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ON THE AMQUNT OF INFORMATION
HU KUO TING

(Translated by D. Licherman)

Introduction

1° Im the bresent article we shall consider random varighles X 3 =1,2,-+ -, which take on
a finite number of values. We let P(Xil, Xiz, R X,-n) denote the joint probability for values
of the variables Xy Xigom e, X; . and PiXy, Kipv o, Xian:ﬁ’ X ‘v, X;) the condi.

dge "
tional prebability for values of the variables X; Xipover, Xy, i the values of the variables
Xh, Xfa s ij are given,

Tt is well known that the amount of information * of the variables X, 1, X3 can be written as

HEG) = = 2 pe)log ), HX,) = — 3 poy) 1og plz),

B!

1

HXL Xyl = — 3 pley, 2) log play, z,),

e S

ﬁ(xl,m2}
IXy, X5) = 3 play, my) log —— 7%
T Z T ) by

HXQ(X]_) = Z'P(mz) [* ZP(%!WZ) log ?5(‘\‘71]32)] .

Moreover, the following conditions are satisfied (see [1] and 21):

(1) Ty, y) = H(X))+H(X,) —H(X,, X,),
2 I(Xy, Xg) = H(Xl)-HXZ{Xl),
(3) Hy (X)) < H(X,).

Similarly, for three variables X, X 2: Ly, the ampount of information has the form

H{(x,, Xg), X)) = — Z P((wy, =), ®5) log Py, @), 7},

RS TP

#{(y, =), )
(X, X,), X,) = Py, wp), wy) log —— 20 T8
(o %y * "v‘pzzm-’ﬂs (2 a) ) Py, 7g) - play)

Hy (X3, %,) = 235(‘”3)[“ 2, Plag zylny) log Pl xzf“a)]’
“3

By, %g

Hixy 2y &1) = 3 play, ms)[“ mz?(xllxz' ) log pla,lz,, ”a)]=
1

Xy &g

(%, w5z,) ]
Ly (X, Xy) = p(m)[ Pur Tyfeg) log oo P
x, (X Xy g 2 mbzms 1 %glag) lo Py, 2a)p (g, )

and the conditions

{4) Hix, xy Xy} S Hy (X)),
(5) (X Xy), x3) = 1(x,, x) Iy (Xy, Xy,
(6) &y, Xy), Xg) +1(x,, X,) =Xy, (X, X)) +1(X,, X,)

are satisfied (see [1], [2] and [37).

2° Itis interesting to note that if sets A1, 4,, 4 s and an additive function @ on them are
Put into correspondence with the variables X 1- Xy, X5 and their distribution. P in the following
Mamner (i, 7 =1, 2, 8):
—

1 We use the term amount of information to denote any information functidnal; for example,
Hix)), Hix,, x,), I1{xy, X,), Hy,(X,), H{ (X, X,), Xg), o ete.
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H{X;) ~@ldy),
H(X;, X,) > @ld; U 4,)
X, X5) = @(d, m 4y),
Hy (X3) —~pld;—45),
H{{Xy, Xy), X3) > ({41 U 45) U 4y),
T({&y, Xo), Xg) — (AL Ap) N 4),
Hy (X7, Xp) > @((4y L 45)—43).
Hix, xyXs) = p(d1— 4y U 4y)),
Iy, (X1, Xg} > {14y O Ag)—4y),

then the following relations between values of the additive function ¢ will correspond to equations”

{1}—I(6)

(1 @(dy O dy) = pld))Fpldy) —~pldy U 4,),
27 pldy M Ay) = pld) —pld;—4,),
) pld,—4y) £ o4y},
@) @A~ (A3 U 43)) £ p(d;—A,),
(5} p((4; U 4g) N A5)) = pldy O Ag)+9((4y N Ag—4,)),
(6") (p( (A Ag) As) +ody N dy) = (p(Al N (4,0 Aa))'l-??(ﬁa N Ag).

