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Conventions
18 Jan

(1)We set c = G = 1; our metric signature is (− + ++).

Spacetime coordinates are labelled by Latin letters: xa, a = 0, 1, 2, 3

The Riemann tensor is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

that is in components

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + . . .

1 Mathematical Preliminaries

1.1 Differential Forms

Let M be a differentiable manifold.

Definition 1.1 A differentiable p-form on M is an antisymmetric (0, p) tensor field.

Remark A zero-form is a function; a one-form is a covector field.

Given a p-form X and a q-form Y we define a (p+ q)-form X ∧ Y by (in components)

(X ∧ Y )a1...apb1...bq
=

(p+ q)!

p!q!
X[a1...ap

Yb1...bq ]. (1.1)

The wedge product has the following properties

a) X ∧ Y = (−1)pq Y ∧X,

b) X ∧X = 0 if p is odd,

c) X ∧ (Y ∧ Z) = (X ∧ Y ) ∧ Z.

We can form a basis for the set of p-forms using coordinate differentials dxa. Any p-form can be

written as a linear combination of

dxa1 ∧ dxa2 ∧ . . . ∧ dxap

as

X =
1

p!
Xa1...apdx

a1 ∧ dxa2 ∧ . . . ∧ dxap . (1.2)

We define the exterior derivative of a given p-form X as the (p+ 1)-form dX given by

(dX)a1...ap+1 = (p+ 1)∂[a1
Xa2...ap+1]. (1.3)

Exercise: Check that this is a tensor.

The exterior derivative has the following properties
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a) d(dX) = 0, d is nilpotent,

b) d(X ∧ Y ) = dX ∧ Y + (−1)pX ∧ dY ,

c) For h : M → N , d(h∗X) = h∗dX.

If dX = 0 everywhere, then X is closed, if there is a form Y such that X = dY everywhere, then X

is exact. Any exact form is closed; the converse is true locally, i.e. if X is closed, then for any point

p there is a neighbourhood of p in which there exists a Y such that X = dY . (Poincaré Lemma)

1.2 Frobenius’ Theorem

Assume that we have a family of hypersurfaces in M specified by equations of the form f(x) =

constant, where f is a smooth function with df 6= 0 everywhere. Then df is normal to these

hypersurfaces, since for any tangent vector T

< df, T >= T (f) = T · ∂f = 0.

The most general one-form normal to these hypersurfaces is

n = g df, (1.4)

where g is any function that is non-zero everywhere. Then dn = dg ∧ df and hence

n ∧ dn = g df ∧ dg ∧ df = 0. (1.5)

Conversely, if n ∧ dn = 0, then locally there exist functions f, g such that n = g df . Hence n is

normal to hypersurfaces n = constant., i.e.

n ∧ dn = 0 ⇔ n hypersurface-orthogonal.

This is Frobenius’ Theorem.

1.3 Killing Vector Fields

Definition 1.2 An isometry of a (pseudo-)Riemannian manifold (M, g) is a diffeomorphism

ϕ : M → M such that

ϕ∗gϕ(p) = gp ∀ p ∈ M. (1.6)

Exercise: Show that the set of all isometries forms a group.

Now assume that (M, g) admits a one-parameter group of isometries ϕλ, obeying

ϕλ1 ◦ ϕλ2 = ϕλ1+λ2 . (1.7)

The map λ 7→ ϕλ(p) defines a curve through p for each p in M. Define a vector field k by defining

k|p to be tangent to the curve at p. The integral curve of k through any point p is then just the

map λ 7→ ϕλ(p), and hence

(Lkg)p = lim
λ→0

[

ϕ∗
λgϕ(p) − gp

λ

]

= 0, (1.8)
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since ϕλ is an isometry. This is the defining property of a Killing vector field. So a one-parameter

group of isometries defines a Killing vector field.

Conversely, given a Killing vector field k we define ϕλ(p) to be the point parameter distance λ

along the integral curve of k through p. If these curves are complete (extendible to λ = ±∞), this

defines a one-parameter family of isometries.

So continuous isometries correspond to Killing vector fields.

In components,

Lkg = 0 ⇔ ∇akb + ∇bka = 0. (1.9)

This is Killing’s equation.

1.3.1 Conservation Laws

According to Noether’s theorem, symmetries correspond to conservation laws. We have just seen

that in general relativity, Killing vector fields represent symmetries, so there are conserved quanti-

ties. Let k be a Killing vector field.

(i) Let Ua be tangent to an affinely parametrized geodesic (parameter λ), i.e. U ·∇Ua = 0. Then

d

dλ
(k · U) = U · ∇(k · U) = Ua∇a(kbU

b) = UaU b∇akb + Uakb∇aU
b = 0, (1.10)

since the first term is a symmetric tensor contracted with an antisymmetric tensor and the

second term vanishes because of U · ∇Ua = 0. Hence k · U is conserved along the geodesic.

(ii) Consider Ja = T abkb, where T ab is the energy-momentum tensor. Then

∇aJ
a = ∇a(T

abkb) = kb(∇aT
ab) + T ab∇akb = 0, (1.11)

where we have used the conservation equation ∇aT
ab and Killing’s equation.

Ja is a conserved current.

1.3.2 Adapted Coordinates
21 Jan

(2)Pick a hypersurface Σ that intersects each integral curve of k once. Let xi be coordinates on Σ;

assign coordinates (λ, xi) to the point parameter distance λ along the integral curve of k starting

at the point on Σ with coordinates xi.

In these coordinates, k = ∂
∂λ

and Killing’s equation reduces to

Lkgab =
∂gab

∂λ
= 0. (1.12)

Hence each Killing vector k corresponds to a coordinate λ such that the metric gab is independent

of λ.
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1.3.3 Time Independence

Definition 1.3 A spacetime (M, g) is stationary if it admits a timelike Killing vector field.

If we use adapted coordinates (t, xi) so that k = ∂
∂t

, then gab is independent of t:

ds2 = g00(x
k)dt2 + 2g0i(x

k)dt dxi + gij(x
k)dxi dxj , g00 < 0. (1.13)

Definition 1.4 (M, g) is static if it admits a hypersurface-orthogonal timelike Killing vector field.

(Each static spacetime is stationary.)

For a static spacetime, choose some surface Σ orthogonal to k and introduce adapted coordinates

(t, xi) as above. In these coordinates, Σ is the surface t = 0. Hence dt is normal to Σ, and k must

be proportional to dt at t = 0.

From the line element (1.13), we see that the covector dual to k has the form

k = g00(x
k)dt+ g0i(x

k)dxi. (1.14)

We conclude that

g0i(x
k) = 0. (1.15)

So in adapted coordinates (t, xi), a static metric takes the form

ds2 = g00(x
k)dt2 + gij(x

k)dxi dxj , g00 < 0. (1.16)

Note A static metric admits a discrete time reversal isometry t→ −t.
In this sense, “static” is equivalent to “time-independent and time-reversal invariant”.

2 The Schwarzschild Solution

2.1 Spherical Symmetry

The standard metric on a unit two-sphere is

ds2 = dθ2 + sin2 θ dϕ2. (2.1)

This has an SO(3) isometry group.

Definition 2.1 A spacetime is spherically symmetric if its isometry group has an SO(3) sub-

group, and the orbits of SO(3) are two-spheres. (The orbit is the set of point resulting from the

action of SO(3) on a given point.)

The spacetime metric induces a metric on each two-sphere. By SO(3) symmetry, it has to be

proportional to (2.1). Let A be the area of a two-sphere and define a function r by

r =

√

A

4π
.

Then the metric on the two-sphere takes the form

ds2 = r2
(

dθ2 + sin2 θ dϕ2
)

. (2.2)

Remark There exist spacetimes with SO(3) symmetry with three-dimensional orbits, e.g. Taub-

NUT (see [1]).
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2.1.1 Birkhoff’s Theorem

Theorem 2.2 The unique spherically symmetric solution of the vacuum Einstein equations is the

Schwarzschild solution, which in Schwarzschild coordinates has the metric

ds2 = −
(

1 − 2M

r

)

dt2 +
1

1 − 2M
r

dr2 + r2 dΩ2. (2.3)

Here dΩ2 is the metric on S2 and M > 0. The proof can be found in [1].

Note

(i) The metric is well-behaved for r > 2M (exterior Schwarzschild) and also for 0 < r < 2M

(interior Schwarzschild). r = 2M is called the Schwarzschild radius.

(ii) As r → ∞ the metric approaches Minkowski metric, the exterior solution is “asymptotically

flat”. At large r, it is well-approximated by the linarised solution for a localised object of

mass M .

(iii) ∂
∂t

is Killing and hypersurface-orthogonal, so the exterior Schwarzschild solution is static.

(“vacuum plus spherical symmetry gives static”)

Since the sun is nearly spherically symmetric, the metric outside the sun is approximately the (exte-

rior) Schwarzschild solution. The radius of the sun is about 7·105 km, but its Schwarzschild radius is

only about 3 km and so well inside the sun, where the Schwarzschild solution does not apply anyway.

Do we have to worry about what happens at r = 2M? Yes! Stars like our sun are supported

against gravitational collapse by pressure generated by nuclear reactions.

As the star uses up its nuclear “fuel”, it will cool and shrink. Can some non-thermal source of pres-

sure balance gravity? Yes, but only up to a maximum mass of about two solar masses. (see later)

More massive stars must either shed mass (e.g. supernova) or must undergo complete gravitational

collapse to a black hole.

2.2 Spherically Symmetric Pressure-Free Collapse

Consider a spherically symmetric star made of “dust”, i.e. a pressure-free fluid.

From Birkhoff’s theorem, the metric outside the star is the Schwarzschild solution. By continuity,

this will also be valid at the star’s surface. Let the surface of the star be at r = R(t) in Schwarzschild

coordinates.

Because of zero pressure and spherical symmetry, particles on the star’s surface will follow timelike

radial geodesics of the Schwarzschild geometry. 23 Jan

(3)We write the 4-velocity as

Ua =

(

dt

dτ
,
dR

dτ
, 0, 0

)

.

Since k = ∂
∂t

is Killing, the quantity k · U = −ǫ is constant along geodesics. Explicitly

(

1 − 2M

R

)

dt

dτ
= ǫ. (2.4)
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ǫ is the energy per unit mass of the particle (see example sheet). Since τ is proper time, we also

have U2 = −1, so

−1 = −
(

1 − 2M

R

)(

dt

dτ

)2

+

(

1 − 2M

R

)−1(
dR

dτ

)2

1 =

(

(

1 − 2M

R

)

−
(

1 − 2M

R

)−1

Ṙ2

)

(

dt

dτ

)2

, Ṙ =
dR

dt
. (2.5)

Substitute (2.4)

1 =

(

(

1 − 2M

R

)

−
(

1 − 2M

R

)−1

Ṙ2

)

(

1 − 2M

R

)−2

ǫ2. (2.6)

We can rewrite this as
1

2
Ṙ2 + V0(R) = 0, (2.7)

where

V0(R) = − 1

2ǫ2

(

1 − 2M

R

)2(2M

R
− 1 + ǫ2

)

.

Assume the star is initially at rest (Ṙ = 0) at R = R0 > 2M . This fixes ǫ2 as

ǫ2 = 1 − 2M

R0
< 1, R0 =

2M

1 − ǫ2
. (2.8)

R decreases with R→ 2M as t→ ∞, so it takes an infinite Schwarzschild time to reach r = 2M .

But what about proper time? From (2.4), we have

dR

dt
=
dR

dτ

dτ

dt
=

1

ǫ

(

1 − 2M

R

)

dR

dτ
(2.9)

and (2.7) becomes

1

2

(

dR

dτ

)2

+ V1(R) = 0, (2.10)

where

V1(R) = −M
(

1

R
− 1

R0

)

.
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The surface of the star will fall through R = 2M in finite proper time. This suggests investigating

the spacetime near r = 2M using coordinates adapted to infalling particles.

It is simplest to use massless particles. For a radial null geodesic ds2 = 0 and dΩ2 = 0 and we

introduce a new radial coordinate by

dt2 =

(

1 − 2M

r

)−2

dr2 ≡ (dr∗)2, (2.11)

where r∗ = r + 2M log | r−2M
2M

|. r∗ is called the “Regge-Wheeler radial coordinate” or “tortoise

coordinate”. As r ranges from 2M to ∞, r∗ ranges from −∞ to ∞.

Radial null geodesics are described by dt = ±dr∗ and hence

t = ±r∗ + constant is an

{

outgoing

ingoing
radial null geodesic. (2.12)

Let v = t+r∗ (constant on ingoing null geodesics) be a new time coordinate and rewrite the metric

in ingoing Eddington-Finkelstein coordinates (v, r, θ, ϕ)

ds2 = −
(

1 − 2M

r

)

(dv− dr∗)2 +

(

1 − 2M

r

)−1

dr2 + r2dΩ2 = −
(

1 − 2M

r

)

dv2 +2dv dr+ r2 dΩ2.

(2.13)

Initally we had r > 2M but this form of the metric is well behaved for all r > 0. (i.e. the metric

and its inverse are smooth) Hence we can analytically continue through r = 2M to a new region

r < 2M .

The bad behaviour at r = 2M is a “coordinate singularity”; the coordinate chart, and not space-

time, is badly behaved.

However, r = 0 is a physical curvature singularity since

RabcdR
abcd ∝ M2

r6
→ ∞ as r → 0,

so tidal forces are infinite there.

Summary

The star collapses through r = 2M and forms a curvature singularity in finite proper time. (Exer-

cise)

We can draw a Finkelstein diagram by plotting t∗ ≡ v − r against r.
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Note

(i) For r > 2M ,
(

∂

∂t

)

SS

=

(

∂

∂v

)

EF

(Exercise) is the static Killing vector field, which becomes null at r = 2M , and spacelike in

r < 2M .

The solution is still spherically symmetric in r < 2M , hence it must be described by the

interior Schwarzschild solution. Explicitly, let t′ = v − r∗ for r < 2M . Then the metric in

coordinates (t′, r, θ, ϕ) is interior Schwarzschild. (Exercise)

(ii) In ingoing Eddington-Finkelstein coordinates, − ∂
∂r

is tangent to ingoing radial null geodesics,

hence it is future directed.

Consider any future-directed non-spacelike curve (in the interior) xa(λ) with tangent Ua =
dxa

dλ
. Then

(

− ∂

∂r

)

· U ≤ 0,
dv

dλ
≥ 0.

So v is non-decreasing. It follows from U2 ≤ 0 that

−2
dv

dλ

dr

dλ
= −U2 +

(

2M

r
− 1

)(

dv

dλ

)2

+ r2
(

dΩ

dλ

)2

≥ 0, (2.14)

so we have
dv

dλ

dr

dλ
≤ 0

with equality only for radial null geodesics with r ≡ 2M or v = constant (ingoing null

geodesics). In the interior (r < 2M) r decreases along any future-directed causal curve.

Hence no such curve connects a point in r ≤ 2M to a point in r > 2M , in particular to

r = ∞. This is the defining property of a black hole.
25 Jan

(4)
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Exercise Show that “outgoing” radial null geodesics are given by

v − 2

(

r + 2M log

∣

∣

∣

∣

r − 2M

2M

∣

∣

∣

∣

)

= constant or r ≡ 2M. (2.15)

Light cones “tip over” towards the singularity. An external observer never sees the star fall through

r = 2M , it just fades from view.

2.3 White Holes

For a black hole, r = 2M acts as a one-way membrane. But Einstein’s equations are time-reversal

invariant!

We introduce a coordinate u = t − r∗ in r > 2M , which is constant on outgoing radial null

geodesics, and rewrite the Schwarzschild metric in outgoing Eddington-Finkelstein coordi-

nates (u, r, θ, ϕ)

ds2 = −
(

1 − 2M

r

)

du2 − 2du dr + r2 dΩ2. (2.16)

This is initially defined for r > 2M but can be analytically continued to r < 2M .

This region must be interior Schwarzschild but it is not the same as the r < 2M region in ingoing

Eddington-Finkelstein coordinates.

