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Constructibility of Regular Polygons 

 

3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 

80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272 

 

The above list of 38 numbers appears as the concluding statement of the greatest 

work written by one of the elite mathematicians of all time.  Carl Friedrich Gauss ended 

his masterpiece Disquisitiones Arithmeticae with this sequence.  It represents the 

numbers of sides (under 300) of regular polygons that can be constructed by traditional 

straight-edge and compass techniques.  While the idea of constructing regular polygons 

had been studied by the early Greeks, along with many others, it was Gauss that proved 

with finality which regular polygons could be constructed, and which ones could not.  In 

this paper, I will discuss what was known on this topic in the time of Euclid, and relate it 

to what Gauss was able to prove in what could be described as the discovery in which he 

took the most pride.  (mathcircle.berkeley.edu) 

The construction of regular polygons is a topic that has been studied for many 

years.  Going back to the early Greek mathematicians, we can see that by using specific 

tools with well defined rules for their use, the techniques to construct certain regular 

polygons were widely known.  It was the Greek mathematician Euclid who chronicled 

what was known at that time in what was regarded as the greatest compilation on the 

subject of Geometry for over two millennia, Euclid’s Elements. 

 While very few of the specific details of his life are known, there is evidence that 

Euclid must have lived during the reign of Ptolemy I (323 – 283 BC).  He was active in 
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the great library in Alexandria, and could have possibly studied at Plato’s Academy in 

Greece.  However, the exact dates of his birth and death, and the manner of his death are 

not known.  (Stillwell, p35)  The Dictionary of Scientific Biography contains the 

following passage regarding Euclid: (Euclid, p xx) 

Euclid’s fame rests preeminently upon the Elements, which he wrote in thirteen 
books and which has exercised an influence upon the human mind greater than 
that of any other work except the Bible.  For this reason he became known in 
antiquity as Ό Σтоιχειωтής, “The Writer of the Elements”, and sometimes 
simply as Ό Гεωμέтρης, “The Geometer”.  There had been Elements written 
before Euclid – notably by Hippocrates, Leo, and Theudius of Magnesia – but 
Euclid’s work superseded them so completely that they are now known only from 
Eudemus’s references as preserved by Proclus.   
 

 Euclid’s Elements remained the primary textbook on Geometry for hundreds of 

years, until men like Saccheri, Lobachevsky, and Bolyai (and arguably Gauss himself) 

began to question the choices that Euclid had made regarding his postulates.  This would 

be the beginning of what is now referred to as Non-Euclidean Geometry.  However, 

Euclidean Geometry is still what is taught in many secondary schools as an introduction 

to axiomatic systems and formal proof.  (wikipedia.org) 

In the Elements, Euclid addresses the topic of construction of regular polygons. 

Euclid describes techniques for constructing several specific polygons, including steps 

for an equilateral triangle, a square, a regular pentagon, and a regular hexagon.  For 

instance, the following process is Euclid’s instruction for the construction of an 

equiangular triangle (Book I, Proposition 1):   
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To construct an equilateral triangle on a given finite straight-line: 

 

C

A B

D E

 

Let AB be the given finite straight-line.  So it is required to construct an 
equilateral triangle on the straight-line AB.  Let the circle BCD with 
center A and radius AB have been drawn, and again let the circle ACE 
with center B and radius BA have been drawn.  And let the straight-lines 
CA and CB have been joined from the point C, where the circles cut one 
another, to the points A and B (respectively).  And since the point A is the 
center of the circle CDB, AC is equal to AB.  Again, since the point B is 
the center of the circle CAE, BC is equal to BA.  But CA was also shown 
(to be) equal to AB.  Thus, CA and CB are each equal to AB.  But things 
equal to the same thing are also equal to one another.  Thus, CA is also 
equal to CB. Thus, the three (straight-lines) CA, AB, and BC are equal to 
one another.  Thus, the triangle ABC is equilateral, and has been 
constructed on the given finite straight-line AB. (Which is) the very thing 
it was required to do.  (Euclid, p3) 

  

 Euclid also demonstrates how to construct a regular fifteen-sided polygon.  By 

constructing an equilateral triangle and a regular pentagon so that they are inscribed in 

the same circle, and sharing one vertex, the two shapes divide the circle into thirds and 

fifths, respectively.  Using the following diagram, we can see that of the fifteen equal 

segments that the circle must contain, three of them are contained in arc AB, and five of 

them are contained in arc AC.  Therefore, two of them are contained in the remainder, arc 
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BC.  By bisecting arc BC, the side of the fifteen-sided polygon is established.  (Euclid, 

p98) 

