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Abstract
For position-dependent forces whose curl is non-zero (‘curl forces’), there is no
associated scalar potential and therefore no obvious Hamiltonian or Lagrangean
and, except in special cases, no obvious conserved quantities. Nevertheless, the
motion is nondissipative (measure-preserving in position and velocity). In a
class of planar motions, some of which are exactly solvable, the curl force is
directed azimuthally with a magnitude varying with radius, and the orbits are
usually spirals. If the curl is concentrated at the origin (for example, the curl
force could be an electric field generated by a changing localized magnetic
flux, as in the betatron), a Hamiltonian does exist but violates the rotational
symmetry of the force. In this case, reminiscent of the Aharonov–Bohm effect,
the spiralling is extraordinarily slow.

PACS numbers: 02.30.Hq, 45.20.Dd, 45.50.Dd

1. Introduction

For a particle moving classically under a force F(r) depending only on position—that is, in
the absence of velocity-dependent forces, e.g., dissipative or magnetic—the trajectory r(t) is
the solution of Newton’s equation:

r̈ = F(r). (1.1)

If the force is derivable from a scalar potential, that is if F(r) = −∇U (r), the dynamics can
be generated by a Lagrangean, or a Hamiltonian of the familiar type H(r, p) = 1

2 p2 + U (r).
But if no such potential exists—if the force has a non-zero curl, i.e.

∇ × F(r) �= 0, (1.2)

then there is no Hamiltonian or corresponding Lagrangean, at least of the usual kind.
Nevertheless, in the ‘phase space’ of position r and velocity v = ṙ, the motion is volume-
preserving, that is,

∇r · ṙ + ∇v · v̇ = ∇r · v + ∇v · F(r) = 0, (1.3)
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irrespective of the nonexistence of a potential U(r). We note that unconventional Lagrangeans
can be found in some particular cases [1]; and we do not consider empty reformulations
in which the phase space is doubled, enabling any evolution equation to be expressed in
Hamiltonian form.

Our aim here is to explore, in an elementary way, motion determined by (1.1) with forces
satisfying (1.2), which we will refer to as ‘curl forces’. As we will see, such nondissipative
yet non-Hamiltonian dynamics has interesting features. For example, Noether’s theorem [2]
does not apply, so there can be symmetries not associated directly with a conservation law
and, conversely, conserved quantities not associated with any symmetry.

Dynamics driven by curl forces has been studied by mechanical engineers and applied
mathematicians, for example in the context of whirling shafts [3, 4], and pendulums with
rotational dissipation [5, 6], but less often by physicists [7–9]. Most of these studies concentrate
on the simplest linear cases (for an exception, see [10]), and emphasize the sometimes
unexpected effects of curl forces on stability [11–18]. In the literature, curl forces have
been variously referred to as ‘follower forces’ [19–21], ‘circulatory forces’ [17, 22], ‘pseudo-
gyroscopic forces’ [18] and ‘positional nonconservative forces’ [23].

The existence of curl forces is a matter of some controversy [24–27], centred on the
question of whether it is physically possible for them to act alone, that is in the absence of
additional forces not of curl type. This can be illustrated by attempting to reformulate the
dynamics in terms of an electric curl force, with a time-dependent vector potential

A(r, t) = tF(r). (1.4)

This would suggest describing the dynamics by the Hamiltonian

H(r, p) = 1
2 (p − A(r, t))2. (1.5)

But the attempt fails, because H generates an additional magnetic force, so the total force
acting on the particle is

Ftotal = ∂A(r, t)

∂t
+ v × B(r, t) = F(r) + v × B(r), (1.6)

where

B(r, t) = ∇ × A(r, t) = t∇ × F(r). (1.7)

The unwanted magnetic force is non-zero precisely in the situation we are interested in,
namely forces satisfying (1.2). But it is the basis of the betatron [28], in which electrons are
accelerated (albeit relativistically) by the electric curl forces generated by a time-dependent
magnetic field, with the unavoidable associated magnetic force tailored to stabilise the motion
by maintaining circular orbits. In other cases that have been described, the non-curl forces
have been dissipative [4, 5, 15].

In section 2 we present a class of models for particles moving under curl forces alone.
We cannot find closed-form solutions for general motions, but the dynamics can be reduced
to the Emden–Fowler equation [29, 30], for which a particular exact solution exists for a wide
class of cases, described in section 3. Conserved quantities are known for two particular cases
(section 4). The solutions in section 3 fail for three special cases of particular interest, and we
consider them separately. Section 5 describes a case for which the Emden–Fowler equation
reduces to a triviality. Section 6 describes the simple linear case, which can be solved exactly
and indeed represented by infinitely many Hamiltonians, albeit not of the usual type. Section 7
describes another case that can be solved exactly, by transformation into linear form. The most
interesting case (section 8) corresponds to particle motion determined by a time-dependent
magnetic flux that is localized, so the only force is azimuthal electric. In this case there is a
Hamiltonian but it has a peculiar feature: a classical evocation of the Aharonov–Bohm effect
[31, 32]. And the orbits display pathologically slow windings.
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2. Curl force models

In perhaps the simplest class of models of the type we are interested in, the particle moves
in the plane (x, y) under the action of a curl force directed azimuthally, with a magnitude
depending on distance r from the origin:

F(r) = f (r)eθ . (2.1)

Since there is no radial force, the radial evolution r(t) is determined by centrifugal acceleration
alone:

r̈(t) = r(t)θ̇ (t)2. (2.2)

This is never negative, so the particle will almost always eventually recede from the origin. It
is worth emphasizing that there are azimuthal forces which are conventionally derived from
a potential, i.e. not of the curl type (2.1); as has been noted [10], an example is the potential
U (r) = x/(x + y), which generates F(r) = reθ / (x + y)2.