Exercise Show that once can argue as before, using the fact that ∂
∂r

is tangent to outgoing ra-

dial null geodesics, to show du
dλ

≥ 0 and dr
dλ

≥ 0 in r < 2M along any future-directed causal curve.

A star intially with r < 2M must expand out through r = 2M !
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The region r < 2M in outgoing Eddington-Finkelstein coordinates is a white hole; the time-

reverse of a black hole.

Both are allowed by general relativity, but white holes require special initial conditions (at the

singularity), whereas black holes do not, so only black holes occur in nature.

2.4 Kruskal-Szekeres Coordinates

The region r > 2M is covered by both ingoing and outgoing Eddington-Finkelstein coordinates.

We can write the Schwarzschild metric in coordinates (u, v, θ, ϕ) in the region r > 2M :

ds2 = −
(

1 − 2M

r

)

du dv + r2 dΩ2, (2.17)

where r = r(u, v) is now an implicitly defined function of u and v. Let us introduce new coordinates

U = − exp
(

− u

4M

)

, V = exp
( v

4M

)

, (2.18)

so that

ds2 = −32M3

r
e−

r
2M dU dV + r2 dΩ2, (2.19)

where r(U, V ) is defined by

UV = − exp

(

r∗

2M

)

= −r − 2M

2M
e

r
2M . (2.20)

(2.19) is valid initially for U < 0, V > 0 but can be analytically continued to positive U or negative

V .

Note r = 2M corresponds to U = 0 or V = 0; r = 0 corresponds to UV = 1.

Lines of constant U, V are radial null geodesics. It is convenient to plot these at 45 degrees.
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Regions I and II are covered by ingoing Eddington-Finkelstein coordinates; regions I and III are

covered by outgoing Eddington-Finkelstein coordinates. Region IV is a new asymptotically flat

region.

The isometry (U, V ) → (−U,−V ) interchanges regions I and IV and II and III.

Only regions I and II are relevant in gravitational collapse, the other regions are covered up by the

interior of a collapsing star.

2.4.1 Extendibility

The exterior Schwarzschild solution is part of the larger Kruskal spacetime; it is extendible.

Definition 2.3 A spacetime is extendible if it is isometric to a proper subset of another space-

time.

The Kruskal spacetime is inextendible - it is the “maximal analytic extension” of the Schwarzschild

solution.

13



2.4.2 Singularities

The metric is singular if it or its inverse is not smooth somewhere.

A coordinate singularity can be eliminated by a change of coordinates (e.g. r = 2M in

Schwarzschild). These are unphysical.

Curvature singularities where some scalar built from Ra
bcd diverges, are physical.

Not all physical singularities are curvature singularities, e.g. a conical singularity: Consider the

metric

ds2 = dr2 + λ2r2 dϕ2, λ 6= 1, (2.21)

where ϕ is an angular coordinate that is periodically identified with period 2π. If r 6= 0 then this

is flat (to see this, let ϕ′ = λϕ), hence r = 0 can not be a curvature singularity. But if we consider

the circle given by r = ǫ,

Circumference

Radius
=

2πλǫ

ǫ
= 2πλ 6 →2π as ǫ→ 0.

The geometry is not locally flat at r = 0, hence it is not regular there; the point r = 0 can not be

part of the manifold.

28 Jan

(5)Physical singularities are not “places” as they do not belong to the spacetime manifold. But in a

singular manifold some geodesics will “end” at a singularity. This motivates the following definition.

Definition 2.4 A spacetime is non-singular if all geodesics are complete (i.e. can be extended to

arbitrary values of the affine parameter).

Note

(i) The Kruskal spacetime is singular as some geodesics reach r = 0 in finite affine parameter.

(ii) An extendible spacetime is trivially singular, so usually assume the spacetime is inextendible.

(iii) The singularity theorems of Penrose and Hawking prove that geodesic incompleteness is a

generic feature of gravitational collapse, not just a special property of spherically symmetric

collapse.

2.4.3 Time Translation in Kruskal

Exercise Show that, in Kruskal coordinates, k = ∂
∂t

is

k =
1

4M

(

v
∂

∂v
− u

∂

∂u

)

. (2.22)

Note

(i) k2 = −
(

1 − 2M
r

)

, hence k is







timelike for r > 2M (regions I, IV),

spacelike in regions II, III,

null on r = 2M (i.e. U = 0 or V = 0).

(ii) {U = 0} and {V = 0} are fixed sets of k.
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(iii) k = 0 on the “bifurcation two-sphere” U = V = 0.

2.5 Relativistic Stars

A star can be supported against gravitational collapse by a non-thermal source of pressure:

White dwarf/neutron star, supported by degeneracy pressure of electrons/neutrons.

But stars supported by cold matter have a maximum mass.

A general static spherically symmetric metric has the form

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2 dΩ2. (2.23)

The metric outside the star is the Schwarzschild metric. We model matter inside the star as a

perfect fluid,

Tab = (ρ+ p)uaub + pgab. (2.24)

If we assume the fluid is at rest, u = 1√
A

∂
∂t

(so that u2 = −1). Because of spherical symmetry,

p = p(r) and ρ = ρ(r) are functions of r only. We assume that

(i) Cold matter has some equation of state p = p(ρ) with p > 0, ρ > 0 and dp
dρ
> 0 (needed for

stability).

(ii) The equation of state is known up to nuclear density (∼ 3 · 1014 gcm−3).

If you then solve the Einstein equations, you will discover that solutions can only exist for M <

Mc ≈ 2 solar masses.

3 The Event Horizon

3.1 Null Hypersurfaces

Definition 3.1 A null hypersurface is a hypersurface whose normal is null.
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For instance, consider a surface r = constant in the Schwarzschild solution using ingoing Eddington-

Finkelstein coordinates. The normal is n = dr and hence

na = gabnb = gar =

(

∂

∂v

)a

+

(

1 − 2M

r

)(

∂

∂r

)a

, n2 = nana = 1 − 2M

r
. (3.1)

Hence this is a null hypersurface if r = 2M . Note that

na|r=2M =

(

∂

∂v

)a

.

Now let N be a general null hypersurface with normal n. A tangent vector t to N obeys t · n = 0,

but since n · n = 0, n is both a normal and a tangent vector.

Hence na = dxa

dλ
for some null curve xa(λ) in N .

Proposition 3.2 The curves xa(λ) are geodesics.

Proof n is hypersurface-orthogonal, hence n = h df for some functions h and f (i.e. N belongs to

a family f(x) = constant). Then compute

n · ∇na = n · ∇(gabh∂bf) = gab∂bf n · ∇h+ gabhnc∇c∂bf =
1

h
na n · ∇h+ gabhnc∇b∂cf

= na n · ∂ log |h| + gabhnc∇b

(

1

h
nc

)

= na n · ∂ log |h| + gabhn2∂b
1

h
+ gabnc∇bnc,

n · ∇na = na n · ∂ log |h| − n2∂a log |h| + 1

2
∂a(n2). (3.2)

Now n2 = 0 on N , and t · ∂(n2) = 0 for any t tangent to N , i.e. ∂a(n
2) is proportional to na. All

terms on the right-hand side of (3.2) are proportional to na on N , so n · ∇a|N ∝ na and xa(λ) is a

geodesic, q.e.d.

We can choose h so that n · ∇na|N = 0, i.e. λ is an affine parameter. We can assume this

henceforth.

Definition 3.3 The null geodesics xa(λ) with affine parameter λ for which the tangent vectors dxa

dλ

are normal to a null hypersurface N are called the generators of N .

For example take the surface U = 0 in the Kruskal spacetime. The normal has the form n = h dU

and hence

na = − r

16M2
e

r
2M h

(

∂

∂V

)a

.

Here n2 = nana = 0 everywhere, not just on N . All U = constant surfaces are null. From (3.2),

n · ∇na = 0 for h = constant. We choose

h = −8M2

e
⇒ na|N =

(

∂

∂V

)a

.

V is an affine parameter for the null geodesic generators of {U = 0}.
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3.1.1 Killing Horizons and Surface Gravity

Definition 3.4 A null hypersurface N is a Killing horizon of a Killing vector field ξ if ξ|N is

normal to N .

Let n be a normal to N such that n · ∇na = 0 on N , ξ = hn for some h and so

ξ · ∇ξa|N = κξa, (3.3)

where κ = ξ · ∂ log |h| is called the surface gravity of the Killing horizon.

Exercise Show that (3.3) can be written as

−1

2
∂a(ξ2)|N = κξa.

Example In the Kruskal spacetime, define N+ = {U = 0}, N− = {V = 0}. 30 Jan

(6)ξ = k is the stationary Killing vector field

k =

{ 1
4M

V ∂
∂V

on N+,

− 1
4M

U ∂
∂U

on N−.

k = hn where

h =

{ 1
4M

V on N+,

− 1
4M

U on N−.
, n =

{

∂
∂V

on N+,
∂

∂U
on N−.

n is normal to N±, hence N± is a Killing horizon of k. Since n · ∇na = 0 (above), the surface

gravity is

h = k · ∂ log |h| =

{ 1
4M

on N+,

− 1
4M

on N−.
. (3.4)

Note κ = constant on N± is a special case of the Zeroth Law of Black Hole Mechanics. (see later)

N = N+ ∪N− is called a “bifurcate Killing horizon” with bifurcation two-sphere B = N+ ∩N− =

{U = V = 0}; ξ = 0 on B.

3.1.2 Normalisation of κ

If N is a Killing horizon of ξ with surface gravity κ, then N is also a Killing horizon of cξ with

surface gravity cκ, hence κ depends on the normalisation of ξ.

In asymptotically flat spacetimes, we can normalise ξ at infinity, e.g. for time translations choose

k2 = −1 at infinity. This fixes k up to a sign; we can fix the sign by requiring k to be future-directed

at infinity.
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3.2 Rindler Spacetime

We start from the Schwarzschild solution

ds2 = −
(

1 − 2M

r

)

dt2 +
1

1 − 2M
r

dr2 + r2 dΩ2. (3.5)

Now let r − 2M = x2

8M
, so that

1 − 2M

r
=

κ2x2

1 + κ2x2
≈ κ2x2 near x = 0, κ =

1

4M
.

The metric near x = 0 is

ds2 = −κ2x2dt2 + dx2 + (2M)2dΩ2 + subleading terms.

We can thus learn about the Schwarzschild spacetime near r = 2M by studying the two-dimensional

Rindler spacetime given by

ds2 = −κ2x2dt2 + dx2, x > 0. (3.6)

This has a coordinate singularity at x = 0. After the coordinate transformation U ′ = −xe−κt, V ′ =

xeκt the metric becomes

ds2 = −dU ′ dV ′ = −dT 2 + dX2, (3.7)

where U ′ = T −X, V ′ = T +X (so U ′ ≤ 0, V ′ ≥ 0).

This shows that the Rindler spacetime is flat and covers the region U ′ ≤ 0, V ′ ≥ 0 of Minkowski

spacetime (corresponding to region I of the Kruskal spacetime).

{U ′ = 0} and {V = 0} form a bifurcate Killing horizon of k = ∂
∂t

with surface gravity ±κ (Exercise).

Note k2 = −κ2x2 → −∞ as x→ ∞, there is no natural way to normalise κ in the Rindler spacetime.

3.2.1 Acceleration Horizons

Consider orbits of a stationary Killing vector field k; the normalised four-velocity is u = k√
−k2

. The

proper acceleration is given by

aa = u · ∇ua =
k · ∇ka

−k2
+

ka

2(−k2)2
k · ∂(k2).
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By using kb∇bk
a = −kb∇akb = −1

2∂
a(k2) and k · ∂(k2) = 2kakb∇akb = 0 (since k is Killing) we

can rewrite this as

aa = −1

2

∂a(k2)

(−k2)
=

1

2
∂a log(−k2). (3.8)

Examples

(i) Rindler spacetime

a =
1

2
d log(κ2x2) =

dx

x
,

and |a| =
√

gabaaab = 1
x
. Orbits of k have x = constant, hence they correspond to curves of

constant acceleration.

(ii) Schwarzschild spacetime

a =
1

2
d log

(

1 − 2M

r

)

=
M

r2
(

1 − 2M
r

)dr,

|a| =
√

gabaaab =

√

M2

r4
(

1 − 2M
r

) =
M

r2
√

1 − 2M
r

.

Orbits of k have r = constant, hence constant acceleration.

In both of these cases |a| → ∞ at the Killing horizon. It is an “acceleration horizon” (a surface in

a static spacetime where the norm of the proper acceleration of orbits of k diverges).

3.2.2 Interpretation of κ

In a static, asymptotically flat spacetime, consider a static particle P of unit mass (i.e. following

an orbit of k) held at rest by a massless, inelastic string, whose other end is held by an observer at

infinity.

Let F be the force (tension) in the string measured at infinity. Then F → κ as we consider orbits

closer and closer to a Killing horizon.

So κ is the force required at infinity to hold a unit mass particle at rest (i.e. on an orbit of k) near

the Killing horizon.

Proof (for Schwarzschild) Example Sheet 2.

Later we will see that κ
2π

is the Hawking temperature of the black hole.

3.3 Conformal Compactification

Given a spacetime (M, g) consider a new metric

g̃ ≡ Ω2g, Ω(x) > 0 in M.

g and g̃ have the same light cones, i.e. the same causal structure.

Choose Ω so that “points at infinity” with respect to g are at finite affine parameter with respect

to g̃. For this we need Ω(x) → 0 “at infinity with respect to g”. We then define “infinity” to be x
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such that Ω(x) = 0. Such points do not belong to M, but we can add them to M to give a new

manifold (M̃, g̃), a “conformal compactification” of (M, g).

Examples

(i) Minkowski spacetime

ds2 = −dt2 + dr2 + r2 dΩ2

Introduce light cone coordinates u = t − r, v = t + r, so that −∞ < u ≤ v < ∞ and the

metric becomes

ds2 = −du dv +
1

4
(u− v)2dΩ2. (3.9)

Now let u = tan p, v = tan q, so that −π
2 < p ≤ q < π

2 and the metric is

ds2 =
1

(2 cos p cos q)2
(

−4dp dq + sin2(p− q)dΩ2
)

. (3.10)

Infinity is |p| → π
2 or |q| → π

2 .

1 Feb

(7)We choose the conformal factor to be Ω(x) = 2 cos p cos q:

ds̃2 = −4dp dq + sin2(p− q)dΩ2 = −dT 2 + dχ2 + sin2 χdΩ2 (3.11)

where T = q + p, χ = q − p and now T ∈ (−π, π) and χ ∈ (0, π).

Minkowski spacetime is conformal to a region of the Einstein static universe R×S3. We “add

in points at infinity”, which are the boundary of this region.

Suppressing 2-spheres (keeping angular coordinates fixed) we obtain the Penrose diagram
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Radial null curves are at 45 degrees.

(ii) Two-dimensional Minkowski spacetime

ds2 = −dt2 + dr2,

where now −∞ < r < ∞. Do the same as before, i.e. introduce coordinates u, v and

p, q; the conformally related metric will be (3.11) but now the ranges of the coordinates are

T ∈ (−π, π), χ ∈ (−π, π).

In two dimensions, there are left and right infinities.

Rindler spacetime is the u < 0, v > 0 part of two-dimensional Minkowski spacetime.

(iii) Kruskal spacetime

Use (u, v) coordinates in region I and let u = tan p, v = tan q, then −π
2 < p < q < π

2 and we

use the same conformal factor as before:

ds̃2 = (2 cos p cos q)2ds2 = −4

(

1 − 2M

r

)

dp dq +

(

r

r∗

)2

sin2(q − p)dΩ2. (3.12)
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This approaches the metric of compatified Minkowski space, so we can add I±, ı0 as before.

Near r = 2M we use Kruskal coordinates to go through the horizon; again we suppress

two-spheres to get the Penrose diagram.

The surfaces of constant r all intersect at ı±, including r = 0, so ı± is singular and can not

be added to the spacetime (but we draw them anyway).

We can choose Ω so that r = 0 is a straight line.

