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1. Newton 

The study of the gravitational equilibrium of homogeneous uniformly rotating 
masses began with Newton’s investigation on the figure of the earth (Princ;Pia, 
Book 111, Propositions XVIII-XX). Newton showed that the effect of a small 
rotation on the figure must be in the direction of making it slightly oblate; and, 
further, that the equilibrium of the body will demand a simple proportionality 
between the efect of rotation, as measured by the ellipticity, 

equatorial radius - polar radius 
the mean radius 

€ =  (1) Y 

and its cause, as measured by 

, centrifugal acceleration at the equator 
m =  

mean gravitational acceleration on the surface 

where G denotes the constant of gravitation and M is the mass of the body. More 
precisely, Newton established the relation 

E = s m  (3) 

in case the body is homogeneous. The arguments by which Newton derived this 
relation are magisterial; and they are worth recalling. 

Newton imagined a hole of unit cross-section drilled from a point on the 
equator to the center of the earth and a similar hole drilled from the pole to the 
center; and he further imagined that the “canals” so constructed were filled with 

* This paper is a somewhat expanded version of the lecture given at the Courant Institute of 
Mathematical Sciences on the occasion of the Conference to dedicate Warren Weaver Hall in 
March, 1966. Reproduction in whole or in part is permitted for any purpose of the United States 
Government. 
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a fluid (see Figure 1, after Newton’s original illustration in the Principiu). From 
the fact that the fluid in the canals will be in equilibrium, Newton concludes that 
the “weights” of the equatorial and the polar columns of the fluid must be equal. 
However, along the equator the acceleration due to gravity is “diluted” by the 
centrifugal acceleration; and since both these accelerations in a homogeneous 
body vary from the center proportionately with the distance, the “dilution factor” 
remains constant and is given by its value a t  the boundary, namely m. 

Figure 1 

If u denotes the equatorial radius, the weight of the equatorial column is 
given by 

(4) weight of equatorial column = +agequator(l - m) , 
where gequator is the acceleration due to gravity a t  the equator. Similarly, if b 
denotes the polar radius, 

(5) 

And since the two weights must be equal, 

(6) 

weight of polar column = &bgpole . 

agesuator(1 - m) = bgpole * 

But for a slightly oblate body Newton knew that 

(7) -- gpole - 1 + & €  + 0 ( € 2 ) .  

gequator 

Equations (6) and (7) and the definition of E (= 1 - b/a) now give 

(8) 1 - m = (1 - ~ ) ( 1  + 6.) + O ( 8 )  = 1 - +c + O ( @ )  ; 

and Newton’s relation (3) follows. 
I t  was known already in Newton’s time that 

= -1- (9) 2 9 0 .  
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Therefore, Newton concluded that if the earth were homogeneous, it should be 
oblate with an ellipticity 

This prediction of Newton was contrary to the astronomical evidence of the time 
and “two generations of the best astronomical observers formed in the school of 
the Cassini’s struggled in vain against the authority and reasoning of Newton” (I. 
Todhunter [l], page 100). The opposing ideas of Newton and Cassini are 
strikingly illustrated in the accompanying old caricature (Figure 2). However, 

I @WTOl\r I CASSIIUI 
Figure 2 

I 

geodetic measurements made in Lapland by Maupertius and Clairaut (1 738) 
afforded data which conclusively showed the flattening of the earth a t  the poles. 
As Todhunter has written ([l], page loo), “The success of the arctic expedition 
may be ascribed in great measure to the skill and energy of Maupertius; and his 
fame was widely celebrated. The engravings of the period represent him in the 
costume of a Lapland Hercules having a fur cap over his eyes; with one hand 
he holds a club and with the other he compresses the terrestrial globe.” And 
Voltaire, then Maupertius’ friend, congratulated him warmly for having “aplati 
les poles et les Cassini.” Later Maupertius and Voltaire became involved in a 
heroic-comic controversy and Voltaire wrote 

“Vouz avez confirm6 dans les lieux pleins d’ennui 
Ce que Newton connut sans sortir de chez lui.” 

We know now that the actual ellipticity of the earth ( N H ~ Z )  is substantially 
smaller than Newton’s predicted value (-$a); and this discrepancy is inter- 
preted in terms of the inhomogeneity of the earth. 

