Cystic

Fibrosis our focus

UK Cystic Fibrosis Registry
Annual data report 2013
July 2014

Executive Summary

It is a pleasure to introduce the 2013 UK Cystic Fibrosis (CF) Registry data report, which provides information on more than 10000 people receiving care in CF centres across the UK. Collection of this data relies on the consent of parents of children with CF and adults with CF themselves, as well as the hard work of CF teams in collecting and recording the data as part of the care they provide. The Registry is managed and underwritten by the Cystic Fibrosis Trust as part of the strategic aims of beating the disease.
This report is published during the Trust's $50^{\text {th }}$ year and is a timely opportunity to consider the initiatives that have had major influences on CF care to inspire us for future steps forward. The initial decision by the Trust to provide a research grant to Dr Anil Mehta, a visionary academic in Dundee, to set up a registry of people with CF has proved to be an important milestone in CF care in the UK. In 2006, the Trust took over the management of the Registry to guarantee high-quality data collection and analysis to underpin research and development in cystic fibrosis. A web-based system was adopted that was developed from the platform successfully used by the Cystic Fibrosis Foundation in the US, who generously gifted the licence for use to the Trust.
The Registry will continue to grow and adapt too. An external review conducted by Prof Kathy Rowan made a number of recommendations to build on its success to date, and the Trust will be taking these forward in the coming year.
Since the early days of the Registry, patient numbers have expanded, and now include more than 99\% of all the people with CF in the UK. The Registry work has grown not only in numbers of patients but also in terms of the contracts and active projects supported, all in pursuit of improved care and outcomes for people with cystic fibrosis.
The Registry has become the key source of data for those commissioning CF services and, in the last year, has been recognised by the Federal Drug Administration in the US and the European Medicines Agency (the bodies responsible for licencing and regulating medicines) as one of the best registries for facilitating the safe and effective monitoring of new CF therapies. In doing so the Registry has provided an unrivalled way for the Trust to provide a service to people with CF, by ensuring new therapies can be made available in the UK while guaranteeing the careful monitoring of everyone receiving them.

The annual report is a central pillar in the Registry work and now represents a fulfilment of the contracts held between NHS commissioners and the Cystic Fibrosis Trust to provide detailed data on the health outcomes of people with cystic fibrosis and the provision of care.
Our ability as a community to provide accurate data has facilitated the funding decisions for introduction of new CF therapies. For example, we have been able to report to commissioners on the uptake of ivacaftor and will be able to report on the improvements in health seen as a result of this new therapy. Furthermore, the provision of centre-specific data facilitates the review of services and links to commissioner reviews of local service provisions.

We all want to see people with CF living longer and achieving their life ambitions without the need for burdensome treatments. In common with earlier publications, this report includes a calculation of the median predicted survival of the current population in the UK. This has increased in each of the last four years, to 43.5 years in 2012. In 2013 however, the figure dropped to 36.6 years.
This survival measure is related to variations in the number of deaths occurring in any one year, and experts analysing the data report that the trend over time is upwards, and that this year's figure is part of the usual variation.

Future reports will report this measure by showing five-year trends, in line with US Registry reports. We are also working on new models to be able to more accurately estimate survival for people born in any one year with CF, based on the steady improvements we are seeing.

It is particularly important to highlight the progress achieved in outcomes for people with cystic fibrosis. We know that chronic infection with Pseudomonas aeruginosa leads to faster decline in lung function and a higher requirement for treatment in people with cystic fibrosis. We also know that chronic infection can be prevented by strict adherence to cross-infection guidelines and aggressive application of recommended approaches to treat early infection.

We are delighted that a trend identified last year has been confirmed and that, when comparing 2008 data with 2013, the proportion of patients with chronic P. aeruginosa infection is lower across all age groups from four to 31. The differences are statistically significant, and the largest difference is in adults. We believe this relates to the application of guidelines regarding infection control and eradication protocols for new
P. aeruginosa infection and should, over time, lead to an overall healthier CF population requiring less hospital treatment.

The 2013 report also shows that there has been an increase in the use of DNase (Pulmozyme®) over the last five years. This mucolytic agent is one of the therapies designed to make it easier to clear infected mucus and improve lung function, reducing the need for intravenous antibiotics. This and other therapies are being monitored to ensure equity of access to therapies and appropriate adherence to guidelines. Future reports are to demonstrate a broader range of therapies.
The Registry is therefore demonstrating that guidelines, information and investment are enabling more people with cystic fibrosis to receive preventative treatments rather than relying on rescue therapy in the form of intravenous antibiotics.

We hope you will take time to read the report carefully and join in the discussions that the data generate. These are exciting times in cystic fibrosis as new treatments are being developed and we consider how care is delivered to the increasing number of people with the condition. This increase equates to the challenge of a virtual new CF centre each year, and we will be engaging in conversations about sustainable models of care for the future based on evidence provided by the Registry.

Professor Diana Bilton
Chair, Registry Steering Committee

Ed Owen
Chief Executive, Cystic Fibrosis Trust

Contents

Section 1: All UK patients

1.1 Summary of the UK Cystic Fibrosis Registry 6
1.2 Age distribution of deaths in 2013 7
Analyses based on 9052 patients with complete data at 2013 annual review
1.3 Age at diagnosis and screening statistics among children 8
1.4 Age at diagnosis and screening statistics among current adults 9
1.5 Genotyping 10
1.6 Age distribution by gender 12
1.7 Age and sex distribution 12
1.8 Age distribution by sex 13
1.9 Employment and education status among adults aged 16 years and older 13
1.10 Median height percentiles among children and young people 14 (<20 years) ($\mathrm{n}=4346$)
1.11 Median weight percentiles among children and young people 15 (<20 years) ($\mathrm{n}=4365$)
1.12 Median BMI percentiles among children and young people 17 (<20 years) ($\mathrm{n}=4237$)
1.13 Median BMI values among adults aged 20 years and older ($\mathrm{n}=4086$) 18
1.14a Median FEV_{1} (\% predicted) among patients aged 6 years and older, 20 excluding patients post lung transplant ($\mathrm{n}=6923$)
1.14b Median FEV ${ }_{1}$ (\% predicted, GLI equations) among patients aged 21 6 years and older, excluding patients post lung transplant ($n=6923$)
1.15 Mean FEV_{1} (\% predicted) among patients aged 6 years and older by 22 year in 2008 and 2013 (excluding patients post lung transplant)
1.16 Median FEV_{1} (\% predicted) vs BMI among patients aged 16 years and 23 older (excluding patients post lung transplant)
1.17 Lung infections in 2013 24
1.18 Lung infections in 2008 and 2013 26
1.19a Prevalence of complications 26
1.19b Incidence of key complications 28
1.20 CF-related diabetes 28
1.21 Transplants 29
1.22 Other therapy 29
1.23 Feeding 29
1.24 Days on IV antibiotics in the last 12 months 30
1.25a Nebulised drug treatment: DNase 30
1.25b Nebulised drug treatment: Hypertonic saline 31
1.25c Inhaled antibiotic use among patients with chronic Pseudomonas 31 aeruginosa
1.25d Long-term use of azithromycin among patients with and without chronic 32Pseudomonas aeruginosa
1.26 Physiotherapy techniques 32
Section 2: Analyses by paediatric care centre/clinic (based on 4206 patients from paediatric care centres with complete data at 2013 annual review)
2.1 Median FEV_{1} \% predicted among patients aged 6 years and older by 35 paediatric centre/clinic (without a history of lung transplant)
2.2 Median BMI percentile among patients aged 2 to 15 years by paediatric 36 centre/clinic
2.3 Proportion of patients with chronic P. aeruginosa by paediatric centre/clinic 37
2.4 Proportion of patients receiving DNase treatment by paediatric centre/clinic 38
Section 3: Analyses by adult service (based on 4846 patients from adult services with complete data at 2013 annual review)
3.1 Median age (years) by adult service 40
3.2 Median FEV_{1} (\% predicted) by adult service (without a history of lung 40 transplant)
3.3 Median BMI among patients aged 16 years and older by adult service 41
3.4 Proportion of patients with chronic P. aeruginosa by adult service 41
3.5 Proportion of patients receiving DNase treatment by adult service 42
Section 4: Care centres/clinics providing data in 2013
4.1 Paediatric centres/clinics providing data in 2013 - ordered by clinic ID 44
4.2 Adult centres/clinics providing data in 2013 - ordered by clinic ID 46
4.3 Paediatric centres/clinics providing data in 2013 - ordered alphabetically 48
4.4 Adult centres/clinics providing data in 2013 - ordered alphabetically 50
Section 5: UK CF Registry Steering Committee
5.1 Composition of UK CF Registry Steering Committee 53

Section 1: All UK patients

1.1 Summary of the UK Cystic Fibrosis Registry

	2009	2010	2011	2012	2013
CF patients registered Excluding diagnoses that year	$9029{ }^{1}$	$9385{ }^{1}$	9749^{1}	$\begin{aligned} & 10078^{1} \\ & 9804 \end{aligned}$	$\begin{aligned} & 10338^{1} \\ & 10076 \end{aligned}$
CF patients with "complete" data; n (\%) Rate of completeness excluding diagnoses that year	$\begin{aligned} & 7377^{2} \\ & (82 \%) \end{aligned}$	$\begin{aligned} & 7937^{2} \\ & (85 \%) \end{aligned}$	$\begin{aligned} & 8679^{2} \\ & (89 \%) \end{aligned}$	$\begin{aligned} & 8794^{2} \\ & (87 \%) \\ & 90 \% \end{aligned}$	$\begin{aligned} & 9052^{2} \\ & (88 \%) \\ & 90 \% \end{aligned}$
Age in years; median	17^{3}	17^{3}	18^{3}	18^{3}	18^{3}
All newly diagnosed patients (newborn screening and other)	2614	3014	2614	$274{ }^{4}$	2614
Number of patients born each year identified by newborn screening Earlier data are updated as diagnoses data are updated (see full analysis in Section 1.3)		241	203	202	127
Age at diagnosis in months; median	3^{3}	3^{3}	3^{3}	3^{3}	3^{3}
Adults aged 16 yrs and older; \%	55.1^{3}	55.5^{3}	56.8^{3}	57.6^{3}	57.6^{3}
Males; \%	53.1^{3}	53.1^{3}	53.2^{3}	$52.9{ }^{3}$	$52.9{ }^{3}$
Genotyped; \%	94.3^{3}	95.2^{3}	95.6^{3}	96.2^{3}	97.2^{3}
Median predicted survival in years (95% confidence interval)	$\begin{aligned} & 34.4^{5} \\ & (30.7, \\ & 37.0) \end{aligned}$	$\begin{aligned} & 41.4^{5} \\ & (36.8, \\ & 46.7) \end{aligned}$	$\begin{aligned} & 41.5^{5} \\ & (35.7, \\ & 46.0) \end{aligned}$	$\begin{aligned} & 43.5^{5} \\ & (37.8, \\ & 49.9) \end{aligned}$	$\begin{aligned} & 36.6^{5} \\ & (34.4, \\ & 41.6) \end{aligned}$
Total deaths reported	$\begin{aligned} & 141 \\ & (1.6 \%) \end{aligned}$	$\begin{aligned} & 103 \\ & (1.1 \%) \end{aligned}$	$\begin{array}{\|l} \hline 118 \\ (1.2 \%) \end{array}$	$\begin{aligned} & 106 \\ & (1.1 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 146 \\ (1.4 \%) \end{array}$
Age at death in years; median (95\% CI) ${ }^{6}$	27	29	26	$\begin{aligned} & 28 \\ & (25,29) \end{aligned}$	$\begin{array}{\|l} 29 \\ (27,31) \end{array}$

Notes:
1 This is calculated as the number of patients on the database who satisfied the following criteria:

- were born and diagnosed with CF prior to 1 January 2010/2011/2012/2013/2014; and
- had no recorded date of death before 1 January 2009/2010/2011/2012/2013.

