al., 2000; Kristjánssen & Alfredsson, 1983), 

New Mexica (Saul et al., 1993), deep sea hydrothermal vents (Marteinsson 

et al., 1995), New Zealand (Saul et al., 1999), Japan (Oshima & Imahori, 

1971; Saiki et al., 1972), Russia (Loginova et al., 1975), shallow marine hot 

springs in Portugal (Manaia et al., 1994; Manaia & da Costa, 1991), and 

from the subterranean Great Artesian Basin of Australia (Byers et al., 1997; 

Denman et al., 1991).  In addition to natural environments, Thermus 
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strains have been isolated from man-made environments such as composts 

(Beffa et al., 1996), and hot water systems (Kristjánsson et al., 1994). 

Members of the genera Thermus and Meiothermus strains are generally 

found in natural aquatic environments that are neutral to slightly alkaline 

with temperature ranging from 50-85ºC.  The presence of Thermus and 

Meiothermus in environments that fall outside these temperature and pH 

restrictions are thought to originate from areas where growth conditions are 

suitable.  Their growth is inhibited by high concentrations of organic 

materials, and numerous studies have shown that Thermus and 

Meiothermus species are associated with photosynthetic and 

chemolithotrophic prokaryotes that provide continuous low concentrations 

of organic compounds (Nold & Ward, 1995; Ward et al., 1997). 

Using 16S rRNA gene sequence data of Thermus and Meiothermus species 

obtained from Great Artesian Basin isolates and clone libraries, this chapter 

extends the current phylogenetic diversity of these genera in the Great 

Artesian Basin.  It will also further the understanding of the geographical 

distribution and limitations of Thermus and Meiothermus species throughout 

the world. 

4.2 METHODS 

4.2.1 SITE AND SAMPLES 

The site selected for study was the New Lorne bore (Section 2.4.1).  

Samples were taken from the bore as described in Section 2.4.2.  Bore 

sediment, grey, red, green and brown filamentous mats were used as 

inocula for the enrichment and isolation of Thermus and Meiothermus 

isolates. 

4.2.2 MEDIA, ENRICHMENT AND ISOLATION 

Media D broth was prepared as detailed in Section 2.3.3.  In the case of the 

filamentous mat communities, 5mL of each sample were sonicated to 

disrupt the filamentous nature prior to inoculation.  1mL of each sample was 
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used to inoculate 9mL of Media D broth.  A ten-fold serial dilution of the 

enrichment to 10-9 was prepared.  These were then incubated at 70ºC and 

55ºC for up to 72 hours.  1mL of sediment slurry contained approximately 

0.3g of sediment.  1mL of the grey, red, green and brown mat slurries 

contained approximately 0.01g, 0.04g, 0.12g, and 0.15g respectively of 

filamentous material.  Growth was determined by microscopic examination 

of the cultures and positive enrichment cultures were subcultured under 

identical growth conditions.  Pure isolates were obtained by streaking a few 

of the serially diluted positive enrichment cultures on Media D plates 

amended with 2% agar followed by incubation at the enrichment 

temperatures.  Single well-separated distinct colonies were picked and 

restreaked.  This procedure was repeated at least twice before the culture 

was considered pure.  Pure cultures obtained were stored in a 50:50 

Medium D-glycerol mix at -20ºC 

4.2.3 IDENTIFICATION OF THERMUS AND MEIOTHERMUS ISOLATES 

Identification of presumptive Thermus and Meiothermus isolates was based 

solely on colony and cell morphology.  Cell morphology was examined by 

phase contrast microscopy as specified in Section 2.5. 

4.2.4 DNA EXTRACTION FROM PURE CULTURES 

The chromosomal DNA from pure isolates was extracted as detailed in 

Section 2.6.1. 

4.2.5 16S RRNA GENE AMPLIFICATION AND SEQUENCING 

The 16S rRNA gene was amplified using PCR as described in Section 2.9.  

The PCR product was purified and sequenced as stated in Sections 2.10 and 

2.14 respectively. 
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4.2.6 SOURCE OF THERMUS AND MEIOTHERMUS 16S RRNA GENE 

CLONE SEQUENCES FROM THE GREAT ARTESIAN BASIN 

Thermus and Meiothermus 16S rRNA gene clone sequences were obtained 

as described in Section 3.2. 

4.2.7 PHYLOGENETIC ANALYSIS OF 16S RRNA GENE SEQUENCE 

DATA 

The phylogenetic analysis of 16S rRNA gene sequences obtained from 

waters associated with the Great Artesian Basin was carried out according 

to Section 2.15.  Reference sequences and their respective sites of isolation 

used in the phylogenetic analysis are shown in Table 4.1. 
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4.3 RESULTS 

4.3.1 ENRICHMENT AND ISOLATION 

Enrichment results for 70ºC and 55ºC are shown in Tables 4.2 and 4.3 

respectively.  Colony and cell morphology of isolates obtained are shown in 

Tables 4.4 and 4.5 for enrichments at 70ºC and 55ºC respectively. 

Table 4.2: Enrichment Results at 70ºC 

Sample 10-0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 

Sediment           

Grey Mat *   *  *     

Red Mat *  *  *  *    

Green Mat *   *  *     

Brown Mat *  *  *      

* - Samples used for isolations 

Table 4.3: Enrichment Results at 55ºC 

Sample 10-0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 

Sediment           

Grey Mat * *  *       

Red Mat *  *  * *     

Green Mat *  *  *      

Brown Mat *  * *       

* - Samples used for isolations 
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4.3.2 ISOLATION OF THERMUS AND MEIOTHERMUS 

Fifty-nine isolates were selected from the serial dilutions of the 4 disrupted 

mats after 3 days of incubation.  Fourteen isolates (Y70-05, Y70-06, Y70-

07, R70-06, R70-07, G70-05, G70-06, G70-07, G70-08, B70-04, B70-05, 

Y55-07, Y55-08, Y55-09) were identified as Thermus based on the presence 

of yellow pigmentation.  Two isolates (R55-10 and R5-11) were identified as 

Meiothermus based on red pigmented colonies.  The presence of a 

distinctive cell morphology (rods, 3-100µm x 0.5µm) and the absence of 

spores from cells of these isolates contributed further support for their 

identification.  The remaining 43 isolates had opaque white colonies with 

cells greater than 1µm in diameter that sporulated, were most likely to be 

members of the aerobic, heterotrophic genus Bacillus and hence were not 

studied any further. 

The total numbers of Thermus and Meiothermus in the 5 environmental 

samples were estimated by checking for the presence of typical yellow 

and/or red colored colonies on agar plates that had been streaked from 

positive serial dilution enrichment cultures and the results of these studies 

are presented in table 4.6. 

Table 4.6: Approximate Numbers of Thermus and Meiothermus 

Thermus Meiothermus  
70ºC 55ºC 70ºC 55ºC 

Sediment (88ºC) N.D. N.D. N.D. N.D. 
Grey Mat (75ºC) 1 x 107 1 x 105 N.D. N.D. 

Red Mat (66ºC) 2.5 x 107 N.D. N.D. 2.5 x 106 

Green Mat (57ºC) 8 x 105 N.D. N.D. N.D. 

Brown Mat (52C) 7 x 104 N.D. N.D. N.D. 

Numbers expressed as cfu/g (wet weight of sample); N.D.- none detected. 

Representatives of Thermus or Meiothermus were not isolated from the pool 

sediment, but were isolated from the four mat samples.  Thermus in the 

grey and red mats were approximately 100 to 1000 times the numbers 

observed in the green and brown mats.  Thermus was also isolated from the 

grey mat, but not the red, green or brown mats when incubated at 55ºC, 

but the numbers were approximately 100 time less.  Meiothermus was only 

isolated from the red mat sample incubated at 55ºC, but the numbers of 
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Meiothermus were approximately 10 times less than Thermus in the same 

mat.  Isolates of Thermus or Meiothermus were not observed in the green 

and brown mats enriched at 55ºC. 

4.3.3 DNA EXTRACTION AND 16S RRNA GENE SEQUENCING 

All presumptive Thermus and Meiothermus isolates had their chromosomal 

DNA extracted and their 16S rRNA genes amplified via PCR and sequenced. 

4.3.4 CLONED 16S RRNA GENE SEQUENCES OBTAINED FROM THE 

GREAT ARTESIAN BASIN 

A total of 367 clones were sequenced from 5 samples which included 46 

clones from the bore pool sediment, 72 clones from the grey, 68 clones 

from the red, 88 clones from the green and 93 clones from the brown mat 

clone libraries.  After partial sequencing (≈1000 nucleotides), clones from 

each library with greater than 98% similarity were regarded as identical and 

classed as a phylotype.  Each phylotype was then and fully sequenced.  A 

significant fraction of the 367 clones were found to represent Thermus 

(17% of the total) or Meiothermus (22%) with the remaining related to 

other phyla or were chimeras (Table 4.7).  Collectively, 4 distinct Thermus 

phylogroups were found to exist in the clone libraries of the grey, red, green 

mats with the phylogroups related to T. scotoductus being the most 

dominant (63%) followed by the T. igniterrae (7%), Thermus strain SRI-

248 (2%) and T. oshimai (1%) phylogroups.  When phylotypes of individual 

mat samples were compared, Thermus was found to dominate the grey mat 

(75% of the total library), followed by the red mat (7% of the library) and 

the green mat (1% of the library) but Thermus were absent from the brown 

mat and the sediment sample.  T. scotoductus dominated over T. igniterrae 

in the grey, and, only marginally, red mat samples.  Collectively, two 

distinct phylogroups of Meiothermus, namely M. ruber and M. cerberus, 

were present in the red (47% of the library), green (6% of the library) and 

brown mat samples (34% of the library).  The red mat was exclusively 

dominated by the M. ruber phylogroup, while the brown mat was exclusively 

dominated by the M. cerberus phylogroup.  The green mat contained 

phylotypes from both M. ruber and M. cerberus phylogroups.  Thermus or 

Meiothermus was not detected in the bore pool sediment library. 
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4.3.5 ISOLATES CULTURED FROM THE GREAT ARTESIAN BASIN 

Thirteen of the fourteen Thermus isolates had a similarity of 100% with 

Thermus igniterrae with the remaining Thermus isolate (B70-05) was 

closely related to Thermus sp. SRI-96 (T. scotoductus phylogroup) with a 

similarity of 99.1%.  Both Meiothermus isolates (R55-10 and R55-11) 

matched closely with Meiothermus ruber (similarity of 100%).  These 

results support the earlier tentative identification that was based on cellular 

and colony characteristics (Table 4.7).  The 16S rRNA gene sequences from 

the isolates have been deposited to GenBank and their accession numbers 

are listed in Appendix II. 

4.3.6 PHYLOGENETIC ANALYSIS OF 16S RRNA GENES FROM 

ISOLATES AND CLONES 

The phylogenetic analysis was split into Thermus-related (Figure 4.1) and 

Meiothermus-related (Figure 4.2) sequences.  Using a 16S rRNA gene 

threshold similarity value of 99%, a total of nine phylogroups are shown 

within the genus Thermus and four phylogroups within the genus 

Meiothermus.  The similarity values of the masked 16S rRNA gene sequence 

data set are not shown. 

Within the Thermus genus, the nine phylogroups are composed of: T. 

igniterrae cluster (A); T. brockianus cluster (B); Thermus str SRI-248 (C); 

T. aquaticus cluster (D); T. scotoductus cluster (E); T. antranikianus cluster 

(F); T. thermophilus cluster (G); T. oshima cluster (H); and T. filiformis 

cluster (I).  Of these, isolates from the Great Artesian Basin were found to 

belong to the T. igniterrae and T. scotoductus clusters.  16S rRNA gene 

clones from the Great Artesian Basin were found in the T. igniterrae, 

Thermus str SRI-248, T. scotoductus, and T. oshima clusters. 