2. Maclaurin 

The next advance ( 1  742) in the theory was due to Maclaurin who generalized 
Newton’s result to the case when the ellipticity caused by the rotation cannot be 
considered small. 
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Maclaurin had solved earlier the problem of the attraction of an oblate spheroid 
at an internal point; and he had shown in particular that the acceleration due 
to gravity at  the equator and the poles have the values 

where p is the density of the spheroid, a its semi-major axis, and e its eccentricity. 
And since both the centrifugal acceleration in the equatorial plane and the 
acceleration due to gravity vary linearly with the coordinates, Newton’s argument 
applies to this case equally well and we can write 

Inserting the expressions for gequator and gpole from equations (1 1)’ we obtain 
Maclaurin’s formula 

6 
TGP e3 e2 

2(3 - 2e2) sin-le - - (1 - e2) . Q2 d C 2  -- - 

Maclaurin realized that the foregoing derivation does not establish that a 
rapidly rotating mass will necessarily take the figure of an oblate spheroid. But 
he did show: “ 1 )  that the force which results from the attraction of the spheroid 
and those extraneous powers compounded together acts always in a right line 
perpendicular to the surface of the spheroid, 2) that the columns of the fluid 
sustain or balance each other at the center of the spheroid, and 3) that any particle 
in the spheroid is impelled equally in all directions.” 

To appreciate the foregoing qualifications of Maclaurin, one must remember 
that there was as yet no theory of hydrostatic equilibrium which provided sujicient 
conditions; so Maclaurin had to content himself with showing that all the 
conditions which had been recognized as necessary for equilibrium were satisfied. 
Considering then, the state of knowledge in his time, one can only admire 
Maclaurin’s achievement in deriving the exact relation (13). And as Todhunter 
remarks ([ 11, page 175)’ “Maclaurin well deserves the association of his name with 
that of the great master in the inscription which records that he was appointed 
professor of mathematics at Edinburgh itso Newtono suadente.” 

A remarkable feature of Maclaurin’s relation was noticed by Thomas 
Simpson (1 743) : for any angular velocity less than a certain maximum value there 
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are two and only two possible “oblata”. This result is noteworthy in that we 
cannot deduce from the fact of a small equatorial angular velocity that the 
spheroid departs only slightly from a sphere; for as a2 -+ 0, we have two solutions: 
a solution which, indeed, leads to a spheroid of small eccentricity and a second 
solution which leads to a highly flattened spheroid. It is generally believed that 
d’Alembert was the first to notice this feature of Maclaurin’s solution; but as 
Todhunter has remarked ([l], page 181) : “although d’Alembert may have first 
explicitly published the statement, yet Simpson gives a table which distinctly 
implies the fact.” 

3. Jacobi 

For nearly a century after Maclaurin’s discovery of the spheroids (known after 
his name) it was believed that they represent the only admissible solution to the 
problem of the equilibrium of uniformly rotating homogeneous masses. The 
supposed generality of Maclaurin’s solution was never questioned even though 
Lagrange in his Mecunique Celeste (181 1) considered formally the possibility of 
ellipsoids with unequal axes satisfying the requirements of equilibrium. However, 
after obtaining two governing equations, in which the two equatorial axes occur 
symmetrically (see equation (1 7) below) , Lagrange infers that the two axes 
must be equal even though only the suficiency (not the necessity) could be concluded. 
Jacobi (1834) [3] recognized the inadequacy of Lagrange’s demonstration1 as he 
remarked, “One would make a grave mistake if one supposed that the spheroids of 
revolution are the only admissible figures of equilibrium even under the restrictive 
assumption of second degree surfaces.” In making this last statement, Jacobi 
refers to the fact that while Maclaurin’s solution provides, in the limit Q2 + 0, 
two solutions, one with e - 0 and another with e -+ 1, Legendre had shown that if 
one supposes that the figure is nearly spherical so that the attraction at a point on 
its surface can be expanded in powers of the departure from sphericity, then one 
obtains only the first of the two solutions “not in any approximation but with 
absolute geometrical rigor”. According to Jacobi, the conclusion one must draw 
from Legendre’s demonstration is that figures of equilibrium may exist that cannot 
be surmised from what one can establish in the limit of spherical figures. And 
Jacobi concludes “in fact a simple consideration shows that ellipsoids with three 
unequal axes can very well be figures of equilibrium; and that one can assume an 
ellipse of arbitrary shape for the equatorial section and determine the third axis 
(which is also the least of the three axes) and the angular velocity of rotation such 
that the ellipsoid is a figure of equilibrium.” 

The existence of these ellipsoids of Jacobi can be established and the relations 
governing them can be determined by a simple extension of Newton’s original 
argument. 

