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ABSTRACT 

The importance of normal distribution is undeniable since it is an underlying assumption of many statistical 
procedures such as t-tests, linear regression analysis, discriminant analysis and Analysis of Variance (ANOVA). 
When the normality assumption is violated, interpretation and inferences may not be reliable or valid. The three 
common procedures in assessing whether a random sample of independent observations of size n come from a 
population with a normal distribution are: graphical methods (histograms, boxplots, Q-Q-plots), numerical methods 

(skewness and kurtosis indices) and formal normality tests. This paper* compares the power of four formal tests of 

normality: Shapiro-Wilk (SW) test, Kolmogorov-Smirnov (KS) test, Lilliefors (LF) test and Anderson-Darling (AD) 
test. Power comparisons of these four tests were obtained via Monte Carlo simulation of sample data generated 
from alternative distributions that follow symmetric and asymmetric distributions. Ten thousand samples of various 
sample size were generated from each of the given alternative symmetric and asymmetric distributions. The power 
of each test was then obtained by comparing the test of normality statistics with the respective critical values. 
Results show that Shapiro-Wilk test is the most powerful normality test, followed by Anderson-Darling test, 
Lilliefors test and Kolmogorov-Smirnov test. However, the power of all four tests is still low for small sample size.  

Keywords: normality test, Monte Carlo simulation, skewness, kurtosis 

 
 
Introduction 
 
Assessing the assumption of normality is required by most statistical procedures. Parametric statistical 
analysis is one of the best examples to show the importance of assessing the normality assumption. 
Parametric statistical analysis assumes a certain distribution of the data, usually the normal distribution. If 
the assumption of normality is violated, interpretation and inference may not be reliable or valid. 
Therefore it is important to check for this assumption before proceeding with any relevant statistical 
procedures. Basically, there are three common ways to check the normality assumption. The easiest way 
is by using graphical methods. The normal quantile-quantile plot (Q-Q plot) is the most commonly used 
and effective diagnostic tool for checking normality of the data. Other common graphical methods that 
can be used to assess the normality assumption include histogram, box-plot and stem-and-leaf plot. Even 
though the graphical methods can serve as a useful tool in checking normality for sample of n 
independent observations, they are still not sufficient to provide conclusive evidence that the normal 
assumption holds. Therefore, to support the graphical methods, more formal methods which are the 
numerical methods and formal normality tests should be performed before making any conclusion about 
the normality of the data.  
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The numerical methods include the skewness and kurtosis coefficients whereas normality test is a more 
formal procedure whereby it involves testing whether a particular data follows a normal distribution. 
There are significant amount of normality tests available in the literature. However, the most common 
normality test procedures available in statistical software are the Shapiro-Wilk (SW) test, Kolmogorov-
Smirnov (KS) test, Anderson-Darling (AD) test and Lilliefors (LF) test. Some of these tests can only be 
applied under a certain condition or assumption. Moreover, different test of normality often produce 
different results i.e. some test reject while others fail to reject the null hypothesis of normality. The 
contradicting results are misleading and often confuse practitioners. Therefore, the choice of test of 
normality to be used should indisputably be given tremendous attention. This study focuses on comparing 
the power of four normality tests; SW, KS, AD and LF tests via Monte Carlo simulation. The simulation 
process was carried out using FORTRAN programming language. Section 2 discusses the classification 
of normality tests. The Monte Carlo simulation methodology is explained in Section 3. Results and 
comparisons of the power of the normality tests are discussed in Section 4. Finally a conclusion is given 
in Section 5.   
 
 
Methodology 
 
There are nearly 40 tests of normality available in the statistical literature (Dufour et al., 1998). The effort 
of developing techniques to detect departures from normality was initiated by Pearson (1895) who 
worked on the skewness and kurtosis coefficients (Althouse et al., 1998). Tests of normality differ in the 
characteristics of the normal distribution they focus on, such as its skewness and kurtosis values, its 
distribution or characteristic function, and the linear relationship existing between the distribution of the 
variable and the standard normal variable, Z. The tests also differ in the level at which they compare the 
empirical distribution with the normal distribution, in the complexity of the test statistic and the nature of 
its distribution (Seier, 2002).  
 