The azimuthal force (2.1) corresponds to a torque, giving the particle angular acceleration.
Therefore the angular momentum J = r2θ̇ is not conserved, even though the force (2.1) is
rotationally symmetric: Noether’s theorem does not apply because there is no corresponding
Lagrangean or Hamiltonian. The J evolution is governed by

r(t)2θ̈ (t) + 2r(t)ṙ(t)θ̇ (t) = d

dt
[r(t)2θ̇ (t)] ≡ J̇(t) = r(t) f (r(t)). (2.3)

Thus if f (r) is positive, J never decreases. Often this leads to the particle winding round
the origin forever, i.e. θ increasing without bound. When combined with the radial motion
governed by (2.2), this implies that the orbits are spirals. However, we shall see that if f (r)
decreases fast enough the azimuthal motion can freeze; and section 8 will deal with a marginal
case where the winding is perpetual but pathologically slow.

There is no obvious Hamiltonian for general f (r). Nevertheless, the dynamics is separable,
in at least two ways. The first starts by writing (2.2) as

J (t) =
√

r (t)3 r̈ (t), (2.4)

and then differentiating again. This leads to a third-order equation for r(t) alone:

r + 3ṙr̈ − 2 f (r)
√

rr̈ = 0. (2.5)

The initial conditions required to define a trajectory are

r(0) ≡ r0, ṙ(0) ≡ v0, r̈(0) = r0θ̇ (0)2 = J(0)2

r3
0

. (2.6)

The second way is more useful and will play a major part in the following. It starts by
writing the radial equation (2.2) in terms of angular momentum:

r̈ = J2

r3
. (2.7)

Next, J is regarded as a new independent variable, and a new dependent variable is defined as
the integrated torque:

T (J) ≡
∫ r(J)

r0

dr r f (r), (2.8)

in which we will usually take r0 = 0. It now follows from (2.3) that
dT

dJ
≡ T ′ = ṙ, (2.9)
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leading to the equation for T(J):

T ′′(J) = J2

r(J)4 f (r(J))
. (2.10)

When this can be solved, r(J) can be determined from (2.8), and its time dependence follows
from the torque equation (2.3), i.e. by inverting

t =
∫ J(r)

J0

dJ

r(J) f (r(J))
. (2.11)

Then the angular evolution can be found from

θ (t) =
∫ t

0
dt

J(t)

r(t)2
. (2.12)

We will concentrate on a subclass of curl forces of the type (2.1), in which f (r) is a power
law:

f (r) = rμ. (2.13)

We do not include a constant coefficient, because this can be removed by scaling time in (1.1).
There is an additional scaling under which (1.1) is invariant, namely replacing r by ρ, defined
by

ρ(t) = R r(R(μ−1)/2t). (2.14)

This means we can eliminate one degree of initial-condition freedom by taking r0 = 1, and we
will frequently assume this in what follows.

Using the second separation described above, we find the variable T in (2.8) as

T = rμ+2

μ + 2
. (2.15)

Now the T evolution (2.10) can be conveniently expressed as the Emden–Fowler equation [29]

T ′′(J) = AJnT m, (2.16)

in which

n = 2, m = −μ + 4

μ + 2
, A = (μ + 2)−(μ+4)/(μ+2) . (2.17)

The exact closed-form solution of the Emden–Fowler equation is not known for general μ,
so we cannot solve the dynamics explicitly, and nor can we find any conserved quantities that
are functions of r(t) and v(t). However, special solutions are known for a class of μ, and these
will be described in section 3. For some special μ, conserved quantities are known and will
be described in section 4. In three special cases (sections 5–7) general solutions are known.
And in section 8 we give an extended discussion of what is perhaps the most interesting case,
namely μ = −1, where a Hamiltonian does exists but is not single-valued.

Before proceeding, we mention a class of curl forces complementary to (2.1), in which
the force is radial but can vary with azimuth. Thus

F(r) = g(r, θ )er, (2.18)

in which g(r,θ ) is a 2π -periodic function of θ . Because there is no torque, angular momentum is
conserved, even though the force is not rotationally symmetric (except for the familiar central
forces, in which g is independent of θ ). Again, Noether’s theorem does not apply. Motion
under these non-symmetric central forces deserves further study, but we do not consider them
further here.

We acknowledge that our inability to find exact solutions and conserved quantities
(functions of r and v only) for general curl forces of the type (2.1) does not imply that
none exist. If any such unconventional invariants are found, the question of their physical
meaning will arise.
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Figure 1. Orbit (3.1) (for curl force with exponent μ = 0) for times 0 � t � 100.

3. Special solutions for a range of exponents μ

From Emden–Fowler solution tables [29, 30], or directly from (2.2), (2.3) and (2.13), we can
find the following special solutions, in which the particle emerges from the origin (i.e. the
initial condition is not r(0) = 1) with infinite angular velocity and then recedes while spiralling
ever more slowly:

r(t) =
(

(1 − μ)2

3 + μ

)1/(1−μ)
t2/(1−μ)

(2 (1 + μ))1/(2(1−μ))

θ (t) =
√

2 (1 + μ)

1 − μ
log t

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(−1 < μ < 1) .
(3.1)

Figure 1 illustrates the case μ = 0 (i.e. m = −2 in (2.17)), for which the orbit is

r (t) = t2

3
√

2
, θ (t) =

√
2 log t. (3.2)

The solution (3.1) fails when μ takes the limiting values 1 or –1 and also μ = −3, and
sections 6–8 will be devoted to these cases (μ = 1 and μ = −1 have been cited, without
elaboration, [33] as examples of non-potential forces).

