
AN INTRODUCTION TO THE DERIVED CATEGORY

THEO BÜHLER

Abstract. The derived category is the proper framework for hyperhomology.
The treatment of derived functors on the level of the derived category yields
simple identities that underlie most of the familiar spectral sequences. By pur-
suing a formal analogy to algebraic topology, we obtain Verdier’s axioms of a
triangulated category which are an attempt to capture the essential structure
of the homotopy category of chain complexes and the derived category. We
outline the construction of the derived category as a localization of the homo-
topy category and show how this leads to its triangulated structure. Finally,
we briefly discuss derived functors.
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1. Introduction

Our standpoint is that homological algebra is the theory of chain complexes and
short exact sequences.

Let A be an abelian category. A chain complex is a diagram

· · ·
d

n−2
A−−−→ An−1 d

n−1
A−−−→ An dn

A−−→ An+1 d
n+1
A−−−→ · · ·

such that dn+1
A dn

A = 0 for all n ∈ Z. A chain map is a morphism of such diagrams.
We denote the category of chain complexes by Ch (A ).

Exercise 1.1. Let A be an abelian category. Prove that Ch (A ) is abelian. A
sequence of chain maps is short exact if and only if it is short exact in each degree.
Prove that the functor A → Ch (A ) that arises from considering an object of A

as a complex concentrated in degree zero is fully faithful (bijective on Hom-sets)
and exact.
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It is nice to know that Ch (A ) is abelian, however this knowledge does not
help us in understanding the notions of chain homotopy equivalence and quasi-
isomorphisms. In order to do this, we need to introduce two further categories:

(i) The homotopy category K (A ). Objects are chain complexes over A and mor-
phisms are the homotopy classes of chain maps.

(ii) The derived category D (A ) obtained from K (A ) by formally inverting the
quasi-isomorphisms.

It turns out that neither the homotopy category nor the derived category are abelian
except in trivial cases (see [Ver96, Chapitre II, Proposition 1.3.6, p.108]), so there
is a loss of structure. However, the mapping cone construction gives rise to the
structure of triangulated categories on both K (A ) and D (A ), i.e., there is a class
of diagrams, called “distinguished triangles”, which serves as substitute for short
exact sequences.

Now let us be given an additive functor F : A → B between abelian categories.
By applying F degreewise on chain complexes and chain maps, we obtain a functor
ChF : Ch (A ) → Ch (B). Because F is additive, it preserves chain homotopies,
hence it descends to a functor KF : K (A ) → K (B). Because the triangulated
structure on KF is defined in “additive terms”, this functor is compatible with
the triangulations, i.e., it is a triangle functor. However, applying F degreewise
yields a well-defined functor DF : D (A ) → D (B) on the level of the derived
categories if and only if F is exact, and in this case, this will be a triangle functor.
Otherwise KF will fail to map quasi-isomorphisms to quasi-isomorphisms. The left
and right derived functors will then appear as “best approximations” to KF among
the triangle functors D (A )→ D (B).

2. The Mapping Cone

The category Ch (A ) has rather more structure than just being abelian. First,
there is the suspension functor

Σ : Ch (A )→ Ch (A )

defined on complexes by (ΣA)n = An+1 and dn
ΣA = −dn+1

A and on chain maps by
(Σf)n = fn+1. The suspension functor is additive and invertible. Second, there is
the mapping cone construction, which we will treat in detail in this section.

Given a chain map A
f
−→ B, we define the mapping cone to be the complex

cone (f)n = An+1 ⊕Bn with differential

dn
f =

[
−d

n+1
A

0

fn+1 dn
B

]
.

Observe that dn+1
f dn

f = 0 because f is a chain map.

Exercise 2.1. For a complex A, we define cone (A) to be the cone of 1A. Prove
that the diagram

A

[ 0
1 ]

��

f //

PO

B

[ 01 ]
��

cone (A)
h

1 0
0 f

i

// cone (f)

is a push-out in Ch (A ). Compare this to the definition given in basic algebraic
topology Cf = CX ∪f Y .
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Examples 2.2.

(i) The cone of the zero morphism A
0
−→ B is cone (0) = ΣA⊕B. In particular, if

B = 0 then cone (0) = ΣA, and if A = 0 then cone (0) = B.

(ii) The cone of the identity morphism A
1A−−→ A is contractible; a contracting

homotopy is given by [ 0 1
0 0 ] as witnessed by the verification

[
−dn

A 0

1An d
n−1
A

] [
0 1An

0 0

]
+

[
0 1

An+1

0 0

] [
−d

n+1
A

0

1
An+1 dn

A

]
=

[
1

An+1 0
0 1An

]
= 1cone (A)n .

(iii) Let A
f
−→ B be a morphism of A . Its mapping cone is the complex

· · · −→ 0 −→ A
f
−→ B −→ 0 −→ · · · ,

where A sits in degree −1.

(iv) Let A
ε
−→ E• be a resolution. Its augmented complex is nothing but cone (ε).

Exercise 2.3 (The Homotopy Invariant).

(i) Let 0 −→ A
f
−→ B

g
−→ C −→ 0 be a short exact sequence of chain complexes

which splits in each degree. Construct a chain map C → ΣA. The construction
will depend on some choices. Prove that the homotopy equivalence class of this
chain map is well-defined, it is called the homotopy invariant of the degreewise
split sequence.

(ii) Let A
f
−→ B be a chain map. Determine the homotopy invariant of the sequence

0 −→ B
[ 01 ]
−−→ cone (f)

[ 1 0 ]
−−−→ ΣA −→ 0.

(iii) Prove that the connecting morphism of the long exact homology sequence
associated to the sequence in (ii) is H∗(Σf).

The mapping cone construction gives rise to a diagram

A
f
−→ B

[ 0
1 ]
−−→ cone (f)

[ 1 0 ]
−−−→ ΣA

Σf
−−→ ΣB

[ 01 ]
−−→ · · ·

reminiscent of the cofiber sequence in topology.

Exercise 2.4. Prove that the composition of any two consecutive maps in the
above cofiber sequence is homotopic to zero.

The cofiber sequence is functorial in f : Given a morphism of chain maps

A

a

��

f // B

b

��
A′

f ′

// B′

there is the following commutative diagram

A

a

��

f // B

b

��

[ 01 ]
// cone (f)

[ 1 0 ] //

h

Σa 0
0 b

i

��

ΣA

Σa

��
A′

f ′

// B′
[ 01 ]

// cone (f ′)
[ 1 0 ] // ΣA′.

Exercise 2.5. Let A
f
−→ B be a chain map. Check that f is homotopic to zero if

and only if it extends to a chain map cone (1A)
[ s f ]
−−−→ B.
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From algebraic topology, one expects that homotopic maps have homotopic map-
ping cones. This is true with the familiar proviso that there is no distinguished
homotopy equivalence. More precisely, let f−g = ds+sd be homotopic chain maps
A→ B. The choice of an explicit chain homotopy s yields an isomorphism

cone(f)
[ 1 0
s 1 ]
−−−→ cone(g).

More generally, consider a homotopy commutative diagram

A

a

��

f //

≃

B

b

��
A′

f ′

// B′

that is, there exists s such that f ′a − bf = dB′s + sdA. The choice of such an s
yields the following diagram

A

a

��

f //

≃

B

b

��

[ 0
1 ]

// cone (f)

[ a 0
s b ]

��

[ 1 0 ] // ΣA

Σa

��
A′

f ′

// B′
[ 0
1 ]

// cone (f ′)
[ 1 0 ] // ΣA′

in which the first square is homotopy commutative and the other two squares are
commutative.