The tests of normality can sub-divided into two categories which are descriptive statistics and theory-
driven methods (Park, 2008). Skewness and kurtosis coefficients are categorized as descriptive statistics 
whereas theory-driven methods include the normality tests such as SW, KS and AD tests. However, Seier 
(2002) classified the tests of normality into four major sub-categories which are skewness and kurtosis 
test, empirical distribution test, regression and correlation test and other special test. Arshad et al. (2003) 
also categorized the tests of normality into four major categories which are tests of chi-square types, 
moment ratio techniques, tests based on correlation and tests based on the empirical distribution function. 
The following sub-sections review some of the most well-known tests of normality based on EDF, 
regression and correlation and moments. The simulation procedure is then explained. 
 
 
Empirical Distribution Function (EDF) Tests 
 
The idea of the EDF tests in testing normality of data is to compare the empirical distribution function 
which is estimated based on the data with the cumulative distribution function (CDF) of normal 
distribution to see if there is a good agreement between them. Dufour et al. (1998) described EDF tests as 
those based on a measure of discrepancy between the empirical and hypothesized distributions. The EDF 
tests can be further subdivided into those belong to supremum and square class of the discrepancies. 
Arshad et al. (2003) and Seier (2002) claimed that the most crucial and widely known EDF tests are 
Kolmogorov-Smirnov, Anderson-Darling and Cramer Von Mises tests. 
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Kolmogorov-Smirnov Test  
 
The Kolmogorov-Smirnov (referred to as KS henceforth) statistic belongs to the supremum class of EDF 
statistics and this class of statistics is based on the largest vertical difference between the hypothesized 
and empirical distribution (Conover, 1999). Given n ordered data points,    . . . , Conover 
(1999) defined the test statistic proposed by Kolmogorov (1933) as, 
                                                            sup | ∗ |                                                          (1) 
 
where ‘sup’ stands for supremum which means the greatest. ∗  is the hypothesized distribution 
function whereas  is the EDF estimated based on the random sample. In KS test of normality, ∗   
is taken to be a normal distribution with known mean, , and standard deviation,  .  
 
The KS test statistic is meant for testing, 
H0:      ∗  for all x from ∞ to ∞ (The data follow a specified distribution)  

Ha:      ∗  for at least one value of  (The data do not follow the specified distribution)  
 
If T exceeds the 1-α quantile as given by the table of quantiles for the Kolmogorov test statistic, then we 
reject H0 at the level of significance, α. This simulation study used the KSONE subroutine given in the 
FORTRAN IMSL libraries. 
 
 
Lilliefors Test 
 
Lilliefors (LF) test is a modification of the Kolmogorov-Smirnov test. The KS test is appropriate in a 
situation where the parameters of the hypothesized distribution are completely known. However, 
sometimes it is difficult to initially or completely specify the parameters as the distribution is unknown. In 
this case, the parameters need to be estimated based on the sample data. When the original KS statistic is 
used in such situation, the results can be misleading whereby the probability of type I error tend to be 
smaller than the ones given in the standard table of the KS test (Lilliefors, 1967). In contrast with the KS 
test, the parameters for LF test are estimated based on the sample. Therefore, in this situation, the LF test 
will be preferred over the KS test (Oztuna, 2006). Given a sample of  observations, LF statistic is 
defined as (Lilliefors, 1967), 
 
                                                      | ∗ |                                                            (2) 
                 
where  is the sample cumulative distribution function and ∗  is the cumulative normal 
distribution function with , the sample mean and , the sample variance, defined with denominator 
  1.  
 