Rather as Dirichlet [4] state in his Gediichtnissrede auf Carl Guttav Jacob Jacobi, Jacobi’s 
suspicion was aroused by the qualification “necessary” in an account of Lagrange’s considerations 
by the author of a “well-known textbook”. 
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At the time Jacobi made his discovery, it was known that the components of 
the attraction, gi , i = 1, 2 ,  3, along the directions of the principal axes of an 
ellipsoid can be expressed in the manner 

where 

The formulae for the components of the attraction in the foregoing forms were 
apparently first derived by Gauss ( 18 13) and by Rodrigues ( 18 15), independently. 
However, in the less symmetrical forms in which one generally writes them for 
purposes of reducing them to the standard elliptic integrals of the two kinds, they 
were known much earlier: they are (as Legendre has said) effectively included in 
Maclaurin’s writings ; but explicitly, for ellipsoids with three unequal axes, they 
occur for the first time2 in Laplace’s Theorie du Mouvement et de la Figure ELLiptique des 
Planetes (1 784). 

Returning to the extension of Newton’s argument to the case of tri-axial ellip- 
soids, we may imagine that three “canals” are drilled along the directions of the 
three principal axes from the surface to the center and further that they are all 
filled with a fluid. From the equilibrium of the fluid in the three canals, we may 
infer the equality of the weights of the three columns (per unit cross-section). We 
thus have 

These relations require (if a, # a2 # a3) 

And we also have the purely geometrical condition 

* As Todhunter has pointed out ([l], page 417), the formulae themselves appear in the writing 
of d’Alembert though “he deliberately rejects them. . . this is perhaps the strangest of all his 
(d‘Alembert’s) strange mistakes.” And with regard to Laplace’s derivation, Todhunter says ([2], 
page 32) “thus Laplace values and appropriates the treasure which d’Alembert deliberately 
threw away.” 
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or 

This last relation explicitly has the form 

Equations (18) and (21), in exactly these forms, are given in Jacobi’s paper. And 
as Jacobi further states, for any assigned a, and a2 , equation (21) allows a solution 
for a3 which satisfies the inequality 

1 1 1  ->,+-, 
u; a, a; 

and that when a, = u2 equations (18) and (2 1) determine a configuration common 
to the spheroidal and the ellipsoidal sequences. 

Referring to this discovery of Jacobi, Thomson, and Tait in their Natural 
Philosophy ( [ 5 ] ,  Volume 11, page 530) say “this curious theorem was discovered 
by Jacobi in 1834 and seems, simple as it is, to have been enunciated by him as a 
challenge to the French Mathematicians.” In Todhunter’s “History” there is no 
reference to Jacobi having issued a “challenge”. But Todhunter ([2], page 381) 
does refer to a communication by Poisson to the French Academy on November 
24, 1834 and states “Poisson begins by referring to a letter recently sent by Jacobi 
to the French Academy in which two results were enunciated. One was what we 
call Jacobi’s theorem, namely, that an ellipsoid is a possible form of relative 
equilibrium for a rotating fluid; the other related to the attraction of a hetero- 
geneous ellipsoid Poisson’s note related to the second result.” 

4. Meyer and Liouville 

In his short and brief paper on the subject, Jacobi did not seriously examine the 
relationship of his ellipsoids to the Maclaurin spheroids. C. 0. Meyer (1842) was 
the first to do so. Meyer’s principal result was to show that the Jacobian sequence 
“bifurcates” (in the later terminology of Poincart) from the Maclaurin sequence 
at the point where the eccentricity e = 0.81267. This result can be readily deduced 
from Jacobi’s equations (18) and (21). Thus, by setting al = a2 in these equations 
we obtain the relations 
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and 

where Q2/nGp on the left-hand side of equation (23) must now be identified with 
Maclaurin’s function (13). It can be shown that both equations (23) and (24) are 
simultaneously satisfied when 

e = 0.81267, where Q2/nGp = 0.37423. 

Since it is known that the maximum value of Q2/nGp along the Maclaurin 
sequence is 0.4493, it follows that for Q2/nGp < 0.37423 there are three equilibrium 
figures possible: two Maclaurin spheroids and one Jacobi ellipsoid; for 0.4493 > 
Q2lnGp > 0.3743 only the Maclaurin figures are possible; and finally, for 
Q2lnGp > 0.4493 no equilibrium figures are possible. This enumeration of the 
different possibilities is due to Meyer. 