In the present work we shall establish, in & mathematically rigorous form, such dual relations
between the amount of information and an additive set function.

I would like to thank Yu. V. Prokhorov warmly for hisinterest in the present work and useful
advice.

Fundamental Theorems

3°, Let us take a sequence of sets 4, 4 = 1, 2, - - -, and consider a function @ on the ring A
generated by the sequence A;, 1 =1, 2, -+ -, such that
1) for any Ee¥, —oc < @(E} < + o0,

2} for any nonintersecting sets E;, Ey, - - -, £, of ¥, the following relation holds 2:

PlE ) +e(Eg)+ -+

Let us consider the following three collections of values of the function @

pld;) < o,
7 pld; N dy) <o, gid; Ny <o, pld; Ndy) <,
plAdy M Ay N Ag) <o, pld,NA;NAy) <o, -+, @ldyNd,NAy) < o,

(where A, M A, =A;—Ay, Ay M Ay=Ady—A;, A NA,NAyg=Ad, NAg—A,,--).
@(4,;) < o, ' i=1,2-""

(8) Pld; N Az < oo,
pld, N d; M4, < o,

i<i=1,2--"
i<jxh=1,2""

and finalty

2 Here and in what follows the summation sign 4", with regard tc sets, denotes unions of
nonintersecting sets.

@
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A} < oo, i=1,2---
(9) il 4;) < e, ffj=1,8---,
(p(Ai-UAfUAk)‘((D, i<f<k=l,2,---'

It is easily seen that the function ¢ on U is defined uniquely by its value (7) {or (8) or (93,
respectively): the value of @ on any E e % can be represented in the form of an algebraic sum of
several of the values from the collection (7} (or (8) or (9}, respectively).

4°. Let usintroduce the following amounts of information of the variables X, 4= 1,2, .. -
We start with the notation

p=1

A k(3
H(K):: HUX)-BX, X, - X, )

I

= = Z ?(mfl,xiz,"',xih} Ing(mz‘l'wiz"""’f ) n=171,8---

Ty Py T By

Then we define

. ki3 T
{&3 ( HOX)=3HX, )~ ¥ Hix, U Xy )T H=UmRH( X ).
i p=1 vEn v <vpEm =1
Similarly, we define other amounts of information in accordance with identities for an additive
set function. For example,3

H{X; ~ X)) = HX,)—H(X, N X},
H{(X; 0 X,) U Xy) = B{X,) -~ H(X, N X)+H(X, N X, A X,
H(X;~ Xy U X)) = HX) -HX, N X,)~H(X; 0 X+ H(X, N X; A X,),
H(X; ~ (X; N X)) = HX ) —H(X,; N X;m Xy,

Thus, we have defined all amounts of informaticn HQ(X;, Xy,, -, Xy )} for the variables
P AN £ LN Xy, where X, Xy m " 7y Xy ) denotes a symbol generated by a finite number of
operations J, M or ~ on Xir Xig: LI X.z-ﬂ.

Many of these amounts of information, as for example

{10) H(X,), HX; ~ X, H{X,nX;), H{ (X; N Xy ~Xk)
are always non-negative. But it should be noted that, in general, amounts of information can
take on negative values. It is not hard to see, for example, that the amount of information

H{E,X;5), = > 2, can be negative, In fact, let, in the probability field

Wy, @y, g
1 1}
2' 4 4

random variables X,, X,, X, be given such that

Lw=uw, Lo = my, Lo=uaw,,

Xylw) = { Xyiw) ={ Xylw) = {

0, w = wy, wg, 0, w = wy, wg, 0, 0 = m;, w,.
Then,

HX, NnX, N X)) = —0.3774 < 0.
Amounts of information which are always non-negative will be cafled proper amounts of informa-
tion, and others will be called improper amounts of information.