2 "Complete" data is defined as having a clinical encounter when "well".
3 Calculated for patients with "complete" data in that given year.
4 Calculated for all patients registered.
5 This represents the age beyond which half of the current UK CF Registry patients would be expected to live, given the ages of CF patients in the Registry and the mortality distribution of deaths in the same year.
6 Confidence interval estimated using the bias-corrected and accelerated (BCa) bootstrap method.

1.2 Age distribution of deaths in 2013

There were 146 recorded deaths in 2013. The median age at death was 29 years ($\mathrm{min}=0 \mathrm{yrs}$; max $=74$ years; 95\% confidence interval: 27-31 years).

Analyses based on 9052 patients with complete* data at 2013 annual review

1.3 Age at diagnosis and screening statistics among children

Age at diagnosis	All patients; $\mathrm{n}(\%)$	Patients aged 10 years in $2013 ; \mathrm{n}(\%)$	Patients aged 5 years in 2013; $\mathrm{n}(\%)$
Pre-natal $3(0.1)$ $0(0.0)$ Birth-3 months $2746(72.6)$ $125(59.8)$ $4-6$ months $228(6.0)$ $13(6.2)$	$0(0.0)$		
$7-12$ months	$155(4.1)$	$11(5.3)$	$5(1.8)$
1 yr	$221(5.8)$	$21(10.1)$	$6(2.2)$
2 yrs	$150(4.0)$	$9(4.3)$	$5(1.8)$
3 yrs	$87(2.3)$	$8(3.8)$	$6(2.2)$
4 yrs	$62(1.6)$	$6(2.9)$	$2(0.7)$
5 yrs	$32(0.8)$	$6(2.9)$	$2(0.7)$
6 yrs	$24(0.6)$	$2(1.0)$	-
7 yrs	$21(0.6)$	$1(0.5)$	-
8 yrs	$23(0.6)$	$5(2.4)$	-
9 yrs	$11(0.3)$	$2(1.0)$	-
10 yrs	$6(0.2)$	-	-
11 yrs	$2(0.1)$	-	-
12 yrs	$2(0.1)$	-	-
13 yrs	$6(0.2)$	-	-
14 yrs	$1(0.0)$	-	-
15 yrs	$2(0.1)$	-	-
Overall	3782	209	-

The median (range) age at diagnosis is 30 days ($0-185$ months).
Diagnosis in the first three months of life was more common in children aged 5 years in 2013 (born in 2008) than in children aged 10 years in 2013 (born in 2003).

Of the 54 children with complete data born in 2013, 39 (72\%) were identified by newborn screening.
A total of 127 patients born in 2013 were identified by newborn screening (including patients with and without complete data). In 2012 this figure was 202 and in 2011 it was 203. As there is a delay between when newborn screening tests are performed and the results inputted on to the Registry, these statistics are continuously updated as the Registry is updated. It is therefore anticipated that the number of patients born in 2013 and identified by newborn screening in 2013 will increase when new data become available on the Registry in 2014.

[^0]
1.4 Age at diagnosis and screening statistics among current adults

Age at diagnosis	$\mathrm{n}(\%)$
Pre-natal	$1(0.02)$
Birth-3 months	$2047(39.7)$
$4-6$ months	$479(9.3)$
$7-12$ months	$333(6.5)$
1 yr	$445(8.6)$
2 yrs	$270(5.2)$
3 yrs	$196(3.8)$
4 yrs	$165(3.2)$
5 yrs	$88(1.7)$
6 yrs	$68(1.3)$
7 yrs	$51(1.0)$
8 yrs	$59(1.1)$
9 yrs	$49(1.0)$
10 yrs	$42(0.8)$
11 yrs	$38(0.7)$
12 yrs	$36(0.7)$
13 yrs	$39(0.8)$
14 yrs	$35(0.7)$
15 yrs	$43(0.8)$
$16-20$ yrs	$145(2.8)$
$21-25$ yrs	$105(2.0)$
$26-30$ yrs	$87(1.7)$
$31-35$ yrs	$107(2.1)$
$36-40$ yrs	$76(1.5)$
$41-45$ yrs	$58(1.1)$
$46-50$ yrs	$34(0.7)$
$51-60$ yrs	$31(0.6)$
61 yrs+	$32(0.6)$

The median (range) age at diagnosis is 7 months ($0-79$ years).

Of the 5213 adults with complete data in 2013, 413 were diagnosed by neonatal screening and 32 adults were diagnosed in 2013.

1.5 Genotyping

8799 (97.2\%) patients have been genotyped with a recorded value.

DF508 Mutations; n (\%)	
Homozygous DF508	4511 (51.3\%)
Heterozygous DF508	3479 (39.5\%)
No DF508 or both unidentified	809 (9.2\%)

783 (8.9\%) patients have at least one unknown genotype.

Mutations ${ }^{1}$

All mutations Current name	New name	N	(\%)
DF508	p.Phe508del	7990	90.81
G551D	p.Gly551Asp	514	5.84
R117H	p.Arg117His	398	4.52
G542X	p.Gly542X	318	3.61
621+1G->T	c.489+1G $>$ T	186	2.11
1717-1G->A	c.1585-1G>A	120	1.36
N1303K	p.Asn1303Lys	115	1.31
$2789+5 G->A$	c.2657+5G>A	104	1.18
1898+1G->A	c.1766+1G>A	97	1.10
I507	p.lle507del	91	1.03
3659delC	c.3528delC	89	1.01

[^1]Cystic fibrosis mutations and their functional effects

Normal	1	II	III	IV	V	VI
	$\xrightarrow[\text { Golgi }]{\substack{\text { Absent } \\ \text { functional } \\ \text { CFTR }}}$	GolgiAbsent functional CFTR				
CFTR defect	No functional CFTR protein	CFTR trafficking defect	Defective channel regulation	Decreased channel conductance	Reduced synthesis of CFTR	Decreased CFTR stability
Type of mutations	Nonsense frameshift; canonical splice	Missense aminoacid deletion	Missense; aminoacid change	Missense; aminoacid change	Splicing defect;	Missense; aminoacid change
Specific mutation examples ${ }^{11}$	Gly542X Trp1282X Arg553X $621+1 G \rightarrow$	Phe508del Asn1303Lys Ile507del Arg560Thr	Gly551Asp Gly178Arg Gly551Ser Ser549Asn	Arg117His Arg347Pro Arg334Trp	$\begin{gathered} 3849+10 \mathrm{kbC} \rightarrow T \\ 2789+5 G \rightarrow A \\ 3120+1 G \rightarrow A \\ 5 T \end{gathered}$	4326delTC Gln1412X 4279insA

Courtesy of Boyle, DeBoeck, Lancet Respiratory Medicine 2013, 1: 158-63

1.6 Age distribution by gender

\square Overall ■Females \square Males
Age is calculated as the age at annual review encounter.

1.7 Age and sex distribution

Age	Overall $\mathrm{N}=9052$	Female $\mathrm{N}=4268$	$\begin{aligned} & \text { Male } \\ & \mathrm{N}=4784 \end{aligned}$
0-3 yrs	981 (10.8)	471 (11.0)	510 (10.7)
4-7	1004 (11.1)	490 (11.5)	514 (10.7)
8-11	899 (9.9)	458 (10.7)	441 (9.2)
12-15	955 (10.6)	464 (10.9)	491 (10.3)
16-19	1005 (11.1)	507 (11.9)	498 (10.4)
20-23	994 (11.0)	472 (11.1)	522 (10.9)
24-27	836 (9.2)	374 (8.8)	462 (9.7)
28-31	703 (7.8)	315 (7.4)	388 (8.1)
32-35	503 (5.6)	213 (5.0)	290 (6.1)
36-39	315 (3.5)	127 (3.0)	188 (3.9)
40-44	353 (3.9)	153 (3.6)	200 (4.2)
45-49	240 (2.7)	109 (2.6)	131 (2.7)
50-59	190 (2.1)	75 (1.8)	115 (2.4)
60+	74 (0.8)	40 (0.9)	34 (0.7)
Median (IQR)	18 (9-28)	18 (8-27)	19 (9-29)

1.8 Age distribution by sex

< 16 yrs$\square \geq 16$ yrs

1.9 Employment and education status among adults aged 16 years and older

	Number of patients
Full-time working	1502
Part-time working	664
Student	922
Homemaker	232
Unemployed	685
"Disabled"	298
Retired	78
Unknown	914
No data	7

Note that these groups are not mutually exclusive.
Of the 4278 adults aged 16 years and older for whom an employment status questionnaire was completed (excluding "unknown"), 3031 (70.9\%) reported being in work or study. In 2009, this figure was 68.8\%.

1.10 Median height percentiles among children and young people (<20 years) ($\mathrm{n}=4346$)

N refers to the number of patients in each age/sex category who had non-missing height data.
The red dotted line indicates the 50th percentile, which is a marker used to target growth in children. The aim is to monitor and maintain growth as close to the 50th percentile as possible.