In 1846 Liouville restated Meyer’s result using the angular momentum, 
instead of the angular velocity, as the variable; and he showed that while the 
angular momentum increases from zero to infinity along the Maclaurin sequence, 
the Jacobian figures are possible only for angular momenta exceeding a certain 
value (namely, that at the point of bifurcation along the Maclaurin sequence). 

5. Dirichlet, Dedekind, and Riemann 

The fact that no figures of equilibrium are possible for uniformly rotating 
bodies when the angular velocity exceeds a certain limit raises the question: What 
happens when the angular velocity exceeds this limit ? Dirichlet addressed himself 
to this question during the winter of 1856-57; and though he included this topic 
in his lectures on partial differential equations in July 1857, he did not publish any 
detailed account of his investigations during his lifetime. Dirichlet’s results were 
collated from some papers he left and were edited for publication by Dedekind 
[S]. “In this paper,” as Riemann wrote, “Dirichlet opened up an entirely new 
approach to investigations bearing on the homologous motions of self-gravitating 
ellipsoids in a most remarkable way. The further development of this beautiful 
discovery has a particular interest to the mathematician even apart from its 
relevance to the forms of heavenly bodies which initially instigated these 
investigations. ” 

The precise problem which Dirichlet considered in his paper is the following: 
Under what conditions can one have a configuration which, at every instant, has 
an ellipsoidal figure and in which the motion, in an inertial frame, is a linear 
function of the coordinates ? Dirichlet formulated the general equations governing 
this problem (in a Lagrangian framework) and solved them in detail for the case 
when the bounding surface is a spheroid of revolution. Dirichlet did not seriously 
investigate the figures of equilibrium admissible under the general circumstances 
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all a12 OL13 ‘11’1 

a21 a22 a2s %/a2 = A 

%i a32 a33 x3/a3 

,(O) = (25) 

x11a1 

x2b2 ; 

x3las 

and this motion clearly satisfies the condition 

all  a21 a31 

a12 a22 a32 
,co,t = (26) 

alS OL23 u33 

.1/.1 xJa1  

4 . 2  = At x2la2 . 
X S / a 3  X 3 b 3  

0 -nu2 0 

(27) u(o) = Oa, 0 0 

0 0 0 

xl/al 

x2/a2 . 
%la3 

0 Qa, 0 xl/al 

(28) u(o)t  = -Qu, O O x2/a2 

0 0 0 x3/a3 
, 
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required for the preservation of the ellipsoidal boundary. 
represented by (29) is one of uniform vorticity 

Also, the motion 

These ellipsoids of Dedekind, while they are congruent to the Jacobi ellipsoids, are 
stationary in an inertial frame and they maintain their ellipsoidal figures by the 
internal motions which prevail. (Lamb erroneously attributes to Love the discovery 
of this relation between the Jacobi and the Dedekind ellipsoids.) It is also clear 
that the ellipsoids of Dedekind bifurcate from the Maclaurin spheroids a t  the same 
point that the Jacobi ellipsoids do. 

The complete solution to the problem of the stationary figures admissible under 
Dirichlet’s general assumptions was given by Riemann [8] in a paper of remarkable 
insight and power. Riemann first shows that under the restriction of motions 
which are linear in the coordinates, the most general type of motion compatible 
with an ellipsoidal figure of equilibrium consists of a superposition of a uniform 
rotation 51 and internal motions of a uniform vorticity (in the rotating frame). 
More precisely he showed that ellipsoidal figures of equilibrium are possible 
only under the following three circumstances: (a) the case of uniform rotation 
with no internal motions, (b) the case when the directions of 51 and < coincide with 
a principal axis of the ellipsoids, and (c) the case when the directions of 51 and 
lie in a principal plane of the ellipsoid. Case (a) leads to the sequences of Maclaurin 
and Jacobi. Case (b) leads to sequences of ellipsoids along which the ratio f = C/O 
remains constant (the Jacobian and the Dedekind sequences are special cases of 
these general “Riemann sequences” forf = 0 and CQ, respectively). And finally, 
case (c) leads to three other classes of ellipsoids. Riemann wrote down the 
equations governing the equilibrium of these ellipsoids and specified their domain 
of occupancy in the a,, a2, a,-space. (A more detailed description of the properties 
of these ellipsoids will be found in the Epilogue.) Riemann also sought to determine 
the stability of these ellipsoids by an energy criterion. But his criterion, as has 
recently been shown by Lebovitz [9], is erroneous and Riemann’s conclusions, 
with the notable exception of those pertaining to the Maclaurin and the Riemann 
sequences for f 2 -2, are false. 