E

B

DC

A

 

 By following the techniques outlined in Euclid’s Elements, it is possible to 

construct regular polygons with the following numbers of sides:  3, 4, 5, and 15.  By 

bisection, polygons of sides 6, 8, 10, 12, 16, 20, etc. can also be constructed.  “This is 

where things stood until March 29, 1796, when at age eighteen Carl Friedrich Gauss 

(1777-1855) created a ruler and compass construction for a regular 17-gon.” (Martin, 

p18) 

 Carl Friedrich Gauss was a German mathematician and physicist who is regarded 

as one of the top mathematical minds of all time.  He was the only son of lower-class 

uneducated parents, but at a young age demonstrated a remarkable ability for 

mathematical calculation.  Well-known anecdotes of him teaching himself to read at age 

two, correcting his father’s arithmetic at age three, or adding the numbers 1 to 100 



 6

mentally at the age of seven have been used to illustrate his genius at a young age.  These 

stories have been cast into some doubt, and the details are subject to embellishment by 

the years of retelling.  However, looking at the results that he was able to prove in 

mathematics throughout the course of his life, it is not disputed that his understanding of 

mathematics was extraordinary.  (americanscientist.org) 

 Gauss was only twenty-one years old when he finished Disquisitiones 

Arithmeticae, although he did not publish it for three more years.  The first several 

sections of the book deal with a systematic structuring of number theory, which became 

the groundwork for that area of study that is still used to this day.  The last section of the 

book deals with construction of regular polygons, and outlines that the construction of a 

regular 17-gon would be possible.  He proved that there were certain prime numbers that 

dictated which polygons could or could not be constructed using the rules of the 

straightedge and compass.  (Stillwell, p335) 

 The primes that Gauss referred to fit the form 122 +
n

, where n is an integer.  They 

are called Fermat primes, discovered by the French mathematician Pierre de Fermat.  

Fermat claimed that all numbers of this particular form must be prime.  However, at this 

time, there are only five known Fermat primes; when n = 0 (P = 3), n = 1 (P = 5), n = 2 (P 

= 17), n = 3 (P = 257), and n = 4 (P = 65,537).  When n = 5, 12
52 +  equals 

4,294,967,297.  This number is not prime, as demonstrated by Leonhard Euler in 1732.  

He found that it could be factored into the product 641 · 6,700,417.  (Gauss, p 459)  No 

other Fermat primes have been discovered, nor is it known if there are no more to be 

found.  It is known that for values as large as n = 32, 122 +
n

 is composite, but there has 
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not been a successful proof that there are not any more Fermat primes either.  

(mathworld.wolfram.com)   

 Constructing regular polygons is possible when the numbers that dictate the 

location of the vertices of the polygon are “constructible numbers”.  The idea of 

constructible numbers goes back to the Greeks once again.  There were three classic 

construction problems whose solutions were not known to the Greeks:  trisecting the 

angle, squaring the circle, and doubling the cube.  It has been proven that these 

constructions are indeed not possible using the rules of the Greeks.  For constructions to 

be possible, it was shown that the values required must be the result of performing 

addition, subtraction, multiplication, division, or taking square roots on integers.  For 

instance, it can be shown that trisecting a 60 degree angle would require the construction 

of the solutions to an irreducible third degree polynomial.  To show this, use the 

trigonometric identity of cos 3x = 4 cos3 x – 3 cos x.  If x = 20, this gives us that cos 60 = 

4 cos3 20 – 3 cos 20, which is equivalent to the equation ½ = 4y3 – 3y, where y = cos 20.  