4. Conserved quantities for μ = −3/2 and μ = −5/3

For Emden–Fowler equations with n = 2, the following functions of r and J (or equivalently
r and θ̇ ) can be extracted from tabulated solutions [29] and easily confirmed to be conserved
under the dynamics

r̈ = J2

r3
, J̇ = r f (r) = rμ+1 (4.1)

for two special cases.
In the first, μ = −3/2, i.e. m = −5, and the conserved quantity is

C−3/2 = (Jṙ − 2
√

r)2 + J4

r2
. (4.2)

In the second, μ = −5/3, i.e. m = −7, the conserved quantity is

C−5/3 = Jṙ2 − 3r1/3ṙ + J3

r2
. (4.3)

Neither has any obvious physical interpretation.
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5. Solvable case μ = −4

This corresponds to m = 0, so the Emden–Fowler equation takes the trivial form

T ′′(J) = J2. (5.1)

The particular solution

T (J) =
∫ r(J)

1
drr f (r) =

∫ r(J)

1

dr

r3
= 1

2

(
1 − 1

r2

)
= 1

12
J4 (5.2)

(incorporating (2.8)) connects r with J and will correspond to the dynamics in which the
particle starts from rest at r = 1.

We can find the shape r(θ ) of the trajectory from (2.12), transforming the integration
variable from t to r and using (2.9):

θ =
∫ r

1

drJ2

ṙr
=

∫ r

1

drJ2

T ′ (J) r
= 3

∫ r

1

drJ2

J2r
=

√
3

2

∫ r

1

drJ2

r
√

r2 − 1
=

√
3

2
sec−1 r. (5.3)

Thus

r (θ ) = sec
(
θ

√
2
3

)
, (5.4)

implying that the orbit departs from r = 1 in the y direction and recedes towards infinity in the

asymptotic direction θmax = π
2

√
3
2 ≈ 110.23◦.

To find the time dependence of r, we use (2.11), to get

t =
∫ J(r)

0
dJ r (J)3 =

∫ r

1
dr

dJ

dr
r3 =

(
3

8

)1/4 ∫ r

1

dr r3/2

(r2 − 1)3/4

=
(

3

8

)1/4 [√
r(r2 − 1)1/4+ 1√

2

(
K

(
1√
2

)
−F

(
cos−1

(
1−1/r2

)1/4
,

1√
2

))]
,

(5.5)

where K and F are elliptic integrals, in the notation of [34]. This shows how the radial
coordinate increases from r = 1 at t = 0 and grows linearly as t→∞.

6. Solvable linear curl force (μ = 1)

For this case, μ = −5/3. The corresponding Emden–Fowler equation is exactly solvable [29],
but it is easier to note that the force determined by (2.13) is F(r) = reθ, so (1.1) is a linear
equation, that can be written

ẍ = −y, ÿ = x. (6.1)

The exact solution is very simple. A convenient way starts by defining

ζ ≡ x + iy, (6.2)

so (6.1) can be written as

ζ̈ (t) = iζ (t), (6.3)

whose general solution is

ζ (t) = A exp(t
√

i) + B exp(−t
√

i)

= A exp

(
t√
2

)
exp

(
it√
2

)
+ B exp

(
− t√

2

)
exp

(
− it√

2

)
. (6.4)
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Figure 2. (a) Orbit (6.6) under linear rotational curl force (exponent μ = 1); (b) as (a) but with
radius logarithmically scaled, revealing the inner windings of the orbit.

This is the superposition of two spiral motions with uniform angular velocity: one
anticlockwise, and spiralling exponentially fast outwards, and the other clockwise and
spiralling exponentially fast inwards.

For the particle starting from rest on the x axis, the initial conditions are

A = B = 1
2 , i.e. x(0) = 1, y(0) = ẋ(0) = ẏ(0) = 0, (6.5)

and the orbit is simply

ζ (t) = cosh(t
√

i), (6.6)

as illustrated in figure 2.
The evolution equation (6.3) possesses the obvious complex conserved quantity

ζ̇ (t)2 − iζ (t)2 = C1 + iC2. (6.7)

Therefore C1 and C2, namely

v2
x − v2

y + 2xy = C1, 2vxvy − x2 + y2 = C2, i.e.

C1 = (ṙ2 − r2θ̇2) sin 2θ − (r − 2ṙθ̇ ) cos 2θ

C2 = (ṙ2 − r2θ̇2) cos 2θ + (r − 2ṙθ̇ ) sin 2θ

(6.8)

are real invariants, as is any combination of them. Associated with C1 and C2 are the following
Hamiltonians (suggested by manipulations in [1]):

H1(r, p) = 1
2

(
p2

x − p2
y

) + xy
H2(r, p) = px py + 1

2 (y2 − x2).
(6.9)

Either will generate the evolution (6.1), but neither reflects the rotational symmetry of the
force F(r) = reθ, and C1 and C2 are not related to this symmetry.