Even though the LF statistic is the same as the KS statistic, the table for the critical values is different 
which leads to a different conclusion about the normality of a data (Mendes & Pala, 2003). The table of 
critical values for this test can be found in Table A15 of the textbook written by Conover (1999). If D 
exceeds the corresponding critical value in the table, then the null hypothesis is rejected. This simulation 
study used the LILLF subroutine given in the FORTRAN IMSL libraries. 
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Anderson-Darling Test 
 
Anderson-Darling (AD) test is a modification of the Cramer-von Mises (CVM) test. It differs from the 
CVM test in such a way that it gives more weight to the tails of the distribution (Farrel & Stewart, 2006). 
According to Arshad et al. (2003), this test is the most powerful EDF tests. The AD test statistic belongs 
to the quadratic class of the EDF statistic in which it is based on the squared difference ∗  
.  Anderson and Darling (1954) defined the statistic for this test as, 
 

                            ∗     ∗ ∗∞

∞
                                          (3) 

 
where  is a nonnegative weight function which can be computed by,  ∗ 1 ∗ . In 
order to make the computation of this statistic easier, the following formula can be applied (Arshad et al., 
2003), 
 

                              ∑ 2 1 ∗ log  1 ∗                               (4) 

     
where  ∗  is the cumulative distribution function of the specified distribution 
 ′  are the ordered data 
  is the sample size 

This study used the following modified AD statistic given by D’Agostino and Stephens (1986) which 
takes into accounts the sample size n, 
 

                                         )n/.n/..(WW n
*

n
222 25275001                                                     (5) 

 
 
Cramer-von Mises Test 
 
Conover (1999) stated that the Cramer-von Mises test was developed by Cramer (1928), von 
Mises (1931) and Smirnov (1936). The CVM statistic uses the weight function, 1, so that the AD 
statistic in equation (2) becomes (Thadewald & Buning, 2007), 
 
                                                 

∞

∞
                                       (6) 

  
The CVM statistic can be computed as, 
 

                                                     ∑                                             (7) 

 
The test rejects  if  . The approximate critical values  can be found in Anderson and 
Darling (1954). This test is not considered in this simulation study. 
 
 
Regression and Correlation Tests 
 
Dufour et al. (1998) defined correlation tests as those based on the ratio of two weighted least-squares 
estimates of scale obtained from order statistics. The two estimates are the normally distributed weighted 
least squares estimates and the sample variance from other population. Some of the regression and 
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correlation tests are Shapiro-Wilk test, Shapiro-Francia test and Ryan-Joiner test. Only the Shapiro-Wilk 
test is discussed in this paper. 
 
 
Shapiro-Wilk Test 
 
Shapiro and Wilk (1965) test was originally restricted for sample size of less than 50. This test was the 
first test that was able to detect departures from normality due to either skewness or kurtosis, or both 
(Althouse et al., 1998). It has become the preferred test because of its good power properties (Mendes & 
Pala, 2003). Given an ordered random sample,   . . . , the original Shapiro-Wilk test statistic 
(Shapiro, 1965) is defined as,  
 

                            
∑

∑
                                (8) 

 
where  is the ith order statistic, 
    is the sample mean, 

    = , ⋯ ,   /  

 and , ⋯ ,  are the expected values of the order statistics of independent and identically 
distributed random variables sampled from the standard normal distribution and V is the covariance 
matrix of those order statistics. 
 
The value of W lies between zero and one. Small values of W lead to the rejection of normality whereas a 
value of one indicates normality of the data.  SW test was modified by Royston (1982a) to broaden the 
restriction of the sample size to 2000 and algorithm AS181 was then provided (1982b, 1982c). Later, 
Royston (1992) observed that Shapiro-Wilk’s (1965) approximation for the weights a used in the 
algorithms was inadequate for 50n . He then gave an improved approximation to the weights and 
provided algorithm AS R94 (Royston, 1995) which can be used for any n in the range 50003  n . This 
study used the algorithm AS R94. 
 
 
Moment Tests 
 
In addition to the types of normality test categorized by Seier (2002) above, there are also other types of 
normality test. One of these types is called the moment tests. Moment tests are those derived from the 
recognition that the departure of normality may be detected based on the sample moments which are the 
skewness and kurtosis. The procedures for individual skewness and kurtosis tests can be found in 
D’Agostino and Stephens (1986). The two most widely known are the tests proposed by D’Agostino-
Pearson (1973) and Jarque-Bera (1987).  The D’Agostino and Pearson test statistic is 
 

                                              )( 2
2

1
2 bZbZDP            (9) 