This cubic polynomial is an irreducible cubic equation, so its solutions would require at 

the minimum the construction of cube roots, not square roots.  This also implies that it 

would not be possible to construct the regular nonagon, which could be constructed by 

trisecting the 60 degree angles of an equilateral triangle.  (mathforum.org) 

 For the construction of the 17-gon, Gauss used the fact that its vertices can be 

represented as the seventeenth roots of unity, or the complex solutions to the 

equation 0117 =−x , plotted on the complex plane.  What Gauss was able to show was 

that the solutions of this polynomial could be found by solving a series of nested 

quadratic equations, where the solutions of one determine the coefficients of the next.  
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While the following derivation does not follow Gauss’ work identically, it does show 

how the value for 
17
2cos π  can be derived. 
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In the above diagram, a sketch of the regular 17-gon is shown.  If the circle has center at 

the origin and radius of one, the coordinates of the vertices correspond to the seventeenth 

roots of unity.  To find the locations for these 17 points, we must solve the following 

equation: 

0117 =−x  
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By de Moivre’s theorem, we know the seventeenth roots of unity can be represented by 

the following expression: 

 

)
17
2sin

17
2(cos kikPk

ππ
+= , where k = 0, 1, 2, …, 16. 

 

From the symmetry of the above figure, we know that the cosine values for P1 and P16 are 

equal, the cosines of P2 and P15 are the same, P3 and P14, etc.  Let x1 represent the cosine 

value for P1, in other words, if 
17
2πθ = , θcos1 =x .  In the same way, θ2cos2 =x , etc.  

We know that the sum of the roots of unity is zero, 016210 =++++ xxxx L ,  

or because of the duplicate values and the fact that xo = 1, we find that 

2
1

8321 −=++++ xxxx L  

 

We will use the following identity for the cosine function repeatedly: 

βαβαβαβαβαβαβα coscos2)sinsincos(cos)sinsincos(cos)cos()cos( =++−=−++
 

Since θcos1 =x  and θ4cos4 =x , and since 134 xx = , the above identity gives us 

 7641 2 xxxx ⋅=+ . 

In much the same way,  

 4153 2 xxxx ⋅=+  

 5382 2 xxxx ⋅=+  

 8276 2 xxxx ⋅=+  
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Let  2A = 7641 2 xxxx ⋅=+  

 2B = 4153 2 xxxx ⋅=+  

 2C = 5382 2 xxxx ⋅=+  

 2D = 8276 2 xxxx ⋅=+  

 

This means that
44

))(( 818442218241 xxxxxxxxxxxx
CA

+++
=

++
=⋅ , but 3121 xxxx +=  

by the cosine identity given before.  In the same way,  

 6242 xxxx +=  

 5412484 xxxxxx +=+=  

 879781 xxxxxx +=+= . 

Therefore,
16
1

4
87654321 −=

+++++++
=⋅

xxxxxxxx
CA  

In the same way, 
16
1

−=⋅DB . 

 

Also, 

4416
1

8
22

44
))(( 876421515443315341 BAxxxxxxxxxxxxxxxxxx

BA −+−=
+++++

=
+++

=
++

=⋅

 

or    16AB = -1 + 4A – 4B 

    16BC = -1 + 4B – 4C 

   16CD = -1 + 4C – 4D 

   16DA = -1 + 4D – 4A 
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Define 2X = A + C and 2Y = B + D. 

This means that X + Y = 
8
1

− , since A + B + C + D = 
4
1

−  

4XY = (A + C)(B + D) = AB + BC + CD + DA =  

4
1

16
441

16
441

16
441

16
441

−=
−+−

+
−+−

+
−+−

+
−+− ADDCCBBA  

so XY = 
16
1

−  

If X + Y = 
8
1

−  and XY = 
16
1

− , this means that X and Y are roots of the following 

quadratic equation: 

 0
16
1

8
12 =−+ RR  or 01216 2 =−+ RR  

 

by the quadratic formula, 
16

171
32

682
)16(2

)1)(16(422 2 ±−
=

±−
=

−−±−
=R  

 

Since 2X = A + C = 5376 xxxx +  > 0, 
16

171+−
=X  and 

16
171−−

=Y  

This gives us A + C = 
8

171+−  and AC = 
16
1

− , 

so A and C are roots to the following quadratic equation: 

0
16
1

8
1712 =−

+−
− SS  or 01)1722(16 2 =−−+ SS  
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By the quadratic formula,  

16
17234171

32
1781361722

32
646817841722

)16(2
)1)(16(4)1722()1722( 2

−±+−
=

−±+−
=

++−±+−
=

−−−±−−
=S

  

Since A = 76 xx  > 0, A = 
16

17234171 −++−  and C =
16

17234171 −−+−  

Also, B + D = 
8

171−− and BD = 
16
1

− , 

so B and D are roots to the following quadratic equation: 