3. The Homotopy Category

We denote by K (A ) the homotopy category of chain complexes over the addi-
tive category A . Its objects are the chain complexes and its morphisms are the
homotopy equivalence classes of chain maps.

Exercise 3.1.

(i) Prove that K (A ) is an additive category.
(ii) There is a functor A → K (A ) that is obtained by considering an object of

A as a complex concentrated in degree zero. Prove that this functor is fully
faithful.

The suspension automorphism Σ : K (A )→ K (A ) is defined as in Ch (A ).

Exercise 3.2. Let A,B be chain complexes over A . Define a complex of abelian
groups by

hom (A,B)
i
=

∏

n∈Z

HomA (An, Bn+i)

with differential

di : (fn)n∈Z 7→
(
dn+i

B fn − (−1)ifn+1dn
A

)
n∈Z

.

Prove that HomK (A ) (A,ΣiB) ∼= Hi(hom (A,B)).

Exercise 3.3 ([Kel90, 2.3 a)]). Let A be a chain complex and define IA to be
the complex (IA)n = An ⊕ An+1 with differential [ 0 1

0 0 ]. There is a chain map

iA : A→ IA given by
[ 1

dn
A

]
in each degree.

(i) Prove that f : A→ B is homotopic to zero if and only if it factors over iA.
(ii) Prove that f : A → B admits a retraction in K (A ) if and only if the chain

map
[

f
iA

]
: A→ IA admits a retraction in Ch (A ).
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(iii) Conclude that A is null-homotopic if and only if it is a retract (in Ch (A ))

of a direct sum of complexes of the form · · · −→ 0 −→ B
1
−→ B −→ 0 −→ · · · .

Definition 3.4 (Triangles). A triangle in K (A ) is a diagram of the form

A→ B → C → ΣA.

Triangles are often depicted diagrammatically as

C

• ��~~
~~

~~
~

A // B

__@@@@@@@

where the bullet indicates that the morphism is of degree one.
A morphism of triangles is a commutative diagram

A
f //

a

��

B
g //

b

��

C
h //

c

��

ΣA

Σa

��
A′

f ′

// B′
g′

// C′
h′

// ΣA′

in K (A ).
A triangle is called distinguished if it is isomorphic in K (A ) to a strict triangle,

i.e., a triangle of the form

A
f
−→ B

[ 01 ]
−−→ cone (f)

[ 1 0 ]
−−−→ ΣA.

Remark 3.5. Strictly speaking, the expression cone (f) does not make sense on
the level of K (A ) since the mapping cones of homotopic maps are not canonically
isomorphic in general.

Lemma 3.6 (Rotation). Let A
f
−→ B

g
−→ C

h
−→ ΣA be a distinguished triangle. Then

the rotated triangles

B
g
−→ C

h
−→ ΣA

−Σf
−−−→ ΣB

and

Σ−1C
−Σ−1h
−−−−−→ A

f
−→ B

h
−→ C

are distinguished as well.

Proof. We only prove the first statement and leave the second statement to the
reader as an exercise. We may assume that the initial triangle is represented by

A
f
−→ B

[ 0
1 ]
−−→ cone (f)

[ 1 0 ]
−−−→ ΣA

in Ch (A ). We have to prove that the triangle

B
[ 0
1 ]
−−→ cone (f)

[ 1 0 ]
−−−→ ΣA

−Σf
−−−→ ΣB.

is isomorphic in K (A ) to a strict triangle. The cone over [ 0
1 ] is the complex

Bn+1 ⊕An+1 ⊕Bn with differential

[
−d

n+1
B

0 0

0 −d
n+1
A

0

1 fn+1 dn
B

]
.
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In the diagram

B
[ 0
1 ]

// cone (f)
[ 1 0 ] // ΣA

−Σf //
»

−Σf
1
0

–

��

ΣB

B
[ 0
1 ]

// cone (f)

»

0 0
1 0
0 1

–

// cone ([ 0
1 ])

[ 1 0 0 ]// ΣB

the two outer squares are commutative while the middle square is commutative up
to homotopy since

[
0 0
1 0
0 1

]
−

[
−Σf 0

1 0
0 0

]
=

[
Σf 0
0 0
0 1

]
=

[
−dn

B 0 0
0 −dn

A 0

1 fn d
n−1
B

] [
0 1
0 0
0 0

]
+

[
0 1
0 0
0 0

] [
−d

n+1
A

0

fn+1 dn
B

]
.

Similarly, in the following diagram

B
[ 0
1 ]

// cone (f)

»

0 0
1 0
0 1

–

// cone ([ 0
1 ])

[ 1 0 0 ]//

[ 0 1 0 ]

��

ΣB

B
[ 0
1 ]

// cone (f)
[ 1 0 ] // ΣA

−Σf // ΣB

the left and the middle square are commutative while the right hand square is
commutative up to homotopy since

[ 1 Σf 0 ] = (−dn
B) [ 0 0 1 ] + [ 0 0 1 ]

[
−d

n+1
B

0 0

0 −d
n+1
A

0

1 fn+1 dn
B

]
.

The last two diagrams exhibit an isomorphism of triangles since

1ΣA = [ 0 1 0 ]
[
−f
1
0

]

and
[

1 Σf 0
0 0 0
0 0 1

]
=

[
1 0 0
0 1 0
0 0 1

]
−

[
−Σf

1
0

]
[ 0 1 0 ]

=

[
−dn

B 0 0
0 −dn

A 0

1 fn d
n−1
B

] [
0 0 1
0 0 0
0 0 0

]
+

[
0 0 1
0 0 0
0 0 0

] [
−d

n+1
B

0 0

0 −d
n+1
A

0

1 fn+1 dn
B

]

so we are done. �

Definition 3.7 (Verdier). A triangulated category (K,Σ,∆) is a triple consisting of
an additive category K, an auto-equivalence Σ : K→ K and a class of distinguished
Σ-triangles satisfying the axioms below:

[TR 1] (i) The class ∆ is closed under isomorphisms of triangles.
(ii) For every object A ∈ K the triangle

A
1A−−→ A −→ 0 −→ ΣA

is distinguished.

(iii) For every morphism A
f
−→ B there exists a distinguished triangle

A
f
−→ B

g
−→ C

h
−→ ΣA.

[TR 2] (Rotation Axiom) The triangle A
f
−→ B

g
−→ C

h
−→ ΣA is distinguished if and

only if the triangle B
g
−→ C

h
−→ ΣA

−Σf
−−−→ ΣB is distinguished.
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[TR 3] (Morphism Axiom) If the rows of the following diagram are distinguished
triangles and the left hand square is commutative

A

a

��

f // B

b

��

g // C

∃c

��

h // ΣA

Σa

��
A′

f ′

// B′
g′

// C′
h′

// ΣA′,

then there exists a morphism c making the whole diagram commutative.
[TR 4] (Octahedral Axiom) Given two composeable morphisms f and g, embed

f , g and h = gf into distinguished triangles according to [TR 1] (iii).

C′

•
  A

AA
AA

AA

∃g′

..

Boo

g

  A
AA

AA
AA

A A′
•oo

•

h′

zz

A

f
>>}}}}}}}}

h
// C

>>}}}}}}}

~~}}
}}

}}
}

B′

•

``AAAAAAA ∃f ′

MM

Let h′ be the composite A′ → ΣB → ΣC′. There exist morphisms f ′ and
g′ such that

(i) The triangle C′ g′

−→ B′ f ′

−→ A′ h′

−→ ΣC′ is distinguished.
(ii) The triangles

C′
• //

g′

  B
BB

BB
BB

B A

B′

•
OO

and

C

��

// A′

B′

f ′

>>}}}}}}}}

are commutative.
(iii) The two morphisms B → B′ (via C and C′) coincide as well as the

two morphisms B′ → ΣB (via ΣA and A′).