While Riemann’s paper made an impressive start towards the solution of 
Dirichlet’s general problem, it left a large number of questions unanswered. 
Indeed, even the relation of Riemann’s ellipsoids to the Maclaurin spheroids 
which they adjoin was left obscure. Nevertheless these questions were to remain 
unanswered for more than a hundred years. The reason for this total neglect 
must, in part, be attributed to a spectacular discovery by PoincarC (see Section 6 
below) which channeled all subsequent investigations along directions which 
appeared rich with possibilities; but the long quest it entailed turned out, in the 
end, to be after a chimera. 
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6. PoincarC and Cartan 

The investigations relating to the equilibrium and the stability of ellipsoidal 
figures of equilibrium, for which Dirichlet and Riemann had laid such firm 
foundations, took an unexpected turn (from which it was not to be diverted for 
the next seventy-five years) when Poincart [lo] discovered in 1885 that along the 
Jacobian sequence a point of bifurcation occurs similar to the one along the 
Maclaurin sequence and that even as the Jacobian sequence branches off from 
the Maclaurin sequence, a new sequence of pear-shaped configurations branches off 
from the Jacobian sequence. This result of Poincark is equivalent to the statement 
(in current terminology) that along the Jacobian sequence there is a point where 
the ellipsoid allows a neutral mode of oscillation belonging to the third harmonics. 
A.corollary which was also enunciated by Poincart is that along the Jacobian 
sequence there must be further points of bifurcation where the Jacobian ellipsoid 
allows a neutral mode of oscillation belonging to the fourth, fifth, and higher 
harmonics. And Poincart conjectured “that the bifurcation of the pear-shaped 
body leads onward stably and continuously to a planet attended by a satellite, the 
bifurcation into the fourth zonal harmonic probably leads unstably to a planet 
with a satellite on each side, that into the fifth harmonics to a planet with two 
satellites on one and one on the other and so on” (Darwin). I t  was further 
conjectured by Darwin that one may look for the origin of the double stars in 
similar instabilities; the “fission theory” of the origin of double stars arose in this 
fashion. The grand mental panorama that was thus created was so intoxicating 
that those who followed PoincarC were not to recover from its pursuit. In  any 
event, Darwin, Liapounoff, and Jeans spent years of effort towards the sub- 
stantiation of these conjectures; and so single minded was the pursuit3 that one 
did not even linger to investigate the stability of the Maclaurin spheroids and 
the Jacobi ellipsoids from a direct analysis of normal modes. Finally, in 1924 
Cartan [ l l ] ,  [12] established that the Jacobi ellipsoid becomes unstable at its 
first point of bifurcation and behaves in this respect differently from the Maclaurin 
spheroid which, in the absence of any dissipative mechanism, is stable on either 
side of the point of bifurcation where the Jacobian sequence branches off. 

And a t  this point the subject quietly went into a coma. 

Epilogue 

The subject of the allowed ellipsoidal figures of equilibrium of homogeneous 
masses and their stability, left incomplete by Riemann, has now been completed 

*For example, the question whether along the Dedekind sequence a neutral point occurs 
similar to the one along the congruent Jacobian sequence does not appear to have been considered 
or even raised. 
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(Chandrasekhar [13], [14], and [15]). This is clearly not the place to attempt 
even an outline of the methods by which the various aspects of the problem have 
been solved (however, for a brief account, see Chandrasekhar and Lebovitz [IS]) ; 
we shall content ourselves by simply exhibiting the results of the analysis. 
Figure 3 depicts the domains of occupancy of the ellipsoidal figures in the u2/ul , 
u,/u,-plane, and Figures 4 and 5 present results of the stability analysis. 

7 

6 

5 

4 

a3/ al 

3 

2 

I 

Figure 3. The domain of occupancy of the Riemann ellipsoids in the aa/al, 
a,/a,-plane. 

The stable part of the Maclaurin sequence is represented by the segment 0,s on 
the line a, = a,.  At 0, the Maclaurin spheroid becomes unstable by oventable 
oscillations. 

The Riemann ellipsoids of type S (for which the directions of rotation and 
vorticity coincide with the +axis) are included between the selfadjoint sequences 
represented by SO and 0,O. Along the arc Xds'O the Riemann ellipsoids of type 
S become unstable by an odd mode of oscillation belonging to the second harmonics. 