Age	N	Overall Median (IQR)	N	Female Median (IQR)	N	Male Median (IQR)
$\mathbf{2}$	265	$39.3(15.1,60.1)$	132	$36.8(14.1,59.9)$	133	$39.9(19.2,60.5)$
$\mathbf{3}$	268	$39.9(18.7,62.9)$	127	$39.9(14.9,60.6)$	141	$39.8(19.9,65.0)$
$\mathbf{4}$	247	$38.1(17.6,63.6)$	124	$37.4(16.5,65.5)$	123	$38.6(17.9,63.0)$
$\mathbf{5}$	273	$38.6(14.7,60.3)$	132	$32.1(11.5,60.1)$	141	$42.3(17.5,61.5)$
$\mathbf{6}$	254	$40.6(18.2,64.9)$	126	$43.8(17.8,64.9)$	128	$32.7(18.9 .65 .6)$
$\mathbf{7}$	217	$36.3(15.2,62.7)$	101	$36.3(15.0,60.9)$	116	$36.9(15.3,63.5)$
$\mathbf{8}$	236	$38.2(17.3,59.8)$	110	$35.9(15.4,53.8)$	126	$43.5(18.4,70.1)$
$\mathbf{9}$	235	$35.2(13.7,65.3)$	132	$34.6(13.9,62.6)$	103	$38.0(13.6,67.9)$
$\mathbf{1 0}$	208	$38.0(12.0,65.2)$	103	$38.0(14.1,64.7)$	105	$39.2(9.9,67.7)$
$\mathbf{1 1}$	212	$40.3(17.0,71.6)$	109	$41.5(15.6,71.0)$	103	$40.3(19.7,71.7)$
$\mathbf{1 2}$	224	$44.7(19.8,75.0)$	111	$45.8(26.0,76.0)$	113	$40.4(15.8,74.8)$
$\mathbf{1 3}$	223	$42.6(17.4,74.0)$	117	$38.2(14.4,66.1)$	106	$56.8(20.9,76.8)$
$\mathbf{1 4}$	274	$33.5(11.7,64.1)$	128	$31.0(9.7,61.8)$	146	$36.7(12.9,68.2)$
$\mathbf{1 5}$	228	$25.1(9.4,53.4)$	106	$23.9(7.5,54.8)$	122	$26.3(13.1,51.8)$
$\mathbf{1 6}$	263	$34.9(10.2,59.1)$	118	$31.1(7.8,59.6)$	145	$36.7(14.0,58.7)$
$\mathbf{1 7}$	237	$26.0(8.1,50.0)$	121	$23.2(6.4,50.7)$	116	$27.3(12.6,50.0)$
$\mathbf{1 8}$	254	$22.5(9.1,54.1)$	142	$22.4(9.9,52.7)$	112	$22.5(8.4,56.2)$
$\mathbf{1 9}$	228	$27.4(10.3,53.9)$	115	$27.4(9.7,52.4)$	113	$29.1(11.6,54.0)$

Age		Overall Median (IQR)	N	Female Median (IQR)	N	Male Median
Overall	4346	$35.4(13.8,62.7)$	2154	$34.5(12.5,60.9)$	2192	$36.7(14.9,63.6)$
$\mathbf{2 - 4}$ yrs	780	$39.1(17.1,61.4)$	383	$39.1(15.1,60.8)$	397	$39.1(19.1,61.9)$
5-7 yrs	744	$37.7(15.5,63.2)$	359	$37.3(15.2,63.0)$	385	$38.5(15.9,63.6)$
$\mathbf{8 - 1 0}$ yrs	679	$37.6(14.7,63.0)$	345	$35.2(14.8,60.4)$	334	$41.3(14.4,68.0)$
$\mathbf{1 1 - 1 3}$ yrs	659	$42.5(18.0,72.9)$	337	$42.2(16.9,71.7)$	322	$43.8(18.5,74.6)$
$\mathbf{1 4 - 1 5 ~ y r s ~}$	502	$29.2(11.0,59.6)$	234	$28.1(9.4,59.6)$	268	$29.8(13.0,59.6)$
$\mathbf{1 6 - 1 9}$ yrs	982	$27.4(9.8,54.1)$	496	$27.3(7.8,53.6)$	486	$28.3(11.7,54.6)$

1.11 Median weight percentiles among children and young people (<20 years) ($\mathrm{n}=4365$)

$\rightarrow-$ Overall - Females \simeq Males

N refers to the number of patients in each age/sex category who had non-missing weight data.
The red dotted line indicates the 50th percentile, which is a marker used to target weight in children. The aim is to monitor and maintain weight as close to the 50th percentile as possible.

Age	N	Overall Median (IQR)	N	Female Median (IQR)	N	Male Median (IQR)
$\mathbf{2}$	269	$47.6(23.8,72.1)$	134	$47.4(19.0,72.5)$	135	$48.4(24.7,71.8)$
$\mathbf{3}$	271	$44.6(22.3,71.8)$	128	$43.3(18.7,72.1)$	143	$45.8(22.4,71.8)$
$\mathbf{4}$	247	$45.3(20.4,71.6)$	124	$47.4(23.2,71.0)$	123	$43.7(18.9,71.8)$
$\mathbf{5}$	276	$46.9(24.8,71.0)$	133	$41.4(18.8,63.6)$	143	$52.4(28.2,75.5)$
$\mathbf{6}$	254	$49.2(23.8,73.9)$	126	$49.5(26.2,74.4)$	128	$48.9(23.1,72.1)$
$\mathbf{7}$	217	$43.7(18.4,69.0)$	101	$41.5(19.0,64.5)$	116	$48.9(17.9,70.8)$
$\mathbf{8}$	235	$45.2(23.9,70.6)$	110	$38.6(18.9,66.5)$	125	$51.5(26.7,80.2)$
$\mathbf{9}$	234	$40.7(19.6,70.7)$	132	$37.6(17.0,69.7)$	102	$46.8(27.2,70.7)$
$\mathbf{1 0}$	209	$42.9(19.4,64.8)$	103	$35.4(16.9,59.5)$	106	$49.6(24.2,71.2)$
$\mathbf{1 1}$	213	$41.6(20.7,70.4)$	110	$37.9(15.1,66.4)$	103	$48.4(29.1,75.2)$
$\mathbf{1 2}$	224	$48.4(23.4,76.5)$	111	$47.0(23.1,70.4)$	113	$49.5(23.7,81.7)$
$\mathbf{1 3}$	224	$47.4(18.0,76.7)$	118	$42.9(14.3,71.5)$	106	$49.5(26.7,79.9)$
$\mathbf{1 4}$	275	$37.6(15.7,66.6)$	129	$37.4(15.6,66.7)$	146	$38.1(15.7,66.2)$
$\mathbf{1 5}$	229	$28.3(10.6,58.0)$	106	$28.1(11.5,58.2)$	123	$28.5(10.3,57.0)$
$\mathbf{1 6}$	266	$35.2(14.3,65.5)$	121	$35.9(13.5,70.3)$	145	$34.9(14.2,62.9)$
$\mathbf{1 7}$	240	$31.1(10.3,60.4)$	122	$27.6(7.2,49.7)$	118	$34.1(11.3,65.9)$
$\mathbf{1 8}$	254	$27.8(8.7,63.5)$	142	$27.0(8.7,60.7)$	112	$29.4(8.3,65.2)$
$\mathbf{1 9}$	228	$23.8(8.0,59.2)$	115	$29.6(13.5,59.5)$	113	$21.4(5.7,55.7)$
Overall	4365	$41.0(16.9,68.4)$	2165	$38.8(16.2,66.6)$	2200	$43.3(18.0,70.3)$
$\mathbf{2 - 4}$ yrs	787	$45.9(22.3,71.8)$	386	$45.8(19.8,72.2)$	401	$45.9(22.4,71.8)$
$\mathbf{5 - 7}$ yrs	747	$46.8(22.4,70.9)$	360	$43.9(21.2,68.8)$	387	$50(23.5,72.3)$
$\mathbf{8 - 1 0}$ yrs	678	$43.0(21.2,69.8)$	345	$37.0(18.0,65.5)$	333	$48.8(26.4,72.2)$
$\mathbf{1 1 - 1 3}$ yrs	661	$45.6(20.7,73.3)$	339	$42.5(16.3,69.2)$	322	$49.4(26.3,79.0)$
$\mathbf{1 4 - 1 5}$ yrs	504	$33.8(12.9,63.9)$	235	$33.0(13.2,65.0)$	269	$33.9(12.0,59.5)$
$\mathbf{1 6 - 1 9}$ yrs	988	$30.0(9.9,62.6)$	500	$29.6(10.3,61.1)$	488	$30.5(9.0,63.4)$

1.12 Median BMI percentiles among children and young people (<20 years) ($\mathrm{n}=4237$)

$\rightarrow-$ Overall \simeq Females \simeq Males

N refers to the number of patients in each age/sex category who had non-missing BMI data.
The red dotted line indicates the 50th percentile, which is a marker used to target weight for height in children. The aim is to monitor and maintain weight for height as close to the 50th percentile as possible. BMI percentiles for young people aged 16 to 19 years were calculated separately using LMS Growth software with British 1990 reference values.