7. Solvable inverse cube curl force (μ = −3)

For this case, m = 1 and the Emden–Fowler equation (2.16) is linear:

T ′′ (J) = J2T (J). (7.1)
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The solution [34] is conveniently written, incorporating (2.8) with r0 = ∞, as

T (J) = −
∫ ∞

r

dr

r2
= −1

r
= −√

J

(
A J1/4

(
1

2
J2

)
+ B Y1/4

(
1

2
J2

))
, (7.2)

in which J1/4 and Y1/4 (not italics, and not to be confused with J) denote Bessel functions,
and A and B are constants.

To find the spatial track we use (2.12), which for this case gives

θ =
∫ J

0

dJ

J̇

J

r2
=

∫ J

0
dJJ = 1

2
J2. (7.3)

Thus, from (7.2), the track is

r (θ ) = 1

θ1/4
(
A J1/4 (θ ) + B Y1/4 (θ )

) . (7.4)

And for the time-dependence, (2.11) gives

t(θ ) =
∫ θ

0

dJ(θ ′)
dθ ′ r(θ ′)2 =

∫ θ

0

dθ ′r2(θ ′)√
2θ ′

= π

2
√

2

(
AY1/4(θ ) − BJ1/4(θ )

AJ1/4(θ ) + BY1/4(θ )
− A

B(A2 + B2)

)
. (7.5)

This is the general solution. It will suffice to consider the particular case A = 0, B = –1,
for which

r (θ ) = − 1

θ1/4Y1/4 (θ )
, t (θ ) = − π

2
√

2

J1/4 (θ )

Y1/4 (θ )
. (7.6)

This corresponds to the initial conditions

x(0) = π

21/4�
(

1
4

) = 0.7287, . . . , y(0) = 0,

ẋ(0) = v0 = −�(− 1
4 )

25/4π
= 0.6560, . . . , ẏ(0) = 0.

(7.7)

Figure 3 shows the trajectory. The particle’s azimuth increases from θ = 0 and freezes
asymptotically at θmax, given by the first zero of Y1/4:

Y1/4 (θmax) = 0, i.e. θmax = 1.241 66, . . . ,≈ 71.142◦. (7.8)

8. Localized time-dependent flux (curl force with μ = −1)

Here, m = –3 and the Emden–Fowler does not appear to be solvable in closed form. In this
most interesting case, the force, namely

F(r) = eθ

r
= xey − yex

r2
, (8.1)

is irrotational everywhere except at the origin, where the curl is localized:

∇ × F (r) = 2πδ (r) ez. (8.2)

Therefore by excluding the origin it is possible to define a scalar potential, namely U (r) = −θ ,
and thus a Hamiltonian representing a conserved energy:

H(r, p) = 1

2
p2 − θ = 1

2

(
p2

r + J2

r2

)
− θ = E = constant. (8.3)

Excluding the origin carries a price: the plane is no longer simply connected, so the
domain of the angular coordinate is the entire real line −∞ < θ < +∞. Therefore H does

8
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Figure 3. Orbit (7.6) under inverse-cube curl force (exponent μ = −3) for times 0 � t � 4.3.

not reflect the periodicity of the force (8.1). This phenomenon is well known in classical
Hamiltonian and quantum physics—for example, the scalar potential of a uniform electric
force, or the vector potential of a uniform magnetic field, are not themselves uniform and so
violate the translation symmetry of the fields (or the periodicity of a crystal to which the field
is applied). Here, the situation is worse because (8.3) is not single-valued: the same point can
be represented by values of θ differing by multiples of 2π . H could be made single-valued
by eliminating θ by the transformation (1.4) and (1.5), but then the time symmetry would be
violated and energy would no longer be conserved.

As in our other examples, angular momentum J is not conserved with the Hamiltonian
(8.3), but in this special case J evolves in a very simple way. From (2.3), the torque J̇ has the
constant value unity, so J itself increases linearly:

J (t) = r2 (t) θ̇ (t) = t + J0. (8.4)

(With the transformation (1.4) and (1.5), rotational symmetry would be restored and the
canonical angular momentum conserved, and J would differ from the kinetic angular
momentum precisely by the term t in (8.4).)

We can set J0 = 0 by suitably defining the origin of time. If in addition we choose
an orientation of coordinates such that θ (0) = 0, the general motion under the force (8.1)
corresponds to the particle released from x0 = 1, y0 = 0 with velocity v0 along the x axis. Thus
the energy is

E = 1
2v2

0, (8.5)
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Figure 4. Evolution of radial coordinate for particle driven by time-dependent flux, calculated
by solving (8.7) for (a) v0 = 0 (particle at rest at t = 0), (b) v0 = 0.3. The tangent construction
(dotted lines) is explained after (8.13), and corresponds to (a) tB = 1.6226 and rB = zBtB = 1.4423,
(b) tB = 2.1338 and rB = zBtB = 2.1941.

and θ (t) can be determined from the Hamiltonian if r(t) is known:

θ (t) = 1

2

(
ṙ2(t) − v2

0 + t2

r2(t)

)
. (8.6)

The radial coordinate is now determined from (2.2) by

r3 (t) r̈ (t) = t2. (8.7)

This is simply the Emden–Fowler equation (2.16), because for μ = −1 we have J(t) = t from
(8.4), and, from (2.8), T = r. It is easy to solve (8.7) numerically; figure 4 shows the solutions
for two different values of v0. But it is instructive to understand the evolution analytically for
short and long times. The symmetry

r (−t, v0) = r (t,−v0) (8.8)

means that if we consider general v0 we need study only t > 0.