5°. Theorem 1. For ¢ given sequence of variables Xy, X,, » + - and theiv distribution P theve

3 We use the symbol “~* rather than the symbol **—"" in H{X, ~ X} in order not to con-
fuse X; ~ X, with the difference of the variables X =X
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exists a corvesponding sequence of sets Ay, Ay, + + - and an additive function @ on the ring U generated
by the sequence A;, i —= 1,2, +, such that
H(Q(Xill X‘iz' Y Xi”)) = CP{Q{Ail' Aiz’ s, Aiﬂ))

for ali collections of variables Xir Xﬁ'a' -- -, X and all operations Q.

in

Notr. Theorem 1 permits us to assert the validity of identities concerning amounts of infor-
mation by using the corresponding identities for additive set functions. For example, the validity
of (1), (2), (6} and (8) fallows immediately from the well known identities {1}, (2'), (5') and (6’) in
§ 2°. As regards the inequalities between amounts of information, further considerations are
necessary. For example, since the amounts of information H(X; M Xy} and H{(X; N X)) ~ X a)
are proper, the following inequalities hold:

H{Xy ~Xp) = H(X)—H(X; N X,) = H(X,),
H(X) v (X0 X5)) = H{X, ~o X)) —H((X; N Xg) mo X)) < H(X, ~ X,).
Before proving the theorem, we prove the following lemma.

Lemma L.1. Let o), olif) olék} . . (1 <4 < j <k are integers) be an arbitrarily prescribed
collection of veal wumbers. Then there exists a sequence of sels A4, Ay, -+ - and an additive function @
on the ving W generated by the sequence A, 4 =1, 2, - - -, such that

o8 =pld;), o) =pld;u 4y, U =gld, U ;0 dy) -

Proor. In view of the existence of a one-to-one correspondence between the collections {7)

and (9), and noting that the values of (7) can be calculated from the values of (9), by addition

and subtraction, we can proceed by analogy, and obtain from the numbers .p(i), q,(z'jj' (p{z'jic), -
t<{j <k =12, the numbers ¢;; ¢;5. 113, Piz, Piza, P123,» P133, 133, Piz3. Pio3.
@iz * * -, such that

P1 = PratPizs

P19 = ProatProz. P12 = FrastPrzss P = Piaz T ¥z ©C

Without difficuity, we can find a sequence of nonempty sets AU, Ay, A1, Agy, Ars, Afe, 413
Aoy, A1sg, Adg, -, Afsg; -+, such that

AO = A1+AI,

Ay = dyptdyg, 4) = A+ A3,
Ayp = AypgtAigz, -0, Agg = Azt Aqg, etc.

We canstruct a finitely-additive set function g with values on Ay; 4y, 415, 4707 Ayag, Aye3. "7 s
Afggi+ -, defined as follows:

ldy) = oy,
Pl{d1p) = @0, plds) = P15, Pldia) = Pra-
P(Aqg) = Ayog. PlA1ag) = Pro5. . @lA103) = P35,

Then the sequence of sets
Ay =Ay, Ay = AT A7y, Ay = Ajoqt-Agpst+dygatAmgs. -
and the additive function ¢ on the correspending ring ¥ is, in fact, just what we require.

Proor oF Trrorem 1. Taking §§ 3° and 4° into account, we need only prove the existence of a
sequence of sets 4,, 4, + - - and an additive function @ on the corresponding ring ¥ such that for
l=i<i<i

H(X,) = g{d;),
HX,; 0 X;) = pld; U 4,),
H{X, 0 X; 0 X)) =pld;u d; 0 4,),

—_——

Let P = H(X}}, @b
from Lemma 1.1 that
such that for 1 £ 4

Thus, Theorem 1 is
Corollary 1.1.
H(Q((x{"

Proor. Taking §

H({X&l} U

which is easily derit
Let

We Tet Hx,, (¢
Fip(ey, g, - "wﬂllmn-

|
Hpsi

For example,

Corollary 1.2.
H(Q

Proor. Taking ¢
H((Xy\
To do this, it is suffi

H(X.