0
16
1

8
1712 =−

−−
− TT  or 01)1722(16 2 =−++ TT  

By the quadratic formula,  

16
17234171

32
1781361722

32
646817841722

)16(2
)1)(16(4)1722()1722( 2

+±−−
=

+±−−
=

+++±−−
=

−−+±+−
=T

 

 

Since B = 41xx  > 0, B = 
16

17234171 ++−− , and D = 
16

17234171 +−−−  

 

Finally, since 41 xx + = 2A, and 41xx =B,  

1x  and 4x are roots to the following quadratic equation: 

022 =+− BAUU , or 0
16

17234171
16

1723417122 =
++−−

+
−++−

− UU  
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Simplifying,  

017234171)1723421722(16 2 =++−−−−−+ UU  

By the quadratic formula: 

)16(2
)17234171)(16(4)1723421722()1723421722( 2 ++−−−−−−±−−−−

=U  

32
1723481734578817234641748272)1723421722 −−−++−+±−++−

=U  

16
172342173457821723416171268)17234171 −−−++−+±−++−

=U  

16
1723421723417317217234171 +−−−+±−++−

=U  

 

Since 1x  > 4x , 
16

1723421723417317217234171
1

+−−−++−++−
=x  

 

or 
16

1723421723417317217234171
)

17
2cos(

+−−−++−++−
=

π  

All other values for xi can be found in a similar manner.  (www.nn.iij4u.or.jp), 

(www.iisc.ernet.in), (Gauss, p 458)   

 

After finally completing the previous derivation, I thought it might be interesting to try to 

apply the same technique to the regular pentagon.  I expected since the 17-gon required 

solving three levels of quadratics, the pentagon would only require two. I was surprised 

to find the solution by solving only one quadratic equation.  I had seen other methods for 
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deriving an exact value expression for cos(2π/5), but I had never seen the following 

technique before. 

 

P4

P3

P2

P1

P0

 

 

In the same way as with the 17-gon, let θcos1 =x , θ2cos2 =x , etc, where 
5

2πθ = . 

Again, 043210 =++++ xxxxx , 41 xx = , and 32 xx =  so 
2
1

21 −=+ xx . 

By the same cosine identity used before, 2121 2 xxxx ⋅⋅=+ . 

Since 
2
1

21 −=+ xx  , 
4
1

21 −=⋅ xx . 

Therefore, 1x  and 2x are roots to the following quadratic equation: 

 0
4
1

2
12 =−+ xx , or 0124 2 =−+ xx  

By the quadratic formula,  
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4

51
8

202
)4(2

)1)(4(422 2 ±−
=

±−
=

−−±−
=x  

Since 1x  > 2x , 
4

51
1

+−
=x  and 

4
51

2
−−

=x  

 

This gives us that 
4

51)
5

8cos()
5

2cos( +−
==

ππ  

and 
4

51)
5

6cos()
5

4cos( −−
==

ππ  

 

While the expression 
17
2cos π  seems to be daunting, it is comprised only of sums, 

differences, products, quotients, and square roots, making it a constructible number.  

Gauss was able to prove that the 17-gon was constructible by deriving this expression.  

While Gauss proved that this polygon could be constructed, he did not provide 

instructions as to how to complete the construction itself.  The construction of the 17-gon 

was first developed by Johannes Erchinger a few years after Gauss published 

Disquisitiones Arithmeticae.  Reportedly, Gauss was so pleased with this particular 

discovery that he requested that his gravestone contain a regular 17-gon.  The mason who 

was to cut the stone declined, claiming that the image would just appear to be a circle.  

However, there is a monument in Braunschweig that is a statue of Gauss where the base 

contains a 17-pointed star.  (mathcircle.berkeley.edu) 

 Gauss demonstrated that if one less than the number of sides of the polygon to be 

constructed had a prime factorization of 2n, the corresponding equation could be 

represented as solely quadratics.  If not, the equation would require higher degree 
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polynomials, as in the case of the 19-gon.  Since 18’s prime factorization is 2·32, this 

meant that the solutions to the equation could be found by one quadratic, and two 

irriducible cubic equations.  The numbers, which Gauss calculated to ten place accuracy, 

would not be constructible numbers, so the 19-gon cannot be constructed by straightedge 

and compass techniques.  (Gauss, p 429) 