The Meiothermus genus was divided into the following phylogroups: M. 

ruber cluster (A); M. cerbereus cluster (B); M. chliarophilus cluster (C); and 

M. silvanus cluster (D).  Meiothermus isolates from the Great Artesian Basin 

were only found in the M. ruber cluster, while Great Artesian Basin 16S 

rRNA gene clones were identified in the M. ruber and M.cerberus clusters. 
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Figure 4.1: Phylogenetic analysis of Thermus-related prokaryotes 
from the Great Artesian Basin 

The dendrogram was created using 30 database sequences, 2 GAB isolate sequences, and 8 

GAB clone sequences.  The unambiguous masked data set included 851 bp.  GenBank 

accession numbers are listed in Table 4.1.  Phylogenetic analysis is detailed in Section 2.15. 
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Figure 4.2: Phylogenetic analysis of Meiothermus-related 
prokaryotes from the Great Artesian Basin 

The dendrogram was created using 9 database sequences, 2 GAB isolate sequences, and 4 

GAB clone sequences.  The unambiguous masked data set included 1381 bp.  GenBank 

accession numbers are listed in Table 4.1.  Phylogenetic analysis is detailed in Section 2.15. 

4.4 DISCUSSION 

4.4.1 ISOLATES OF THERMUS AND MEIOTHERMUS 

The extensive presence of Thermus in the waters of the subsurface waters 

of the Great Artesian Basin has previously been reported (Denman et al., 

1991).  This research demonstrates that Thermus could not be isolated from 

samples taken directly below the bore source which had a temperature of 

88ºC.  Previous studies have shown that Thermus are only rarely isolated 

from environmental samples that have a temperature higher than 85ºC 

(Cometta et al., 1982; Hudson et al., 1987).  This study therefore supports 

the idea that Thermus strains are ecologically limited to temperatures lower 

than 85ºC.  Thermus was isolated from filamentous mat samples with 

temperatures ranging from 52ºC to 75ºC and these results concur with 

(Kristjánssen & Alfredsson, 1983) who showed that Thermus was most 

prevalent between 55ºC and 85ºC in hot springs in Iceland.  This data also 

suggests that Thermus species are most dominant in the mats with 

temperatures between 66ºC and 75ºC, where the numbers are up to 100 

and 1000 times higher than at 57ºC or 52ºC.  These culture-independent 
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results also concur with the culture-independent results that show far higher 

numbers of Thermus clones in the grey and red mats than in the green or 

brown mats. 

Previous studies have shown that Meiothermus can be isolated from 

volcanic hot springs with temperatures less than 70ºC and it has been 

suggested that they have adapted to a lower temperature mode of life than 

has Thermus (Boone & Castenholz, 2001).  A previous report by Byers et al. 

(1997) has identified isolates from the Great Artesian Basin beloning to the 

species Meiothermus ruber.  The isolation of R55-10 and R55-11 from the 

red coloured mat at 66ºC and the detection of Meiothermus in the 16S rRNA 

gene clone libraries from the red, green and brown mat communities 

provide further evidence for their ecological limitation to temperatures 

below 70ºC.  The evidence presented here confirms that the limit for growth 

of Thermus and Meiothermus in thermally heated enviroments such as the 

subsurface derived waters of the Great Artesian Basin is temperature and is 

similar to that observed for volcanic hot springs. 

4.4.2 PHYLOGENETIC CLUSTERING PATTERNS 

Ecologically, thermal ecosystems can be considered as islands with a large 

dispersal barrier.  The sporadic and discontinuous nature of thermal 

environments throughout the world provides a unique opportunity to study 

the speciation of thermophilic prokaryotes. 

Plasmid restriction profiles have shown that Thermus isolates have a great 

amount of plasmid restriction polymorphism expected from their wide 

distribution and taxonomic diversity (Moreira et al., 1995).  Pulsed-field gel 

electrophoretic studies of isolates belonging to the six species of Thermus 

have revealed a closely related organisation in isolates of the same species, 

especially if they were isolated from the same thermophilic environment 

(Moreira et al., 1997).  The same study showed that isolates of T. aquaticus 

from Yellowstone National Park, USA, indicate the presence of several 

clones, whereas isolates of T. brockianus from the same environment 

indicate a sole clonal origin. 
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Hudson et al. (1989) showed that there was a distinct correlation between 

the pH and temperature of the environment and phylogenetic clusters 

observed.  Studies by (Nold & Ward, 1995; Saul et al., 1993) have shown 

that Thermus phylogeny based on 16S rRNA gene sequence data also 

displays clustering of geographic isolates of Thermus. 

The 16S rRNA sequence data obtained from the Great Artesian Basin had a 

very restrictive phylogenetic relationship.  They were closely related to the 

T. igniterrae and Thermus strain SRI-248 phylogroups, which are solely 

represented by isolates from Iceland, and the T. scotoductus and T. oshimai 

phylogroups, which are resented by the more endemic Thermus species 

isolated from Japan, South Africa, New Mexico, Taiwan and Portugal.  They 

were not closely related to, for example T. brockianus and T. aquaticus, 

which are exclusively found in Yellowstone National Park, or to the T. 

filiformis cluster, which is, so far, only represented by New Zealand isolates. 

The clustering of a majority of Thermus clones to the Icelandic Thermus 

clusters represented by T. igniterrae and Thermus strain SRI-248 is not due 

to a bias due to lack of available data as other well studied thermal 

environments such as Yellowstone National Park and New Zealand thermal 

environments were also included in this studies.  It suggests that this could 

be a result of the similar geochemical attributes of the Iceland and the 

Great Artesian Basin thermal environments which are highly alkaline and 

have very low sulfide concentrations (Chung et al., 2000; Kristjánssen & 

Alfredsson, 1983).  Icelandic Thermus and Meiothermus strains have a 

much greater diversity than compared to their New Zealand or Yellowstone 

National Park counterparts.  However, these studies have focused on a sole 

environmental site and may not represent fully the Thermus and 

Meiothermus diversity present in the Great Artesian Basin. 

The Great Artesian Basin Meiothermus 16S rRNA gene sequences were 

predominantly related to M. ruber and M. cerberus.  So far, the M. ruber 

cluster contains representatives from China, Russia and Iceland whereas the 

M. cerbereus cluster has so far only been restricted to members from 

Iceland and Yellowstone National Park.  The other two species of M. 

chliarophilus and M. silvanus have only been reported from Iceland and 
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none of the Great Artesian Basin isolates are represented in these clusters.  

Meiothermus studies have not been exhaustively undertaken. A number of 

strains have been isolated but detailed studies have not been conducted 

(Byers et al., 1997).  Given the lack of available data, no firm conclusions 

can be drawn. 

Numerical classifications of Thermus and Meiothermus from globally 

distributed hot springs have shown that the phenotypic diversity may 

extend to over 20 clusters with some of these being represented by single 

isolates (Hudson et al., 1989).  A comparison of restriction fragment length 

polymorphisms of the genomic DNA of fifty isolates of the six species of 

Thermus, however, revealed 38 different profiles. (Moreira et al., 1997).  

The same study also showed that isolates belonging to the same species 

have a closely related genomic organisation. 

The phylogenetic clustering patterns observed in this study correlate with 

the patterns observed in a previous study by (Saul et al., 1993).  The 

phylogenetic clustering observed with 16S rRNA gene sequence data does 

not precisely mirror that of previous numerical studies, however, this is not 

unexpected, as phenotypic markers do not necessarily provide phylogenetic 

conclusions.  Most of the phylogenetic groups defined here have high 

bootstrap values indicating clear differences between the groups. 

4.4.3 LOSS OF DIVERSITY THROUGH ENRICHMENT AND ISOLATION 

The phylogenetic diversity of culture-independent Thermus and 

Meiothermus members of the clone libraries was higher than that obtained 

through culture-based studies.  Loss of prokaryotic diversity through 

enrichment is well known (Dunbar et al., 1999; Ferris et al., 1996b).  More 

specifically, Saul et al. (1999) has shown that enrichment processes for 

Thermus yield a dominant phylotype.  These results show that minor 

differences in 16S rRNA sequences can signify a phenotypic diversity in the 

natural environment that is not revealed during the enrichment process due 

to the selection of dominant strains. 
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In this study, although T. scotoductus phylotypes were detected in the grey 

and red mat clone libraries (59% and 4% of each respectively), the 

enrichment cultures were dominated by T. igniterrae isolates which 

accounted for 14% and 3% of the clones of each respective library.  T. 

igniterrae was also isolated from the green and brown mats, but were not 

detected in their clone libraries.  This also confirms the approximate cell 

count numbers, as the clone libraries compositions suggests that the 

populations of T. igniterrae is present at much higher concentrations in the 

grey and red mats than at lower temperature in the green and brown mat 

communities. 

M. ruber phylotypes and M. cerberus phylotypes dominated the red mat 

clone library (47% of clones) and the brown mat clone library (34% of 

clones) respectively.  However, only strains of M. ruber could be isolated 

from the red mat community.  Although the majority of clones in the red 

mat clone library were M. ruber, cell numbers indicate that the population of 

M. ruber is 10 times less than the population of T. igniterrae in the same 

sample.  This also confirms other reports of biases being introduced in both 

culture based, and culture-independent techniques when analysing 

environmental communities. 

The ability to isolate all of the 4 phylogenetic representatives of the 

Thermus or Meiothermus present in the clone library failed and only a single 

most dominant phylotype was most represented.  Although Meiothermus 

was detected in 3 of the 5 clone libraries, it was only isolated from the red 

mat.  Meiothermus were enriched at 55ºC but the overgrowth by the 

Bacillus-like isolates made the detection of former very difficult and hence 

may be the cause of the failure. 

Members of the family Bacillaceae are fast growing heterotrophs that can 

quickly outnumber slower growers like Thermus and Meiothermus.  Bacillus-

like isolates were only detected at much lower concentrations (up to 1000 

times lower) than Thermus and Meiothermus which were detected at 

concentrations up to 2.5x107cfu/g (wet weight).  This explains their 

noticeable absence in the clone libraries created in Chapter 3 as the PCR 

generated clone libraries are known to bias more populous phylotypes. 
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4.4.5 BIOGEOGRAPHY OF THERMUS AND MEIOTHERMUS 

Using 16S rRNA gene sequence data of Thermus and Meiothermus species 

obtained from Great Artesian Basin isolates and clone libraries, this chapter 

shows the diverse nature of these isolates.  This study reveals that some of 

the Thermus species are in fact limited in their biogeography.  T. 

brockianus, T. filiformis, T. aquaticus, and T. antranikianus have only been 

isolated or detected from a single geographical source.  Other species such 

as T. scotoductus and T. thermophilus appear ubiquitous in their 

distribution.  From limited studies on the genus Meiothermus, it can be seen 

that some of its’ members (M. ruber and M. cerberus) are quite widespread 

as well.  However, the limited phylogenetic information available does not 

enable further conclusions about its’ biogeography. 