(iv) Spherically symmetric gravitational collapse

3.3.1 Asymptotic Flatness

Definition 3.5 A spacetime (M, g) is asymptotically simple if there exists a manifold with

boundary (M̃, g̃) such that

(a) M = int M̃, so that M̃ = M∪ ∂M̃,

(b) g̃ = Ω2g for some function Ω(x) with Ω(x) > 0 on M and Ω = 0, dΩ 6= 0 on ∂M̃,

(c) every null geodesic has a past and future endpoint on ∂M̃.

Minkowski spacetime is asymptotically simple because we can take M̃ to be the conformal com-

pactification of Minkowski spacetime. There is a technical subtlety; a manifold with boundary can

not have corners, so we must delete ı± and ı0 from M̃, hence ∂M̃ = I+ ∪ I−.

This definition is quite restrictive as condition (c) excludes black holes. We would like to have a

notion of asymptotic flatness that includes black holes.
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Definition 3.6 A spacetime (M, g) is weakly asymptotically simple if there exists an open

set U ⊂ M that is isometric to a neighbourhood of ∂M̃ of some asymptotically simple spacetime.

Exercise Prove that the Kruskal spacetime is weakly asymptotically simple (Example sheet 2).

Definition 3.7 A spacetime (M, g) is asymptotically flat if it is weakly asymptotically simple

and asymptotically empty, i.e. Rab = 0 in a neighbourhood of ∂M̃.

This definition needs to be modified in the presence of an electromagnetic field when Rab = 0 only

on ∂M̃.

An asymptotically flat spacetime has the same structure for I±, ı0 as Minkowski spacetime.

3.4 The Event Horizon

Definition 3.8 The causal past of U ⊂ M is

J −(U) = {p ∈ M : there exists a future-directed causal curve from p to some q ∈ U}.}

Similarly, we define the causal future J +(U).

Definition 3.9 The black hole region of an asymptotically flat spacetime (M, g) is B = M\J −(I+),

i.e.

B = {p ∈M : there is no future-directed causal curve from p to I+}.

Definition 3.10 The future event horizon H+ is the boundary of the black hole region B in M,

i.e. the boundary of J −(I+) in M.

4 Feb

(8)Properties

(i) H+ is a null hypersurface.

(ii) H+ is an achronal set, i.e. no two points in H+ are timelike separated. (this follows locally

from (i))

To see this, assume p, q ∈ H+ and there is a timelike curve from p to q. We could continuously

deform it to a timelike curve from p′ inside the horizon (p′ 6∈ J −(I+)) to q′ outside the

horizon (q′ ∈ J −(I+)). But then p′ ∈ J −(q′) and this gives the contradiction p′ ∈ J −(I+),

as J −(q′) ⊂ J −(I+).
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(iii) Null geodesic generators of H+ can have “past endpoints”, in the sense that the continuation

of a generator into the past may leave H+.

(iv) Theorem 3.11 (Penrose) The generators of H+ can not have future endpoints.

This means that geodesics can enter the horizon H+ but can not leave it.

The time reverse of this statement is that null geodesics can leave, but not enter the past

event horizon H−, which is the boundary of the white hole region W = M\J +(J −).

In spherically symmetric gravitational collapse, the past event horizon H− is empty.

Locating H+ requires knowledge of the full spacetime - it can not be determined locally. But if we

wait until the black hole settles down to equilibrium (i.e. a stationary spacetime) then

Theorem 3.12 (Hawking)

In a stationary, asymptotically flat spacetime, H+ is a Killing horizon (but not necessarily of ∂
∂t

).

3.4.1 Predictability

Definition 3.13 (i) A partial Cauchy surface Σ for a spacetime (M, g) is a hypersurface

which no causal curve intersects more than once.

(ii) A causal curve is past inextendible if it has no past endpoint in M.

(iii) The future domain of dependence of Σ is

D+(Σ) = {p ∈M : every past inextendible causal curve through p intersects Σ}.

The significance of D+(Σ) is that solutions of hyperbolic PDEs (e.g. Klein-Gordon/Maxwell equa-

tions) in D+(Σ) are fully determined by initial data in Σ.

The past domain of dependence D−(Σ) is defined analogously.

Definition 3.14 A partial Cauchy surface Σ is a Cauchy surface for M if

M = D+(Σ) ∪ D−(Σ).

M is globally hyperbolic if it admits a Cauchy surface.

If M is globally hyperbolic, physics can be predicted to the future or (retrodicted to the) past from

data prescribed on Σ.

Examples of globally hyperbolic spacetimes
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(i) Spherically symmetric collapse

(ii) Kruskal spacetime

If M is not globally hyperbolic, then D+(Σ) (or D−(Σ)) will have a future (past) boundary in M
- this is a null hypersurface called the future (past) Cauchy horizon of Σ.

3.4.2 Cosmic Censorship

In spherically symmetric gravitational collapse, the singularity at r = 0 is hidden in the sense that

no signal from it can reach I+.

This is not true for the Kruskal spacetime: A signal from the white hole singularity can reach I+;

it is a naked singularity.

Another example of a naked singularity is the Schwarzschild spacetime with M < 0

ds2 = −
(

1 +
2|M |
r

)

dt2 +
dr2

1 + 2|M |
r

+ r2dΩ2.

(This solves the vacuum Einstein equations.) Its Penrose diagram is

The spacetime is not globally hyperbolic.
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Could a naked singularity form by gravitational collapse?

If this happened, predictability would be lost.

Considerable evidence (e.g. numerical simulations) suggests this does not happen.

Proposition 3.15 (Cosmic Censorship Conjecture, Penrose)

Naked singularities do not form in the evolution of generic initial data describing physically rea-

sonable matter on a non-singular, asymptotically flat, spacelike surface.

“Physically reasonable” means that the matter has positive energy/satisfies the dominant energy

condition (see later) and that it is described by hyperbolic PDEs.

One can construct non-generic counterexamples to cosmic censorship.

4 Charged Black Holes
6 Feb

(9)4.1 The Reissner-Nordström Solution

We start from the Einstein-Maxwell action

S =
1

16π

∫

d4x
√−g

(

R− F abFab

)

, (4.1)

where F = dA and A is the Maxwell potential.

By varying the action one obtains the Einstein equations

Rab −
1

2
Rgab = 2

(

Fa
cFbc −

1

4
gabF

cdFcd

)

, (4.2)

variation with respect to Fab gives Maxwell’s equations

∇aFab = 0, (4.3)
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together with dF = 0 (from F = dA).

The unique spherically symmetric solution of the Einstein-Maxwell equations is the Reissner-

Nordström solution

ds2 = −
(

1 − 2M

r
+
e2

r2

)

dt2 +
dr2

1 − 2M
r

+ e2

r2

+ r2dΩ2, (4.4)

with

A = −Q
r
dt− P cos θ dϕ, e =

√

Q2 + P 2. (4.5)

Q and P are the electric and magnetic charges, respectively. (Of course there is no evidence that

magnetic charges exist in nature but they are allowed by the equations.)

Q is defined so that the Coulomb force between two particles in flat space is Q1Q2

r2 (geometric units

of charge).

The Reissner-Nordström solution is asymptotically flat (as r → ∞).

Let ∆ = r2 − 2Mr + e2 = (r − r+)(r − r−), where

r± = M ±
√

M2 − e2.

In this notation, the metric is

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2 dΩ2. (4.6)

There are three distinct cases:

(i) M < e, and so ∆ > 0 for all r > 0.

There is no horizon and only a naked curvature singularity at r = 0. This case is very similar

to the Schwarzschild spacetime with M < 0, and is excluded by cosmic censorship.

For a charged dust ball with M < e, electromagnetic repulsion overcomes gravitational at-

traction; there is no collapse.

(ii) M = e, see later

(iii) M > e, ∆ has simple zeros at r = r± > 0.

These singularities are coordinate singularities, and we will remove them in a similar fashion as

before. Start in r > r+ and define dr∗ = r2

∆ dr, i.e.

r∗ = r +
1

2κ+
log

∣

∣

∣

∣

r − r+

r+

∣

∣

∣

∣

+
1

2κ−
log

∣

∣

∣

∣

r − r−
r−

∣

∣

∣

∣

+ constant, (4.7)

where

κ± =
r± − r∓

2r2±
.

Let v = t+ r∗, u = t− r∗. In ingoing Eddington-Finkelstein coordinates (v, r, θ, ϕ), the Reissner-

Nordström metric is

ds2 = −∆

r2
dv2 + 2dv dr + r2 dΩ2. (4.8)
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So we can analytically continue to 0 < r < r+. Surfaces r = constant have normal n = dr; this is

null when grr = 0, i.e. when ∆
r2 = 0.

Hence r = r± are null hypersurfaces which we will denote by S±.

Proposition 4.1 S± are Killing horizons of k = ∂
∂v

(the extension of ∂
∂t

) with surface gravities

κ±.

Proof

n = dr is normal to S±. The covector corresponding to k is

ka = gabk
b = gav = −∆

r2
(dv)a + (dr)a. (4.9)

On S±, k = dr, hence k is normal to S± and S± are Killing horizons of k. Also

k · ∇ka = −1

2
∂a(k

2) = −1

2
∂a

(

−∆

r2

)

=
1

2

(

∆

r2

)′
(dr)a =

1

2

(

∆

r2

)′
ka|S±

. (4.10)

Hence the surface gravities are

κ =
1

2

(

∆

r2

)′
|S±

=
M

r2
− e2

r3
|S±

= κ±, (4.11)

q.e.d.

Note that k = ∂
∂t

in static coordinates, so k2 → −1 as r → ∞. Hence κ± are correctly nor-

malised.

k is spacelike for r− < r < r+ and timelike for 0 < r < r−.

Exercise

(a) Show that the Finkelstein diagram for the Reissner-Nordström solution with M > e is
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(b) Show that r decreases along any future-directed causal curve in r− < r < r+.

No point with r < r+ can send a signal to infinity, so this region corresponds to a black hole.

In outgoing Eddington-Finkelstein coordinates, the Reissner-Nordström metric is

ds2 = −∆

r2
du2 − 2du dr + r2 dΩ2. (4.12)

Hence the region r ≤ r+ is a white hole.

To construct the maximal analytic extension, we use Kruskal-type coordinates:

U± = −e−κ±u, V ± = ±eκ±v.

We start in r > r+ and use (U+, V +); the metric becomes

ds2 = −r+r−
κ2

+

e−2κ+r

r2

(

r − r−
r−

)1+
κ+
|κ−|

dU+ dV + + r2dΩ2, (4.13)

where r(U+, V +) is defined implicitly by

U+V + = −e2κ+r

(

r − r+

r+

)(

r−
r − r−

)

κ+
|κ−|

. (4.14)

Initially, we have U+ < 0, V + > 0, but can now analytically continue to U+ > 0 or V + < 0.

We have a bifurcate Killing horizon and a bifurcation two-sphere at U+ = V + = 0.

Note that r(U+, V +) > r−, so these coordinates do not cover r ≤ r−.

In region II, we can use ingoing Eddington-Finkelstein coordinates (v, r, θ, ϕ). We can then define

t′ = v − r∗ to obtain the metric in region II in Reissner-Nordström coordinates (t′, r, θ, ϕ).

Alternatively let u = t′ − r∗ = v − 2r∗ and then define U−, V − as above; then U− < 0, V − < 0 in

region II. The metric becomes

ds2 = −r+r−
κ2
−

e2|κ−|r

r2

(

r+ − r

r+

)1+
|κ−|

κ+

dU− dV − + r2dΩ2, (4.15)
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where r(U−, V −) is defined implicitly by

U−V − = e−2|κ−|r
(

r − r−
r−

)(

r+

r+ − r

)

|κ−|

κ+

. (4.16)

We can now analytically continue to U− > 0 or V − > 0. The Kruskal diagram is

The regions V and VI contain curvature singularities at r = 0, i.e. U−V − = −1.
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(10)We know region II is connected to I, III and IV to the past, so by time-reversal invariance we expect

that III’ is connected to isometric regions I’, II’, and IV’ to the future:

Proof: We can introduce new Kruskal coordinates U ′′, V ′′ in III’ and proceed as before.

I’ and IV’ are new asymptotically flat regions. We can keep going and get infinitely many regions.

4.1.1 Internal Infinities

Consider a path of constant r, θ and ϕ in region II in ingoing Eddington-Finkelstein coordinates.

ds2 = −∆

r2
dv2 =

|∆|
r2
dv2 > 0,

so the path is spacelike.

The proper distance from v = v0 to v = −∞ (i.e. V + = 0 and U+ = ∞) along this path is

v0
∫

−∞

√

|∆|
r

dv =

√

|∆|
r

v0
∫

−∞

dv = ∞. (4.17)
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There exists an “internal” spacelike infinity in region II. (One can still reach V + = 0 in finite affine

parameter along a timelike/null path, so V + = 0 is part of the spacetime.) We can do the same

thing using outgoing Eddington-Finkelstein coordinates in region II, there are timelike infinities at

U+ = 0, V + = ∞, similarly at V − = 0, U− = ∞ or U− = 0, V − = ∞ in region III etc.

4.2 Penrose Diagram

We bring points at infinity into finite affine parameter using a conformal transformation; the Penrose

diagram extends infinitely into the future and past.

Note

(i) The singularity is timelike.

(ii) The spacetime is not globally hyperbolic. A partial Cauchy surface Σ has future/past Cauchy

horizons at r = r−.

Consider two observers A and B. A crosses the future Cauchy horizon, B stays in region I.

Assume that B sends light signals to A at proper time intervals of one second. B sends

infinitely many signals, A receives them all in finite proper time as he crosses the Cauchy

horizon. Therefore signals from region I undergo an infinite blue shift there.
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The gravitational backreaction of a tiny perturbation in I is infinite at the future Cauchy

horizon, this is an instability. It is believed that this leads to the Cauchy horizon becoming

replaced by a spacelike/null singularity.

The Penrose diagram for (almost) spherically symmetric gravitational collapse of a charged

ball of dust (with M > e) to form a Reissner-Nordström black hole is the following:

The structure of the singularity is complicated.

Note

In the real world, black holes have e≪M as

(i) large imbalances of charge do not occur in nature, so collapsing matter will be almost neutral;

(ii) a charged black hole preferentially attracts particles of opposite charge.

4.3 Geometry of t = constant Surfaces

In region I,
U+

V +
= −e−2κ+t

Hence surfaces of t = constant have U+ = V + · constant and are straight lines through the origin

of the Kruskal diagram.

These extend naturally into region IV.

Let r = ρ+M + M2−e2

4ρ
; the Reissner-Nordström metric in isotropic coordinates (t, ρ, θ, ϕ) is

ds2 = − ∆

r(ρ)2
dt2 +

r(ρ)2

ρ2

(

dρ2 + ρ2dΩ2
)

, (4.18)
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where

∆ =

(

ρ− M2 − e2

4ρ

)2

.

In these coordinates surfaces of constant t are manifestly conformally flat.

We can plot r as a function of ρ:

ρ >
√

M2−e2

2 in region I and ρ <
√

M2−e2

2 in region IV.

ρ→ M2−e2

4ρ
is an isometry that interchanges regions I and IV.

The metric of t = constant surfaces is

ds2 =
r(ρ)2

ρ2

(

dρ2 + ρ2dΩ2
)

, (4.19)

they are geodesically complete for ρ > 0. The topology of these surfaces is R × S2.

We can embed these surfaces into flat R
4 to visualize the geometry; suppressing the coordinate θ,

the picture looks as follows

Each surface is an “Einstein-Rosen bridge” connecting the two asymptotically flat regions.

The proper distance from r = R to r = r+ along a curve of constant t, θ, ϕ is

R
∫

r+

dr
√

(1 − r+

r
)(1 − r−

r
)
→ ∞ as r+ − r− → 0, i.e. as e→M.

In this limit the Einstein-Rosen bridge becomes an infinite throat:
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4.4 Extremal Reissner-Nordström Solution
11 Feb

(11)Let e = M in (4.4):

ds2 = −
(

1 − M

r

)2

dt2 +
dr2

(

1 − M
r

)2 + r2dΩ2. (4.20)

We start in the region r > M and introduce

r∗ = r + 2M log

∣

∣

∣

∣

r −M

M

∣

∣

∣

∣

and ingoing Eddington-Finkelstein coordinates (v, r, θ, ϕ); the metric becomes

ds2 = −
(

1 − M

r

)2

dv2 + 2dv dr + r2dΩ2. (4.21)

As before, we can now analytically continue to the region r < M and include all positive values for

r.