 Gauss went on to show that if the polygon had a prime number of sides, and one 

less that the number of sides were a power of two, the corresponding polynomial could be 

represented by only quadratic equations, and if the number of quadratics were a power of 

two, then the reduction process using nested quadratics described earlier would lead to a 

constructible solution.  This meant that the number of sides would have to be one more 

than two raised to a power of two, or 122 +
n

, which is a Fermat prime.  (Gauss, p 458) 

Gauss concluded that for a regular polygon to be constructible, it had to have a 

number of sides whose odd factors were only distinct Fermat primes.  (Gauss, p 458)  For 

instance, the regular 255-gon can be constructed, since its prime factorization, 3·5·17, is 

made up of distince Fermat primes.  The 256-gon is constructible, since it has no odd 

factors.  The 257-gon is also constructible, since it is a Fermat prime.  The 258-gon is not 

constructible, since it’s prime factorization, 2·3·43, contains a prime that is not a Fermat 

prime.   

 Gauss, in Disquisitiones Arithmeticae, explained that this condition would 

guarantee that one could construct a regular polygon.  He also stated, but did not prove, 

that this would also be a necessary requirement for all possible constructible regular 

polygons.  It was several years later, in 1837, that Pierre Wantzel proved that this was 

necessary.  It is noteworthy that in the same paper, Wantzel also proved that doubling the 
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cube and trisecting any angle were impossible.  Through this, the criterion was finally 

established for which regular polygons can be constructed by straightedge and compass 

techniques. (Martin, p46) 

 

 “The following are the 38 values of N below 300: 

3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85 

96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272.” (Gauss, p460) 

 

 There remains one question, however.  If these are the only regular polygons that 

can be constructed using typical straightedge and compass construction, what if we 

change the rules slightly?  What if we allow ourselves to use a “marked” ruler in place of 

our straightedge, for instance?  What would that allow us to construct?  Would we be 

able to construct other regular polygons that we were not able to otherwise? 

 A “marked” ruler is simply a straightedge with a pair of markings on the edge that 

are a set distance apart.  (Conway & Guy, p194)  While this does not seem to enhance the 

use of the tool, it does have a significant impact on what can and cannot be done.  To 

begin this investigation, again we must return to the early Greeks. 

 The use of the marked straightedge was not unknown to the Greeks in the time of 

Euclid.  These types of constructions were referred to as “neusis” constructions, meaning 

“verging”.  In fact, there had been individuals who were able to solve the unsolvable 

problems that had perplexed many of the mathematicians of the time.  These solutions 

were looked upon by the Greeks as secondary techniques for construction, and less 
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rigorous than the traditional constructions.  One individual who did spend some time 

working with these neusis constructions was Archimedes.  (Conway & Guy, p195) 

 Archimedes is regarded as one of the greatest mathematicians of all time.  He was 

born in the city of Syracuse, Sicily in the year 287 BC.  He lived for 75 years, and is 

renowned for his work in mathematics and physics.  He is credited with discoveries in the 

areas of geometry, physics, logic, and even calculus.  Although much information about 

his life has been lost, he is known to have greatly assisted in the defense of the city of 

Syracuse against the Roman forces in the Second Punic War.  Many of his discoveries 

were the result of designing machines to defend the city.  (wikipedia.com) 

Among his many contributions to the fields of mathematics and physics, 

Archimedes is credited with a neusis technique for trisecting an angle.  His technique is 

demonstrated in the diagram below: 

C

O A

P

B
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To trisect angle POA, first draw a circle with a radius equal to the space between 

markings on the ruler.  Then, with the ruler aligned on point P, adjust the markings to lie 

on line OA and on circle O, forming angle PBA.  We must now show that the measure of 

PBA is one third the measure of POA.  Segments BC and OC must be congruent, making 

triangle BOC isosceles, with angle PBA congruent to angle COB.  Set their measures 

equal to x.  Since angle PCO is exterior to triangle BOC, its measure is equal to 2x.  Since 

triangle COP is also isosceles, angle COP’s measure must be equal to 180 – 4x.  Angles 

BOC, COP, and POA add up to 180, so x + 180 – 4x + m<POA = 180.  This gives us that 

m<POA = 3x, which is what we needed to show.  (Conway & Guy, p195) 