Thus, Corollary 1.2
1% is easily seen

= {Xj

the amounts of infc
1L
are proper.

femma 2.1. 7

4 Here and in »
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Let o = H(X,), o' = H(X, U X,), gl
from Lemma 1.1 that there exists a sequence o
such that for 1 €7 <7 < &

=H{X,u X, U X,), . It follows immediately
Lsets 4, 4,, - - and an additive function gon

H{X;) = gl = g(4)),
H{X, U X)) = (p(’"'ﬂ =@l 45,
HX, U X0 X)) = glB = g4, 0 4,0 4y,

Thus, Theorem 1 is proved.

Corollary 1.1,

H(Q((X?) U X&ﬂ) Ut U Xgm))' Xy, Xg, o+, X))
= H(Q((XJEI)' X{Z)’ s Xim))- Koy Xg,0er, X«n))'

Proor. Taking §§ 3° and 4° into account, we need only prove the validity of the equality

H((Xf“) UXE) Uy X_{m)) VXU X, U X,
= H((Xgl), Xf}. . X:(lm)}' Xy, Xy, 0, X,),

which is easily derived directly

from the definftions. Thus, Corollary 1.1 is proved.
Let

f(p(x,,mz,n-,;fa,,)) =H(Q(X, X,, - X))

We et & Xy QX Xy, -+, X)) denote the mathematical expectation of the function
ey, zg, - - -, a:,n[mn_,_l}) of X, . with respect to the distribution P(X, ;) 1 e

HX,,_;l(Q(Xl' R TRRRY Xn)) = z P(Xn+1)f(? (. wg, -, mnimn.,.]_))n

By x
For example,

Hy (%) = 3 P(xy) [ﬁ > plagey) log p(wl|m2):| .
] &y
Gorollary 1.2. )
HQE, Xy X ~ Xa) = Hy (00X, Xy, -, X,)).
Proor. Taking §§ 3° and 4° into account, we need only prove the validity of the equality
H{(X, XU X)X ) = Hy KU Xpu--uX,).

To do this, it is sufficient to prove that H (X) ~X,) = H x,{X;). But

H{Xy ~ X,) = H(X;)~H(X; O X,)
=3 p() [h 2. Plzjy) og ﬁ(wliwz)] = Hy (X;).

Thus, Coroflary 1.2 is Pproved.

It is easily seen from Corollaries 1.1 and 1.2 and equation (10) thet for any symbols

¥ = (X:(ll) v X](-ZJ U u X{‘"ﬂ), Yo = (Xél) v Xéz) Ureu Xé"a)),
? va= (X U xP U, Uz

the amounts of information

(11) s Hl’yﬂ,\_ H(y]_ """yz)r H(y;_ M yz):‘ H((?/]_ M yg) """ys)

are proper.

- Lemma, 2.1, The randowm variables X; and Xy are tndependent <= = 2 H (X 1X5) = 0.

4 Here and in what follows, the symbol “«= =** denctes equivalence of propositions.
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Lemma 2.2. X; with probability pwy, xy) = 1 is a function of Xp == H(X; ~ X

Theorem 2. Let (X;, X,, - -; p) corvespond to {4y, Ay, « - @) in the semse of Theovewm 1
and let the vaviation of the additive function @ be non-zero everywhere except for an empty sel. Thgq;
the following covvespondences hold:

1. X; and X; arve independent < = A;MA; =g
2. X, = {{X,) with ;b(:ni,xj) =1 == AiCAj- for all i,§=1,2,.--. .
Fhe proof of the Theorem follows directly from Lemmas 2.1, 2.2 and Theorem 1.