Age	N	Overall Median (IQR)	N	Female Median (IQR)	N	Male Median (IQR)
$\mathbf{2}$	265	$62.4(31.9,82.4)$	132	$59.4(26.0,79.7)$	133	$66.7(41.0,85.2)$
$\mathbf{3}$	268	$59.8(34.7,81.0)$	127	$63.9(39.0,77.5)$	141	$56.6(31.8,82.8)$
$\mathbf{4}$	247	$66.2(36.3,82.8)$	124	$68.6(40.9,82.3)$	123	$62.0(33.1,83.9)$
$\mathbf{5}$	273	$60.4(38.1,82.1)$	132	$59.3(37.4,77.6)$	141	$62.3(38.8,86.1)$
$\mathbf{6}$	254	$61.6(35.0,80.0)$	126	$61.2(41.3,80.5)$	128	$62.4(30.0,78.7)$
$\mathbf{7}$	217	$54.7(29.6,74.6)$	101	$53.1(28.9,75.1)$	116	$55.7(30.0,74.2)$
$\mathbf{8}$	235	$57.3(34.2,77.2)$	110	$59.0(32.8,76.7)$	125	$55.7(36.2,77.4)$
$\mathbf{9}$	234	$48.6(28.9,71.3)$	132	$46.9(25.5,72.6)$	102	$52.5(30.7,69.4)$
$\mathbf{1 0}$	208	$46.9(25.1,66.9)$	103	$42.3(22.1,62.3)$	105	$52.4(31.4,71.1)$
$\mathbf{1 1}$	212	$41.6(23.3,68.2)$	109	$37.3(21.2,61.8)$	103	$45.4(26.0,74.6)$
$\mathbf{1 2}$	224	$45.7(22.6,71.4)$	111	$45.8(20.1,70.8)$	113	$45.5(23.7,73.2)$
$\mathbf{1 3}$	223	$47.2(21.5,72.5)$	117	$48.7(25.7,73.7)$	106	$46.9(20.6,70.9)$
$\mathbf{1 4}$	274	$47.9(19.0,68.6)$	128	$55.1(36.2,70.9)$	146	$36.7(11.2,63.7)$
$\mathbf{1 5}$	123	$44.6(16.3,69.3)$	62	$49.7(28.9,73.6)$	61	$38.9(8.7,58.8)$
$\mathbf{1 6}$	263	$53.1(23.4,75.6)$	118	$56.5(29.6,79.4)$	145	$45.6(19.4,72.7)$
$\mathbf{1 7}$	236	$47.3(20.6,76.0)$	120	$40.8(20.3,72.4)$	116	$52.5(21.7,80.8)$
$\mathbf{1 8}$	253	$42.0(16.9,72.1)$	142	$38.5(18.1,72.1)$	111	$45.7(15.1,72.1)$
$\mathbf{1 9}$	228	$40.3(11.8,67.3)$	115	$45.1(17.0,67.4)$	113	$37.4(9.0,68.3)$
Overall	4237	$51.8(26.5,75.6)$	2109	$52.0(27.1,75.0)$	2128	$51.4(25.7,76.4)$

Age	N	Overall Median (IQR)	N	Female Median (IQR)	N	Male Median (IQR)
2-4 yrs	780	$62.6(34.4,82.3)$	383	$63.0(33.8,80.5)$	397	$61.7(34.6,84.0)$
5-7 yrs	744	$59.4(35.3,79.0)$	359	$58.3(36.2,77.8)$	385	$60.1(33.0,80.3)$
8-10 yrs	677	$50.6(29.2,73.2)$	345	$47.4(26.2,71.7)$	332	$54.4(33.7,75.0)$
$\mathbf{1 1 - 1 3}$ yrs	659	$44.4(22.5,70.0)$	337	$43.7(22.4,69.0)$	322	$45.6(22.5,73.3)$
$\mathbf{1 4 - 1 5}$ yrs	397	$46.9(18.3,68.8)$	190	$52.7(33.7,71.4)$	207	$38.5(9.9,62.2)$
$\mathbf{1 6 - 1 9}$ yrs	980	$45.4(19.2,73.7)$	495	$45.2(20.5,73.4)$	485	$45.6(17.0,74.0)$

1.13 Median BMI values among adults aged 20 years and older ($\mathrm{n}=4086$)

N refers to the number of patients in each age/sex category with non-missing BMI data.
The purple dotted line indicates a BMI of 22, which is a marker used to target BMI in adult women; the blue dotted line indicates a BMI of 23 , which is a marker used for adult men. Individuals aged between 16 and 19 are not included in this graph because the absolute BMI value can be misleading for this age group.

Age		Overall Median (IQR)	N	Female Median (IQR)	N	Male Median (IQR)
$\mathbf{2 0 - 2 3}$	966	$21.1(19.1,23.3)$	460	$20.9(18.9,23.0)$	506	$21.3(19.3,23.6)$
$24-27$	812	$21.7(19.7,23.8)$	363	$20.9(19.1,22.9)$	449	$22.2(20.3,24.6)$
$28-31$	685	$22.2(20.2,24.4)$	309	$21.5(19.9,23.6)$	376	$22.9(20.7,25.1)$
$32-35$	487	$22.9(20.8,24.9)$	205	$22.0(20.1,24.5)$	282	$23.4(21.3,25.1)$
$36-39$	306	$23.4(21.2,25.6)$	122	$21.8(20.4,24.3)$	184	$24.1(22.3,26.0)$
$40-44$	339	$23.6(21.3,25.7)$	144	$22.9(20.3,25.3)$	195	$24.0(22.2,25.8)$
$45-49$	230	$23.7(21.7,26.7)$	102	$23.4(20.9,25.7)$	128	$24.0(22.3,27.2)$
$50+$	261	$24.3(21.8,27.1)$	114	$23.8(21.0,27.5)$	147	$24.5(22.7,26.8)$
Overall	4086	$22.3(20.2,24.7)$	1819	$21.6(19.7,24.0)$	2267	$22.9(20.8,25.2)$

1.14a Median FEV ${ }_{1}$ (\% predicted) among patients aged 6 years and older, excluding patients post lung transplant ($n=6923$)

N refers to the number of patients in each age/sex category among those with non-missing FEV_{1} \% predicted data.
The dotted line in this figure illustrates a target FEV_{1} \% predicted of 85%. Anything above this indicates normal or near-normal lung function values.

Age	N	Overall Median (IQR)	N	Female Median (IQR)	N	Male Median (IQR)
6-7	421	92.3 (80.1,101.6)	201	93.5 (82.2, 102.5)	220	90.8 (78.5, 100.2)
8-11	858	88.7 (77.0, 97.9)	441	88.8 (76.9, 97.8)	417	88.4 (77.2, 97.9)
12-15	919	83.3 (69.1, 94.8)	447	84.7 (70.1, 96.5)	472	82.1 (68.6, 93.7)
16-19	952	78.1 (58.9, 92.6)	489	74.7 (54.5, 89.1)	473	81.7 (64.6, 96.4)
20-23	933	68.3 (48.8, 85.5)	443	68.1 (47.1, 84.5)	490	68.6 (49.7, 86.1)
24-27	771	63.3 (43.8, 82.5)	346	61.5 (43.8, 85.2)	425	64.6 (44.0, 81.3)
28-31	636	62.6 (42.6, 82.3)	281	64.6 (45.4, 86.0)	355	60.2 (40.6, 81.2)
32-35	446	$60.1(42.8,77.8)$	186	60.9 (45.0, 81.3)	260	58.6 (41.6, 77.5)
36-39	267	$61.5(44.0,78.5)$	108	55.2 (41.3, 70.9)	159	68.8 (45.4, 80.7)
40-44	294	$60.3(41.8,79.8)$	127	61.2 (42.6, 80.2)	167	60.2 (39.6, 79.1)
45-49	203	60.0 (41.2, 82.0)	94	59.8 (44.9, 74.4)	109	60.0 (37.8, 89.2)
50+	223	57.3 (41.4, 80.7)	95	59.6 (45.6, 80.5)	128	$53.2(38.8,80.8)$
Overall	6923	75.0 (53.9, 91.0)	3249	75.4 (53.8, 91.4)	3674	74.8 (53.9, 90.5)

The aim of good CF care is to preserve normal lung function for as long as possible among the paediatric population and to maintain stable lung function in adulthood. This is important for the latter as lung function at 50% and above will facilitate all of the normal activities of daily living, including attendance at work and college.

The proportion of patients aged 6 and older with a value of FEV_{1} less than 85% predicted was 65%.

1.14b Median FEV ${ }_{1}$ (\% predicted, GLI equations) among patients aged 6 years and older, excluding patients post lung transplant ($\mathrm{n}=6923$)

Age	N	Overall Median (IQR)	N	Female Median (IQR)	N	Male Median (IQR)
$\mathbf{6 - 7}$	421	$91.0(78.3,99.9)$	201	$90.6(78.5,100.1)$	220	$91.4(77.7,99.6)$
$\mathbf{8 - 1 1}$	858	$88.0(77.1,98.0)$	441	$87.5(75.6,97.0)$	417	$89.3(78.1,99.7)$
$\mathbf{1 2 - 1 5}$	919	$79.8(67.1,91.3)$	447	$80.0(66.5,91.0)$	472	$79.5(67.3,91.4)$
$\mathbf{1 6 - 1 9}$	952	$74.3(56.4,88.4)$	480	$72.2(53.0,86.3)$	472	$77.3(60.6,90.5)$
$\mathbf{2 0 - 2 3}$	933	$65.9(47.4,82.5)$	443	$65.2(45.3,80.8)$	490	$66.7(48.8,84.0)$
$\mathbf{2 4 - 2 7}$	771	$62.0(42.7,79.9)$	346	$58.2(42.0,80.5)$	425	$64.3(43.7,79.8)$
$\mathbf{2 8 - 3 1}$	636	$59.8(40.3,79.0)$	281	$61.2(43.0,81.2)$	355	$59.0(39.0,78.3)$
$\mathbf{3 2 - 3 5}$	446	$56.7(41.2,75.3)$	186	$56.8(41.6,75.3)$	260	$56.0(40.9,75.5)$
$\mathbf{3 6 - 3 9}$	267	$58.0(41.4,76.2)$	108	$51.3(38.5,66.9)$	159	$64.5(44.7,78.0)$
$\mathbf{4 0 - 4 4}$	294	$57.5(39.7,75.6)$	127	$58.0(40.0,75.4)$	167	$57.4(38.5,76.3)$
$\mathbf{4 5 - 4 9}$	203	$56.2(39.7,80.5)$	94	$56.6(42.5,70.5)$	109	$55.9(36.5,83.4)$
50+	223	$54.9(39.7,79.0)$	95	$59.0(44.5,79.1)$	128	$51.2(36.9,78.8)$
Overall	6923	$72.2(51.8,88.3)$	3249	$71.8(51.3,87.8)$	3674	$72.5(52.4,89.1)$

N refers to the number of patients in each age/sex category among those with non-missing FEV_{1} \% predicted data.

1.15 Mean FEV_{1} (\% predicted) among patients aged 6 years and

 older by year in 2008 and 2013 (excluding patients post lung transplant)

An analysis was conducted in order to determine whether there were statistically significant differences in FEV_{1} (\% predicted) in 2013 compared to 2008 by age category. The results show that there was a small but statistically significant difference among patients aged 40 years and older, with FEV_{1} levels being higher in 2013.

	Age (years)									
	$6-7$	$8-11$	$12-15$	$16-19$	$20-23$	$24-27$	$28-31$	$32-35$	$36-39$	$40+$
p-value	0.783	0.307	0.758	0.429	0.764	0.741	0.401	0.096	0.357	0.003

1.16 Median FEV_{1} (\% predicted) vs BMI among patients aged 16 years and older (excluding patients post lung transplant)

Each point represents the median FEV_{1} \% predicted of patients for each given BMI value. Due to the wide range of BMIs in this population we grouped all $\mathrm{BMI} \geq 30$ into one group.