 

where  1bZ  and )( 2bZ  are the normal approximations to sample skewness( 1b ) and kurtosis ( 2b ) 

respectively.The JB statistic is based on sample skewness ( 1b ) and kurtosis(b2) and is given as 
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Simulation Procedures 
 
In this study, Monte Carlo procedures was used to evaluate the power of SW, KS, AD and LF test statistics 
in testing if a random sample of n independent observations come from a population with a normal 

),(N 2   distribution. The null and alternative hypotheses are: 
 

H0: The distribution is normal  
H1: The distribution is not normal  

Two levels of significance,= 5% and 10% were considered to investigate the effect of the significance 
level on the power of the tests. The critical values for each test vary with the sample size (Yazici & 
Yolacan, 2007). Therefore, first, appropriate critical values were obtained for each normality test statistic 
for sample sizes n =10, 15, 20, 25, 30, 40, 50, 100, 200, 300, 400, 500, 1000, 1500 and 2000. The critical 
values were obtained based on 50,000 simulated samples from a standard normal distribution. The 
generated test statistics were then ordered to create an empirical distribution.  
 
As the SW is a left-tailed test, their critical values are the 100   percentiles of the empirical 
distributions of the test statistics. The AD, KS, and LF tests are right-tailed test, so their critical values are 
the 100 1   percentiles of the empirical distribution of the test statistics. In order to obtain the 
simulated power of the four normality tests at =5% and 10%, for each sample size, a total of 10,000 
samples were drawn from each of the 14 different non-normal distributions. The alternative distributions 
considered were seven symmetric distributions; U (0,1), Beta (2,2), t (300), t (10), t (7), Laplace and t (5) 
and seven asymmetric distributions; Beta (6,2), Beta (2,1), Beta (3,2), (20), Gamma (4,5), (4) and 

Gamma (1,5). These distributions were selected to cover various standardized skewness ( 1 ) and 

kurtosis ( 2 ) values. Simulation and computations were performed using FORTRAN compiler and the 
subroutines available in IMSL (International Mathematical and Statistical Libraries) libraries.  
 
 
Results 
 
The power of the tests varies with the significance level, sample size and alternative distributions. 
However, only the results of power for several sample sizes and selected distributions were presented in 
this paper due to space constraints. The sample sizes presented were selected at the point which the power 
dramatically changed.  
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Comparison of Power against the Symmetric Non-normal Distributions 
 
Table 1 summarizes the simulated power for selected symmetric non-normal distributions for α = 5% and 
10%. Some plots are given in Figure 1. For symmetric distributions with kurtosis less than 3 that is 
platykurtic distributions, SW outperforms the other three tests. However, for sample size 30 or less the 
powers at 5% significance level for all four tests are less than 40%. Similarly, SW performs better than 
AD, KS and LF for symmetric distributions with kurtosis greater than 3 that is leptokurtic distributions. 
Again the performance of all tests is low for small sample sizes.  Overall, generally for symmetric non-
normal distributions, SW is the best test followed by AD, LF and KS tests. Results also show that LF test 
performs better than the KS test. 
 
 

 
 

 

 

 

 

 

 

 

Figure 1(a):  Comparison of Power for Different Normality Tests against Beta (2,2) Distribution ( 0.05) 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1(b):  Comparison of Power for Different Normality Tests against Laplace (0,1) Distribution ( 0.05) 
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Table 1: Comparison of Power for Different Normality Tests against the Symmetric Non-normal Distributions 
 

Alternative 
Distribution 

Skewness 

 

Kurtosis 

 

Sample 

Size (n) 

Power of Test 

.  .  