8.1. Short times

After some inspection, it becomes clear that the general power series solution of (8.7) has the
form

r(t) = 1 + v0t +
∞∑

n=4

bntn. (8.9)

The coefficients are easy to calculate recursively; table 1 shows the first few.
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Figure 5. Double-valued solution for u(z) corresponding to figure 4(a), obtained by solving (8.11)
for zB = 0.888 87, corresponding to v0 = 0; the behaviour for other values of v0 is qualitatively
identical.

Table 1. Coefficients in the series (8.9).

n 4 5 6 7 8

bn − 1
12 − 3

20 v0
1
5 v2

0 − 5
21 v3

0
1

224

(−1 + 60v4
0

)

Numerical calculation of many coefficients suggests that they decay exponentially with
increasing n, so the series appears to be convergent with a finite radius of convergence. In any
case it is useless for the numerical computation of r(t) beyond t ∼ 1 and we do not consider
this series further.

8.2. Long times

It is possible to study the large t asymptotics of (8.7) directly, but it is interesting and instructive
to transform to a first-order equation, involving the new independent variable z and dependent
function u(z), defined by

z ≡ r (t)

t
, u (z) ≡ ṙ (t) − r (t)

t
= ṙ (t) − z = tż (8.10)

(this is a slight modification of a transformation suggested to us by Professor Clara Nucci).
The transformed equation—also deceptively simple—is

u(z)u′(z) + u(z) = 1

z3
. (8.11)

Once the solution is known, r(t) can be reconstructed from any given time t
∗

using the relations

t (z) = t∗ exp

(∫ z

z∗

dz

u (z)

)
, r (z) = z t (z) , z∗ = r∗

t∗
, (8.12)

to which we will return later.
Figure 5 shows a numerically computed solution of (8.11), indicating that the function

u(z) is double-valued, with positive- and negative-valued branches u± (z). These are connected
where u = 0, at z = zB, corresponding, according to (8.10), by

ṙ (tB) = rB

tB
. (8.13)

11
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Table 2. Coefficients in the large z expansion (8.20) for u+(z), calculated from (8.21).

n 0 1 2 3 4 5 6

Cn 1 3 30 483 10 314 268 686 8167 068

On the graph of r(t) (figure 4) this is the point where the tangent to the curve passes through
the origin. Solution of (8.11) for u  1 gives the local behaviour

u± (z) ≈ ±
√

2

z3
B

(z − zB) (z ≈ zB) . (8.14)

Significant regions of the graph of u(z) are denoted A, B, C, D on figure 5. The regions A
and D both correspond to z → ∞, with A representing t  1, and region D representing t � 1.
To get the large t asymptotics of r(t), in a way that incorporates the initial velocity v0, it is
therefore necessary to connect region A to region D.

In region A, where 1/z3 can be neglected in (8.11), the asymptotic solution is

u−(z) → v0 − z (z → ∞) . (8.15)

In region B we have the solution (8.14). In region C, which we will not consider further but
include for completeness, the defining conditions are

u′
+(zC) = 0 → u+ (zC) = 1

z3
C

→ ṙ (tC) = rC

tC
+ 1

z3
C

. (8.16)

This leaves the asymptotic region D of u+. In the leading order, the term in (8.11) involving
u′ can be neglected, giving

u+(z) ∼ 1

z3
. (8.17)

From (8.12) and (8.6), this gives

r(t) ∼ t (4 log t)1/4 , θ (t) ∼
√

log t. (8.18)

We will see that these are only rough approximations. But they do indicate that despite the
decay of f (r) the orbit spirals perpetually, with the windings slowing dramatically for long
times: the time for n turns around the origin is approximately

tn ∼ tn0 = exp(4π2n2). (8.19)

To go further, we write the formal large z series solution of (8.11) as

u+(z) = 1

z3

∞∑
n=0

Cn

z4n
, C0 = 1. (8.20)

The coefficients are determined by

Cn =
n∑

m=1

Cm−1Cn−m (4m − 1) . (8.21)

Table 2 shows the first few coefficients. Although we will need only the first two terms, the
high orders are interesting and are discussed in the appendix. Note that the coefficients are
independent of the initial velocity v0. It is likely that the contribution of v0 is exponentially
small and not captured by the formal series, and some preliminary numerical simulations
support this; but such refined exponential asymptotics is unnecessary because, as will now
be shown, the contribution of v0 to the asymptotics of r(t) is much larger.

12
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Now we describe the connection between region A and region D. For this we use (8.12)
twice: for u+ and u−. Between A and B, we subtract the large z asymptotics, by writing

1

u− (z)
= 1

v0 − z
+ 	− (x) . (8.22)

Then (8.12) gives

t(z) = tB exp

(∫ z

zB

dz

(
1

v0 − z
+ 	− (z)

))

= tB
(zB − v0)

(z − v0)
exp

(∫ z

zB

dz 	− (z)

)
, (8.23)

and hence

r (z) = zt (z) = tBz
(zB − v0)

(z − v0)
exp

(∫ z

zB

dz 	− (z)

)
. (8.24)

In the limit z → ∞, and using r0 = 1, this enables tB(v0) to be identified as

tB (v0) = 1

zB (v0) − v0
exp

(
−

∫ ∞

zB(v0)

dz 	− (z)

)
, (8.25)

where zB(v0) can be identified as the place where the solution with the asymptotic form (8.15)
is zero. The integral converges because of the subtraction in (8.23).