In previous studies plasmid profiling (Denman et al., 1991) and DNA probe 

techniques (Byers et al., 1997) have revealed the diversity of Thermus and 

Meiothermus present in the thermal waters of the Great Artesian Basin of 

Australia.  In this report these studies were extended and present evidence 

of the phylogenetic depth of these genera using culture dependent and 

culture independent studies.  
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5.1 INTRODUCTION 

Though the deeper phyla of domain Bacteria such as Aquificae (Burggraff et 

al., 1992; Huber et al., 1992; Kawasumi et al., 1984) and Thermotogae 

(Fardeau et al., 1997) consist exclusively of thermophiles, other more 

recently evolved phyla such as Firmicutes are also represented by 

thermophilic members (Boone et al., 1995; Collins et al., 1994).  Most of 

the thermophilic bacteria reported until recently were isolated mainly from 

volcanic hot springs and hydrothermal vents (Brock & Freeze, 1969; 

Harmsen et al., 1997b; Larson et al., 1997; Ward et al., 1998).  Within the 

past few years, however, an increasing numbers of thermophilic microbes 

have also been isolated from subsurface non-volcanic thermal environments 

such as oil fields and aquifers (Andrews & Patel, 1996; Denman et al., 

1991; Magot et al., 1997). 

One such environment is the Great Artesian Basin of Australia.  A wide 

variety of physiological groups of Bacteria including sulfate reducers, 

carbohydrate fermenters, strict aerobes and strict anaerobes have been 

isolated from the Artesian Basin environment (Andrews & Patel, 1996; 

Denman et al., 1991; Love et al., 1992; Redburn & Patel, 1994; Wynter et 

al., 1996). 

This chapter describes the isolation of a novel spore-forming thermophilic 

strict aerobe isolated from the Great Artesian Basin of Australia.  The Great 

Artesian Basin is a deep subsurface geothermal aquifer that underlies 

approximately 20% of Australia's landmass in mainly arid and semi-arid 

regions (Habermahl, 1980).  The water is brought to the surface by 

approximately 5000 free-flowing bores and is distributed through open 

drain runoff channels for use as drinking water for domestic animals and 

irrigation.  The temperature at the sources of these bores can be as high as 

99ºC with temperatures in runoff channels cooling to ambient thereby 

producing unique temperature gradients in which distinct microbial mats 

develop. 
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5.2 METHODS 

5.2.1 SOURCE OF CULTURES.  

The environmental source was the New Lorne bore.  The site and sample 

collection methodologies are described in Sections 2.4.1 and 2.4.2 

respectively.  The reference strain Thermaerobacter marianensisT JCM 

10246 (= DSMZ 12885) was purchased from DSMZ and cultured as 

described (Takai et al., 1999). 

5.2.2 MEDIA, ENRICHMENT AND ISOLATION 

0.5mL of the sediment slurry sample at 66ºC (red coloured filamentous 

mat, Figure 2.6) and 10-fold serial dilutions of the sample to 10-10 were 

inoculated into 10mL sterile Media D (Section 2.3.3) and incubated at 65ºC 

and 75ºC for up to 72 hours.  Growth was determined microscopically and 

positive enrichment cultures were subcultured again under identical growth 

conditions.  Pure cultures are isolated by streaking on to Media D plates 

amended with 2% agar, followed by incubation at the enrichment 

temperatures.  Single well-separated distinct colonies were picked and 

grown.  This procedure was repeated at least twice before the culture was 

considered pure and characterised further.  The pure culture, designated 

isolate C21T, was stored in a Medium D-glycerol (1:1) mix at -20ºC 

5.2.3 CELL MORPHOLOGY AND CELL WALL ULTRASTRUCTURE 

Cell morphology and cell wall ultrastructure were determined using light and 

electron microscopy as previously described (Section 2.5).  Gram reaction 

and oxidase and catalase tests were performed as described by (Collee et 

al., 1996). 

5.2.4 GROWTH CHARACTERISATION 

All growth experiments were carried out in duplicate in liquid Media D at 

70ºC unless otherwise stated.  Growth was determined 
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spectrophotometrically at 660nm using a Novaspec LKB spectrophotometer 

(Pharmacia-Biotech Pty Ltd, Australia). 

5.2.4.1 ANAEROBIC GROWTH 

Anaerobic growth was determined by inoculating 10mL TYEG media (Section 

2.3.4) with a 10% volume of a 48 hour culture and incubating at 70ºC for 

72 hours.   

5.2.4.2 BASAL MEDIA REQUIREMENTS 

The effect of different concentrations of yeast extract (0%, 0.05%, 0.1% 

and 0.2%) and tryptone (0%, 0.05%, 0.1% and 0.2%) on the growth of 

isolate C21T was determined.  NaCl tolerance was determined by adding 

NaCl to Media D to a concentration of 1%, 2% or 3%. 

5.2.4.3 SUBSTRATE UTILISATION 

The nutritional spectrum of isolate C21T was tested in Media D containing 

casamino acids, sucrose, cellobiose, glucose, dextrin, amylopectin, inositol, 

arabinose, mannose, fructose, gelatin, amylose, galactose, dextrose, 

xylose, lactic acid, pyruvic acid, maltose, L-sorbose, raffinose, benzoic acid, 

carboxymethylcellulose, cellulose, chitin, xylan, or starch at final 

concentrations of 0.1% and/or 0.5%.  A 10% volume of overnight culture is 

used to inoculate 10mL of adjusted media and incubated at 70ºC overnight.  

Growth was recorded by measuring absorbency at 660nm and the change in 

pH.   

5.2.4.4 ANTIBIOTIC SENSITIVITY 

The effect of antibiotics (ampicillin, neomycin, penicillin, phosphomycin, 

polymixin B, streptomycin and tetracycline) on the growth of isolate C21T 

was tested by adding filter-sterilised stock solutions of the antibiotics to 

10mL of sterile Media D, to give final concentrations of 10µg/mL and 

100µg/mL.  Sodium azide was added to a final concentration of 250µg/mL 

and 500µg/mL.  Media containing antibiotics were inoculated with 1mL of a 
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48 hour culture and incubated at 70ºC overnight.  Growth was recorded by 

measuring absorbency at 660nm. 

5.2.5 TEMPERATURE AND PH ANALYSIS 

The temperature range and optima for growth was determined in 10mL 

volumes of Media D inoculated with 1mL of an overnight culture of isolate 

C21T.  Incubation occurred at a pH of 8.5 and temperatures ranging from 

55ºC to 80ºC and growth was recorded by measuring absorbency at 660nm 

after 24 hours. 

The pH growth range and pH optima for growth was determined by 

adjusting the pH of 50mL volumes of pre-sterilised Media D with HCl or 

NaOH.  After autoclaving, the pH of a 5mL aliquot of media was recorded 

before the remainder was inoculated with a 10% volume of overnight 

culture.  Incubation occurred at a temperature of 70ºC and growth was 

recorded by measuring absorbency at 660ηm after 24 hours. 

5.2.6 GENERATION TIME 

The generation time of Thermaerobacter subterraneus strain C21T was 

determined by incubating 10mL of Media D with a 5% inoculum of an 

overnight culture using the optimum growth parameters (temperature of 

70ºC and a pH of pH 8.5).  Absorbency readings at 660nm were recorded 

every hour for the first 7 hours and a final reading was taken at 14 hours. 

5.2.7 DNA EXTRACTION, 16S RRNA GENE AMPLIFICATION, 

SEQUENCING AND PHYLOGENY 

Chromosomal DNA was extracted from isolate C21T as described in Section 

2.6.1.  The 16S rRNA gene was amplified and purified as described in 

Sections 2.9 and 2.10 respectively.  The sequence of the gene was 

determined and phylogenetically analysed as explained in Sections 2.14 and 

2.15 respectively. 
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5.2.8 DNA EXTRACTION, DNA-DNA HYBRIDISATION AND DNA 

BASE COMPOSITION 

High molecular weight DNA was extracted from isolate C21T as described in 

Section 2.6.4.  The DNA base composition (mol%G+C) of the chromosomal 

DNA was determined by DSMZ (Deutsche Sammlung von Mikroorganismen 

und Zellkulturen GmbH, Braunschweig, Germany).  DNA-DNA hybridisation 

was performed at 55ºC using a colorimetric microplate hybridisation method 

(Ezaki et al., 1989) as modified by (Kusunoki et al., 1991) and (Maruyama 

et al., 2000).  Escherichia coli  (SMUM 344 = JCM 1649T) genomic DNA was 

used as a negative reference.  

5.3 RESULTS 

5.3.1 ISOLATION AND COLONY MORPHOLOGY 

Medium D enrichment cultures (10-0, 10-1 and 10-2 dilutions) initiated from 

water-sediment slurries taken at 66ºC showed growth following incubation 

at 68ºC and 75ºC for 72hrs and could be successfully sub-cultured.  

Microscopic examination revealed similar rod shaped cells (2 – 10µm x 

0.3µm) and similar colony morphologies (small, translucent and circular 

colonies) were observed from all the three enrichment cultures on Medium 

D agar plates after incubation for 48 hours at 65ºC.  Several pure cultures 

were obtained by picking single well-isolated colonies and one of the 

cultures designated isolate C21T, was characterised further. 

5.3.2 CELL MORPHOLOGY AND CELL WALL ULTRASTRUCTURE 

Isolate C21T cells were non-motile, rod-shaped (2 – 10µm x 0.3µm) and 

occurred singly or in pairs.  The cells stained Gram-negative but electron 

microscopic examination of thin sections revealed a distinct Gram-positive 

type cell wall (Figure 5.1).  Cells of isolate C21T produced terminal 

ellipsoidal spores that distended the cell (Figure 5.2). 
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Figure 5.1: TEM of Isolate C21 showing Gram-positive cell wall 

Bar represents 50nm 

Figure 5.2: TEM showing terminal ellipsoid spore 

Bar represents 0.5µm 

5.3.3 GROWTH CHARACTERISTICS AND SUBSTRATE UTILISATION 

Isolate C21T was a strict aerobe and grew better with agitation than as 

stationary cultures.  It grew in Medium D containing either yeast extract or 
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tryptone and the presence of both these substrates at concentrations less 

than 0.2% increased biomass and improved generation time (Figure 5.3). 

Figure 5.3: Effect of tryptone and yeast extract on isolate C21T 

Sucrose, cellobiose, glucose, dextrin, amylopectin, chitin, carboxymethyl-

cellulose, xylan, inositol, arabinose, mannose, fructose, gelatin, starch, 

amylose, galactose, dextrose, xylose, maltose, L-sorbose, raffinose, organic 

acids (lactic acid, pyruvic acid, and benzoic acid), or casamino acids could 

not be used as sole carbon sources or when supplemented with yeast 

extract and tryptone (total final concentration of 0.2%). 

The pH and temperature ranges (Figures 5.4 and 5.5 respectively) for 

growth in Media D containing 0.1% yeast extract and 0.1% tryptone was 

70ºC (temperature growth range of 55ºC and 80ºC) and pH 8.5 (pH growth 

range of 6 and 10.5) respectively.  A generation time of 90 minutes was 

obtained (Figure 5.6).  Isolate C21T did not require NaCl for growth and no 

growth was evident in media with NaCl concentrations greater than 1%.  

The growth of isolate C21T was slower on Medium D agar plates than in 

Media D broth. 
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Figure 5.4: Effect of pH on growth of isolate C21T 

 

 

Figure 5.5: Effect of Temperature on growth of isolate C21T 

 

0

0.02

0.04

0.06

0.08

4 5 6 7 8 9 10 11 12

pH

A
b
so

rb
an

ce
 (

6
6
0
n
m

)

0

0.01

0.02

0.03

0.04

0.05

50 60 70 80

Temperature (ºC)

A
b
so

rb
an

ce
 (

6
6
0
n
m

)



A novel aerobic bacterium, Thermaerobacter subterraneus, sp. nov. 