 So using a marked ruler allows us to solve one of the impossible construction 

problems from antiquity.  Granted, we are bending the rules for construction, so this is 

not a true solution, as far as how the early Greeks would have viewed it.  The Greeks 

were aware of constructions using the marked ruler, but looked at solutions such as these 

as inferior to straightedge and compass techniques.  (wikipedia.com)  However, looking 

back to our original question, this does have implications for a more general question 

regarding construction of regular polygons.  If the use of a marked ruler is allowed, it is 

immediate that the construction of the regular nonagon is possible by simply trisecting 

the central angles of an equilateral triangle.  In fact, it would be possible to trisect the 

central angles of any previously constructible regular polygon, so polygons with 18, 27, 

36, 45, … would now be possible. 

 We are not done with neusis constructions that incorporate angle trisection, 

however.  We now are able to construct almost all regular polygons with single-digit 

numbers of sides.  The only one remaining is the heptagon.  Francois Viete was a French 
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mathematician who predated Gauss by two hundred years, and he was able to formulate a 

neusis construction of the regular heptagon.  (Hartshorne, p264)  There are some sources 

that credit Archimedes with a technique for construction of the regular heptagon, but 

there are questions as to their authenticity.  (Martin, p136)  Viete’s discovery is 

impressive, since he did this without the benefit of modern algebra.  Here is a neusis 

construction of a regular heptagon which is similar to Viete’s construction:  

(wikipedia.com) 

E

A B

D C

F
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Begin by constructing square ABCD, with side length equal to the distance between the 

markings on the ruler.  Draw circle with center at C and radius AC.  Construct the 

perpendicular bisector of side AB.  With the ruler lying on point D, adjust so that the 

marks lay on circle C and on the perpendicular bisector of AB (points E and F in the 

diagram).  This gives one side of the heptagon.  Find the center of the heptagon using a 

perpendicular bisector of EF, and draw the circumscribed circle, and use the ruler 

markings to locate the rest of the vertices.  

 Should is be surprising that using a technique that allows us to trisect angles 

should also allow us to construct a regular heptagon?  Let’s go back to Gauss briefly.  His 

technique of solving nested quadratics to show that the angle for a 17-gon was 

constructible relied on the fact that one could construct solutions to quadratic equations 

using straightedge and compass.  If the polynomial could be reduced to solely quadratic 

equations, then the polygon would be constructible.  If the polynomial included, for 

instance, irreducible cubic equations, then the solutions were not constructible numbers.  

The heptagon, with n = 7, gives us n – 1 = 6, which is equal to 2 * 3.  This implies that 

the polynomial would reduce to a quadratic and a cubic.  But since the heptagon is 

constructible by marked ruler and compass, the solutions to the cubic equation must be 

constructible as well.  This implies that cube roots may be constructible numbers using a 

marked ruler and compass, implying that another of the impossible constructions from 

antiquity may be solvable using a marked ruler, namely the doubling of a cube. 

 To demonstrate that cube roots are constructible, we must show that given some 

number a and the unit length of 1, that the cube root of a can be constructed.  Begin the 

construction with segment AB with length a.  Using the unit length, determine a length b 
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such that b is of the form 23k–1, and b > a.  Construct the isosceles triangle ABC with AC 

= BC = b.  Extend CA to D such that AD = b as well.  Draw line DB.  Using the marked 

ruler, place the ruler on point C, and find point E on DB and F on AB such that EF = b, as 

shown in the diagram below. 

G

H

E

D

A B

C

F

 

Let BF = y and CE = x.  Notice that triangle ACF has transversal BE.  By Menelaus’s 

Theorem, 1=⋅⋅
DA
CD

EC
FE

BF
AB , or 12

=⋅⋅
b
b

x
b

y
a , which gives us abxy 2= .  Because FA 

and FH are both secants to the circle, FA · FB = FH · FG, or (a + y) y = (x + 2b) x.  By 

eliminating x from the two equations, we get y3 = 4ab2.  By substituting 23k–1 for b, this 

gives us y3 = 26k · a, or k

ya 2
3

2
= .  This means that to find the cube root of a, simply 

bisect y a total of 2k times.  Therefore, cube roots of any number are constructible by 

marked ruler construction.  (Hartshorne, p262) 
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By allowing the use of a marked ruler, or any tool that would be able to trisect an 

angle, we have seen that many more regular polygons can be constructed.  But are there 

others in addition to the ones mentioned already?  This question leads us, in much the 

same way that Gauss was led to Fermat primes, to another type of prime number, the 

