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1 Introduction

Figure 1: Fundamental region R of the
Modular Group, given by
{z ∈ H : |z| > 1,− 1

2 ≤ Re(z) ≤ 1
2}

The Klein Quartic curve is famous for its symmetries and many visu-
alizations are created to capture these in lower dimensions. In fact, it
has the largest possible automorphism group for its genus, the simple
group of order 168. Yet, interest in this algebraic curve started with
knowledge of the existence of this large group, and the work that had
to be done to express its action on an algebraic curve is often over-
looked. Thus, this paper aims to give a historical account of the steps
that led to the discovery of the equation of the Klein Quartic surface
in projective coordinates.

2 Background

In response to the work done on elliptic functions by Jacobi and Abel,
Dedekind worked on establishing a independent theory of modular
functions in 1878 [3]. This led him to study the action of the special
linear group SL(2,Z), of 2-dimensional matrices with determinant 1,
on H, the upper half-plane of C defined by

z 7→ az + b

cz + d
:
(
a b
c d

)
∈ SL(2,Z) (1)

He was interested in a fundamental region R where the the orbit of each z ∈ H meets R either once at the
interior or twice at the boundary [3], and he identified R to be the region shown in figure 1. He showed that

it was generated by only the two elements
(

0 −1
1 0

)
, which inverts the region and

(
1 1
1 0

)
, which translates it

by 1 to the right [5]. Dedekind concluded that the action of SL(2,Z) tiles H with copies of R.

3 Klein

Upon inheriting this problem, Felix Klein refined its geometric properties by considering its subgroups [3]. One
of these was the kernel Γ7 of the homomorphism

SL(2,Z)→ SL(2,Z/7Z).
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(a) Klein’s surface shown as a tiling of the Riemann sphere. (b) A paper version of Figure 2a constructed by Mike Stay.
<http://math.ucr.edu/ mike/klein/>

Figure 2

By Lagrange’s theorem, the index of Γ7 in SL(2,Z) is given by the order SL(2,Z/7Z). He then considered its
action on a set of eight elements and through combinatorial considerations found the order of the group to be

336. Then, since the action of SL(2,Z) given by (1) is the same for matrices
(
a b
c d

)
and

(
−a −b
−c −d

)
, it is

useful to quotient out by the center {±1} to obtain PSL(2,Z/7Z) of order 168, which acts faithfully on H. We
observe that Γ̄7 moves about 168 copies of R through the example in [3]. The property that(

1 1
0 1

)n

=
(

1 n
0 1

)
shows that

(
1 1
0 1

)7
∈ Γ̄7

and will therefore move a strip of 7 copies of R to the right. One can picking another element in Γ̄7 to obtain
more copies of R until a block of 168 is found that is moved around as a whole, and one can choose these
R-copies depending on what is needed [3].

We know by the first isomorphism theorem that Γ̄7 is normal, so we can consider the quotient G168 =
PSL(2,Z)/Γ̄7 ∼= PSL(2,Z/7Z). Since its elements are in SL(2,Z), they also move R around, but the ac-
tion is only defined modulo 7 so G168 really maps the block to itself, permuting about copies of R. Thus, we
can consider the quotient H/Γ̄7 as a curve, while G168 gives the automorphism group for this curve [1].

However, in projective coordinates, the region in Figure 1 will have a vertex at ∞. In order to deal with this
issue, Klein transformed R to a region where this vertex had angle 2π/7, which led him to construct Figure
2a. This choice makes sense since Γ̄7 cycles 7 copies of R about this vertex [3]. Figure 2a then gives the
quotient space H/Γ̄7, which is consistent with G168, its group of automorphisms. The figure shows a total of 24
heptagons, with 7 red, yellow and green ones, and three blue ones, with one in the center and two broken ones
around the edges. Klein then identified edges 1 and 6, 3 and 8, . . . , 2n+ 1 with 2n+ 6 mod 14, connected in a
way that the triangles of the same color never touch [1]. An attempt to do this with paper is shown in Figure
2b.