1.17 Lung infections in 2013

Chronic infection with S. aureus or P. aeruginosa were identified from annual review. Data on B. cepacia, MRSA and H. influenzae were collected from culture results at annual review.

Current treatments and good cross-infection measures mean that we can aim to reduce the number of people with CF transferring from paediatric to adult care with chronic P. aeruginosa infection, and currently the aim is for less than 30% of paediatric patients to be chronically infected at the time of transfer. A future aim is to see this reduce to less than 20%.
Lung infections in 2013

	Age (years)													Overall		
	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	32-35	36-39	40-44	45-49	50+	All	$\begin{aligned} & \text { Children } \\ & \text { (<16 } \\ & \text { years) } \end{aligned}$	Adults (≥ 16 years)
N patients in age band	981	1004	899	955	1005	994	836	703	503	315	353	240	264	9052	$\begin{aligned} & 3839 \\ & (42.4) \end{aligned}$	$\begin{aligned} & 5213 \\ & (57.6) \end{aligned}$
Chronic S. aureus; n (\%)	$\begin{aligned} & \hline 16 \\ & (1.7) \end{aligned}$	$\begin{aligned} & 70 \\ & (7.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 75 \\ (8.7) \end{array}$	$\begin{aligned} & 142 \\ & (15.7) \end{aligned}$	$\begin{aligned} & 207 \\ & (21.2) \end{aligned}$	$\begin{aligned} & 280 \\ & (28.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 217 \\ (26.1) \end{array}$	$\begin{array}{\|l\|} \hline 175 \\ (25.4) \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ (20.3) \end{array}$	$\begin{aligned} & 54 \\ & (17.4) \end{aligned}$	$\begin{aligned} & 66 \\ & (19.0) \end{aligned}$	$\begin{aligned} & 49 \\ & (21.1) \end{aligned}$	$\begin{aligned} & 60 \\ & (23.1) \end{aligned}$	$\begin{aligned} & 1511 \\ & (17.2) \end{aligned}$	$\begin{aligned} & 303 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 1208 \\ & (23.6) \end{aligned}$
Chronic P. aeruginosa; n (\%)	$\begin{array}{\|l\|} \hline 21 \\ (2.2) \end{array}$	$\begin{aligned} & 38 \\ & (3.9) \end{aligned}$	$\begin{aligned} & 78 \\ & (9.1) \end{aligned}$	$\begin{aligned} & 192 \\ & (21.1) \end{aligned}$	$\begin{aligned} & 356 \\ & (36.0) \end{aligned}$	$\begin{aligned} & 496 \\ & (50.5) \end{aligned}$	$\begin{aligned} & 479 \\ & (57.9) \end{aligned}$	$\begin{array}{\|l\|} \hline 421 \\ (60.6) \end{array}$	$\begin{array}{\|l} 294 \\ (59.5) \end{array}$	$\begin{array}{\|l\|} \hline 169 \\ (53.7) \end{array}$	$\begin{aligned} & 188 \\ & (54.2) \end{aligned}$	$\begin{aligned} & 117 \\ & (50.0) \end{aligned}$	$\begin{aligned} & 111 \\ & (42.5) \end{aligned}$	$\begin{aligned} & 2960 \\ & (33.5) \end{aligned}$	$\begin{aligned} & 329 \\ & (8.9) \end{aligned}$	$\begin{aligned} & 2631 \\ & (51.1) \end{aligned}$
Intermittent P. aeruginosa; n (\%)	$\begin{aligned} & 183 \\ & (19.2) \end{aligned}$	$\begin{aligned} & 215 \\ & (22.2) \end{aligned}$	$\begin{aligned} & 173 \\ & (20.1) \end{aligned}$	$\begin{aligned} & 219 \\ & (24.1) \end{aligned}$	$\begin{aligned} & 187 \\ & (18.9) \end{aligned}$	$\begin{aligned} & 167 \\ & (17.0) \end{aligned}$	$\begin{aligned} & 106 \\ & (12.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 77 \\ (11.1) \end{array}$	$\begin{array}{\|l\|} \hline 66 \\ (13.4) \end{array}$	$\begin{array}{\|l\|} \hline 43 \\ (13.7) \end{array}$	$\begin{array}{\|l\|} \hline 34 \\ (9.8) \end{array}$	$\begin{aligned} & 29 \\ & (12.4) \end{aligned}$	$\begin{aligned} & 32 \\ & (12.3) \end{aligned}$	$\begin{aligned} & 1531 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 790 \\ & (21.4) \end{aligned}$	$\begin{aligned} & 741 \\ & (14.4) \end{aligned}$
Intermittent S. aureus; n(\%)	$\begin{aligned} & 158 \\ & (16.6) \end{aligned}$	$\begin{aligned} & 193 \\ & (19.9) \end{aligned}$	$\begin{aligned} & 216 \\ & (25.1) \end{aligned}$	$\begin{aligned} & 163 \\ & (18.0) \end{aligned}$	$\begin{aligned} & 181 \\ & (18.5) \end{aligned}$	$\begin{aligned} & 169 \\ & (17.2) \end{aligned}$	$\begin{aligned} & 128 \\ & (15.4) \end{aligned}$	$\begin{aligned} & 102 \\ & (14.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 55 \\ (11.2) \end{array}$	$\begin{array}{\|l\|} 50 \\ (16.1) \end{array}$	$\begin{aligned} & 41 \\ & (11.8) \end{aligned}$	$\begin{array}{\|l} 27 \\ (11.6) \end{array}$	$\begin{aligned} & 34 \\ & (13.1) \end{aligned}$	$\begin{aligned} & 1517 \\ & (17.2) \end{aligned}$	$\begin{aligned} & 730 \\ & (19.8) \end{aligned}$	$\begin{aligned} & 787 \\ & (15.4) \end{aligned}$
B. cepacia; n (\%)	$\begin{array}{\|l\|} 4 \\ (0.4) \end{array}$	$\begin{array}{\|l\|} \hline 3.0 \\ (0.3) \end{array}$	$\begin{array}{\|l\|} 18 \\ (2.0) \end{array}$	$\begin{aligned} & 22.0 \\ & (2.3) \end{aligned}$	$\begin{aligned} & 54 \\ & (5.4) \end{aligned}$	$\begin{aligned} & 47 \\ & (4.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 49 \\ (5.9) \end{array}$	$\begin{array}{\|l\|} \hline 38 \\ (5.4) \end{array}$	$\begin{aligned} & 28 \\ & (5.6) \end{aligned}$	$\begin{aligned} & 22 \\ & (7.0) \end{aligned}$	$\begin{aligned} & 25 \\ & (7.1) \end{aligned}$	$\begin{aligned} & 7 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 9 \\ & (3.4) \end{aligned}$	$\begin{aligned} & 326 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 47 \\ & (1.2) \end{aligned}$	$\begin{aligned} & 279 \\ & (5.4) \end{aligned}$
MRSA; n (\%)	$\begin{aligned} & 9 \\ & (0.9) \end{aligned}$	$\begin{aligned} & 24 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 31 \\ & (3.4) \end{aligned}$	$\begin{aligned} & 32.0 \\ & (3.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 36 \\ (3.6) \end{array}$	$\begin{aligned} & 52 \\ & (5.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 38 \\ (4.5) \end{array}$	$\begin{array}{\|l\|} \hline 26 \\ (3.7) \end{array}$	$\begin{array}{\|l\|} \hline 19 \\ (3.8) \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ (3.8) \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ (2.8) \end{array}$	$\begin{aligned} & 6 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 15 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 310 \\ & (3.4) \end{aligned}$	$\begin{aligned} & 96 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 214 \\ & (4.1) \end{aligned}$
H. influenza; $\mathrm{n}(\%)$	$\begin{aligned} & 241 \\ & (24.6) \end{aligned}$	$\begin{array}{\|l} 269 \\ (26.8) \\ \hline \end{array}$	$\begin{array}{\|l} 160 \\ (17.8) \\ \hline \end{array}$	$\begin{aligned} & 109 \\ & (11.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 95 \\ \text { (9.5) } \end{array}$	$\begin{array}{\|l\|} \hline 89 \\ (9.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 41 \\ (4.9) \end{array}$	$\begin{array}{\|l\|l\|} \hline 40 \\ (5.7) \end{array}$	$\begin{array}{\|l\|} \hline 17 \\ (3.4) \end{array}$	$\begin{array}{\|l\|l\|} \hline 20 \\ (6.3) \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ (3.7) \end{array}$	$\begin{aligned} & 14 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 13 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 1121 \\ & (12.4) \end{aligned}$	$\begin{aligned} & 779 \\ & (20.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 342 \\ & (6.6) \end{aligned}$

Age is calculated as age at annual review

1.18 Lung infections in 2008 and 2013

	Age (years)										
	$0-3$	$4-7$	$8-11$	$12-15$	$16-19$	$20-23$	$24-27$	$28-31$	$32-35$	$36-39$	$40+$
Chronic P. aeruginosa; p-value	0.633	0.014	0.002	0.051	0.000	0.000	0.003	0.030	0.172	0.247	0.061
Chronic S. aureus; p-value	0.690	0.252	0.527	0.262	0.694	0.002	0.024	0.127	0.225	0.123	0.160

1.19a Prevalence of complications

	Overall $(n=9052)$	$\begin{aligned} & <16 \text { years } \\ & (n=3839) \end{aligned}$	$\begin{aligned} & \geq 16 \text { years } \\ & (n=5213) \end{aligned}$
Respiratory related			
Nasal polyps requiring surgery; n (\%)	168 (1.9)	36 (0.9)	132 (2.5)
Sinus disease; n (\%)	746 (8.2)	48 (1.3)	698 (13.4)
Asthma; n (\%)	1391 (15.4)	545 (14.2)	846 (16.2)
ABPA; n(\%)	948 (10.5)	277 (7.2)	671 (12.9)
Haemoptysis; n (\%)	76 (0.8)	0 (0.0)	76 (1.5)
Pneumothorax requiring chest tube; n (\%)	53 (0.6)	2 (0.1)	51 (1.0)
Non-tuberculous mycobacteria or atypical mycobacteria; n(\%)	512 (5.7)	107 (2.8)	405 (7.8)
Pancreas and hepatobiliary disease			
Liver enzymes; n(\%)	1061 (11.7)	259 (6.7)	802 (15.4)
Liver disease; n (\%)	1204 (13.3)	347 (9.0)	857 (16.4)
Cirrhosis with no portal hypertension; n (\%)	129 (1.4)	31 (0.8)	98 (1.9)
Cirrhosis with portal hypertension; n (\%)	160 (1.8)	20 (0.5)	140 (2.7)