Exercise Show that r = M is a degenerate Killing horizon (i.e. κ = 0) of ∂
∂v

.

The Penrose diagram is

As before, H+ is a Cauchy horizon for Σ.

To understand the geometry near the horizon, let r = M(1 + λ). To leading order to λ,

ds2 ∼ −λ2dt2 +M2dλ
2

λ2
+M2dΩ2. (4.22)

This is the Robinson-Bertotti solution. The metric is a product metric adS2 × S2.
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4.5 Multiple Black Hole Solutions

The extremal Reissner-Nordström solution is in isotropic coordinates (4.18)

ds2 = − 1

H2
dt2 +H2(dρ2 + ρ2dΩ2), H = 1 +

M

ρ
. (4.23)

This is a special case of the Majumdar-Papapetrou solution

ds2 = − 1

H2
dt2 +H2(dx2 + dy2 + dz2), (4.24)

where H(x, y, z) is a general harmonic function:

∆H(x, y, z) = 0.

Choosing

H = 1 +
N
∑

i=1

Mi

|~x− ~xi|
(4.25)

gives a solution describing N extremal Reissner-Nordström black holes at positions ~x = ~xi (these

are actually two-spheres, not points).

The solution exists only for the extremal case because Mi = Qi for all black holes, and there is an

exact cancellation of gravitational attraction and electrostatic repulsion.

5 Rotating Black Holes

5.1 Spacetime Symmetries

We need to weaken the definition of “stationary” to cover rotating black holes.

Definition 5.1 An asymptotically flat spacetime is stationary if it admits a Killing vector field

k that is timelike in a neighbourhood of I±. It is static if it is stationary and k is hypersurface-

orthogonal.

As an example, Kruskal is static (even though k is spacelike in regions II and III).

Definition 5.2 An asymptotically flat spacetime is stationary and axisymmetric if

(i) it is stationary,

(ii) it admits a Killing vector field m that is spacelike near I±,

(iii) m generates a one-parameter group of isometries isomorphic to U(1),

(iv) [k,m] = 0.

For an stationary and axisymmetric spacetime, we can choose adapted coordinates so that k =
∂
∂t
, m = ∂

∂ϕ
and ϕ is identified with ϕ+ 2π, e.g. for Minkowski spacetime

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2).
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5.2 Uniqueness Theorems

Birkhoff’s theorem states that

“spherical symmetry + vacuum ⇒ static.”

The converse is untrue; a static vacuum spacetime need not be spherically symmetric, e.g. outside

a cubic-shaped star.

But if the spacetime describes only a black hole, then

Theorem 5.3 (Israel [2], Bunting/Masood [3], . . . )

If (M, g) is a static, asymptotically flat vacuum spacetime, non-singular on, and outside, an event

horizon, then (M, g) is Schwarzschild.

Note

(i) This proves that static vacuum multi-black holes do not exist.

(ii) The Einstein-Maxwell generalisation is: (M, g) must be Reissner-Nordström or Majumdar-

Papapetrou.

What about stationary black holes?

Theorem 5.4 (Hawking [4], Wald 1992)

If (M, g) is a stationary, non-static, asymptotically flat solution of the Einstein-Maxwell equations

that is non-singular on, and outside, an event horizon, then

(i) (M, g) is axisymmetric,

(ii) the event horizon is a Killing horizon of ξ = k + ΩHm for some constant ΩH 6= 0.

So for black holes,

“stationary ⇒ axisymmetric.”

Theorem 5.5 (Carter [5], Robinson [6])

If (M, g) is an asymptotically flat, stationary axisymmetric vacuum spacetime, non-singular on,

and outside a connected event horizon, then (M, g) is a member of the two-parameter Kerr family

[7] of solutions. The parameters are mass M and angular momentum J .

Note

(i) We expect the final state of gravitational collapse to be stationary. The initial state can be

arbitrarily complicated - so there are arbitrarily many independent multipole moments of the

gravitational field. But the final state has only two independent multipole moments.

All information about the initial state except for M,J is radiated away during collapse.

(ii) The Einstein-Maxwell generalisation is: (M, g) belongs to the Kerr-Newman family [8] of

solutions with four paramters (M,J,Q, P ).
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5.3 The Kerr-Newman Solution
13 Feb

(12)In Boyer-Lindqvist coordinates, the Kerr-Newman solution is

ds2 = −∆ − a2 sin2 θ

Σ
dt2 − 2a sin2 θ

r2 + a2 − ∆

Σ
dt dϕ+

(r2 + a2)2 − ∆a2 sin2 θ

Σ
sin2 θ dϕ2 (5.1)

+
Σ

∆
dr2 + Σ dθ2,

with

A =
−Qr(dt− a sin2 θ dϕ) + P cos θ(a dt− (r2 + a2)dϕ)

Σ
(5.2)

and

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 + e2, e =
√

Q2 + P 2. (5.3)

We will see later that aM = J , where J is the total angular momentum.

Note

(i) This is asymptotically flat as r → ∞.

(ii) If a = 0, the metric reduces to the Reissner-Nordström solution.

(iii) The transformation ϕ→ −ϕ has the same effect as a→ −a, so without loss of generality we

can assume a ≥ 0.

(iv) The metric has a discrete isometry t→ −t, ϕ→ −ϕ.

5.4 The Kerr Solution

We set Q = P = 0 in the Kerr-Newman solution to get the Kerr solution, then

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2. (5.4)

There is no known way of matching this onto a non-vacuum metric describing a stellar interior; so

there is no reason to expect the metric outside a rotating star to be exactly the Kerr solution.

In Boyer-Lindqvist coordinates, the metric is singular at

(a) θ = 0, π (axis of symmetry: coordinate singularity),

(b) ∆ = 0.

We can write ∆ = r2 − 2Mr + a2 = (r − r+)(r − r−), where

r± = M ±
√

M2 − a2. (5.5)

As usual, there are three different cases depending on the magnitudes of M and a:

Case (i) M2 < a2, ∆ > 0 for all r.

The quantity RabcdR
abcd diverges at Σ = 0, i.e. at r = 0 and θ = π

2 . This is a curvature

singularity.
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The understand the geometry here, transform to Kerr-Schild coordinates (t̃, x, y, z)

x+ iy = (r + ia) sin θ exp

(

i

∫

(dϕ+
a

∆
dr)

)

, z = r cos θ, t̃ =

∫
(

dt− r2 + a2

∆
dr

)

− r.

Then r = r(x, y, z) is given implicitly by

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0. (5.6)

This defines r up to a sign, we can choose r to be positive everywhere.

The metric is

ds2 = −dt̃2 + dx2 + dy2 + dz2 +
2Mr3

r4 + a2z2

(

r(x dx+ y dy) − a(x dy − y dx)

r2 + a2
+
z dz

r
+ dt̃

)2

.

(5.7)

Note

This metric is non-singular at x = y = 0 (i.e. θ = 0, π). If M = 0, then the Kerr metric is

flat.

Since

x2 + y2 +

(

a2 + r2

r2

)

z2 = r2 + a2,

surfaces of constant r, t̃ are confocal ellipsoids which degenerate at r = 0 to a disc z =

0, x2 + y2 ≤ a2.

The singularity at r = 0, θ = π
2 corresponds to z = 0 and x2 + y2 = a2, i.e. a “ring” that

bounds the disc. For x2 + y2 < a2 and z ↓ 0

r ≈ az
√

a2 − x2 − y2
.

For the metric to be analytic, we need r to be analytic; hence r becomes negative when z

becomes negative.
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But we know that r > 0 for z < 0 !

Resolution: Crossing the disc leads to a new region with coordinates (x′, y′, z′), with metric

as before with x→ x′ etc. and r(x′, y′, z′) < 0.

PQR, P ′Q′R′ are smooth curves.

The region r < 0 is asymptotically flat as r → −∞.

To understand the causal structure, note that θ = 0, π
2 , π are totally geodesic submanifolds

(i.e. a geodesic initially tangent to the submanifold remains tangent). Hence we can draw

Penrose diagrams for these submanifolds:

(each points represents a circle 0 ≤ ϕ ≤ 2π),
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We can summarize both diagrams as

This spacetime is unphysical because of cosmic censorship, and for another reason: Consider

the axial Killing vector field m, then

m2 = gϕϕ = a2 sin2 θ

(

1 +
r2

a2

)

+
Ma2

r
· 2 sin4 θ

1 + a2

r2 cos2 θ
(5.8)

For r = aδ, θ = π
2 + δ with |δ| ≪ 1,

m2 =
Ma

δ
+ a2 +O(δ) < 0

for small negative δ.

Hence m is timelike near the ring singularity in the r < 0 region, but its orbits are closed;

these orbits are closed timelike curves (CTCs).

One can show that there exist CTCs through any point of this spacetime.
15 Feb

(13)Case (ii) M2 > a2

Here r = r± are coordinate singularities. Define Kerr coordinates (v, r, θ, χ) by

dv = dt+
r2 + a2

∆
dr, dχ = dϕ+

a

∆
dr. (5.9)

Then the Killing vectors are k = ∂
∂v

and m = ∂
∂χ

and χ is periodically identified with period

2π. The metric becomes

ds2 = −∆ − a2 sin2 θ

Σ
dv2 + 2dv dr − 2a

sin2 θ(r2 + a2 − ∆)

Σ
dv dχ− 2a sin2 θ dχ dr (5.10)

+
(r2 + a2)2 − ∆a2 sin2 θ

Σ
sin2 θ dχ2 + Σ dθ2

Starting in r > r+, we can analytically continue through r = r±.

Proposition 5.6 r = r± is a Killing horizon of the Killing vector field

ξ± = k + ΩHm, ΩH =
a

r2± + a2

with surface gravity

κ± =
r± − r∓

2(r2± + a2)
.
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Proof

Exercise; follow the following steps

(i) Determine (ξ±)a, show that

(ξ±)adx
a|r=r±

∝ dr,

hence ξ± is normal to the surface r = r±.

(ii) Calculate (ξ±)2 and show that

(ξ±)2|r=r±
= 0.

Hence r = r± is a null hypersurface and a Killing horizon of ξ±.

(iii) Determine κ using

−1

2
∂a(ξ

2
±)|r=r±

= κ±(ξ±)a|r=r±
.

We can use his to find Kruskal-Szekeres-like coordinates covering four regions around a bi-

furcation two-sphere of each horizon.

The region r < r− has a ring singularity at r = 0, θ = π
2 . It has the same structure as in case

(i). Therefore we can analytically continue to a new asymptotically flat region with r < 0.

(We will still have CTCs but they are hidden behind the r = r− horizon.)

Again, the submanifolds θ = 0, π
2 , π are totally geodesic; we can determine the Penrose dia-

gram as before.

Case (iii) M2 = a2, “extremal Kerr solution”

Here r = M is a degenerate Killing horizon (κ = 0) of ξ = k+ΩHm, ΩH = 1
2M

. The Penrose

diagram is
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H+ is a future Cauchy horizon for Σ.

5.5 Angular Velocity of the Horizon

We previously defined the Killing vector field

ξ = k + ΩHm =
∂

∂t
+ ΩH

∂

∂ϕ
, ΩH =

a

r2+ + a2

in Boyer-Lindqvist coordinates. Since

ξa∂a(ϕ− ΩHt) = 0, (5.11)

ϕ = ΩHt+ constant on orbits of ξ.

Note that ϕ = constant on orbits of k, and so particles moving on orbits of ξ rotate with angular

velocity ΩH relative to a stationary observer (someone on an orbit of k), e.g. an inertial observer

at infinity.

H+ is a Killing horizon of ξ, hence the null geodesic generators of H+ rotate with angular ve-

locity ΩG, i.e. the black hole has angular velocity ΩH (relative to a stationary observer).

5.6 The Ergosphere

The Killing vector field k has

k2 = gtt = −∆ − a2 sin2 θ

Σ
= −

(

1 − 2Mr

r2 + a2 cos2 θ

)

, (5.12)

so k is timelike if and only if r2 + a2 cos2 θ − 2Mr > 0, i.e. if and only if (in r > 0)

r > M +
√

M2 − a2 cos2 θ. (5.13)

The region r+ < r < M +
√
M2 − a2 cos2 θ, in which k is spacelike, is called the ergosphere.
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Observers cannot remain stationary in the ergosphere - they must rotate in the same direction as

the horizon.

The Penrose Process

Consider a particle with 4-momentum P a = (mass·Ua) that approaches a Kerr black hole along a

geodesic. Its energy mesaured at infinity is E = −k · P . Suppose that the particle decays inside

the ergosphere into two particles with 4-momenta P a
1 , P

a
2 .

By 4-momentum conservation, we must have

P a = P a
1 + P a

2 ⇒ E = E1 + E2. (5.14)

E1 = −k · P1, but since k is spacelike in the ergosphere we can have E1 < 0.

The second particle has E2 = E − E1 > E for E1 < 0. One can show that the first particle can

always fall into the black hole (and the second can escape to infinity). Then the mass of the black

hole decreases, energy is extracted from the black hole!

Limits to Energy Extraction

A particle crossing the horizon H+ has −P · ξ ≥ 0 (as P and ξ are both future-directed), but

ξ = k + ΩHm ⇒ E − ΩHL ≥ 0,

where L = m · P is the angular momentum of the particle. Hence L ≤ E
ΩH

; so if for particle one

E is negative, so is L and the Penrose process also decreases the angular momentum of the black

hole.

In the Penrose process, δM = E, δJ = L and so

δJ ≤ 1

ΩH
δM = 2M

M2 +
√
M4 − J2

J
δM. (5.15)

Exercise Show that this equivalent to δMirr ≥ 0, where the irreducible mass is

Mirr =

√

1

2
(M2 +

√

M4 − J2). (5.16)

Inverting gives

M = M2
irr +

J2

4M2
irr

≥M2
irr. (5.17)
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Hence one can not reduce M below the inital value of Mirr via the Penrose process. This limits

the amount of energy that can be extracted via the Penrose process.

18 Feb

(14)Exercise Show that A = 16πM2
irr is the ”area of the event horizon”, i.e. the area of the intersection

of H+ with a partial Cauchy surface (such as v = constant in Kerr coordinates), and hence that

δA ≥ 0 in the Penrose process. This is a special case of the Second Law of Black Hole Mechanics.

6 Mass, Charge and Angular Momentum

6.1 More on Differential Forms

Remark

Any two n-forms on an n-dimensional manifold are proportional. If X and X ′ are two such n-forms,

then X = fX ′ where f is a function on the manifold.

Definition 6.1 An n-manifold is orientable if it admits a smooth nowhere vanishing n-form ε.

Two such orientations ε, ε′ are equivalent if ε′ = f(x)ε for some everywhere positive function

f . (An orientable manifold has two inequivalent orientations, given by ±ε.)

Definition 6.2 A coordinate chart (xa) is right-handed with respect to ε if

ε = h(x)dx1 ∧ dx2 ∧ . . . ∧ dxn (6.1)

for an everywhere positive function h.

The volume form is defined by ε12...n =
√

|g| in any coordinate chart.

Note that

ε12...n = ± 1
√

|g|
with a positive sign for Riemannian and a negative sign for Lorentzian signature.

Also remember the relation

εa1...apcp+1...cnεb1...bpcp+1...cn
= ±p!(n− p)!δa1

[b1 . . . δ
ap

bp]. (6.2)

Definition 6.3 The Hodge dual of a p-form X is the (n− p)-form (∗X) defined by

(∗X)a1...an−p =
1

p!
εa1...an−pb1...bp

Xb1...bp . (6.3)

Properties

(i) ∗(∗X) = ±(−1)p(n−p)X,

(ii) (∗d ∗X)a1...ap−1 = ±(−1)p(n−p)∇bXa1...ap−1b, hence Ja is conserved if and only if d ∗ J = 0.