Remark 3.8. The octahedral axiom is admittedly hard to digest. In the context
of the homotopy category it simply expresses how the cone of the composition of
two morphisms is linked to the cone of the components, namely via a distinguished
triangle fitting into a nice diagram. The name stems from the fact that the big
diagram may be re-arranged so as to obtain an octahedron, four faces of which are
commutative, the other four are distinguished triangles.

We will only make use of the octahedral axiom in our discussion of Verdier
localization, so the reader is advised to ignore it at the moment. However, for more
advanced applications of triangulated categories such as abstract truncation, gluing,
tilting theory, Brown representability, etc., the octahedron turns out to be the flesh
and bone of the axiomatics. It seems fair to say that every serious application of
triangulated categories involves at least one octahedron.

Theorem 3.9 (Verdier). Let A be an additive category. The homotopy category
K (A ) is triangulated.
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Proof. Our discussion of the mapping cone and the definition of distinguished
triangles take care of axioms [TR 1], [TR 2] and [TR 3]. The proof of the octa-
hedral axiom is a straightforward but rather tedious verification which we leave to
the reader. �

Exercise 3.10 (Triangulated Subcategories). Let T ⊂ K be a full additive sub-
category. Prove that T inherits the structure of a triangulated category from K if
it is closed under Σ and Σ−1 and if for every morphism S → T of T there exists a
distinguished triangle S → T → C → ΣS with C ∈ T .

Exercise 3.11 (Duality). Let (K,Σ,∆) be a triangulated category, define a trian-
gulated structure on Kop.

Exercise 3.12 (Verdier’s Exercise).

(i) Prove that [TR 1] and the octahedral axiom [TR 4] imply the morphism
axiom [TR 3].

Hint: Build octahedra over the two commutative triangles in the diagram

A

a

��

f //

!!C
CC

CC
CC

C B

b

��
A′

f ′

// B′.

(ii) Every commutative square as in (i) can be embedded into a diagram

A
u //

a

��

B
v //

b

��

C
w //

c

��

A[1]

a[1]

���
�

�

A′
u′

//

a′

��

B′
v′

//

b′

��

C′
w′

//

c′

��

A′[1]

a′[1]

���
�

�

A′′
u′′

//

a′′

��

B′′
v′′

//

b′′

��

C′′
w′′

//

c′′

��
(−)

A′′[1]

a′′[1]

���
�

�

A[1]
u[1] //___ B[1]

v[1] //___ C[1]
w[1] //___ A[2]

in which all unlabeled squares commute, the square labeled (−) is sign commu-
tative and all rows and columns with solid arrows are distinguished triangles.

Hint: Proceed as in (i) to obtain the top three squares and the three left-
hand squares. The morphism c is constructed as a composition of two mor-
phisms, use this to build a third octahedron and to complete the diagram.
You will have to rotate one triangle, and this is the reason for the sign.

Remark 3.13. There are various reasons not to drop [TR 3] from the axiomatics.
First, there is the argument concerning historical tradition. Second, [TR 3] is usu-
ally neither hard to prove nor to apply, whereas [TR 4] is considerably more subtle
in both respects. See Balmer’s MathSciNet review of [May01] for a more serious
discussion.

4. Elementary Properties of Triangulated Categories

In this section, K will be a triangulated category and we will discuss the most
important consequences of axioms [TR 1], [TR 2] and [TR 3]. The reader is
advised to bear in mind the slogan “distinguished triangles should be thought of as
the triangulated analog of exact sequences in abelian categories” throughout this
section.
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Proposition 4.1. The composition of two consecutive maps in a distinguished
triangle is zero.

Proof. Let A
f
−→ B

g
−→ C

h
−→ ΣC be a distinguished triangle. By [TR 1] and

[TR 3] there is a commutative diagram

A
1A //

1A

��

A //

f

��

0 //

��

ΣA

1ΣA

��
A

f // B
g // C

h // ΣA

from which we conclude that gf = 0. That hg = 0 and (Σf)h = 0 now follows from
[TR 2]. �

Exercise 4.2. Prove that one may change the sign of any two morphisms in a
distinguished triangle.

Caution: This is not true for the sign of a single morphism, see [Ive86, Exam-
ple 4.21, p. 32].

Proposition 4.3. Let A
f
−→ B

g
−→ C

h
−→ ΣA be a distinguished triangle. The mor-

phism f is a weak kernel of g and h is a weak cokernel of h. In detail:

(i) There exists a factorization x = fx′

X
∃x′

~~
x

��

0

  @
@@

@@
@@

A
f // B

g // C
h // ΣA

for every X
x
−→ B such that gx = 0. Moreover, gf = 0.

(ii) There is a factorization y = y′h

A
f // B

g //

0   @
@@

@@
@@

C
h //

y

��

ΣA

∃y′

}}
Y

for every C
y
−→ Y such that yg = 0. Moreover, hg = 0.

Proof. We only prove (ii). By [TR 1] and [TR 2] we have a commutative diagram
whose rows are distinguished triangles

B
g //

��

C
h //

y

��

ΣA
−Σf //

∃y′

��

ΣB

��
0 // Y

1Y // Y // 0

and the existence of y′ follows from [TR 3]. �

Corollary 4.4. Let A
f
−→ B

g
−→ C

h
−→ ΣA be a distinguished triangle and suppose

A
f //

0

��

B
g //

0

��

C
h //

c

��

ΣA

0

��
A

f // B
g // C

h // ΣA

is a morphism of triangles. Then c2 = 0.
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Proof. By assumption cg = 0, so by the weak cokernel property there exists

ΣA
c′

−→ C such that c = c′h, so c2 = c′hc = 0. �

Corollary 4.5 (Five Lemma). Let

A
f //

a

��

B
g //

b

��

C
h //

c

��

ΣA

Σa

��
A′

f ′

// B′
g′

// C′
h′

// ΣA′

be a morphism of distinguished triangles. If two out of a, b, c are isomorphisms then
so is the third.

Proof. By [TR 2] it suffices to consider the case that a and b are isomorphisms.
We leave it to the reader to reduce the question to the following statement: If

A
f //

1

��

B
g //

1

��

C
h //

c

��

ΣA

1

��
A

f // B
g // C

h // ΣA

is an endomorphism of a distinguished triangle then c is an isomorphism. By the
previous corollary we know that (c−1)2 = 0, hence c = 1+(c−1) is an isomorphism
with inverse 1− (c− 1). �

Corollary 4.6. If A
f
−→ B is a morphism, any two distinguished triangles of the

form A
f
−→ B

g
−→ C

h
−→ ΣA are isomorphic via a non-unique isomorphism. �

Corollary 4.7. A morphism A
f
−→ B is an isomorphism if and only if the triangle

A
f
−→ B −→ 0 −→ ΣA is distinguished.

Proof. Consider the diagram

A
f //

f

��

B //

1

��

0 //

��

ΣA

Σf

��
B

1 // B // 0 // ΣB.

If f is an isomorphism, the top row is a distinguished triangle because it is isomor-
phic to the distinguished triangle in the bottom row. Conversely, if both rows in
the diagram are distinguished triangles, we conclude by the five lemma that f is
an isomorphism. �

Definition 4.8. Let A be an abelian category. A functor F : K → A is called

homological if for each distinguished triangle A
f
−→ B

g
−→ C

h
−→ ΣA the sequence

F (A)
F (f)
−−−→ F (B)

F (g)
−−−→ F (C)

is exact (at F (B)).