	Overall $(\mathrm{n}=9052)$	$\begin{aligned} & <16 \text { years } \\ & (\mathrm{n}=3839) \end{aligned}$	$\begin{aligned} & \geq 16 \text { years } \\ & (n=5213) \end{aligned}$
Gallbladder disease requiring surgery; n (\%)	33 (0.4)	0 (0.0)	33 (0.6)
Pancreatitis; n (\%)	76 (0.8)	4 (0.1)	72 (1.4)
Gl bleed req. hosp variceal; n (\%)	9 (0.1)	2 (0.1)	7 (0.1)
Upper gastrointestinal			
GERD; n (\%)	1482 (16.4)	336 (8.8)	1146 (22.0)
Peptic ulcer; n(\%)	7 (0.1)	1 (0.0)	6 (0.1)
Gl bleed req. hosp non variceal n (\%)	5 (0.1)	2 (0.1)	3 (0.1)
Lower gastrointestinal			
Intestinal obstruction; n (\%)	551 (6.1)	128 (3.3)	423 (8.1)
Fibrosing colonopathy/colonic structure; n (\%)	1 (0.0)	1 (0.0)	0 (0.0)
Rectal prolapse; n (\%)	28 (0.3)	25 (0.7)	3 (0.1)
Renal			
Kidney stones; n (\%)	85 (0.9)	7 (0.2)	78 (1.5)
Renal failure; n (\%)	18 (0.2)	2 (0.1)	16 (0.3)
Musculoskeletal			
Arthritis; n (\%)	144 (1.6)	9 (0.2)	135 (2.6)
Arthropathy; n (\%)	506 (5.6)	18 (0.5)	488 (9.4)
Bone fracture; n (\%)	55 (0.6)	12 (0.3)	43 (0.8)
Osteopenia; n(\%)	1085 (12.0)	22 (0.6)	1063 (20.4)
Osteoporosis; n (\%)	469 (5.2)	7 (0.2)	462 (8.9)
Other			
Cancer confirmed by histology; n (\%)	27 (0.3)	3 (0.1)	24 (0.5)
Port inserted or replaced; n (\%)	548 (6.1)	220 (5.7)	328 (6.3)
Absence of vas deferens*; n (\%)	670 (14.0)	3 (0.2)	667 (23.6)
Depression; n(\%)	410 (4.5)	9 (0.2)	401 (7.7)
Hearing loss; n (\%)	186 (2.1)	26 (0.7)	160 (3.1)
Hypertension; n(\%)	200 (2.2)	4 (0.1)	196 (3.8)

* The denominator is restricted to male patients

For patients who are reported to have had non-tuberculous mycobacteria/atypical mycobacteria, cirrhosis (with/without portal hypertension), cancer or ABPA in 2013, we explored their clinical history to determine if this was the first year in which such a complication was reported. This historical search was not limited to annual review encounters and where no clinical history was available it is assumed that 2013 was the year the complication first developed.

1.19b Incidence of key complications

	Newly identified in 2012			Newly identified in 2013		
	Overall $(\mathrm{n}=8794)$	<16 years (n=3732)	$\begin{aligned} & \geq 16 \text { years } \\ & (n=5062) \end{aligned}$	Overall $(n=9052)$	<16 years (n=3839)	$\begin{aligned} & \geq 16 \text { years } \\ & (n=5213) \end{aligned}$
Non-tuberculous mycobacteria or atypical mycobacteria; n(\%)	159 (1.8)	30 (0.8)	129 (2.5)	134 (1.5)	33 (0.9)	101 (1.9)
ABPA; n(\%)	169 (1.9)	64 (1.7)	105 (2.1)	157 (1.7)	58 (1.5)	99 (1.9)
Cirrhosis with no portal hypertension; n(\%)	33 (0.4)	9 (0.2)	24 (0.5)	30 (0.3)	12 (0.3)	18 (0.3)
Cirrhosis with portal hypertension; n(\%)	18 (0.2)	6 (0.2)	12 (0.2)	26 (0.3)	6 (0.2)	20 (0.4)
Cancer confirmed by histology; $\mathrm{n}(\%)$	10 (0.1)	1 (0.02)	9 (0.2)	13 (0.1)	1 (0.03)	12 (0.2)

1.20 CF-related diabetes

	All ≥ 10 years $(n=6594)$	$10-16$ years $(n=1381)$	≥ 16 years $(n=5213)$
Treatment for CF-related diabetes*; n (\%)	$1711(26.0)$	$127(9.2)$	$1584(30.4)$
Screening for CF-related diabetes			
Yes			
No	$3733(56.6)$	$1049(76.0)$	$2684(51.5)$
Known CF-related diabetes	$1017(15.4)$	$167(12.1)$	$850(16.4)$
Unknown	$1622(24.6)$	$80(5.8)$	$1542(29.6)$
	$222(3.4)$	$85(6.2)$	$137(2.6)$

[^2]
1.21 Transplants

| | 2009 | 2010 | 2011 | 2012 | 2013 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number of patients that year with annual
 review data evaluated for transplants | 143 | 169 | 204 | 225 | 220 |
| Number accepted on the transplant list | 79 | 82 | 121 | 120 | 136 |
| Number receiving transplants (<16)
 Types of transplants received: | 3 | 3 | 3 | 3 | 3 |
| Bilateral lung | 3 | 2 | 3 | 2 | 2 |
| Heart and lung | 0 | 0 | 0 | 0 | 0 |
| Liver | 0 | 1 | 0 | 1 | 1 |
| Other | 0 | 0 | 0 | 0 | 0 |
| Number receiving transplants (≥ 16)
 Types of transplants received: | 22^{*} | 26 | 48^{*} | $52^{* *}$ | 54^{*} |
| Bilateral lung | 16 | 24 | 40 | 43 | 48 |
| Heart and lung | 0 | 1 | 4 | 1 | 0 |
| Liver | 5 | 0 | 2 | 6 | 3 |
| Other | 2 | 1 | 3 | 4 | 4 |

* One patient received two transplants.
** Two patients had two transplants.

1.22 Other therapy

	Overall $(\mathrm{n}=9052)$	<16 years $(\mathrm{n}=3839)$	≥ 16 years $(\mathrm{n}=5213)$
NIV; $\mathrm{n}(\%)$	$221(2.5)$	$24(0.6)$	$197(3.8)$
Long-term oxygen; $\mathrm{n}(\%)$	$610(6.8)$	$93(2.4)$	$517(10.0)$
Among those who had			
long-term oxygen therapy: Continuously	$152(24.9)$	$8(8.6)$	$144(27.9)$
Nocturnal+exertion PRN	$142(23.3)$	$16(17.2)$	$126(24.4)$
With exacerbation	$83(13.6)$	$9(9.7)$	$74(14.3)$
$233(38.2)$	$60(64.5)$	$173(33.5)$	

1.23 Feeding

	Overall $(\mathrm{n}=9052)$	<16 years $(\mathrm{n}=3839)$	≥ 16 years $(\mathrm{n}=5213)$
Any supplemental feeding; $\mathrm{n}(\%)$	$2826(31.9)$	$1020(27.5)$	$1806(35.2)$
Nasogastric tube	110	13	97
Gastrostomy tube/Button Jejunal TPN	548	204	344

1.24 Days on IV antibiotics in the last 12 months

$\left.\begin{array}{lllllll} & \text { Home } & & \text { Hospital } \\ \text { Age } & \begin{array}{l}\text { N } \\ (\%)\end{array} & \begin{array}{l}\text { Median } \\ \text { (IQR) }\end{array} & \begin{array}{l}\mathrm{N} \\ (\%)\end{array} & \text { Median (IQR) } & \begin{array}{l}\mathrm{N} \\ (\%)\end{array} & \text { Median (IQR) }\end{array}\right)$

1.25a Nebulised drug treatment: DNase

Age		DNase treatment; $\mathrm{n}(\%)$	
	2008	2013	p -value (2008 vs 2013)
$\mathbf{0 - 3}$	$46(7.6)$	$100(10.2)$	<0.001
$\mathbf{4 - 7}$	$125(20.1)$	$332(33.1)$	<0.001
$\mathbf{8 - 1 1}$	$227(34.2)$	$496(55.2)$	<0.001
$\mathbf{1 2 - 1 5}$	$359(46.4)$	$627(65.7)$	<0.001
$\mathbf{1 6 - 1 9}$	$377(49.5)$	$635(63.2)$	<0.001
$\mathbf{2 0 - 2 3}$	$319(44.0)$	$625(62.9)$	<0.001
$\mathbf{2 4 - 2 7}$	$288(47.6)$	$537(64.2)$	<0.001
$\mathbf{2 8 - 3 1}$	$182(43.4)$	$413(58.7)$	<0.001
$\mathbf{3 2 - 3 5}$	$108(41.5)$	$283(56.3)$	<0.001
$\mathbf{3 6 - 3 9}$	$83(35.0)$	$157(49.8)$	0.001
$\mathbf{4 0 - 4 4}$	$147(35.7)^{\star}$	$168(47.6)$	$<0.001^{\star *}$
$\mathbf{4 5 - 4 9}$		$113(47.1)$	
50+		$129(48.9)$	
Overall	$2261(37.2)$	$4615(51.0)$	

[^3]
1.25b Nebulised drug treatment: Hypertonic saline

Age		Hypertonic saline; n(\%)	
	2008	2013	p-value $(2008$ vs 2013)
	$3(0.5)$	$49(5.0)$	<0.001
$0-3$	$15(2.4)$	$157(15.6)$	<0.001
$4-7$	$23(3.5)$	$225(25.0)$	<0.001
$8-11$	$32(4.1)$	$303(31.7)$	<0.001
$12-15$	$33(4.3)$	$287(28.6)$	<0.001
$16-19$	$50(6.9)$	$263(26.5)$	<0.001
$20-23$	$60(9.9)$	$220(26.3)$	<0.001
$24-27$	$37(8.8)$	$206(29.3)$	<0.001
$28-31$	$29(11.2)$	$131(26.0)$	<0.001
$32-35$	$16(6.8)$	$76(24.1)$	<0.001
$36-39$	$33(8.0)^{\star}$	$75(21.3)$	$<0.001^{* *}$
$40-44$		$56(23.3)$	
$45-49$		$69(26.1)$	
$50+$	$331(5.4)$	$2117(23.4)$	
Overall			

* In 2008 all patients aged 40 years and older were grouped together.
** All patients aged 40 years and older were grouped together for this comparison.