Example Maxwell’s equations, ∇aFab = −4πjb, where jb is the current density 4-vector, and

∇[aFbc] = 0 can be written as

d ∗ F = −4π ∗ j, dF = 0. (6.4)

(Then locally, there exists an A such that F = dA.)
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6.1.1 Integration of Forms

Let M be an oriented manifold, U ⊂ M a region covered by a right-handed coordinate chart

φ = (xa), and X an n-form.

Definition 6.4 The integral of X over M is defined by

∫

M
X =

∫

φ(M)
dx1dx2 . . . dxnX12...n. (6.5)

Exercise Check that this is coordinate-invariant.

In case there exists no global chart, we divide M into topologically trivial regions Ui such that

M =
⋃

i Ui and Ui ∩ Uj = ∅ for i 6= j. Then we can define

∫

M
X =

∑

i

∫

Ui

X. (6.6)

The volume of the manifold M is

V =

∫

M
ε.

If f : M → R is a function we also define

∫

M
f =

∫

M

fε.

Now let Σ be an m-dimensional oriented submanifold of M and X an n-form. If (ξi) are coordinates

on Σ (1 ≤ i ≤ m), we can specify Σ by xa = xa(ξi), i.e. a map ϕ : Σ → M. Then the pull-back

ϕ∗X is an m-form on Σ. We then define the integral of X over Σ to be

∫

Σ
X =

∫

Σ
ϕ∗X. (6.7)

Note If Y is an (n− 1)-form, then

∫

Σ
dY =

∫

Σ
ϕ∗(dY ) =

∫

Σ
d(ϕ∗Y ).

6.1.2 Stokes’ Theorem

states that ∫

Σ
dX =

∫

∂Σ
X, (6.8)

where Σ is an n-dimensional oriented manifold with boundary ∂Σ and X is an (n− 1)-form.

A “manifold with boundary” is defined in the same way as a manifold except that the coordinate

charts are maps Σ → 1
2R

n = {(x1, . . . , xn) : x1 ≤ 0}. The boundary ∂Σ is the set of points in Σ

mapped to {x1 = 0}. The orientation of ∂Σ is fixed by saying that (x2, . . . , xn) is a right-handed

coordinate chart on ∂Σ if (x1, . . . , xn) is right-handed on Σ.
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6.2 Charges in Curved Spacetime

Let Σ be a spacelike hypersurface with boundary ∂Σ. The total electric charge on Σ is

Q = −
∫

Σ
∗j,

where the orientation of Σ is enduced from J −(Σ); e.g. consider Minkowski space with volume

form dt ∧ dx ∧ dy ∧ dz and a hypersurface t = constant which has charge Q =
∫

dx dy dz (∗j)123.
Using Maxwell’s equations,

Q =
1

4π

∫

Σ
d ∗ F =

1

4π

∫

∂Σ
∗F. (6.9)

In an asymptotically flat spacetime, we choose Σ to have a single boundary of topology S2 at spatial

infinity (e.g. at ı0). Then

Q =
1

4π

∫

S2
∞

∗F.

In Minkowski space, we can choose the volume form r2 sin θ dt∧dr∧dθ∧dϕ to define the orientation.

Let Σ be the hypersurface t = 0, it is the boundary of the region {t ≤ 0}. Then dr∧dθ∧dϕ defines

the orientation of Σ. Similarly, let S2
R = {t = 0, r = R} be the boundary of the region {r ≤ R} in

Σ; then an orientation on S2
R is defined by dθ ∧ dϕ.

Consider an electric potential A = −Q
r
dt, then F = −Q

r2dt ∧ dr,

(∗F )θϕ = εθϕtrF
tr = r2 sin θ

Q

r2
= Q sin θ ⇒ 1

4π

∫

S2
R

∗F =
1

4π

∫

dθ dϕQ sin θ = Q.

Our definition of electric charge agrees with the electric charge in the electrostatic potential.

Definition 6.5 In an asymptotically flat spacetime, the total electric and magnetic charges are

Q =
1

4π

∫

S2
∞

∗F, P =
1

4π

∫

S2
∞

F, (6.10)

where S2
∞ is a two-sphere that approaches ı0.

Exercise Show that these agree with Q and P in the Reissner-Nordström solution.

Note

These charges are conserved, hence we can consider different spheres S2
∞, S

2′
∞ at different points of

infinity, i.e. S2
∞ at spatial infinity and S2′

∞ at future timelike infinity. Then

Q′ −Q =
1

4π

∫

S2′
∞

∗F − 1

4π

∫

S2
∞

∗F =
1

4π

∫

C

d ∗ F,

where C is a cylinder which connects S2
∞ and S2′

∞. If no charge flows through I+,

Q′ −Q = −
∫

C

∗j = 0.

Similarly P ′ = P .
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6.2.1 Komar Integrals
20 Feb

(15)If (M, g) is stationary then there exists a conserved energy-momentum current Ja = −Tabk
b.

So we can define the total energy of matter on a spacelike hypersurface Σ by

E(Σ) = −
∫

Σ
∗J. (6.11)

This is conserved: If Σ and Σ′ bound the spacetime region R, then

E(Σ′) − E(Σ) = −
∫

∂R

∗J = −
∫

R

d ∗ J = 0. (6.12)

If ∗J = dX for some two-form X, then we could convert E(Σ) into an integral over ∂Σ (as for Q

and P ) and thereby define energy for any asymptotically flat spacetime. We cannot do this for J ;

but consider

(∗d ∗ dk)a = −∇b(dk)ab = −∇b∇akb + ∇b∇bka = 2∇b∇bka,

since k is a Killing vector field.

Exercise Show that a Killing vector field k obeys

∇a∇bk
c = Rc

badk
d. (6.13)

We use this to rewrite

(∗d ∗ dk)a = −2Rabk
b = 8πJ ′

a

where

J ′
a ≡ −2

(

Tab −
1

2
Tgab

)

kb

by the Einstein equations, so

d ∗ dk = 8π ∗ J ′

and ∗J ′ is exact and hence

−
∫

Σ
∗J ′ = − 1

8π

∫

Σ
d ∗ dk = − 1

8π

∫

∂Σ
∗dk.

Definition 6.6 In a stationary, asymptotically flat spacetime, the Komar mass (or energy) is

MKomar = − 1

8π

∫

S2
∞

∗dk, (6.14)

where S∞
2 approaches spacelike infinity ı0.

Note

(i) MKomar is conserved, as we showed previously for Q and P .

(ii) MKomar is the total energy of spacetime, not just the energy from matter. For instance, for

the Schwarzschild spacetime, MKomar = M (Exercise).

(iii) One can use a similar defintion for any Killing vector field, e.g.

Definition 6.7 In an axisymmetric, asymptotically flat spacetime, the Komar angular mo-

mentum is

JKomar =
1

16π

∫

S2
∞

∗dm. (6.15)
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6.2.2 ADM Energy

How do we define total energy in a non-stationary spacetime?

Consider a weak field, so that we can write the metric as

gab = ηab + hab

with Cartesian coordinates xa = (x0, xi) and ηab = diag(−1, 1, 1, 1). Then we define

h̄ab = hab −
1

2
hηab, h = ηabhab

and fix the gauge freedom corresponding to infinitesimal coordinate transformations by imposing

deDonder gauge

∂ah̄ab = 0. (6.16)

We then obtain the linearised Einstein equations

2h̄ab ≡ (−∂2
0 + ∂i∂i)h̄ab = −16πTab. (6.17)

Here the spatial index i is being summed over when it appears twice. Setting a = 0, b = 0 we get

16πT00 = ∂2
0 h̄00 − ∂i∂ih̄00 = ∂0(∂ih̄i0) − ∂i∂ih̄00 = ∂i∂j h̄ij − ∂i∂ih̄00

= ∂i∂j

(

hij −
1

2
hηij

)

−∂i∂i

(

h00 +
1

2
h

)

= ∂i∂jhij−∂i∂ih00−∂i∂ih = ∂i∂jhij−∂i∂ihjj = ∂i(∂jhij−∂ihjj),

where we repeatedly used the gauge condition.

Now let Σ be a surface of constant x0. Then the total energy of the matter on Σ is

E =

∫

Σ
d3x T00 =

1

16π

∫

Σ
d3x ∂i(∂jhij − ∂ihjj) =

1

16π
lim

r→∞

∫

S2
r

dA ni(∂jhij − ∂ihjj), (6.18)

where S2
r is a sphere with radius r, i.e. all points with xixi = r2 , at constant x0, and ni is the unit

outward normal to S2
r in Σ.

We can now extend this to any (not necessarily weak field) asymptotically flat spacetime.

Definition 6.8 Let Σ be an asymptotically flat spacelike hypersurface in an asymptotically flat

spacetime. Let xi be asymptotically Cartesian coordinates on Σ, i.e. the metric on Σ is δij + hij,

where hij = O(1
r
) (wirh r =

√
xixi). Then the ADM energy is defined by (6.18).

Note

(i) The integrand of (6.18) is not gauge-invariant. Under an infinitesimal coordinate transfor-

mation,

hij → hij + ∂(iξj).

But the integral is gauge-invariant.

(ii) One can also define an ADM momentum P i
ADM tangent to Σ at ı0. If Σ is chosen so that

P i
ADM = 0, then EADM is called the ADM mass.

(iii) In a stationary spacetime, choosing Σ to be asymptotically orthogonal to k means that

P i
ADM = 0, EADM = EKomar.
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6.3 Energy Conditions

These are statements how “physical” energy-momentum tensors should behave. The dominant

energy condition states that

−T a
bV

b

is a future-directed timelike/null vector (or zero) for all future-directed timelike/null vectors V a.

(“All observes measure a speed of energy flow less than or equal to the speed of light.”)

All physically reasonable matter obeys this, e.g. a massless scalar field with

Tab = ∂aΦ∂bΦ − 1

2
gab(∂Φ)2. (6.19)

Let

ja = −T a
bV

b = −(V · ∂Φ)∂aΦ +
1

2
(∂Φ)2V a,

then

j2 =
1

4
V 2
(

(∂Φ)2
)2 ≤ 0

if V 2 ≤ 0, and hence j is timelike or null. Furthermore,

V · j = −(V · ∂Φ)2 +
1

2
V 2(∂Φ)2 = −1

2
(V · ∂Φ)2 +

1

2
V 2

(

∂Φ − V · ∂Φ

V 2
V

)2

The first term is clearly negative definite, and from

V ·
(

∂Φ − V · ∂Φ

V 2
V

)

= 0

it follows that the bracket is spacelike, null or zero, and hence its square is greater than or equal

to zero. Hence V · j ≤ 0 and j is future-directed.

The weak energy condition states that

TabV
aV b ≥ 0 (6.20)

for any non-spacelike vector V . (“All observers measure non-negative energy density.”)

The null energy condition states that

TabV
aV b ≥ 0 (6.21)

for any null vector V . The dominant energy condition implies the weak energy condition, the weak

energy condition implies the null energy condition.

The strong energy condition states that

(

Tab −
1

2
Tgab

)

V aV b ≥ 0 ⇔ RabV
aV b ≥ 0 (6.22)

for any non-spacelike vector V a. (“Gravity is attractive.”)

Note

The strong energy condition does not imply the dominant or weak energy conditions.
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It occurs in singularity theorems of general relativity. The dominant energy condition is most

important physically.

A positive cosmological constant obeys the dominant, but violates the strong energy condition.

22 Feb

(16)In Newtonian theory, gravitational energy is negative. Can the ADM mass be negative ? The

answer is no:

Theorem 6.9 (Schoen, Yau, Witten [9])

The ADM mass of an asymptotically flat spacetime satisfying Einstein’s equations is non-negative,

and vanishes only in Minkowski spacetime, provided that

(i) there exists a non-singular Cauchy surface (this excludes Schwarzschild spacetime with M <

0),

(ii) matter obeys the dominant energy condition.

7 Black Hole Mechanics

7.1 Geodesic Congruences

Definition 7.1 Let U be an open subset of M. A congruence in U is a family of curves such

that through each point p ∈ U there passes exactly one curve. It is a geodesic congruence if

these curves are geodesics.

We can specify a congruence by xa = xa(λ, yi), where λ is an affine parameter, and yi labels the

geodesics. The tangent

Ua =

(

∂xa

∂λ

)

y

obeys the geodesic equation U · ∇Ua = 0.

Definition 7.2 A displacement vector field for a geodesic congruence with tangent U is a

vector field η, nowhere parallel to U , that obeys LUη = [U, η] = 0.

Hence by definition,

U · ∇η − η · ∇U = 0 (7.1)

or with Ba
b = ∇bU

a,

U · ∇ηa = Ba
bη

b.
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Ba
b measures the “geodesic deviation” - the failure of η to be parallelly propagated.

Let Σ be a spacelike hypersurface that intersects each geodesic in the congruence exactly once. Let

λ be the affine parameter distance from Σ along each geodesic. Now

d

dλ
(U · η) = U · ∇(U · η) = Ua (U · ∇ηa) = UaB

a
bη

b = 0 (7.2)

because

UaB
a
b =

1

2
∂b(U

2) = 0

as we can fix U2 = ±1 or 0. Then U · η = constant along geodesics, and the component of η in the

direction of U exhibits boring behaviour, so we restrict attention to displacement vectors satisfying

U · η = 0 on Σ, which is then satisfied for all λ.

If U is null there is still the freedom to shift η by a term proportional to U , i.e. η′ = η + f(x)U is

also a displacement vector orthogonal to U provided U ·∇f = 0. We fix this freedom by introducing

a vector N obeying N2 = 0 and U ·N = −1 on Σ and extend N off Σ by parallel propagation:

U · ∇N = 0.

Then N2 = 0 and U ·N = −1 are satisfied everywhere. We cannot insist that η be orthogonal to

N everywhere since U · ∇(η ·N) 6= 0.

We define a two-dimensional subspace T⊥ of the tangent space by Pη = η where

P a
b = δa

b +NaUb + UaNb.

P is a projection which projects to the subspace orthogonal to N and U .

Proposition 7.3 For η ∈ T⊥,

U · ∇ηa = B̂a
bη

b, (7.3)

where B̂a
b = P a

cB
c
dP

d
b.

Proof

U · ∇ηa = U · ∇(P a
bη

b) = P a
bU · ∇ηb = P a

bB
b
cη

c = P a
bB

b
cP

c
dη

d, (7.4)

since U and N are parallelly propagated and η ∈ T⊥. In the last equality we use

P c
dη

d = ηc + U cNdη
d,

but also Bb
cU

c = 0 as U · ∇U = 0, q.e.d.

Now we decompose the rank two matrix B̂ into irreducible parts:

B̂a
b =

1

2
θ P a

b + σ̂a
b + ω̂a

b, (7.5)

where

θ = B̂a
a, σ̂ab = B̂(ab) −

1

2
Pabθ, ω̂ab = B̂[ab]

are called expansion, shear and twist respectively.

Exercise Show that θ = gabBab = ∇ · U , independent of the choice of N .
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Lemma 7.4

U[aB̂bc] = U[aBbc]. (7.6)

Proof

B̂a
b = Ba

b + UaNcB
c
b + UbB

a
cN

c + UaUbNcB
c
dN

d, (7.7)

using U ·B = B · U = 0, and the result follows.

Proposition 7.5 U is hypersurface-orthogonal if and only if ω̂ = 0.

Proof

U[aω̂bc] = U[aB̂bc] = U[aBbc] = −1

6
(U ∧ dU)abc;

so if ω̂ = 0, then U is hypersurface-orthogonal from Frobenius’ theorem.

If U ∧ dU = 0, then

0 = U[aω̂bc] =
1

3
(Uaω̂bc + Ubω̂ca + Ucω̂ab)

and contracting this with Na gives ω̂bc = 0 since N · ω̂ = 0, q.e.d.

If ω̂ = 0, the family of these hypersurfaces is parametrised by the displacement along N :

It is easiest to visualise θ and σ̂ in this case: Consider a hypersurface N in the family at two values

for λ.