Remark 4.9. Let F : K → A be a homological functor. It is customary to write
Fn(A) := F (ΣnA) for n ∈ Z. It follows from [TR 2] that a homological functor
gives rise to a long exact sequence

· · · → Fn−1(C)→ Fn(A)→ Fn(B)→ Fn(C)→ Fn+1(A)→ · · ·

for each distinguished triangle A→ B → C → ΣA.
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Exercise 4.10. Prove that homology in degree zero H0 : K (A )→ A is a homo-
logical functor.

Exercise 4.11. The represented functor HomK (X,−) : K → Ab is homological
for every X ∈ K.

Exercise 4.12 ([BBD82, 1.1.9]). Consider the diagram

A
f //

∃a

��

B
g //

b

��

C
h //

∃c

��

ΣA

A′
f ′

// B′
g′

// C′
h′

// ΣA′

and assume that the rows are distinguished triangles. The following four conditions
are equivalent:

(i) g′bf = 0.
(ii) There exists a morphism a : A → A′ making the left hand square commuta-

tive.
(iii) There exists a morphism c : C → C′ making the right hand square commuta-

tive.
(iv) The morphism b fits into a morphism of triangles (a, b, c).

If in addition to these conditions Hom−1
K

(A,C′) = 0 then a and c are unique.
Hint: To see the uniqueness claim, apply the homological functors HomK (A,−)

and HomK (−, C′).

Exercise 4.13 ([BBD82, 1.1.10]). Let A
f
−→ B

g
−→ C

h
−→ ΣA be a distinguished

triangle with the property that Hom−1
K

(A,C) = 0. Conclude from the previous
exercise that:

(i) Every other distinguished triangle A
f
−→ B

g′

−→ C′ h′

−→ ΣA containing f is
isomorphic to the original triangle via a unique isomorphism of triangles of
the form (1, 1, c).

(ii) The morphism C
h
−→ ΣA is the only morphism x ∈ HomK (C,ΣA) such that

the triangle A
f
−→ B

g
−→ C

x
−→ ΣA is distinguished.

5. Triangle Functors

Let (K,Σ,∆) and (K′,Σ′,∆′) be triangulated categories. A triangle functor
K → K′ is a pair (F, α) consisting of an additive functor F : K → K′ and a
natural transformation α : FΣ ⇒ Σ′F such that for each distinguished triangle

A
f
−→ B

g
−→ C

h
−→ ΣA in K the triangle

F (A)
F (f) // F (B)

F (g) // F (C)
(αA)F (h) //

F (h)
&&M

M
Σ′F (A)

F (ΣA)
αA

77o
o

is distinguished in K′. Since there is usually an “obvious” choice for the natural
transformation α, it is often suppressed notationally.

Remark 5.1. Let (F, α) be a triangle functor. Consider the distinguished triangle

X −−→ 0 −−→ ΣX
−1
−−→ ΣX

and apply (F, α) to obtain the distinguished triangle

FX −−→ 0 −−→ FΣX
−αX−−−→ Σ′FX.
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Therefore the five lemma for triangulated categories implies that α is an isomor-
phism of functors.

Exercise 5.2. Let (F, α) : K→ K′ be a triangle functor and let

T = {A ∈ K : F (A) ∼= 0}

be the kernel of F . Prove that T is a triangulated subcategory of K. Moreover, T

is thick in the sense that for all objects A,B ∈ K whose sum A⊕B is in T already
A,B ∈ T .

Remark 5.3. Verdier’s localization theorem gives a converse to the previous exer-
cise: every thick triangulated subcategory of a triangulated category is the kernel
of some triangle functor. We will later provide more details.

The point of the following two results is that “the” adjoint of a triangle functor
is itself a triangle functor.

Lemma 5.4 ([KV87, 1.6]). Let (R, ρ) : K → K′ and (L, λ) : K′ → K be triangle
functors such that L is left adjoint to R. Let ϕ : LR ⇒ idK and ψ : idK′ ⇒ RL be
the adjunction morphisms. The following four conditions are equivalent:

(i) λ = (ϕΣL)(L̺−1L)(LΣ′ψ);
(ii) ̺−1 = (RΣϕ)(RλR)(ψΣ′R);
(iii) ϕΣ = (Σϕ)(λR)(L̺);
(iv) Σ′ψ = (̺L)(Rλ)(ψΣ′).

If these conditions are satisfied, the triangle functors (L, λ) and (R, ̺) are called an
adjoint pair of triangle functors.

Proposition 5.5 ([KV87, 1.6]). Let (R, ̺) : K → K′ be a triangle functor and
suppose that it has a left adjoint L ⊣ R. Let

ψ : idK′ ⇒ RL and ϕ : LR⇒ idK

be the adjunction morphisms. For X ∈ K′ put

λX = ϕΣLX ◦ L̺
−1
LX ◦ LΣ′ψX .

Then λ : LΣ′ ⇒ ΣL is a natural transformation such that (L, λ) is a triangle
functor and (L, λ) and (R, ̺) are an adjoint pair of triangle functors.

6. Localization of Categories

Definition 6.1. Let C be an arbitrary category and let W be a class of morphisms
in C . A localization of C with respect to W is a pair (D , q) consisting of a category
D and a functor q : C → D satisfying:

(i) The functor q transforms the morphisms in W to isomorphisms in D .
(ii) If F : C → E is any functor transforming the morphisms in W to isomor-

phisms then F factors uniquely over D :