Corollary 2.1. Let there be given the vaviables Xy, Xy, - with distribution P, and the
Junctions fl(Xl), 15(X ), <. Then theve exist covresponding sets 44, Ag,rrand A, 1=1,2,+..
_,.{{ Cd,y, A4CA,, - and an additive function @ on the ving U gemerated by the sequenie A i

1= 1,2, - -, such that for all collections of variables Ky Kigo o Xy (v =1, 2, -, m, are

positive ov megative integers) and all operations Q the Jollowing equality is satisfied:
H(Q(Xil’ IR "Xim)) = ‘F’(Q(Az'l’ Ayt Az‘,,,))’
and
X g=1{X,). A, =4 i=1,2--"
In view of Corollary 2.1, it is easily seen that
1) H{{(X)) N X,) £ H(X, N X,),
2) H{HX,) v X, £H(X, v X)),
8)  H(H(Xy) N Xy) =H(X; N Xp) = = H(Xy ~ (X)) ~ H(X, ~X;)  (see [4]).

Theorem 3. I'u order thal the variables X 13 Xy, - form a Markov chain if is necessary and
sufficient that for anmy collection &, Koot oo, X, by <dy < -0 < iy, the equalily
H(Xi1 ﬁXis m--- ﬁXin) = H(.Xi1 nX-i,,)
holds.
Proovr. Lot us take the variables Ky Xiy, Xy, iy <4y < d5. We shall prove that they form

a Markov chain <= = Hix; nX;, N X)) = H(X;, N Xy} This is evident from the following
equivalence relations:

HX, NX, NX,)=HEX, (X,)
“= H((Xﬁ Ny N‘S.{*'e) = Hxiz(Xﬁ N &)
Pl .z =)
= Z P(""'ig) [ Z p(a:ii, xz.s[ma.g) log___zi_j'..!_jLJ =0
4 Bya Ty P@illwiz)?b (xiaixiz)

<= = for any P#s,) > 0,

z Pl .= ixz.z) lo M 0
By @y p(miljzz.a)p(mialmiz}
<= = for any p(m,-g) > 0,
?(xa;l' xéalmiﬂ) = P(xillx,;s}fb (misImia)

<= = Xil’ sz, X,-a form a Markov chain.

Now let us take four variables Xi;’ X,;z, st’ X,-‘, iy < iy < ig < 4,. Assuming that our

proposition is trae for » = 8, we prove that it is also true for # = ¢ Let us suppose that X;,,
Xy Xy, X,-‘ formn a Markov chain. Then for fixed Xf,-3 the pair Xj,, X,—2 is independent of X :
Hy X, 0X,)=0, Hy (X N X, ) =0, HX‘B((XQ, X NX) =0

Therefore,
Hy (N X, N X)) = Hy (X, N X,) HH X O X ) —Hy (X X )0 X ) =0

Consequently,

sl =0,

Conversely, let u

H (Xf:l 0 Xéz

© and

Then

Hy, (X, O

and consequently,

Hy

ia

Thus, for fixed X-a:a th :
X, the variable X
chain. o

Proceeding in thi

Lemma 4.1, I=
form a Mavkov chaiy
The proof foliow

Theorem 4. In
a) for ail collecis

or, equivalently,
b} for ail collect

H

Proor. Proposit
b) follows immediate

n
H ( U Xiz) =
¥=1
Theorem 5. If

of sets Ay, Ay, - @&
Ai‘i= 1,21"'15“(

Proof. It follov
Aq, Ay, - and an
Xilt X'ig’ Tt Xin' *

where

H{.
{12)
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H(Xt.1 n Xia M Xia Ia Xz.g) = H(Xt.1 r‘lXt.2 M Xi4)
_HX,-H{XiI e X?.2 Ia Xi) = lfz’(X,‘,:1 ) Xi.,)'
Conversely, let us suppose that
H(Xi1 nXi.a mX@'s) = H(X,:1 nX‘.S},