Now consider two infinitesimal displacement vectors η1 and η2. Then they span a two-dimensional

surface element, whose area A is given by

A2 =
1

2
(η1 ∧ η2)

2
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(Since ηi are infintesimal, one can work in normal coordinates, and flat-space arguments can be

used.) But then we have

A2 =
1

2
(η̂1 ∧ η̂2)

2

with η̂i = Pηi, since ηi and η̂i differ by a multiple of U and U · ηi = U2 = 0. Then

d

dλ
(A2) = U · ∇(A2) = (η̂1 ∧ η̂2)abU · ∇(η̂1 ∧ η̂2)

ab = (η̂1 ∧ η̂2)ab

[

(B̂η̂1) ∧ η̂2 + η̂1 ∧ B̂η̂2

]ab

. (7.8)

Exercise Let ξi be the dual one-form to η̂i, i.e. ξi(η̂j) = δi
j , ξ

i(U) = ξi(N) = 0. Show that

(i) (B̂η̂1) ∧ η̂2 = ξ1(B̂η̂1)η̂1 ∧ η̂2, η̂1 ∧ B̂η̂2 = ξ2(B̂η̂2)η̂1 ∧ η̂2;

(ii) η̂a
i ξ

i
b = P a

b.

Hence
d

dλ
(A2) = θ(η̂1 ∧ η̂2)

2 = 2θA2, (7.9)

and
dA

dλ
= θ A. (7.10)

So θ measures the rate of increase of the area element. For θ > 0, geodesics diverge; for θ < 0,

geodesics converge.

7.1.1 Raychaudhuri’s Equation
22 Feb

(17)governs the expansion along null geodesics:

dθ

dλ
= U · ∇(Ba

bP
b
a) = P b

aU · ∇Ba
b = P b

aU
c∇c∇bU

a = P b
aU

c(∇b∇cU
a +Ra

dcbU
b)

= P b
a(∇b(U

c∇cU
a) − (∇bU

c)∇cU
a) + P b

aR
a
dcbU

cUd,

the first term vanishes because U is tangent to a geodesic, and it is an exercise that

dθ

dλ
= −P b

aB
c
bB

a
c −RcdU

cUd = −B̂c
aB̂

a
c −RabU

aU b

and hence
dθ

dλ
= −1

2
θ2 − σ̂abσ̂ab + ω̂abω̂ab −RabU

aU b. (7.11)

This is Raychaudhuri’s equation.

Proposition 7.6 The expansion of the null geodesic generators of a null hypersurface obeys

dθ

dλ
≤ −1

2
θ2 (7.12)

if the Einstein equations and the null energy condition are satisfied.
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Proof

The generators are hypersurface-orthogonal, hence ω̂ = 0. As the metric in T⊥ is positive definite,

we have σ̂2 ≥ 0. Since U is null,

RabU
aU b = 8πTabU

aU b ≥ 0

by the null energy condition. Then the result follows from Raychaudhuri’s equation, q.e.d.

Corollary 7.7 If θ = θ0 < 0 at a point p on a null generator γ of a null hypersurface, then

θ → −∞ along γ within affine parameter 2
|θ0| .

Proof

Let λ = 0 at p. Then

dθ

dλ
≤ −1

2
θ2 ⇒ d(θ−1)

dλ
≥ 1

2
⇒ 1

θ
− 1

θ0
≥ 1

2
λ ⇒ θ ≤ θ0

1 + 1
2λθ0

.

If θ0 < 0, the right-hand side goes to −∞ at λ = 2
|θ0| , q.e.d.

The significance of this statement is the following:

Consider the congruence of all null geodesics through p; this congruence is singular at p. If

θ = θ0 < 0 at a point q on a geodesic γ, then θ → −∞ at some later point r. r is called a

conjugate point to p.

Roughly speaking, infinitesimally nearby null geodesics from p intersect at r. One can show that γ

can be infinitesimally deformed to a timelike curve between p and any point s beyond r along γ.

As an example, consider R×S3 with p = {χ = π, T = 0}, the south pole at T = 0. Geodesics from

the south pole refocus at the north pole. These are conjugate points.

Proposition 7.8 If N is a Killing horizon, then θ = σ̂ = ω̂ = 0.
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Proof

Let ξ be the Killing vector field, then write ξ = h·U so that U is tangent to null geodesic generators.

Then U is hypersurface-orthogonal, so ω̂ = 0. With U = h−1ξ we have

Ba
b = ∇bU

a = ∂b(h
−1)ξa + h−1∇bξ

a,

so that, since ξ is Killing,

B(ab) = ∂(a(h
−1)ξb), B̂(ab) = Pa

cB(cd)P
d
a = 0 (ξ ∝ U), θ = σ̂ = 0.

Corollary 7.9 For a Killing horizon N of ξ, Rabξ
aξb = 0 on N .

Proof

θ = 0 and so dθ
dλ

= 0 on N ; then use Raychaudhuri’s equation, q.e.d.

7.2 Zeroth Law of Black Hole Mechanics

Theorem 7.10 (Zeroth Law of Black Hole Mechanics)

κ is constant on each connected component of the future event horizon of a stationary black hole

spacetime satisfying the dominant energy condition.

Proof

By Hawking’s theorem (3.12), which applies to “physical” matter satisfying the dominant energy

condition, H+ is a Killing horizon.

Let ξ be a Killing vector field normal to H+, then

0 = Rabξ
aξb|H+ = 8πTabξ

aξb|H+ = −8πJ · ξ|H+ , (7.13)

where Ja = −Tabξ
b and we used that ξ2 = 0. But J and ξ are both future-directed timelike or null

(by dominant energy), so if J · ξ|H+ = 0, then J ∝ ξ on H+. Then ξ ∧ J = 0, so

0 = ξ[aJb]|H+ = −ξ[aTb]
cξc|H+ = − 1

8π
ξ[aRb]

cξc|H+ =
1

8π
ξ[a∂b]κ|H+ , (7.14)

where the last equality is shown on example sheet 3. It follows that ∂aκ is proportional to ξa on

H+, so t · ∂κ = 0 for any t tangent to H+, and κ = constant on H+, q.e.d.

7.3 Second Law of Black Hole Mechanics

Definition 7.11 An asymptotically flat spacetime (M, g) is strongly asymptotically predictable

if there exists some globally hyperbolic open set U ⊂ M such that

J −(I+) ∪H+ ⊂ U,

i.e. if physics is predictable from a Cauchy surface for U oustide the black hole and on H+.

Theorem 7.12 (Second Law of Black Hole Mechanics, Hawking Area Theorem)

Let (M, g) be a strongly asymptotically predictable spacetime which obeys the null energy condition.

Let Σ1,Σ2 be spacelike Cauchy surfaces for U , where Σ2 ⊂ J +(Σ1). Then for Hi = Σi ∩H+,

area(H2) ≥ area(H1). (7.15)
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Proof

First show that θ ≥ 0 on H+; so assume that θ < 0 at a point p ∈ H+.

Let γ be a generator of H+ through p, let q be slightly to the future of p along γ. Then by continuity,

θ < 0 at q. Hence there exists a point r conjugate to p on γ (assuming that γ is complete - one can

relax this condition).

We can deform the curve to a timelike curve from p to s, where s is slightly beyond r along γ. But

H+ is achronal, so no two points can be timelike separated, which is a contradiction. Hence θ ≥ 0

on H+.

Now let p ∈ H1. A null geodesic generator γ of H+ through p can not leave H+, so must intersect

H2 (as Σ2 is a Cauchy surface). This defines a map ϕ : H1 → H2. Since θ ≥ 0 on H+,

area(H2) ≥ area(ϕ(H1)) ≥ area(H1),

q.e.d.

As an example consider the formation of a black hole in spherically symmetric collapse. The

Finkelstein diagram is

Here,

area(H2) = 16πM2 ≥ area(H1).

7.3.1 Consequences of the Second Law
25 Feb

(18)(i) There are limits to the efficiency of mass/energy conversion in black hole collisions, e.g. for

two coalescing black holes
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Assume that the inital black holes are well separated, so we can approximate them as

Schwarzschild black holes. The final black hole is a Schwarzschild solution.

The inital mass is M1 +M2, and by the area theorem

A3 ≥ A1 +A2 = 16π(M2
1 +M2

2 ),

but A3 = 16πM2
3 and so M2

3 ≥M2
1 +M2

2 . The energy radiated is then E = M1 +M2 −M3,

and the efficiency

η =
E

M1 +M2
=
M1 +M2 −M3

M1 +M2
≤ 1 −

√

M2
1 +M2

2

M1 +M2
≤ 1 − 1√

2
.

The radiated energy could be used to do work; then the area theorem limits useful energy

that can be extracted from a black hole (compare this to the second law of thermodynamics!).

(ii) Black holes can not bifurcate; assume Schwarzschild black holes and consider a process M1 →
M2 +M3. Then from the area theorem,

M1 ≤
√

M2
2 +M2

3 < M2 +M3.

This violates energy conservation! (This statement holds in general.)

7.4 First Law of Black Hole Mechanics

Let M →M + δM, J → J + δJ in the Kerr solution. Then

κδA

8π
= δM − ΩHδJ. (7.16)

(Proof: Exercise.)

This corresponds to a particular metric perturbation. But the result holds for any metric pertur-

bation [10]:

Consider a stationary, asymptotically flat black hole solution of the vacuum Einstein equations,

with bifurcate Killing horizon, mass M , angular momentum J , horizon area A, surface gravity κ

and angular velocity ΩH .

Let δg be a non-singular (on and outside H+) asymptotically flat metric perturbation, satisfying

the linearised Einstein equations. Then the perturbed spacetime has (ADM) mass M+δM , angular

momentum J + δJ , and horizon area (measured at the bifuraction two-sphere) A + δA satisfying

(7.16).

Note
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(i) By the uniqueness theorems, the inital black hole is a Kerr solution. But the theorem gen-

eralises to include matter fields, and applies even when the exact black hole solution is not

known.

(ii) It was first proved for stationary, axisymmetric perturbations [11].

(iii) For charged black holes, the right-hand side has an additional term −ΦHδQ, where ΦH is the

electric potential difference between the event horizon H+ and ı0.

Alternative formulation:

Theorem 7.13 (Hawking, Hartle [12])

Consider a stationary, asymptotically flat black hole solution of the vacuum Einstein equations,

with bifurcate Killing horizon. Assume a small amount of matter, carrying energy δM and angular

momentum δJ crosses H+ and the black hole eventually becomes stationary. Then the area of H+

increases by δA, given by (7.16).

Proof

Matter has an energy-momentum four-vector Ja = −Tabk
b, and an angular momentum four-vector

La = Tabm
b. Tab is assumed small.

Let N be a portion of H+ to the future of the bifurcation sphere B.

Then (see example sheet 3)

δM = −
∫

N
∗J, δJ = −

∫

N
∗L. (7.17)

Let U be tangent to generators of H+ with λ = 0 on B. Let (y1, y2) be coordinates on B; then

assign coordinates (λ, y1, y2) to a point affine parameter distance λ along a generator through a

point on B with coordinates (y1, y2). Note that

U · ∂

∂yi
= 0,

as ∂
∂yi are tangent to H+.

Let V be any vector field obeying V 2 = 0, U · V = 1 and V · ∂
∂yi = 0 on H+. Assign coordinates

(λ, r, y1, y2) to a point parameter distance r along an integral curve of V through the point (λ, y1, y2)

on H+:
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Then V = ∂
∂r
, U = ∂

∂λ
and H+ is at r = 0. On H+

ds2 = 2dλ dr + hij(λ, y)dy
idyj .

We can order (y1, y2) so that

ε|H+ =
√
h dλ ∧ dr ∧ dy1 ∧ dy2.

Then the orientation of N is dλ ∧ dy1 ∧ dy2 and hence

(∗J)λ12|N =
√
hJr|N =

√
hJλ|N =

√
hU · J |N , δM = −

∫

N
dλ d2y

√
hU · J (7.18)

and similarly

δJ = −
∫

N
dλ d2y

√
hU · L. (7.19)

To first order, we can treat the background as fixed in these equations. Then N is a Killing horizon

of ξ = k + ΩHm and ξ|N = fU |N for a function f obeying ξ · ∂ log |f ||N = κ.

Hence U · ∂f |N = κ, and f = κλ+ f0(y).

But ξ = 0 on B, i.e. at λ = 0, and hence f0(y) ≡ 0. So ξ = κλU on N , and

δM = −
∫

N
dλ d2y

√
hU · J =

∫

N
dλ d2y

√
hTabU

akb =

∫

N
dλ d2y

√
hTabU

a(ξb − ΩHm
b)

=

∫

N
dλ d2y

√
hTabU

aU bκλ− ΩH

∫

N
dλ d2y

√
hU · L,

and

δM − ΩHδJ =

∫

N
dλ d2y

√
hTabU

aU bκλ = −
∫

N
dλ d2y

√
hκλ

dθ

dλ
(7.20)

to first order by Raychaudhuri’s equation (remember θ = σ̂ = ω̂ = 0, neglect second order terms).

Then by the zeroth law,

δM − ΩHδJ = −κ
∫

N
dλ d2y

√
hλ

dθ

dλ
= −κ

∫

d2y







[
√
hλθ]∞0 −

∞
∫

0

dλ
√
h θ







. (7.21)

But
√
h is an area element, d

√
h

dλ
= θ

√
h. As the black hole becomes stationary,

√
h approaches

a finite limit as λ → ∞ and hence θ = o( 1
λ
) as λ → ∞. Hence the surface term in the integral

vanishes and

δM − ΩHδJ = κ

∫

d2y

∞
∫

0

dλ
d
√
h

dλ
= κ

∫

d2y [
√
h]∞0 = κδA, (7.22)

q.e.d.

Remark

The first version is the most commonly encountered version but it compares two different space-

times. The second version seems more physical, but does not refer to M,J defined at ∞. (Indeed

δMADM = 0 in any asymptotically flat spacetime - it is conserved!)

The consistency of the two versions supports the idea that the black hole does settle down to a

stationary state.
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8 Quantum Field Theory in Curved Spacetime
29 Feb

(19)8.1 Quantization of the Free Scalar Field

Let (M, g) be a globally hyperbolic spacetime, with Cauchy surface Σ. Let S be the space of

complex solutions to the Klein-Gordon equation

(∇2 −M2)Φ = 0. (8.1)

A point in S is uniquely determined by initial data on Σ. S has a natural Hermitian form: If

α, β ∈ S,

(α, β) = −
∫

Σ
∗j(α, β), (8.2)

where j(α, β) = −i(ᾱdβ − βdᾱ). Since

∗d ∗ j(α, β) = ∇aja = −i(ᾱ∇2β − β∇2ᾱ) = 0, (8.3)

j is conserved and (α, β) does not depend on the choice of Σ. The Hermitian form has the following

properties:

• (α, β) = (β, α), so (·, ·) is Hermitian.

• (α, β) = −(β̄, ᾱ), so in particular (α, α) = −(ᾱ, ᾱ), and (·, ·) is not positive definite.

• (·, ·) is non-degenerate; if (α, β) = 0 for all β, then α = 0.

We can choose a basis {ψi, ψ̄i} for S, so that (·, ·) has matrix form

(

1 0

0 −1

)

,

i.e.

(ψi, ψj) = −(ψ̄i, ψ̄j) = δij ; (ψi, ψ̄j) = (ψ̄i, ψj) = 0. (8.4)

A real solution of the Klein-Gordon equation can be expanded as

Φ(x) =
∑

i

(aiψi(x) + āiψ̄i(x)),

where ai are constants. After quantization, Φ and ai become operators and one has

Φ(x) =
∑

i

(aiψi(x) + a
†
i ψ̄i(x)). (8.5)

We impose

[ai, aj ] = [a†i , a
†
j ] = 0, [a†i , a

†
j ] = δij (8.6)

(we set ~ = 1). These operators act in a Hilbert space H defined to be the Fock space built from a

vacuum state |0〉 obeying

ai|0〉 = 0 ∀ i, 〈0|0〉 = 1, (8.7)
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i.e. H has basis {|0〉, a†i |0〉, a
†
ia

†
j |0〉, . . .}. Note that 〈·|·〉 is positive definite on H. We interpret a†i |0〉

as one-particle states, a†ia
†
j |0〉 as two-particle states, etc.