We can connect B with D directly (it is unnecessary to consider C separately), by
proceeding similarly, with the subtraction (from the first two terms of (8.20)) in this case
being

1

u+ (z)
= z3 − 3

z
+ 	+ (z) . (8.26)

Using (8.12) again gives

t = tB

(
zB

z

)3

exp

(
1

4

(
z4 − z4

B

) +
∫ z

zB

dz	+ (z)

)
. (8.27)

For t � 1 this is

t ≈ 1

z3
exp

(
1

4
z4 + KB (v0)

)
, (8.28)

in which

KB (v0) = −1

4
z4

B + log
(
z3

BtB
) +

∫ ∞

zB

dz	+ (z), (8.29)

and again the integral converges. Thus

4 log t = z4 − 12 log z + 4KB (v0) + · · · (8.30)

and, by inversion,

z4 = 4 log t + 3 log (4 log t) − 4KB (v0) + · · · (8.31)

giving finally the desired more sophisticated asymptotic form for r(t):

r (t) = t (4 log t + 3 log (4 log t) − 4KB (v0))
1/4 + · · · . (8.32)

Knowing the asymptotics of r(t), the asymptotics of the azimuth θ (t) can be determined from
(8.6).

The procedure based on (8.29) for getting the connection constant KB(v0), incorporating
the initial velocity into the final asymptotics, is admittedly numerical, and it would be desirable
to get an analytical form for it. But now that the form (8.32) has been established, the constant

13
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Figure 6. The connection constant KB defined by (8.29), in the long-time asymptotics (8.32) of the
radial coordinate, calculated from (8.33) as a function of the initial speed v0.
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Figure 7. Orbits driven by time-dependent flux with v0 = 0, for 0 � t � tmax, where (a) tmax = 10,
(b) tmax = 20, (c) tmax = 30, (d) tmax = 40, (e) tmax = 50, ( f ) tmax = 50. Thick curves calculated
numerically from (1.1) and (8.1); thin curves from asymptotic approximation (8.32) and (8.6) with
KB = 0.

can be alternatively and conveniently determined directly from a numerical solution of (8.7),
as

KB = lim
t→∞

(
− r (t)4

4t4
+ log t + 3

4
log (4 log t)

)
. (8.33)

Figure 6 is a graph of KB(v0), calculated in this way. The limiting value for large t is attained
rapidly, except near v0 = 0. The value for KB(0) decreases slowly as t increases, leading us to
conjecture that KB(0) = 0; an analytical proof or refutation would be desirable.

Figures 7 and 8 show the trajectories computed numerically from (1.1) with the force (8.1),
compared with the asymptotic trajectories calculated from (8.32) and (8.6). From figure 7, it
is clear that as t increases the asymptotics converges rapidly onto the numerically computed
solution. And from figure 8, for much larger values of t, it is clear that the spiralling is extremely
slow. Table 3 shows the extraordinarily long times taken for the first few turns, that is for θ

to reach 2πn, starting from θ0 = 0; evidently the more sophisticated approximation based on
(8.32) and (8.6) is a vast improvement.
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Figure 8. As figure 7, with (a) tmax = 10, (b) tmax = 104, (c) tmax = 107, (d) tmax = 1010, (e) tmax =
1013, ( f ) tmax = 1015, showing very slow spiralling.

Table 3. Times tn for n turns, compared with the crude approximation tn0 (equation (8.19)) and the
more sophisticated approximate turn times tnapp obtained from (8.32) and (8.6).

n 1 2 3

tn 7.138 × 1014 6.746 × 1065 1.946 × 10151

tn0 1.40 × 1017 3.81 × 1068 2.03 × 10154

tnapp 7.475 × 1014 6.894 × 1065 1.977 × 10151

9. Concluding remarks

It seems clear that motion under curl forces is a rich source of largely unexplored mathematical
physics. Is it also physics that could be probed experimentally, at least in principle? We are not
sure. The question concerns particle dynamics under the action of curl forces alone: if other
forces (e.g. magnetic or dissipative) act as well, then physical implementation is unproblematic,
as the betatron and many engineering examples cited in section 1 demonstrate. Of the cases we
have considered, the only one that is obviously realizable is that considered in section 8: the
electric force from a localized time-dependent flux, for example in a betatron without confining
magnetic field. But in this case the force is curl-free in the region in which the particle moves,
i.e. the plane with the origin removed. Nevertheless, the strange Hamiltonian (8.3), involving
the angle θ which is not single-valued (a curious evocation of the Aharonov–Bohm effect as
we remarked earlier), is interesting, as are the pathologically slow asymptotic windings and
the fact that there seems to be no conserved quantity other than the energy.

There are several possible generalizations and extensions of this work. One is to explore
curl forces of the form (2.18), where the force is radial, so angular momentum is conserved
although there is apparently no Hamiltonian. Another is to study motion under fully three-
dimensional curl forces.

A third direction involves nondissipative ‘magnetic’ forces B(r) that are velocity-
dependent but not divergenceless; Newtonian dynamics can be defined by a ‘Lorentz’ force
F = v × B(r), but there is no corresponding vector potential A(r) satisfying B(r) = ∇ × A(r)
and so no Hamiltonian, even though such forces conserve the kinetic energy 1

2v2. One such
situation, analogous to the localized time-dependent flux in section 8, is classical motion in
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the field of a magnetic monopole [35]. In this case, which arises naturally in the dynamics of
a slow system coupled to a fast one [36] (and was the system whose contemplation led to the
present study), the divergence is zero everywhere except at the origin, where the monopole is
located, so, as is well known [37, 38], A can be defined locally but not globally.