Klein’s goal was then to express the figure as an algebraic curve and as a Riemann surface [3], and he was able
to compute its genus using Euler’s formula

V − E + F = χ
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where χ is the Euler characteristic. We can see from Figure 1 that the region R is made up of 2 triangles and
since H/Γ̄7 contains 168 copies of R, so there are triangles 336 total, as shown in Figure 2a, so we can compute

F = 336, and E = 3
2(336)

since each triangle has 3 edges but each edge is counted twice. Then, if we look at the angles of each triangle
in Figure 2a, we see that there are angles that measure π

7 as in the center, π3 where two heptagons of the same
color and one of a different color meet and and π

2 where two heptagons of different colors share an edge. Thus,
we obtain

V = 366
( 1

2π
pi

7 + 1
2π

π

3 + 1
2π

π

2
)

= 336
( 1

14 + 1
6 + 1

4
)

= 164

giving χ = −4 which corresponds to a genus of 3. Indeed, if we look at the paper model in Figure 2b, we
can sort of see the genus 3 property, as well as the tetrahedral symmetry we would expect from a surface with
automorphism group of order 168. Thus result enabled Klein to use Riemann’s inequality, a result from 1857
that connected the complex analysis of a connected, compact Riemann to its genus, to conclude that the surface
in question can be described by a quartic in P2 [3]. His remaining work then relied on machinery developed for
studying plane curves, leading him to construct an equation for the surface.

4 Plane Curve Machinery

Historically, the systematic study of algebraic curves remained unexplored by mathematicians until the nine-
teenth century. In contrast to the study detailed analysis of conics that took places in the 1600’s, mathematicians
found it difficult to generalize the properties of higher-degree curves. Klein’s remaining work relied heavily on
the results by Julius Plücker, developed in 1835, whose work gave general counting arguments to enumerate
the points of inflection, bitangents and cusps of higher-order curves that do not appear on conics [3]. These
arguments, along with his group of automorphisms, allowed Klein to develop the equation of his symmetrical
thinger.

4.1 Inflection Points
One useful result shown by Plücker in 1835 and then proved more simply by Hesse in 1844 showed that a
nonsingular curve C : (F (x, y, z) = 0) of degree n has 3n(n−2) inflection points [3]. This makes sense, since the
determinant of the Hessian matrix of second partials vanishes at an inflection point. Such a matrix would have
dimension 3× 3 in P2 and for an algebraic curve of degree n, the second partials would have degree n− 2. This
condition gives a curve of degree at most 3(n − 2), which we must intersect with F = 0 to find the inflection
points of C. Then, by Bezout’s Theorem, we know that these curves will intersect at 3n(n−2) points and these
intersections give the number of inflection points.

4.2 Bitangents
Another useful result by Plücker relates the number of bitangents of an algebraic curve to its degree [3]. This
result comes from constructing the dual of a curve, which is formed by the set of lines tangent to the original
curve. If we consider a curve C : (F (x, y, z) = 0), then the equation of the line tangent to C at a point p is
given by

x
∂F

∂x
(p) + y

∂F

∂y
(p) + z

∂F

∂z
(p) = 0.

We can also consider (∂F
∂x

(p), ∂F
∂y

(p), ∂F
∂z

(p)
)

to define the coordinates of the tangent. However, we can also think of this triple as a point in the dual space,
the space of all linear functions. The set of all such points defines a new plane curve called the dual curve of C.
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The polar of a curve C at a point p = (px, py, pz) is given by

∆p = px
∂F

∂x
(x, y, z) + py

∂F

∂y
(x, y, z) + pz

∂F

∂z
(x, y, z) = 0

and C∗. We can consider the dual C∗ as a sort of bucket which contains, for every point in C, a point
corresponding to the line tangent to C at that point. The dual of C can be computed by taking the envelope
of its polars [3]. Therefore, we expect that the dual of C will be of the same degree as its polar; that is, of
degree n − 1. Again, we apply Bezout’s Theorem in order to obtain the number of tangent lines to C, which
gives n(n− 1).