C

q

~~~~
~~

~~
~

F

  B
BB

BB
BB

B

D
∃!F̃ // E .

If it exists, the category D is unique up to equivalence of categories and by abuse
of notation any such category is denoted by C [W −1].

Theorem 6.2 (Gabriel-Zisman [GZ67, Chapter 1]). For every category C and every

class W of morphisms in C there exists a (possibly large) localization C [W −1].
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The proof of the Gabriel-Zisman theorem does not yield a very tractable descrip-
tion of C [W −1]. However, under suitable hypotheses on W , one can give quite a
simple construction.

Definition 6.3. The class of morphisms W admits a calculus of left fractions if

[F 1] For every object C ∈ C , the identity 1C belongs to W .
[F 2] The composition of two elements of W is again an element of W .

[F 3] (Left Ore Condition) Every diagram C′ w
←− C

f
−→ D with w ∈ W can be

completed to a commutative square

C

w∈W

��

f // D

v∈W

��
C′

f ′

// D′

with v ∈ W .
[F 4] (Left Cancellation) If f, g are morphisms in C and there exists w ∈ W such

that fw = gw then there exists v ∈ W such that vf = vg.

The idea is that the diagram C
f
−→ D′ w

←− D is a fraction representing the
morphism w−1 ◦ f : C → D in C [W −1]. More precisely, consider the pairs of
morphisms (w, f) with the same target and w ∈ W . Two such pairs (w, f) and
(v, g) are equivalent if there exists a commutative diagram

D′

��
C

f
==|||||||| h //

g
!!B

BB
BB

BB
B D′′′ D

w

aaCCCCCCCC
uoo

v
}}{{

{{
{{

{{

D′′

OO

with u ∈ W . Thinking of fractions this just means that the fractions (w, f) and (v, g)
can be expanded to the same fraction. Reflexivity and symmetry of this relation
are obvious, to prove transitivity one uses axioms [F 2], [F 3] and [F 4].

Denote the equivalence class of (w, f) by (w \ f). The equivalence classes (w \ f)
and (v \ g) can be composed as follows: [F 3] guarantees the existence of a diagram

C

f   A
AA

AA
AA

A D

w∈W}}{{
{{

{{
{{

g
!!C

CC
CC

CC
C E

v∈W~~}}
}}

}}
}

D′

g′

!!

E′

w′
∈W}}

E′′

and [F 2] shows that w′v ∈ W . The composition is then given by

(v \ g) ◦ (w \ f) = (w′v \ g′f)

and it is not hard to check that this composition is well-defined, associative and by
[F 1] the fractions (1 \ 1) are two-sided neutral elements.

The localization C [W −1] can now be described as the category with the same
objects as C and whose morphisms are the equivalence classes (w \ f) with the

composition described above. The localization functor q : C → C [W −1] is defined
as q(f) = (1\f). The inverse of q(w) is (w\1), so the images of the morphisms in W
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under q are indeed invertible. If the functor F : C → E transforms elements of W to
isomorphisms then a factorization is obtained by setting F̃ ((w \ f)) = F (w)−1F (f)
and one easily convinces oneself that this is the only way to get a factorization of
F over q.

Remark 6.4. Dualization yields the notion of admitting a calculus of right frac-
tions and hence a description of C [W −1] using right fractions. If W admits both
a calculus of left fractions and a calculus of right fractions, the universal property
of the localization yields that the two descriptions of C [W −1] via left and right
fractions are canonically isomorphic.

Remark 6.5. Despite the simplicity of the construction, the localization C [W −1]
is usually quite hard to identify explicitly. It is often non-trivial to decide whether
C [W −1] is (equivalent to) the zero category or not.

Remark 6.6 (Set-Theoretic Caveat). We deliberately glossed over a set-theoretic
difficulty: if C is not small, the equivalence relation in the definition of the mor-
phisms of C [W −1] may have proper classes as equivalence classes, and there is no
a priori reason why the class of equivalence classes should form a set. In particular,
the “category” C [W −1] is not a category stricto sensu, because HomC [W −1] (C,D)
need not be a set.

Remark 6.7 (Gabriel-Zisman). Let W admit a calculus of left fractions and let
B be an object of C . Consider the “comma category” W B whose objects are the

diagrams B
w′

−→ B′ with w′ ∈ W and whose morphisms are the commutative
diagrams of the form

B
w′

∈W

~~}}
}}

}}
}

w′′
∈W

!!C
CC

CC
CC

C

B′
f // B′′.

By the Ore condition this category is filtered and one can identify

HomC [W −1] (A,B) = lim
−→
W B

HomC (A,B′)

(exercise). In order to ensure that HomC [W −1] (A,B) is a set, it is sufficient to
require that each W B has a small cofinal subcategory. More explicitly, W is said
to be locally small (on the right) if for each object B ∈ C there is a set S B of
morphisms in W (objects of W B) such that whenever there is a morphism B → B′

in W there exists a morphism B′ → B′′ such that the composite B → B′ → B′′ is
in S B. It then follows that

HomC [W −1] (A,B) = lim
−→
S B

HomC (A,B′),

and the latter is manifestly a set.

Exercise 6.8. Let C be an additive category and let W admit a calculus of left
fractions. Prove that the localization C [W −1] is additive and that the quotient

functor q : C → C [W −1] is additive.
Hint: To see that HomC [W −1] (A,B) is an abelian group, use its representation as

a colimit given in the previous remark. Then prove the general facts that q preserves
initial and terminal objects and finite products and coproducts (whenever they exist
in C ).
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7. Verdier Localization

Let K be a triangulated category and let W be a class of morphisms in K admit-
ting a calculus of left fractions. We want to ensure that the localization K [W −1]
has a natural triangulated structure. To this end, we impose two further conditions
on the class W :

[F 5] Σ±1 W ⊂ W .
[F 6] If in the situation of the morphism axiom [TR 3] for triangulated categories

a, b ∈ W then the morphism c can be chosen to be in W as well:

A

a∈W

��

f // B

b∈W

��

g // C

∃c∈W

��

h // ΣA

Σa∈W

��
A′

f ′

// B′
g′

// C′
h′

// ΣA′.

Let W satisfy axioms [F 1] to [F 6] and construct the category K [W −1] via left

fractions as described in the previous section. It not difficult to see that K [W −1] is
additive. Axiom [F 5] ensures that the suspension Σ descends to an auto-equivalence

of K [W −1], which we still denote by Σ. Let q : K→ K [W −1] be the quotient func-

tor. By construction, qΣ = Σq. Declare a triangle in K [W −1] to be distinguished
if it is isomorphic to the image under q of some distinguished triangle in K. With
this structure we have:

Theorem 7.1 (Verdier Localization). Let K be a triangulated category and let W

be a class of morphisms satisfying axioms [F 1] to [F 6]. The category K [W −1]

is triangulated and the quotient functor q : K → K [W −1] is a triangle functor.
Every triangle functor K→ K′ transforming morphisms in W to isomorphisms in
K′ factors uniquely over a triangle functor K [W −1]→ K′.

Of course, the question arises how one can find classes W satisfying the hypothe-
ses of Verdier’s localization theorem. The octahedral axiom furnishes a definitive
answer to this question:

Proposition 7.2. Let T be a triangulated subcategory of K. Let W be the class

of morphisms w for which there exists a distinguished triangle A
w
−→ B

g
−→ T

h
−→ ΣA

with T ∈ T . Then W satisfies axioms [F 1] to [F 6] and their duals.