 130

Figure 5.6: Growth curve of isolate C21T 

5.3.4 ANTIBIOTIC SUSCEPTIBILITY 

The growth of isolate C21T was sensitive to ampicillin, neomycin, penicillin, 
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C21T has been deposited to Genbank and is listed in Appendix II.  A 

phylogenetic analysis of this sequence with representative members of the 

Domain Bacteria revealed a relationship with members of the family 

Syntrophomonodaceae, order Clostridiales, class Clostridia, phylum 

Firmicutes.  A more detailed analysis within this family showed that isolate 

C21T exhibited high similarity to Thermaerobacter marianensis str. 7p75a 

(value of 98%) and bootstrap analysis gave a 100% confidence level for 

this relationship (Figure 5.7). 

Figure 5.7: Phylogenetic placement of Isolate C21 within the 
phylum Firmicutes 

Phylogenetic tree of representative prokaryotes from the phylum Firmicutes inferred from 

16S rRNA gene sequences by using the neighbour-joining method of 1118 homologous 

positions of sequence from each organism.  Numbers on the tree represent the bootstrap 

values over 70 out of 100 replicates.  Scale bar indicates 5 substitutions per 100 bases.  

Numbers in parenthesis are GenBank accession numbers. 
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5.4 DISCUSSION 

5.4.1 GENERAL DISCUSSION 

A variety of different physiological groups of bacteria including sulfate 

reducers, carbohydrate fermenters, strict aerobes and strict anaerobes have 

been isolated from the Great Artesian Basin environment.  These include 

Desulfovibrio longreachensis (Redburn & Patel, 1994), Desulfotomaculum 

australicum (Love et al., 1993), Fervidobacterium gondwanense, a 

phylogenetic deep member of the order Thermotogales (Andrews & Patel, 

1996), members of the genera Thermus (Denman et al., 1991), Bacillus 

(Love et al., 1992), Caloramator and Thermoanaerobacter (Wynter et al., 

1996), and as yet unnamed taxons.  The isolation of strain C21T from this 

unique non-volcanically heated subsurface aquifer extends the known 

microbial diversity of this environment.  Isolate C21T is a strictly aerobic, 

spore-forming thermophilic bacterium which has a typical Gram-positive 

type cell wall.  Based on these properties, isolate C21T resembles members 

of the genus Bacillus (Blanc et al., 1997) and Saccharococcus (Ahmad et 

al., 2000) at the exclusion of non-spore formers such as Thermus (Brock & 

Freeze, 1969; Denman et al., 1991).  The mol%G+C content of the DNA of 

isolate C21T is 71% which is much higher than that reported for members of 

the family Bacillaceae (de Bartolomeo et al., 1991).  

Phylogenetic analysis of the 16S rRNA gene of isolate C21T placed it as a 

member of the phylum Firmicutes, within the family 

Thermoanaerobacteriaceae of the order Thermoanaerobacteriales with 

Thermaerobacter marianensis being the closest relative (similarity value of 

98%).  Interestingly, all members of the order Thermoanaerobacteriales 

possess an anaerobic metabolism (Collins et al., 1994) with the exception of 

T. marianensis (Takai et al., 1999) and isolate C21T described in this study.  

This lack of congruence of physiology with phylogeny is notable but not 

unusual.  For example, all members of the family Bacillaceae are strict 

aerobes or facultative anaerobes with the exception of Bacillus infernus 

which is an obligate anaerobe (Boone et al., 1995) necessitating an 

amendment to the genus description.  These results therefore confirm that 
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physiologies do not have phylogenetic boundaries and that different 

metabolic variants can co-exist within a cohesive phylogenetic cluster. 

Thermaerobacter marianensis was isolated from the world's deepest sea-

floor (10897m), the Mariana Trench Challenger Deep (Takai et al., 1999).  

In the same paper, the authors have cited a personal communiqué from 

their colleague on a phylogenetically similar thermophilic bacterium (98% 

similarity based on the 16S rRNA gene sequence) isolated from a shallow 

hydrothermal vent.  The increased hydrostatic pressure sensitivity of T. 

marianensis suggests the possibility that it may not be a normal inhabitant 

of the Trench environment and that it could have been deposited as a result 

of subduction activities which greatly perturb the upper mantle.  However, 

the isolation of C21T from the Great Artesian Basin does not support this 

hypothesis as it is a relatively recent rainwater recharged, closed 

environment (Habermahl, 1980). 

T. marianensis and isolate C21T share a number of characteristics including 

the high mol % G+C content of the DNA, an aerobic metabolism, and a 

Gram-positive cell wall ultrastructure.  However, a number of differences 

also exist.  Isolate C21T is an alkalophile which does not require NaCl, does 

not use substrates other than yeast extract and tryptone for growth and 

produces spores whereas T. marianensis is an obligate halophile, is more 

nutritionally versatile and spores have not been detected (Table 5.1).  In 

addition, isolate C21T and T. marianensis have a DNA homology of less than 

5%. 

Isolate C21T was isolated from a mix of bore run-off water and sediment 

taken from the bottom of the drain near the growth of the red mat (66ºC).  

However, the niche of isolate C21T is different from the filamentous mats 

present.  As such, the probability that phylotypes of isolate C21T would be 

detected in the PCR-generated 16S rRNA gene clone libraries discussed in 

Chapter 3 is very low. 

Based on the results presented above, the designation of isolate C21T is 

proposed as a new member of the genus Thermaerobacter, 

Thermaerobacter subterraneus sp. nov.  It is widely accepted that spore-
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forming and non-spore-forming species can be included in the same genus 

as exemplified by members of the genus Thermoanaerobacter (Cayol et al., 

1995). 

 



  
1
3
5

T
a
b

le
 5

.1
: 

C
h

a
ra

ct
e
ri

st
ic

s 
o

f 
is

o
la

te
 C

2
1

T
 a

n
d

 T
h

e
rm

a
e
ro

b
a
ct

e
r 

m
a
ri

a
n

e
n

si
s 

st
r.

 7
p

7
5

a
 

C
h

a
ra

ct
e
ri

st
ic

s 
Is

o
la

te
 C

2
1

T
 (a

)  
T
. 

m
a
ri

a
n

e
n

si
s 

st
r.

 7
p

7
5

a
 (b

)  

H
ab

it
at

 
B
o
re

 o
u
tf

lo
w

, 
G

re
at

 A
rt

es
ia

n
 B

a
si

n
 o

f 

A
u
st

ra
lia

 

C
h
al

le
n
g
er

 D
ee

p
 s

ed
im

en
t,

 M
ar

ia
n
a 

T
re

n
ch

 

M
o
rp

h
o
lo

g
y 

(µ
m

) 
2
-1

0
 x

 0
.3

 
2
-7

 x
 0

.3
-0

.6
 

Pr
es

en
ce

 o
f 
sp

o
re

s 
E
lli

p
so

id
a
l,
 t

er
m

in
al

, 
2
µm

 x
 0

.5
µm

 
N

o
 

G
ro

w
th

 c
o
n
d
it
io

n
s:

 
 

 

  
  

T
em

p
er

at
u
re

 g
ro

w
th

 r
an

g
e 

(o
C
) 

5
5
 t

o
 8

0
 (

o
p
ti
m

u
m

 7
0
) 

5
0
 t

o
 8

0
 (

o
p
ti
m

u
m

 7
4
-7

6
) 

  
  

p
H

 g
ro

w
th

 r
an

g
e 

 
6
 t

o
 1

0
.5

 (
o
p
ti
m

u
m

 8
.5

) 
5
.4

 t
o
 9

.5
 (

o
p
ti
m

u
m

 7
 t

o
 7

.5
) 

  
  

S
o
d
iu

m
 c

h
lo

ri
d
e 

re
q
u
ir
em

en
t 

N
o
  

0
.5

 t
o
 5

%
 (

o
p
ti
m

u
m

 2
%

) 

G
ro

w
th

 o
n
: 

 
 

  
  

Y
ea

st
 e

xt
ra

ct
 

Y
es

 
Y
es

 

  
  

 P
ep

to
n
e 

Y
es

 
Y
es

 

  
  

 A
m

in
o
 a

ci
d
s 

N
o
 

Y
es

 

  
  

 C
a
rb

o
h
yd

ra
te

s 
N

o
 

Y
es

 

  
  

 C
a
rb

o
xy

lic
 a

ci
d
s 

N
o
 

Y
es

 

R
eq

u
ir
em

en
t 

o
f 
ye

as
t 

ex
tr

ac
t 

o
r 

p
ep

to
n
e 

fo
r 

g
ro

w
th

 o
n
 c

ar
b
o
h
yd

ra
te

s 

N
o
t 

ap
p
lic

ab
le

 
N

o
 

G
+

C
 c

o
n
te

n
t 

(m
o
l 
%

) 
7
1
 (

th
er

m
al

 d
en

a
tu

ra
ti
o
n
) 

7
2
.5

 (
H

PL
C
) 

(a
) 

D
at

a 
fr

om
 t

h
es

e 
st

u
d
ie

s;
 (

b
) 

D
at

a 
fr

o
m

 T
ak

ai
 e

t 
al

. 
(1

9
9
9
).

 



A novel aerobic bacterium, Thermaerobacter subterraneus, sp. nov. 

 136

5.4.2 EMENDED DESCRIPTION OF THERMAEROBACTER GEN. 

(Takai et al., 1999) 

Thermaerobacter (Therm.ae.ro.bac’ter. Gr. adj. Thermos hot; Gr. n. aer air; 

M.L. bacter masc. Equivalent of Gr. neut. N. bakterion rod or staff; M.L. 

masc. N. Thermaerobacter rod which grows at high temperatures in the 

presence of air). 

Rod-shaped, may or may not form spores. Gram-variable cells are non-

motile and flagella are absent.  Aerobic and thermophilic.  Heterotrophic.  

Grow at neutral to alkaline pH.  NaCl may or may not be required for 

growth.  May utilise organic substrates such as yeast extract, peptone, 

cellulose, starch, chitin, casein, casamino acids, a variety of sugars, 

carboxylic acids and amino acids.  The G+C content of genomic DNA is 71 

to 73 mol%.  Major cellular fatty acids are iso-C17:0, C14:1, anteiso-C17:0 iso-

C15:0, anteiso-C15:0, C16:0, and C18:0.  On the basis of 16S rRNA gene analysis, 

the genus Thermaerobacter is most closely related to the genus Moorella.  

Thermaerobacter species habitats known so far include deep sea-floor 

environments, hydrothermal vents and subterranean thermal environments 

such as the Great Artesian Basin of Australia. 

5.4.3 DESCRIPTION OF THERMAEROBACTER SUBTERRRANEUS SP. 

NOV. 

Thermaerobacter subterraneus (sub. terr. aneus L. adj. sub under, beneath; 

L. n. terra earth, ground, L. masc. adj.subterraneus under the earth) 

Cells are rod-shaped (2-10µm x 0.3µm) with rounded ends and occur singly 

or in pairs.  Cells are non-motile and do not posses flagella.  They stain 

Gram-negative but possess a Gram-positive cell wall ultrastructure. The 

cells form terminal ellipsoidal spores that distend the cells.  Strictly aerobic.  

Temperature range for growth is 55-80ºC with the optimum being 70ºC.  

pH range for growth is 6-10.5 with an optimum of 8.5.  The organism does 

not require NaCl, but is inhibited by NaCl concentrations higher than 1%.  

The organism grows on yeast extract and / or tryptone but not on any other 
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carbon sources as sole carbon/energy sources.  Ampicillin, neomycin, 

penicillin, phosphomycin, polymixin B, streptomycin and tetracycline, but 

not sodium azide, inhibit growth.  The G+C composition of genomic DNA is 

71 mol%G+C.  Phylogenetically related to T. marianensis (16S rRNA gene 

similarity value of 98%).  The isolate was obtained from a sediment sample 

from the outflow of a Great Artesian Basin bore (the New Lorne Bore) in 

Queensland, Australia. 