This construction depends on the choice of basis {ψ, ψ̄} for S. In flat spacetime, we choose ψi to

be positive frequency modes, i.e.

k · ∂ψi = −iωiψi, (8.8)

where k = ∂
∂t

is the timelike Killing vector field and ωi > 0.

But in a general speactime, there is no invariant way of defining “positive frequency”. A second

basis {ψ′
i, ψ̄

′
i} can be related to the first by a Bogoliubov transformation

ψ′
i =

∑

j

(Aijψj +Bijψ̄j), ψ̄′
i =

∑

j

(Āijψ̄j + B̄ijψj), (8.9)

which obeys (8.4) if and only if

∑

k

(ĀikAjk − B̄ikBjk) = δij ,
∑

k

(AikBjk −BikAjk) = 0, (8.10)

i.e.

AA† −BB† = 1, ABT −BAT = 0. (8.11)

Aij and Bij are called Bogoliubov coefficients. Inverting this gives

ψi =
∑

j

(A′
ijψ

′
j +B′

ijψ̄
′
j),

where A′ = A†, B′ = −BT . (Exercise)

These must obey the same conditions as A and B, i.e.

A†A−BT B̄ = 1, A†B −BT Ā = 0. (8.12)

These are not implied by (8.11), they are additional constraints required for the change of basis to

be invertible.

We can quantize using the second basis:

Φ(x) =
∑

i

(a′iψ
′
i(x) + (a′i)

†ψ̄′
i(x)).

Exercise Show that

aj =
∑

i

(a′iAij + (a′i)
†B̄ij). (8.13)

Hence the vacuum state |0′〉 defined by a′i|0′〉 for all i is not the same as |0〉 in general. Single-

particle states will also disagree; hence the notion of “particle” is basis-dependent!

In a stationary spacetime, there is a preferred choice of basis {ui, ūi} where ui are positive frequency

eigenfunctions of Lk, i.e. Lkui = −iωiui, with ωi > 0.

Note

(i) k is a Killing vector, so Lk commutes with (∇2 −m2) and Lk maps S to S.
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(ii) Lk is anti-Hermitian (Exercise), so it can be diagonalised with imaginary eigenvalues.

(iii) Eigenfunctions with distinct eigenvalues will be orthogonal, so (ui, ūj) = 0. We can normalise

eigenfunctions so that (ui, uj) = δij .

(iv) The basis is unique up to relabelling the ui which is a Bogoliubov transformation with B = 0

(and unitary A), so then |0′〉 = |0〉.

8.1.1 Particle Production in a Non-stationary Spacetime

Consider a “sandwich” spacetime M = M− ∪M0 ∪M+, of the following form:

Let {u±i } denote positive frequency modes in M±. We can extend these to the whole spacetime by

solving the Klein-Gordon equation.

Then {u±i } will not necessarily be positive frequency modes in M∓. The sets {u+
i } and {u−i } will

be related by a Bogoliubov transformation:

u−i =
∑

j

(Aiju
†
j +Bij ū

†
j).

So if

Φ(x) =
∑

i

(a−i u
−
i + (a−i )†ū−i ) =

∑

i

(a+
i u

+
i + (a+

i )†ū+
i ), (8.14)

where a+
j =

∑

i(a
−
i Aij + (a−i )†B̄ij), the vacua in M± are |0±〉 obeying a±i |0±〉 for all i.

We assume that no particles are present in M−, so the state is |0−〉.
The particle number operator for the ith mode in M+ is N+

i = (a+
i )†a+

i , then the expected number

of particles in the jth mode in M+ is

〈0−|N †
j |0−〉 = 〈0−|(a+

j )†a+
j |0−〉 =

∑

i,k

〈0−|a−i Bij(a
−
k )†B̄kj |0−〉 =

∑

i,k

BijB̄kj〈0 − |a−i (a−k )†|0−〉

(8.15)

=
∑

i,k

δikBijB̄kj =
∑

i

BijB̄ij = (B†B)jj .

The expected total number of particles in M+ is tr(B†B). This vanishes if and only if B = 0.

8.2 The Unruh Effect
3 Mar

(20)Consider two-dimensional Minkowski spacetime with line element

ds2 = −dT 2 + dX2.
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The massless Klein-Gordon equation is
(

− ∂2

∂T 2
+

∂2

∂X2

)

Φ = 0.

Positive frequency modes are

uk =
1√
4πω

e−i(ωT−kX), ω = |k|.

If we introduce coordinates U = T −X, V = T +X, then positive frequency modes are

uk =

{

1√
4πω

e−iωU if k > 0 (right-movers),
1√
4πω

e−iωV if k < 0 (left-movers).
(8.16)

Remark

Positive frequency modes are analytic in the lower half of the complex T -plane. In fact, if f(T,X)

is a superposition of positive frequency modes, then f(T,X) is analytic in the lower-half T -plane

{Im T ≤ 0}.
From (8.16), a function is a superposition of positive frequency modes if and only if it is analytic

in the lower half U and V planes (Im U, V ≤ 0).

Now let U = −xe−κt, V = xeκt, then we obtain Rindler spacetime with line element

ds2 = −κ2x2dt2 + dx2.

x > 0 and x < 0 are distinct Rindler regions. The vector

∂

∂t
= κ

(

V
∂

∂V
− U

∂

∂U

)

is future directed in R, where U < 0 and V > 0, and past-directed in L, where U > 0 and V < 0.

Let x = ±eκy, then

ds2 = κ2e2κy(−dt2 + dy2).

Exercise Show that the massless Klein-Gordon equation in two dimensions is conformally invariant,

i.e. if g̃ = Ω2g with Ω(x) > 0 then

∇̃2Φ = 0 ⇔ ∇2Φ = 0. (8.17)

So the Klein-Gordon equation in L and R is
(

− ∂2

∂t2
+

∂2

∂y2

)

Φ = 0
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and positive frequency modes (with respect to ∂
∂t

) in R are

RuK =
1√
4πσ

e−i(σt−Ky), σ = |K|.

We can extend this into L by setting RuK = 0 in L. In (U, V ) coordinates,

RuK =















{

1√
4πσ

exp
(

iσ
κ

log(−U)
)

, U < 0

0, U > 0
if K > 0 (right-movers),

{

0, V < 0
1√
4πσ

exp
(

− iσ
κ

log V
)

, V > 0 if K < 0 (left-movers).

(8.18)

These modes are well-defined on all of Minkowski space.

In L, ∂
∂t

is past-directed, so the positive frequency modes are

LuK =
1√
4πσ

ei(σt−Ky), σ = |K|.

Wave fronts have y = sgn(K)t, t decreases to the future; so if K > 0, then y is decreasing to the

future and x is increasing (right-mover), K < 0 is a left-mover.

We can extend this into R by setting LuK = 0 in R; then in (U, V ) coordinates,

LuK =















{

0, U < 0
1√
4πσ

exp
(

− iσ
κ

logU
)

, U > 0 if K > 0 (right-movers),
{

1√
4πσ

exp
(

iσ
κ

log(−V )
)

, V < 0

0, V > 0
if K < 0 (left-movers).

(8.19)

The set {RuK ,
L uK ,

R ūK ,
L ūK} is a basis for S in full Minkowski spacetime. We can expand

Φ =
∑

K

(aR
K

RuK(x) + aL
K

LuK(x) + (aR
K)† RūK(x) + (aL

K)† LūK(x)). (8.20)

The Rindler vacuum state is defined by

aR
K |0Rin〉 = aL

K |0Rin〉 = 0 ∀ K. (8.21)

The functions RuK ,
L uK are not analytic in the lower half U and V planes. Hence they are not

superpositions of positive frequency Minkowski modes. We have Bij 6= 0 and |0Rin〉 6= |0Mink〉.
Let K > 0 and consider

LūK =
1√
4πσ

exp

(

iσ

κ
logU

)

=
1√
4πσ

exp

(

iσ

κ
(log(−U) − iπ)

)

for U > 0.

We take the branch cut for the logarithm along the negative imaginary axis, so that

log z = log |z| + i arg z, arg z ∈
(

−π
2
,
3π

2

)

.

Then, for positive U ,

LūK =
1√
4πσ

e
πσ
κ exp

(

iσ

κ
log(−U)

)
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and hence
RuK + e−

πσ
κ

LūK =
1√
4πσ

exp

(

iσ

κ
log(−U)

)

for all U. (8.22)

Because of the choice of the branch cut, this is analytic in the lower-half U plane, and so is a

superposition of positive-frequency Minkowski modes. Similarly, if K < 0,

RuK + e−
πσ
κ

LūK =
1√
4πσ

e−
πσ
κ exp

(

iσ

κ
log(−V )

)

for all V, (8.23)

and

LuK + e−
πσ
κ

RūK =

{

1√
4πσ

e−
πσ
κ exp

(

− iσ
κ

log(−U)
)

, K > 0,
1√
4πσ

exp
(

iσ
κ

log(−V )
)

, K < 0.
(8.24)

These are all analytic in the lower-half U, V plane, and hence are superpositions of positive frequency

Minkowski modes. Now

v
(1)
K = λ

(1)
K

(

e
πσ
2κ

RuK + e−
πσ
2κ

LūK

)

, v
(2)
K = λ

(2)
K

(

e
πσ
2κ

LuK + e−
πσ
2κ

RūK

)

(8.25)

gives a basis of modes that are superpositions of positive frequency Minkowski modes. Hence the

Bogoliubov transformation relating {v(i)
K , v̄

(i)
K } to {uK , ūK} has B = 0. These bases define the same

vaccum, |0Mink〉.
We can normalise these so that (v

(1)
K , v

(1)
K′ ) = δKK′ etc., this is satisfied by

λ
(1)
K = λ

(2)
K =

(

2 sinh
πσ

κ

)− 1
2
.

Then expand:

Φ =
∑

K

(

b
(1)
K v

(1)
K + b

(2)
K v

(2)
K + (b

(1)
K )†v̄(1)

K + (b
(2)
K )†v̄(2)

K

)

, (8.26)

where b
(i)
K |0Mink〉 = 0 for all K and i = 1, 2, so

Φ =
∑

K

(

2 sinh
πσ

κ

)− 1
2
(

RuK

(

e
πσ
2κ b

(1)
K + e−

πσ
2κ (b

(2)
K )†

)

+ LuK

(

e
πσ
2κ b

(2)
K + e−

πσ
2κ (b

(1)
K )†

)

+ h.c.
)

,

(8.27)

hence

aR
K =

(

2 sinh
πσ

κ

)− 1
2
(

e
πσ
2κ b

(1)
K + e−

πσ
2κ (b

(2)
K )†

)

, aL
K =

(

2 sinh
πσ

κ

)− 1
2
(

e
πσ
2κ b

(2)
K + e−

πσ
2κ (b

(1)
K )†

)

.

(8.28)

The number operator for particles with Rindler momentum K in R is NR
K = (aR

K)†aR
K , the expected

particle number for the Kth mode in Minkowski vacuum would be

〈0Mink|NR
K |0Mink〉 =

1

2 sinh πσ
κ

〈0Mink|e−
πσ
2κ b

(2)
K e−

πσ
2κ (b

(2)
K )†|0Mink〉 =

1

2 sinh πσ
κ

e−
πσ
κ =

1

e
2πσ

κ − 1
.

(8.29)

This gives the Planck spectrum of black-body radiation at temperature

T =
κ

2π
, (8.30)
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where κ is the surface gravity. 5 Mar

(21)This is temperature defined with respect to infinity: Let E∞ be the energy defined with respect

to k (“energy measured at infinity” in an asymptotically flat spacetime), e.g. for a particle with

4-momentum P , E∞ = −k · P .

An observer on an orbit of k has 4-velocity

Ua =
ka

√
−k2

.

The energy measured locally by the observer is

Eloc = −U · P =
1√
−k2

E∞,

i.e. E∞ is redshifted with respect to Eloc. But temperature and energy scale in the same way, so

Tloc =
1√
−k2

T∞,

this is the Tolman law. For the scalar field in Rindler spacetime, σ =
√
−k2 ·σloc and so σ

T
= σloc

Tloc
,

so

Tloc =
1√
−k2

κ

2π
=

1

κx

κ

2π
=

1

2πx
=

a

2π
, (8.31)

where a is the magnitude of proper acceleration. Hence an observer on an orbit of ∂
∂t

in Rindler

sees |0Mink〉 as a thermal bath at temperature a
2π

. This is the Unruh effect.

Putting units back in.

Tloc =
( a

1019ms−2

)

K,

so this is a very small effect!

We can define Fock spaces HL,HR for L and R starting from |0Rin〉:

HR =
⊗

K

HR
K ,

where HR
K is the Fock space defined by aR

K .

Let |nK;R〉 be the normalised nK-particle state in HR
K . You can show that

|0Mink〉 = N
∏

K

{ ∞
∑

nK=0

e−
πnKσK

κ |nK;L〉|nK;R〉
}

(8.32)

is a representation of |0Mink〉 in HL ⊗ HR (N is a normalisation factor), i.e. |0Mink〉 is an

entangled state in HL ⊗HR (not of the form |ψL〉|ψR〉). If an operator O acts on HR,

〈OMink|O|OMink〉 = trHR
(ρO), (8.33)

where

ρ = N
∏

K

{ ∞
∑

nK=0

e−
πnKσK

κ |nK;R〉〈nK;R|
}

. (8.34)

Hence the restriction of |0Mink〉 to HR gives a (thermal) density matrix, not a pure state.

Remarks
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(i) We discussed massless scalars. But the Unruh effect is general and holds even for interacting

fields.

(ii) Tab has a divergence in QFT. One can define a renormalised stress tensor T ren
ab so that

〈0Mink|T ren
ab |0Mink〉 = 0. This is observer-independent. One finds that 〈0Rin|T ren

ab |0Rin〉 6= 0

and is singular on the Killing horizon.

8.2.1 Unruh Effect in Curved Spacetime

Note In Minkowski spacetime, a mode is positive frequency with respect to ∂
∂t

if and only if

{

its restriction to V = 0 is positive frequency with respect to ∂
∂U

and its restriction to U = 0 is positive frequency with respect to ∂
∂V
.

Let (M, g) be globally hyperbolic, with bifurcate Killing horizon, and a Cauchy surface Σ passing

through the bifurcation sphere B.

Assume the Killing vector field k is timelike in I and IV, and future-directed in I (e.g. Kruskal

spacetime). Then we can define “positive frequency” modes with respect to k in I and IV, as for

Rindler, and a vacuum state analogous to |0Rin〉. But we can also define a global notion of “positive

frequency”. Let {U
V
} be the affine parameter distance from B along future-directed generators of

{N−

N+ }. We define a mode to be positive frequency if and only if its restriction to N−(N+) is a

positive frequency function of U(V ). We can now define a vacuum state analogous to |0Mink〉.
Then the restriction of this state to region I is a thermal state at temperature T = κ

2π
, and an

observer on an orbit of k measures a temperature

Tloc =
κ

2π
√
−k2

,

e.g. in Kruskal spacetime.

The “global” vacuum state is called the Hartle-Hawking state |0HH〉. The vacuum state defined

with respect to k in I and IV is the Boulware state |0Boulware〉.
〈0Boulware|T ren

ab |0Boulware〉 is singular on H±; 〈0HH |T ren
ab |0HH〉 is regular (and non-zero). In |0HH〉,

an inertial observer at infinity experiences thermal radiation at the Hawking temperature

TH =
κ

2π
=

1

8πM
. (8.35)

This is not a derivation of Hawking radiation because

(i) |0HH〉 describes an outgoing flux of thermal radiation at I+, but |0HH〉 is time-reversal

invariant and hence we also have incoming thermal radiation from I−. This is unphysical.
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(ii) Bifurcate Killing horizons do not form in gravitational collapse, i.e. there are no regions III

and IV.

(iii) |0HH〉 does not exist for Kerr black holes because the Killing vector field ξ normal to H± is

spacelike far from the black hole. (particles following orbits of ξ are corotating with the black

hole and would have to travel faster than light far from the black hole).