Sketch of the Proof. Axioms [F 1] and [F 5] are obvious. To prove [F 2], we

use the octahedral axiom. IfA
w
−→ B

w′

−→ C are two morphisms of W , then we have to

show that w′w ∈ W as well. There are distinguished triangles A
w
−→ B

g
−→ T

h
−→ ΣA

andB
w′

−→ C
g′

−→ T ′ h′

−→ ΣB with T and T ′ both in T . Since T is triangulated, there

is a distinguished triangle T ′
(Σg)h′

−−−−→ ΣT
g′′

−→ ΣT ′′ h′′

−−→ ΣT ′ with ΣT ′′ ∈ T . Rotate
these three triangles appropriately and build the octahedron over the commutative
triangle

ΣB
Σg

""E
EE

EE
EE

E

T ′

h′

=={{{{{{{{ (Σg)h′

// ΣT.

The distinguished triangle furnished by the octahedral axiom shows Σ(w′w) to be
in W and we conclude by [F 5].

To prove [F 4], it suffices to show that for a morphism f in K for which there
exists w ∈ W such that fw = 0 then there exists v ∈ W such that vf = 0. Choose
a distinguished triangle with base w and third object T ∈ T and apply the weak
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cokernel property:

A′
w //

0   A
AA

AA
AA

A
g //

f

��

T //

∃f ′

��

ΣA′

B

Build a triangle T
f ′

−→ B
v
−→ C −→ ΣT . By rotation, we see that v ∈ W . More-

over, vf = vf ′g = 0 since the composition of two consecutive morphisms in a
distinguished triangle is zero.

Axiom [F 6] is easy: Consider the diagram

A

a

��

f //

!!C
CC

CC
CC

C B

b

��
A′

f ′

// B′.

Applying the octahedral axiom to each of the two commutative triangles, one ob-
tains two morphisms in W and composing these one finds the required morphism
c ∈ W .

We leave it to the reader as an exercise to prove that [F 1], [F 5] and [F 6] imply
[F 3] and to convince himself that all the arguments are subject to dualization. �

Remark 7.3. Let T ⊂K be a triangulated subcategory and let W the associated
class of morphisms as described in the previous proposition. Let q : K→ K [W −1]
be the quotient functor. Since q is a triangle functor and since it sends the mor-
phisms in W to isomorphisms, it must annihilate T . It is therefore customary to
write K [W −1] = K /T and refer to it as the Verdier quotient of K by T . One
can prove that the kernel of q is the thick closure of T , i.e.,

Ker q = {A ∈ K : A⊕B ∼= T ∈ T for some B ∈ K},

see e.g. [Nee01, Chapter 2]. In case T is already thick, it follows that q transforms
precisely the morphisms in W to isomorphisms.

Exercise 7.4. Let A be an abelian category and let Ac (A ) ⊂ K (A ) be the class
of acyclic complexes. Prove that Ac (A ) is a thick triangulated subcategory and
that the morphisms in the associated class W are precisely the quasi-isomorphisms
(in other words: a chain map is a quasi-isomorphism if and only if its cone is acyclic).

Combining the previous exercise with the previous remark, we see that a chain
map becomes invertible in the derived category D (A ) = K (A )/Ac (A ) if and
only if it is a quasi-isomorphism.

The previous exercise is a special case of:

Exercise 7.5. Let F : K→ A be a homological functor. Prove that

KerF = {A ∈K : F i(A) = 0 for all i ∈ Z}

is a thick triangulated subcategory of K.

8. The Derived Category of an Abelian Category

Definition 8.1. The derived category D (A ) is the localization K (A )[Q−1] of the
homotopy category with respect to the class Q of quasi-isomorphisms. Equivalently,
D (A ) is the Verdier quotient K (A )/Ac (A ).

Verdier’s localization theorem gives:
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Theorem 8.2 (Verdier). The derived category of an abelian category is triangu-
lated. A chain map becomes invertible in the derived category if and only if it is
a quasi-isomorphism. A triangle functor F : K (A ) → K′ factors over a triangle
functor D (A ) → K′ if and only if F sends quasi-isomorphisms to isomorphisms
in K′.

Example 8.3. Let 0 −→ A′ m
−→ A

e
−→ A′′ −→ 0 be a short exact sequence in A .

Consider the diagram

A′
m // A

[ 0
1 ]

// cone (m)

[ 0 e ]∈Q

��

[ 0 1 ] // ΣA′

A′
m // A

e // A′′

and observe that [ 0 e ] ∈ Q. Thus we get a distinguished triangle

A′ m
−→ A

e
−→ A′′ [ 0 1 ][ 0 e ]−1

−−−−−−−−→ ΣA′

in D (A ) and obtain the result: every short exact sequence in A naturally embeds
into a distinguished triangle of D (A ).

Exercise 8.4. Generalize the previous example to short exact sequences in Ch (A ).

Example 8.5. Let F : A → B be an additive functor. It induces a triangle
functor KF : K (A )→ K (B) which sends quasi-isomorphisms in K (A ) to quasi-
isomorphisms in K (B) if and only if F is exact. Thus, we obtain a factorization
DF : D (A )→ D (B) if and only if F is exact.

Exercise 8.6. Let F : A → B be an exact functor. Describe DF explicitly.

9. Boundedness Conditions

There is a whole arsenal of abelian subcategories of Ch (A ), obtained by impos-
ing boundedness conditions. We only introduce three of them:

Definition 9.1. A complex is left (right) bounded, if An = 0 for all sufficiently
small (large) n ∈ Z. A complex is bounded if it is both left bounded and right
bounded. The full subcategories of Ch (A ) consisting of left bounded, right bounded,

and bounded complexes are denoted by Ch+ (A ), Ch− (A ) and Chb (A ), respec-
tively.

Exercise 9.2. Prove that Ch∗ (A ) is abelian for ∗ ∈ {+,−, b}.

Exercise 9.3. For ∗ ∈ {+,−, b} let K∗ (A ) be the essential image of Ch∗ (A ) in
K (A ) under the canonical quotient functor. Prove that K∗ (A ) is a triangulated
subcategory of K (A ).

Exercise 9.4. For ∗ ∈ {+,−, b} let D∗ (A ) be the essential image of K∗ (A ) in
D (A ) under the canonical quotient functor. Prove that D∗ (A ) is a triangulated
subcategory of D (A ).

Theorem 9.5. Let A be an abelian category and assume that there are enough
injectives in A . Let I ⊂ A be the full subcategory of injective objects. The com-
position i

K+ (I )→ K+ (A )→ D+ (A )

is an equivalence of triangulated categories.
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Remark 9.6. Similarly, if A has enough projectives, there is an equivalence of
categories K− (P) ∼= D− (A ), where P ⊂ A denotes the full subcategory of
projectives.

Proof. Since the composition of two triangle functors is again a triangle functor,
we need only check that i is fully faithful and essentially surjective, this is the
content of the following lemmas. �

To see essential surjectivity we prove:

Lemma 9.7. Let A be an abelian category with enough injectives. Every left bounded
complex is quasi-isomorphic to a left bounded complex with injective components.

Proof (Keller [Kel90, 4.1, Lemma, b)]). Let A be a complex with An = 0 for
n < 0. Choose an embedding α0 : A0

֌ I0 of A0 into an injective and form the
push-out diagram:

A1

  
α̃1

  
A0

d0
A

>>}}}}}}}}

  
α0

  A
AA

AA
AA

PO Ã1

I0

d̃0
I

>>

Since d1
Ad

0
A = 0 the universal property of push-out squares yields a unique mor-

phism d̃1
A : Ã1 → A2 such that d̃1

Aα̃
1 = d1

A and d̃1
Ad̃

0
I = 0. Now choose an embedding

ᾱ1 : Ã1
֌ I1 of Ã1 into an injective and form the push-out under d̃1

A and ᾱ1 to
obtain

A1

  
α̃1

  A
AA

AA
AA

d1
A // A2

  
α̃2

  

d2
A // A3

A0

d0
A

>>}}}}}}}}

  
α0

  A
AA

AA
AA

PO Ã1

d̃1
A

>>}}}}}}}}

  
ᾱ1

  A
AA

AA
AA

PO Ã2

I0

d̃0
I

>>}}}}}}}}
I1

d̃1
I

>>

It follows from d2
Ad

1
A = 0 and the universal property of push-out squares that

d2
Ad̃

1
A = 0. Again, by the universal property of push-out squares, we find a unique

morphism d̃2