The Riemann ellipsoids, in which the directions of rotation and vorticity do not 
coincide but lie in the a,, a,-plane, are of three types-I, 11, and 111-with the 
domains of occupancy shown. Type I ellipsoids adjoin the Maclaurin sequence and 
are bounded on one side (SR,) by a selfadjoint sequence. Along the locus R,RII ,  
which limits the domain of occupancy of the type I1 ellipsoids, the pressure is 
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zero. And along the loci XiO’ and X,XO”, limiting the domain of occupancy of the 
type I11 ellipsoids, the directions of coincide with one of the principal 
axes (the a,-axis in the case a, > a, and the a,-axis in the case a, < a,). The locus 
XiO’ (for the case ag > a,) is transformed into Xis’O if the roles of a, and ap are 
interchanged; and simultaneously the domain of occupancy A‘XiO’ similarly 
becomes transformed into the domain AXis’O. The dotted curve X~””0’ defines 
the locus of configurations, among the type I11 ellipsoids, that are marginally 
oventable by a mode of oscillation belonging to the second harmonics. 

and 
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Figure 4. The Riemann ellipsoids of type S (for which the directions of rotation 
and vorticity coincide with the x,-axis) can be arranged in sequences along which 

f = I;ln is a constant. 
The stable part of the Maclaurin sequence is represented by the segment 0,s 

of the line a, = 1. At 0, the Maclaurin spheroid becomes unstable by oventable 
oscillations and at  M2 the Jacobian and the Dedekind sequences bifurcate (labeled 
by “0, f m ” ) .  

The different Riemann sequences are labeled by the values off to which they 
belong; these sequences are bounded by the two selfadjoint sequences (the dotted 
curves labeled x = - 1 and x = + 1 )  along which f = f t = 7 (a: + a:)/a,a, . 
The sequences belonging tofin the range -2 5 f 5 +2 form a nonintenecting 
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family of continuous curves which join points on the line 0,s to the origin. The 
sequences belonging to f < -2 and f > +2 are represented by curves which 
consist of two parts: a part which joins a point on the line SM, (or M20,)  to a 
point of the selfadjoint sequence for x = - 1 (or x = + 1) and a part which joins 
the point on the selfadjoint sequence to the origin. Along the selfadjoint sequence 
x = - 1, instability by a mode of oscillation belonging to the second harmonics 
sets in at  the point indicated by X ,  and the locus of points a t  which instability by 
this mode sets in is the curve which joins X ,  to the origin. The curve labeled 
AND is the locus of neutral points, belonging to the third harmonics, along the 
Riemann sequences for -2 5 f 5 +2 ; and the curve labeled BNtC is the corre- 
sponding locus for configurations adjoint to the Riemann ellipsoids represented in 
the domain included between the same sequences f = -2 and f = +2. The 
continuations of the loci AND and BNtC into the domains included between the 
sequences x = - 1 and f = -2 (and, similarly, between the sequences x = + 1 
and f = +2) are represented by curves (not shown) joining the points A and B 
to X i - )  on the sequence x = - 1  (and, similarly, by curves joining the points D 
and C to the point X;’) on the sequence x = + 1) ; X i - )  and XJ+’  are the neutral 
points, belonging to the third harmonics, along the selfadjoint sequences x = - 1 
and x = + 1, respectively. 

, 1.2 I .  4 1.6 1.8 ; 

S T A B L E  
Mc 

1.2 I .  4 1.6 1.8 ; 

a& 

Figure 5. The loci of marginally stable configurations in the a2/a, , a,/a,-plane. 

The type S ellipsoids are bounded by two selfadjoint sequences (SO and 0,O) 
and the stable part of the Maclaurin sequence represented by SO, . Along the arc 
Xis’O the type S ellipsoids become unstable by a mode of oscillation belonging to 
the second harmonics; and along this same arc the stability passes to the type I11 
ellipsoids whose domain of occupancy is AXiS1O. The shaded region included 
between X:””O and Xi”’0  represents the domain of stability for type I11 ellipsoids 
with respect to oscillations belonging to the second harmonics. 

The type I ellipsoids occupy the triangle SMcR, ; and the region of the stable 
members is included in the two domains marked “stable”. The domain S 0 , X ~ ”  
of stable ellipsoids adjoining the stable Maclaurin spheroids is to be expected, but 
the domain D,QR, including disklike ellipsoids along D I R I  is unexpected. 

All type I1 ellipsoids are unstable. 
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