8.3 Scalar Field in Schwarzschild Spacetime

In Schwarzschild coordinates, consider a scalar field model of the form

Φωlm̃ =
1

r
e−iωtRl(r)Ylm̃(θ, ϕ) (ω > 0),

where Ylm̃ is a spherical harmonic. These modes define the Boulware vacuum in regions I and IV.

Exercise Show that the Klein-Gordon equation reduces to the radial equation

− d2

dr∗2Rl + Vl(r
∗)Rl = ω2Rl (8.36)

(cf. time-independent Schrödinger equation), where

Vl(r
∗) =

(

1 − 2M

r

)(

m2 +
l(l + 1)

r2
+

2M

r3

)

.

Behaviour of solutions:

(i) As r∗ → ∞ (so r → ∞), Vl ∼ m2 so Rl ∼ e±ikr∗ , where ω2 = k2 +m2. We choose positive

sign for outgoing and negative sign for ingoing waves and set k ≥ 0. For m = 0, this means

that Φ ∼ e−iωu or e−iωv.

(ii) As r∗ → −∞ (so r → 2M), Vl ∼ 0 so Rl ∼ e±iωr∗ . Then e−iωte−iωr∗ = e−iωv is a mode

propagating into H+ and e−iωte+iωr∗ = e−iωu is a mode propagating into H−.
7 Mar

(22)Note that u → ∞ on H+ and so e−iωu is not regular on H+. We can superpose such modes to

build a purely outgoing wave packet vanishing on H+ (where u→ ∞), but individual modes e−iωu

are not regular on H+ (similarly for ingoing modes on H−).

We focus on the massless case (m = 0); then the above results suggest that, for every wave packet,

Φ ∼ f±(u) + g±(v) as t→ ±∞.

Hence Φ is determined by its values on H− and I− (fixing f−, g−), or on H+ and I+ (fixing f+, g+).

8.4 Hawking Radiation

Consider a massless scalar Φ in the spacetime of spherically symmetric gravitational collapse.
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Note that the spacetime is time-dependent (inside matter).

In the far past, all modes are specified by initial data on I−. Choose a basis {fi, f̄i} where

i = {ω, l, m̃} and ω > 0. Then

fi ∼ e−iωv near I−.

Expand

Φ =
∑

i

(aifi(x) + a
†
i f̄i(x)). (8.37)

Define the vacuum state |0〉 to contain no particles at I−:

ai|0〉 ∀ i.

At late times, waves scatter to I+ or fall through H+, so modes are specified by final data on

I+ ∪H+. Use an orthonormal basis {pi, p̄i, qi, q̄i}, where

{ {pi, p̄i} is a basis for solutions outgoing at I+, zero on H+;

{qi, q̄i} is a basis for solutions outgoing at H+, zero on I+ .

Note hat the individual pi(qi) need not vanish on H+(I+).

Near I+, we have a notion of positive frequency (with respect to k). So choose pi ∼ e−iωu, ω > 0,

near I+. The “future” basis is related to the “past” basis by a Bogoliubov transformation:

pi =
∑

j

(Aijfj +Bij f̄j), qi =
∑

j

(Cijfj +Dij f̄j). (8.38)

Expand

Φ =
∑

i

(bipi(x) + b
†
i p̄i(x) + ciqi(x) + c

†
i q̄i(x)). (8.39)

Exercise Show that

bi =
∑

j

(Āijaj − B̄ija
†
j). (8.40)

The expected number of outgoing particles in the ith mode at I+ is

〈0|b†ibi|0〉 = (BB†)ii.

We need to determine B.

Let γ be a generator of H+ extended to the past. Without loss of generality γ intersects I− at
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v = 0.

Ingoing null geodesics reach I+ if v < 0 and hit the singularity if v > 0.

Consider “evolving” pi to the past, starting at I+. Outside matter, near H+, pi will be a su-

perposition of e−iωv and e−iωu. The latter mode has an “infinite oscillation” singularity at H+:

e−iωu = eiS , S =
ω

κ
log(−U).

Consider a geodesic crossing H+:

dS

dλ
=
ωα

kU
with α =

dU

dλ
6= 0,

where λ is an affine parameter, and so dS
dλ

diverges at U = 0.

The phase of pi is rapidly varying near H+, and hence everywhere along γ (as propagation through

matter gives finite redshift).

The geometric optics approximation is valid: If Φ = AeiS and |S| ≫ 1 with S rapidly varying

(compared with logA), then

∇2Φ = 0 ⇔ (∇S)2 = 0. (8.41)

That is, surfaces of constant S are null near γ.

S = ∞ on γ, so we work with 1
S

instead. Let U be tangent to generators of surfaces 1
S

= constant.

U · ∇Ua = 0, U = h dS−1 (h 6= 0) (8.42)

Note that U is tangent to γ. Let N be a future-directed null vector parallelly propagated along γ,

then U · ∇Na = 0, with U ·N 6= 0.

For any p ∈ γ, consider a point p′ affine parameter distance −ǫ along the null geodesic through p

with tangent N . (assume ǫ is small) Such points form a curve γ(ǫ).

On γ(ǫ),

S−1 = −ǫN · ∂S−1|γ (8.43)

as S−1 = 0 on γ.

Exercise Show that

U · ∇(N · ∂S−1)|γ = 0. (8.44)

Hence, N · ∂S−1 = constant on γ, S−1 is constant on γ(ǫ), so S is constant on γ(ǫ).
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Choose N = ∂
∂v

at I−. γ(ǫ) intersects I− at v = −ǫ. Outside matter, near H+, S = ω
κ

log(−U),

and
dU

dλ
|H+ = α ⇒ U = −αǫ on γ(ǫ), (8.45)

where λ is the affine parameter along a geodesic with tangent N .

Hence, S = ω
κ

log(αǫ) on γ(ǫ) and S = ω
κ

log(−αv) on I−. So on I−,

pi =

{

0, v > 0,

Aie
i ω

κ
log(−αv), v < 0 (|v| small).

(8.46)

This is not analytic in the lower-half v-plane, and so is not a superposition of positive frequency

modes fi. 10 Mar

(23)We want to write pi in terms of fj ∼ e−iω′v and f̄j ∼ eiω
′v. So Fourier transform:

p̃i(ω
′) =

∞
∫

−∞

dv eiω
′vpi(v). (8.47)

For large |ω′|, eiω′v oscillates rapidly, so there are cancellations except near v = 0:

p̃i(ω
′) ≈

0
∫

−∞

dv eiω
′vAie

i ω
κ

log(−αv). (8.48)

Assume that ω′ > 0, then

p̃i(−ω′) ≈
0
∫

−∞

dv e−iω′vAie
i ω

κ
log(−αv) =

∞
∫

0

dv eiω
′vAie

i ω
κ

(log(−αv)+iπ) = e−
ωπ
κ

∞
∫

0

dv eiω
′vAie

i ω
κ

log(−αv).

(8.49)

We evaluate the integral in the complex v-plane, and we take the branch cut for log z along the

positive imaginary axis, so that arg z ∈ (−3π
2 ,

π
2 ). Then the integrand is analytic in the upper-half

v-plane and decays exponentially for Im v > 0.
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Hence ∞
∫

−∞

dv eiω
′vAie

i ω
κ

log(−αv) = 0.

It follows that

p̃i(−ω′) = −e−ωπ
κ

0
∫

−∞

dv eiω
′vAie

i ω
κ

log(−αv) = −e−ωπ
κ p̃i(ω

′) (8.50)

for large ω′, and so

Bij = −e−
πωi

κ Aij (8.51)

for large ωi. Now we use the condition AA† −BB† = 1 for Bogoliubov transformations to get

δij =
∑

k

(

AikĀjk −BikB̄jk

)

=
∑

k

(

e
π(ωi+ωj)

κ − 1

)

BikB̄jk (8.52)

if low frequency modes on I− are negligible, and hence

(BB†)ij =
δij

e
π(ωi+ωj)

κ − 1
, (BB†)ii =

1

e
2πωi

κ − 1
. (8.53)

This is a thermal spectrum at the Hawking temperature

TH =
κ

2π
. (8.54)

Why did we neglect low frequency modes on I−? We are interested in late times on I+ (“long

after the formation of the black hole”). We should really consider a basis on I+ of wave packets

localised around time u0 with width ∆u, we want to consider large u0. Evolving back to I− gives

a wave packet centred on v0 with width ∆v, where

−u0 =
1

κ
log(−αv0) ⇒ −αv0 = e−κu0 ,

and v0 is small. Consider

−(u0 + ∆u) =
1

κ
log(−α(v0 + ∆v)), ∆u =

1

κ
log

(

v0

v0 + ∆v

)

= −1

κ
log

(

1 +
∆v

v0

)

≃ ∆v

κ|v0|
,

Then ∆v ≃ κ|v0|∆u≪ ∆u. So at I−, the wave packet has very narrow spread around small v0, so

it mainly involves high frequency modes on I−.

Note

(i) Our calculation overlooked the fact that part of the mode pi will be scattered back to I− by

the static Schwarzschild metric outside matter. We should really write

pi = p
(1)
i + p

(2)
i ,
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where p
(1)
i is scattered by the static metric and p

(2)
i propagates through matter. We have

analyzed p
(2)
i . p

(1)
i gives a contribution to Aij ∝ Aiδij and a vanishing contribution to Bij . A

more careful analysis gives

(BB†)ii =
Γi

e
2πωi

κ − 1
, (8.55)

where Γi is the fraction of the mode that enetres a white hole if the collapsing star were

absent. This is also the fraction of the mode fi that enters the black hole (by time-reversal

symmetry of Kruskal spacetime), and so this is the absorption cross-section of fi.

This is precisely the formula obeyed by a perfect black body at temperature κ
2π

. Including

all constants, we get

T =
κ

2π
=

~c3

8πGM
= 6 · 10−8

(

MSun

M

)

κ. (8.56)

(ii) One can generalise the result to non-spherically symmetric collapse.

(iii) T decreases with M , and so the heat capacity of a black hole is negative.

(iv) In the Kerr generalisation, if we consider a mode ∝ e−iωteim̃ϕ, just replace ωi by ωi − m̃ΩH .

This means that the black hole preferentially emits modes with m̃ΩH > 0, and so loses angular

momentum.

(v) The result generalises to any free field.

(vi) By Stefan’s law, the black hole loses energy:

dE

dt
∼ −σT 4A

if we approximate Γi by treating the black hole as an absorbing sphere of area A in Minkowski

space. But E = M, A ∝M2 and T ∝ 1
M

and so

dM

dt
∝ − 1

M2

and the black hole evaporates away in time τ ∝M3 ∼ 1071
(

M
MSun

)3
seconds.

This neglects backreaction but should be a good approximation, at least until the mass of

the black hole approaches the Planck mass.

8.5 Black Hole Thermodynamics

As we have established that black holes radiate with temperature

TH =
κ

2π
, (8.57)

the zeroth law of black hole mechanics is now the same as the zeroth law of thermodynamics (the

temperature is constant throughout a body in thermal equilibrium). The first law can be rewritten

as

dE = THdSBH + ΩHdJ, (8.58)
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where

SBH =
A

4
. (8.59)

This is the same as the first law of thermodynamics if we interpret SBH as the (Bekenstein-Hawking)

entropy of a black hole. Restoring units,

SBH =
c3A

4G~
.

The second law of black hole mechanics states that SBH can not decrease classically. But quantum

mechanically, SBH can decrease by Hawking radiation.

However, this thermal radiation has entropy, and the total entropy

S = Sradiation + SBH

does not decrease. This is a special case of the generalised second law (Bekenstein):

S = Smatter + SBH

is non-decreasing in any physical process.

12 Mar

(24)A solar mass black hole has entropy SBH ∼ 1077; the entropy of the sun is ∼ 1058. The entropy of

the Universe would be much higher if all mass was in the form of black holes, so our Universe is

very special, i.e. a very low entropy state (Penrose).

The derivation of SBH = A
4 treated the gravitational field classically. But statistical physics suggests

that a black hole has N ∼ e
A
4 microstates, what are these? One needs quantum gravity to answer

this.

A statistical derivation of SBH is a major goal of quantum gravity research. One can do this in

string theory for supersymmetric black holes (M = |Q|) [13] and, very recently, for extremal but

non-supersymmetric black holes, e.g. extremal Kerr black holes [14].

8.6 Euclidean Methods

Consider a massive scalar in Minkowski space

ds2 = −dt2 + dx2 + dy2 + dz2.

Now do a Wick rotation t = −iτ with real τ , then the Euclidean metric is

ds2 = dτ2 + dx2 + dy2 + dz2. (8.60)

Let xa
E = (τ, x, y, z), let G(xE) be a Green’s function for −∇2 +m2:

(−∇2 +m2)G(xE) = δ4(xE) ⇒ G(xE) =

∫

d4pE

(2π)4
eipE ·xE

p2
E +m2

, (8.61)

we can analytically continue this to Lorentzian signature. Let τ = it, with t real, then

G(x) = i

∫

d4p

(2π)4
eip·x

p2 +m2
, (8.62)

where p0
E = ip0 and p · x and p2 are calculated with a Lorentzian metric. Here the p0 contour of

integration is along the imaginary axis,
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We can rotate it to the real axis:

Then

G(x) = ∆F (x) = 〈0|T (ϕ(x)ϕ(0))|0〉 (8.63)

is the Feynman propagator.

Now do the same for Schwarzschild spacetime; let t = −iτ , then the metric is

ds2 =

(

1 − 2M

r

)

dτ2 +
dr2

1 − 2M
r

+ r2dΩ2. (8.64)

Let r = 2M + x2

8M
(cf. Rindler); then near x = 0 (r = 2M) the metric is

ds2 = κ2x2dτ2 + dx2 + (2M)2dΩ2 + subleading terms. (8.65)

We need to identify τ ∼ τ + 2π
κ

to avoid a conical singularity at x = 0. Then the “Euclidean

Schwarzschild” spacetime has topology R
2 × S2.

The Green’s function G(xE) will then be periodic in τ with period β = 2π
κ

. This is characteristic

of a thermal correlation function at temperature T = 1
β

= κ
2π

:

Let Z = tr e−βH , where H is the Hamiltonian, and

GT (xE , yE) =
1

Z
tr
[

e−βHT (ϕ(xE)ϕ(yE))
]

be a thermal correlation function. Assume τ1 < τ2 < τ1 + β, then (suppressing spatial coordinates

in GT )

GT (τ1 + β, τ2) =
1

Z
tr
[

e−βHϕ(τ1 + β)ϕ(τ2)
]

=
1

Z
tr
[

e−βHeβHϕ(τ1)e
−βHϕ(τ2)

]

=
1

Z
tr
[

ϕ(τ1)e
−βHϕ(τ2)

]

=
1

Z
tr
[

e−βHT (ϕ(τ2)ϕ(τ1))
]

= GT (τ1, τ2), (8.66)

where we used the fact that H generates time translations, and here ∆t = −iβ, and the cyclicity

of the trace.

For Schwarzschild spacetime, G(xE) describes a correlation function for the field at temperature κ
2π

.

This suggests the existence of a thermal equilibirium state at this temperature (the Hartle-Hawking

state). This would not be possible if the black hole did not have the same temperature!

This argument applies even to interacting fields [15].
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8.7 The Black Hole Information Paradox

If the black hole evaporates away complete, the Penrose diagram is

Assume the field Φ is in a definite quantum state on Σ1 (i.e. a pure state, not a density matrix).

The state on Σ2 is also pure but appears mixed to an observer outside the black hole (i.e. such an

observer would use a density matrix). The state on Σ3 can only be described by a density matrix.

So a pure state on Σ1 evolves to a mixed state on Σ3. This violates unitary time evolution of

quantum mechanics! Information appears to be lost in black hole evaporation.

The gauge/gravity correspondence of string theory [16] defines quantum gravity in asymptotically

anti-de Sitter spacetimes in terms of a conventional QFT defined on an Einstein static universe in

one dimension less (the conformal boundary of adS).

Hence the true evolution is unitary.

But the information paradox still exists in anti-de Sitter space. So what goes wrong with the

argument for information loss?
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