A : Ã2 → A3 such that d̃2

Aα̃
2 = d2

A and d̃2
Ad̃

1
I = 0. Now choose an

embedding ᾱ2 : Ã2 → I2 of Ã2 into an injective, form the push-out under d̃2
A and

ᾱ2, etc.
Put In = 0 for n < 0 and put dn

I = ᾱn+1d̃n
I for n ≥ 0, the reader will readily

check that I is indeed a complex. Put αn = ᾱnα̃n for n > 0 and αn = 0 for
n < 0, this is obviously a chain map α : A → I. We claim that α : A → I is a
quasi-isomorphism. Indeed, its mapping cone is the complex

A0 //

»

−d0
A

α0

–

// A1 ⊕ I0

»

−d1
A 0

α1 d0
I

–

//

[ α̃1 d̃0
I ] ## ##G

GG
GG

GG
GG

A2 ⊕ I1

»

−d2
A 0

α2 d1
I

–

//

[ α̃2 d̃1
I ] ## ##G

GG
GG

GG
GG

A3 ⊕ I2

Ã1

;;
»

−d̃1
A

α̃1

–

;;wwwwwwww

Ã2

;;
»

−d̃2
A

α̃2

–

;;wwwwwwww

which is exact because the exactness of the sequences Ãn
֌An+1 ⊕ In

։ Ãn+1

follows from the universal property of push-out squares. �
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Lemma 9.8. Let I be a left bounded complex of injectives and let I
f
−→ A be a

quasi-isomorphism. Then f has a left inverse in K (A ).

Proof. Because f is a quasi-isomorphism, cone (f) is acyclic. By the comparison
theorem, see [Wei94, 2.2.6, 2.2.7], the morphism

cone (f)
[ 1 0 ]
−−−→ ΣI

is null homotopic by a map [ k s ] : cone (f) → I of graded objects (not a chain
map!). The second coordinate of the equation

[ 1 0 ] = [ k s ]
[
−dI 0

f dA

]
− dI [ k s ] = [−kdI+sf−dIk sdA−dIs ]

shows that s : A→ I is a chain map and the first coordinate of the equation proves
that sf is homotopic to the identity of I via k. �

Now we are ready to prove full faithfulness of the functor K+ (I ) → D+ (A ),
we even prove:

Lemma 9.9. If I is a left bounded complex of injectives then

HomD (A ) (A, I) ∼= HomK (A ) (A, I)

for each complex A.

Proof. Let the fraction A
f
−→ B

w
←− I represent a morphism A → I in D, so

suppose w is a quasi-isomorphism. By the previous lemma, there is a left inverse s
of w and the diagram

B

s

��
A

f
??~~~~~~~ sf //

sf ��@
@@

@@
@@

@ I I

w

__????????

I

��������

��������

proves that (w \ f) = (1 \ sf), in other words: every morphism A → I in D is
represented by a morphism A→ I in K.

On the other hand, if two parallel morphisms f, g : A→ I of K are identified in

D then there exists a quasi-isomorphism I
t
−→ B such that tf = tg. Again by the

previous lemma t has a left inverse s, so f = stf = stg = g in K. �

Exercise 9.10. Suppose that every object of the abelian category A has an injec-
tive resolution of finite length. Prove that Kb (I ) ∼= Db (A ).

Remark 9.11. So far, we have not worried about the smallness of Hom-sets in the
derived category. The equivalence D+ (A ) ∼= K+ (I ) shows that D+ has small

Hom-sets provided that there are enough injectives. Since Db ⊂ D+ is a full sub-
category, this holds for the bounded derived category as well. To prove that the
unbounded derived category D (A ) has small Hom-sets one needs further assump-
tions, such as existence and exactness of filtered colimits. If A is the category of
modules over a ring or the category of sheaves on a topological space, this can be
done quite painlessly, see e.g. [Wei94, Chapter 10.4] and [Spa88].

Exercise 9.12. Let A be an abelian category and let E ⊂ A be a full additive
subcategory which is closed under extensions in the sense that for every short exact
sequence B′

֌A։B′′ with B′, B′′ ∈ E also A lies in E . In that case, E is called an
exact subcategory of A . Let S be the class of short exact sequences with all three
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objects in E . Monics appearing in a sequence in S are called admissible monics,
similarly for epics. Prove that E is an exact category in the sense of Quillen [Qui73]:

(i) Identity morphisms are both admissible monics and admissible epics.
(ii) The composition of two admissible monics (epics) is again an admissible monic

(epic).
(iii) The push-out under an admissible monic and an arbitrary morphism exists in

E and yields an admissible monic. The pull-back over an admissible epic and
an arbitrary morphism exists and yields an admissible epic:

E′
0

// //

��
PO

E0

��
E′

1
// // E1

and

E1
// //

��
PB

E′′
1

��
E0

// // E′′
0 .

Remark 9.13. Exact categories can be characterized intrinsically, that is, without
assuming that there is an ambient abelian category. See [Kel90, Appendix A] for
a discussion of the axioms and see [Kel96] and [Nee90] for the construction of the
derived category of an exact category.

Given an exact subcategory E of A , we define its derived category D (E ) to be
the Verdier quotient K (E )/Ac (E ). Since the inclusion functor i : E ⊂ A is exact,
the universal property of D (E ) yields a commutative diagram

K∗ (E ) //

��

K∗ (A )

��
D∗ (E )

ι∗ // D∗ (A )

of triangulated categories for each ∗ ∈ { ,+,−, b}. We are interested in the prop-
erties of the functor ι∗.

Example 9.14. Let A be an abelian category. Then the full subcategory I of
injective objects is an exact subcategory of A . By the comparison theorem the
category Ac+ (I ) is equivalent to the zero category (every left bounded and acyclic
complex of injectives is null-homotopic). In particular K+ (I ) = D+ (I ) and we
already know that ι+ is an equivalence of triangulated categories provided that A

has enough injectives.

This example generalizes as follows:

Theorem 9.15 ([Kel96, Theorem 12.1]). Let E be an exact subcategory of an abelian
category A and consider the functor ι+ : D+ (E )→ D+ (A ).

(i) If for all A′ ∈ A there exists a short exact sequence A′
֌E։A′′ with E ∈ E

then ι+ is essentially surjective.
(ii) If for every short exact sequence E′

֌A։A′′ with E′ ∈ E there exists a
commutative diagram

E′ // // A // //

��

A′′

��
E′ // // E // // E′′

in which the lower row is exact and E,E′′ ∈ E then ι+ is fully faithful.

In particular, if the conditions in (i) and (ii) are both satisfied then ι+ is an equiv-
alence of triangulated categories.
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Exercise 9.16. For a ring R consider the categories R−Mod of left R-modules
and Mod−R of right R-modules. Recall that a left R-module F is flat if the functor
− ⊗R F : Mod−R → Ab is exact. If F ⊂ R−Mod denotes the full subcategory
of flat R-modules prove that D− (F ) is equivalent to D− (R−Mod).

10. Derived Functors

Let us consider the simplest case in which we are given an additive functor
F : A → B from an abelian category A with enough injectives to another abelian
category B. For every object A ∈ A , choose an injective resolution A → I, then
the ith classical derived functor of F is given on objects by RiF (A) = Hi(F (I)).
Since we know that the natural functor ϕ : K+ (I ) → D+ (A ) is an equivalence
of triangulated categories, we can choose a quasi-inverse ψ : D+ (A ) → K+ (I ).
A simple way to give ψ is to choose for each left bounded complex A a quasi-
isomorphism rA : A→ IA to a left bounded complex of injectives. For convenience
only, let us assume that A = IA if A is already a left bounded complex of injectives
and that rΣA = ΣrA for all left bounded complexesA. Then ψ is obviously a triangle
functor such that ψϕ = idK+ (I ) and the natural isomorphism idD+ (A ) ⇒ ϕψ is
given by the collection of quasi-isomorphisms rA.

Now define the (total) right derived functor R+F : D+ (A ) → D+ (B) on
objects by

R+F (A) = qBFψ(A),