The type strain is Thermaerobacter subterraneus str. C21T = ATCC BAA-

137T. 
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6.1 INTRODUCTION 

The economic importance of the Great Artesian Basin is great, especially in 

the more arid regions of Australia.  Prokaryotic communities influence the 

standard and quantity of bore water.  Populations of detrimental 

prokaryotes produce precipitates that cause problems with filtration and 

pumping.  In addition the prokaryotes involved with these processes 

increase corrosion of the bore casings and cause a decline in the standard of 

water quality with adverse effects on taste, colour and odour.  It is vital that 

detrimental populations can be monitored and minimised before the need 

for expensive and complex rehabilitation arises.  Developing a rapid, 

standardised technique using new technologies (e.g. real-time PCR) will 

enable the relatively easy and cheap monitoring of at-risk bores that will 

provide early indications of infections of damaging prokaryotes. 

6.1.1 RESEARCH UTILISING REAL-TIME PCR 

The majority of previous research that has taken advantage of real-time 

detection during PCR concerns the detection and identification of pathogenic 

species of prokaryotes and viruses (Fortin et al., 2001; Nogva et al., 2000; 

Pirnay et al., 2000).  Creating a standardised technique (e.g. DNA 

extraction and PCR conditions) has the further advantages as it enables the 

quantitation of the target DNA used in the PCR (Knerr et al., 1999; Lyons et 

al., 2000; Miley et al., 2000).  There is little application of real-time PCR to 

monitoring environmental populations (Hermansson & Lindgren, 2001), 

however, the specificity and sensitivity of the assay, combined with high 

speed, robustness, reliability, and the possibility of automating the 

technique, lends itself to the detection of economically important (both 

clinical and environmental) species. 

6.1.2 THE GENUS CALORAMATOR 

Members of this genus were first described by Patel et al. (1987) as 

Clostridium fervidus.  Further phylogenetic comparison of 16S rRNA gene 

sequences of members of the genus Clostridium required that Clostridium 
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fervidus be placed into a new genus and reclassified as Caloramator 

fervidus (Collins et al. 1994). 

Members of the genus Caloramator are obligately anaerobic, Gram-

negative, thermophilic rod-shaped sporulating microorganisms (Collins et al. 

1994).  Currently Caloramator comprises four species.  Two species, C. 

coolhaasii and C. proteoclasticus, were isolated from enrichment cultures 

taken from anaerobic, thermophilic, granular sludge (Plugge et al., 2000; 

Tarlera et al., 1997).  The remaining two species, C. fervidus and C. indicus, 

were isolated from non-volcanically heated waters of the Great Artesian 

Basin and from India respectively (Patel et al.; 1987, Chrisostomos et al., 

1996). 

As the presence of members of the genus Caloramator have been 

previously isolated from the Great Artesian Basin of Australia, initial 

isolations were carried out from sediment samples from the New Lorne 

bore.  Using these isolates, a preliminary investigation involving adjacent 

hybridisation probes and the LightCycler™ was carried out to determine the 

applicability of this technique in the identification of environmental isolates 

belonging to the genus Caloramator. 

6.2 MATERIALS AND METHODS 

6.2.1 CALORAMATOR STRAINS 75-1 AND 75-2 

Caloramator str 75-1 and Caloramator str 75-2 were obtained from a 

sediment slurry sample from the New Lorne bore at 66ºC (Section 2.4).  

The sediment slurry was used as the inoculum for a dilution series in TYEG  

(Section 2.3.4) and incubated at 50ºC.  Strains 75-1 and 75-2 were isolated 

using the roll-tube technique in TYEG amended with 1.5% agar (Hungate, 

1969).  Subsequent 16S rRNA sequencing and phylogenetic analysis 

(Section 2.15) identified isolates 75-1 and 75-2 as members of the genus of 

Caloramator, closely related to Caloramator coolhaasii . 

Bacillus str B4-1 was isolated from a sediment slurry sample from the New 

Lorne bore at 66ºC (Section 2.4).  The sediment slurry was used as the 
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inoculum for a dilution series in Media D (Section 2.3.3) and incubated at 

50ºC.  Bacillus str B4-1 was isolated by streaking the enrichment on Media 

D amended with 2% agar and incubating again at 50ºC.  Subsequent 16S 

rRNA gene sequencing and phylogenetic analysis (Section 2.15) identified 

isolate B4-1 as a member of the genus Bacillus, closely related to Bacillus 

flavothermus. 

6.2.2 DNA EXTRACTION FOR PCR AND REAL-TIME PCR 

Overnight cultures of Caloramator str 75-1 and Caloramator str 75-2 grown 

in TYEG at 50ºC had the chromosomal DNA extracted as detailed in Section 

2.6.1.  Chromosomal DNA extracted (Section 2.6.1) from overnight cultures 

of an environmental isolate, Bacillus str B4-1, was employed as a negative 

control for real-time PCR.  The concentration of chromosomal DNA was 

determined as described in Section 2.12. 

6.2.3 DEVELOPMENT OF ADJACENT HYBRIDISATION PROBES 

The two adjacent hybridisation probes were designed according to the 

following specifications advised by Idaho Technology: 

1. Probe TM’s should be near equal and 5 to 10ºC greater than primer TM’s. 

2. The 3’ end of the upstream probe should be labelled by fluorescein, which 

serves as the donor in FRET and blocks the extension from the probe. 

3. The 5’ end of the downstream probe should be labelled with Cy5, which 

serves as the acceptor in FRET, and the 3’ end of the probe should be 

phosphorylated to block extension. 

4. The probes should be separated by one base. 

5. The probes should be placed on one strand near an amplification primer 

of the opposite strand. 

The 16S rRNA gene was selected as the target due to the vast sequence 

data available and a selection of primers is already available for use (Table 

2.2). 

6.2.4 OPTIMISATION OF PCR USING THE RAPIDCYCLER 

Reactions consisted of 1µL of 10x PCR buffer, 1µL of 2mM dNTPs (0.5mM 

dATP, 0.5mM dGTP, 0.5mM dCTP, and 0.5mM dTTP), 1µL of 5µM F3 primer 
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(Table 2.2), 1µL of 5µM Rd1 primer (Table 2.2), 0.08µL of 5U/µL of Taq DNA 

Polymerase (Promega Corp.), 1µL of chromosomal DNA, and 4.92µL of 

sterile ddH2O. 

To optimise the PCR, the annealing temperature was varied to determine 

the best possible amplification of the target sequence. 

The PCR was carried out in a RapidCycler (Idaho Technology Inc., USA) with 

the following parameters: 1 cycle of 94ºC for 30 seconds; and 30 cycles of 

94ºC for 0 seconds, 50ºC (55ºC, 58ºC or 60ºC) for 0 seconds, 74ºC for 30 

seconds with a slope of 9.9. 

The reaction mix was allowed to enter a 5-30µL borosilicate glass tube 

(1.0mm outer diameter, 0.8mm inner diameter) by capillary action.  The 

ends were heat-sealed and the PCR started.  Each PCR contained a negative 

control (1µL of sterile ddH20) and a positive control (1µL of known 

amplifiable DNA instead of template DNA).  The efficacy of the PCR was 

determined by agarose gel electrophoresis of the complete reaction volume 

(Section 2.7). 

6.2.4 OPTIMISATION OF REAL-TIME PCR USING THE LIGHTCYCLER 

Reaction samples were modified by the addition of the two hybridisation 

probes (Cal-FITC and 1046plus-Cy5).  Reactions consisted of 1µL of 10x 

PCR buffer, 1µL of 2mM dNTPs (0.5mM dATP, 0.5mM dGTP, 0.5mM dCTP, 

and 0.5mM dTTP), 1µL of 5µM F3 primer (Table 2.2), 1µL of 5µM Rd1 primer 

(Table 2.2), 1µl of 2µM Cal-FITC, 1µL of 4µM 1046plus-Cy5, 0.08µL of 5U/µL 

of Taq DNA Polymerase (Promega Corp.), 1µL of chromosomal DNA, and 

2.92µL of sterile ddH2O. 

The reaction mix was pipetted into a glass capillary tube and snap-sealed by 

a plastic cap.  The PCR was carried out in a LightCycler™ (Idaho Technology 

Inc., USA).  The PCR conditions optimised in Section 6.2.3 were used as the 

initial PCR conditions for real-time PCR, however, after optimisation the 

following parameters were selected: 1 cycle of 94ºC for 30 seconds; and 30 

(or 45) cycles of 94ºC for 0 seconds, 55ºC for 20 seconds, 74ºC for 30 

seconds with a ramp speed of 20ºC/sec.  Fluorescence emissions were 
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monitored and recorded for 100mseconds during the annealing step (55ºC 

for 30 seconds) by the LightCycler™.  At the end of each run the 

experimental data could be analysed with the software provided of imported 

into a spreadsheet for further manipulation.  The effect of sample-to-sample 

variation was minimised by normalisation of the fluorescence data.  

Normalisation required the subtraction of the minimum value from each 

data point, dividing the result by the maximum value, and multiplying by 

100. 

Each run for the optimisation of the LightCycler™ and adjacent hybridisation 

probes contained a PCR negative control (1µL of sterile ddH20), a PCR 

positive but hybridisation negative control (1µl of Bacillus str. B4-1 

chromosomal DNA) and a PCR positive, hybridisation positive control (1µL of 

Caloramator str 75-1 or Caloramator str 75-2).  The efficacy of the PCR was 

determined by agarose gel electrophoresis of the whole sample (see Section 

2.7). 

The melting characteristics of the hybridisation probes were determined by 

continuously monitoring the emission of fluorescence from 45ºC to 94ºC 

with a ramp speeds of 0.2ºC/sec.  The speed at which the probes bind at 

55ºC was determined by completely denaturing the hybridisation probes 

from the target DNA by heating at 94ºC for 1 minute, rapidly decreasing the 

temperature at 20ºC/sec to 55ºC and following the emission of fluorescence 

for 2 minutes. 

6.3 RESULTS 

6.3.1 DNA CONCENTRATION OF CHROMOSOMAL DNA 

Chromosomal DNA was extracted from Caloramator str. 75-1, Caloramator 

str 75-2 and Bacillus str B4-1 and the concentration was determined 

spectrophotometrically.  The concentration of chromosomal DNA 

Caloramator str. 75-1 was 8µg/mL, Caloramator str 75-2 was 6µg/mL, and 

Bacillus str B4-1 was 21µg/mL. 
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6.3.2 DESIGN OF ADJACENT HYBRIDISATION PROBES 

Following the guidelines suggested by Idaho Technology, amplification 

primers selected for the 16S rRNA gene were F3 and Rd1.  This pair 

amplified a region of approximately 640bp near the 3’ end of the 16S rRNA 

gene and had very similar TM’s.  To counter the cost of producing a different 

pair of hybridisation probes for each species, a region in the 16S rRNA gene 

was identified that was highly conserved adjacent to a highly variable 

region.  The more expensive probe to manufacturer i.e. the Cy5-labelled 

probe would be designed against the conserved region, while the cheaper 

FITC-labelled probe would be designed against the variable region and 

would confer the specificity required for this technique.  The two 

hybridisation probes were designated 1046plus-Cy5 and Cal-FITC.  

Sequences of the probes are shown in Table 6.1 and Figure 6.1 shows a 

partial 16S rRNA gene sequence alignment with the sites of hybridisation for 

the primers and probes. 