Finally, there is the question of whether quantum mechanics can be defined for curl forces.
We do not know the answer in general, but remark that in the case of localized time-dependent
flux the motion could perhaps be quantized on the multiply-connected space of the plane
minus the origin, via the Hamiltonian (5.5).
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Appendix. Asymptotics of coefficients determined recursively by (8.21)

With the transformation

Cn ≡ 4nDn, (A.1)

and conflating the terms m and n–m, the recurrence relation (5.21) takes the more symmetrical
form

Dn =
(

n + 1

2

) int(n/2)∑
m=1

Dm−1Dn−m. (A.2)

The large n ansatz

Dn = G (n + α)! (A.3)

leads to

(n + α)! = (
n + 1

2

) [
(n + α − 1)! + 3

4 (n + α − 2)! · · ·], (A.4)

so

1 =
(

n + 1

2

) [
1

(n + α)
+ 3

4 (n + α) (n + α − 1)
+ · · ·

]

= 1 + 1

n

(
5

4
− α

)
+ · · · (A.5)

leading to the identification α = 5/4. The constant G can be evaluated numerically:

G = lim
n→∞

Cn

4n
(
n + 5

4

)
!

= 0.352 . . . . (A.6)

Thus the coefficients in (8.20) are

Cn ≈ G4n
(
n + 5

4

)
! (n � 1) , (A.7)

indicating that the series is factorially divergent and with all terms positive (i.e. on the Stokes
line of its variable z). The terms decrease until n ∼ z4/4 and then increase rapidly. Truncation
near the least term gives

u (z) ≈ 1

z3

⎛
⎝int(z4/4)−1∑

n=0

Cn

z4n
+ G

∞∑
n=int(z4/4)

(
4

z4

)n (
n + 5

4

)
!

⎞
⎠ . (A.8)
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The divergent tail is in standard form [39] and can be estimated by Borel summation [40] as

∞∑
n=int(z4/4)

(
4

z4

)n (
n + 5

4

)
!

≈ √
2π

(
z2

4

)3/4 (
z2

4
− int

[
z2

4

]
− 11

12

)
exp

(
− z4

4

)
.

(A.9)

This is a precise version of the familiar rule [39, 41, 42] that when an asymptotic expansion
whose terms are all positive is truncated near its least term, the remainder is of the same order
as the least term, which is exponentially small.

References

[1] Nucci M C and Leach P G L 2011 Some Lagrangians for systems without a Lagrangian Phys. Scr. 83 035007
[2] Lanczos C 1970 The Variational Principles of Mechanics 4th edn (New York: Dover)
[3] Smith D M 1933 The motion of a rotor carried by a flexible shaft in flexible bearings Proc. R. Soc. A 142 92–118
[4] Kimball A L J 1925 Internal friction as a cause of shaft whirling Phil. Mag. 49 724–7
[5] Crandall S H 1995 The effect of damping on the stability of gyroscopic pendulums Z. Angew. Math. Phys.

46 S761–80
[6] Crandall S H 1995 Rotor Dynamics in Nonlinear Dynamics and Stochastic Mechanics ed W. N. Kliemann (Boca

Raton, FL: CRC Press) pp 1–44
[7] Tarasov V E 2005 Phase-space metric for non-Hamiltonian systems J. Phys. A: Math. Gen. 38 2145–55
[8] Mukherjee A, Rastogi V and Dasgupta A 2011 Revisiting Umbra–Lagrangian–Hamiltonian mechanics: its

variational foundation and extension of Noether’s theorem Int. J. Nonlinear Mech. 46 745–57
[9] Tasso H and Throumoulopoulos G N 2000 On Lyapunov stability of nonautonomous mechanical systems Phys.

Lett. A 271 413–8
[10] Zhuravlev V P 2008 Analysis of the structure of generalized forces in the Lagrange equations Mech.

Solids 43 837–42
[11] Beletsky V V 1995 Some stability problems in applied mechanics Appl. Math. Comput. 70 117–41
[12] Agafonov S A 2002 Stability and motion stabilization of nonconservative dynamical systems J. Math.

Sci. 112 4419–97
[13] Kirillov O N 2007 Gyroscopic stabilization in the presence of nonconservative forces Dokl. Math. 76 780–5
[14] Kirillov O N and Verhulst F 2010 Paradoxes of dissipation-induced destabilization or who opened Whitney’s

umbrella? Z. Angew. Math. Mech. 90 462–88
[15] Krechetnikov R and Marsden J E 2006 On destabilizing effects of two fundamental non-conservative forces

Physica D 214 25–32
[16] Samantaray A K, Bhattacharyya R and Mukherjee A 2007 On the stability of Crandall gyropendulum Phys.

Lett. A 372 238–43
[17] Ziegler H 1953 Linear elastic stability: a critical analysis of methods Z. Angew. Math. Phys. 4 89–121
[18] Hauger W 1975 Stability of a gyroscopic non-conservative system J. Appl. Mech. 42 739–40
[19] O’Reilly O M, Malhotra N K and Namachchivaya N S 1996 Some aspects of destabilization in reversible

dynamical systems with application to follower forces Nonlinear Dyn. 10 63–87
[20] Bailey C D and Haines J 1981 Vibration and stability of non-conservative follower force systems Comput.

Methods Appl. Math. Eng. 26 1–31
[21] Singh A, Mukherjee R, Turner K and Shaw S 2005 MEMS implementation of axial and follower forces J. Sound

Vib. 286 637–44
[22] Tkhai V N 1981 On stability of mechanical systems under the action of position forces J. Appl. Math.