1.25c Inhaled antibiotic use among patients with chronic Pseudomonas aeruginosa

| | 2008 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Overall | | | |

* In 2013, this includes Aztreonam.

The consensus view in the UK is that 90% of patients chronically infected with P. aeruginosa should be prescribed at least one of the above nebulised antibiotics.

1.25d Long-term use of azithromycin among patients with and without chronic Pseudomonas aeruginosa

	2008				2013			
	Overall $\text { (} \mathrm{n}=6082 \text {) }$	0-3 years $(n=605)$	4-15 years $(n=2057)$	≥ 16 years $(n=3420)$	Overall $(n=9052)$	$0-3$ years $(\mathrm{n}=981)$	4-15 years ($\mathrm{n}=2858$)	$\begin{aligned} & \geq 16 \\ & \text { years } \\ & (n=5213) \end{aligned}$
Patients with chronic P. aeruginosa	$\begin{aligned} & 1246 \\ & (59.4) \end{aligned}$	2 (15.4)	$\begin{array}{\|l\|} \hline 105 \\ (36.7) \end{array}$	$\begin{aligned} & 1139 \\ & (63.3) \end{aligned}$	$\begin{aligned} & 2022 \\ & (68.3) \end{aligned}$	$\begin{aligned} & 2 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 141 \\ & (45.8) \end{aligned}$	$\begin{aligned} & 1879 \\ & (71.4) \end{aligned}$
Patients without chronic P. aeruginosa	$\begin{aligned} & 712 \\ & (22.1) \end{aligned}$	13 (2.7)	$\begin{aligned} & 258 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 441 \\ & (35.3) \end{aligned}$	$\begin{aligned} & 1597 \\ & (27.2) \end{aligned}$	$\begin{aligned} & 25 \\ & (2.7) \end{aligned}$	$\begin{aligned} & 479 \\ & (19.7) \end{aligned}$	$\begin{aligned} & 1093 \\ & (43.5) \end{aligned}$

1.26 Physiotherapy techniques

| | Overall
 $(n=9052)$ | <16 years
 $(n=3839)$ | ≥ 16 years
 $(n=5213)$ |
| :--- | :--- | :--- | :--- | :--- |
| Active cycle of breathing techniques; $n(\%)$ | $3244(36.1)$ | $1820(47.9)$ | $1424(27.5)$ |
| Autogenic drainage (including assisted autogenic drainage); | $1400(15.6)$ | $265(7.0)$ | $1135(21.9)$ |
| $\mathrm{n}(\%)$ | | | |

Note that these techniques are not mutually exclusive and represent primary and secondary forms of physiotherapy.

Section 2: Analyses by paediatric care centre/clinic

(based on 4206 patients from paediatric care centres with complete* data at 2013 annual review)

* "Complete" data refers to the minimum data required to produce the range of clinical outcomes presented in this report.

How to interpret the graphs presented in Sections 2 and 3

Continuous outcomes such as age, BMI and FEV_{1} in each centre are presented in the form of box plots. These graphs are commonly used to illustrate the spread of continuous measures in different groups.

Box plots in general are composed of a box, two whiskers, two adjacent values and some marker symbols for outside values. The lower border of the box denotes the first quartile, Q_{1} (or 25th percentile); the upper border denotes the third quartile, Q_{3} (or 75th percentile). The line in the middle of the box is the median (the 50th percentile). An upper whisker extends from the third quartile to the value that corresponds to the third quartile plus 1.5 times the inter-quartile range ($\mathrm{Q}_{3}+1.5 \times$ IQR). Likewise, a lower whisker extends from the first quartile to the value corresponding to the first quartile minus 1.5 times the inter-quartile range ($\mathrm{Q}_{1}-1.5 \times \mathrm{IQR}$). "Outside values" (or outliers) refer to values that are unusually distant from the rest of the data. For the report, we did not include the outside values as this would have created a great deal of spread.

When the data are normally distributed, the median lies in the middle of the box and the plot looks symmetrical. If the distribution is skewed then the median shifts towards the top or bottom of the box. In the picture below, the median is closer to Q_{1}, implying that the distribution is skewed to the right.

Reference: Kohler, U., Kreuter, F. (2012) Data Analysis Using Stata, STATA Press, Texas

Figure 2.1 Median FEV $_{1}$ \% predicted among patients aged 6 years and older by paediatric centre/clinic (without a history of lung transplant)

Excludes outside values
The median FEV_{1} \% predicted for patients attending paediatric centres/clinics is 87% predicted (IQR: 73-97).

Red: centres with their network clinics. Green: stand-alone clinics. Purple: all.

* Centre/clinic with a data set submission of fewer than 20 patients.

Figure 2.2 Median BMI percentile among patients aged 2 to 15 years by paediatric centre/clinic

Excludes outside values
The median BMI percentile in paediatric centres/clinics is 53 (IQR: 29-76).
Red: centres with their network clinics. Green: stand-alone clinics. Purple: all.

* Centre/clinic with a data set submission of fewer than 20 patients.

Figure 2.3 Proportion of patients with chronic P. aeruginosa by paediatric centre/clinic

The proportion of patients with chronic P. aeruginosa in paediatric centres/clinics is 11%.
Red: centres with their network clinics. Green: stand-alone clinics. Purple: all.

* Centre/clinic with a data set submission of fewer than 20 patients.

Figure 2.4 Proportion of patients receiving DNase treatment by paediatric centre/clinic

The proportion of patients receiving DNase treatment in paediatric centres/clinics is 43%.
Red: centres with their network clinics. Green: stand-alone clinics. Purple: all.

* Centre/clinic with a data set submission of fewer than 20 patients.

Section 3: Analyses by adult service

(based on 4846 patients from adult services with complete* data at 2013 annual review)

[^4]Figure 3.1 Median age (years) by adult service

Excludes outside values
The median age in adult services is 27 years (IQR: 22-34).
Red: centres. Green: other clinics. Purple: all.
Figure 3.2 Median FEV ${ }_{1}$ (\% predicted) by adult service (without a history of lung transplant)

Excludes outside values

The median FEV_{1} (\% predicted) in adult services is 65\% (IQR: 45-84).
Red: centres. Green: other clinics. Purple: all.

Figure 3.3 Median BMI among patients aged 16 years and older by adult service

Excludes outside values
The median BMI in adult services is 22 (IQR: 20-24).
Red: centres. Green: other clinics. Purple: all.
Figure 3.4 Proportion of patients with chronic P. aeruginosa by adult service

The proportion of patients with chronic P. aeruginosa in adult services is 53%.
Red: centres. Green: other clinics. Purple: all.

Figure 3.5 Proportion of patients receiving DNase treatment by adult service

The proportion of patients receiving DNase treatment in adult services is 58%.
Red: centres. Green: other clinics. Purple: all.

Section 4: Care centres/clinics providing data in 2013

4.1 Paediatric centres/clinics providing data in 2013 - ordered by clinic ID

Country	Location	Centre/clinic	Clinic ID	Number of active patients	Number of patients providing data in 2013	Median FEV \% predicted (≥ 6 years)	Median BMI percentile (2-15 years)
England	Leicester	Leicester Royal Infirmary	1	58	58	95.7	51.6
England	Sheffield	Sheffield Children's Hospital	3	141	140	90.0	50.9
England	Stoke	University Hospital of North Staffordshire	8	95	91	81.1	57.5
England	London South West	Royal Brompton Hospital	15	319	312	86.5	50.7
England	London	King's College Hospital	17	190	188	86.0	52.5
England	Oxford	John Radcliffe Hospital	22	171	167	83.4	49.7
England	Leeds	St James's University Hospital	25	236	233	81.9	56.8
England	Southampton	Southampton General Hospital	29	216	211	87.9	50.7
England	London East	Royal London Hospital	30	116	111	88.1	56.3
Scotland	Inverness	Raigmore Hospital	31	16	16	97.2	44.7
England	Bristol	Bristol Royal Hospital for Children	32	175	175	85.5	54.0
Scotland	Glasgow	Royal Hospital for Sick Children	56	133	123	90.7	47.1
England	Newcastle	Royal Victoria Infirmary	59	188	168	89.0	54.4
Northern Ireland	Belfast	Royal Belfast Hospital for Sick Children	60	202	194	91.9	59.0
England	Nottingham	Nottingham Children's Hospital	62	175	174	87.7	49.9

Country	Location	Centre/clinic	Clinic ID	Number of active patients	Number of patients providing data in 2013	Median FEV ${ }_{1}$ \% predicted (≥ 6 years)	Median BMI percentile (2-15 years)
England	Teesside	James Cook University Hospital	71	55	53	87.9	55.3
Wales	Cardiff	Children's Hospital for Wales	72	180	164	85.1	53.7
Scotland	Dundee	Ninewells Hospital	73	23	22	84.3	50.0
Scotland	Aberdeen	Royal Aberdeen Children's Hospital	75	29	29	78.7	47.0
England	London Central	Great Ormond Street Hospital for Children	90	181	180	87.5	50.5
England	Truro	Royal Cornwall Hospital	94	30	29	81.2	71.3
England	Exeter	Royal Devon \& Exeter Hospital	96	74	72	93.1	65.5
England	Liverpool	Alder Hey Children's Hospital	97	305	300	84.5	57.3
England	Norwich	Norfolk \& Norwich University Hospital	98	64	64	84.4	64.9
England	Birmingham	Birmingham Children's Hospital	104	287	282	88.5	55.8
England	Cambridge	Addenbrookes Hospital	107	132	130	89.1	46.6
England	Hull	Hull Royal Infirmary	111	29	29	69.8	35.4
Scotland	Ayr/ Kilmarnock	Crosshouse Hospital	123	22	22	89.9	72.8
England	Plymouth	Derriford Hospital	139	38	38	78.0	42.8
Scotland	Edinburgh	Royal Hospital for Sick Children	143	118	117	89.8	60.1
England	Manchester	Royal Manchester Children's Hospital	144	326	314	80.0	48.6