Pierpont prime.  Pierpont primes, identified by James Pierpont, are primes of the form 

2a3b+1, where a and b are non-negative integers.  (Martin, p140)  The set of Fermat 

primes are of course included in the Pierpont primes, taking b = 0.  The Pierpont primes 

are also much more prevalent than the Fermat primes.  The following table shows the 

first several Pierpont numbers, highlighting which ones are prime: 

     b     
 2a3b+1 0 1 2 3 4 5 6 7 
 0 2 4 10 28 82 244 730 2188 
 1 3 7 19 55 163 487 1459 4375 
 2 5 13 37 109 325 973 2917 8749 
a 3 9 25 73 217 649 1945 5833 17497 
 4 17 49 145 433 1297 3889 11665 34993 
 5 33 97 289 865 2593 7777 23329 69985 
 6 65 193 577 1729 5185 15553 46657 139969
 7 129 385 1153 3457 10369 31105 93313 279937

 

By the same reasoning that Gauss had used for the Fermat primes, the Pierpont 

primes represent constructible polygons, since the polynomial for the roots of unity will 

be able to be represented by a nesting of quadratic and cubic equations.  If a regular 

polygon has a number of sides that is a product of a power of two, a power of three, and 

distinct Pierpont primes, or is of the form 2a3bp1p2…pi, where the pi’s are distinct 

Pierpont primes, it can be constructed using a compass and a marked ruler.  This gives us 

a much larger list of constructible regular polygons:  (Martin, p140) 
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This is the limit of what we are able to accomplish using a marked ruler.  There 

are still gaps in the list.  For instance, we are not able to construct the 11-gon, the 22-gon, 

23-gon, or the 25-gon.  These all involve polynomials that would lead to irreducible 5th 

degree polynomials.  If we wanted to press on, it can be shown that a tool that would 

allow us to divide an angle into 5 equal parts, or an angle quintisector, would be useful in 

performing these constructions.  Martin demonstrates that the use of a combination of 

construction tools called tomahawks, which when used by itself is an angle trisector, can 

be used to quintisect angles.  This would allow us to construct the 11-gon, 22-gon, 23-

gon, and the 25-gon.  (Martin, p141) 

In fact, if the polynomial involves an irreducible nth degree polynomial, we would 

have to be able to divide an angle into n equal parts to be able to construct the regular 

polygon.  (Martin, p141)  However, keeping in mind that if we can divide an angle into as 

many equal parts as we like, any regular polygon may be constructed by simply dividing 

360 degrees into whatever central angle we would desire, and produce the regular 

polygon this way.  At some point, we need to draw the line, no pun intended, and define 

what constitutes a legitimate construction technique.  The Greeks made the limit the 

straightedge and compass.  Others have made use of the compass and marked ruler.  

There are other types of constructions that involve only the compass, or only the ruler.  

With the increasing availability of computers equipped with software specifically 

designed for geometry construction, students are able to perform many other 

constructions that do not follow what the Greeks would regard as “true” constructions.  

These types of constructions are interesting, and a good topic for further study.  However, 

concerning the topic of construction of regular polygons, starting with what the Greeks 
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could do with only straightedge and compass, continuing with what Gauss was able to 

add, and finishing with what other construction techniques allow us to accomplish, I 

believe that we have completed this investigation.  The following table shows the 

possible numbers of sides up to 100.  Highlighted in yellow are the numbers of sides of 

regular polygons that the early Greeks would have been able to construct.  Highlighted in 

green are the polygons that were added with Gauss’s work.  Highlighted in blue are 

polygons that can be constructed using a marked ruler.  The remaining numbers represent 

polygons that would require the ability to divide an angle into more than three equal 

parts. 

 

2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 

20 21 22 23 24 25 26 27 28 

29 30 31 32 33 34 35 36 37 

38 39 40 41 42 43 44 45 46 

47 48 49 50 51 52 53 54 55 

56 57 58 59 60 61 62 63 64 

65 66 67 68 69 70 71 72 73 

74 75 76 77 78 79 80 81 82 

83 84 85 86 87 88 89 90 91 

92 93 94 95 96 97 98 99 100 
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