Table 6.1: Adjacent Hybridisation Probes used in Real-Time PCR 

Probe Sequence (5’ 3’) 

Cal-FITC GCC-CTT-CGG-GGA-ACG-GTG-AGA-FITC 

1046plus-Cy5 Cy5-AGG-TGI*-TGC-ATG-GIT-GTC-GTC-AGC-TCG-TGT-PO4 

* denotes deoxy-inosine. 

Figure 6.1: Partial 16S rRNA gene sequence alignment showing sites 
of hybridisation for PCR primers and adjacent hybridisation probes 
                    *       920         *       940         *       960 
Ecoli    : AGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT 
Bflav    : AGAGTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT 
Bac_B4-1 : AGAGTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT 
Cindicus : AGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGGTTTAAT 
Ccool    : AGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGGTTTAAT 
Cprot    : AGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGGTTTAAT 
Cferv    : AGACTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGGTTTAAT 
Cal_75-1 : AGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGGTTTAAT 
Cal_75-2 : AGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGGTTTAAT 
 
            (F3) AAACTCAAAGGAATTGACGG ->                                
                                                                        
                    *       980         *      1000         *      1020 
Ecoli    : TCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAGTTTTCAGAGATGAG 
Bflav    : TCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCCCTGACAACCCGAGAGATCGG 
Bac_B4-1 : TCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCCCTGACAACCCGAGAGATCGG 
Cindicus : TCGAAGCAACGCGAAGAACCTTACCAGGGCTTGACATCCACCGAACCCTGTGGAAACACG 
Ccool    : TCGAAGCAACGCGAAGAACCTTACCAGGGCTTGACATCCACCGAACCCTGTGGAAACACG 
Cprot    : TCGAAGCAACGCGAAGAACCTTACCAGGGCTTGACATCCACCGAACCCTGTGGAAACACG 
Cferv    : TCGAAGCAACGCGAAGAACCTTACCAGGGCTTGACATCCACCGAACCCTGTGGAAACACG 
Cal_75-1 : TCGAAGCAACGCGAAGAACCTTACCAGGGCTTGACATCCACCGAACCCTGTGGAAACACG 
Cal_75-2 : TCGAAGCAACGCGAAGAACCTTACCAGGGCTTGACATCCACCGAACCCTGTGGAAACACG 
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                      *        1040         *      1060         *       
Ecoli    : AATGTG--CCTTCGGG--AACCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTT 
Bflav    : GCGTTCCCCCTTCGGGGGGACAGGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC 
Bac_B4-1 : GCGTTCCCCCTTCGGGGGGACAGGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC 
Cindicus : GGGGTG-CCCTTCGGGG-AACGGTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC 
Ccool    : GGGGTG-CCCTTCGGGG-AACGGTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC 
Cprot    : GGGGTG-CCCTTCGGGG-AACGGTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC 
Cferv    : GGGGTGCCCCTTATGGGGAGCGGTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC 
Cal_75-1 : GGGGTG-CCCTTCGGGG-AACGGTGAGACAGGTGGTGCATGGTTGTTGTCAGTTCGTGTC 
Cal_75-2 : GGGGTG-CCCTTCGGGG-AACGGTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC 
 
                G-CCCTTCGGGG-AACGGTGAGA AGGTGITGCATGGITGTCGTCAGCTCGTGT-PO

4
 

               (Cal-FITC)          FITC Cy5              (1046plus-Cy5) 
                                                                        
           1080         *      1100         *      1120         *       
Ecoli    : GTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGG-T 
Bflav    : GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGACCTTAGTTGCCAGCA-TT 
Bac_B4-1 : GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCTTCGACCTTAGTTGCCAGCA-TT 
Cindicus : GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGCCTTTAGTTGCCAGCAC-T 
Ccool    : GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTGCCTTTAGTTGCCAGCAA-T 
Cprot    : GTGAGATGTTGGGTTAAGTCCCGCAACGAACGCAACCCTTACCTTTAGTTGCCACCAA-A 
Cferv    : GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTATCGTTAGTTGCCAGCAC-T 
Cal_75-1 : GTGAGATGTTGGGTTAAGTCCCGCAAGGAGCGCAACCCCTGCCTTTAGTTGCCAGCAA-T 
Cal_75-2 : GTGAGATGTGGGGTTAAGTCCCGNAAGGGGCGCAACCCCTGCCTTTAGTTGCCAGCAA-T 
                                                                        
 
             1140         *      1160         *      1180         *     
Ecoli    : CCGG-CCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGT 
Bflav    : CAGT--TGGGCACTCTAAGGTGACTGCCGGCTAAAAGTCGGAGGAAGGTGGGGATGACGT 
Bac_B4-1 : CAGT--TGGGCACTCTAAGGTGACTGCCGGCTAAAAGTCGGAGGAAGGTGGGGATGACGT 
Cindicus : TCGGGGTGGGCACTCTAAAGGGACTGCCTGGGTTAACCAGGAGGAAGGTGGGGATGACGT 
Ccool    : TCGG-TTGGGCACTCTAGAGGGACTGCCTGGGTTAACCAGGAGGAAGGTGGGGATGACGT 
Cprot    : TCGG-TTGGGCACTCTAGAGGGACTACCTGGGTTACCCAGGAGGAAGGTGGGGATGACGT 
Cferv    : TCGGGGTGGGCACTCTAACGAGACTGCCAGGGTTAACCTGGAGGAAGGTGGGGATGACGT 
Cal_75-1 : TCGG-TTGGGCATTTTAGAGGGACTGCCTGGGTTAACCAGGAGGAAGGTGGGGATGACGT 
Cal_75-2 : TNGG-TTGGGCACTCTAGAGGGACTGCCTGGGTTAACCAGGGGGAAGGTGGGGANGACGT 
 
 
             1200         *      1220        *      1240         *     
Ecoli    : CAAGTCATCATGGCCCTTACGACCAGGCTACACACGTGCTACAATGGCGCATACAAAGAG 
Bflav    : CAAATCATCATGCCCCTTATGACCTGGCTACACACGTGCTACAATGGGCGGTACAAAGGG 
Bac_B4-1 : CAAATCATCATGCCCCTTATGACCTGGCTACACACGTGCTACAATGGGCGGTACAAAGGG 
Cindicus : CAAATCATCATGCCCCTTATGCTCTGGCTACACACGTGCTACAATGGCCGGTACAATGAG 
Ccool    : CAAATCATCATGCCCCTTATGCTCTGGCTACACACGTGCTACAATGGCCGGTACAAAGAG 
Cprot    : CAAATCATCATGCCCCTTATGCTCTGGCTACACACGTGCCACAATGGCCGGTACAATGAG 
Cferv    : CAAATCATCATGCCCCTTATGCCCTGGCTACACACGTGCTACAATGGCCACTACAGAGAG 
Cal_75-1 : CAAATCATCATGCCCCTTATGCTTTGGGTACACACGTGCTACAATGGCCGGTACAAAGAG 
Cal_75-2 : CAAATCATCATGCCCATTATGCTGTGGATACACACGTGATACAATGGCCGGTACAAAGAG 
                                                                        
 
            1260         *      1280         *      1300         *      
Ecoli    : AAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCT 
Bflav    : TTGCGAACCCGCGAGGGGGAGCCAATCCCAAAAAGCCGCTCTCAGTTCGGATTGCAGGCT 
Bac_B4-1 : TCGCGAACCCGCGAGGGGGAGCCAATCCCAAAAAGCCGCTCTCAGTTCGGATTGCAGGCT 
Cindicus : TTGCAAACCCGTGAGGGGGAGCTAATCTCA-AAAACCGGTCCCAGTTCGGATTGTAGGCT 
Ccool    : AAGCAAGTCCGCGAGGAGGAGCCAATCTCA-AAAACCGGTCCCAGTTCGGATTGTAGGCT 
Cprot    : TTGCAAACCCGCGAGGGGGAGCTAATCTCA-AAAACCGGTCCCAGTTCGGATTGTAGGCT 
Cferv    : AAGCGAACCCGCGAGGGGGAGCGAAATCTTGAAAGGTGGTCCCAGTTCGGATTGCAGGCT 
Cal_75-1 : AAGCAATACCGTGAGGAGGAGCCAATCTCA-AAAACCGGTCCCAGTTCGGATTGTAGGCT 
Cal_75-2 : AAGCAATACCGTGAGGAGGAGCCAATCTCA-AAAACCGGTCCCAGTTCGGATTGTAGGGT 
                                                                        
 
            1320         *      1340         *      1360         *      
Ecoli    : GCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGCCACGGTGAA 
Bflav    : GCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAA 
Bac_B4-1 : GCAACTCGCCTGCATGAAGCCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAA 
Cindicus : GCAACTCGCCTACATGAAGCCGGAGTTGCTAGTAATCGCGGGTCAGCATGCCGCGGTGAA 
Ccool    : GCAACTCGCCTACATGAAGCTGGAGTTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAA 
Cprot    : GCAANTCGCCCACATGAAGCTGGAGTTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAA 
Cferv    : GCAACTCGCCTGCATGAAGCCGGAGTTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAA 
Cal_75-1 : GCAATTCGCCTACATGAAGCTGGAGTTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAA 
Cal_75-2 : GCAATTCGCATACATGAAGCTGGAGTTGNTAGTAATCGCGGATCAGCATGCCGCGGTGAA 
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            1380         *      1400         *       1420         *     
Ecoli    : TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA-TGGGAGTGGGTTGCAAAAGAA 
Bflav    : TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA-CGAGAGTTTGCAACACCCGAN 
Bac_B4-1 : TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA-CGAGAGTTTGCAACACCCGAA 
Cindicus : TACGTTCCCGGGGCTTGTACACACCGCCCGTCACACCA-TGAGAGCCGGCAACACCCGAA 
Ccool    : TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA-TGAGAGCCGGCAACACCCGAA 
Cprot    : TACGTTCCCGGACCTTGTACACACCGCCCGTCACACCATTGAGAGCCGGCAACACCCGAA 
Cferv    : TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA-TGAGAGCCGGCAACACCCGAA 
Cal_75-1 : TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA-TGAGAGCCGGCAACACCCGAA 
Cal_75-2 : TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA-TGAGAGCCGGCAACACCCGAA 
                                                                        
             1440         *        1460         *      1480         *   
Ecoli    : GTAGGTAGCTTAACC-TTCG-GGAGGGCGCTTACCACTTTGTGATTCATGACTGGGGTGA 
Bflav    : GTCGGTGAGGTAACCCTTACGGGAGCCAGCCGCCGAAGGTGGGGCAAATGATTGGGGTGA 
Bac_B4-1 : GTCGGTGAGGTAACCCTTACGGGAGCCAGCCGCCGAAGGTGGGGCAAATGATTGGGGTGA 
Cindicus : GCCAGTGGGCTAACCCGCAAGGGAGGCAGCTGTTGAAGGTGGGGCTGGTGATTGGGGTGA 
Ccool    : GCCAGTGGGCTAACCCGCAAGGGAGGCAGCTGTCGAAGGTGGGGCTGGTGATTGGGGTGA 
Cprot    : GCCAGTGGGCTAACCCTCAAGGGAGGCAGCTGTCGAA----------------------- 
Cferv    : GCCAGTGGGCTAACCCGAAA-GGAGGCAGCTGTCGAAGGTGGGGCTGGTGATTGGGGTGA 
Cal_75-1 : GCCAGTGGGCTAACCCGCAAGGGAGGCAGCTGTCGAAGGTGGGGCTGGTGATTGGGGTGA 
Cal_75-2 : GCCAGTGGGCTAACCCGCAAGGGAGGCAGCTGTTGAAGGTGGGGCTGGTGATTGGGGTGA 
                                                                        
 
               1500         *      1520         *      1540   
Ecoli    : AGTCGTAACAAGGTAACCGTAGGGGAACCTGCGGTTGGATCACCTCCTTA 
Bflav    : AGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGAT---------- 
Bac_B4-1 : AGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCT-- 
Cindicus : AGTCGTAACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCACCTCCTT- 
Ccool    : AGTNGTAACAA--------------------------------------- 
Cprot    : -------------------------------------------------- 
Cferv    : AGTCGTAACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCACCTCC--- 
Cal_75-1 : AGTTGTAACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCACCTCCT-- 
Cal_75-2 : ANTCGTAACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCACCTCCT-- 
 
                                        <- CCGACCTAGTGGAGAA (Rd1) 

Abreviations: Ecoli Escherichia coli (J01695); Bflav Bacillus flavothermus DSM 2641 

(Z26932); Bac_B4-1 Bacillus str B4-1; Cindicus Caloramator indicus ACM 3982T (X75788); 

Ccool Caloramator coolhaasii str. ZT (AF104215); Cprot Caloramator proteolyticusT 

(X90488); Cferv Caloramator fervidus ATCC 43204T (L09187); Cal_75-1 Caloramator str 75-

1; Cal_75-2 – Caloramator str 75-2.  GenBank accession numbers are in parenthesis. 