4.2 Adult centres/clinics providing data in 2013 - ordered by clinic ID

Country	Location	Centre/clinic	Clinic ID	Number of active patients	Number of patients providing data in 2013	Median FEV ${ }^{1}$ \% predicted (≥ 16 years)	Median BMI (≥ 16 years)
England	London - South East	King's College Hospital	5	182	169	69.4	21.5
England	Newcastle	Royal Victoria Infirmary	9	255	248	61.8	21.7
England	London South West	Royal Brompton Hospital	12	656	643	61.1	21.9
Northern Ireland	Belfast	Belfast City Hospital	14	231	205	71.5	22.5
England	Frimley	Frimley Park Hospital	19	117	108	62.0	21.5
England	Birmingham	Birmingham Heartlands Hospital	27	350	339	66.0	22.8
England	Exeter	Royal Devon \& Exeter Hospital	34	89	86	70.0	23.5
England	Leeds	St James's University Hospital	42	416	409	62.0	22.2
Scotland	Edinburgh	Western General Hospital	44	219	212	66.7	22.2
England	Cambridge	Papworth Hospital	51	273	235	64.7	21.5
England	Plymouth	Derriford Hospital	64	48	44	75.6	23.4
England	Sheffield	Northern General Hospital	65	169	166	71.2	22.0
England	Liverpool	Liverpool Heart and Chest Hospital	66	272	257	68.1	23.3
Scotland	Aberdeen	Aberdeen Royal Infirmary	70	64	62	57.0	22.2
England	Stoke-onTrent	University Hospital of North Staffordshire	74	69	67	63.5	22.4
Scotland	Glasgow	Gartnavel General Hospital	79	221	206	65.3	22.2

Country	Location	Centre/clinic	Clinic ID	Number of active patients	Number of patients providing data in 2013	Median FEV ${ }^{1}$ \% predicted (≥ 16 years)	Median BMI (≥ 16 years)
England	London - East	London Chest Hospital	92	151	127	65.9	22.2
England	Nottingham	Nottingham City Hospital	101	143	133	60.7	21.8
England	Manchester	Wythenshawe Hospital	102	387	376	62.7	21.9
England	London - South East	University Hospital Lewisham	105	52	50	49.4	20.9
England	Bristol	Bristol Royal Infirmary	106	187	182	69.3	21.8
England	Southampton	Southampton General Hospital	110	230	211	64.2	22.3
England	Norwich	Norfolk \& Norwich University Hospital	114	65	65	65.0	21.4
England	Oxford	Churchill Hospital	128	98	93	64.0	22.8
England	Truro	Royal Cornwall Hospital	129	35	34	58.5	21.1
England	Hull	Castle Hill Hospital	138	42	41	51.4	19.5
England	Leicester	Glenfield Hospital	142	78	78	66.6	21.9

4.3 Paediatric centres/clinics providing data in 2013 - ordered alphabetically

Location	Centre/clinic	Clinic ID	Number of active patients	Number of patients providing data in 2013	Median FEV ${ }^{\text {\% }}$ predicted (≥ 6 years)	Median BMI percentile (2-15 years)
England						
Birmingham	Birmingham Children's Hospital	104	287	282	88.5	55.8
Bristol	Bristol Royal Hospital for Children	32	175	175	85.5	54.0
Cambridge	Addenbrookes Hospital	107	132	130	89.1	46.6
Exeter	Royal Devon \& Exeter Hospital	96	74	72	93.1	65.5
Hull	Hull Royal Infirmary	111	29	29	69.8	35.4
Leeds	St James's University Hospital	25	236	233	81.9	56.8
Leicester	Leicester Royal Infirmary	1	58	58	95.7	51.6
Liverpool	Alder Hey Children's Hospital	97	305	300	84.5	57.3
London Central	Great Ormond Street Hospital for Children	90	181	180	87.5	50.5
London - East	Royal London Hospital	30	116	111	88.1	56.3
London South East	King's College Hospital	17	190	188	86.0	52.5
London South West	Royal Brompton Hospital	15	319	312	86.5	50.7
Manchester	Royal Manchester Children's Hospital	144	326	314	80.0	48.6
Newcastle	Royal Victoria Infirmary	59	188	168	89.0	54.4
Norwich	Norfolk \& Norwich University Hospital	98	64	64	84.4	64.9
Nottingham	Nottingham Children's Hospital	62	175	174	87.7	49.9
Oxford	John Radcliffe Hospital	22	171	167	83.4	49.7
Plymouth	Derriford Hospital	139	38	38	78.0	42.8
Sheffield	Sheffield Children's Hospital	3	141	140	90.0	50.9
Southampton	Southampton General Hospital	29	216	211	87.9	50.7
Stoke	University Hospital of North Staffordshire	8	95	91	81.1	57.5

Location	Centre/clinic	Clinic ID	Number of active patients	Number of patients providing data in 2013	Median FEV 1 \% predicted (≥ 6 years)	Median BMI percentile (2-15 years)
Teesside	James Cook University Hospital	71	55	53	87.9	55.3
Truro	Royal Cornwall Hospital	94	30	29	81.2	71.3
Northern Ireland						
Belfast	Royal Belfast Hospital for Sick Children	60	202	194	91.9	59.0
Scotland						
Aberdeen	Royal Aberdeen Children's Hospital	75	29	29	78.7	47.0
Ayr/ Kilmarnock	Crosshouse Hospital	123	22	22	89.9	72.8
Dundee	Ninewells Hospital	73	23	22	84.3	50.0
Edinburgh	Royal Hospital for Sick Children	143	118	117	89.8	60.1
Glasgow	Royal Hospital for Sick Children	56	133	123	90.7	47.1
Inverness	Raigmore Hospital	31	16	16	97.2	44.7
Wales						
Cardiff	Children's Hospital for Wales	72	180	164	85.1	53.7

4.4 Adult centres/clinics providing data in 2013 - ordered alphabetically

Location	Centre/clinic	Clinic ID	Number of active patients	Number of patients providing data in 2013	Median FEV ${ }_{1}$ \% predicted (≥ 16 years)	Median BMI (≥ 16 years)
England						
Birmingham	Birmingham Heartlands Hospital	27	350	339	66.0	22.8
Bristol	Bristol Royal Infirmary	106	187	182	69.3	21.8
Cambridge	Papworth Hospital	51	273	235	64.7	21.5
Exeter	Royal Devon \& Exeter Hospital	34	89	86	70.0	23.5
Frimley	Frimley Park Hospital	19	117	108	62.0	21.5
Hull	Castle Hill Hospital	138	42	41	51.4	19.5
Leeds	St James's University Hospital	42	416	409	62.0	22.2
Leicester	Glenfield Hospital	142	78	78	66.6	21.9
Liverpool	Liverpool Heart and Chest Hospital	66	272	257	68.1	23.3
London - East	London Chest Hospital	92	151	127	65.9	22.2
London - South East	King's College Hospital	5	182	169	69.4	21.5
London - South East	University Hospital Lewisham	105	52	50	49.4	20.9
London - South West	Royal Brompton Hospital	12	656	643	61.1	21.9
Manchester	Wythenshawe Hospital	102	387	376	62.7	21.9
Newcastle	Royal Victoria Infirmary	9	255	248	61.8	21.7
Norwich	Norfolk \& Norwich University Hospital	114	65	65	65.0	21.4
Nottingham	Nottingham City Hospital	101	143	133	60.7	21.8
Oxford	Churchill Hospital	128	98	93	64.0	22.8
Plymouth	Derriford Hospital	64	48	44	75.6	23.4
Sheffield	Northern General Hospital	65	169	166	71.2	22.0
Southampton	Southampton General Hospital	110	230	211	64.2	22.3
Stoke-on- Trent	University Hospital of North Staffordshire	74	69	67	63.5	22.4
Truro	Royal Cornwall Hospital	129	35	34	58.5	21.1

Location	Centre/clinic	Clinic ID	Number of active patients	Number of patients providing data in 2013	Median FEV 1 \% predicted (≥ 16 years)	Median BMI $(\geq 16$ years)
Northern Ireland						
Belfast	Belfast City Hospital	14	231	205	71.5	22.5
Scotland						
Aberdeen	Aberdeen Royal Infirmary	70	64	62	57.0	22.2
Edinburgh	Western General Hospital	44	219	212	66.7	22.2
Glasgow	Gartnavel General Hospital	79	221	206	65.3	22.2

Section 5: UK CF Registry Steering Committee

5.1 Composition of UK CF Registry Steering Committee

Professor Diana Bilton (Chair)	Adult CF Centre Director, Royal Brompton Hospital, London
Dr Caroline Elston	Adult CF Centre Director, King's College Hospital, London
Dr Iolo Doull	Paediatric CF Centre Director, Cardiff Hospital, Wales
Dr Siobhan Carr	Paediatrician, Royal Brompton Hospital, London
Dr Steve Cunningham	Paediatrician, Edinburgh Royal Infirmary, Scotland
Dr Martin Wildman	Adult CF Centre Director, Northern General Hospital, Sheffield
Professor Stuart Elborn	Adult CF Centre Director, Belfast, NI and Trustee of the Trust
Dr Stephanie MacNeill	Biostatistician, Imperial College, London
Mr George Vamvakas	Biostatistician, Imperial College, London
Mrs Marian Dmochowska	Parent Representative
Mr Dominic Kavanagh	Patient Representative
Ms Katherine Collins	Director NSD, Scotland
Ms Carrie Gardner	Specialist Commissioner, NHS England
Dr Kim Cox	Lead Specialist CF Commissioner, London
Dr Lisa Davies	Specialist Commissioner, Wales
Mr Ed Owen	Chief Executive, Cystic Fibrosis Trust
Dr Janet Allen	Director of Research, Cystic Fibrosis Trust
Ms Elaine Gunn	Registry Manager, Cystic Fibrosis Trust

cysticfibrosis.org.uk

[^0]: * "Complete" data refers to the minimum data required to produce the range of clinical outcomes presented in this report.

[^1]: Only mutations that were observed in more than 1\% of patients with complete data in 2013 were reported. Further information on CF mutations can be found at: http://www.cftr2.org/. For further information on the UK CF population, please contact the Trust - see cysticfibrosis.org.uk

[^2]: *Treatment for CF-related diabetes was enquired about in an annual review questionnaire which was completed by 6585 of the 6594 patients aged 10 years and older with "complete" annual review encounter data. Among patients aged 10-16 years this represents 1379 patients and in patients 16 years and older 5206.

[^3]: * In 2008 all patients aged 40 years and older were grouped together.
 ** All patients aged 40 years and older were grouped together for this comparison.

[^4]: * "Complete" data refers to the minimum data required to produce the range of clinical outcomes presented in this report.