Mech. 44 24–9
[23] Ivanov A P 2003 The stability of mechanical systems with positional nonconservative forces J. Appl. Math.

Mech. 67 625–9
[24] Koiter W T 1996 Unrealistic follower forces J. Sound Vib. 194 636–8
[25] Elishakoff I 2005 Controversy associated with the so-called ‘follower forces’: critical overview Appl. Math.

Rev. 58 117–42
[26] Sugiyama Y, Langthjem M A and Ryu B-J 1999 Realistic follower forces J. Sound Vib. 225 779–82
[27] Sugiyama Y, Ryu S-U and Langthjem M A 2002 Beck’s column as the ugly duckling J. Sound Vib. 254 407–10
[28] Kerst D W and Serber R 1941 Electronic orbits in the induction accelerator Phys. Rev. 60 53–8

17

http://dx.doi.org/10.1088/0031-8949/83/03/035007
http://dx.doi.org/10.1098/rspa.1933.0158
http://dx.doi.org/10.1088/0305-4470/38/10/006
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.02.008
http://dx.doi.org/10.1016/S0375-9601(00)00386-8
http://dx.doi.org/10.3103/S0025654408060010
http://dx.doi.org/10.1016/0096-3003(94)00123-L
http://dx.doi.org/10.1023/A:1020570204883
http://dx.doi.org/10.1134/S1064562407050353
http://dx.doi.org/10.1002/zamm.200900315
http://dx.doi.org/10.1016/j.physd.2005.12.003
http://dx.doi.org/10.1016/j.physleta.2007.07.024
http://dx.doi.org/10.1007/BF02067575
http://dx.doi.org/10.1115/1.3423678
http://dx.doi.org/10.1007/BF00114799
http://dx.doi.org/10.1016/0045-7825(81)90128-6
http://dx.doi.org/10.1016/j.jsv.2004.12.010
http://dx.doi.org/10.1016/0021-8928(80)90169-0
http://dx.doi.org/10.1016/S0021-8928(03)90034-7
http://dx.doi.org/10.1006/jsvi.1996.0383
http://dx.doi.org/10.1006/jsvi.1998.2290
http://dx.doi.org/10.1006/jsvi.2002.5003
http://dx.doi.org/10.1103/PhysRev.60.53


J. Phys. A: Math. Theor. 45 (2012) 305201 M V Berry and P Shukla

[29] Polyanin A D and Zaitsev V F 2003 Handbook of Exact Solutions for Ordinary Differential Equations (Boca
Raton, FL: Chapman and Hall/CRC Press)

[30] Polyanin A D 2004 Emden–Fowler equation http://eqworld.ipmnet.ru/en/solutions/ode/ode0302.pdf
[31] Aharonov Y and Bohm D 1959 Significance of electromagnetic potentials in the quantum theory Phys.

Rev. 115 485–91
[32] Olariu S and Popescu I I 1985 The quantum effects of electromagnetic fluxes Rev. Mod. Phys. 57 339–436
[33] Arnold V I 1978 Mathematical Methods of Classical Mechanics (New York: Springer)
[34] DLMF 2010 NIST Handbook of Mathematical Functions (Cambridge: Cambridge University Press)

(http://dlmf.nist.gov)
[35] Sivardiere J 2000 On the classical motion of a charge in the field of a magnetic monopole Eur. J. Phys. 21 183–90
[36] Berry M V and Shukla P 2010 High-order classical adiabatic reaction forces: slow manifold for a spin model

J. Phys. A: Math. Theor. 43 045102
[37] Wu T T and Yang C N 1975 Concept of nonintegrable phase factors and global formulation of gauge fields

Phys. Rev. D 12 3845–57
[38] Dirac P A M 1931 Quantised singularities in the electromagnetic field Proc. R. Soc. A 133 60–72
[39] Dingle R B 1973 Asymptotic Expansions: Their Derivation and Interpretation (New York: Academic)
[40] Berry M V 1989 Uniform asymptotic smoothing of Stokes’s discontinuities Proc. R. Soc. A 422 7–21
[41] Stokes G G 1847 On the numerical calculation of a class of definite integrals and infinite series Trans. Camb.

Phil. Soc. 9 379–407
[42] Stokes G G 1864 On the discontinuity of arbitrary constants which appear in divergent developments Trans.

Camb. Phil. Soc. 10 106–28

18

http://eqworld.ipmnet.ru/en/solutions/ode/ode0302.pdf
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/RevModPhys.57.339
http://dlmf.nist.gov
http://dx.doi.org/10.1088/0143-0807/21/2/308
http://dx.doi.org/10.1088/1751-8113/43/4/045102
http://dx.doi.org/10.1103/PhysRevD.12.3845
http://dx.doi.org/10.1098/rspa.1931.0130
http://dx.doi.org/10.1098/rspa.1989.0018

	1. Introduction
	2. Curl force models
	3. Special solutions for a range of exponents µ
	4. Conserved quantities for µ −32 and µ −53
	5. Solvable case µ −4
	6. Solvable linear curl force (µ  1)
	7. Solvable inverse cube curl force (µ −3)
	8. Localized time-dependent flux (curl force with µ −1)
	8.1. Short times
	8.2. Long times

	9. Concluding remarks
	Acknowledgments
	 Appendix. Asymptotics of coefficients determined recursively by (8.21)
	References