H(Xi'x r‘\Xﬂ.2 ] Xh} = H(Xz.1 M Xt.q), H(X%.2 sl Xisﬁ Xi‘) = H(Xis e Xi4}'
H(Xz.1 ™ X{g M Xi4} = H(X€1 I Xi4)
and
H(Xﬂ.1 M Xiz ) Xia s Xi4) = H{Xfl nXh)'
Then
HXia(Xil NXy 0 i) = H&, 0 X, 0 i) THE, 0 X, N X0 i)
= H(Xi1 s X‘i.;) *H(X,i1 e Xid) =0,
and consequently,
HX;,;((XH’ X0 Xz.q) = HXiB(Xﬁ NX) +H{.,L,_‘3 (X, N X, )
- Xes(X'il N Xia nXi4} =0
Thus, for fixed Xy, the pair Xy 12 %4, is independent of X, - We can show, similarly, that for fixed
X3, the variable &, is independent of the pair Xiys Xy loe Xi Xy, Xy X, form a Markov

chain.
Proceeding in this way, we see by induction that the theorem holds.

Lemma 4.1. In order that X 10 Xy, "+ o be independent, it is necessary and sufficient that they
form a Markov chain and ave paivwise independent.
The proof follows directly from the definition of a Markov chain.

Theorem 4. In order that Xy, Xy, -+ be independent, it is necessary amd sujfficient that

a) for all collections K Ky oo, Xy, iy g v e Ty s

H(Xi1 ﬁXia M- me:ﬂ) = 0,
or, equivalently,
b) for all collections X,-l, X"a’ e, X,;ﬂ, i Ll <o < ins
H(Xil' X"n’ T Xi”) = H(Xi1)+H(Xi3)+ ot +H(X,:ﬂ)-

-Proor. Proposition a) follows directly from Theorem 3 and Lemma 4.1, and proposition
b) foliows immediately from proposition 2) and the obvious identity

n ke
H( U Xiﬂ) =2H(Xig)— > HX, NX, )+~ +(~1)n+1H( N Xiz).
r=1 v=1 Py <VpEn x 2 p=1

Theorem 5. If X 1, Xg, v form a Markov chain, then theve exists a covresponding sequence
of sets Ay, Ay, - - - and a non-negative additive fumction @ on the ving U genevated by the sequence
Api=1,2---, such that for all collections N CIERER X, and all opervations

H(Q(th' Xﬁ'z’ s Xin)) = ‘?’(Q(Ail' Aiz’ T Ai,,))‘

Proor. It follows immediately from Theorems I and § that there exists a sequence of sets
A3, 4,, - and an additive function ¢ on the corresponding ring U such that for all collections

i K Xy, 4y < iy < +++ < 4,, and all operations @

H(Q(Xil' st' T Xiﬂ)) = ‘P(Q(Aii’ Az‘g’ e Ai,,))-
where
a2 HX, nX, A 0X )= H(X; NX,) =g, MA,)

=pld, N4, 04,
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In order fo prove that the function ¢ is non-negative, we need only prove, in view of § 3°,
that all values of the function @ in the collection (7) are non-negative. We know from {11) that
for any i <j <<k <l

Pld; N Ay =pld,—4,) = H(X; ~X;) 20,
gld; NA; N A = ({4, N 4;)—4,) = H{{X, "N X;) ~X,) 20,
Pld; N Ay) = ld;—d)) = HX; ~X;) =0,
Pd; N A; N A = (d—(4, L AR} = H(X; ~(X; 0 X)) =0,
Pl NA; N AN AY =p((d; N A)— 4,0 4,) = H{(X; 0 X)) ~ (X0 X)) 20,

In view of condition {11}, it is not hard to verify that for a portion of the values of collection (7)
we have, for any 1 <y <y < m,

(4 ] 4)) =4, N4,
l<ism

¢l [1 400 ) 4) =94, 04, N4, ),
iZi=m My <iZm

PN AC ) 4)) =pldy N Ay 04y,

15Em,  my<ism

9’(( n “Ez) (Aml-ivl) ( n A_i}) = q’(‘lzml A Aml—{-l M ‘}Imlqt-z)’

1<igmy my+l<izm
p(( (1 40 ) 400 () 4)) =9l O Ay g DAy O A 1)
1=igEm, my < EEmy, MyliEm

and all the remaining values of collection (7) are equal to zero. For example:
Pldy O Ay O Ag) = p(dy M Ag)—gld, O 4, A dg) = (A, N Ay)—pld, N 4,) = 0.