SW KS LF AD SW KS LF AD 

 

U(0,1) 

 

0 

 

1.80 

10 0.0920 0.0858 0.0671 0.0847 0.1821 0.1607 0.1283 0.1648 

20 0.2014 0.1074 0.1009 0.1708 0.3622 0.1785 0.1860 0.2926 

30 0.3858 0.1239 0.1445 0.3022 0.5764 0.2078 0.2578 0.4466 

50 0.7447 0.1618 0.2579 0.5817 0.8816 0.2653 0.4069 0.7314 

100 0.9970 0.2562 0.5797 0.9523 0.9996 0.3980 0.7530 0.9824 

200 1.0000 0.4851 0.9484 1.0000 1.0000 0.6604 0.9846 1.0000 

300 1.0000 0.7045 0.9974 1.0000 1.0000 0.8419 0.9996 1.0000 

400 1.0000 0.8446 0.9999 1.0000 1.0000 0.9332 1.0000 1.0000 

500 1.0000 0.9331 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 

1000 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

t (7) 

 

0 

 

5.00 

10 0.0892 0.0421 0.0797 0.0862 0.1458 0.0913 0.1396 0.1471 

20 0.1295 0.0437 0.0946 0.1177 0.1956 0.0948 0.1576 0.1834 

30 0.1697 0.0467 0.1060 0.1431 0.2372 0.0981 0.1771 0.2163 

50 0.2244 0.0529 0.1198 0.1785 0.3036 0.1107 0.1974 0.2632 

100 0.3698 0.0593 0.1761 0.2781 0.4569 0.1234 0.2800 0.3774 

200 0.5793 0.0935 0.2826 0.4496 0.6626 0.1808 0.4012 0.5581 

300 0.7278 0.1280 0.3872 0.5984 0.7941 0.2358 0.5214 0.7062 

400 0.8268 0.1625 0.4888 0.7115 0.8736 0.2888 0.6236 0.8007 

500 0.8982 0.2009 0.5755 0.8065 0.9296 0.3398 0.7033 0.8727 

1000 0.9937 0.4248 0.8740 0.9794 0.9967 0.6021 0.9364 0.9915 

2000 1.0000 0.8106 0.9947 0.9999 1.0000 0.9173 0.9982 0.9999 
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Comparison of Power against the Asymmetric Distributions 
 
Table 2 summarizes the simulated power for selected asymmetric distributions for α = 5% and 10% while 
Figure 2 show the plot of power for all tests against selected asymmetric distributions for 5% significance 
level.  Again for asymmetric distributions, SW outperforms AD, KS and LF tests. SW achieved good 
power for sample size of at least 50 while AD and LF requires sample size of at least 100 to achieve good 
power. KS is the weakest test and requires much larger sample size to achieve comparable power with the 
other tests. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2(a):  Comparison of Power for Different Normality Tests against Gamma (4,5) ( 0.05) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2(b):  Comparison of Power for Different Normality Tests against Gamma (1,5) ( 0.05) 
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Table 2 Comparison of Power for Different Normality Tests against Asymmetric Distributions 
 

Alternative 
Distribution 

Skewness 

 

Kurtosis 

 

Sample 

Size (n) 

Power of Test  

.  .  

SW KS LF AD SW KS LF AD 

 

Gamma 
(4,5) 

 

1.00 

 

4.50 

10 0.1407 0.0669 0.1065 0.1285 0.2153 0.1247 0.1809 0.2075 

20 0.2864 0.0861 0.1771 0.2469 0.3938 0.1502 0.2755 0.3462 

30 0.4442 0.1078 0.2545 0.3765 0.5628 0.1783 0.3697 0.4850 

50 0.6946 0.1495 0.3991 0.5908 0.7956 0.2337 0.5319 0.6979 

100 0.9566 0.2423 0.7008 0.8925 0.9802 0.3499 0.8107 0.9400 

200 0.9997 0.4424 0.9518 0.9970 1.0000 0.5759 0.9798 0.9992 

300 1.0000 0.6233 0.9929 1.0000 1.0000 0.7520 0.9980 1.0000 

400 1.0000 0.7568 0.9998 1.0000 1.0000 0.8725 0.9999 1.0000 

500 1.0000 0.8738 1.0000 1.0000 1.0000 0.9576 1.0000 1.0000 

1000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

4  

 

1.41 

 