The TM’s of the PCR amplification primers F3 and Rd1 were 52.8ºC and 

51.7ºC respectively.  The TM’s of the adjacent-adjacent hybridisation probes 

1046plus-Cy5 and Cal-FITC were calculated to be 64.2ºC and 60.1ºC 

respectively, at least 8ºC higher than the amplification primers. 

6.3.3 OPTIMAL PCR CONDITIONS 

The optimal PCR conditions were determined to have an annealing 

temperature of 55ºC as is shown in Figure 6.2.  At an annealing 

temperature of 50ºC, there is considerable smearing of the PCR product.  At 

the higher temperatures of 58ºC and 60ºC, the amount of PCR product is 

much lower.  At 55ºC the amount of amplified product was high and there 

was relatively little smearing, making it the best choice for the PCR.  The 

minimal times for extension, annealing and denaturing did not require 
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adjusting as amplification did occur in all samples, and it was not necessary 

to extend times at this stage of optimisation. 

6.3.4 OPTIMAL LIGHTCYCLER™ CONDITIONS 

The thermal cycling was optimised for the PCR amplification of the target 

site using the RapidCycler.  The transferral of the thermal cycling 

parameters to the LightCycler™ allowed the amplification of the target 

region of the 16S rRNA genes from the chromosomal DNA.  However, the 

real-time monitoring of the hybridisation probes showed that the 

fluorescence detected by the LightCycler™ did not increase smoothly.  In an 

attempt to increase the accuracy and consistency of the fluorescence signal 

detected, the hybridisation of the probes to the target DNA was followed for 

2 minutes (Figure 6.3).  This showed that after 10 seconds the probes had 

hybridised to approximately only 50% of the available template.  To 

increase the sensitivity and accuracy of the readings, the annealing 

conditions were changed from 0 seconds at 55ºC to 20 seconds at 55ºC, 

after which time there is considerable more probe (approximately 70%) 

hybridised to the available template.  This would reduce the introduced 

variability of the fluorescent measurements taken after only 0 seconds at 

55ºC. 
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Figure 6.2: Effect of Annealing Temperature on PCR yield 

Lanes 1-5: 50ºC anneal; Lanes 6-11: 55ºC anneal; Lanes 12-16: 58ºC anneal; Lanes 18-22: 

60ºC anneal.  Lanes 6 and 17: 500ng Low Mass Ladder.  Order of samples: ddH2O negative 

control; Bacillus str B4-1; Caloramator str 75-1; Caloramator str 75-1(duplicate) ; 

Caloramator str 75-2. 

Figure 6.3: Binding of the hybridisation probes followed at 55ºC 

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 20 40 60 80 100 120
Time (seconds)

N
o
rm

al
is

ed
 F

lu
o
re

sc
en

ce

Negative Control (ddH2O) Caloramator str. 75-2



Development of Real-Time PCR to Identify Environmental Isolates of Caloramator 

 149

Figure 6.4 shows the sensitivity of hybridisation probes with real-time PCR.  

Noticeable increases in fluorescence were detected in all Caloramator str 

75-2 samples down to 6fg of template DNA.  No fluorescence was detected 

in the ddH2O amplification negative control, the Bacillus str B4-1 

hybridisation negative control, or Caloramator str 75-2 samples with less 

than 6fg of template DNA added. 

Figure 6.4: Real-time PCR specific for Caloramator 

Increases in fluorescence were detected as early as cycle 10 for 

Caloramator str 75-2 (6ng) and as late as cycle 29 for the Caloramator str 

75-2 (6fg). 

Figure 6.5 is the agarose gel image of the samples after the real-time PCR 

and shows that amplification is noticeable in all samples apart from the 

ddH2O amplification negative control and the Caloramator str 75-2 samples 

with less than 60fg of template DNA added. 
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Figure 6.5: Agarose gel electrophoresis image of the Real-Time PCR 
dilution series 

Lanes 1 and 12: 500ng Low Mass Ladder.  Lane 2: ddH2O negative control. Lane 3: Bacillus 

str B4-1 (20ng DNA). Lane 4-11: Caloramator str 75-2. Amounts of DNA are: 6ng; 600pg, 

60pg, 6pg, 600fg, 60fg, 6fg, and 0.6fg from Lane 4 to Lane 11. 

The increase in the fluorescence ratio for the environmental Caloramator 

isolates, but not for the Bacillus str B4-1 demonstrates that these probes 

can be used in the rapid identification of Caloramator isolates from natural 

ecosystems.  The annealing temperature of 55ºC conferred acceptable 

specificity to the assay, and further modification of the PCR’s conditions was 

considered unnecessary.  Under these conditions, the fluorogenic probes 

started dissociating from the PCR product at approximately 65ºC and was 

completely dissociated at 75ºC as shown in Figure 6.6.  The TM calculated 

from first derivative analysis of this curve was 69ºC and will be specific for 

the dissociation of the hybridisation probes to the target region. 
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Figure 6.6: Melting curve showing gradual dissociation of the 
adjacent hybridisation probes 

Dissociation of the adjacent hybridisation probes began at 65ºC and was complete at 75ºC.  

The Tm calculated by the first derivative analysis is 69ºC and will be specific for this set of 

probes and Caloramator species.  No dissociation was detected in both negative controls. 

6.4 DISCUSSION 

6.4.1 OPTIMAL PCR CONDITIONS 

At an annealing temperature of 50ºC, there is considerable smearing of the 

PCR product, an undesirable artefact of the low annealing temperature.  At 

the higher temperatures of 58ºC and 60ºC, the amount of PCR product is 

much lower, a result of lower binding of the amplification primers.  The 

optimal annealing temperature for PCR was regarded as 55ºC as the 

amount of amplified product was high and there was relatively little 

smearing at that annealing temperature. 

6.4.2 HYBRIDISATION PROBE DESIGN 

The 16S rRNA gene was selected as the target site for both amplification 

and identification, as a series of primers specific for this gene are well 

known.  To allow for a wide range of applications and the cost of the Cy5-

labelling procedure, this hybridisation probe was designed to bind to as 

many species as possible by designing it against a conserved region of the 
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16S rRNA gene.  The fine precision of this technique was introduced from 

the cheaper, fluorescein-labelled probe that was designed against an 

adjacent, but variable region.  Sequence analysis has shown that the 

1046plus-Cy5 probe is complementary to the 16S rRNA gene from a wide 

number of species.  The inclusion of dI in the oligonucleotide increases its’ 

degeneracy.  Sequence analysis of the Cal-FITC probe shows its specificity 

to the genus of Caloramator.  To transfer this protocol to identify a different 

species of prokaryote, a new fluorescein-labelled probe constructed for the 

same region of the 16S rRNA gene is the only modification required. 

6.4.3 OPTIMAL LIGHTCYCLER CONDITIONS 

The initial thermal cycling conditions optimised on the RapidCycler 

transferred to the LightCycler™ amplified the target DNA well.  However, 

the measurement of emitted fluorescence data was not consistent, showing 

inconsistencies between readings.  To reduce this effect, the association of 

the probes were monitored at 55ºC (the temperature of annealing and 

recording) for 2 minutes.  This showed that a reasonable majority of the 

probes did not hybridise with the target for 20 seconds after reaching the 

annealing temperature.  To ensure that the stringency of the thermal 

cycling was reserved, the annealing temperature was not reduced, but the 

time was extended from 0 seconds to 20 seconds.  This proved to stabilise 

the readings for the real-time monitoring of the PCR. 

The slight decrease in normalised fluorescent readings during the initial 

cycles shown in Figure 6.4 is thought to be mainly due to a photobleaching 

effect on the fluorescein label used in the experiment.  Fluorescein is known 

to be very susceptible to photobleaching effects (Song et al., 1995; Sjoback 

et al, 1995).  In addition, quenching of the fluorescein-signal is also known 

to occur when labelled probes are hybridised to complementary sequences 

(Talavera et al, 2000). 

6.4.4 THE MELTING PROFILE OF THE HYBRIDISATION PROBES  

As both probes are required in close proximity to excite the fluorescein label 

of the Cal-FITC probe, if one probe dissociates from the target DNA, the 
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emission from fluorescein will reduce.  The probes’ melting profile showed a 

high uniformity with the TM’s calculated.  Analysis of the melting profile of 

the probes showed an initial decrease of approximately 65ºC which 

corresponds well with the calculated TM of the 1046plus-Cy5 probe which 

was 64.2ºC.  The first derivative analysis of the melting profile gave a TM of 

69ºC that also corresponds well.  The specific nature of the probe set (Ririe 

et al., 1997) will unambiguously provide a TM of 69ºC when binding to the 

16S rRNA gene of Caloramator species.  The introduction of mismatches 

into the target region (i.e. from a different species) will reduce the strength 

of the hybridisation between the probes and the target DNA, reducing the 

observed TM to a lower value.  

6.4.5 REAL-TIME PCR AS A TOOL FOR PROKARYOTIC ECOLOGY 

The use of real-time PCR to identify and quantify pathogenic organisms has 

widely been published (Ballard et al., 2000; Bellin et al., 2001; Gut et al., 

1999; Loeffler et al., 2000; Pirnay et al., 2000; Takeuchi et al., 1999).  The 

economic importance of these pathogenic organisms cannot be discounted.  

However, the interest in thee transfer of this technology to monitor 

prokaryotic populations in the environment is relatively low (Becker et al., 

2000; Hermansson & Lindgren, 2001). 

This chapter reports the design of adjacent hybridisation probes for the 

identification of isolates of the genus Caloramator.  It was limited to 

environmental isolates that, from prior 16S rRNA gene sequencing and 

phylogenetic analysis, were known members of this genus to optimise the 

procedure for their identification.  This procedure is ready to be applied to 

unknown thermophilic strains isolated in TYEG media to aid in their rapid 

identification.  The development of real-time PCR and this pair of probes to 

further detect Caloramator species in environmental samples is also a 

possible application. 