Thus, the function g is always non-negative.

The following proposition follows immediately from Theorem 5: if X 10 Xp, Xg, Xy form a
Markov chain, then

LEHX NX) =HX, NX,NnX;N Xy) = H{X, N X,) (the converse of Shannon’s
proposition);

2 H({(XNX) ~Xg) = X N X)) —H(X,; N Xy M X)) 2 H{X, N X,) (see [5]).

6°. So far, we have been concerned only with random variables which tzke on a finite number

of values. Now, we generalize the definition of the amount of information for variables X 5 1=
1, 2, -, talking on an arbitrary number of values as follows:

7 t) )
mJx) = sup H (U Hx,), w=12"",
=1 (Fufa -t =1
with the condition

sup H( | £,(X,)) < o,
d==1

where the upper bound is taken over all possible coliections {fy: 12>+ * ) },) of measurable functions
which take a finite number of values. In accordance with the identities of the additive set function
we define, analogously, -

HINX) =Y HX )= 3 HEOX) 4 (~DHH(|JX), a=12-,
=1 i=n i<fZn d==1
H(X; ~ X5} = H(X,)-H(X; N X,
H{(X; N X)) U X)) = H(X,) —~H(X, N X)HHX; N X; N Xy,

Then, we can easily prove that all the above results are valid not only for variables taking on
a finite number of values, but also for vadables taking on an arbitrary number of values.
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ON THE AMOUNT OF INFORMATION
HU KUO TING (MOSCOW —TIENTSIN)
(Summary)

In this paper a connection between the amount of information and a cerfain additive set
function is constructed. This connection enables us not only to obtain all known algebraic relations
between entropies and various information quantities, but also all new algebraic relations.

STATISTICAL METRIC SPACES ARISING FROM SETS OF RANDOM VARIABLES
IN EUCLIDEAN n-SPACE

B, SCHWEIZER AND A. SKLAR
Introduction

Let p and g be random vectors in #-dimensional Euclidean space EM"with distributions given,
respectively, by the #-dimensional distribution funcHons G, Gy, and joint distribution given by
the 2n-dimensional distribution function Hyq, so that

Hpg(wy, + oy, 00,0+, 400} = Gpleg, - - wy),
Hop(+oo, -+ -, 400, W pyr " ligy) = Caltpgq,w -y wa)-

It follows that d(p, ¢), the distance between # and ¢, is a random variable whose distribution

function F,, is,completely determined by H,, and is given by

0, z =90,
(1.1) | Fplz) = f - -dem(w), x>0,
|a—v| <z
where W = (wy, @y, =+, wy,), u = (wy, -, myp), and v = (w, 4, - -, w,,) L.

For our purposes it is convenient to think of the random variable p as a ¢particley whose
position in E” is determined probabilistically by its distribution function G,. Then G, (u) is the
probability of finding the particle «£y in the region {v; Uy <<y, L, Uy << w ) and Fqlx) is the
probability of finding the particles «py and ¢g» removed from each other by a distance less than =.
Using this interpretation, it is readily seen that such a set of random variables {p, g, - * -} together
with the set of associated distance distribution functions {F ¢} is @ statistical metric space (see
Appendix, Definition A. 1. Indeed, the only property that is not immediate is the generalized
triangle inequality (Definition A. 1, IV). But this follows from the fact that if it is certain that the
distance between ¢ and ¢ is less than = {i- e., Fyu(w) = I), and equally certain that the distance
betwesn ¢ and » is less than y (i, 6., ¥ gr() = 1), then in view of the ordinary triangle inequality
in E%, it is certain that the distance between P and 7 is less than z-+¢ (i. e, Fop{z+y) = 1).
Accordingly we are led to the following:

1 Throughout this Ppaper, boldface symbols will denote vectors. Moreover, with the exceplion
of w, which denotes a vector in E 2l vectors are in FE7. :
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