where qB : K+ (B)→ D+ (B) is the quotient functor and by abuse of notation, F
denotes the restriction of K+ F to K+ (I ). By construction it is clear that R+F
is a triangle functor. Moreover, we have:

Proposition 10.1.

(i) There is a natural transformation α : qBF ⇒ R+FqA

K+ (A )

qA

��

F // K+ (B)

qB

��
D+ (A )

R
+F // D+ (B)

rz
α mmm mmm

(ii) For every triangle functor G : D+ (A ) → D+ (B) and every natural trans-
formation γ : qBF ⇒ GqA there is a unique β : R+F ⇒ G such that
γ = (βqA ) ◦ α.

Proof. To construct the natural transformation α, simply recall that for each A
in K+ (A ) we have chosen a quasi-isomorphism rA : A→ IA = ψqA (A). Applying
the functor qBF yields the morphism αA : qBF (A) → R+FqA (A). We leave it to
the reader as an exercise to check that this is indeed a natural transformation in
order to complete point (i).

To prove point (ii), we construct the diagram

A

rA

��

qBF (A)

qBF (rA)

��

γA // GqA (A)

GqA (rA)

��
IA qBF (IA)

γIA // GqA (IA).

Observe first that qBF (IA) = R+F (A), second that qBF (rA) = αA and third that
qA (rA) is an isomorphism, hence it makes sense to put βA = (GqA (rA))−1γIA

and
the reader will readily check that this is a natural transformation with the required
property and that it is unique. �
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The proposition gives the universal property of R+F and thus justifies:

Definition 10.2. A (total) right derived functor of F : A → B is a pair (R+F, α)
consisting of a triangle functor R+F : D+ (A ) → D+ (B) and a natural trans-
formation α : qBF ⇒ R+F having the universal property (ii) of the previous
proposition.

Remark 10.3. By definition, the derived functor (R+F, α) is unique up to unique
isomorphism.

Example 10.4 (Classical Derived Functors). Let F : A → B be an additive func-
tor between abelian categories and assume that R+F exists. Considering an object
A ∈ A as a complex considered in degree zero, we put RiF (A) = Hi(R+F (A))
and obtain a family of functors RiF : A → B. By Example 8.3 each short exact
sequence A′

֌A։A′′ sits in a distinguished triangle A′ → A → A′′ → ΣA in
D+ (A ). Now R+F is a triangle functor, hence we obtain a distinguished triangle

R+F (A′)→ R+F (A)→ R+F (A′′)→ ΣR+F (A′)

in D+ (B). Applying the homological functorHi, we obtain the long exact sequence

RiF (A′)→ RiF (A)→ RiF (A′′)→ Ri+1(A′)

in B. Obviously, this sequence is natural in the short exact sequence A′
֌A։A′′

so that we have constructed a δ-functor.

Example 10.5 (Ext). Consider an abelian category A with enough injectives.
Let A,B ∈ A and choose an injective resolution B → I of B. We have seen in
Lemma 9.9 that

HomD (A ) (A,B) ∼= HomK (A ) (A, I)

and we can identify

HomK (A ) (A, I) ∼= R+HomK (A ) (A,−)(B),

where we consider HomK (A ) (A,−) as a triangle functor K+ (A ) → K+ (Ab). It
is therefore customary to write

Exti (A,B) = HomD (A ) (A,ΣiB)

and the classical Ext-bifunctor is given by

Exti (A,B) = Hi(HomD (A ) (A,B)) = H0(Exti (A,B)).

Compare also with Exercise 3.2.

Instead of exploiting the equivalence K+ (I ) ∼= D+ (A ) for constructing R+F ,
we can use the generalization D+ (E ) ∼= D+ (A ) for some exact subcategory E of
A .

Definition 10.6. Let F : A → B be an additive functor. An exact subcategory
E ⊂ A is (right) adapted to F if

(i) For every object A′ ∈ A there exists an exact sequence A′
֌E։A′′ with

E ∈ E .
(ii) For every short exact sequence E′

֌A։A′′ with E′ ∈ E there exists a
commutative diagram

E′ // // A // //

��

A′′

��
E′ // // E // // E′′

in which the lower row is exact and E,E′′ ∈ E .
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(iii) The restriction of F to E is exact.

Let us explain the point of this definition: First, the inclusion E ⊂ A induces
a triangle functor ϕ : D+ (E ) → D+ (A ) which is an equivalence of categories by
Theorem 9.15. Second, the restriction F : K+ (E )→ K+ (B) factors uniquely over

a triangle functor F̃ : D+ (E ) → D+ (B) by the universal property of D+ (E ).
Choosing a quasi-inverse ψ : D+ (A ) → D+ (E ) of ϕ, we can construct the right

derived functor by setting R+F = F̃ψ. By refining the proof of the previous propo-
sition we obtain:

Theorem 10.7 (Generalized Existence Theorem). Let F : A → B be an additive
functor. Suppose there is an exact subcategory E ⊂ A which is adapted to F . Then
the right derived functor R+F exists and can be computed as above.

Lemma 10.8. Suppose that F : A → B and G : B → C are additive functors
between abelian categories and that the right derived functors (R+F, α), (R+G, β)
and (R+(GF ), γ) all exist. Then there exists a unique natural transformation

η : R+(GF )⇒ R+G ◦R+F

such that for each A ∈ K+ (A ) the following diagram in D+ (C ) is commutative:

qCGF (A)
βF (A) //

γA

��

(R+G)qBF (A)

R
+G(αA)

��
R+(GF )(qAA)

ηqA A // R+GR+F (qAA).

Proof. Apply the universal property of (R+(GF ), γ). �

Corollary 10.9 (Composition Theorem). Let F : A → B and G : B → C be
additive functors between abelian categories. Assume that there are exact subcate-
gories E ⊂ A and F ⊂ B such that E is adapted to F and F is adapted to G.
Moreover, assume that F (E ) ⊂ F . Then:

(i) The right derived functors (R+F, α), (R+G, β) and (R+(GF ), γ) exist.
(ii) The unique natural transformation η : R+(GF ) ⇒ R+G ◦ R+F given by

Lemma 10.8 yields an isomorphism

R+(GF ) ∼= R+G ◦R+F

of functors.

Proof. Let us prove (i). By the generalized existence theorem, the derived functors
R+F and R+G exist. Obviously, GF is exact on E , so E is adapted to GF and
hence R+GF exists as well.

To prove (ii), just observe that for a complex E ∈ K+ (E ) we have

R+(GF )(qAE) ∼= qCGF (E) ∼= R+G(qBF (E)) ∼= R+G(R+F (qA (E)))

by our hypotheses. �

Remark 10.10 (Grothendieck Spectral Sequence). The conceptually simple iso-
morphism R+(GF ) ∼= R+G ◦R+F underlies the Grothendieck spectral sequence,
see [Wei94, 10.8.3]. More precisely, for every left bounded chain complex A the hy-
percohomology spectral sequence with E2-page given by Epq

2 = RpG(Hq(R+F (A)))
converges to Hp+q(R+(GF )(A)). If A is a complex concentrated in degree zero, the
latter can be identified with Rp+q(GF )(A) and the E2-page is precisely the initial
page of the Grothendieck spectral sequence.
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Remark 10.11. Left derived functors can be treated by dualization of the entire
section. A left derived functor of F is a pair (L−F, α) consisting of a triangle functor
L−F : D− (A )→ D− (B) and a natural transformation α : L− FqA ⇒ qBF , etc.

11. A Brief Guide to the Literature

The idea of the derived category is an outcome of Grothendieck’s re-foundation
of algebraic geometry and homological algebra. The details were carried out by his
student Verdier in his thesis, see [Ver96] and [Dea77, Appendice A]. A nice historical
account of the development of the ideas is given in the first section of [Ill90].

A very good – if abstract – account of the main ideas is contained in Keller’s
survey [Kel96], largely without proofs but with precise references. We also recom-
mend [Kel98].

The textbook-level introductions the author is aware of are: [Wei94, Chapter 10],
[GM03, Chapters III, IV], [BGK+87, Chapitre I], [KS94, Chapter I], [KS06, Chap-
ter 13], [Ive86].
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