6.00 

10 0.2445 0.0801 0.1680 0.2196 0.3453 0.1484 0.2591 0.3190 

20 0.5262 0.1205 0.3184 0.4620 0.6525 0.1936 0.4433 0.5840 

30 0.7487 0.1584 0.4650 0.6617 0.8399 0.2465 0.5936 0.7624 

50 0.9484 0.2402 0.6841 0.8891 0.9761 0.3495 0.7991 0.9390 

100 0.9997 0.4391 0.9470 0.9971 0.9998 0.5732 0.9762 0.9992 

200 1.0000 0.8417 0.9997 1.0000 1.0000 0.9859 1.0000 1.0000 

300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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In order to get a clearer picture of the performance of the different normality tests, the ranking procedure 
was used. The rank of 1 was given to the test with the highest power while rank of 4 (since there were 
four tests of normality considered in this study) was given to the test which has the lowest power. The 
ranks were then summed to get the grand total of ranks. As the lowest number was given to the test with 
the highest power, therefore the test which had the lowest total rank was nominated as the best test to 
detect the departure from normality. Table 3 and Table 4 show the rank of power based on the type of 
alternative distribution and sample size, respectively. 
 
 

Table 3: Rank of Power Based on Types of Alternative Distribution 

Alternative 

Distributions 

Total Rank 

0.05 0.10 

SW KS LF AD SW KS LF AD 

Symmetric 92.0 248.5 196.5 123.0 92.0 251.5 193.5 123.0 

Asymmetric 120.5 270.5 218.5 160.5 119.0 271.0 217.0 163.0 

 

 

Table 4: Rank of Power Based on Sample Size for All Alternative Distributions 

Sample 
size (n) 

Total Rank 

0.05 0.10 

SW KS LF AD SW KS LF AD 

10 18.0 44.0 41.0 27.0 19.0 48.0 40.0 23.0 

20 18.0 45.0 42.0 25.0 15.0 48.0 41.0 26.0 

30 16.0 51.0 40.0 23.0 14.0 51.0 40.0 25.0 

50 14.0 51.0 40.0 25.0 14.0 52.0 39.0 25.0 

100 15.5 50.5 38.5 25.5 15.5 50.5 38.5 25.5 

200 17.0 50.5 38.5 24.0 17.5 50.5 37.5 24.5 

300 20.0 47.5 37.5 25.0 20.0 47.5 37.5 25.0 

400 20.0 47.5 37.5 25.0 20.0 47.5 36.5 26.0 

500 21.5 47.5 33.5 27.5 21.5 47.5 33.5 27.5 

1000 24.5 44.5 34.5 26.5 26.0 41.5 34.5 28.0 

2000 28.0 40.0 32.0 30.0 28.5 38.5 32.5 30.5 

Total 212.5 519 415 283.5 211 522.5 410.5 286 

 
 
From Table 3, it can be clearly seen that SW is the best test to be adopted for both symmetric non-normal 
and asymmetric distributions since it has the lowest total rank (for both 5% and 10% significance levels) 
among all the four tests considered. This is followed rather closely by the AD test. The results of the total 
rank based on sample size in Table 4 above also show that SW as the best test for all sample size since it 
consistently has the lowest total rank from n = 10 until n = 2000. 
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Conclusion 
 
In general, it can be concluded that among the four tests considered, Shapiro-Wilk test is the most 
powerful test for all types of distribution and sample sizes whereas Kolmogorov-Smirnov test is the least 
powerful test. However, the power of Shapiro-Wilk test is still low for small sample size.  The 
performance of Anderson-Darling test is quite comparable with Shapiro-Wilk test, and Lilliefors test 
always outperforms Kolmogorov-Smirnov test. The results of this study support the findings of Mendes 
and Pala (2003) and Keskin (2006) that Shapiro-Wilk test is the most powerful normality test. The results 
are also found to be similar to the one obtained by Farrel & Stewart (2006) which reported that simulated 
power for all tests increased as the sample size and significance level increased. As a concluding remark, 
practitioners should not depend solely on graphical techniques such as histogram to conclude about the 
distribution of the data. It is recommended that the graphical techniques be combined with formal 
normality test and inspection of shape parameters such as skewness and kurtosis coefficients. It is 
important to remember that skewness and kurtosis measures are also affected by sample size. 
Practitioners also need to be aware that these four normality tests do not perform well for small sample 
size (30 and below).  Work is in progress to determine more recent normality tests which might work well 
for small sample size. 
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