It turns out that taking the dual of the dual of a curve gives back the original curve. Yet, the above formula
suggests that the degree of this curve should be given by

n(n− 1)(n(n− 1)− 1),

which is not true for n > 2. The resolution to this paradox is given by Plücker, who realizes that that
correspondence between points and tangent lines is not one-to-one. If we consider a bitangent, a line tangent
to two distinct points on C, then such a line will dualize to two points on C∗, according to the bucket analogy.
These points will have two different tangents in the dual space, giving two extra points when (C∗)∗ is computed.
A similar situation arises from the existence inflection points on C. An inflection point of C will dualize to
a cusp of C∗, which will dualize again to multiple points. Therefore, if a curve C has α double points and β
inflection points, then we expect that

2α+ 3β = n(n− 1)(n(n− 1)− 1)− n = n3(n− 2).

If we take our previous result that β = 3n(n− 2), then we obtain

α = 1
2n(n− 2)(n2 − 9).

Thus, that we now know to that Klein would expect to find 24 inflection points and 28 bitangents on a non-
singular curve of degree 4 in P2. Indeed, many other mathematicians were interested in quartics as well;
for example, Plücker was able to find a non-singular quartic whose bitangents were real. Jordan identified the
automorphism group of these bitangents in 1870, and showed that the subgroup that of the group of symmetries
that fixes a bitangent is isomorphic to the group of symmetries of the 27 lines on a cubic surface [3].

5 Equation

Figure 3: 3D plot of the real locus of equation (2)
oriented to emphasize a triangle of reference that
could be drawn around its folds.

Most descriptions of the Klein quartic give the equation and
proceed to discuss its symmetries; however, it turns out that
this is precisely backwards. In fact, Klein began with a group-
theoretic description of the quartic, and had been aware of its
symmetries. Meanwhile, a lot of geometric scaffolding had to
be put into place for Klein to utilize it when searching for his
equation.

These results allowed Klein to show that if he could locate three
suitable inflection tangents, to create a “triangle of reference”
about the curve then the curve is given by the equation

x3y + y3z + z3x = 0. (2)

While most points have orbits of 168 points under the action of
G168, Klein studied the points with orbits consisting of 24, 56
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and 84 points. He claimed that these must correspond to the
24 inflection points, 56 bitangent points (since 28 bitangents
are tangent at two points each) and 84 sextatic points, where a conic has contacts the curve in 6 points [3].

In order to show this, Klein undertook a thorough examination of the subgroups of G168, finding, among others,
8 conjugate subgroups of order 21 and two families of 7 conjugate subgroups of order 24. He argued that the
bitangent points were fixed by a rotation of order 3, which corresponds to the 28 subgroups of order 3 in G168.
Similarly, he claimed that the sextatic points are fixed by rotations of order 2, of which there are 21, so each
rotation fixes 4 of them [3]. This analysis allowed Klein to provide visual descriptions of the surface.

6 Additional Comments

Therefore, the history of the Klein curve often does not correspond to the order in which it is commonly
presented. A lot of serious geometric considerations went into its expression as an algebraic curve, combining
many results from analysis, algebraic geometry and group theory. And even though the equation is known, the
Klein quartic continues to appear in number theory, revealing many interesting properties.

Another thing to point out is that Klein’s study of the group SL(2,Z/7Z) was not accidental, since he had
previously undertaken a similar analysis of the symmetries of an icosahedron, which is acted upon by a simple
group isomorphic to SL(2,Z/5Z) of order 60. The group of order 168 is the second smallest non-abelian simple
group, while the icosahedron group is the smallest.

Finally, it is interesting to note that the Klein quartic has the maximal symmetry possible for its genus. Further
work on such surfaces undertaken by Hurwitz revealed the bound on the order of the automorphism group for
algebraic curves with genus g to be given by the equation 84(g − 1) [4].
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