The preliminary development of the Cal-FITC probe here allows the rapid 

identification of environmental isolates that belong to the genus 

Caloramator.  The identification of different community members can be 

accomplished with the development of new probes designed to the variable 
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region upstream of the 1046plus-Cy5 probe, and used in conjunction with 

the non-specific 1046plus-Cy5 fluorogenic probe.  As show in Section 6.3.4, 

the results of real-time PCR are dependent on initial concentrations of the 

target for PCR.  This enables a standardised method to rapidly quantify and 

identify prokaryotes.  Quantification and identification of different members 

of prokaryotic communities will provide a more complete understanding of 

the interactions between them.  In addition to this, detrimental populations 

can be monitored and pre-emptive action taken before damage is caused. 
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7.1 CONCLUSIONS 

This study describes the prokaryotic populations present in a single runoff 

drain from the New Lorne bore in central Queensland.  The outlet 

temperature of 89ºC was a crucial factor in choosing the bore, as 

thermophilic communities were to be the subject of this thesis.  A 

combination of culture independent and culture dependent techniques were 

used to characterise the prokaryotic communities present.  The first part of 

this thesis (Chapter 3) characterised five microbial communities present in 

this high-temperature bore and drain using the culture independent 

technique of 16S rRNA gene amplification and cloning.  Geographical 

limitations on species and genera have been examined for a variety of 

prokaryotes and Chapter 4 is an examination of Thermus and Meiothermus 

isolates and clones from this environment and expands the current 

knowledge of the ecological niches for these genera.  Chapter 5 

concentrated on the isolation and characterisation of a novel species, 

Thermaerobacter subterraneus str C21, isolated from the runoff drain.  The 

development of real-time PCR to identify environmental isolates of 

Caloramator is discussed in Chapter 6. 

The molecular study of the prokaryotic communities of the Great Artesian 

Basin of Australia has revealed that there are still many uncultivated species 

present within this environment.  The characterisation of these new and 

novel prokaryotes will increase our knowledge of prokaryotic diversity.  

Although only beginning, directed cultivation techniques are being 

introduced in the field of microbial ecology (Hugenholtz, 2000).  This will 

expand our understanding of phenotypic diversity. 

Isolates of the thermophilic genera Thermus and Meiothermus have been 

shown to exhibit a limited biogeography due to the sporadic nature of 

thermal ecosystems.  16S rRNA gene sequence data obtained from isolates 

from the Great Artesian Basin and 16S rRNA gene clone libraries has shown 

that populations of Thermus and Meiothermus in the Great Artesian Basin 

are limited to several clusters and do not include representatives of all 

species within these genera.  A comprehensive study of the available data 
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provides further evidence for the biogeographical limitations on several of 

these species, including T. filiformus (New Zealand), T. brockianus (USA) 

and T. aquaticus (USA). 

The description and isolation of Thermaerobacter subterraneus str C21T 

from the Great Artesian Basin is the first report of this genus from this 

unique thermal environment.  It extends the ecological niche of the genus 

Thermaerobacter.  T. subterraneus str C21T and other unique prokaryotes 

from the Great Artesian Basin represent a potentially rich source of 

thermophilic enzymes for biotechnological use.  The genome and proteins of 

T. subterraneus str C21T should be a basis for further study as it will 

elucidate the phenotypic basis for the obligately aerobic nature of this 

genus, considering its phylogenetic placement within the obligately 

anaerobic class of Firmicutes. 

The use of real-time PCR for the identification and quantification of 

pathogenic organisms is widespread, however, its use in environmental 

microbiology is very limited.  The development of probes for specific 

prokaryotic populations is an initial step for the rapid monitoring of 

ecologically important members in communities.  Its ability to quantify while 

identifying populations is essential in characterising prokaryotic 

communities using this method. 

7.2 FUTURE DIRECTIONS 

This relatively unknown resource of new prokaryotes potentially provides a 

source of innovative thermophilic enzymes and metabolites that may be 

exploited biotechnologically. 

To understand fully the effect of prokaryotic populations have on our 

biosphere, much work needs to be directed towards characterising 

prokaryotic communities.  An understanding of the genetic and phenotypic 

diversity of complex communities is required.  Studies identifying active and 

dormant populations and the physical organisation of such communities will 

clarify the role of prokaryotic communities in the cycling of nutrients and in 

biosphere. 
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The scope of the phylogenetic analysis of the thermophilic communities was 

limited to the domain Bacteria due to time restrictions.  The evidence 

provided here, however, does not exclude the presence of Archaea in the 

outflow of this bore.  There is a good possibility that some groups of 

Archaea (i.e. the methanogens) inhabit this environment.  The New Lorne 

bore, however, is relatively low in dissolved sulfur compounds like sulfate 

and sulfite, and the probability that the sulfur-dependent Archaea are 

present is low.  Sulphur-dependent Archaea may be present in other areas 

of the Great Artesian Basin of Australia that have higher levels of sulphate 

(i.e. near the western margins).  It is necessary to continue the search for 

Archaea in the Great Artesian Basin and further studies to determine their 

diversity and the extent of their habitat should be carried out. 

Further examination of the Great Artesian Basin as an environment is 

required to recognise many of the factors influencing the prokaryotic 

diversity.  A thorough characterisation of environmental conditions including 

the hydrochemical and subsurface data will provide a framework for the 

detection of the effects on prokaryotic diversity.  This study concentrated on 

a sole bore, the New Lorne bore in Central Queensland.  The 

hydrochemistry of the Great Artesian Basin varies, and comprehensive 

examination of the biodiversity of the Great Artesian Basin is required to 

fully understand the environmental effects on community structure. 

Culture independent techniques based on the 16S rRNA gene for 

identification of phylogenetic groups will provide a resource of genetic 

information that can be used to detect groups in a variety of ways.  The 

database can be exploited to develop DNA probes based on the 16S rRNA 

gene. 

Population studies will be enhanced as these probes are applied in a number 

of ways.  Real-time PCR and hybridisation probes have been used to rapidly 

enumerate and identify disease-causing prokaryotes, and are only recently 

being introduced in the field of microbial ecology.  FISH can be utilised to 

enumerate groups, identify the spatial relationships between prokaryotes 

and the organisations of communities in nature.  DGGE can be applied to 

monitor populations in prokaryotic communities. 
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Examinations of continuous cultures of mixed populations is required as it 

will elucidate the relationships between different species e.g. commensalism 

or syntrophism. 

The economic importance of the Great Artesian Basin is great, especially in 

the more arid regions of Australia.  Prokaryotic communities influence the 

standard and quantity of bore water.  Populations of iron-oxidising 

prokaryotes produce insoluble ferric iron that then precipitates out of 

solution.  This precipitate causes problems with filtration and pumping.  In 

addition the prokaryotes increase corrosion of the bore casings.  These 

prokaryotes cause a decline in the standard of water quality with adverse 

effects on taste, colour and odour.  It is vital that detrimental populations 

can be minimised and monitored before the need for expensive and 

complex rehabilitation arises.  Developing a rapid, standardised technique 

using new technologies (e.g. real-time PCR) will enable the relatively easy 

and cheap monitoring of at-risk bores that will provide early indications of 

infections of detrimental prokaryotes. 

A considerable amount of research has been carried out on the genus 

Thermus, however, the monophyletic nature of its species is still under 

question.  Numerical and chemotaxonomic studies do not provide mirror 

groups compared to the phylogenetic groups obtained from 16S rRNA gene 

sequences.  To ensure that groups within this species are correctly placed 

phylogenetic, chemotaxonomic and numerical studies must be broadened to 

include new characteristics.  The genomic variation between isolates shown 

by (Moreira et al., 1997) may provide insights into the phyletic nature of 

this genus.  DNA-DNA hybridisation experiments may show a higher 

homology present within species than shown by RFLP-PFGE. 

Further studies of isolates of Thermus from the Great Artesian Basin and 

other environments are required to elucidate its ecological nature.  In 

addition, this may present new information regarding the phylogeny of this 

genus.  From previous studies, it is known that there are some geographical 

limitations on members of the genus Thermus.  A widespread approach to 

identify Thermus from worldwide environments will demonstrate that 

biodiversity can be linked to biogeography.  This approach can be used to 
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study the geographical limitations of other genera and species that may be 

important for understanding biodiversity and the ecology of prokaryotes. 

The universal root of the tree of life is the centre of much controversy.  

Studying the evolution of prokaryotic communities may clarify the true root 

of life through knowledge of how communities adapt and evolve to new 

environments.  Genome sequencing, still in its infancy, may provide new 

theories of how life evolved on this planet. 

The study of prokaryotic communities, especially those from extreme 

environments, may provide further insights into the stability of life at high 

temperatures.  Research on prokaryotic communities from the Great 

Artesian Basin of Australia has much potential to clarify the ecological role 

of thermophiles and thermophilic communities. 
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APPENDIX I: WORLD WIDE WEB RESOURECES 

BioEdit: Biological Sequence Alignment Editor for Windows 95/98/NT 

http://jwbrown.mbio.ncsu.edu/BioEdit/bioedit.html 

 

Ribosomal Database Project II 

http://rdp.cme.msu.edu/html/index.html 

 

TreeCon for Windows 

http://www.evolutionsbiologie.uni-konstanz.de/peer-lab/treeconw.html 

 

National Centre for Biotechnology Information 

http://www.ncbi.nlm.nih.gov/ 

 

Comparative RNA Web Site 

http://www.rna.icmb.utexas.edu/ 

 

Bergy’s Manual Trust 

http://server.mph.msu.edu/bergeys/ 

 

The Institue of Genomic Research 

http://www.tigr.org/ 

http://jwbrown.mbio.ncsu.edu/BioEdit/bioedit.html
http://rdp.cme.msu.edu/html/index.html
http://www.evolutionsbiologie.uni-konstanz.de/peer-lab/treeconw.html
http://www.ncbi.nlm.nih.gov/
http://www.rna.icmb.utexas.edu/
http://server.mph.msu.edu/bergeys/
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APPENDIX II: GENBANK ACCESSION NUMBERS 

Clone Accession 

Number 

Clone Accession 

Number 
Sed01 AF407673 G21 AF407703 

Y03 AF407674 G24 AF407704 

Y04 AF407675 G32 AF407705 

Y10 AF407676 G34 AF407706 

Y27 AF407677 G55 AF407707 

Y30 AF407678 G58 AF407708 

Y36 AF407679 G62 AF407709 

Y63 AF407680 G73 AF407710 

Y71 AF407681 G94 AF407711 

Y88 AF407682 B01 AF407712 

Y90 AF407683 B10 AF407713 

R03 AF407684 B11 AF407714 

R08 AF407685 B13 AF407715 

R10 AF407686 B15 AF407716 

R15 AF407687 B16 AF407717 

R16 AF407688 B25 AF407718 

R27 AF407689 B27 AF407719 

R35 AF407690 B35 AF407720 

R38 AF407691 B37 AF407721 

R57 AF407692 B44 AF407722 

R58 AF407693 B53 AF407723 

R75 AF407694 B55 AF407724 

R82 AF407695 B63 AF407725 

G01 AF407696 B66 AF407726 

G06 AF407697 B79 AF407727 

G07 AF407698 B83 AF407728 

G10 AF407699 B86 AF407729 

G13 AF407700 B90 AF407730 

G18 AF407701 B95 AF407731 

G19 AF407702   
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Isolate Accession 

Number 
C21 AF343566 

Y70-05 AF407732 

Y70-06 AF407733 

Y70-07 AF407734 

R70-06 AF407735 

R70-07 AF407736 

G70-05 AF407737 

G70-06 AF407738 

G70-07 AF407739 

G70-08 AF407740 

B70-04 AF407741 

B70-05 AF407742 

Y55-07 AF407743 

Y55-08 AF407744 

Y55-09 AF407745 

R55-10 AF407749 

R55-11 AF407750 
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